This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Move IO::Compress from ext/ to cpan/
[perl5.git] / hv.c
... / ...
CommitLineData
1/* hv.c
2 *
3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * I sit beside the fire and think
13 * of all that I have seen.
14 * --Bilbo
15 *
16 * [p.278 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
17 */
18
19/*
20=head1 Hash Manipulation Functions
21
22A HV structure represents a Perl hash. It consists mainly of an array
23of pointers, each of which points to a linked list of HE structures. The
24array is indexed by the hash function of the key, so each linked list
25represents all the hash entries with the same hash value. Each HE contains
26a pointer to the actual value, plus a pointer to a HEK structure which
27holds the key and hash value.
28
29=cut
30
31*/
32
33#include "EXTERN.h"
34#define PERL_IN_HV_C
35#define PERL_HASH_INTERNAL_ACCESS
36#include "perl.h"
37
38#define HV_MAX_LENGTH_BEFORE_SPLIT 14
39
40static const char S_strtab_error[]
41 = "Cannot modify shared string table in hv_%s";
42
43STATIC void
44S_more_he(pTHX)
45{
46 dVAR;
47 /* We could generate this at compile time via (another) auxiliary C
48 program? */
49 const size_t arena_size = Perl_malloc_good_size(PERL_ARENA_SIZE);
50 HE* he = (HE*) Perl_get_arena(aTHX_ arena_size, HE_SVSLOT);
51 HE * const heend = &he[arena_size / sizeof(HE) - 1];
52
53 PL_body_roots[HE_SVSLOT] = he;
54 while (he < heend) {
55 HeNEXT(he) = (HE*)(he + 1);
56 he++;
57 }
58 HeNEXT(he) = 0;
59}
60
61#ifdef PURIFY
62
63#define new_HE() (HE*)safemalloc(sizeof(HE))
64#define del_HE(p) safefree((char*)p)
65
66#else
67
68STATIC HE*
69S_new_he(pTHX)
70{
71 dVAR;
72 HE* he;
73 void ** const root = &PL_body_roots[HE_SVSLOT];
74
75 if (!*root)
76 S_more_he(aTHX);
77 he = (HE*) *root;
78 assert(he);
79 *root = HeNEXT(he);
80 return he;
81}
82
83#define new_HE() new_he()
84#define del_HE(p) \
85 STMT_START { \
86 HeNEXT(p) = (HE*)(PL_body_roots[HE_SVSLOT]); \
87 PL_body_roots[HE_SVSLOT] = p; \
88 } STMT_END
89
90
91
92#endif
93
94STATIC HEK *
95S_save_hek_flags(const char *str, I32 len, U32 hash, int flags)
96{
97 const int flags_masked = flags & HVhek_MASK;
98 char *k;
99 register HEK *hek;
100
101 PERL_ARGS_ASSERT_SAVE_HEK_FLAGS;
102
103 Newx(k, HEK_BASESIZE + len + 2, char);
104 hek = (HEK*)k;
105 Copy(str, HEK_KEY(hek), len, char);
106 HEK_KEY(hek)[len] = 0;
107 HEK_LEN(hek) = len;
108 HEK_HASH(hek) = hash;
109 HEK_FLAGS(hek) = (unsigned char)flags_masked | HVhek_UNSHARED;
110
111 if (flags & HVhek_FREEKEY)
112 Safefree(str);
113 return hek;
114}
115
116/* free the pool of temporary HE/HEK pairs returned by hv_fetch_ent
117 * for tied hashes */
118
119void
120Perl_free_tied_hv_pool(pTHX)
121{
122 dVAR;
123 HE *he = PL_hv_fetch_ent_mh;
124 while (he) {
125 HE * const ohe = he;
126 Safefree(HeKEY_hek(he));
127 he = HeNEXT(he);
128 del_HE(ohe);
129 }
130 PL_hv_fetch_ent_mh = NULL;
131}
132
133#if defined(USE_ITHREADS)
134HEK *
135Perl_hek_dup(pTHX_ HEK *source, CLONE_PARAMS* param)
136{
137 HEK *shared;
138
139 PERL_ARGS_ASSERT_HEK_DUP;
140 PERL_UNUSED_ARG(param);
141
142 if (!source)
143 return NULL;
144
145 shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
146 if (shared) {
147 /* We already shared this hash key. */
148 (void)share_hek_hek(shared);
149 }
150 else {
151 shared
152 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
153 HEK_HASH(source), HEK_FLAGS(source));
154 ptr_table_store(PL_ptr_table, source, shared);
155 }
156 return shared;
157}
158
159HE *
160Perl_he_dup(pTHX_ const HE *e, bool shared, CLONE_PARAMS* param)
161{
162 HE *ret;
163
164 PERL_ARGS_ASSERT_HE_DUP;
165
166 if (!e)
167 return NULL;
168 /* look for it in the table first */
169 ret = (HE*)ptr_table_fetch(PL_ptr_table, e);
170 if (ret)
171 return ret;
172
173 /* create anew and remember what it is */
174 ret = new_HE();
175 ptr_table_store(PL_ptr_table, e, ret);
176
177 HeNEXT(ret) = he_dup(HeNEXT(e),shared, param);
178 if (HeKLEN(e) == HEf_SVKEY) {
179 char *k;
180 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
181 HeKEY_hek(ret) = (HEK*)k;
182 HeKEY_sv(ret) = SvREFCNT_inc(sv_dup(HeKEY_sv(e), param));
183 }
184 else if (shared) {
185 /* This is hek_dup inlined, which seems to be important for speed
186 reasons. */
187 HEK * const source = HeKEY_hek(e);
188 HEK *shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
189
190 if (shared) {
191 /* We already shared this hash key. */
192 (void)share_hek_hek(shared);
193 }
194 else {
195 shared
196 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
197 HEK_HASH(source), HEK_FLAGS(source));
198 ptr_table_store(PL_ptr_table, source, shared);
199 }
200 HeKEY_hek(ret) = shared;
201 }
202 else
203 HeKEY_hek(ret) = save_hek_flags(HeKEY(e), HeKLEN(e), HeHASH(e),
204 HeKFLAGS(e));
205 HeVAL(ret) = SvREFCNT_inc(sv_dup(HeVAL(e), param));
206 return ret;
207}
208#endif /* USE_ITHREADS */
209
210static void
211S_hv_notallowed(pTHX_ int flags, const char *key, I32 klen,
212 const char *msg)
213{
214 SV * const sv = sv_newmortal();
215
216 PERL_ARGS_ASSERT_HV_NOTALLOWED;
217
218 if (!(flags & HVhek_FREEKEY)) {
219 sv_setpvn(sv, key, klen);
220 }
221 else {
222 /* Need to free saved eventually assign to mortal SV */
223 /* XXX is this line an error ???: SV *sv = sv_newmortal(); */
224 sv_usepvn(sv, (char *) key, klen);
225 }
226 if (flags & HVhek_UTF8) {
227 SvUTF8_on(sv);
228 }
229 Perl_croak(aTHX_ msg, SVfARG(sv));
230}
231
232/* (klen == HEf_SVKEY) is special for MAGICAL hv entries, meaning key slot
233 * contains an SV* */
234
235/*
236=for apidoc hv_store
237
238Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is
239the length of the key. The C<hash> parameter is the precomputed hash
240value; if it is zero then Perl will compute it. The return value will be
241NULL if the operation failed or if the value did not need to be actually
242stored within the hash (as in the case of tied hashes). Otherwise it can
243be dereferenced to get the original C<SV*>. Note that the caller is
244responsible for suitably incrementing the reference count of C<val> before
245the call, and decrementing it if the function returned NULL. Effectively
246a successful hv_store takes ownership of one reference to C<val>. This is
247usually what you want; a newly created SV has a reference count of one, so
248if all your code does is create SVs then store them in a hash, hv_store
249will own the only reference to the new SV, and your code doesn't need to do
250anything further to tidy up. hv_store is not implemented as a call to
251hv_store_ent, and does not create a temporary SV for the key, so if your
252key data is not already in SV form then use hv_store in preference to
253hv_store_ent.
254
255See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
256information on how to use this function on tied hashes.
257
258=for apidoc hv_store_ent
259
260Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
261parameter is the precomputed hash value; if it is zero then Perl will
262compute it. The return value is the new hash entry so created. It will be
263NULL if the operation failed or if the value did not need to be actually
264stored within the hash (as in the case of tied hashes). Otherwise the
265contents of the return value can be accessed using the C<He?> macros
266described here. Note that the caller is responsible for suitably
267incrementing the reference count of C<val> before the call, and
268decrementing it if the function returned NULL. Effectively a successful
269hv_store_ent takes ownership of one reference to C<val>. This is
270usually what you want; a newly created SV has a reference count of one, so
271if all your code does is create SVs then store them in a hash, hv_store
272will own the only reference to the new SV, and your code doesn't need to do
273anything further to tidy up. Note that hv_store_ent only reads the C<key>;
274unlike C<val> it does not take ownership of it, so maintaining the correct
275reference count on C<key> is entirely the caller's responsibility. hv_store
276is not implemented as a call to hv_store_ent, and does not create a temporary
277SV for the key, so if your key data is not already in SV form then use
278hv_store in preference to hv_store_ent.
279
280See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
281information on how to use this function on tied hashes.
282
283=for apidoc hv_exists
284
285Returns a boolean indicating whether the specified hash key exists. The
286C<klen> is the length of the key.
287
288=for apidoc hv_fetch
289
290Returns the SV which corresponds to the specified key in the hash. The
291C<klen> is the length of the key. If C<lval> is set then the fetch will be
292part of a store. Check that the return value is non-null before
293dereferencing it to an C<SV*>.
294
295See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
296information on how to use this function on tied hashes.
297
298=for apidoc hv_exists_ent
299
300Returns a boolean indicating whether the specified hash key exists. C<hash>
301can be a valid precomputed hash value, or 0 to ask for it to be
302computed.
303
304=cut
305*/
306
307/* returns an HE * structure with the all fields set */
308/* note that hent_val will be a mortal sv for MAGICAL hashes */
309/*
310=for apidoc hv_fetch_ent
311
312Returns the hash entry which corresponds to the specified key in the hash.
313C<hash> must be a valid precomputed hash number for the given C<key>, or 0
314if you want the function to compute it. IF C<lval> is set then the fetch
315will be part of a store. Make sure the return value is non-null before
316accessing it. The return value when C<tb> is a tied hash is a pointer to a
317static location, so be sure to make a copy of the structure if you need to
318store it somewhere.
319
320See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
321information on how to use this function on tied hashes.
322
323=cut
324*/
325
326/* Common code for hv_delete()/hv_exists()/hv_fetch()/hv_store() */
327void *
328Perl_hv_common_key_len(pTHX_ HV *hv, const char *key, I32 klen_i32,
329 const int action, SV *val, const U32 hash)
330{
331 STRLEN klen;
332 int flags;
333
334 PERL_ARGS_ASSERT_HV_COMMON_KEY_LEN;
335
336 if (klen_i32 < 0) {
337 klen = -klen_i32;
338 flags = HVhek_UTF8;
339 } else {
340 klen = klen_i32;
341 flags = 0;
342 }
343 return hv_common(hv, NULL, key, klen, flags, action, val, hash);
344}
345
346void *
347Perl_hv_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
348 int flags, int action, SV *val, register U32 hash)
349{
350 dVAR;
351 XPVHV* xhv;
352 HE *entry;
353 HE **oentry;
354 SV *sv;
355 bool is_utf8;
356 int masked_flags;
357 const int return_svp = action & HV_FETCH_JUST_SV;
358
359 if (!hv)
360 return NULL;
361 if (SvTYPE(hv) == SVTYPEMASK)
362 return NULL;
363
364 assert(SvTYPE(hv) == SVt_PVHV);
365
366 if (SvSMAGICAL(hv) && SvGMAGICAL(hv) && !(action & HV_DISABLE_UVAR_XKEY)) {
367 MAGIC* mg;
368 if ((mg = mg_find((const SV *)hv, PERL_MAGIC_uvar))) {
369 struct ufuncs * const uf = (struct ufuncs *)mg->mg_ptr;
370 if (uf->uf_set == NULL) {
371 SV* obj = mg->mg_obj;
372
373 if (!keysv) {
374 keysv = newSVpvn_flags(key, klen, SVs_TEMP |
375 ((flags & HVhek_UTF8)
376 ? SVf_UTF8 : 0));
377 }
378
379 mg->mg_obj = keysv; /* pass key */
380 uf->uf_index = action; /* pass action */
381 magic_getuvar(MUTABLE_SV(hv), mg);
382 keysv = mg->mg_obj; /* may have changed */
383 mg->mg_obj = obj;
384
385 /* If the key may have changed, then we need to invalidate
386 any passed-in computed hash value. */
387 hash = 0;
388 }
389 }
390 }
391 if (keysv) {
392 if (flags & HVhek_FREEKEY)
393 Safefree(key);
394 key = SvPV_const(keysv, klen);
395 is_utf8 = (SvUTF8(keysv) != 0);
396 if (SvIsCOW_shared_hash(keysv)) {
397 flags = HVhek_KEYCANONICAL | (is_utf8 ? HVhek_UTF8 : 0);
398 } else {
399 flags = 0;
400 }
401 } else {
402 is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
403 }
404
405 if (action & HV_DELETE) {
406 return (void *) hv_delete_common(hv, keysv, key, klen,
407 flags | (is_utf8 ? HVhek_UTF8 : 0),
408 action, hash);
409 }
410
411 xhv = (XPVHV*)SvANY(hv);
412 if (SvMAGICAL(hv)) {
413 if (SvRMAGICAL(hv) && !(action & (HV_FETCH_ISSTORE|HV_FETCH_ISEXISTS))) {
414 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
415 || SvGMAGICAL((const SV *)hv))
416 {
417 /* FIXME should be able to skimp on the HE/HEK here when
418 HV_FETCH_JUST_SV is true. */
419 if (!keysv) {
420 keysv = newSVpvn_utf8(key, klen, is_utf8);
421 } else {
422 keysv = newSVsv(keysv);
423 }
424 sv = sv_newmortal();
425 mg_copy(MUTABLE_SV(hv), sv, (char *)keysv, HEf_SVKEY);
426
427 /* grab a fake HE/HEK pair from the pool or make a new one */
428 entry = PL_hv_fetch_ent_mh;
429 if (entry)
430 PL_hv_fetch_ent_mh = HeNEXT(entry);
431 else {
432 char *k;
433 entry = new_HE();
434 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
435 HeKEY_hek(entry) = (HEK*)k;
436 }
437 HeNEXT(entry) = NULL;
438 HeSVKEY_set(entry, keysv);
439 HeVAL(entry) = sv;
440 sv_upgrade(sv, SVt_PVLV);
441 LvTYPE(sv) = 'T';
442 /* so we can free entry when freeing sv */
443 LvTARG(sv) = MUTABLE_SV(entry);
444
445 /* XXX remove at some point? */
446 if (flags & HVhek_FREEKEY)
447 Safefree(key);
448
449 if (return_svp) {
450 return entry ? (void *) &HeVAL(entry) : NULL;
451 }
452 return (void *) entry;
453 }
454#ifdef ENV_IS_CASELESS
455 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
456 U32 i;
457 for (i = 0; i < klen; ++i)
458 if (isLOWER(key[i])) {
459 /* Would be nice if we had a routine to do the
460 copy and upercase in a single pass through. */
461 const char * const nkey = strupr(savepvn(key,klen));
462 /* Note that this fetch is for nkey (the uppercased
463 key) whereas the store is for key (the original) */
464 void *result = hv_common(hv, NULL, nkey, klen,
465 HVhek_FREEKEY, /* free nkey */
466 0 /* non-LVAL fetch */
467 | HV_DISABLE_UVAR_XKEY
468 | return_svp,
469 NULL /* no value */,
470 0 /* compute hash */);
471 if (!result && (action & HV_FETCH_LVALUE)) {
472 /* This call will free key if necessary.
473 Do it this way to encourage compiler to tail
474 call optimise. */
475 result = hv_common(hv, keysv, key, klen, flags,
476 HV_FETCH_ISSTORE
477 | HV_DISABLE_UVAR_XKEY
478 | return_svp,
479 newSV(0), hash);
480 } else {
481 if (flags & HVhek_FREEKEY)
482 Safefree(key);
483 }
484 return result;
485 }
486 }
487#endif
488 } /* ISFETCH */
489 else if (SvRMAGICAL(hv) && (action & HV_FETCH_ISEXISTS)) {
490 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
491 || SvGMAGICAL((const SV *)hv)) {
492 /* I don't understand why hv_exists_ent has svret and sv,
493 whereas hv_exists only had one. */
494 SV * const svret = sv_newmortal();
495 sv = sv_newmortal();
496
497 if (keysv || is_utf8) {
498 if (!keysv) {
499 keysv = newSVpvn_utf8(key, klen, TRUE);
500 } else {
501 keysv = newSVsv(keysv);
502 }
503 mg_copy(MUTABLE_SV(hv), sv, (char *)sv_2mortal(keysv), HEf_SVKEY);
504 } else {
505 mg_copy(MUTABLE_SV(hv), sv, key, klen);
506 }
507 if (flags & HVhek_FREEKEY)
508 Safefree(key);
509 magic_existspack(svret, mg_find(sv, PERL_MAGIC_tiedelem));
510 /* This cast somewhat evil, but I'm merely using NULL/
511 not NULL to return the boolean exists.
512 And I know hv is not NULL. */
513 return SvTRUE(svret) ? (void *)hv : NULL;
514 }
515#ifdef ENV_IS_CASELESS
516 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
517 /* XXX This code isn't UTF8 clean. */
518 char * const keysave = (char * const)key;
519 /* Will need to free this, so set FREEKEY flag. */
520 key = savepvn(key,klen);
521 key = (const char*)strupr((char*)key);
522 is_utf8 = FALSE;
523 hash = 0;
524 keysv = 0;
525
526 if (flags & HVhek_FREEKEY) {
527 Safefree(keysave);
528 }
529 flags |= HVhek_FREEKEY;
530 }
531#endif
532 } /* ISEXISTS */
533 else if (action & HV_FETCH_ISSTORE) {
534 bool needs_copy;
535 bool needs_store;
536 hv_magic_check (hv, &needs_copy, &needs_store);
537 if (needs_copy) {
538 const bool save_taint = PL_tainted;
539 if (keysv || is_utf8) {
540 if (!keysv) {
541 keysv = newSVpvn_utf8(key, klen, TRUE);
542 }
543 if (PL_tainting)
544 PL_tainted = SvTAINTED(keysv);
545 keysv = sv_2mortal(newSVsv(keysv));
546 mg_copy(MUTABLE_SV(hv), val, (char*)keysv, HEf_SVKEY);
547 } else {
548 mg_copy(MUTABLE_SV(hv), val, key, klen);
549 }
550
551 TAINT_IF(save_taint);
552 if (!needs_store) {
553 if (flags & HVhek_FREEKEY)
554 Safefree(key);
555 return NULL;
556 }
557#ifdef ENV_IS_CASELESS
558 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
559 /* XXX This code isn't UTF8 clean. */
560 const char *keysave = key;
561 /* Will need to free this, so set FREEKEY flag. */
562 key = savepvn(key,klen);
563 key = (const char*)strupr((char*)key);
564 is_utf8 = FALSE;
565 hash = 0;
566 keysv = 0;
567
568 if (flags & HVhek_FREEKEY) {
569 Safefree(keysave);
570 }
571 flags |= HVhek_FREEKEY;
572 }
573#endif
574 }
575 } /* ISSTORE */
576 } /* SvMAGICAL */
577
578 if (!HvARRAY(hv)) {
579 if ((action & (HV_FETCH_LVALUE | HV_FETCH_ISSTORE))
580#ifdef DYNAMIC_ENV_FETCH /* if it's an %ENV lookup, we may get it on the fly */
581 || (SvRMAGICAL((const SV *)hv)
582 && mg_find((const SV *)hv, PERL_MAGIC_env))
583#endif
584 ) {
585 char *array;
586 Newxz(array,
587 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
588 char);
589 HvARRAY(hv) = (HE**)array;
590 }
591#ifdef DYNAMIC_ENV_FETCH
592 else if (action & HV_FETCH_ISEXISTS) {
593 /* for an %ENV exists, if we do an insert it's by a recursive
594 store call, so avoid creating HvARRAY(hv) right now. */
595 }
596#endif
597 else {
598 /* XXX remove at some point? */
599 if (flags & HVhek_FREEKEY)
600 Safefree(key);
601
602 return NULL;
603 }
604 }
605
606 if (is_utf8 & !(flags & HVhek_KEYCANONICAL)) {
607 char * const keysave = (char *)key;
608 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
609 if (is_utf8)
610 flags |= HVhek_UTF8;
611 else
612 flags &= ~HVhek_UTF8;
613 if (key != keysave) {
614 if (flags & HVhek_FREEKEY)
615 Safefree(keysave);
616 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
617 /* If the caller calculated a hash, it was on the sequence of
618 octets that are the UTF-8 form. We've now changed the sequence
619 of octets stored to that of the equivalent byte representation,
620 so the hash we need is different. */
621 hash = 0;
622 }
623 }
624
625 if (HvREHASH(hv)) {
626 PERL_HASH_INTERNAL(hash, key, klen);
627 /* We don't have a pointer to the hv, so we have to replicate the
628 flag into every HEK, so that hv_iterkeysv can see it. */
629 /* And yes, you do need this even though you are not "storing" because
630 you can flip the flags below if doing an lval lookup. (And that
631 was put in to give the semantics Andreas was expecting.) */
632 flags |= HVhek_REHASH;
633 } else if (!hash) {
634 if (keysv && (SvIsCOW_shared_hash(keysv))) {
635 hash = SvSHARED_HASH(keysv);
636 } else {
637 PERL_HASH(hash, key, klen);
638 }
639 }
640
641 masked_flags = (flags & HVhek_MASK);
642
643#ifdef DYNAMIC_ENV_FETCH
644 if (!HvARRAY(hv)) entry = NULL;
645 else
646#endif
647 {
648 entry = (HvARRAY(hv))[hash & (I32) HvMAX(hv)];
649 }
650 for (; entry; entry = HeNEXT(entry)) {
651 if (HeHASH(entry) != hash) /* strings can't be equal */
652 continue;
653 if (HeKLEN(entry) != (I32)klen)
654 continue;
655 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
656 continue;
657 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
658 continue;
659
660 if (action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE)) {
661 if (HeKFLAGS(entry) != masked_flags) {
662 /* We match if HVhek_UTF8 bit in our flags and hash key's
663 match. But if entry was set previously with HVhek_WASUTF8
664 and key now doesn't (or vice versa) then we should change
665 the key's flag, as this is assignment. */
666 if (HvSHAREKEYS(hv)) {
667 /* Need to swap the key we have for a key with the flags we
668 need. As keys are shared we can't just write to the
669 flag, so we share the new one, unshare the old one. */
670 HEK * const new_hek = share_hek_flags(key, klen, hash,
671 masked_flags);
672 unshare_hek (HeKEY_hek(entry));
673 HeKEY_hek(entry) = new_hek;
674 }
675 else if (hv == PL_strtab) {
676 /* PL_strtab is usually the only hash without HvSHAREKEYS,
677 so putting this test here is cheap */
678 if (flags & HVhek_FREEKEY)
679 Safefree(key);
680 Perl_croak(aTHX_ S_strtab_error,
681 action & HV_FETCH_LVALUE ? "fetch" : "store");
682 }
683 else
684 HeKFLAGS(entry) = masked_flags;
685 if (masked_flags & HVhek_ENABLEHVKFLAGS)
686 HvHASKFLAGS_on(hv);
687 }
688 if (HeVAL(entry) == &PL_sv_placeholder) {
689 /* yes, can store into placeholder slot */
690 if (action & HV_FETCH_LVALUE) {
691 if (SvMAGICAL(hv)) {
692 /* This preserves behaviour with the old hv_fetch
693 implementation which at this point would bail out
694 with a break; (at "if we find a placeholder, we
695 pretend we haven't found anything")
696
697 That break mean that if a placeholder were found, it
698 caused a call into hv_store, which in turn would
699 check magic, and if there is no magic end up pretty
700 much back at this point (in hv_store's code). */
701 break;
702 }
703 /* LVAL fetch which actaully needs a store. */
704 val = newSV(0);
705 HvPLACEHOLDERS(hv)--;
706 } else {
707 /* store */
708 if (val != &PL_sv_placeholder)
709 HvPLACEHOLDERS(hv)--;
710 }
711 HeVAL(entry) = val;
712 } else if (action & HV_FETCH_ISSTORE) {
713 SvREFCNT_dec(HeVAL(entry));
714 HeVAL(entry) = val;
715 }
716 } else if (HeVAL(entry) == &PL_sv_placeholder) {
717 /* if we find a placeholder, we pretend we haven't found
718 anything */
719 break;
720 }
721 if (flags & HVhek_FREEKEY)
722 Safefree(key);
723 if (return_svp) {
724 return entry ? (void *) &HeVAL(entry) : NULL;
725 }
726 return entry;
727 }
728#ifdef DYNAMIC_ENV_FETCH /* %ENV lookup? If so, try to fetch the value now */
729 if (!(action & HV_FETCH_ISSTORE)
730 && SvRMAGICAL((const SV *)hv)
731 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
732 unsigned long len;
733 const char * const env = PerlEnv_ENVgetenv_len(key,&len);
734 if (env) {
735 sv = newSVpvn(env,len);
736 SvTAINTED_on(sv);
737 return hv_common(hv, keysv, key, klen, flags,
738 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
739 sv, hash);
740 }
741 }
742#endif
743
744 if (!entry && SvREADONLY(hv) && !(action & HV_FETCH_ISEXISTS)) {
745 hv_notallowed(flags, key, klen,
746 "Attempt to access disallowed key '%"SVf"' in"
747 " a restricted hash");
748 }
749 if (!(action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE))) {
750 /* Not doing some form of store, so return failure. */
751 if (flags & HVhek_FREEKEY)
752 Safefree(key);
753 return NULL;
754 }
755 if (action & HV_FETCH_LVALUE) {
756 val = newSV(0);
757 if (SvMAGICAL(hv)) {
758 /* At this point the old hv_fetch code would call to hv_store,
759 which in turn might do some tied magic. So we need to make that
760 magic check happen. */
761 /* gonna assign to this, so it better be there */
762 /* If a fetch-as-store fails on the fetch, then the action is to
763 recurse once into "hv_store". If we didn't do this, then that
764 recursive call would call the key conversion routine again.
765 However, as we replace the original key with the converted
766 key, this would result in a double conversion, which would show
767 up as a bug if the conversion routine is not idempotent. */
768 return hv_common(hv, keysv, key, klen, flags,
769 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
770 val, hash);
771 /* XXX Surely that could leak if the fetch-was-store fails?
772 Just like the hv_fetch. */
773 }
774 }
775
776 /* Welcome to hv_store... */
777
778 if (!HvARRAY(hv)) {
779 /* Not sure if we can get here. I think the only case of oentry being
780 NULL is for %ENV with dynamic env fetch. But that should disappear
781 with magic in the previous code. */
782 char *array;
783 Newxz(array,
784 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
785 char);
786 HvARRAY(hv) = (HE**)array;
787 }
788
789 oentry = &(HvARRAY(hv))[hash & (I32) xhv->xhv_max];
790
791 entry = new_HE();
792 /* share_hek_flags will do the free for us. This might be considered
793 bad API design. */
794 if (HvSHAREKEYS(hv))
795 HeKEY_hek(entry) = share_hek_flags(key, klen, hash, flags);
796 else if (hv == PL_strtab) {
797 /* PL_strtab is usually the only hash without HvSHAREKEYS, so putting
798 this test here is cheap */
799 if (flags & HVhek_FREEKEY)
800 Safefree(key);
801 Perl_croak(aTHX_ S_strtab_error,
802 action & HV_FETCH_LVALUE ? "fetch" : "store");
803 }
804 else /* gotta do the real thing */
805 HeKEY_hek(entry) = save_hek_flags(key, klen, hash, flags);
806 HeVAL(entry) = val;
807 HeNEXT(entry) = *oentry;
808 *oentry = entry;
809
810 if (val == &PL_sv_placeholder)
811 HvPLACEHOLDERS(hv)++;
812 if (masked_flags & HVhek_ENABLEHVKFLAGS)
813 HvHASKFLAGS_on(hv);
814
815 {
816 const HE *counter = HeNEXT(entry);
817
818 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
819 if (!counter) { /* initial entry? */
820 xhv->xhv_fill++; /* HvFILL(hv)++ */
821 } else if (xhv->xhv_keys > (IV)xhv->xhv_max) {
822 hsplit(hv);
823 } else if(!HvREHASH(hv)) {
824 U32 n_links = 1;
825
826 while ((counter = HeNEXT(counter)))
827 n_links++;
828
829 if (n_links > HV_MAX_LENGTH_BEFORE_SPLIT) {
830 /* Use only the old HvKEYS(hv) > HvMAX(hv) condition to limit
831 bucket splits on a rehashed hash, as we're not going to
832 split it again, and if someone is lucky (evil) enough to
833 get all the keys in one list they could exhaust our memory
834 as we repeatedly double the number of buckets on every
835 entry. Linear search feels a less worse thing to do. */
836 hsplit(hv);
837 }
838 }
839 }
840
841 if (return_svp) {
842 return entry ? (void *) &HeVAL(entry) : NULL;
843 }
844 return (void *) entry;
845}
846
847STATIC void
848S_hv_magic_check(HV *hv, bool *needs_copy, bool *needs_store)
849{
850 const MAGIC *mg = SvMAGIC(hv);
851
852 PERL_ARGS_ASSERT_HV_MAGIC_CHECK;
853
854 *needs_copy = FALSE;
855 *needs_store = TRUE;
856 while (mg) {
857 if (isUPPER(mg->mg_type)) {
858 *needs_copy = TRUE;
859 if (mg->mg_type == PERL_MAGIC_tied) {
860 *needs_store = FALSE;
861 return; /* We've set all there is to set. */
862 }
863 }
864 mg = mg->mg_moremagic;
865 }
866}
867
868/*
869=for apidoc hv_scalar
870
871Evaluates the hash in scalar context and returns the result. Handles magic when the hash is tied.
872
873=cut
874*/
875
876SV *
877Perl_hv_scalar(pTHX_ HV *hv)
878{
879 SV *sv;
880
881 PERL_ARGS_ASSERT_HV_SCALAR;
882
883 if (SvRMAGICAL(hv)) {
884 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_tied);
885 if (mg)
886 return magic_scalarpack(hv, mg);
887 }
888
889 sv = sv_newmortal();
890 if (HvFILL((const HV *)hv))
891 Perl_sv_setpvf(aTHX_ sv, "%ld/%ld",
892 (long)HvFILL(hv), (long)HvMAX(hv) + 1);
893 else
894 sv_setiv(sv, 0);
895
896 return sv;
897}
898
899/*
900=for apidoc hv_delete
901
902Deletes a key/value pair in the hash. The value SV is removed from the
903hash and returned to the caller. The C<klen> is the length of the key.
904The C<flags> value will normally be zero; if set to G_DISCARD then NULL
905will be returned.
906
907=for apidoc hv_delete_ent
908
909Deletes a key/value pair in the hash. The value SV is removed from the
910hash and returned to the caller. The C<flags> value will normally be zero;
911if set to G_DISCARD then NULL will be returned. C<hash> can be a valid
912precomputed hash value, or 0 to ask for it to be computed.
913
914=cut
915*/
916
917STATIC SV *
918S_hv_delete_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
919 int k_flags, I32 d_flags, U32 hash)
920{
921 dVAR;
922 register XPVHV* xhv;
923 register HE *entry;
924 register HE **oentry;
925 HE *const *first_entry;
926 bool is_utf8 = (k_flags & HVhek_UTF8) ? TRUE : FALSE;
927 int masked_flags;
928
929 if (SvRMAGICAL(hv)) {
930 bool needs_copy;
931 bool needs_store;
932 hv_magic_check (hv, &needs_copy, &needs_store);
933
934 if (needs_copy) {
935 SV *sv;
936 entry = (HE *) hv_common(hv, keysv, key, klen,
937 k_flags & ~HVhek_FREEKEY,
938 HV_FETCH_LVALUE|HV_DISABLE_UVAR_XKEY,
939 NULL, hash);
940 sv = entry ? HeVAL(entry) : NULL;
941 if (sv) {
942 if (SvMAGICAL(sv)) {
943 mg_clear(sv);
944 }
945 if (!needs_store) {
946 if (mg_find(sv, PERL_MAGIC_tiedelem)) {
947 /* No longer an element */
948 sv_unmagic(sv, PERL_MAGIC_tiedelem);
949 return sv;
950 }
951 return NULL; /* element cannot be deleted */
952 }
953#ifdef ENV_IS_CASELESS
954 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
955 /* XXX This code isn't UTF8 clean. */
956 keysv = newSVpvn_flags(key, klen, SVs_TEMP);
957 if (k_flags & HVhek_FREEKEY) {
958 Safefree(key);
959 }
960 key = strupr(SvPVX(keysv));
961 is_utf8 = 0;
962 k_flags = 0;
963 hash = 0;
964 }
965#endif
966 }
967 }
968 }
969 xhv = (XPVHV*)SvANY(hv);
970 if (!HvARRAY(hv))
971 return NULL;
972
973 if (is_utf8) {
974 const char * const keysave = key;
975 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
976
977 if (is_utf8)
978 k_flags |= HVhek_UTF8;
979 else
980 k_flags &= ~HVhek_UTF8;
981 if (key != keysave) {
982 if (k_flags & HVhek_FREEKEY) {
983 /* This shouldn't happen if our caller does what we expect,
984 but strictly the API allows it. */
985 Safefree(keysave);
986 }
987 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
988 }
989 HvHASKFLAGS_on(MUTABLE_SV(hv));
990 }
991
992 if (HvREHASH(hv)) {
993 PERL_HASH_INTERNAL(hash, key, klen);
994 } else if (!hash) {
995 if (keysv && (SvIsCOW_shared_hash(keysv))) {
996 hash = SvSHARED_HASH(keysv);
997 } else {
998 PERL_HASH(hash, key, klen);
999 }
1000 }
1001
1002 masked_flags = (k_flags & HVhek_MASK);
1003
1004 first_entry = oentry = &(HvARRAY(hv))[hash & (I32) HvMAX(hv)];
1005 entry = *oentry;
1006 for (; entry; oentry = &HeNEXT(entry), entry = *oentry) {
1007 SV *sv;
1008 if (HeHASH(entry) != hash) /* strings can't be equal */
1009 continue;
1010 if (HeKLEN(entry) != (I32)klen)
1011 continue;
1012 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
1013 continue;
1014 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
1015 continue;
1016
1017 if (hv == PL_strtab) {
1018 if (k_flags & HVhek_FREEKEY)
1019 Safefree(key);
1020 Perl_croak(aTHX_ S_strtab_error, "delete");
1021 }
1022
1023 /* if placeholder is here, it's already been deleted.... */
1024 if (HeVAL(entry) == &PL_sv_placeholder) {
1025 if (k_flags & HVhek_FREEKEY)
1026 Safefree(key);
1027 return NULL;
1028 }
1029 if (SvREADONLY(hv) && HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
1030 hv_notallowed(k_flags, key, klen,
1031 "Attempt to delete readonly key '%"SVf"' from"
1032 " a restricted hash");
1033 }
1034 if (k_flags & HVhek_FREEKEY)
1035 Safefree(key);
1036
1037 if (d_flags & G_DISCARD)
1038 sv = NULL;
1039 else {
1040 sv = sv_2mortal(HeVAL(entry));
1041 HeVAL(entry) = &PL_sv_placeholder;
1042 }
1043
1044 /*
1045 * If a restricted hash, rather than really deleting the entry, put
1046 * a placeholder there. This marks the key as being "approved", so
1047 * we can still access via not-really-existing key without raising
1048 * an error.
1049 */
1050 if (SvREADONLY(hv)) {
1051 SvREFCNT_dec(HeVAL(entry));
1052 HeVAL(entry) = &PL_sv_placeholder;
1053 /* We'll be saving this slot, so the number of allocated keys
1054 * doesn't go down, but the number placeholders goes up */
1055 HvPLACEHOLDERS(hv)++;
1056 } else {
1057 *oentry = HeNEXT(entry);
1058 if(!*first_entry) {
1059 xhv->xhv_fill--; /* HvFILL(hv)-- */
1060 }
1061 if (SvOOK(hv) && entry == HvAUX(hv)->xhv_eiter /* HvEITER(hv) */)
1062 HvLAZYDEL_on(hv);
1063 else
1064 hv_free_ent(hv, entry);
1065 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
1066 if (xhv->xhv_keys == 0)
1067 HvHASKFLAGS_off(hv);
1068 }
1069 return sv;
1070 }
1071 if (SvREADONLY(hv)) {
1072 hv_notallowed(k_flags, key, klen,
1073 "Attempt to delete disallowed key '%"SVf"' from"
1074 " a restricted hash");
1075 }
1076
1077 if (k_flags & HVhek_FREEKEY)
1078 Safefree(key);
1079 return NULL;
1080}
1081
1082STATIC void
1083S_hsplit(pTHX_ HV *hv)
1084{
1085 dVAR;
1086 register XPVHV* const xhv = (XPVHV*)SvANY(hv);
1087 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1088 register I32 newsize = oldsize * 2;
1089 register I32 i;
1090 char *a = (char*) HvARRAY(hv);
1091 register HE **aep;
1092 register HE **oentry;
1093 int longest_chain = 0;
1094 int was_shared;
1095
1096 PERL_ARGS_ASSERT_HSPLIT;
1097
1098 /*PerlIO_printf(PerlIO_stderr(), "hsplit called for %p which had %d\n",
1099 (void*)hv, (int) oldsize);*/
1100
1101 if (HvPLACEHOLDERS_get(hv) && !SvREADONLY(hv)) {
1102 /* Can make this clear any placeholders first for non-restricted hashes,
1103 even though Storable rebuilds restricted hashes by putting in all the
1104 placeholders (first) before turning on the readonly flag, because
1105 Storable always pre-splits the hash. */
1106 hv_clear_placeholders(hv);
1107 }
1108
1109 PL_nomemok = TRUE;
1110#if defined(STRANGE_MALLOC) || defined(MYMALLOC)
1111 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1112 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1113 if (!a) {
1114 PL_nomemok = FALSE;
1115 return;
1116 }
1117 if (SvOOK(hv)) {
1118 Move(&a[oldsize * sizeof(HE*)], &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1119 }
1120#else
1121 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1122 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1123 if (!a) {
1124 PL_nomemok = FALSE;
1125 return;
1126 }
1127 Copy(HvARRAY(hv), a, oldsize * sizeof(HE*), char);
1128 if (SvOOK(hv)) {
1129 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1130 }
1131 if (oldsize >= 64) {
1132 offer_nice_chunk(HvARRAY(hv),
1133 PERL_HV_ARRAY_ALLOC_BYTES(oldsize)
1134 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0));
1135 }
1136 else
1137 Safefree(HvARRAY(hv));
1138#endif
1139
1140 PL_nomemok = FALSE;
1141 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1142 xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
1143 HvARRAY(hv) = (HE**) a;
1144 aep = (HE**)a;
1145
1146 for (i=0; i<oldsize; i++,aep++) {
1147 int left_length = 0;
1148 int right_length = 0;
1149 register HE *entry;
1150 register HE **bep;
1151
1152 if (!*aep) /* non-existent */
1153 continue;
1154 bep = aep+oldsize;
1155 for (oentry = aep, entry = *aep; entry; entry = *oentry) {
1156 if ((HeHASH(entry) & newsize) != (U32)i) {
1157 *oentry = HeNEXT(entry);
1158 HeNEXT(entry) = *bep;
1159 if (!*bep)
1160 xhv->xhv_fill++; /* HvFILL(hv)++ */
1161 *bep = entry;
1162 right_length++;
1163 continue;
1164 }
1165 else {
1166 oentry = &HeNEXT(entry);
1167 left_length++;
1168 }
1169 }
1170 if (!*aep) /* everything moved */
1171 xhv->xhv_fill--; /* HvFILL(hv)-- */
1172 /* I think we don't actually need to keep track of the longest length,
1173 merely flag if anything is too long. But for the moment while
1174 developing this code I'll track it. */
1175 if (left_length > longest_chain)
1176 longest_chain = left_length;
1177 if (right_length > longest_chain)
1178 longest_chain = right_length;
1179 }
1180
1181
1182 /* Pick your policy for "hashing isn't working" here: */
1183 if (longest_chain <= HV_MAX_LENGTH_BEFORE_SPLIT /* split worked? */
1184 || HvREHASH(hv)) {
1185 return;
1186 }
1187
1188 if (hv == PL_strtab) {
1189 /* Urg. Someone is doing something nasty to the string table.
1190 Can't win. */
1191 return;
1192 }
1193
1194 /* Awooga. Awooga. Pathological data. */
1195 /*PerlIO_printf(PerlIO_stderr(), "%p %d of %d with %d/%d buckets\n", (void*)hv,
1196 longest_chain, HvTOTALKEYS(hv), HvFILL(hv), 1+HvMAX(hv));*/
1197
1198 ++newsize;
1199 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1200 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1201 if (SvOOK(hv)) {
1202 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1203 }
1204
1205 was_shared = HvSHAREKEYS(hv);
1206
1207 xhv->xhv_fill = 0;
1208 HvSHAREKEYS_off(hv);
1209 HvREHASH_on(hv);
1210
1211 aep = HvARRAY(hv);
1212
1213 for (i=0; i<newsize; i++,aep++) {
1214 register HE *entry = *aep;
1215 while (entry) {
1216 /* We're going to trash this HE's next pointer when we chain it
1217 into the new hash below, so store where we go next. */
1218 HE * const next = HeNEXT(entry);
1219 UV hash;
1220 HE **bep;
1221
1222 /* Rehash it */
1223 PERL_HASH_INTERNAL(hash, HeKEY(entry), HeKLEN(entry));
1224
1225 if (was_shared) {
1226 /* Unshare it. */
1227 HEK * const new_hek
1228 = save_hek_flags(HeKEY(entry), HeKLEN(entry),
1229 hash, HeKFLAGS(entry));
1230 unshare_hek (HeKEY_hek(entry));
1231 HeKEY_hek(entry) = new_hek;
1232 } else {
1233 /* Not shared, so simply write the new hash in. */
1234 HeHASH(entry) = hash;
1235 }
1236 /*PerlIO_printf(PerlIO_stderr(), "%d ", HeKFLAGS(entry));*/
1237 HEK_REHASH_on(HeKEY_hek(entry));
1238 /*PerlIO_printf(PerlIO_stderr(), "%d\n", HeKFLAGS(entry));*/
1239
1240 /* Copy oentry to the correct new chain. */
1241 bep = ((HE**)a) + (hash & (I32) xhv->xhv_max);
1242 if (!*bep)
1243 xhv->xhv_fill++; /* HvFILL(hv)++ */
1244 HeNEXT(entry) = *bep;
1245 *bep = entry;
1246
1247 entry = next;
1248 }
1249 }
1250 Safefree (HvARRAY(hv));
1251 HvARRAY(hv) = (HE **)a;
1252}
1253
1254void
1255Perl_hv_ksplit(pTHX_ HV *hv, IV newmax)
1256{
1257 dVAR;
1258 register XPVHV* xhv = (XPVHV*)SvANY(hv);
1259 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1260 register I32 newsize;
1261 register I32 i;
1262 register char *a;
1263 register HE **aep;
1264 register HE *entry;
1265 register HE **oentry;
1266
1267 PERL_ARGS_ASSERT_HV_KSPLIT;
1268
1269 newsize = (I32) newmax; /* possible truncation here */
1270 if (newsize != newmax || newmax <= oldsize)
1271 return;
1272 while ((newsize & (1 + ~newsize)) != newsize) {
1273 newsize &= ~(newsize & (1 + ~newsize)); /* get proper power of 2 */
1274 }
1275 if (newsize < newmax)
1276 newsize *= 2;
1277 if (newsize < newmax)
1278 return; /* overflow detection */
1279
1280 a = (char *) HvARRAY(hv);
1281 if (a) {
1282 PL_nomemok = TRUE;
1283#if defined(STRANGE_MALLOC) || defined(MYMALLOC)
1284 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1285 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1286 if (!a) {
1287 PL_nomemok = FALSE;
1288 return;
1289 }
1290 if (SvOOK(hv)) {
1291 Copy(&a[oldsize * sizeof(HE*)], &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1292 }
1293#else
1294 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1295 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1296 if (!a) {
1297 PL_nomemok = FALSE;
1298 return;
1299 }
1300 Copy(HvARRAY(hv), a, oldsize * sizeof(HE*), char);
1301 if (SvOOK(hv)) {
1302 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1303 }
1304 if (oldsize >= 64) {
1305 offer_nice_chunk(HvARRAY(hv),
1306 PERL_HV_ARRAY_ALLOC_BYTES(oldsize)
1307 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0));
1308 }
1309 else
1310 Safefree(HvARRAY(hv));
1311#endif
1312 PL_nomemok = FALSE;
1313 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1314 }
1315 else {
1316 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
1317 }
1318 xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
1319 HvARRAY(hv) = (HE **) a;
1320 if (!xhv->xhv_fill /* !HvFILL(hv) */) /* skip rest if no entries */
1321 return;
1322
1323 aep = (HE**)a;
1324 for (i=0; i<oldsize; i++,aep++) {
1325 if (!*aep) /* non-existent */
1326 continue;
1327 for (oentry = aep, entry = *aep; entry; entry = *oentry) {
1328 register I32 j = (HeHASH(entry) & newsize);
1329
1330 if (j != i) {
1331 j -= i;
1332 *oentry = HeNEXT(entry);
1333 if (!(HeNEXT(entry) = aep[j]))
1334 xhv->xhv_fill++; /* HvFILL(hv)++ */
1335 aep[j] = entry;
1336 continue;
1337 }
1338 else
1339 oentry = &HeNEXT(entry);
1340 }
1341 if (!*aep) /* everything moved */
1342 xhv->xhv_fill--; /* HvFILL(hv)-- */
1343 }
1344}
1345
1346HV *
1347Perl_newHVhv(pTHX_ HV *ohv)
1348{
1349 HV * const hv = newHV();
1350 STRLEN hv_max, hv_fill;
1351
1352 if (!ohv || (hv_fill = HvFILL(ohv)) == 0)
1353 return hv;
1354 hv_max = HvMAX(ohv);
1355
1356 if (!SvMAGICAL((const SV *)ohv)) {
1357 /* It's an ordinary hash, so copy it fast. AMS 20010804 */
1358 STRLEN i;
1359 const bool shared = !!HvSHAREKEYS(ohv);
1360 HE **ents, ** const oents = (HE **)HvARRAY(ohv);
1361 char *a;
1362 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(hv_max+1), char);
1363 ents = (HE**)a;
1364
1365 /* In each bucket... */
1366 for (i = 0; i <= hv_max; i++) {
1367 HE *prev = NULL;
1368 HE *oent = oents[i];
1369
1370 if (!oent) {
1371 ents[i] = NULL;
1372 continue;
1373 }
1374
1375 /* Copy the linked list of entries. */
1376 for (; oent; oent = HeNEXT(oent)) {
1377 const U32 hash = HeHASH(oent);
1378 const char * const key = HeKEY(oent);
1379 const STRLEN len = HeKLEN(oent);
1380 const int flags = HeKFLAGS(oent);
1381 HE * const ent = new_HE();
1382 SV *const val = HeVAL(oent);
1383
1384 HeVAL(ent) = SvIMMORTAL(val) ? val : newSVsv(val);
1385 HeKEY_hek(ent)
1386 = shared ? share_hek_flags(key, len, hash, flags)
1387 : save_hek_flags(key, len, hash, flags);
1388 if (prev)
1389 HeNEXT(prev) = ent;
1390 else
1391 ents[i] = ent;
1392 prev = ent;
1393 HeNEXT(ent) = NULL;
1394 }
1395 }
1396
1397 HvMAX(hv) = hv_max;
1398 HvFILL(hv) = hv_fill;
1399 HvTOTALKEYS(hv) = HvTOTALKEYS(ohv);
1400 HvARRAY(hv) = ents;
1401 } /* not magical */
1402 else {
1403 /* Iterate over ohv, copying keys and values one at a time. */
1404 HE *entry;
1405 const I32 riter = HvRITER_get(ohv);
1406 HE * const eiter = HvEITER_get(ohv);
1407
1408 /* Can we use fewer buckets? (hv_max is always 2^n-1) */
1409 while (hv_max && hv_max + 1 >= hv_fill * 2)
1410 hv_max = hv_max / 2;
1411 HvMAX(hv) = hv_max;
1412
1413 hv_iterinit(ohv);
1414 while ((entry = hv_iternext_flags(ohv, 0))) {
1415 SV *const val = HeVAL(entry);
1416 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
1417 SvIMMORTAL(val) ? val : newSVsv(val),
1418 HeHASH(entry), HeKFLAGS(entry));
1419 }
1420 HvRITER_set(ohv, riter);
1421 HvEITER_set(ohv, eiter);
1422 }
1423
1424 return hv;
1425}
1426
1427/* A rather specialised version of newHVhv for copying %^H, ensuring all the
1428 magic stays on it. */
1429HV *
1430Perl_hv_copy_hints_hv(pTHX_ HV *const ohv)
1431{
1432 HV * const hv = newHV();
1433 STRLEN hv_fill;
1434
1435 if (ohv && (hv_fill = HvFILL(ohv))) {
1436 STRLEN hv_max = HvMAX(ohv);
1437 HE *entry;
1438 const I32 riter = HvRITER_get(ohv);
1439 HE * const eiter = HvEITER_get(ohv);
1440
1441 while (hv_max && hv_max + 1 >= hv_fill * 2)
1442 hv_max = hv_max / 2;
1443 HvMAX(hv) = hv_max;
1444
1445 hv_iterinit(ohv);
1446 while ((entry = hv_iternext_flags(ohv, 0))) {
1447 SV *const sv = newSVsv(HeVAL(entry));
1448 SV *heksv = newSVhek(HeKEY_hek(entry));
1449 sv_magic(sv, NULL, PERL_MAGIC_hintselem,
1450 (char *)heksv, HEf_SVKEY);
1451 SvREFCNT_dec(heksv);
1452 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
1453 sv, HeHASH(entry), HeKFLAGS(entry));
1454 }
1455 HvRITER_set(ohv, riter);
1456 HvEITER_set(ohv, eiter);
1457 }
1458 hv_magic(hv, NULL, PERL_MAGIC_hints);
1459 return hv;
1460}
1461
1462void
1463Perl_hv_free_ent(pTHX_ HV *hv, register HE *entry)
1464{
1465 dVAR;
1466 SV *val;
1467
1468 PERL_ARGS_ASSERT_HV_FREE_ENT;
1469
1470 if (!entry)
1471 return;
1472 val = HeVAL(entry);
1473 if (HvNAME(hv) && anonymise_cv(HvNAME_HEK(hv), val) && GvCVu(val))
1474 mro_method_changed_in(hv);
1475 SvREFCNT_dec(val);
1476 if (HeKLEN(entry) == HEf_SVKEY) {
1477 SvREFCNT_dec(HeKEY_sv(entry));
1478 Safefree(HeKEY_hek(entry));
1479 }
1480 else if (HvSHAREKEYS(hv))
1481 unshare_hek(HeKEY_hek(entry));
1482 else
1483 Safefree(HeKEY_hek(entry));
1484 del_HE(entry);
1485}
1486
1487static I32
1488S_anonymise_cv(pTHX_ HEK *stash, SV *val)
1489{
1490 CV *cv;
1491
1492 PERL_ARGS_ASSERT_ANONYMISE_CV;
1493
1494 if (val && isGV(val) && isGV_with_GP(val) && (cv = GvCV(val))) {
1495 if ((SV *)CvGV(cv) == val) {
1496 GV *anongv;
1497
1498 if (stash) {
1499 SV *gvname = newSVhek(stash);
1500 sv_catpvs(gvname, "::__ANON__");
1501 anongv = gv_fetchsv(gvname, GV_ADDMULTI, SVt_PVCV);
1502 SvREFCNT_dec(gvname);
1503 } else {
1504 anongv = gv_fetchpvs("__ANON__::__ANON__", GV_ADDMULTI,
1505 SVt_PVCV);
1506 }
1507 CvGV(cv) = anongv;
1508 CvANON_on(cv);
1509 return 1;
1510 }
1511 }
1512 return 0;
1513}
1514
1515void
1516Perl_hv_delayfree_ent(pTHX_ HV *hv, register HE *entry)
1517{
1518 dVAR;
1519
1520 PERL_ARGS_ASSERT_HV_DELAYFREE_ENT;
1521
1522 if (!entry)
1523 return;
1524 /* SvREFCNT_inc to counter the SvREFCNT_dec in hv_free_ent */
1525 sv_2mortal(SvREFCNT_inc(HeVAL(entry))); /* free between statements */
1526 if (HeKLEN(entry) == HEf_SVKEY) {
1527 sv_2mortal(SvREFCNT_inc(HeKEY_sv(entry)));
1528 }
1529 hv_free_ent(hv, entry);
1530}
1531
1532/*
1533=for apidoc hv_clear
1534
1535Clears a hash, making it empty.
1536
1537=cut
1538*/
1539
1540void
1541Perl_hv_clear(pTHX_ HV *hv)
1542{
1543 dVAR;
1544 register XPVHV* xhv;
1545 if (!hv)
1546 return;
1547
1548 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1549
1550 xhv = (XPVHV*)SvANY(hv);
1551
1552 if (SvREADONLY(hv) && HvARRAY(hv) != NULL) {
1553 /* restricted hash: convert all keys to placeholders */
1554 STRLEN i;
1555 for (i = 0; i <= xhv->xhv_max; i++) {
1556 HE *entry = (HvARRAY(hv))[i];
1557 for (; entry; entry = HeNEXT(entry)) {
1558 /* not already placeholder */
1559 if (HeVAL(entry) != &PL_sv_placeholder) {
1560 if (HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
1561 SV* const keysv = hv_iterkeysv(entry);
1562 Perl_croak(aTHX_
1563 "Attempt to delete readonly key '%"SVf"' from a restricted hash",
1564 (void*)keysv);
1565 }
1566 SvREFCNT_dec(HeVAL(entry));
1567 HeVAL(entry) = &PL_sv_placeholder;
1568 HvPLACEHOLDERS(hv)++;
1569 }
1570 }
1571 }
1572 goto reset;
1573 }
1574
1575 hfreeentries(hv);
1576 HvPLACEHOLDERS_set(hv, 0);
1577 if (HvARRAY(hv))
1578 Zero(HvARRAY(hv), xhv->xhv_max+1 /* HvMAX(hv)+1 */, HE*);
1579
1580 if (SvRMAGICAL(hv))
1581 mg_clear(MUTABLE_SV(hv));
1582
1583 HvHASKFLAGS_off(hv);
1584 HvREHASH_off(hv);
1585 reset:
1586 if (SvOOK(hv)) {
1587 if(HvNAME_get(hv))
1588 mro_isa_changed_in(hv);
1589 HvEITER_set(hv, NULL);
1590 }
1591}
1592
1593/*
1594=for apidoc hv_clear_placeholders
1595
1596Clears any placeholders from a hash. If a restricted hash has any of its keys
1597marked as readonly and the key is subsequently deleted, the key is not actually
1598deleted but is marked by assigning it a value of &PL_sv_placeholder. This tags
1599it so it will be ignored by future operations such as iterating over the hash,
1600but will still allow the hash to have a value reassigned to the key at some
1601future point. This function clears any such placeholder keys from the hash.
1602See Hash::Util::lock_keys() for an example of its use.
1603
1604=cut
1605*/
1606
1607void
1608Perl_hv_clear_placeholders(pTHX_ HV *hv)
1609{
1610 dVAR;
1611 const U32 items = (U32)HvPLACEHOLDERS_get(hv);
1612
1613 PERL_ARGS_ASSERT_HV_CLEAR_PLACEHOLDERS;
1614
1615 if (items)
1616 clear_placeholders(hv, items);
1617}
1618
1619static void
1620S_clear_placeholders(pTHX_ HV *hv, U32 items)
1621{
1622 dVAR;
1623 I32 i;
1624
1625 PERL_ARGS_ASSERT_CLEAR_PLACEHOLDERS;
1626
1627 if (items == 0)
1628 return;
1629
1630 i = HvMAX(hv);
1631 do {
1632 /* Loop down the linked list heads */
1633 bool first = TRUE;
1634 HE **oentry = &(HvARRAY(hv))[i];
1635 HE *entry;
1636
1637 while ((entry = *oentry)) {
1638 if (HeVAL(entry) == &PL_sv_placeholder) {
1639 *oentry = HeNEXT(entry);
1640 if (first && !*oentry)
1641 HvFILL(hv)--; /* This linked list is now empty. */
1642 if (entry == HvEITER_get(hv))
1643 HvLAZYDEL_on(hv);
1644 else
1645 hv_free_ent(hv, entry);
1646
1647 if (--items == 0) {
1648 /* Finished. */
1649 HvTOTALKEYS(hv) -= (IV)HvPLACEHOLDERS_get(hv);
1650 if (HvKEYS(hv) == 0)
1651 HvHASKFLAGS_off(hv);
1652 HvPLACEHOLDERS_set(hv, 0);
1653 return;
1654 }
1655 } else {
1656 oentry = &HeNEXT(entry);
1657 first = FALSE;
1658 }
1659 }
1660 } while (--i >= 0);
1661 /* You can't get here, hence assertion should always fail. */
1662 assert (items == 0);
1663 assert (0);
1664}
1665
1666STATIC void
1667S_hfreeentries(pTHX_ HV *hv)
1668{
1669 /* This is the array that we're going to restore */
1670 HE **const orig_array = HvARRAY(hv);
1671 HEK *name;
1672 int attempts = 100;
1673
1674 PERL_ARGS_ASSERT_HFREEENTRIES;
1675
1676 if (!orig_array)
1677 return;
1678
1679 if (HvNAME(hv) && orig_array != NULL) {
1680 /* symbol table: make all the contained subs ANON */
1681 STRLEN i;
1682 XPVHV *xhv = (XPVHV*)SvANY(hv);
1683
1684 for (i = 0; i <= xhv->xhv_max; i++) {
1685 HE *entry = (HvARRAY(hv))[i];
1686 for (; entry; entry = HeNEXT(entry)) {
1687 SV *val = HeVAL(entry);
1688 /* we need to put the subs in the __ANON__ symtable, as
1689 * this one is being cleared. */
1690 anonymise_cv(NULL, val);
1691 }
1692 }
1693 }
1694
1695 if (SvOOK(hv)) {
1696 /* If the hash is actually a symbol table with a name, look after the
1697 name. */
1698 struct xpvhv_aux *iter = HvAUX(hv);
1699
1700 name = iter->xhv_name;
1701 iter->xhv_name = NULL;
1702 } else {
1703 name = NULL;
1704 }
1705
1706 /* orig_array remains unchanged throughout the loop. If after freeing all
1707 the entries it turns out that one of the little blighters has triggered
1708 an action that has caused HvARRAY to be re-allocated, then we set
1709 array to the new HvARRAY, and try again. */
1710
1711 while (1) {
1712 /* This is the one we're going to try to empty. First time round
1713 it's the original array. (Hopefully there will only be 1 time
1714 round) */
1715 HE ** const array = HvARRAY(hv);
1716 I32 i = HvMAX(hv);
1717
1718 /* Because we have taken xhv_name out, the only allocated pointer
1719 in the aux structure that might exist is the backreference array.
1720 */
1721
1722 if (SvOOK(hv)) {
1723 HE *entry;
1724 struct mro_meta *meta;
1725 struct xpvhv_aux *iter = HvAUX(hv);
1726 /* If there are weak references to this HV, we need to avoid
1727 freeing them up here. In particular we need to keep the AV
1728 visible as what we're deleting might well have weak references
1729 back to this HV, so the for loop below may well trigger
1730 the removal of backreferences from this array. */
1731
1732 if (iter->xhv_backreferences) {
1733 /* So donate them to regular backref magic to keep them safe.
1734 The sv_magic will increase the reference count of the AV,
1735 so we need to drop it first. */
1736 SvREFCNT_dec(iter->xhv_backreferences);
1737 if (AvFILLp(iter->xhv_backreferences) == -1) {
1738 /* Turns out that the array is empty. Just free it. */
1739 SvREFCNT_dec(iter->xhv_backreferences);
1740
1741 } else {
1742 sv_magic(MUTABLE_SV(hv),
1743 MUTABLE_SV(iter->xhv_backreferences),
1744 PERL_MAGIC_backref, NULL, 0);
1745 }
1746 iter->xhv_backreferences = NULL;
1747 }
1748
1749 entry = iter->xhv_eiter; /* HvEITER(hv) */
1750 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1751 HvLAZYDEL_off(hv);
1752 hv_free_ent(hv, entry);
1753 }
1754 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1755 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1756
1757 if((meta = iter->xhv_mro_meta)) {
1758 if (meta->mro_linear_all) {
1759 SvREFCNT_dec(MUTABLE_SV(meta->mro_linear_all));
1760 meta->mro_linear_all = NULL;
1761 /* This is just acting as a shortcut pointer. */
1762 meta->mro_linear_current = NULL;
1763 } else if (meta->mro_linear_current) {
1764 /* Only the current MRO is stored, so this owns the data.
1765 */
1766 SvREFCNT_dec(meta->mro_linear_current);
1767 meta->mro_linear_current = NULL;
1768 }
1769 if(meta->mro_nextmethod) SvREFCNT_dec(meta->mro_nextmethod);
1770 SvREFCNT_dec(meta->isa);
1771 Safefree(meta);
1772 iter->xhv_mro_meta = NULL;
1773 }
1774
1775 /* There are now no allocated pointers in the aux structure. */
1776
1777 SvFLAGS(hv) &= ~SVf_OOK; /* Goodbye, aux structure. */
1778 /* What aux structure? */
1779 }
1780
1781 /* make everyone else think the array is empty, so that the destructors
1782 * called for freed entries can't recusively mess with us */
1783 HvARRAY(hv) = NULL;
1784 HvFILL(hv) = 0;
1785 ((XPVHV*) SvANY(hv))->xhv_keys = 0;
1786
1787
1788 do {
1789 /* Loop down the linked list heads */
1790 HE *entry = array[i];
1791
1792 while (entry) {
1793 register HE * const oentry = entry;
1794 entry = HeNEXT(entry);
1795 hv_free_ent(hv, oentry);
1796 }
1797 } while (--i >= 0);
1798
1799 /* As there are no allocated pointers in the aux structure, it's now
1800 safe to free the array we just cleaned up, if it's not the one we're
1801 going to put back. */
1802 if (array != orig_array) {
1803 Safefree(array);
1804 }
1805
1806 if (!HvARRAY(hv)) {
1807 /* Good. No-one added anything this time round. */
1808 break;
1809 }
1810
1811 if (SvOOK(hv)) {
1812 /* Someone attempted to iterate or set the hash name while we had
1813 the array set to 0. We'll catch backferences on the next time
1814 round the while loop. */
1815 assert(HvARRAY(hv));
1816
1817 if (HvAUX(hv)->xhv_name) {
1818 unshare_hek_or_pvn(HvAUX(hv)->xhv_name, 0, 0, 0);
1819 }
1820 }
1821
1822 if (--attempts == 0) {
1823 Perl_die(aTHX_ "panic: hfreeentries failed to free hash - something is repeatedly re-creating entries");
1824 }
1825 }
1826
1827 HvARRAY(hv) = orig_array;
1828
1829 /* If the hash was actually a symbol table, put the name back. */
1830 if (name) {
1831 /* We have restored the original array. If name is non-NULL, then
1832 the original array had an aux structure at the end. So this is
1833 valid: */
1834 SvFLAGS(hv) |= SVf_OOK;
1835 HvAUX(hv)->xhv_name = name;
1836 }
1837}
1838
1839/*
1840=for apidoc hv_undef
1841
1842Undefines the hash.
1843
1844=cut
1845*/
1846
1847void
1848Perl_hv_undef(pTHX_ HV *hv)
1849{
1850 dVAR;
1851 register XPVHV* xhv;
1852 const char *name;
1853
1854 if (!hv)
1855 return;
1856 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1857 xhv = (XPVHV*)SvANY(hv);
1858
1859 if ((name = HvNAME_get(hv)) && !PL_dirty)
1860 mro_isa_changed_in(hv);
1861
1862 hfreeentries(hv);
1863 if (name) {
1864 if (PL_stashcache)
1865 (void)hv_delete(PL_stashcache, name, HvNAMELEN_get(hv), G_DISCARD);
1866 hv_name_set(hv, NULL, 0, 0);
1867 }
1868 SvFLAGS(hv) &= ~SVf_OOK;
1869 Safefree(HvARRAY(hv));
1870 xhv->xhv_max = 7; /* HvMAX(hv) = 7 (it's a normal hash) */
1871 HvARRAY(hv) = 0;
1872 HvPLACEHOLDERS_set(hv, 0);
1873
1874 if (SvRMAGICAL(hv))
1875 mg_clear(MUTABLE_SV(hv));
1876}
1877
1878static struct xpvhv_aux*
1879S_hv_auxinit(HV *hv) {
1880 struct xpvhv_aux *iter;
1881 char *array;
1882
1883 PERL_ARGS_ASSERT_HV_AUXINIT;
1884
1885 if (!HvARRAY(hv)) {
1886 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1887 + sizeof(struct xpvhv_aux), char);
1888 } else {
1889 array = (char *) HvARRAY(hv);
1890 Renew(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1891 + sizeof(struct xpvhv_aux), char);
1892 }
1893 HvARRAY(hv) = (HE**) array;
1894 /* SvOOK_on(hv) attacks the IV flags. */
1895 SvFLAGS(hv) |= SVf_OOK;
1896 iter = HvAUX(hv);
1897
1898 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1899 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1900 iter->xhv_name = 0;
1901 iter->xhv_backreferences = 0;
1902 iter->xhv_mro_meta = NULL;
1903 return iter;
1904}
1905
1906/*
1907=for apidoc hv_iterinit
1908
1909Prepares a starting point to traverse a hash table. Returns the number of
1910keys in the hash (i.e. the same as C<HvKEYS(tb)>). The return value is
1911currently only meaningful for hashes without tie magic.
1912
1913NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number of
1914hash buckets that happen to be in use. If you still need that esoteric
1915value, you can get it through the macro C<HvFILL(tb)>.
1916
1917
1918=cut
1919*/
1920
1921I32
1922Perl_hv_iterinit(pTHX_ HV *hv)
1923{
1924 PERL_ARGS_ASSERT_HV_ITERINIT;
1925
1926 /* FIXME: Are we not NULL, or do we croak? Place bets now! */
1927
1928 if (!hv)
1929 Perl_croak(aTHX_ "Bad hash");
1930
1931 if (SvOOK(hv)) {
1932 struct xpvhv_aux * const iter = HvAUX(hv);
1933 HE * const entry = iter->xhv_eiter; /* HvEITER(hv) */
1934 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1935 HvLAZYDEL_off(hv);
1936 hv_free_ent(hv, entry);
1937 }
1938 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1939 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1940 } else {
1941 hv_auxinit(hv);
1942 }
1943
1944 /* used to be xhv->xhv_fill before 5.004_65 */
1945 return HvTOTALKEYS(hv);
1946}
1947
1948I32 *
1949Perl_hv_riter_p(pTHX_ HV *hv) {
1950 struct xpvhv_aux *iter;
1951
1952 PERL_ARGS_ASSERT_HV_RITER_P;
1953
1954 if (!hv)
1955 Perl_croak(aTHX_ "Bad hash");
1956
1957 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1958 return &(iter->xhv_riter);
1959}
1960
1961HE **
1962Perl_hv_eiter_p(pTHX_ HV *hv) {
1963 struct xpvhv_aux *iter;
1964
1965 PERL_ARGS_ASSERT_HV_EITER_P;
1966
1967 if (!hv)
1968 Perl_croak(aTHX_ "Bad hash");
1969
1970 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1971 return &(iter->xhv_eiter);
1972}
1973
1974void
1975Perl_hv_riter_set(pTHX_ HV *hv, I32 riter) {
1976 struct xpvhv_aux *iter;
1977
1978 PERL_ARGS_ASSERT_HV_RITER_SET;
1979
1980 if (!hv)
1981 Perl_croak(aTHX_ "Bad hash");
1982
1983 if (SvOOK(hv)) {
1984 iter = HvAUX(hv);
1985 } else {
1986 if (riter == -1)
1987 return;
1988
1989 iter = hv_auxinit(hv);
1990 }
1991 iter->xhv_riter = riter;
1992}
1993
1994void
1995Perl_hv_eiter_set(pTHX_ HV *hv, HE *eiter) {
1996 struct xpvhv_aux *iter;
1997
1998 PERL_ARGS_ASSERT_HV_EITER_SET;
1999
2000 if (!hv)
2001 Perl_croak(aTHX_ "Bad hash");
2002
2003 if (SvOOK(hv)) {
2004 iter = HvAUX(hv);
2005 } else {
2006 /* 0 is the default so don't go malloc()ing a new structure just to
2007 hold 0. */
2008 if (!eiter)
2009 return;
2010
2011 iter = hv_auxinit(hv);
2012 }
2013 iter->xhv_eiter = eiter;
2014}
2015
2016void
2017Perl_hv_name_set(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2018{
2019 dVAR;
2020 struct xpvhv_aux *iter;
2021 U32 hash;
2022
2023 PERL_ARGS_ASSERT_HV_NAME_SET;
2024 PERL_UNUSED_ARG(flags);
2025
2026 if (len > I32_MAX)
2027 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2028
2029 if (SvOOK(hv)) {
2030 iter = HvAUX(hv);
2031 if (iter->xhv_name) {
2032 unshare_hek_or_pvn(iter->xhv_name, 0, 0, 0);
2033 }
2034 } else {
2035 if (name == 0)
2036 return;
2037
2038 iter = hv_auxinit(hv);
2039 }
2040 PERL_HASH(hash, name, len);
2041 iter->xhv_name = name ? share_hek(name, len, hash) : NULL;
2042}
2043
2044AV **
2045Perl_hv_backreferences_p(pTHX_ HV *hv) {
2046 struct xpvhv_aux * const iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2047
2048 PERL_ARGS_ASSERT_HV_BACKREFERENCES_P;
2049 PERL_UNUSED_CONTEXT;
2050
2051 return &(iter->xhv_backreferences);
2052}
2053
2054void
2055Perl_hv_kill_backrefs(pTHX_ HV *hv) {
2056 AV *av;
2057
2058 PERL_ARGS_ASSERT_HV_KILL_BACKREFS;
2059
2060 if (!SvOOK(hv))
2061 return;
2062
2063 av = HvAUX(hv)->xhv_backreferences;
2064
2065 if (av) {
2066 HvAUX(hv)->xhv_backreferences = 0;
2067 Perl_sv_kill_backrefs(aTHX_ MUTABLE_SV(hv), av);
2068 SvREFCNT_dec(av);
2069 }
2070}
2071
2072/*
2073hv_iternext is implemented as a macro in hv.h
2074
2075=for apidoc hv_iternext
2076
2077Returns entries from a hash iterator. See C<hv_iterinit>.
2078
2079You may call C<hv_delete> or C<hv_delete_ent> on the hash entry that the
2080iterator currently points to, without losing your place or invalidating your
2081iterator. Note that in this case the current entry is deleted from the hash
2082with your iterator holding the last reference to it. Your iterator is flagged
2083to free the entry on the next call to C<hv_iternext>, so you must not discard
2084your iterator immediately else the entry will leak - call C<hv_iternext> to
2085trigger the resource deallocation.
2086
2087=for apidoc hv_iternext_flags
2088
2089Returns entries from a hash iterator. See C<hv_iterinit> and C<hv_iternext>.
2090The C<flags> value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is
2091set the placeholders keys (for restricted hashes) will be returned in addition
2092to normal keys. By default placeholders are automatically skipped over.
2093Currently a placeholder is implemented with a value that is
2094C<&Perl_sv_placeholder>. Note that the implementation of placeholders and
2095restricted hashes may change, and the implementation currently is
2096insufficiently abstracted for any change to be tidy.
2097
2098=cut
2099*/
2100
2101HE *
2102Perl_hv_iternext_flags(pTHX_ HV *hv, I32 flags)
2103{
2104 dVAR;
2105 register XPVHV* xhv;
2106 register HE *entry;
2107 HE *oldentry;
2108 MAGIC* mg;
2109 struct xpvhv_aux *iter;
2110
2111 PERL_ARGS_ASSERT_HV_ITERNEXT_FLAGS;
2112
2113 if (!hv)
2114 Perl_croak(aTHX_ "Bad hash");
2115
2116 xhv = (XPVHV*)SvANY(hv);
2117
2118 if (!SvOOK(hv)) {
2119 /* Too many things (well, pp_each at least) merrily assume that you can
2120 call iv_iternext without calling hv_iterinit, so we'll have to deal
2121 with it. */
2122 hv_iterinit(hv);
2123 }
2124 iter = HvAUX(hv);
2125
2126 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2127 if (SvMAGICAL(hv) && SvRMAGICAL(hv)) {
2128 if ( ( mg = mg_find((const SV *)hv, PERL_MAGIC_tied) ) ) {
2129 SV * const key = sv_newmortal();
2130 if (entry) {
2131 sv_setsv(key, HeSVKEY_force(entry));
2132 SvREFCNT_dec(HeSVKEY(entry)); /* get rid of previous key */
2133 }
2134 else {
2135 char *k;
2136 HEK *hek;
2137
2138 /* one HE per MAGICAL hash */
2139 iter->xhv_eiter = entry = new_HE(); /* HvEITER(hv) = new_HE() */
2140 Zero(entry, 1, HE);
2141 Newxz(k, HEK_BASESIZE + sizeof(const SV *), char);
2142 hek = (HEK*)k;
2143 HeKEY_hek(entry) = hek;
2144 HeKLEN(entry) = HEf_SVKEY;
2145 }
2146 magic_nextpack(MUTABLE_SV(hv),mg,key);
2147 if (SvOK(key)) {
2148 /* force key to stay around until next time */
2149 HeSVKEY_set(entry, SvREFCNT_inc_simple_NN(key));
2150 return entry; /* beware, hent_val is not set */
2151 }
2152 if (HeVAL(entry))
2153 SvREFCNT_dec(HeVAL(entry));
2154 Safefree(HeKEY_hek(entry));
2155 del_HE(entry);
2156 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2157 return NULL;
2158 }
2159 }
2160#if defined(DYNAMIC_ENV_FETCH) && !defined(__riscos__) /* set up %ENV for iteration */
2161 if (!entry && SvRMAGICAL((const SV *)hv)
2162 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
2163 prime_env_iter();
2164#ifdef VMS
2165 /* The prime_env_iter() on VMS just loaded up new hash values
2166 * so the iteration count needs to be reset back to the beginning
2167 */
2168 hv_iterinit(hv);
2169 iter = HvAUX(hv);
2170 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2171#endif
2172 }
2173#endif
2174
2175 /* hv_iterint now ensures this. */
2176 assert (HvARRAY(hv));
2177
2178 /* At start of hash, entry is NULL. */
2179 if (entry)
2180 {
2181 entry = HeNEXT(entry);
2182 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2183 /*
2184 * Skip past any placeholders -- don't want to include them in
2185 * any iteration.
2186 */
2187 while (entry && HeVAL(entry) == &PL_sv_placeholder) {
2188 entry = HeNEXT(entry);
2189 }
2190 }
2191 }
2192
2193 /* Skip the entire loop if the hash is empty. */
2194 if ((flags & HV_ITERNEXT_WANTPLACEHOLDERS)
2195 ? HvTOTALKEYS(hv) : HvUSEDKEYS(hv)) {
2196 while (!entry) {
2197 /* OK. Come to the end of the current list. Grab the next one. */
2198
2199 iter->xhv_riter++; /* HvRITER(hv)++ */
2200 if (iter->xhv_riter > (I32)xhv->xhv_max /* HvRITER(hv) > HvMAX(hv) */) {
2201 /* There is no next one. End of the hash. */
2202 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2203 break;
2204 }
2205 entry = (HvARRAY(hv))[iter->xhv_riter];
2206
2207 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2208 /* If we have an entry, but it's a placeholder, don't count it.
2209 Try the next. */
2210 while (entry && HeVAL(entry) == &PL_sv_placeholder)
2211 entry = HeNEXT(entry);
2212 }
2213 /* Will loop again if this linked list starts NULL
2214 (for HV_ITERNEXT_WANTPLACEHOLDERS)
2215 or if we run through it and find only placeholders. */
2216 }
2217 }
2218
2219 if (oldentry && HvLAZYDEL(hv)) { /* was deleted earlier? */
2220 HvLAZYDEL_off(hv);
2221 hv_free_ent(hv, oldentry);
2222 }
2223
2224 /*if (HvREHASH(hv) && entry && !HeKREHASH(entry))
2225 PerlIO_printf(PerlIO_stderr(), "Awooga %p %p\n", (void*)hv, (void*)entry);*/
2226
2227 iter->xhv_eiter = entry; /* HvEITER(hv) = entry */
2228 return entry;
2229}
2230
2231/*
2232=for apidoc hv_iterkey
2233
2234Returns the key from the current position of the hash iterator. See
2235C<hv_iterinit>.
2236
2237=cut
2238*/
2239
2240char *
2241Perl_hv_iterkey(pTHX_ register HE *entry, I32 *retlen)
2242{
2243 PERL_ARGS_ASSERT_HV_ITERKEY;
2244
2245 if (HeKLEN(entry) == HEf_SVKEY) {
2246 STRLEN len;
2247 char * const p = SvPV(HeKEY_sv(entry), len);
2248 *retlen = len;
2249 return p;
2250 }
2251 else {
2252 *retlen = HeKLEN(entry);
2253 return HeKEY(entry);
2254 }
2255}
2256
2257/* unlike hv_iterval(), this always returns a mortal copy of the key */
2258/*
2259=for apidoc hv_iterkeysv
2260
2261Returns the key as an C<SV*> from the current position of the hash
2262iterator. The return value will always be a mortal copy of the key. Also
2263see C<hv_iterinit>.
2264
2265=cut
2266*/
2267
2268SV *
2269Perl_hv_iterkeysv(pTHX_ register HE *entry)
2270{
2271 PERL_ARGS_ASSERT_HV_ITERKEYSV;
2272
2273 return sv_2mortal(newSVhek(HeKEY_hek(entry)));
2274}
2275
2276/*
2277=for apidoc hv_iterval
2278
2279Returns the value from the current position of the hash iterator. See
2280C<hv_iterkey>.
2281
2282=cut
2283*/
2284
2285SV *
2286Perl_hv_iterval(pTHX_ HV *hv, register HE *entry)
2287{
2288 PERL_ARGS_ASSERT_HV_ITERVAL;
2289
2290 if (SvRMAGICAL(hv)) {
2291 if (mg_find((const SV *)hv, PERL_MAGIC_tied)) {
2292 SV* const sv = sv_newmortal();
2293 if (HeKLEN(entry) == HEf_SVKEY)
2294 mg_copy(MUTABLE_SV(hv), sv, (char*)HeKEY_sv(entry), HEf_SVKEY);
2295 else
2296 mg_copy(MUTABLE_SV(hv), sv, HeKEY(entry), HeKLEN(entry));
2297 return sv;
2298 }
2299 }
2300 return HeVAL(entry);
2301}
2302
2303/*
2304=for apidoc hv_iternextsv
2305
2306Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
2307operation.
2308
2309=cut
2310*/
2311
2312SV *
2313Perl_hv_iternextsv(pTHX_ HV *hv, char **key, I32 *retlen)
2314{
2315 HE * const he = hv_iternext_flags(hv, 0);
2316
2317 PERL_ARGS_ASSERT_HV_ITERNEXTSV;
2318
2319 if (!he)
2320 return NULL;
2321 *key = hv_iterkey(he, retlen);
2322 return hv_iterval(hv, he);
2323}
2324
2325/*
2326
2327Now a macro in hv.h
2328
2329=for apidoc hv_magic
2330
2331Adds magic to a hash. See C<sv_magic>.
2332
2333=cut
2334*/
2335
2336/* possibly free a shared string if no one has access to it
2337 * len and hash must both be valid for str.
2338 */
2339void
2340Perl_unsharepvn(pTHX_ const char *str, I32 len, U32 hash)
2341{
2342 unshare_hek_or_pvn (NULL, str, len, hash);
2343}
2344
2345
2346void
2347Perl_unshare_hek(pTHX_ HEK *hek)
2348{
2349 assert(hek);
2350 unshare_hek_or_pvn(hek, NULL, 0, 0);
2351}
2352
2353/* possibly free a shared string if no one has access to it
2354 hek if non-NULL takes priority over the other 3, else str, len and hash
2355 are used. If so, len and hash must both be valid for str.
2356 */
2357STATIC void
2358S_unshare_hek_or_pvn(pTHX_ const HEK *hek, const char *str, I32 len, U32 hash)
2359{
2360 dVAR;
2361 register XPVHV* xhv;
2362 HE *entry;
2363 register HE **oentry;
2364 HE **first;
2365 bool is_utf8 = FALSE;
2366 int k_flags = 0;
2367 const char * const save = str;
2368 struct shared_he *he = NULL;
2369
2370 if (hek) {
2371 /* Find the shared he which is just before us in memory. */
2372 he = (struct shared_he *)(((char *)hek)
2373 - STRUCT_OFFSET(struct shared_he,
2374 shared_he_hek));
2375
2376 /* Assert that the caller passed us a genuine (or at least consistent)
2377 shared hek */
2378 assert (he->shared_he_he.hent_hek == hek);
2379
2380 if (he->shared_he_he.he_valu.hent_refcount - 1) {
2381 --he->shared_he_he.he_valu.hent_refcount;
2382 return;
2383 }
2384
2385 hash = HEK_HASH(hek);
2386 } else if (len < 0) {
2387 STRLEN tmplen = -len;
2388 is_utf8 = TRUE;
2389 /* See the note in hv_fetch(). --jhi */
2390 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2391 len = tmplen;
2392 if (is_utf8)
2393 k_flags = HVhek_UTF8;
2394 if (str != save)
2395 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2396 }
2397
2398 /* what follows was the moral equivalent of:
2399 if ((Svp = hv_fetch(PL_strtab, tmpsv, FALSE, hash))) {
2400 if (--*Svp == NULL)
2401 hv_delete(PL_strtab, str, len, G_DISCARD, hash);
2402 } */
2403 xhv = (XPVHV*)SvANY(PL_strtab);
2404 /* assert(xhv_array != 0) */
2405 first = oentry = &(HvARRAY(PL_strtab))[hash & (I32) HvMAX(PL_strtab)];
2406 if (he) {
2407 const HE *const he_he = &(he->shared_he_he);
2408 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2409 if (entry == he_he)
2410 break;
2411 }
2412 } else {
2413 const int flags_masked = k_flags & HVhek_MASK;
2414 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2415 if (HeHASH(entry) != hash) /* strings can't be equal */
2416 continue;
2417 if (HeKLEN(entry) != len)
2418 continue;
2419 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2420 continue;
2421 if (HeKFLAGS(entry) != flags_masked)
2422 continue;
2423 break;
2424 }
2425 }
2426
2427 if (entry) {
2428 if (--entry->he_valu.hent_refcount == 0) {
2429 *oentry = HeNEXT(entry);
2430 if (!*first) {
2431 /* There are now no entries in our slot. */
2432 xhv->xhv_fill--; /* HvFILL(hv)-- */
2433 }
2434 Safefree(entry);
2435 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
2436 }
2437 }
2438
2439 if (!entry && ckWARN_d(WARN_INTERNAL))
2440 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
2441 "Attempt to free non-existent shared string '%s'%s"
2442 pTHX__FORMAT,
2443 hek ? HEK_KEY(hek) : str,
2444 ((k_flags & HVhek_UTF8) ? " (utf8)" : "") pTHX__VALUE);
2445 if (k_flags & HVhek_FREEKEY)
2446 Safefree(str);
2447}
2448
2449/* get a (constant) string ptr from the global string table
2450 * string will get added if it is not already there.
2451 * len and hash must both be valid for str.
2452 */
2453HEK *
2454Perl_share_hek(pTHX_ const char *str, I32 len, register U32 hash)
2455{
2456 bool is_utf8 = FALSE;
2457 int flags = 0;
2458 const char * const save = str;
2459
2460 PERL_ARGS_ASSERT_SHARE_HEK;
2461
2462 if (len < 0) {
2463 STRLEN tmplen = -len;
2464 is_utf8 = TRUE;
2465 /* See the note in hv_fetch(). --jhi */
2466 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2467 len = tmplen;
2468 /* If we were able to downgrade here, then than means that we were passed
2469 in a key which only had chars 0-255, but was utf8 encoded. */
2470 if (is_utf8)
2471 flags = HVhek_UTF8;
2472 /* If we found we were able to downgrade the string to bytes, then
2473 we should flag that it needs upgrading on keys or each. Also flag
2474 that we need share_hek_flags to free the string. */
2475 if (str != save)
2476 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2477 }
2478
2479 return share_hek_flags (str, len, hash, flags);
2480}
2481
2482STATIC HEK *
2483S_share_hek_flags(pTHX_ const char *str, I32 len, register U32 hash, int flags)
2484{
2485 dVAR;
2486 register HE *entry;
2487 const int flags_masked = flags & HVhek_MASK;
2488 const U32 hindex = hash & (I32) HvMAX(PL_strtab);
2489 register XPVHV * const xhv = (XPVHV*)SvANY(PL_strtab);
2490
2491 PERL_ARGS_ASSERT_SHARE_HEK_FLAGS;
2492
2493 /* what follows is the moral equivalent of:
2494
2495 if (!(Svp = hv_fetch(PL_strtab, str, len, FALSE)))
2496 hv_store(PL_strtab, str, len, NULL, hash);
2497
2498 Can't rehash the shared string table, so not sure if it's worth
2499 counting the number of entries in the linked list
2500 */
2501
2502 /* assert(xhv_array != 0) */
2503 entry = (HvARRAY(PL_strtab))[hindex];
2504 for (;entry; entry = HeNEXT(entry)) {
2505 if (HeHASH(entry) != hash) /* strings can't be equal */
2506 continue;
2507 if (HeKLEN(entry) != len)
2508 continue;
2509 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2510 continue;
2511 if (HeKFLAGS(entry) != flags_masked)
2512 continue;
2513 break;
2514 }
2515
2516 if (!entry) {
2517 /* What used to be head of the list.
2518 If this is NULL, then we're the first entry for this slot, which
2519 means we need to increate fill. */
2520 struct shared_he *new_entry;
2521 HEK *hek;
2522 char *k;
2523 HE **const head = &HvARRAY(PL_strtab)[hindex];
2524 HE *const next = *head;
2525
2526 /* We don't actually store a HE from the arena and a regular HEK.
2527 Instead we allocate one chunk of memory big enough for both,
2528 and put the HEK straight after the HE. This way we can find the
2529 HEK directly from the HE.
2530 */
2531
2532 Newx(k, STRUCT_OFFSET(struct shared_he,
2533 shared_he_hek.hek_key[0]) + len + 2, char);
2534 new_entry = (struct shared_he *)k;
2535 entry = &(new_entry->shared_he_he);
2536 hek = &(new_entry->shared_he_hek);
2537
2538 Copy(str, HEK_KEY(hek), len, char);
2539 HEK_KEY(hek)[len] = 0;
2540 HEK_LEN(hek) = len;
2541 HEK_HASH(hek) = hash;
2542 HEK_FLAGS(hek) = (unsigned char)flags_masked;
2543
2544 /* Still "point" to the HEK, so that other code need not know what
2545 we're up to. */
2546 HeKEY_hek(entry) = hek;
2547 entry->he_valu.hent_refcount = 0;
2548 HeNEXT(entry) = next;
2549 *head = entry;
2550
2551 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
2552 if (!next) { /* initial entry? */
2553 xhv->xhv_fill++; /* HvFILL(hv)++ */
2554 } else if (xhv->xhv_keys > (IV)xhv->xhv_max /* HvKEYS(hv) > HvMAX(hv) */) {
2555 hsplit(PL_strtab);
2556 }
2557 }
2558
2559 ++entry->he_valu.hent_refcount;
2560
2561 if (flags & HVhek_FREEKEY)
2562 Safefree(str);
2563
2564 return HeKEY_hek(entry);
2565}
2566
2567I32 *
2568Perl_hv_placeholders_p(pTHX_ HV *hv)
2569{
2570 dVAR;
2571 MAGIC *mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2572
2573 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_P;
2574
2575 if (!mg) {
2576 mg = sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, 0);
2577
2578 if (!mg) {
2579 Perl_die(aTHX_ "panic: hv_placeholders_p");
2580 }
2581 }
2582 return &(mg->mg_len);
2583}
2584
2585
2586I32
2587Perl_hv_placeholders_get(pTHX_ const HV *hv)
2588{
2589 dVAR;
2590 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2591
2592 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_GET;
2593
2594 return mg ? mg->mg_len : 0;
2595}
2596
2597void
2598Perl_hv_placeholders_set(pTHX_ HV *hv, I32 ph)
2599{
2600 dVAR;
2601 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2602
2603 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_SET;
2604
2605 if (mg) {
2606 mg->mg_len = ph;
2607 } else if (ph) {
2608 if (!sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, ph))
2609 Perl_die(aTHX_ "panic: hv_placeholders_set");
2610 }
2611 /* else we don't need to add magic to record 0 placeholders. */
2612}
2613
2614STATIC SV *
2615S_refcounted_he_value(pTHX_ const struct refcounted_he *he)
2616{
2617 dVAR;
2618 SV *value;
2619
2620 PERL_ARGS_ASSERT_REFCOUNTED_HE_VALUE;
2621
2622 switch(he->refcounted_he_data[0] & HVrhek_typemask) {
2623 case HVrhek_undef:
2624 value = newSV(0);
2625 break;
2626 case HVrhek_delete:
2627 value = &PL_sv_placeholder;
2628 break;
2629 case HVrhek_IV:
2630 value = newSViv(he->refcounted_he_val.refcounted_he_u_iv);
2631 break;
2632 case HVrhek_UV:
2633 value = newSVuv(he->refcounted_he_val.refcounted_he_u_uv);
2634 break;
2635 case HVrhek_PV:
2636 case HVrhek_PV_UTF8:
2637 /* Create a string SV that directly points to the bytes in our
2638 structure. */
2639 value = newSV_type(SVt_PV);
2640 SvPV_set(value, (char *) he->refcounted_he_data + 1);
2641 SvCUR_set(value, he->refcounted_he_val.refcounted_he_u_len);
2642 /* This stops anything trying to free it */
2643 SvLEN_set(value, 0);
2644 SvPOK_on(value);
2645 SvREADONLY_on(value);
2646 if ((he->refcounted_he_data[0] & HVrhek_typemask) == HVrhek_PV_UTF8)
2647 SvUTF8_on(value);
2648 break;
2649 default:
2650 Perl_croak(aTHX_ "panic: refcounted_he_value bad flags %x",
2651 he->refcounted_he_data[0]);
2652 }
2653 return value;
2654}
2655
2656/*
2657=for apidoc refcounted_he_chain_2hv
2658
2659Generates and returns a C<HV *> by walking up the tree starting at the passed
2660in C<struct refcounted_he *>.
2661
2662=cut
2663*/
2664HV *
2665Perl_refcounted_he_chain_2hv(pTHX_ const struct refcounted_he *chain)
2666{
2667 dVAR;
2668 HV *hv = newHV();
2669 U32 placeholders = 0;
2670 /* We could chase the chain once to get an idea of the number of keys,
2671 and call ksplit. But for now we'll make a potentially inefficient
2672 hash with only 8 entries in its array. */
2673 const U32 max = HvMAX(hv);
2674
2675 if (!HvARRAY(hv)) {
2676 char *array;
2677 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(max + 1), char);
2678 HvARRAY(hv) = (HE**)array;
2679 }
2680
2681 while (chain) {
2682#ifdef USE_ITHREADS
2683 U32 hash = chain->refcounted_he_hash;
2684#else
2685 U32 hash = HEK_HASH(chain->refcounted_he_hek);
2686#endif
2687 HE **oentry = &((HvARRAY(hv))[hash & max]);
2688 HE *entry = *oentry;
2689 SV *value;
2690
2691 for (; entry; entry = HeNEXT(entry)) {
2692 if (HeHASH(entry) == hash) {
2693 /* We might have a duplicate key here. If so, entry is older
2694 than the key we've already put in the hash, so if they are
2695 the same, skip adding entry. */
2696#ifdef USE_ITHREADS
2697 const STRLEN klen = HeKLEN(entry);
2698 const char *const key = HeKEY(entry);
2699 if (klen == chain->refcounted_he_keylen
2700 && (!!HeKUTF8(entry)
2701 == !!(chain->refcounted_he_data[0] & HVhek_UTF8))
2702 && memEQ(key, REF_HE_KEY(chain), klen))
2703 goto next_please;
2704#else
2705 if (HeKEY_hek(entry) == chain->refcounted_he_hek)
2706 goto next_please;
2707 if (HeKLEN(entry) == HEK_LEN(chain->refcounted_he_hek)
2708 && HeKUTF8(entry) == HEK_UTF8(chain->refcounted_he_hek)
2709 && memEQ(HeKEY(entry), HEK_KEY(chain->refcounted_he_hek),
2710 HeKLEN(entry)))
2711 goto next_please;
2712#endif
2713 }
2714 }
2715 assert (!entry);
2716 entry = new_HE();
2717
2718#ifdef USE_ITHREADS
2719 HeKEY_hek(entry)
2720 = share_hek_flags(REF_HE_KEY(chain),
2721 chain->refcounted_he_keylen,
2722 chain->refcounted_he_hash,
2723 (chain->refcounted_he_data[0]
2724 & (HVhek_UTF8|HVhek_WASUTF8)));
2725#else
2726 HeKEY_hek(entry) = share_hek_hek(chain->refcounted_he_hek);
2727#endif
2728 value = refcounted_he_value(chain);
2729 if (value == &PL_sv_placeholder)
2730 placeholders++;
2731 HeVAL(entry) = value;
2732
2733 /* Link it into the chain. */
2734 HeNEXT(entry) = *oentry;
2735 if (!HeNEXT(entry)) {
2736 /* initial entry. */
2737 HvFILL(hv)++;
2738 }
2739 *oentry = entry;
2740
2741 HvTOTALKEYS(hv)++;
2742
2743 next_please:
2744 chain = chain->refcounted_he_next;
2745 }
2746
2747 if (placeholders) {
2748 clear_placeholders(hv, placeholders);
2749 HvTOTALKEYS(hv) -= placeholders;
2750 }
2751
2752 /* We could check in the loop to see if we encounter any keys with key
2753 flags, but it's probably not worth it, as this per-hash flag is only
2754 really meant as an optimisation for things like Storable. */
2755 HvHASKFLAGS_on(hv);
2756 DEBUG_A(Perl_hv_assert(aTHX_ hv));
2757
2758 return hv;
2759}
2760
2761SV *
2762Perl_refcounted_he_fetch(pTHX_ const struct refcounted_he *chain, SV *keysv,
2763 const char *key, STRLEN klen, int flags, U32 hash)
2764{
2765 dVAR;
2766 /* Just to be awkward, if you're using this interface the UTF-8-or-not-ness
2767 of your key has to exactly match that which is stored. */
2768 SV *value = &PL_sv_placeholder;
2769
2770 if (chain) {
2771 /* No point in doing any of this if there's nothing to find. */
2772 bool is_utf8;
2773
2774 if (keysv) {
2775 if (flags & HVhek_FREEKEY)
2776 Safefree(key);
2777 key = SvPV_const(keysv, klen);
2778 flags = 0;
2779 is_utf8 = (SvUTF8(keysv) != 0);
2780 } else {
2781 is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
2782 }
2783
2784 if (!hash) {
2785 if (keysv && (SvIsCOW_shared_hash(keysv))) {
2786 hash = SvSHARED_HASH(keysv);
2787 } else {
2788 PERL_HASH(hash, key, klen);
2789 }
2790 }
2791
2792 for (; chain; chain = chain->refcounted_he_next) {
2793#ifdef USE_ITHREADS
2794 if (hash != chain->refcounted_he_hash)
2795 continue;
2796 if (klen != chain->refcounted_he_keylen)
2797 continue;
2798 if (memNE(REF_HE_KEY(chain),key,klen))
2799 continue;
2800 if (!!is_utf8 != !!(chain->refcounted_he_data[0] & HVhek_UTF8))
2801 continue;
2802#else
2803 if (hash != HEK_HASH(chain->refcounted_he_hek))
2804 continue;
2805 if (klen != (STRLEN)HEK_LEN(chain->refcounted_he_hek))
2806 continue;
2807 if (memNE(HEK_KEY(chain->refcounted_he_hek),key,klen))
2808 continue;
2809 if (!!is_utf8 != !!HEK_UTF8(chain->refcounted_he_hek))
2810 continue;
2811#endif
2812
2813 value = sv_2mortal(refcounted_he_value(chain));
2814 break;
2815 }
2816 }
2817
2818 if (flags & HVhek_FREEKEY)
2819 Safefree(key);
2820
2821 return value;
2822}
2823
2824/*
2825=for apidoc refcounted_he_new
2826
2827Creates a new C<struct refcounted_he>. As S<key> is copied, and value is
2828stored in a compact form, all references remain the property of the caller.
2829The C<struct refcounted_he> is returned with a reference count of 1.
2830
2831=cut
2832*/
2833
2834struct refcounted_he *
2835Perl_refcounted_he_new(pTHX_ struct refcounted_he *const parent,
2836 SV *const key, SV *const value) {
2837 dVAR;
2838 STRLEN key_len;
2839 const char *key_p = SvPV_const(key, key_len);
2840 STRLEN value_len = 0;
2841 const char *value_p = NULL;
2842 char value_type;
2843 char flags;
2844 bool is_utf8 = SvUTF8(key) ? TRUE : FALSE;
2845
2846 if (SvPOK(value)) {
2847 value_type = HVrhek_PV;
2848 } else if (SvIOK(value)) {
2849 value_type = SvUOK((const SV *)value) ? HVrhek_UV : HVrhek_IV;
2850 } else if (value == &PL_sv_placeholder) {
2851 value_type = HVrhek_delete;
2852 } else if (!SvOK(value)) {
2853 value_type = HVrhek_undef;
2854 } else {
2855 value_type = HVrhek_PV;
2856 }
2857
2858 if (value_type == HVrhek_PV) {
2859 /* Do it this way so that the SvUTF8() test is after the SvPV, in case
2860 the value is overloaded, and doesn't yet have the UTF-8flag set. */
2861 value_p = SvPV_const(value, value_len);
2862 if (SvUTF8(value))
2863 value_type = HVrhek_PV_UTF8;
2864 }
2865 flags = value_type;
2866
2867 if (is_utf8) {
2868 /* Hash keys are always stored normalised to (yes) ISO-8859-1.
2869 As we're going to be building hash keys from this value in future,
2870 normalise it now. */
2871 key_p = (char*)bytes_from_utf8((const U8*)key_p, &key_len, &is_utf8);
2872 flags |= is_utf8 ? HVhek_UTF8 : HVhek_WASUTF8;
2873 }
2874
2875 return refcounted_he_new_common(parent, key_p, key_len, flags, value_type,
2876 ((value_type == HVrhek_PV
2877 || value_type == HVrhek_PV_UTF8) ?
2878 (void *)value_p : (void *)value),
2879 value_len);
2880}
2881
2882static struct refcounted_he *
2883S_refcounted_he_new_common(pTHX_ struct refcounted_he *const parent,
2884 const char *const key_p, const STRLEN key_len,
2885 const char flags, char value_type,
2886 const void *value, const STRLEN value_len) {
2887 dVAR;
2888 struct refcounted_he *he;
2889 U32 hash;
2890 const bool is_pv = value_type == HVrhek_PV || value_type == HVrhek_PV_UTF8;
2891 STRLEN key_offset = is_pv ? value_len + 2 : 1;
2892
2893 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_COMMON;
2894
2895#ifdef USE_ITHREADS
2896 he = (struct refcounted_he*)
2897 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
2898 + key_len
2899 + key_offset);
2900#else
2901 he = (struct refcounted_he*)
2902 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
2903 + key_offset);
2904#endif
2905
2906 he->refcounted_he_next = parent;
2907
2908 if (is_pv) {
2909 Copy((char *)value, he->refcounted_he_data + 1, value_len + 1, char);
2910 he->refcounted_he_val.refcounted_he_u_len = value_len;
2911 } else if (value_type == HVrhek_IV) {
2912 he->refcounted_he_val.refcounted_he_u_iv = SvIVX((const SV *)value);
2913 } else if (value_type == HVrhek_UV) {
2914 he->refcounted_he_val.refcounted_he_u_uv = SvUVX((const SV *)value);
2915 }
2916
2917 PERL_HASH(hash, key_p, key_len);
2918
2919#ifdef USE_ITHREADS
2920 he->refcounted_he_hash = hash;
2921 he->refcounted_he_keylen = key_len;
2922 Copy(key_p, he->refcounted_he_data + key_offset, key_len, char);
2923#else
2924 he->refcounted_he_hek = share_hek_flags(key_p, key_len, hash, flags);
2925#endif
2926
2927 if (flags & HVhek_WASUTF8) {
2928 /* If it was downgraded from UTF-8, then the pointer returned from
2929 bytes_from_utf8 is an allocated pointer that we must free. */
2930 Safefree(key_p);
2931 }
2932
2933 he->refcounted_he_data[0] = flags;
2934 he->refcounted_he_refcnt = 1;
2935
2936 return he;
2937}
2938
2939/*
2940=for apidoc refcounted_he_free
2941
2942Decrements the reference count of the passed in C<struct refcounted_he *>
2943by one. If the reference count reaches zero the structure's memory is freed,
2944and C<refcounted_he_free> iterates onto the parent node.
2945
2946=cut
2947*/
2948
2949void
2950Perl_refcounted_he_free(pTHX_ struct refcounted_he *he) {
2951 dVAR;
2952 PERL_UNUSED_CONTEXT;
2953
2954 while (he) {
2955 struct refcounted_he *copy;
2956 U32 new_count;
2957
2958 HINTS_REFCNT_LOCK;
2959 new_count = --he->refcounted_he_refcnt;
2960 HINTS_REFCNT_UNLOCK;
2961
2962 if (new_count) {
2963 return;
2964 }
2965
2966#ifndef USE_ITHREADS
2967 unshare_hek_or_pvn (he->refcounted_he_hek, 0, 0, 0);
2968#endif
2969 copy = he;
2970 he = he->refcounted_he_next;
2971 PerlMemShared_free(copy);
2972 }
2973}
2974
2975const char *
2976Perl_fetch_cop_label(pTHX_ struct refcounted_he *const chain, STRLEN *len,
2977 U32 *flags) {
2978 if (!chain)
2979 return NULL;
2980#ifdef USE_ITHREADS
2981 if (chain->refcounted_he_keylen != 1)
2982 return NULL;
2983 if (*REF_HE_KEY(chain) != ':')
2984 return NULL;
2985#else
2986 if ((STRLEN)HEK_LEN(chain->refcounted_he_hek) != 1)
2987 return NULL;
2988 if (*HEK_KEY(chain->refcounted_he_hek) != ':')
2989 return NULL;
2990#endif
2991 /* Stop anyone trying to really mess us up by adding their own value for
2992 ':' into %^H */
2993 if ((chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV
2994 && (chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV_UTF8)
2995 return NULL;
2996
2997 if (len)
2998 *len = chain->refcounted_he_val.refcounted_he_u_len;
2999 if (flags) {
3000 *flags = ((chain->refcounted_he_data[0] & HVrhek_typemask)
3001 == HVrhek_PV_UTF8) ? SVf_UTF8 : 0;
3002 }
3003 return chain->refcounted_he_data + 1;
3004}
3005
3006/* As newSTATEOP currently gets passed plain char* labels, we will only provide
3007 that interface. Once it works out how to pass in length and UTF-8 ness, this
3008 function will need superseding. */
3009struct refcounted_he *
3010Perl_store_cop_label(pTHX_ struct refcounted_he *const chain, const char *label)
3011{
3012 PERL_ARGS_ASSERT_STORE_COP_LABEL;
3013
3014 return refcounted_he_new_common(chain, ":", 1, HVrhek_PV, HVrhek_PV,
3015 label, strlen(label));
3016}
3017
3018/*
3019=for apidoc hv_assert
3020
3021Check that a hash is in an internally consistent state.
3022
3023=cut
3024*/
3025
3026#ifdef DEBUGGING
3027
3028void
3029Perl_hv_assert(pTHX_ HV *hv)
3030{
3031 dVAR;
3032 HE* entry;
3033 int withflags = 0;
3034 int placeholders = 0;
3035 int real = 0;
3036 int bad = 0;
3037 const I32 riter = HvRITER_get(hv);
3038 HE *eiter = HvEITER_get(hv);
3039
3040 PERL_ARGS_ASSERT_HV_ASSERT;
3041
3042 (void)hv_iterinit(hv);
3043
3044 while ((entry = hv_iternext_flags(hv, HV_ITERNEXT_WANTPLACEHOLDERS))) {
3045 /* sanity check the values */
3046 if (HeVAL(entry) == &PL_sv_placeholder)
3047 placeholders++;
3048 else
3049 real++;
3050 /* sanity check the keys */
3051 if (HeSVKEY(entry)) {
3052 NOOP; /* Don't know what to check on SV keys. */
3053 } else if (HeKUTF8(entry)) {
3054 withflags++;
3055 if (HeKWASUTF8(entry)) {
3056 PerlIO_printf(Perl_debug_log,
3057 "hash key has both WASUTF8 and UTF8: '%.*s'\n",
3058 (int) HeKLEN(entry), HeKEY(entry));
3059 bad = 1;
3060 }
3061 } else if (HeKWASUTF8(entry))
3062 withflags++;
3063 }
3064 if (!SvTIED_mg((const SV *)hv, PERL_MAGIC_tied)) {
3065 static const char bad_count[] = "Count %d %s(s), but hash reports %d\n";
3066 const int nhashkeys = HvUSEDKEYS(hv);
3067 const int nhashplaceholders = HvPLACEHOLDERS_get(hv);
3068
3069 if (nhashkeys != real) {
3070 PerlIO_printf(Perl_debug_log, bad_count, real, "keys", nhashkeys );
3071 bad = 1;
3072 }
3073 if (nhashplaceholders != placeholders) {
3074 PerlIO_printf(Perl_debug_log, bad_count, placeholders, "placeholder", nhashplaceholders );
3075 bad = 1;
3076 }
3077 }
3078 if (withflags && ! HvHASKFLAGS(hv)) {
3079 PerlIO_printf(Perl_debug_log,
3080 "Hash has HASKFLAGS off but I count %d key(s) with flags\n",
3081 withflags);
3082 bad = 1;
3083 }
3084 if (bad) {
3085 sv_dump(MUTABLE_SV(hv));
3086 }
3087 HvRITER_set(hv, riter); /* Restore hash iterator state */
3088 HvEITER_set(hv, eiter);
3089}
3090
3091#endif
3092
3093/*
3094 * Local variables:
3095 * c-indentation-style: bsd
3096 * c-basic-offset: 4
3097 * indent-tabs-mode: t
3098 * End:
3099 *
3100 * ex: set ts=8 sts=4 sw=4 noet:
3101 */