This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Porting/todo.pod: Point out problem with readpipe(LIST)
[perl5.git] / regexec.c
... / ...
CommitLineData
1/* regexec.c
2 */
3
4/*
5 * One Ring to rule them all, One Ring to find them
6 *
7 * [p.v of _The Lord of the Rings_, opening poem]
8 * [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
9 * [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
10 */
11
12/* This file contains functions for executing a regular expression. See
13 * also regcomp.c which funnily enough, contains functions for compiling
14 * a regular expression.
15 *
16 * This file is also copied at build time to ext/re/re_exec.c, where
17 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
18 * This causes the main functions to be compiled under new names and with
19 * debugging support added, which makes "use re 'debug'" work.
20 */
21
22/* NOTE: this is derived from Henry Spencer's regexp code, and should not
23 * confused with the original package (see point 3 below). Thanks, Henry!
24 */
25
26/* Additional note: this code is very heavily munged from Henry's version
27 * in places. In some spots I've traded clarity for efficiency, so don't
28 * blame Henry for some of the lack of readability.
29 */
30
31/* The names of the functions have been changed from regcomp and
32 * regexec to pregcomp and pregexec in order to avoid conflicts
33 * with the POSIX routines of the same names.
34*/
35
36#ifdef PERL_EXT_RE_BUILD
37#include "re_top.h"
38#endif
39
40/*
41 * pregcomp and pregexec -- regsub and regerror are not used in perl
42 *
43 * Copyright (c) 1986 by University of Toronto.
44 * Written by Henry Spencer. Not derived from licensed software.
45 *
46 * Permission is granted to anyone to use this software for any
47 * purpose on any computer system, and to redistribute it freely,
48 * subject to the following restrictions:
49 *
50 * 1. The author is not responsible for the consequences of use of
51 * this software, no matter how awful, even if they arise
52 * from defects in it.
53 *
54 * 2. The origin of this software must not be misrepresented, either
55 * by explicit claim or by omission.
56 *
57 * 3. Altered versions must be plainly marked as such, and must not
58 * be misrepresented as being the original software.
59 *
60 **** Alterations to Henry's code are...
61 ****
62 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
63 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
64 **** by Larry Wall and others
65 ****
66 **** You may distribute under the terms of either the GNU General Public
67 **** License or the Artistic License, as specified in the README file.
68 *
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
72 */
73#include "EXTERN.h"
74#define PERL_IN_REGEXEC_C
75#include "perl.h"
76
77#ifdef PERL_IN_XSUB_RE
78# include "re_comp.h"
79#else
80# include "regcomp.h"
81#endif
82
83#include "invlist_inline.h"
84#include "unicode_constants.h"
85
86#define B_ON_NON_UTF8_LOCALE_IS_WRONG \
87 "Use of \\b{} or \\B{} for non-UTF-8 locale is wrong. Assuming a UTF-8 locale"
88
89static const char utf8_locale_required[] =
90 "Use of (?[ ]) for non-UTF-8 locale is wrong. Assuming a UTF-8 locale";
91
92#ifdef DEBUGGING
93/* At least one required character in the target string is expressible only in
94 * UTF-8. */
95static const char* const non_utf8_target_but_utf8_required
96 = "Can't match, because target string needs to be in UTF-8\n";
97#endif
98
99#define NON_UTF8_TARGET_BUT_UTF8_REQUIRED(target) STMT_START { \
100 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%s", non_utf8_target_but_utf8_required));\
101 goto target; \
102} STMT_END
103
104#define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
105
106#ifndef STATIC
107#define STATIC static
108#endif
109
110/* Valid only if 'c', the character being looke-up, is an invariant under
111 * UTF-8: it avoids the reginclass call if there are no complications: i.e., if
112 * everything matchable is straight forward in the bitmap */
113#define REGINCLASS(prog,p,c,u) (ANYOF_FLAGS(p) \
114 ? reginclass(prog,p,c,c+1,u) \
115 : ANYOF_BITMAP_TEST(p,*(c)))
116
117/*
118 * Forwards.
119 */
120
121#define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
122#define CHR_DIST(a,b) (reginfo->is_utf8_target ? utf8_distance(a,b) : a - b)
123
124#define HOPc(pos,off) \
125 (char *)(reginfo->is_utf8_target \
126 ? reghop3((U8*)pos, off, \
127 (U8*)(off >= 0 ? reginfo->strend : reginfo->strbeg)) \
128 : (U8*)(pos + off))
129
130#define HOPBACKc(pos, off) \
131 (char*)(reginfo->is_utf8_target \
132 ? reghopmaybe3((U8*)pos, (SSize_t)0-off, (U8*)(reginfo->strbeg)) \
133 : (pos - off >= reginfo->strbeg) \
134 ? (U8*)pos - off \
135 : NULL)
136
137#define HOP3(pos,off,lim) (reginfo->is_utf8_target ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
138#define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
139
140/* lim must be +ve. Returns NULL on overshoot */
141#define HOPMAYBE3(pos,off,lim) \
142 (reginfo->is_utf8_target \
143 ? reghopmaybe3((U8*)pos, off, (U8*)(lim)) \
144 : ((U8*)pos + off <= lim) \
145 ? (U8*)pos + off \
146 : NULL)
147
148/* like HOP3, but limits the result to <= lim even for the non-utf8 case.
149 * off must be >=0; args should be vars rather than expressions */
150#define HOP3lim(pos,off,lim) (reginfo->is_utf8_target \
151 ? reghop3((U8*)(pos), off, (U8*)(lim)) \
152 : (U8*)((pos + off) > lim ? lim : (pos + off)))
153
154#define HOP4(pos,off,llim, rlim) (reginfo->is_utf8_target \
155 ? reghop4((U8*)(pos), off, (U8*)(llim), (U8*)(rlim)) \
156 : (U8*)(pos + off))
157#define HOP4c(pos,off,llim, rlim) ((char*)HOP4(pos,off,llim, rlim))
158
159#define NEXTCHR_EOS -10 /* nextchr has fallen off the end */
160#define NEXTCHR_IS_EOS (nextchr < 0)
161
162#define SET_nextchr \
163 nextchr = ((locinput < reginfo->strend) ? UCHARAT(locinput) : NEXTCHR_EOS)
164
165#define SET_locinput(p) \
166 locinput = (p); \
167 SET_nextchr
168
169
170#define LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist) STMT_START { \
171 if (!swash_ptr) { \
172 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST; \
173 swash_ptr = _core_swash_init("utf8", property_name, &PL_sv_undef, \
174 1, 0, invlist, &flags); \
175 assert(swash_ptr); \
176 } \
177 } STMT_END
178
179/* If in debug mode, we test that a known character properly matches */
180#ifdef DEBUGGING
181# define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr, \
182 property_name, \
183 invlist, \
184 utf8_char_in_property) \
185 LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist); \
186 assert(swash_fetch(swash_ptr, (U8 *) utf8_char_in_property, TRUE));
187#else
188# define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr, \
189 property_name, \
190 invlist, \
191 utf8_char_in_property) \
192 LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist)
193#endif
194
195#define LOAD_UTF8_CHARCLASS_ALNUM() LOAD_UTF8_CHARCLASS_DEBUG_TEST( \
196 PL_utf8_swash_ptrs[_CC_WORDCHAR], \
197 "", \
198 PL_XPosix_ptrs[_CC_WORDCHAR], \
199 LATIN_SMALL_LIGATURE_LONG_S_T_UTF8);
200
201#define PLACEHOLDER /* Something for the preprocessor to grab onto */
202/* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
203
204/* for use after a quantifier and before an EXACT-like node -- japhy */
205/* it would be nice to rework regcomp.sym to generate this stuff. sigh
206 *
207 * NOTE that *nothing* that affects backtracking should be in here, specifically
208 * VERBS must NOT be included. JUMPABLE is used to determine if we can ignore a
209 * node that is in between two EXACT like nodes when ascertaining what the required
210 * "follow" character is. This should probably be moved to regex compile time
211 * although it may be done at run time beause of the REF possibility - more
212 * investigation required. -- demerphq
213*/
214#define JUMPABLE(rn) ( \
215 OP(rn) == OPEN || \
216 (OP(rn) == CLOSE && \
217 !EVAL_CLOSE_PAREN_IS(cur_eval,ARG(rn)) ) || \
218 OP(rn) == EVAL || \
219 OP(rn) == SUSPEND || OP(rn) == IFMATCH || \
220 OP(rn) == PLUS || OP(rn) == MINMOD || \
221 OP(rn) == KEEPS || \
222 (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0) \
223)
224#define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT)
225
226#define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF )
227
228#if 0
229/* Currently these are only used when PL_regkind[OP(rn)] == EXACT so
230 we don't need this definition. XXX These are now out-of-sync*/
231#define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==REF || OP(rn)==NREF )
232#define IS_TEXTF(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFA || OP(rn)==EXACTFA_NO_TRIE || OP(rn)==EXACTF || OP(rn)==REFF || OP(rn)==NREFF )
233#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL )
234
235#else
236/* ... so we use this as its faster. */
237#define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==EXACTL )
238#define IS_TEXTFU(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFLU8 || OP(rn)==EXACTFU_SS || OP(rn) == EXACTFA || OP(rn) == EXACTFA_NO_TRIE)
239#define IS_TEXTF(rn) ( OP(rn)==EXACTF )
240#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL )
241
242#endif
243
244/*
245 Search for mandatory following text node; for lookahead, the text must
246 follow but for lookbehind (rn->flags != 0) we skip to the next step.
247*/
248#define FIND_NEXT_IMPT(rn) STMT_START { \
249 while (JUMPABLE(rn)) { \
250 const OPCODE type = OP(rn); \
251 if (type == SUSPEND || PL_regkind[type] == CURLY) \
252 rn = NEXTOPER(NEXTOPER(rn)); \
253 else if (type == PLUS) \
254 rn = NEXTOPER(rn); \
255 else if (type == IFMATCH) \
256 rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \
257 else rn += NEXT_OFF(rn); \
258 } \
259} STMT_END
260
261#define SLAB_FIRST(s) (&(s)->states[0])
262#define SLAB_LAST(s) (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
263
264static void S_setup_eval_state(pTHX_ regmatch_info *const reginfo);
265static void S_cleanup_regmatch_info_aux(pTHX_ void *arg);
266static regmatch_state * S_push_slab(pTHX);
267
268#define REGCP_PAREN_ELEMS 3
269#define REGCP_OTHER_ELEMS 3
270#define REGCP_FRAME_ELEMS 1
271/* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
272 * are needed for the regexp context stack bookkeeping. */
273
274STATIC CHECKPOINT
275S_regcppush(pTHX_ const regexp *rex, I32 parenfloor, U32 maxopenparen)
276{
277 const int retval = PL_savestack_ix;
278 const int paren_elems_to_push =
279 (maxopenparen - parenfloor) * REGCP_PAREN_ELEMS;
280 const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
281 const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
282 I32 p;
283 GET_RE_DEBUG_FLAGS_DECL;
284
285 PERL_ARGS_ASSERT_REGCPPUSH;
286
287 if (paren_elems_to_push < 0)
288 Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0, maxopenparen: %i parenfloor: %i REGCP_PAREN_ELEMS: %u",
289 (int)paren_elems_to_push, (int)maxopenparen,
290 (int)parenfloor, (unsigned)REGCP_PAREN_ELEMS);
291
292 if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
293 Perl_croak(aTHX_ "panic: paren_elems_to_push offset %"UVuf
294 " out of range (%lu-%ld)",
295 total_elems,
296 (unsigned long)maxopenparen,
297 (long)parenfloor);
298
299 SSGROW(total_elems + REGCP_FRAME_ELEMS);
300
301 DEBUG_BUFFERS_r(
302 if ((int)maxopenparen > (int)parenfloor)
303 Perl_re_printf( aTHX_
304 "rex=0x%"UVxf" offs=0x%"UVxf": saving capture indices:\n",
305 PTR2UV(rex),
306 PTR2UV(rex->offs)
307 );
308 );
309 for (p = parenfloor+1; p <= (I32)maxopenparen; p++) {
310/* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */
311 SSPUSHIV(rex->offs[p].end);
312 SSPUSHIV(rex->offs[p].start);
313 SSPUSHINT(rex->offs[p].start_tmp);
314 DEBUG_BUFFERS_r(Perl_re_printf( aTHX_
315 " \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"\n",
316 (UV)p,
317 (IV)rex->offs[p].start,
318 (IV)rex->offs[p].start_tmp,
319 (IV)rex->offs[p].end
320 ));
321 }
322/* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
323 SSPUSHINT(maxopenparen);
324 SSPUSHINT(rex->lastparen);
325 SSPUSHINT(rex->lastcloseparen);
326 SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
327
328 return retval;
329}
330
331/* These are needed since we do not localize EVAL nodes: */
332#define REGCP_SET(cp) \
333 DEBUG_STATE_r( \
334 Perl_re_exec_indentf( aTHX_ \
335 "Setting an EVAL scope, savestack=%"IVdf",\n", \
336 depth, (IV)PL_savestack_ix \
337 ) \
338 ); \
339 cp = PL_savestack_ix
340
341#define REGCP_UNWIND(cp) \
342 DEBUG_STATE_r( \
343 if (cp != PL_savestack_ix) \
344 Perl_re_exec_indentf( aTHX_ \
345 "Clearing an EVAL scope, savestack=%"IVdf"..%"IVdf"\n",\
346 depth, (IV)(cp), (IV)PL_savestack_ix \
347 ) \
348 ); \
349 regcpblow(cp)
350
351#define UNWIND_PAREN(lp, lcp) \
352 for (n = rex->lastparen; n > lp; n--) \
353 rex->offs[n].end = -1; \
354 rex->lastparen = n; \
355 rex->lastcloseparen = lcp;
356
357
358STATIC void
359S_regcppop(pTHX_ regexp *rex, U32 *maxopenparen_p)
360{
361 UV i;
362 U32 paren;
363 GET_RE_DEBUG_FLAGS_DECL;
364
365 PERL_ARGS_ASSERT_REGCPPOP;
366
367 /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
368 i = SSPOPUV;
369 assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
370 i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
371 rex->lastcloseparen = SSPOPINT;
372 rex->lastparen = SSPOPINT;
373 *maxopenparen_p = SSPOPINT;
374
375 i -= REGCP_OTHER_ELEMS;
376 /* Now restore the parentheses context. */
377 DEBUG_BUFFERS_r(
378 if (i || rex->lastparen + 1 <= rex->nparens)
379 Perl_re_printf( aTHX_
380 "rex=0x%"UVxf" offs=0x%"UVxf": restoring capture indices to:\n",
381 PTR2UV(rex),
382 PTR2UV(rex->offs)
383 );
384 );
385 paren = *maxopenparen_p;
386 for ( ; i > 0; i -= REGCP_PAREN_ELEMS) {
387 SSize_t tmps;
388 rex->offs[paren].start_tmp = SSPOPINT;
389 rex->offs[paren].start = SSPOPIV;
390 tmps = SSPOPIV;
391 if (paren <= rex->lastparen)
392 rex->offs[paren].end = tmps;
393 DEBUG_BUFFERS_r( Perl_re_printf( aTHX_
394 " \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"%s\n",
395 (UV)paren,
396 (IV)rex->offs[paren].start,
397 (IV)rex->offs[paren].start_tmp,
398 (IV)rex->offs[paren].end,
399 (paren > rex->lastparen ? "(skipped)" : ""));
400 );
401 paren--;
402 }
403#if 1
404 /* It would seem that the similar code in regtry()
405 * already takes care of this, and in fact it is in
406 * a better location to since this code can #if 0-ed out
407 * but the code in regtry() is needed or otherwise tests
408 * requiring null fields (pat.t#187 and split.t#{13,14}
409 * (as of patchlevel 7877) will fail. Then again,
410 * this code seems to be necessary or otherwise
411 * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
412 * --jhi updated by dapm */
413 for (i = rex->lastparen + 1; i <= rex->nparens; i++) {
414 if (i > *maxopenparen_p)
415 rex->offs[i].start = -1;
416 rex->offs[i].end = -1;
417 DEBUG_BUFFERS_r( Perl_re_printf( aTHX_
418 " \\%"UVuf": %s ..-1 undeffing\n",
419 (UV)i,
420 (i > *maxopenparen_p) ? "-1" : " "
421 ));
422 }
423#endif
424}
425
426/* restore the parens and associated vars at savestack position ix,
427 * but without popping the stack */
428
429STATIC void
430S_regcp_restore(pTHX_ regexp *rex, I32 ix, U32 *maxopenparen_p)
431{
432 I32 tmpix = PL_savestack_ix;
433 PL_savestack_ix = ix;
434 regcppop(rex, maxopenparen_p);
435 PL_savestack_ix = tmpix;
436}
437
438#define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */
439
440STATIC bool
441S_isFOO_lc(pTHX_ const U8 classnum, const U8 character)
442{
443 /* Returns a boolean as to whether or not 'character' is a member of the
444 * Posix character class given by 'classnum' that should be equivalent to a
445 * value in the typedef '_char_class_number'.
446 *
447 * Ideally this could be replaced by a just an array of function pointers
448 * to the C library functions that implement the macros this calls.
449 * However, to compile, the precise function signatures are required, and
450 * these may vary from platform to to platform. To avoid having to figure
451 * out what those all are on each platform, I (khw) am using this method,
452 * which adds an extra layer of function call overhead (unless the C
453 * optimizer strips it away). But we don't particularly care about
454 * performance with locales anyway. */
455
456 switch ((_char_class_number) classnum) {
457 case _CC_ENUM_ALPHANUMERIC: return isALPHANUMERIC_LC(character);
458 case _CC_ENUM_ALPHA: return isALPHA_LC(character);
459 case _CC_ENUM_ASCII: return isASCII_LC(character);
460 case _CC_ENUM_BLANK: return isBLANK_LC(character);
461 case _CC_ENUM_CASED: return isLOWER_LC(character)
462 || isUPPER_LC(character);
463 case _CC_ENUM_CNTRL: return isCNTRL_LC(character);
464 case _CC_ENUM_DIGIT: return isDIGIT_LC(character);
465 case _CC_ENUM_GRAPH: return isGRAPH_LC(character);
466 case _CC_ENUM_LOWER: return isLOWER_LC(character);
467 case _CC_ENUM_PRINT: return isPRINT_LC(character);
468 case _CC_ENUM_PUNCT: return isPUNCT_LC(character);
469 case _CC_ENUM_SPACE: return isSPACE_LC(character);
470 case _CC_ENUM_UPPER: return isUPPER_LC(character);
471 case _CC_ENUM_WORDCHAR: return isWORDCHAR_LC(character);
472 case _CC_ENUM_XDIGIT: return isXDIGIT_LC(character);
473 default: /* VERTSPACE should never occur in locales */
474 Perl_croak(aTHX_ "panic: isFOO_lc() has an unexpected character class '%d'", classnum);
475 }
476
477 NOT_REACHED; /* NOTREACHED */
478 return FALSE;
479}
480
481STATIC bool
482S_isFOO_utf8_lc(pTHX_ const U8 classnum, const U8* character)
483{
484 /* Returns a boolean as to whether or not the (well-formed) UTF-8-encoded
485 * 'character' is a member of the Posix character class given by 'classnum'
486 * that should be equivalent to a value in the typedef
487 * '_char_class_number'.
488 *
489 * This just calls isFOO_lc on the code point for the character if it is in
490 * the range 0-255. Outside that range, all characters use Unicode
491 * rules, ignoring any locale. So use the Unicode function if this class
492 * requires a swash, and use the Unicode macro otherwise. */
493
494 PERL_ARGS_ASSERT_ISFOO_UTF8_LC;
495
496 if (UTF8_IS_INVARIANT(*character)) {
497 return isFOO_lc(classnum, *character);
498 }
499 else if (UTF8_IS_DOWNGRADEABLE_START(*character)) {
500 return isFOO_lc(classnum,
501 EIGHT_BIT_UTF8_TO_NATIVE(*character, *(character + 1)));
502 }
503
504 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(character, character + UTF8SKIP(character));
505
506 if (classnum < _FIRST_NON_SWASH_CC) {
507
508 /* Initialize the swash unless done already */
509 if (! PL_utf8_swash_ptrs[classnum]) {
510 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
511 PL_utf8_swash_ptrs[classnum] =
512 _core_swash_init("utf8",
513 "",
514 &PL_sv_undef, 1, 0,
515 PL_XPosix_ptrs[classnum], &flags);
516 }
517
518 return cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum], (U8 *)
519 character,
520 TRUE /* is UTF */ ));
521 }
522
523 switch ((_char_class_number) classnum) {
524 case _CC_ENUM_SPACE: return is_XPERLSPACE_high(character);
525 case _CC_ENUM_BLANK: return is_HORIZWS_high(character);
526 case _CC_ENUM_XDIGIT: return is_XDIGIT_high(character);
527 case _CC_ENUM_VERTSPACE: return is_VERTWS_high(character);
528 default: break;
529 }
530
531 return FALSE; /* Things like CNTRL are always below 256 */
532}
533
534/*
535 * pregexec and friends
536 */
537
538#ifndef PERL_IN_XSUB_RE
539/*
540 - pregexec - match a regexp against a string
541 */
542I32
543Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, char *strend,
544 char *strbeg, SSize_t minend, SV *screamer, U32 nosave)
545/* stringarg: the point in the string at which to begin matching */
546/* strend: pointer to null at end of string */
547/* strbeg: real beginning of string */
548/* minend: end of match must be >= minend bytes after stringarg. */
549/* screamer: SV being matched: only used for utf8 flag, pos() etc; string
550 * itself is accessed via the pointers above */
551/* nosave: For optimizations. */
552{
553 PERL_ARGS_ASSERT_PREGEXEC;
554
555 return
556 regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
557 nosave ? 0 : REXEC_COPY_STR);
558}
559#endif
560
561
562
563/* re_intuit_start():
564 *
565 * Based on some optimiser hints, try to find the earliest position in the
566 * string where the regex could match.
567 *
568 * rx: the regex to match against
569 * sv: the SV being matched: only used for utf8 flag; the string
570 * itself is accessed via the pointers below. Note that on
571 * something like an overloaded SV, SvPOK(sv) may be false
572 * and the string pointers may point to something unrelated to
573 * the SV itself.
574 * strbeg: real beginning of string
575 * strpos: the point in the string at which to begin matching
576 * strend: pointer to the byte following the last char of the string
577 * flags currently unused; set to 0
578 * data: currently unused; set to NULL
579 *
580 * The basic idea of re_intuit_start() is to use some known information
581 * about the pattern, namely:
582 *
583 * a) the longest known anchored substring (i.e. one that's at a
584 * constant offset from the beginning of the pattern; but not
585 * necessarily at a fixed offset from the beginning of the
586 * string);
587 * b) the longest floating substring (i.e. one that's not at a constant
588 * offset from the beginning of the pattern);
589 * c) Whether the pattern is anchored to the string; either
590 * an absolute anchor: /^../, or anchored to \n: /^.../m,
591 * or anchored to pos(): /\G/;
592 * d) A start class: a real or synthetic character class which
593 * represents which characters are legal at the start of the pattern;
594 *
595 * to either quickly reject the match, or to find the earliest position
596 * within the string at which the pattern might match, thus avoiding
597 * running the full NFA engine at those earlier locations, only to
598 * eventually fail and retry further along.
599 *
600 * Returns NULL if the pattern can't match, or returns the address within
601 * the string which is the earliest place the match could occur.
602 *
603 * The longest of the anchored and floating substrings is called 'check'
604 * and is checked first. The other is called 'other' and is checked
605 * second. The 'other' substring may not be present. For example,
606 *
607 * /(abc|xyz)ABC\d{0,3}DEFG/
608 *
609 * will have
610 *
611 * check substr (float) = "DEFG", offset 6..9 chars
612 * other substr (anchored) = "ABC", offset 3..3 chars
613 * stclass = [ax]
614 *
615 * Be aware that during the course of this function, sometimes 'anchored'
616 * refers to a substring being anchored relative to the start of the
617 * pattern, and sometimes to the pattern itself being anchored relative to
618 * the string. For example:
619 *
620 * /\dabc/: "abc" is anchored to the pattern;
621 * /^\dabc/: "abc" is anchored to the pattern and the string;
622 * /\d+abc/: "abc" is anchored to neither the pattern nor the string;
623 * /^\d+abc/: "abc" is anchored to neither the pattern nor the string,
624 * but the pattern is anchored to the string.
625 */
626
627char *
628Perl_re_intuit_start(pTHX_
629 REGEXP * const rx,
630 SV *sv,
631 const char * const strbeg,
632 char *strpos,
633 char *strend,
634 const U32 flags,
635 re_scream_pos_data *data)
636{
637 struct regexp *const prog = ReANY(rx);
638 SSize_t start_shift = prog->check_offset_min;
639 /* Should be nonnegative! */
640 SSize_t end_shift = 0;
641 /* current lowest pos in string where the regex can start matching */
642 char *rx_origin = strpos;
643 SV *check;
644 const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
645 U8 other_ix = 1 - prog->substrs->check_ix;
646 bool ml_anch = 0;
647 char *other_last = strpos;/* latest pos 'other' substr already checked to */
648 char *check_at = NULL; /* check substr found at this pos */
649 const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
650 RXi_GET_DECL(prog,progi);
651 regmatch_info reginfo_buf; /* create some info to pass to find_byclass */
652 regmatch_info *const reginfo = &reginfo_buf;
653 GET_RE_DEBUG_FLAGS_DECL;
654
655 PERL_ARGS_ASSERT_RE_INTUIT_START;
656 PERL_UNUSED_ARG(flags);
657 PERL_UNUSED_ARG(data);
658
659 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
660 "Intuit: trying to determine minimum start position...\n"));
661
662 /* for now, assume that all substr offsets are positive. If at some point
663 * in the future someone wants to do clever things with lookbehind and
664 * -ve offsets, they'll need to fix up any code in this function
665 * which uses these offsets. See the thread beginning
666 * <20140113145929.GF27210@iabyn.com>
667 */
668 assert(prog->substrs->data[0].min_offset >= 0);
669 assert(prog->substrs->data[0].max_offset >= 0);
670 assert(prog->substrs->data[1].min_offset >= 0);
671 assert(prog->substrs->data[1].max_offset >= 0);
672 assert(prog->substrs->data[2].min_offset >= 0);
673 assert(prog->substrs->data[2].max_offset >= 0);
674
675 /* for now, assume that if both present, that the floating substring
676 * doesn't start before the anchored substring.
677 * If you break this assumption (e.g. doing better optimisations
678 * with lookahead/behind), then you'll need to audit the code in this
679 * function carefully first
680 */
681 assert(
682 ! ( (prog->anchored_utf8 || prog->anchored_substr)
683 && (prog->float_utf8 || prog->float_substr))
684 || (prog->float_min_offset >= prog->anchored_offset));
685
686 /* byte rather than char calculation for efficiency. It fails
687 * to quickly reject some cases that can't match, but will reject
688 * them later after doing full char arithmetic */
689 if (prog->minlen > strend - strpos) {
690 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
691 " String too short...\n"));
692 goto fail;
693 }
694
695 RX_MATCH_UTF8_set(rx,utf8_target);
696 reginfo->is_utf8_target = cBOOL(utf8_target);
697 reginfo->info_aux = NULL;
698 reginfo->strbeg = strbeg;
699 reginfo->strend = strend;
700 reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
701 reginfo->intuit = 1;
702 /* not actually used within intuit, but zero for safety anyway */
703 reginfo->poscache_maxiter = 0;
704
705 if (utf8_target) {
706 if (!prog->check_utf8 && prog->check_substr)
707 to_utf8_substr(prog);
708 check = prog->check_utf8;
709 } else {
710 if (!prog->check_substr && prog->check_utf8) {
711 if (! to_byte_substr(prog)) {
712 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail);
713 }
714 }
715 check = prog->check_substr;
716 }
717
718 /* dump the various substring data */
719 DEBUG_OPTIMISE_MORE_r({
720 int i;
721 for (i=0; i<=2; i++) {
722 SV *sv = (utf8_target ? prog->substrs->data[i].utf8_substr
723 : prog->substrs->data[i].substr);
724 if (!sv)
725 continue;
726
727 Perl_re_printf( aTHX_
728 " substrs[%d]: min=%"IVdf" max=%"IVdf" end shift=%"IVdf
729 " useful=%"IVdf" utf8=%d [%s]\n",
730 i,
731 (IV)prog->substrs->data[i].min_offset,
732 (IV)prog->substrs->data[i].max_offset,
733 (IV)prog->substrs->data[i].end_shift,
734 BmUSEFUL(sv),
735 utf8_target ? 1 : 0,
736 SvPEEK(sv));
737 }
738 });
739
740 if (prog->intflags & PREGf_ANCH) { /* Match at \G, beg-of-str or after \n */
741
742 /* ml_anch: check after \n?
743 *
744 * A note about PREGf_IMPLICIT: on an un-anchored pattern beginning
745 * with /.*.../, these flags will have been added by the
746 * compiler:
747 * /.*abc/, /.*abc/m: PREGf_IMPLICIT | PREGf_ANCH_MBOL
748 * /.*abc/s: PREGf_IMPLICIT | PREGf_ANCH_SBOL
749 */
750 ml_anch = (prog->intflags & PREGf_ANCH_MBOL)
751 && !(prog->intflags & PREGf_IMPLICIT);
752
753 if (!ml_anch && !(prog->intflags & PREGf_IMPLICIT)) {
754 /* we are only allowed to match at BOS or \G */
755
756 /* trivially reject if there's a BOS anchor and we're not at BOS.
757 *
758 * Note that we don't try to do a similar quick reject for
759 * \G, since generally the caller will have calculated strpos
760 * based on pos() and gofs, so the string is already correctly
761 * anchored by definition; and handling the exceptions would
762 * be too fiddly (e.g. REXEC_IGNOREPOS).
763 */
764 if ( strpos != strbeg
765 && (prog->intflags & PREGf_ANCH_SBOL))
766 {
767 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
768 " Not at start...\n"));
769 goto fail;
770 }
771
772 /* in the presence of an anchor, the anchored (relative to the
773 * start of the regex) substr must also be anchored relative
774 * to strpos. So quickly reject if substr isn't found there.
775 * This works for \G too, because the caller will already have
776 * subtracted gofs from pos, and gofs is the offset from the
777 * \G to the start of the regex. For example, in /.abc\Gdef/,
778 * where substr="abcdef", pos()=3, gofs=4, offset_min=1:
779 * caller will have set strpos=pos()-4; we look for the substr
780 * at position pos()-4+1, which lines up with the "a" */
781
782 if (prog->check_offset_min == prog->check_offset_max) {
783 /* Substring at constant offset from beg-of-str... */
784 SSize_t slen = SvCUR(check);
785 char *s = HOP3c(strpos, prog->check_offset_min, strend);
786
787 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
788 " Looking for check substr at fixed offset %"IVdf"...\n",
789 (IV)prog->check_offset_min));
790
791 if (SvTAIL(check)) {
792 /* In this case, the regex is anchored at the end too.
793 * Unless it's a multiline match, the lengths must match
794 * exactly, give or take a \n. NB: slen >= 1 since
795 * the last char of check is \n */
796 if (!multiline
797 && ( strend - s > slen
798 || strend - s < slen - 1
799 || (strend - s == slen && strend[-1] != '\n')))
800 {
801 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
802 " String too long...\n"));
803 goto fail_finish;
804 }
805 /* Now should match s[0..slen-2] */
806 slen--;
807 }
808 if (slen && (*SvPVX_const(check) != *s
809 || (slen > 1 && memNE(SvPVX_const(check), s, slen))))
810 {
811 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
812 " String not equal...\n"));
813 goto fail_finish;
814 }
815
816 check_at = s;
817 goto success_at_start;
818 }
819 }
820 }
821
822 end_shift = prog->check_end_shift;
823
824#ifdef DEBUGGING /* 7/99: reports of failure (with the older version) */
825 if (end_shift < 0)
826 Perl_croak(aTHX_ "panic: end_shift: %"IVdf" pattern:\n%s\n ",
827 (IV)end_shift, RX_PRECOMP(prog));
828#endif
829
830 restart:
831
832 /* This is the (re)entry point of the main loop in this function.
833 * The goal of this loop is to:
834 * 1) find the "check" substring in the region rx_origin..strend
835 * (adjusted by start_shift / end_shift). If not found, reject
836 * immediately.
837 * 2) If it exists, look for the "other" substr too if defined; for
838 * example, if the check substr maps to the anchored substr, then
839 * check the floating substr, and vice-versa. If not found, go
840 * back to (1) with rx_origin suitably incremented.
841 * 3) If we find an rx_origin position that doesn't contradict
842 * either of the substrings, then check the possible additional
843 * constraints on rx_origin of /^.../m or a known start class.
844 * If these fail, then depending on which constraints fail, jump
845 * back to here, or to various other re-entry points further along
846 * that skip some of the first steps.
847 * 4) If we pass all those tests, update the BmUSEFUL() count on the
848 * substring. If the start position was determined to be at the
849 * beginning of the string - so, not rejected, but not optimised,
850 * since we have to run regmatch from position 0 - decrement the
851 * BmUSEFUL() count. Otherwise increment it.
852 */
853
854
855 /* first, look for the 'check' substring */
856
857 {
858 U8* start_point;
859 U8* end_point;
860
861 DEBUG_OPTIMISE_MORE_r({
862 Perl_re_printf( aTHX_
863 " At restart: rx_origin=%"IVdf" Check offset min: %"IVdf
864 " Start shift: %"IVdf" End shift %"IVdf
865 " Real end Shift: %"IVdf"\n",
866 (IV)(rx_origin - strbeg),
867 (IV)prog->check_offset_min,
868 (IV)start_shift,
869 (IV)end_shift,
870 (IV)prog->check_end_shift);
871 });
872
873 end_point = HOP3(strend, -end_shift, strbeg);
874 start_point = HOPMAYBE3(rx_origin, start_shift, end_point);
875 if (!start_point)
876 goto fail_finish;
877
878
879 /* If the regex is absolutely anchored to either the start of the
880 * string (SBOL) or to pos() (ANCH_GPOS), then
881 * check_offset_max represents an upper bound on the string where
882 * the substr could start. For the ANCH_GPOS case, we assume that
883 * the caller of intuit will have already set strpos to
884 * pos()-gofs, so in this case strpos + offset_max will still be
885 * an upper bound on the substr.
886 */
887 if (!ml_anch
888 && prog->intflags & PREGf_ANCH
889 && prog->check_offset_max != SSize_t_MAX)
890 {
891 SSize_t len = SvCUR(check) - !!SvTAIL(check);
892 const char * const anchor =
893 (prog->intflags & PREGf_ANCH_GPOS ? strpos : strbeg);
894
895 /* do a bytes rather than chars comparison. It's conservative;
896 * so it skips doing the HOP if the result can't possibly end
897 * up earlier than the old value of end_point.
898 */
899 if ((char*)end_point - anchor > prog->check_offset_max) {
900 end_point = HOP3lim((U8*)anchor,
901 prog->check_offset_max,
902 end_point -len)
903 + len;
904 }
905 }
906
907 check_at = fbm_instr( start_point, end_point,
908 check, multiline ? FBMrf_MULTILINE : 0);
909
910 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
911 " doing 'check' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
912 (IV)((char*)start_point - strbeg),
913 (IV)((char*)end_point - strbeg),
914 (IV)(check_at ? check_at - strbeg : -1)
915 ));
916
917 /* Update the count-of-usability, remove useless subpatterns,
918 unshift s. */
919
920 DEBUG_EXECUTE_r({
921 RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
922 SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
923 Perl_re_printf( aTHX_ " %s %s substr %s%s%s",
924 (check_at ? "Found" : "Did not find"),
925 (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
926 ? "anchored" : "floating"),
927 quoted,
928 RE_SV_TAIL(check),
929 (check_at ? " at offset " : "...\n") );
930 });
931
932 if (!check_at)
933 goto fail_finish;
934 /* set rx_origin to the minimum position where the regex could start
935 * matching, given the constraint of the just-matched check substring.
936 * But don't set it lower than previously.
937 */
938
939 if (check_at - rx_origin > prog->check_offset_max)
940 rx_origin = HOP3c(check_at, -prog->check_offset_max, rx_origin);
941 /* Finish the diagnostic message */
942 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
943 "%ld (rx_origin now %"IVdf")...\n",
944 (long)(check_at - strbeg),
945 (IV)(rx_origin - strbeg)
946 ));
947 }
948
949
950 /* now look for the 'other' substring if defined */
951
952 if (utf8_target ? prog->substrs->data[other_ix].utf8_substr
953 : prog->substrs->data[other_ix].substr)
954 {
955 /* Take into account the "other" substring. */
956 char *last, *last1;
957 char *s;
958 SV* must;
959 struct reg_substr_datum *other;
960
961 do_other_substr:
962 other = &prog->substrs->data[other_ix];
963
964 /* if "other" is anchored:
965 * we've previously found a floating substr starting at check_at.
966 * This means that the regex origin must lie somewhere
967 * between min (rx_origin): HOP3(check_at, -check_offset_max)
968 * and max: HOP3(check_at, -check_offset_min)
969 * (except that min will be >= strpos)
970 * So the fixed substr must lie somewhere between
971 * HOP3(min, anchored_offset)
972 * HOP3(max, anchored_offset) + SvCUR(substr)
973 */
974
975 /* if "other" is floating
976 * Calculate last1, the absolute latest point where the
977 * floating substr could start in the string, ignoring any
978 * constraints from the earlier fixed match. It is calculated
979 * as follows:
980 *
981 * strend - prog->minlen (in chars) is the absolute latest
982 * position within the string where the origin of the regex
983 * could appear. The latest start point for the floating
984 * substr is float_min_offset(*) on from the start of the
985 * regex. last1 simply combines thee two offsets.
986 *
987 * (*) You might think the latest start point should be
988 * float_max_offset from the regex origin, and technically
989 * you'd be correct. However, consider
990 * /a\d{2,4}bcd\w/
991 * Here, float min, max are 3,5 and minlen is 7.
992 * This can match either
993 * /a\d\dbcd\w/
994 * /a\d\d\dbcd\w/
995 * /a\d\d\d\dbcd\w/
996 * In the first case, the regex matches minlen chars; in the
997 * second, minlen+1, in the third, minlen+2.
998 * In the first case, the floating offset is 3 (which equals
999 * float_min), in the second, 4, and in the third, 5 (which
1000 * equals float_max). In all cases, the floating string bcd
1001 * can never start more than 4 chars from the end of the
1002 * string, which equals minlen - float_min. As the substring
1003 * starts to match more than float_min from the start of the
1004 * regex, it makes the regex match more than minlen chars,
1005 * and the two cancel each other out. So we can always use
1006 * float_min - minlen, rather than float_max - minlen for the
1007 * latest position in the string.
1008 *
1009 * Note that -minlen + float_min_offset is equivalent (AFAIKT)
1010 * to CHR_SVLEN(must) - !!SvTAIL(must) + prog->float_end_shift
1011 */
1012
1013 assert(prog->minlen >= other->min_offset);
1014 last1 = HOP3c(strend,
1015 other->min_offset - prog->minlen, strbeg);
1016
1017 if (other_ix) {/* i.e. if (other-is-float) */
1018 /* last is the latest point where the floating substr could
1019 * start, *given* any constraints from the earlier fixed
1020 * match. This constraint is that the floating string starts
1021 * <= float_max_offset chars from the regex origin (rx_origin).
1022 * If this value is less than last1, use it instead.
1023 */
1024 assert(rx_origin <= last1);
1025 last =
1026 /* this condition handles the offset==infinity case, and
1027 * is a short-cut otherwise. Although it's comparing a
1028 * byte offset to a char length, it does so in a safe way,
1029 * since 1 char always occupies 1 or more bytes,
1030 * so if a string range is (last1 - rx_origin) bytes,
1031 * it will be less than or equal to (last1 - rx_origin)
1032 * chars; meaning it errs towards doing the accurate HOP3
1033 * rather than just using last1 as a short-cut */
1034 (last1 - rx_origin) < other->max_offset
1035 ? last1
1036 : (char*)HOP3lim(rx_origin, other->max_offset, last1);
1037 }
1038 else {
1039 assert(strpos + start_shift <= check_at);
1040 last = HOP4c(check_at, other->min_offset - start_shift,
1041 strbeg, strend);
1042 }
1043
1044 s = HOP3c(rx_origin, other->min_offset, strend);
1045 if (s < other_last) /* These positions already checked */
1046 s = other_last;
1047
1048 must = utf8_target ? other->utf8_substr : other->substr;
1049 assert(SvPOK(must));
1050 {
1051 char *from = s;
1052 char *to = last + SvCUR(must) - (SvTAIL(must)!=0);
1053
1054 if (from > to) {
1055 s = NULL;
1056 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1057 " skipping 'other' fbm scan: %"IVdf" > %"IVdf"\n",
1058 (IV)(from - strbeg),
1059 (IV)(to - strbeg)
1060 ));
1061 }
1062 else {
1063 s = fbm_instr(
1064 (unsigned char*)from,
1065 (unsigned char*)to,
1066 must,
1067 multiline ? FBMrf_MULTILINE : 0
1068 );
1069 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1070 " doing 'other' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
1071 (IV)(from - strbeg),
1072 (IV)(to - strbeg),
1073 (IV)(s ? s - strbeg : -1)
1074 ));
1075 }
1076 }
1077
1078 DEBUG_EXECUTE_r({
1079 RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
1080 SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
1081 Perl_re_printf( aTHX_ " %s %s substr %s%s",
1082 s ? "Found" : "Contradicts",
1083 other_ix ? "floating" : "anchored",
1084 quoted, RE_SV_TAIL(must));
1085 });
1086
1087
1088 if (!s) {
1089 /* last1 is latest possible substr location. If we didn't
1090 * find it before there, we never will */
1091 if (last >= last1) {
1092 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1093 "; giving up...\n"));
1094 goto fail_finish;
1095 }
1096
1097 /* try to find the check substr again at a later
1098 * position. Maybe next time we'll find the "other" substr
1099 * in range too */
1100 other_last = HOP3c(last, 1, strend) /* highest failure */;
1101 rx_origin =
1102 other_ix /* i.e. if other-is-float */
1103 ? HOP3c(rx_origin, 1, strend)
1104 : HOP4c(last, 1 - other->min_offset, strbeg, strend);
1105 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1106 "; about to retry %s at offset %ld (rx_origin now %"IVdf")...\n",
1107 (other_ix ? "floating" : "anchored"),
1108 (long)(HOP3c(check_at, 1, strend) - strbeg),
1109 (IV)(rx_origin - strbeg)
1110 ));
1111 goto restart;
1112 }
1113 else {
1114 if (other_ix) { /* if (other-is-float) */
1115 /* other_last is set to s, not s+1, since its possible for
1116 * a floating substr to fail first time, then succeed
1117 * second time at the same floating position; e.g.:
1118 * "-AB--AABZ" =~ /\wAB\d*Z/
1119 * The first time round, anchored and float match at
1120 * "-(AB)--AAB(Z)" then fail on the initial \w character
1121 * class. Second time round, they match at "-AB--A(AB)(Z)".
1122 */
1123 other_last = s;
1124 }
1125 else {
1126 rx_origin = HOP3c(s, -other->min_offset, strbeg);
1127 other_last = HOP3c(s, 1, strend);
1128 }
1129 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1130 " at offset %ld (rx_origin now %"IVdf")...\n",
1131 (long)(s - strbeg),
1132 (IV)(rx_origin - strbeg)
1133 ));
1134
1135 }
1136 }
1137 else {
1138 DEBUG_OPTIMISE_MORE_r(
1139 Perl_re_printf( aTHX_
1140 " Check-only match: offset min:%"IVdf" max:%"IVdf
1141 " check_at:%"IVdf" rx_origin:%"IVdf" rx_origin-check_at:%"IVdf
1142 " strend:%"IVdf"\n",
1143 (IV)prog->check_offset_min,
1144 (IV)prog->check_offset_max,
1145 (IV)(check_at-strbeg),
1146 (IV)(rx_origin-strbeg),
1147 (IV)(rx_origin-check_at),
1148 (IV)(strend-strbeg)
1149 )
1150 );
1151 }
1152
1153 postprocess_substr_matches:
1154
1155 /* handle the extra constraint of /^.../m if present */
1156
1157 if (ml_anch && rx_origin != strbeg && rx_origin[-1] != '\n') {
1158 char *s;
1159
1160 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1161 " looking for /^/m anchor"));
1162
1163 /* we have failed the constraint of a \n before rx_origin.
1164 * Find the next \n, if any, even if it's beyond the current
1165 * anchored and/or floating substrings. Whether we should be
1166 * scanning ahead for the next \n or the next substr is debatable.
1167 * On the one hand you'd expect rare substrings to appear less
1168 * often than \n's. On the other hand, searching for \n means
1169 * we're effectively flipping between check_substr and "\n" on each
1170 * iteration as the current "rarest" string candidate, which
1171 * means for example that we'll quickly reject the whole string if
1172 * hasn't got a \n, rather than trying every substr position
1173 * first
1174 */
1175
1176 s = HOP3c(strend, - prog->minlen, strpos);
1177 if (s <= rx_origin ||
1178 ! ( rx_origin = (char *)memchr(rx_origin, '\n', s - rx_origin)))
1179 {
1180 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1181 " Did not find /%s^%s/m...\n",
1182 PL_colors[0], PL_colors[1]));
1183 goto fail_finish;
1184 }
1185
1186 /* earliest possible origin is 1 char after the \n.
1187 * (since *rx_origin == '\n', it's safe to ++ here rather than
1188 * HOP(rx_origin, 1)) */
1189 rx_origin++;
1190
1191 if (prog->substrs->check_ix == 0 /* check is anchored */
1192 || rx_origin >= HOP3c(check_at, - prog->check_offset_min, strpos))
1193 {
1194 /* Position contradicts check-string; either because
1195 * check was anchored (and thus has no wiggle room),
1196 * or check was float and rx_origin is above the float range */
1197 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1198 " Found /%s^%s/m, about to restart lookup for check-string with rx_origin %ld...\n",
1199 PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
1200 goto restart;
1201 }
1202
1203 /* if we get here, the check substr must have been float,
1204 * is in range, and we may or may not have had an anchored
1205 * "other" substr which still contradicts */
1206 assert(prog->substrs->check_ix); /* check is float */
1207
1208 if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
1209 /* whoops, the anchored "other" substr exists, so we still
1210 * contradict. On the other hand, the float "check" substr
1211 * didn't contradict, so just retry the anchored "other"
1212 * substr */
1213 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1214 " Found /%s^%s/m, rescanning for anchored from offset %"IVdf" (rx_origin now %"IVdf")...\n",
1215 PL_colors[0], PL_colors[1],
1216 (IV)(rx_origin - strbeg + prog->anchored_offset),
1217 (IV)(rx_origin - strbeg)
1218 ));
1219 goto do_other_substr;
1220 }
1221
1222 /* success: we don't contradict the found floating substring
1223 * (and there's no anchored substr). */
1224 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1225 " Found /%s^%s/m with rx_origin %ld...\n",
1226 PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
1227 }
1228 else {
1229 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1230 " (multiline anchor test skipped)\n"));
1231 }
1232
1233 success_at_start:
1234
1235
1236 /* if we have a starting character class, then test that extra constraint.
1237 * (trie stclasses are too expensive to use here, we are better off to
1238 * leave it to regmatch itself) */
1239
1240 if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) {
1241 const U8* const str = (U8*)STRING(progi->regstclass);
1242
1243 /* XXX this value could be pre-computed */
1244 const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT
1245 ? (reginfo->is_utf8_pat
1246 ? utf8_distance(str + STR_LEN(progi->regstclass), str)
1247 : STR_LEN(progi->regstclass))
1248 : 1);
1249 char * endpos;
1250 char *s;
1251 /* latest pos that a matching float substr constrains rx start to */
1252 char *rx_max_float = NULL;
1253
1254 /* if the current rx_origin is anchored, either by satisfying an
1255 * anchored substring constraint, or a /^.../m constraint, then we
1256 * can reject the current origin if the start class isn't found
1257 * at the current position. If we have a float-only match, then
1258 * rx_origin is constrained to a range; so look for the start class
1259 * in that range. if neither, then look for the start class in the
1260 * whole rest of the string */
1261
1262 /* XXX DAPM it's not clear what the minlen test is for, and why
1263 * it's not used in the floating case. Nothing in the test suite
1264 * causes minlen == 0 here. See <20140313134639.GS12844@iabyn.com>.
1265 * Here are some old comments, which may or may not be correct:
1266 *
1267 * minlen == 0 is possible if regstclass is \b or \B,
1268 * and the fixed substr is ''$.
1269 * Since minlen is already taken into account, rx_origin+1 is
1270 * before strend; accidentally, minlen >= 1 guaranties no false
1271 * positives at rx_origin + 1 even for \b or \B. But (minlen? 1 :
1272 * 0) below assumes that regstclass does not come from lookahead...
1273 * If regstclass takes bytelength more than 1: If charlength==1, OK.
1274 * This leaves EXACTF-ish only, which are dealt with in
1275 * find_byclass().
1276 */
1277
1278 if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
1279 endpos= HOP3c(rx_origin, (prog->minlen ? cl_l : 0), strend);
1280 else if (prog->float_substr || prog->float_utf8) {
1281 rx_max_float = HOP3c(check_at, -start_shift, strbeg);
1282 endpos= HOP3c(rx_max_float, cl_l, strend);
1283 }
1284 else
1285 endpos= strend;
1286
1287 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1288 " looking for class: start_shift: %"IVdf" check_at: %"IVdf
1289 " rx_origin: %"IVdf" endpos: %"IVdf"\n",
1290 (IV)start_shift, (IV)(check_at - strbeg),
1291 (IV)(rx_origin - strbeg), (IV)(endpos - strbeg)));
1292
1293 s = find_byclass(prog, progi->regstclass, rx_origin, endpos,
1294 reginfo);
1295 if (!s) {
1296 if (endpos == strend) {
1297 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1298 " Could not match STCLASS...\n") );
1299 goto fail;
1300 }
1301 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1302 " This position contradicts STCLASS...\n") );
1303 if ((prog->intflags & PREGf_ANCH) && !ml_anch
1304 && !(prog->intflags & PREGf_IMPLICIT))
1305 goto fail;
1306
1307 /* Contradict one of substrings */
1308 if (prog->anchored_substr || prog->anchored_utf8) {
1309 if (prog->substrs->check_ix == 1) { /* check is float */
1310 /* Have both, check_string is floating */
1311 assert(rx_origin + start_shift <= check_at);
1312 if (rx_origin + start_shift != check_at) {
1313 /* not at latest position float substr could match:
1314 * Recheck anchored substring, but not floating.
1315 * The condition above is in bytes rather than
1316 * chars for efficiency. It's conservative, in
1317 * that it errs on the side of doing 'goto
1318 * do_other_substr'. In this case, at worst,
1319 * an extra anchored search may get done, but in
1320 * practice the extra fbm_instr() is likely to
1321 * get skipped anyway. */
1322 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1323 " about to retry anchored at offset %ld (rx_origin now %"IVdf")...\n",
1324 (long)(other_last - strbeg),
1325 (IV)(rx_origin - strbeg)
1326 ));
1327 goto do_other_substr;
1328 }
1329 }
1330 }
1331 else {
1332 /* float-only */
1333
1334 if (ml_anch) {
1335 /* In the presence of ml_anch, we might be able to
1336 * find another \n without breaking the current float
1337 * constraint. */
1338
1339 /* strictly speaking this should be HOP3c(..., 1, ...),
1340 * but since we goto a block of code that's going to
1341 * search for the next \n if any, its safe here */
1342 rx_origin++;
1343 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1344 " about to look for /%s^%s/m starting at rx_origin %ld...\n",
1345 PL_colors[0], PL_colors[1],
1346 (long)(rx_origin - strbeg)) );
1347 goto postprocess_substr_matches;
1348 }
1349
1350 /* strictly speaking this can never be true; but might
1351 * be if we ever allow intuit without substrings */
1352 if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
1353 goto fail;
1354
1355 rx_origin = rx_max_float;
1356 }
1357
1358 /* at this point, any matching substrings have been
1359 * contradicted. Start again... */
1360
1361 rx_origin = HOP3c(rx_origin, 1, strend);
1362
1363 /* uses bytes rather than char calculations for efficiency.
1364 * It's conservative: it errs on the side of doing 'goto restart',
1365 * where there is code that does a proper char-based test */
1366 if (rx_origin + start_shift + end_shift > strend) {
1367 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1368 " Could not match STCLASS...\n") );
1369 goto fail;
1370 }
1371 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1372 " about to look for %s substr starting at offset %ld (rx_origin now %"IVdf")...\n",
1373 (prog->substrs->check_ix ? "floating" : "anchored"),
1374 (long)(rx_origin + start_shift - strbeg),
1375 (IV)(rx_origin - strbeg)
1376 ));
1377 goto restart;
1378 }
1379
1380 /* Success !!! */
1381
1382 if (rx_origin != s) {
1383 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1384 " By STCLASS: moving %ld --> %ld\n",
1385 (long)(rx_origin - strbeg), (long)(s - strbeg))
1386 );
1387 }
1388 else {
1389 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1390 " Does not contradict STCLASS...\n");
1391 );
1392 }
1393 }
1394
1395 /* Decide whether using the substrings helped */
1396
1397 if (rx_origin != strpos) {
1398 /* Fixed substring is found far enough so that the match
1399 cannot start at strpos. */
1400
1401 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ " try at offset...\n"));
1402 ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */
1403 }
1404 else {
1405 /* The found rx_origin position does not prohibit matching at
1406 * strpos, so calling intuit didn't gain us anything. Decrement
1407 * the BmUSEFUL() count on the check substring, and if we reach
1408 * zero, free it. */
1409 if (!(prog->intflags & PREGf_NAUGHTY)
1410 && (utf8_target ? (
1411 prog->check_utf8 /* Could be deleted already */
1412 && --BmUSEFUL(prog->check_utf8) < 0
1413 && (prog->check_utf8 == prog->float_utf8)
1414 ) : (
1415 prog->check_substr /* Could be deleted already */
1416 && --BmUSEFUL(prog->check_substr) < 0
1417 && (prog->check_substr == prog->float_substr)
1418 )))
1419 {
1420 /* If flags & SOMETHING - do not do it many times on the same match */
1421 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ " ... Disabling check substring...\n"));
1422 /* XXX Does the destruction order has to change with utf8_target? */
1423 SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
1424 SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
1425 prog->check_substr = prog->check_utf8 = NULL; /* disable */
1426 prog->float_substr = prog->float_utf8 = NULL; /* clear */
1427 check = NULL; /* abort */
1428 /* XXXX This is a remnant of the old implementation. It
1429 looks wasteful, since now INTUIT can use many
1430 other heuristics. */
1431 prog->extflags &= ~RXf_USE_INTUIT;
1432 }
1433 }
1434
1435 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1436 "Intuit: %sSuccessfully guessed:%s match at offset %ld\n",
1437 PL_colors[4], PL_colors[5], (long)(rx_origin - strbeg)) );
1438
1439 return rx_origin;
1440
1441 fail_finish: /* Substring not found */
1442 if (prog->check_substr || prog->check_utf8) /* could be removed already */
1443 BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
1444 fail:
1445 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%sMatch rejected by optimizer%s\n",
1446 PL_colors[4], PL_colors[5]));
1447 return NULL;
1448}
1449
1450
1451#define DECL_TRIE_TYPE(scan) \
1452 const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold, \
1453 trie_utf8_exactfa_fold, trie_latin_utf8_exactfa_fold, \
1454 trie_utf8l, trie_flu8 } \
1455 trie_type = ((scan->flags == EXACT) \
1456 ? (utf8_target ? trie_utf8 : trie_plain) \
1457 : (scan->flags == EXACTL) \
1458 ? (utf8_target ? trie_utf8l : trie_plain) \
1459 : (scan->flags == EXACTFA) \
1460 ? (utf8_target \
1461 ? trie_utf8_exactfa_fold \
1462 : trie_latin_utf8_exactfa_fold) \
1463 : (scan->flags == EXACTFLU8 \
1464 ? trie_flu8 \
1465 : (utf8_target \
1466 ? trie_utf8_fold \
1467 : trie_latin_utf8_fold)))
1468
1469#define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, uvc, charid, foldlen, foldbuf, uniflags) \
1470STMT_START { \
1471 STRLEN skiplen; \
1472 U8 flags = FOLD_FLAGS_FULL; \
1473 switch (trie_type) { \
1474 case trie_flu8: \
1475 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
1476 if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) { \
1477 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc)); \
1478 } \
1479 goto do_trie_utf8_fold; \
1480 case trie_utf8_exactfa_fold: \
1481 flags |= FOLD_FLAGS_NOMIX_ASCII; \
1482 /* FALLTHROUGH */ \
1483 case trie_utf8_fold: \
1484 do_trie_utf8_fold: \
1485 if ( foldlen>0 ) { \
1486 uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
1487 foldlen -= len; \
1488 uscan += len; \
1489 len=0; \
1490 } else { \
1491 uvc = _to_utf8_fold_flags( (const U8*) uc, foldbuf, &foldlen, flags); \
1492 len = UTF8SKIP(uc); \
1493 skiplen = UVCHR_SKIP( uvc ); \
1494 foldlen -= skiplen; \
1495 uscan = foldbuf + skiplen; \
1496 } \
1497 break; \
1498 case trie_latin_utf8_exactfa_fold: \
1499 flags |= FOLD_FLAGS_NOMIX_ASCII; \
1500 /* FALLTHROUGH */ \
1501 case trie_latin_utf8_fold: \
1502 if ( foldlen>0 ) { \
1503 uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
1504 foldlen -= len; \
1505 uscan += len; \
1506 len=0; \
1507 } else { \
1508 len = 1; \
1509 uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, flags); \
1510 skiplen = UVCHR_SKIP( uvc ); \
1511 foldlen -= skiplen; \
1512 uscan = foldbuf + skiplen; \
1513 } \
1514 break; \
1515 case trie_utf8l: \
1516 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
1517 if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) { \
1518 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc)); \
1519 } \
1520 /* FALLTHROUGH */ \
1521 case trie_utf8: \
1522 uvc = utf8n_to_uvchr( (const U8*) uc, UTF8_MAXLEN, &len, uniflags ); \
1523 break; \
1524 case trie_plain: \
1525 uvc = (UV)*uc; \
1526 len = 1; \
1527 } \
1528 if (uvc < 256) { \
1529 charid = trie->charmap[ uvc ]; \
1530 } \
1531 else { \
1532 charid = 0; \
1533 if (widecharmap) { \
1534 SV** const svpp = hv_fetch(widecharmap, \
1535 (char*)&uvc, sizeof(UV), 0); \
1536 if (svpp) \
1537 charid = (U16)SvIV(*svpp); \
1538 } \
1539 } \
1540} STMT_END
1541
1542#define DUMP_EXEC_POS(li,s,doutf8,depth) \
1543 dump_exec_pos(li,s,(reginfo->strend),(reginfo->strbeg), \
1544 startpos, doutf8, depth)
1545
1546#define REXEC_FBC_EXACTISH_SCAN(COND) \
1547STMT_START { \
1548 while (s <= e) { \
1549 if ( (COND) \
1550 && (ln == 1 || folder(s, pat_string, ln)) \
1551 && (reginfo->intuit || regtry(reginfo, &s)) )\
1552 goto got_it; \
1553 s++; \
1554 } \
1555} STMT_END
1556
1557#define REXEC_FBC_UTF8_SCAN(CODE) \
1558STMT_START { \
1559 while (s < strend) { \
1560 CODE \
1561 s += UTF8SKIP(s); \
1562 } \
1563} STMT_END
1564
1565#define REXEC_FBC_SCAN(CODE) \
1566STMT_START { \
1567 while (s < strend) { \
1568 CODE \
1569 s++; \
1570 } \
1571} STMT_END
1572
1573#define REXEC_FBC_UTF8_CLASS_SCAN(COND) \
1574REXEC_FBC_UTF8_SCAN( /* Loops while (s < strend) */ \
1575 if (COND) { \
1576 if (tmp && (reginfo->intuit || regtry(reginfo, &s))) \
1577 goto got_it; \
1578 else \
1579 tmp = doevery; \
1580 } \
1581 else \
1582 tmp = 1; \
1583)
1584
1585#define REXEC_FBC_CLASS_SCAN(COND) \
1586REXEC_FBC_SCAN( /* Loops while (s < strend) */ \
1587 if (COND) { \
1588 if (tmp && (reginfo->intuit || regtry(reginfo, &s))) \
1589 goto got_it; \
1590 else \
1591 tmp = doevery; \
1592 } \
1593 else \
1594 tmp = 1; \
1595)
1596
1597#define REXEC_FBC_CSCAN(CONDUTF8,COND) \
1598 if (utf8_target) { \
1599 REXEC_FBC_UTF8_CLASS_SCAN(CONDUTF8); \
1600 } \
1601 else { \
1602 REXEC_FBC_CLASS_SCAN(COND); \
1603 }
1604
1605/* The three macros below are slightly different versions of the same logic.
1606 *
1607 * The first is for /a and /aa when the target string is UTF-8. This can only
1608 * match ascii, but it must advance based on UTF-8. The other two handle the
1609 * non-UTF-8 and the more generic UTF-8 cases. In all three, we are looking
1610 * for the boundary (or non-boundary) between a word and non-word character.
1611 * The utf8 and non-utf8 cases have the same logic, but the details must be
1612 * different. Find the "wordness" of the character just prior to this one, and
1613 * compare it with the wordness of this one. If they differ, we have a
1614 * boundary. At the beginning of the string, pretend that the previous
1615 * character was a new-line.
1616 *
1617 * All these macros uncleanly have side-effects with each other and outside
1618 * variables. So far it's been too much trouble to clean-up
1619 *
1620 * TEST_NON_UTF8 is the macro or function to call to test if its byte input is
1621 * a word character or not.
1622 * IF_SUCCESS is code to do if it finds that we are at a boundary between
1623 * word/non-word
1624 * IF_FAIL is code to do if we aren't at a boundary between word/non-word
1625 *
1626 * Exactly one of the two IF_FOO parameters is a no-op, depending on whether we
1627 * are looking for a boundary or for a non-boundary. If we are looking for a
1628 * boundary, we want IF_FAIL to be the no-op, and for IF_SUCCESS to go out and
1629 * see if this tentative match actually works, and if so, to quit the loop
1630 * here. And vice-versa if we are looking for a non-boundary.
1631 *
1632 * 'tmp' below in the next three macros in the REXEC_FBC_SCAN and
1633 * REXEC_FBC_UTF8_SCAN loops is a loop invariant, a bool giving the return of
1634 * TEST_NON_UTF8(s-1). To see this, note that that's what it is defined to be
1635 * at entry to the loop, and to get to the IF_FAIL branch, tmp must equal
1636 * TEST_NON_UTF8(s), and in the opposite branch, IF_SUCCESS, tmp is that
1637 * complement. But in that branch we complement tmp, meaning that at the
1638 * bottom of the loop tmp is always going to be equal to TEST_NON_UTF8(s),
1639 * which means at the top of the loop in the next iteration, it is
1640 * TEST_NON_UTF8(s-1) */
1641#define FBC_UTF8_A(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
1642 tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
1643 tmp = TEST_NON_UTF8(tmp); \
1644 REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */ \
1645 if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
1646 tmp = !tmp; \
1647 IF_SUCCESS; /* Is a boundary if values for s-1 and s differ */ \
1648 } \
1649 else { \
1650 IF_FAIL; \
1651 } \
1652 ); \
1653
1654/* Like FBC_UTF8_A, but TEST_UV is a macro which takes a UV as its input, and
1655 * TEST_UTF8 is a macro that for the same input code points returns identically
1656 * to TEST_UV, but takes a pointer to a UTF-8 encoded string instead */
1657#define FBC_UTF8(TEST_UV, TEST_UTF8, IF_SUCCESS, IF_FAIL) \
1658 if (s == reginfo->strbeg) { \
1659 tmp = '\n'; \
1660 } \
1661 else { /* Back-up to the start of the previous character */ \
1662 U8 * const r = reghop3((U8*)s, -1, (U8*)reginfo->strbeg); \
1663 tmp = utf8n_to_uvchr(r, (U8*) reginfo->strend - r, \
1664 0, UTF8_ALLOW_DEFAULT); \
1665 } \
1666 tmp = TEST_UV(tmp); \
1667 LOAD_UTF8_CHARCLASS_ALNUM(); \
1668 REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */ \
1669 if (tmp == ! (TEST_UTF8((U8 *) s))) { \
1670 tmp = !tmp; \
1671 IF_SUCCESS; \
1672 } \
1673 else { \
1674 IF_FAIL; \
1675 } \
1676 );
1677
1678/* Like the above two macros. UTF8_CODE is the complete code for handling
1679 * UTF-8. Common to the BOUND and NBOUND cases, set-up by the FBC_BOUND, etc
1680 * macros below */
1681#define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
1682 if (utf8_target) { \
1683 UTF8_CODE \
1684 } \
1685 else { /* Not utf8 */ \
1686 tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
1687 tmp = TEST_NON_UTF8(tmp); \
1688 REXEC_FBC_SCAN( /* advances s while s < strend */ \
1689 if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
1690 IF_SUCCESS; \
1691 tmp = !tmp; \
1692 } \
1693 else { \
1694 IF_FAIL; \
1695 } \
1696 ); \
1697 } \
1698 /* Here, things have been set up by the previous code so that tmp is the \
1699 * return of TEST_NON_UTF(s-1) or TEST_UTF8(s-1) (depending on the \
1700 * utf8ness of the target). We also have to check if this matches against \
1701 * the EOS, which we treat as a \n (which is the same value in both UTF-8 \
1702 * or non-UTF8, so can use the non-utf8 test condition even for a UTF-8 \
1703 * string */ \
1704 if (tmp == ! TEST_NON_UTF8('\n')) { \
1705 IF_SUCCESS; \
1706 } \
1707 else { \
1708 IF_FAIL; \
1709 }
1710
1711/* This is the macro to use when we want to see if something that looks like it
1712 * could match, actually does, and if so exits the loop */
1713#define REXEC_FBC_TRYIT \
1714 if ((reginfo->intuit || regtry(reginfo, &s))) \
1715 goto got_it
1716
1717/* The only difference between the BOUND and NBOUND cases is that
1718 * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
1719 * NBOUND. This is accomplished by passing it as either the if or else clause,
1720 * with the other one being empty (PLACEHOLDER is defined as empty).
1721 *
1722 * The TEST_FOO parameters are for operating on different forms of input, but
1723 * all should be ones that return identically for the same underlying code
1724 * points */
1725#define FBC_BOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
1726 FBC_BOUND_COMMON( \
1727 FBC_UTF8(TEST_UV, TEST_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \
1728 TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
1729
1730#define FBC_BOUND_A(TEST_NON_UTF8) \
1731 FBC_BOUND_COMMON( \
1732 FBC_UTF8_A(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \
1733 TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
1734
1735#define FBC_NBOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
1736 FBC_BOUND_COMMON( \
1737 FBC_UTF8(TEST_UV, TEST_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
1738 TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
1739
1740#define FBC_NBOUND_A(TEST_NON_UTF8) \
1741 FBC_BOUND_COMMON( \
1742 FBC_UTF8_A(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
1743 TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
1744
1745#ifdef DEBUGGING
1746static IV
1747S_get_break_val_cp_checked(SV* const invlist, const UV cp_in) {
1748 IV cp_out = Perl__invlist_search(invlist, cp_in);
1749 assert(cp_out >= 0);
1750 return cp_out;
1751}
1752# define _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp) \
1753 invmap[S_get_break_val_cp_checked(invlist, cp)]
1754#else
1755# define _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp) \
1756 invmap[_invlist_search(invlist, cp)]
1757#endif
1758
1759/* Takes a pointer to an inversion list, a pointer to its corresponding
1760 * inversion map, and a code point, and returns the code point's value
1761 * according to the two arrays. It assumes that all code points have a value.
1762 * This is used as the base macro for macros for particular properties */
1763#define _generic_GET_BREAK_VAL_CP(invlist, invmap, cp) \
1764 _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp)
1765
1766/* Same as above, but takes begin, end ptrs to a UTF-8 encoded string instead
1767 * of a code point, returning the value for the first code point in the string.
1768 * And it takes the particular macro name that finds the desired value given a
1769 * code point. Merely convert the UTF-8 to code point and call the cp macro */
1770#define _generic_GET_BREAK_VAL_UTF8(cp_macro, pos, strend) \
1771 (__ASSERT_(pos < strend) \
1772 /* Note assumes is valid UTF-8 */ \
1773 (cp_macro(utf8_to_uvchr_buf((pos), (strend), NULL))))
1774
1775/* Returns the GCB value for the input code point */
1776#define getGCB_VAL_CP(cp) \
1777 _generic_GET_BREAK_VAL_CP( \
1778 PL_GCB_invlist, \
1779 _Perl_GCB_invmap, \
1780 (cp))
1781
1782/* Returns the GCB value for the first code point in the UTF-8 encoded string
1783 * bounded by pos and strend */
1784#define getGCB_VAL_UTF8(pos, strend) \
1785 _generic_GET_BREAK_VAL_UTF8(getGCB_VAL_CP, pos, strend)
1786
1787/* Returns the LB value for the input code point */
1788#define getLB_VAL_CP(cp) \
1789 _generic_GET_BREAK_VAL_CP( \
1790 PL_LB_invlist, \
1791 _Perl_LB_invmap, \
1792 (cp))
1793
1794/* Returns the LB value for the first code point in the UTF-8 encoded string
1795 * bounded by pos and strend */
1796#define getLB_VAL_UTF8(pos, strend) \
1797 _generic_GET_BREAK_VAL_UTF8(getLB_VAL_CP, pos, strend)
1798
1799
1800/* Returns the SB value for the input code point */
1801#define getSB_VAL_CP(cp) \
1802 _generic_GET_BREAK_VAL_CP( \
1803 PL_SB_invlist, \
1804 _Perl_SB_invmap, \
1805 (cp))
1806
1807/* Returns the SB value for the first code point in the UTF-8 encoded string
1808 * bounded by pos and strend */
1809#define getSB_VAL_UTF8(pos, strend) \
1810 _generic_GET_BREAK_VAL_UTF8(getSB_VAL_CP, pos, strend)
1811
1812/* Returns the WB value for the input code point */
1813#define getWB_VAL_CP(cp) \
1814 _generic_GET_BREAK_VAL_CP( \
1815 PL_WB_invlist, \
1816 _Perl_WB_invmap, \
1817 (cp))
1818
1819/* Returns the WB value for the first code point in the UTF-8 encoded string
1820 * bounded by pos and strend */
1821#define getWB_VAL_UTF8(pos, strend) \
1822 _generic_GET_BREAK_VAL_UTF8(getWB_VAL_CP, pos, strend)
1823
1824/* We know what class REx starts with. Try to find this position... */
1825/* if reginfo->intuit, its a dryrun */
1826/* annoyingly all the vars in this routine have different names from their counterparts
1827 in regmatch. /grrr */
1828STATIC char *
1829S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
1830 const char *strend, regmatch_info *reginfo)
1831{
1832 dVAR;
1833 const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
1834 char *pat_string; /* The pattern's exactish string */
1835 char *pat_end; /* ptr to end char of pat_string */
1836 re_fold_t folder; /* Function for computing non-utf8 folds */
1837 const U8 *fold_array; /* array for folding ords < 256 */
1838 STRLEN ln;
1839 STRLEN lnc;
1840 U8 c1;
1841 U8 c2;
1842 char *e;
1843 I32 tmp = 1; /* Scratch variable? */
1844 const bool utf8_target = reginfo->is_utf8_target;
1845 UV utf8_fold_flags = 0;
1846 const bool is_utf8_pat = reginfo->is_utf8_pat;
1847 bool to_complement = FALSE; /* Invert the result? Taking the xor of this
1848 with a result inverts that result, as 0^1 =
1849 1 and 1^1 = 0 */
1850 _char_class_number classnum;
1851
1852 RXi_GET_DECL(prog,progi);
1853
1854 PERL_ARGS_ASSERT_FIND_BYCLASS;
1855
1856 /* We know what class it must start with. */
1857 switch (OP(c)) {
1858 case ANYOFL:
1859 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
1860
1861 if (ANYOFL_UTF8_LOCALE_REQD(FLAGS(c)) && ! IN_UTF8_CTYPE_LOCALE) {
1862 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), utf8_locale_required);
1863 }
1864
1865 /* FALLTHROUGH */
1866 case ANYOFD:
1867 case ANYOF:
1868 if (utf8_target) {
1869 REXEC_FBC_UTF8_CLASS_SCAN(
1870 reginclass(prog, c, (U8*)s, (U8*) strend, utf8_target));
1871 }
1872 else {
1873 REXEC_FBC_CLASS_SCAN(REGINCLASS(prog, c, (U8*)s, 0));
1874 }
1875 break;
1876
1877 case EXACTFA_NO_TRIE: /* This node only generated for non-utf8 patterns */
1878 assert(! is_utf8_pat);
1879 /* FALLTHROUGH */
1880 case EXACTFA:
1881 if (is_utf8_pat || utf8_target) {
1882 utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
1883 goto do_exactf_utf8;
1884 }
1885 fold_array = PL_fold_latin1; /* Latin1 folds are not affected by */
1886 folder = foldEQ_latin1; /* /a, except the sharp s one which */
1887 goto do_exactf_non_utf8; /* isn't dealt with by these */
1888
1889 case EXACTF: /* This node only generated for non-utf8 patterns */
1890 assert(! is_utf8_pat);
1891 if (utf8_target) {
1892 utf8_fold_flags = 0;
1893 goto do_exactf_utf8;
1894 }
1895 fold_array = PL_fold;
1896 folder = foldEQ;
1897 goto do_exactf_non_utf8;
1898
1899 case EXACTFL:
1900 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
1901 if (is_utf8_pat || utf8_target || IN_UTF8_CTYPE_LOCALE) {
1902 utf8_fold_flags = FOLDEQ_LOCALE;
1903 goto do_exactf_utf8;
1904 }
1905 fold_array = PL_fold_locale;
1906 folder = foldEQ_locale;
1907 goto do_exactf_non_utf8;
1908
1909 case EXACTFU_SS:
1910 if (is_utf8_pat) {
1911 utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
1912 }
1913 goto do_exactf_utf8;
1914
1915 case EXACTFLU8:
1916 if (! utf8_target) { /* All code points in this node require
1917 UTF-8 to express. */
1918 break;
1919 }
1920 utf8_fold_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
1921 | FOLDEQ_S2_FOLDS_SANE;
1922 goto do_exactf_utf8;
1923
1924 case EXACTFU:
1925 if (is_utf8_pat || utf8_target) {
1926 utf8_fold_flags = is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
1927 goto do_exactf_utf8;
1928 }
1929
1930 /* Any 'ss' in the pattern should have been replaced by regcomp,
1931 * so we don't have to worry here about this single special case
1932 * in the Latin1 range */
1933 fold_array = PL_fold_latin1;
1934 folder = foldEQ_latin1;
1935
1936 /* FALLTHROUGH */
1937
1938 do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
1939 are no glitches with fold-length differences
1940 between the target string and pattern */
1941
1942 /* The idea in the non-utf8 EXACTF* cases is to first find the
1943 * first character of the EXACTF* node and then, if necessary,
1944 * case-insensitively compare the full text of the node. c1 is the
1945 * first character. c2 is its fold. This logic will not work for
1946 * Unicode semantics and the german sharp ss, which hence should
1947 * not be compiled into a node that gets here. */
1948 pat_string = STRING(c);
1949 ln = STR_LEN(c); /* length to match in octets/bytes */
1950
1951 /* We know that we have to match at least 'ln' bytes (which is the
1952 * same as characters, since not utf8). If we have to match 3
1953 * characters, and there are only 2 availabe, we know without
1954 * trying that it will fail; so don't start a match past the
1955 * required minimum number from the far end */
1956 e = HOP3c(strend, -((SSize_t)ln), s);
1957
1958 if (reginfo->intuit && e < s) {
1959 e = s; /* Due to minlen logic of intuit() */
1960 }
1961
1962 c1 = *pat_string;
1963 c2 = fold_array[c1];
1964 if (c1 == c2) { /* If char and fold are the same */
1965 REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1);
1966 }
1967 else {
1968 REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1 || *(U8*)s == c2);
1969 }
1970 break;
1971
1972 do_exactf_utf8:
1973 {
1974 unsigned expansion;
1975
1976 /* If one of the operands is in utf8, we can't use the simpler folding
1977 * above, due to the fact that many different characters can have the
1978 * same fold, or portion of a fold, or different- length fold */
1979 pat_string = STRING(c);
1980 ln = STR_LEN(c); /* length to match in octets/bytes */
1981 pat_end = pat_string + ln;
1982 lnc = is_utf8_pat /* length to match in characters */
1983 ? utf8_length((U8 *) pat_string, (U8 *) pat_end)
1984 : ln;
1985
1986 /* We have 'lnc' characters to match in the pattern, but because of
1987 * multi-character folding, each character in the target can match
1988 * up to 3 characters (Unicode guarantees it will never exceed
1989 * this) if it is utf8-encoded; and up to 2 if not (based on the
1990 * fact that the Latin 1 folds are already determined, and the
1991 * only multi-char fold in that range is the sharp-s folding to
1992 * 'ss'. Thus, a pattern character can match as little as 1/3 of a
1993 * string character. Adjust lnc accordingly, rounding up, so that
1994 * if we need to match at least 4+1/3 chars, that really is 5. */
1995 expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
1996 lnc = (lnc + expansion - 1) / expansion;
1997
1998 /* As in the non-UTF8 case, if we have to match 3 characters, and
1999 * only 2 are left, it's guaranteed to fail, so don't start a
2000 * match that would require us to go beyond the end of the string
2001 */
2002 e = HOP3c(strend, -((SSize_t)lnc), s);
2003
2004 if (reginfo->intuit && e < s) {
2005 e = s; /* Due to minlen logic of intuit() */
2006 }
2007
2008 /* XXX Note that we could recalculate e to stop the loop earlier,
2009 * as the worst case expansion above will rarely be met, and as we
2010 * go along we would usually find that e moves further to the left.
2011 * This would happen only after we reached the point in the loop
2012 * where if there were no expansion we should fail. Unclear if
2013 * worth the expense */
2014
2015 while (s <= e) {
2016 char *my_strend= (char *)strend;
2017 if (foldEQ_utf8_flags(s, &my_strend, 0, utf8_target,
2018 pat_string, NULL, ln, is_utf8_pat, utf8_fold_flags)
2019 && (reginfo->intuit || regtry(reginfo, &s)) )
2020 {
2021 goto got_it;
2022 }
2023 s += (utf8_target) ? UTF8SKIP(s) : 1;
2024 }
2025 break;
2026 }
2027
2028 case BOUNDL:
2029 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2030 if (FLAGS(c) != TRADITIONAL_BOUND) {
2031 if (! IN_UTF8_CTYPE_LOCALE) {
2032 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2033 B_ON_NON_UTF8_LOCALE_IS_WRONG);
2034 }
2035 goto do_boundu;
2036 }
2037
2038 FBC_BOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
2039 break;
2040
2041 case NBOUNDL:
2042 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2043 if (FLAGS(c) != TRADITIONAL_BOUND) {
2044 if (! IN_UTF8_CTYPE_LOCALE) {
2045 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2046 B_ON_NON_UTF8_LOCALE_IS_WRONG);
2047 }
2048 goto do_nboundu;
2049 }
2050
2051 FBC_NBOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
2052 break;
2053
2054 case BOUND: /* regcomp.c makes sure that this only has the traditional \b
2055 meaning */
2056 assert(FLAGS(c) == TRADITIONAL_BOUND);
2057
2058 FBC_BOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
2059 break;
2060
2061 case BOUNDA: /* regcomp.c makes sure that this only has the traditional \b
2062 meaning */
2063 assert(FLAGS(c) == TRADITIONAL_BOUND);
2064
2065 FBC_BOUND_A(isWORDCHAR_A);
2066 break;
2067
2068 case NBOUND: /* regcomp.c makes sure that this only has the traditional \b
2069 meaning */
2070 assert(FLAGS(c) == TRADITIONAL_BOUND);
2071
2072 FBC_NBOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
2073 break;
2074
2075 case NBOUNDA: /* regcomp.c makes sure that this only has the traditional \b
2076 meaning */
2077 assert(FLAGS(c) == TRADITIONAL_BOUND);
2078
2079 FBC_NBOUND_A(isWORDCHAR_A);
2080 break;
2081
2082 case NBOUNDU:
2083 if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
2084 FBC_NBOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
2085 break;
2086 }
2087
2088 do_nboundu:
2089
2090 to_complement = 1;
2091 /* FALLTHROUGH */
2092
2093 case BOUNDU:
2094 do_boundu:
2095 switch((bound_type) FLAGS(c)) {
2096 case TRADITIONAL_BOUND:
2097 FBC_BOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
2098 break;
2099 case GCB_BOUND:
2100 if (s == reginfo->strbeg) {
2101 if (reginfo->intuit || regtry(reginfo, &s))
2102 {
2103 goto got_it;
2104 }
2105
2106 /* Didn't match. Try at the next position (if there is one) */
2107 s += (utf8_target) ? UTF8SKIP(s) : 1;
2108 if (UNLIKELY(s >= reginfo->strend)) {
2109 break;
2110 }
2111 }
2112
2113 if (utf8_target) {
2114 GCB_enum before = getGCB_VAL_UTF8(
2115 reghop3((U8*)s, -1,
2116 (U8*)(reginfo->strbeg)),
2117 (U8*) reginfo->strend);
2118 while (s < strend) {
2119 GCB_enum after = getGCB_VAL_UTF8((U8*) s,
2120 (U8*) reginfo->strend);
2121 if ( (to_complement ^ isGCB(before, after))
2122 && (reginfo->intuit || regtry(reginfo, &s)))
2123 {
2124 goto got_it;
2125 }
2126 before = after;
2127 s += UTF8SKIP(s);
2128 }
2129 }
2130 else { /* Not utf8. Everything is a GCB except between CR and
2131 LF */
2132 while (s < strend) {
2133 if ((to_complement ^ ( UCHARAT(s - 1) != '\r'
2134 || UCHARAT(s) != '\n'))
2135 && (reginfo->intuit || regtry(reginfo, &s)))
2136 {
2137 goto got_it;
2138 }
2139 s++;
2140 }
2141 }
2142
2143 /* And, since this is a bound, it can match after the final
2144 * character in the string */
2145 if ((reginfo->intuit || regtry(reginfo, &s))) {
2146 goto got_it;
2147 }
2148 break;
2149
2150 case LB_BOUND:
2151 if (s == reginfo->strbeg) {
2152 if (reginfo->intuit || regtry(reginfo, &s)) {
2153 goto got_it;
2154 }
2155 s += (utf8_target) ? UTF8SKIP(s) : 1;
2156 if (UNLIKELY(s >= reginfo->strend)) {
2157 break;
2158 }
2159 }
2160
2161 if (utf8_target) {
2162 LB_enum before = getLB_VAL_UTF8(reghop3((U8*)s,
2163 -1,
2164 (U8*)(reginfo->strbeg)),
2165 (U8*) reginfo->strend);
2166 while (s < strend) {
2167 LB_enum after = getLB_VAL_UTF8((U8*) s, (U8*) reginfo->strend);
2168 if (to_complement ^ isLB(before,
2169 after,
2170 (U8*) reginfo->strbeg,
2171 (U8*) s,
2172 (U8*) reginfo->strend,
2173 utf8_target)
2174 && (reginfo->intuit || regtry(reginfo, &s)))
2175 {
2176 goto got_it;
2177 }
2178 before = after;
2179 s += UTF8SKIP(s);
2180 }
2181 }
2182 else { /* Not utf8. */
2183 LB_enum before = getLB_VAL_CP((U8) *(s -1));
2184 while (s < strend) {
2185 LB_enum after = getLB_VAL_CP((U8) *s);
2186 if (to_complement ^ isLB(before,
2187 after,
2188 (U8*) reginfo->strbeg,
2189 (U8*) s,
2190 (U8*) reginfo->strend,
2191 utf8_target)
2192 && (reginfo->intuit || regtry(reginfo, &s)))
2193 {
2194 goto got_it;
2195 }
2196 before = after;
2197 s++;
2198 }
2199 }
2200
2201 if (reginfo->intuit || regtry(reginfo, &s)) {
2202 goto got_it;
2203 }
2204
2205 break;
2206
2207 case SB_BOUND:
2208 if (s == reginfo->strbeg) {
2209 if (reginfo->intuit || regtry(reginfo, &s)) {
2210 goto got_it;
2211 }
2212 s += (utf8_target) ? UTF8SKIP(s) : 1;
2213 if (UNLIKELY(s >= reginfo->strend)) {
2214 break;
2215 }
2216 }
2217
2218 if (utf8_target) {
2219 SB_enum before = getSB_VAL_UTF8(reghop3((U8*)s,
2220 -1,
2221 (U8*)(reginfo->strbeg)),
2222 (U8*) reginfo->strend);
2223 while (s < strend) {
2224 SB_enum after = getSB_VAL_UTF8((U8*) s,
2225 (U8*) reginfo->strend);
2226 if ((to_complement ^ isSB(before,
2227 after,
2228 (U8*) reginfo->strbeg,
2229 (U8*) s,
2230 (U8*) reginfo->strend,
2231 utf8_target))
2232 && (reginfo->intuit || regtry(reginfo, &s)))
2233 {
2234 goto got_it;
2235 }
2236 before = after;
2237 s += UTF8SKIP(s);
2238 }
2239 }
2240 else { /* Not utf8. */
2241 SB_enum before = getSB_VAL_CP((U8) *(s -1));
2242 while (s < strend) {
2243 SB_enum after = getSB_VAL_CP((U8) *s);
2244 if ((to_complement ^ isSB(before,
2245 after,
2246 (U8*) reginfo->strbeg,
2247 (U8*) s,
2248 (U8*) reginfo->strend,
2249 utf8_target))
2250 && (reginfo->intuit || regtry(reginfo, &s)))
2251 {
2252 goto got_it;
2253 }
2254 before = after;
2255 s++;
2256 }
2257 }
2258
2259 /* Here are at the final position in the target string. The SB
2260 * value is always true here, so matches, depending on other
2261 * constraints */
2262 if (reginfo->intuit || regtry(reginfo, &s)) {
2263 goto got_it;
2264 }
2265
2266 break;
2267
2268 case WB_BOUND:
2269 if (s == reginfo->strbeg) {
2270 if (reginfo->intuit || regtry(reginfo, &s)) {
2271 goto got_it;
2272 }
2273 s += (utf8_target) ? UTF8SKIP(s) : 1;
2274 if (UNLIKELY(s >= reginfo->strend)) {
2275 break;
2276 }
2277 }
2278
2279 if (utf8_target) {
2280 /* We are at a boundary between char_sub_0 and char_sub_1.
2281 * We also keep track of the value for char_sub_-1 as we
2282 * loop through the line. Context may be needed to make a
2283 * determination, and if so, this can save having to
2284 * recalculate it */
2285 WB_enum previous = WB_UNKNOWN;
2286 WB_enum before = getWB_VAL_UTF8(
2287 reghop3((U8*)s,
2288 -1,
2289 (U8*)(reginfo->strbeg)),
2290 (U8*) reginfo->strend);
2291 while (s < strend) {
2292 WB_enum after = getWB_VAL_UTF8((U8*) s,
2293 (U8*) reginfo->strend);
2294 if ((to_complement ^ isWB(previous,
2295 before,
2296 after,
2297 (U8*) reginfo->strbeg,
2298 (U8*) s,
2299 (U8*) reginfo->strend,
2300 utf8_target))
2301 && (reginfo->intuit || regtry(reginfo, &s)))
2302 {
2303 goto got_it;
2304 }
2305 previous = before;
2306 before = after;
2307 s += UTF8SKIP(s);
2308 }
2309 }
2310 else { /* Not utf8. */
2311 WB_enum previous = WB_UNKNOWN;
2312 WB_enum before = getWB_VAL_CP((U8) *(s -1));
2313 while (s < strend) {
2314 WB_enum after = getWB_VAL_CP((U8) *s);
2315 if ((to_complement ^ isWB(previous,
2316 before,
2317 after,
2318 (U8*) reginfo->strbeg,
2319 (U8*) s,
2320 (U8*) reginfo->strend,
2321 utf8_target))
2322 && (reginfo->intuit || regtry(reginfo, &s)))
2323 {
2324 goto got_it;
2325 }
2326 previous = before;
2327 before = after;
2328 s++;
2329 }
2330 }
2331
2332 if (reginfo->intuit || regtry(reginfo, &s)) {
2333 goto got_it;
2334 }
2335 }
2336 break;
2337
2338 case LNBREAK:
2339 REXEC_FBC_CSCAN(is_LNBREAK_utf8_safe(s, strend),
2340 is_LNBREAK_latin1_safe(s, strend)
2341 );
2342 break;
2343
2344 /* The argument to all the POSIX node types is the class number to pass to
2345 * _generic_isCC() to build a mask for searching in PL_charclass[] */
2346
2347 case NPOSIXL:
2348 to_complement = 1;
2349 /* FALLTHROUGH */
2350
2351 case POSIXL:
2352 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2353 REXEC_FBC_CSCAN(to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(c), (U8 *) s)),
2354 to_complement ^ cBOOL(isFOO_lc(FLAGS(c), *s)));
2355 break;
2356
2357 case NPOSIXD:
2358 to_complement = 1;
2359 /* FALLTHROUGH */
2360
2361 case POSIXD:
2362 if (utf8_target) {
2363 goto posix_utf8;
2364 }
2365 goto posixa;
2366
2367 case NPOSIXA:
2368 if (utf8_target) {
2369 /* The complement of something that matches only ASCII matches all
2370 * non-ASCII, plus everything in ASCII that isn't in the class. */
2371 REXEC_FBC_UTF8_CLASS_SCAN(! isASCII_utf8(s)
2372 || ! _generic_isCC_A(*s, FLAGS(c)));
2373 break;
2374 }
2375
2376 to_complement = 1;
2377 /* FALLTHROUGH */
2378
2379 case POSIXA:
2380 posixa:
2381 /* Don't need to worry about utf8, as it can match only a single
2382 * byte invariant character. */
2383 REXEC_FBC_CLASS_SCAN(
2384 to_complement ^ cBOOL(_generic_isCC_A(*s, FLAGS(c))));
2385 break;
2386
2387 case NPOSIXU:
2388 to_complement = 1;
2389 /* FALLTHROUGH */
2390
2391 case POSIXU:
2392 if (! utf8_target) {
2393 REXEC_FBC_CLASS_SCAN(to_complement ^ cBOOL(_generic_isCC(*s,
2394 FLAGS(c))));
2395 }
2396 else {
2397
2398 posix_utf8:
2399 classnum = (_char_class_number) FLAGS(c);
2400 if (classnum < _FIRST_NON_SWASH_CC) {
2401 while (s < strend) {
2402
2403 /* We avoid loading in the swash as long as possible, but
2404 * should we have to, we jump to a separate loop. This
2405 * extra 'if' statement is what keeps this code from being
2406 * just a call to REXEC_FBC_UTF8_CLASS_SCAN() */
2407 if (UTF8_IS_ABOVE_LATIN1(*s)) {
2408 goto found_above_latin1;
2409 }
2410 if ((UTF8_IS_INVARIANT(*s)
2411 && to_complement ^ cBOOL(_generic_isCC((U8) *s,
2412 classnum)))
2413 || (UTF8_IS_DOWNGRADEABLE_START(*s)
2414 && to_complement ^ cBOOL(
2415 _generic_isCC(EIGHT_BIT_UTF8_TO_NATIVE(*s,
2416 *(s + 1)),
2417 classnum))))
2418 {
2419 if (tmp && (reginfo->intuit || regtry(reginfo, &s)))
2420 goto got_it;
2421 else {
2422 tmp = doevery;
2423 }
2424 }
2425 else {
2426 tmp = 1;
2427 }
2428 s += UTF8SKIP(s);
2429 }
2430 }
2431 else switch (classnum) { /* These classes are implemented as
2432 macros */
2433 case _CC_ENUM_SPACE:
2434 REXEC_FBC_UTF8_CLASS_SCAN(
2435 to_complement ^ cBOOL(isSPACE_utf8(s)));
2436 break;
2437
2438 case _CC_ENUM_BLANK:
2439 REXEC_FBC_UTF8_CLASS_SCAN(
2440 to_complement ^ cBOOL(isBLANK_utf8(s)));
2441 break;
2442
2443 case _CC_ENUM_XDIGIT:
2444 REXEC_FBC_UTF8_CLASS_SCAN(
2445 to_complement ^ cBOOL(isXDIGIT_utf8(s)));
2446 break;
2447
2448 case _CC_ENUM_VERTSPACE:
2449 REXEC_FBC_UTF8_CLASS_SCAN(
2450 to_complement ^ cBOOL(isVERTWS_utf8(s)));
2451 break;
2452
2453 case _CC_ENUM_CNTRL:
2454 REXEC_FBC_UTF8_CLASS_SCAN(
2455 to_complement ^ cBOOL(isCNTRL_utf8(s)));
2456 break;
2457
2458 default:
2459 Perl_croak(aTHX_ "panic: find_byclass() node %d='%s' has an unexpected character class '%d'", OP(c), PL_reg_name[OP(c)], classnum);
2460 NOT_REACHED; /* NOTREACHED */
2461 }
2462 }
2463 break;
2464
2465 found_above_latin1: /* Here we have to load a swash to get the result
2466 for the current code point */
2467 if (! PL_utf8_swash_ptrs[classnum]) {
2468 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2469 PL_utf8_swash_ptrs[classnum] =
2470 _core_swash_init("utf8",
2471 "",
2472 &PL_sv_undef, 1, 0,
2473 PL_XPosix_ptrs[classnum], &flags);
2474 }
2475
2476 /* This is a copy of the loop above for swash classes, though using the
2477 * FBC macro instead of being expanded out. Since we've loaded the
2478 * swash, we don't have to check for that each time through the loop */
2479 REXEC_FBC_UTF8_CLASS_SCAN(
2480 to_complement ^ cBOOL(_generic_utf8(
2481 classnum,
2482 s,
2483 swash_fetch(PL_utf8_swash_ptrs[classnum],
2484 (U8 *) s, TRUE))));
2485 break;
2486
2487 case AHOCORASICKC:
2488 case AHOCORASICK:
2489 {
2490 DECL_TRIE_TYPE(c);
2491 /* what trie are we using right now */
2492 reg_ac_data *aho = (reg_ac_data*)progi->data->data[ ARG( c ) ];
2493 reg_trie_data *trie = (reg_trie_data*)progi->data->data[ aho->trie ];
2494 HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
2495
2496 const char *last_start = strend - trie->minlen;
2497#ifdef DEBUGGING
2498 const char *real_start = s;
2499#endif
2500 STRLEN maxlen = trie->maxlen;
2501 SV *sv_points;
2502 U8 **points; /* map of where we were in the input string
2503 when reading a given char. For ASCII this
2504 is unnecessary overhead as the relationship
2505 is always 1:1, but for Unicode, especially
2506 case folded Unicode this is not true. */
2507 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
2508 U8 *bitmap=NULL;
2509
2510
2511 GET_RE_DEBUG_FLAGS_DECL;
2512
2513 /* We can't just allocate points here. We need to wrap it in
2514 * an SV so it gets freed properly if there is a croak while
2515 * running the match */
2516 ENTER;
2517 SAVETMPS;
2518 sv_points=newSV(maxlen * sizeof(U8 *));
2519 SvCUR_set(sv_points,
2520 maxlen * sizeof(U8 *));
2521 SvPOK_on(sv_points);
2522 sv_2mortal(sv_points);
2523 points=(U8**)SvPV_nolen(sv_points );
2524 if ( trie_type != trie_utf8_fold
2525 && (trie->bitmap || OP(c)==AHOCORASICKC) )
2526 {
2527 if (trie->bitmap)
2528 bitmap=(U8*)trie->bitmap;
2529 else
2530 bitmap=(U8*)ANYOF_BITMAP(c);
2531 }
2532 /* this is the Aho-Corasick algorithm modified a touch
2533 to include special handling for long "unknown char" sequences.
2534 The basic idea being that we use AC as long as we are dealing
2535 with a possible matching char, when we encounter an unknown char
2536 (and we have not encountered an accepting state) we scan forward
2537 until we find a legal starting char.
2538 AC matching is basically that of trie matching, except that when
2539 we encounter a failing transition, we fall back to the current
2540 states "fail state", and try the current char again, a process
2541 we repeat until we reach the root state, state 1, or a legal
2542 transition. If we fail on the root state then we can either
2543 terminate if we have reached an accepting state previously, or
2544 restart the entire process from the beginning if we have not.
2545
2546 */
2547 while (s <= last_start) {
2548 const U32 uniflags = UTF8_ALLOW_DEFAULT;
2549 U8 *uc = (U8*)s;
2550 U16 charid = 0;
2551 U32 base = 1;
2552 U32 state = 1;
2553 UV uvc = 0;
2554 STRLEN len = 0;
2555 STRLEN foldlen = 0;
2556 U8 *uscan = (U8*)NULL;
2557 U8 *leftmost = NULL;
2558#ifdef DEBUGGING
2559 U32 accepted_word= 0;
2560#endif
2561 U32 pointpos = 0;
2562
2563 while ( state && uc <= (U8*)strend ) {
2564 int failed=0;
2565 U32 word = aho->states[ state ].wordnum;
2566
2567 if( state==1 ) {
2568 if ( bitmap ) {
2569 DEBUG_TRIE_EXECUTE_r(
2570 if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
2571 dump_exec_pos( (char *)uc, c, strend, real_start,
2572 (char *)uc, utf8_target, 0 );
2573 Perl_re_printf( aTHX_
2574 " Scanning for legal start char...\n");
2575 }
2576 );
2577 if (utf8_target) {
2578 while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
2579 uc += UTF8SKIP(uc);
2580 }
2581 } else {
2582 while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
2583 uc++;
2584 }
2585 }
2586 s= (char *)uc;
2587 }
2588 if (uc >(U8*)last_start) break;
2589 }
2590
2591 if ( word ) {
2592 U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ];
2593 if (!leftmost || lpos < leftmost) {
2594 DEBUG_r(accepted_word=word);
2595 leftmost= lpos;
2596 }
2597 if (base==0) break;
2598
2599 }
2600 points[pointpos++ % maxlen]= uc;
2601 if (foldlen || uc < (U8*)strend) {
2602 REXEC_TRIE_READ_CHAR(trie_type, trie,
2603 widecharmap, uc,
2604 uscan, len, uvc, charid, foldlen,
2605 foldbuf, uniflags);
2606 DEBUG_TRIE_EXECUTE_r({
2607 dump_exec_pos( (char *)uc, c, strend,
2608 real_start, s, utf8_target, 0);
2609 Perl_re_printf( aTHX_
2610 " Charid:%3u CP:%4"UVxf" ",
2611 charid, uvc);
2612 });
2613 }
2614 else {
2615 len = 0;
2616 charid = 0;
2617 }
2618
2619
2620 do {
2621#ifdef DEBUGGING
2622 word = aho->states[ state ].wordnum;
2623#endif
2624 base = aho->states[ state ].trans.base;
2625
2626 DEBUG_TRIE_EXECUTE_r({
2627 if (failed)
2628 dump_exec_pos( (char *)uc, c, strend, real_start,
2629 s, utf8_target, 0 );
2630 Perl_re_printf( aTHX_
2631 "%sState: %4"UVxf", word=%"UVxf,
2632 failed ? " Fail transition to " : "",
2633 (UV)state, (UV)word);
2634 });
2635 if ( base ) {
2636 U32 tmp;
2637 I32 offset;
2638 if (charid &&
2639 ( ((offset = base + charid
2640 - 1 - trie->uniquecharcount)) >= 0)
2641 && ((U32)offset < trie->lasttrans)
2642 && trie->trans[offset].check == state
2643 && (tmp=trie->trans[offset].next))
2644 {
2645 DEBUG_TRIE_EXECUTE_r(
2646 Perl_re_printf( aTHX_ " - legal\n"));
2647 state = tmp;
2648 break;
2649 }
2650 else {
2651 DEBUG_TRIE_EXECUTE_r(
2652 Perl_re_printf( aTHX_ " - fail\n"));
2653 failed = 1;
2654 state = aho->fail[state];
2655 }
2656 }
2657 else {
2658 /* we must be accepting here */
2659 DEBUG_TRIE_EXECUTE_r(
2660 Perl_re_printf( aTHX_ " - accepting\n"));
2661 failed = 1;
2662 break;
2663 }
2664 } while(state);
2665 uc += len;
2666 if (failed) {
2667 if (leftmost)
2668 break;
2669 if (!state) state = 1;
2670 }
2671 }
2672 if ( aho->states[ state ].wordnum ) {
2673 U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ];
2674 if (!leftmost || lpos < leftmost) {
2675 DEBUG_r(accepted_word=aho->states[ state ].wordnum);
2676 leftmost = lpos;
2677 }
2678 }
2679 if (leftmost) {
2680 s = (char*)leftmost;
2681 DEBUG_TRIE_EXECUTE_r({
2682 Perl_re_printf( aTHX_ "Matches word #%"UVxf" at position %"IVdf". Trying full pattern...\n",
2683 (UV)accepted_word, (IV)(s - real_start)
2684 );
2685 });
2686 if (reginfo->intuit || regtry(reginfo, &s)) {
2687 FREETMPS;
2688 LEAVE;
2689 goto got_it;
2690 }
2691 s = HOPc(s,1);
2692 DEBUG_TRIE_EXECUTE_r({
2693 Perl_re_printf( aTHX_ "Pattern failed. Looking for new start point...\n");
2694 });
2695 } else {
2696 DEBUG_TRIE_EXECUTE_r(
2697 Perl_re_printf( aTHX_ "No match.\n"));
2698 break;
2699 }
2700 }
2701 FREETMPS;
2702 LEAVE;
2703 }
2704 break;
2705 default:
2706 Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c));
2707 }
2708 return 0;
2709 got_it:
2710 return s;
2711}
2712
2713/* set RX_SAVED_COPY, RX_SUBBEG etc.
2714 * flags have same meanings as with regexec_flags() */
2715
2716static void
2717S_reg_set_capture_string(pTHX_ REGEXP * const rx,
2718 char *strbeg,
2719 char *strend,
2720 SV *sv,
2721 U32 flags,
2722 bool utf8_target)
2723{
2724 struct regexp *const prog = ReANY(rx);
2725
2726 if (flags & REXEC_COPY_STR) {
2727#ifdef PERL_ANY_COW
2728 if (SvCANCOW(sv)) {
2729 DEBUG_C(Perl_re_printf( aTHX_
2730 "Copy on write: regexp capture, type %d\n",
2731 (int) SvTYPE(sv)));
2732 /* Create a new COW SV to share the match string and store
2733 * in saved_copy, unless the current COW SV in saved_copy
2734 * is valid and suitable for our purpose */
2735 if (( prog->saved_copy
2736 && SvIsCOW(prog->saved_copy)
2737 && SvPOKp(prog->saved_copy)
2738 && SvIsCOW(sv)
2739 && SvPOKp(sv)
2740 && SvPVX(sv) == SvPVX(prog->saved_copy)))
2741 {
2742 /* just reuse saved_copy SV */
2743 if (RXp_MATCH_COPIED(prog)) {
2744 Safefree(prog->subbeg);
2745 RXp_MATCH_COPIED_off(prog);
2746 }
2747 }
2748 else {
2749 /* create new COW SV to share string */
2750 RX_MATCH_COPY_FREE(rx);
2751 prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv);
2752 }
2753 prog->subbeg = (char *)SvPVX_const(prog->saved_copy);
2754 assert (SvPOKp(prog->saved_copy));
2755 prog->sublen = strend - strbeg;
2756 prog->suboffset = 0;
2757 prog->subcoffset = 0;
2758 } else
2759#endif
2760 {
2761 SSize_t min = 0;
2762 SSize_t max = strend - strbeg;
2763 SSize_t sublen;
2764
2765 if ( (flags & REXEC_COPY_SKIP_POST)
2766 && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
2767 && !(PL_sawampersand & SAWAMPERSAND_RIGHT)
2768 ) { /* don't copy $' part of string */
2769 U32 n = 0;
2770 max = -1;
2771 /* calculate the right-most part of the string covered
2772 * by a capture. Due to lookahead, this may be to
2773 * the right of $&, so we have to scan all captures */
2774 while (n <= prog->lastparen) {
2775 if (prog->offs[n].end > max)
2776 max = prog->offs[n].end;
2777 n++;
2778 }
2779 if (max == -1)
2780 max = (PL_sawampersand & SAWAMPERSAND_LEFT)
2781 ? prog->offs[0].start
2782 : 0;
2783 assert(max >= 0 && max <= strend - strbeg);
2784 }
2785
2786 if ( (flags & REXEC_COPY_SKIP_PRE)
2787 && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
2788 && !(PL_sawampersand & SAWAMPERSAND_LEFT)
2789 ) { /* don't copy $` part of string */
2790 U32 n = 0;
2791 min = max;
2792 /* calculate the left-most part of the string covered
2793 * by a capture. Due to lookbehind, this may be to
2794 * the left of $&, so we have to scan all captures */
2795 while (min && n <= prog->lastparen) {
2796 if ( prog->offs[n].start != -1
2797 && prog->offs[n].start < min)
2798 {
2799 min = prog->offs[n].start;
2800 }
2801 n++;
2802 }
2803 if ((PL_sawampersand & SAWAMPERSAND_RIGHT)
2804 && min > prog->offs[0].end
2805 )
2806 min = prog->offs[0].end;
2807
2808 }
2809
2810 assert(min >= 0 && min <= max && min <= strend - strbeg);
2811 sublen = max - min;
2812
2813 if (RX_MATCH_COPIED(rx)) {
2814 if (sublen > prog->sublen)
2815 prog->subbeg =
2816 (char*)saferealloc(prog->subbeg, sublen+1);
2817 }
2818 else
2819 prog->subbeg = (char*)safemalloc(sublen+1);
2820 Copy(strbeg + min, prog->subbeg, sublen, char);
2821 prog->subbeg[sublen] = '\0';
2822 prog->suboffset = min;
2823 prog->sublen = sublen;
2824 RX_MATCH_COPIED_on(rx);
2825 }
2826 prog->subcoffset = prog->suboffset;
2827 if (prog->suboffset && utf8_target) {
2828 /* Convert byte offset to chars.
2829 * XXX ideally should only compute this if @-/@+
2830 * has been seen, a la PL_sawampersand ??? */
2831
2832 /* If there's a direct correspondence between the
2833 * string which we're matching and the original SV,
2834 * then we can use the utf8 len cache associated with
2835 * the SV. In particular, it means that under //g,
2836 * sv_pos_b2u() will use the previously cached
2837 * position to speed up working out the new length of
2838 * subcoffset, rather than counting from the start of
2839 * the string each time. This stops
2840 * $x = "\x{100}" x 1E6; 1 while $x =~ /(.)/g;
2841 * from going quadratic */
2842 if (SvPOKp(sv) && SvPVX(sv) == strbeg)
2843 prog->subcoffset = sv_pos_b2u_flags(sv, prog->subcoffset,
2844 SV_GMAGIC|SV_CONST_RETURN);
2845 else
2846 prog->subcoffset = utf8_length((U8*)strbeg,
2847 (U8*)(strbeg+prog->suboffset));
2848 }
2849 }
2850 else {
2851 RX_MATCH_COPY_FREE(rx);
2852 prog->subbeg = strbeg;
2853 prog->suboffset = 0;
2854 prog->subcoffset = 0;
2855 prog->sublen = strend - strbeg;
2856 }
2857}
2858
2859
2860
2861
2862/*
2863 - regexec_flags - match a regexp against a string
2864 */
2865I32
2866Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, char *strend,
2867 char *strbeg, SSize_t minend, SV *sv, void *data, U32 flags)
2868/* stringarg: the point in the string at which to begin matching */
2869/* strend: pointer to null at end of string */
2870/* strbeg: real beginning of string */
2871/* minend: end of match must be >= minend bytes after stringarg. */
2872/* sv: SV being matched: only used for utf8 flag, pos() etc; string
2873 * itself is accessed via the pointers above */
2874/* data: May be used for some additional optimizations.
2875 Currently unused. */
2876/* flags: For optimizations. See REXEC_* in regexp.h */
2877
2878{
2879 struct regexp *const prog = ReANY(rx);
2880 char *s;
2881 regnode *c;
2882 char *startpos;
2883 SSize_t minlen; /* must match at least this many chars */
2884 SSize_t dontbother = 0; /* how many characters not to try at end */
2885 const bool utf8_target = cBOOL(DO_UTF8(sv));
2886 I32 multiline;
2887 RXi_GET_DECL(prog,progi);
2888 regmatch_info reginfo_buf; /* create some info to pass to regtry etc */
2889 regmatch_info *const reginfo = &reginfo_buf;
2890 regexp_paren_pair *swap = NULL;
2891 I32 oldsave;
2892 GET_RE_DEBUG_FLAGS_DECL;
2893
2894 PERL_ARGS_ASSERT_REGEXEC_FLAGS;
2895 PERL_UNUSED_ARG(data);
2896
2897 /* Be paranoid... */
2898 if (prog == NULL) {
2899 Perl_croak(aTHX_ "NULL regexp parameter");
2900 }
2901
2902 DEBUG_EXECUTE_r(
2903 debug_start_match(rx, utf8_target, stringarg, strend,
2904 "Matching");
2905 );
2906
2907 startpos = stringarg;
2908
2909 /* set these early as they may be used by the HOP macros below */
2910 reginfo->strbeg = strbeg;
2911 reginfo->strend = strend;
2912 reginfo->is_utf8_target = cBOOL(utf8_target);
2913
2914 if (prog->intflags & PREGf_GPOS_SEEN) {
2915 MAGIC *mg;
2916
2917 /* set reginfo->ganch, the position where \G can match */
2918
2919 reginfo->ganch =
2920 (flags & REXEC_IGNOREPOS)
2921 ? stringarg /* use start pos rather than pos() */
2922 : ((mg = mg_find_mglob(sv)) && mg->mg_len >= 0)
2923 /* Defined pos(): */
2924 ? strbeg + MgBYTEPOS(mg, sv, strbeg, strend-strbeg)
2925 : strbeg; /* pos() not defined; use start of string */
2926
2927 DEBUG_GPOS_r(Perl_re_printf( aTHX_
2928 "GPOS ganch set to strbeg[%"IVdf"]\n", (IV)(reginfo->ganch - strbeg)));
2929
2930 /* in the presence of \G, we may need to start looking earlier in
2931 * the string than the suggested start point of stringarg:
2932 * if prog->gofs is set, then that's a known, fixed minimum
2933 * offset, such as
2934 * /..\G/: gofs = 2
2935 * /ab|c\G/: gofs = 1
2936 * or if the minimum offset isn't known, then we have to go back
2937 * to the start of the string, e.g. /w+\G/
2938 */
2939
2940 if (prog->intflags & PREGf_ANCH_GPOS) {
2941 if (prog->gofs) {
2942 startpos = HOPBACKc(reginfo->ganch, prog->gofs);
2943 if (!startpos ||
2944 ((flags & REXEC_FAIL_ON_UNDERFLOW) && startpos < stringarg))
2945 {
2946 DEBUG_r(Perl_re_printf( aTHX_
2947 "fail: ganch-gofs before earliest possible start\n"));
2948 return 0;
2949 }
2950 }
2951 else
2952 startpos = reginfo->ganch;
2953 }
2954 else if (prog->gofs) {
2955 startpos = HOPBACKc(startpos, prog->gofs);
2956 if (!startpos)
2957 startpos = strbeg;
2958 }
2959 else if (prog->intflags & PREGf_GPOS_FLOAT)
2960 startpos = strbeg;
2961 }
2962
2963 minlen = prog->minlen;
2964 if ((startpos + minlen) > strend || startpos < strbeg) {
2965 DEBUG_r(Perl_re_printf( aTHX_
2966 "Regex match can't succeed, so not even tried\n"));
2967 return 0;
2968 }
2969
2970 /* at the end of this function, we'll do a LEAVE_SCOPE(oldsave),
2971 * which will call destuctors to reset PL_regmatch_state, free higher
2972 * PL_regmatch_slabs, and clean up regmatch_info_aux and
2973 * regmatch_info_aux_eval */
2974
2975 oldsave = PL_savestack_ix;
2976
2977 s = startpos;
2978
2979 if ((prog->extflags & RXf_USE_INTUIT)
2980 && !(flags & REXEC_CHECKED))
2981 {
2982 s = re_intuit_start(rx, sv, strbeg, startpos, strend,
2983 flags, NULL);
2984 if (!s)
2985 return 0;
2986
2987 if (prog->extflags & RXf_CHECK_ALL) {
2988 /* we can match based purely on the result of INTUIT.
2989 * Set up captures etc just for $& and $-[0]
2990 * (an intuit-only match wont have $1,$2,..) */
2991 assert(!prog->nparens);
2992
2993 /* s/// doesn't like it if $& is earlier than where we asked it to
2994 * start searching (which can happen on something like /.\G/) */
2995 if ( (flags & REXEC_FAIL_ON_UNDERFLOW)
2996 && (s < stringarg))
2997 {
2998 /* this should only be possible under \G */
2999 assert(prog->intflags & PREGf_GPOS_SEEN);
3000 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
3001 "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
3002 goto phooey;
3003 }
3004
3005 /* match via INTUIT shouldn't have any captures.
3006 * Let @-, @+, $^N know */
3007 prog->lastparen = prog->lastcloseparen = 0;
3008 RX_MATCH_UTF8_set(rx, utf8_target);
3009 prog->offs[0].start = s - strbeg;
3010 prog->offs[0].end = utf8_target
3011 ? (char*)utf8_hop((U8*)s, prog->minlenret) - strbeg
3012 : s - strbeg + prog->minlenret;
3013 if ( !(flags & REXEC_NOT_FIRST) )
3014 S_reg_set_capture_string(aTHX_ rx,
3015 strbeg, strend,
3016 sv, flags, utf8_target);
3017
3018 return 1;
3019 }
3020 }
3021
3022 multiline = prog->extflags & RXf_PMf_MULTILINE;
3023
3024 if (strend - s < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) {
3025 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
3026 "String too short [regexec_flags]...\n"));
3027 goto phooey;
3028 }
3029
3030 /* Check validity of program. */
3031 if (UCHARAT(progi->program) != REG_MAGIC) {
3032 Perl_croak(aTHX_ "corrupted regexp program");
3033 }
3034
3035 RX_MATCH_TAINTED_off(rx);
3036 RX_MATCH_UTF8_set(rx, utf8_target);
3037
3038 reginfo->prog = rx; /* Yes, sorry that this is confusing. */
3039 reginfo->intuit = 0;
3040 reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
3041 reginfo->warned = FALSE;
3042 reginfo->sv = sv;
3043 reginfo->poscache_maxiter = 0; /* not yet started a countdown */
3044 /* see how far we have to get to not match where we matched before */
3045 reginfo->till = stringarg + minend;
3046
3047 if (prog->extflags & RXf_EVAL_SEEN && SvPADTMP(sv)) {
3048 /* SAVEFREESV, not sv_mortalcopy, as this SV must last until after
3049 S_cleanup_regmatch_info_aux has executed (registered by
3050 SAVEDESTRUCTOR_X below). S_cleanup_regmatch_info_aux modifies
3051 magic belonging to this SV.
3052 Not newSVsv, either, as it does not COW.
3053 */
3054 reginfo->sv = newSV(0);
3055 SvSetSV_nosteal(reginfo->sv, sv);
3056 SAVEFREESV(reginfo->sv);
3057 }
3058
3059 /* reserve next 2 or 3 slots in PL_regmatch_state:
3060 * slot N+0: may currently be in use: skip it
3061 * slot N+1: use for regmatch_info_aux struct
3062 * slot N+2: use for regmatch_info_aux_eval struct if we have (?{})'s
3063 * slot N+3: ready for use by regmatch()
3064 */
3065
3066 {
3067 regmatch_state *old_regmatch_state;
3068 regmatch_slab *old_regmatch_slab;
3069 int i, max = (prog->extflags & RXf_EVAL_SEEN) ? 2 : 1;
3070
3071 /* on first ever match, allocate first slab */
3072 if (!PL_regmatch_slab) {
3073 Newx(PL_regmatch_slab, 1, regmatch_slab);
3074 PL_regmatch_slab->prev = NULL;
3075 PL_regmatch_slab->next = NULL;
3076 PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
3077 }
3078
3079 old_regmatch_state = PL_regmatch_state;
3080 old_regmatch_slab = PL_regmatch_slab;
3081
3082 for (i=0; i <= max; i++) {
3083 if (i == 1)
3084 reginfo->info_aux = &(PL_regmatch_state->u.info_aux);
3085 else if (i ==2)
3086 reginfo->info_aux_eval =
3087 reginfo->info_aux->info_aux_eval =
3088 &(PL_regmatch_state->u.info_aux_eval);
3089
3090 if (++PL_regmatch_state > SLAB_LAST(PL_regmatch_slab))
3091 PL_regmatch_state = S_push_slab(aTHX);
3092 }
3093
3094 /* note initial PL_regmatch_state position; at end of match we'll
3095 * pop back to there and free any higher slabs */
3096
3097 reginfo->info_aux->old_regmatch_state = old_regmatch_state;
3098 reginfo->info_aux->old_regmatch_slab = old_regmatch_slab;
3099 reginfo->info_aux->poscache = NULL;
3100
3101 SAVEDESTRUCTOR_X(S_cleanup_regmatch_info_aux, reginfo->info_aux);
3102
3103 if ((prog->extflags & RXf_EVAL_SEEN))
3104 S_setup_eval_state(aTHX_ reginfo);
3105 else
3106 reginfo->info_aux_eval = reginfo->info_aux->info_aux_eval = NULL;
3107 }
3108
3109 /* If there is a "must appear" string, look for it. */
3110
3111 if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
3112 /* We have to be careful. If the previous successful match
3113 was from this regex we don't want a subsequent partially
3114 successful match to clobber the old results.
3115 So when we detect this possibility we add a swap buffer
3116 to the re, and switch the buffer each match. If we fail,
3117 we switch it back; otherwise we leave it swapped.
3118 */
3119 swap = prog->offs;
3120 /* do we need a save destructor here for eval dies? */
3121 Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair);
3122 DEBUG_BUFFERS_r(Perl_re_printf( aTHX_
3123 "rex=0x%"UVxf" saving offs: orig=0x%"UVxf" new=0x%"UVxf"\n",
3124 PTR2UV(prog),
3125 PTR2UV(swap),
3126 PTR2UV(prog->offs)
3127 ));
3128 }
3129
3130 if (prog->recurse_locinput)
3131 Zero(prog->recurse_locinput,prog->nparens + 1, char *);
3132
3133 /* Simplest case: anchored match need be tried only once, or with
3134 * MBOL, only at the beginning of each line.
3135 *
3136 * Note that /.*.../ sets PREGf_IMPLICIT|MBOL, while /.*.../s sets
3137 * PREGf_IMPLICIT|SBOL. The idea is that with /.*.../s, if it doesn't
3138 * match at the start of the string then it won't match anywhere else
3139 * either; while with /.*.../, if it doesn't match at the beginning,
3140 * the earliest it could match is at the start of the next line */
3141
3142 if (prog->intflags & (PREGf_ANCH & ~PREGf_ANCH_GPOS)) {
3143 char *end;
3144
3145 if (regtry(reginfo, &s))
3146 goto got_it;
3147
3148 if (!(prog->intflags & PREGf_ANCH_MBOL))
3149 goto phooey;
3150
3151 /* didn't match at start, try at other newline positions */
3152
3153 if (minlen)
3154 dontbother = minlen - 1;
3155 end = HOP3c(strend, -dontbother, strbeg) - 1;
3156
3157 /* skip to next newline */
3158
3159 while (s <= end) { /* note it could be possible to match at the end of the string */
3160 /* NB: newlines are the same in unicode as they are in latin */
3161 if (*s++ != '\n')
3162 continue;
3163 if (prog->check_substr || prog->check_utf8) {
3164 /* note that with PREGf_IMPLICIT, intuit can only fail
3165 * or return the start position, so it's of limited utility.
3166 * Nevertheless, I made the decision that the potential for
3167 * quick fail was still worth it - DAPM */
3168 s = re_intuit_start(rx, sv, strbeg, s, strend, flags, NULL);
3169 if (!s)
3170 goto phooey;
3171 }
3172 if (regtry(reginfo, &s))
3173 goto got_it;
3174 }
3175 goto phooey;
3176 } /* end anchored search */
3177
3178 if (prog->intflags & PREGf_ANCH_GPOS)
3179 {
3180 /* PREGf_ANCH_GPOS should never be true if PREGf_GPOS_SEEN is not true */
3181 assert(prog->intflags & PREGf_GPOS_SEEN);
3182 /* For anchored \G, the only position it can match from is
3183 * (ganch-gofs); we already set startpos to this above; if intuit
3184 * moved us on from there, we can't possibly succeed */
3185 assert(startpos == HOPBACKc(reginfo->ganch, prog->gofs));
3186 if (s == startpos && regtry(reginfo, &s))
3187 goto got_it;
3188 goto phooey;
3189 }
3190
3191 /* Messy cases: unanchored match. */
3192 if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
3193 /* we have /x+whatever/ */
3194 /* it must be a one character string (XXXX Except is_utf8_pat?) */
3195 char ch;
3196#ifdef DEBUGGING
3197 int did_match = 0;
3198#endif
3199 if (utf8_target) {
3200 if (! prog->anchored_utf8) {
3201 to_utf8_substr(prog);
3202 }
3203 ch = SvPVX_const(prog->anchored_utf8)[0];
3204 REXEC_FBC_SCAN(
3205 if (*s == ch) {
3206 DEBUG_EXECUTE_r( did_match = 1 );
3207 if (regtry(reginfo, &s)) goto got_it;
3208 s += UTF8SKIP(s);
3209 while (s < strend && *s == ch)
3210 s += UTF8SKIP(s);
3211 }
3212 );
3213
3214 }
3215 else {
3216 if (! prog->anchored_substr) {
3217 if (! to_byte_substr(prog)) {
3218 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
3219 }
3220 }
3221 ch = SvPVX_const(prog->anchored_substr)[0];
3222 REXEC_FBC_SCAN(
3223 if (*s == ch) {
3224 DEBUG_EXECUTE_r( did_match = 1 );
3225 if (regtry(reginfo, &s)) goto got_it;
3226 s++;
3227 while (s < strend && *s == ch)
3228 s++;
3229 }
3230 );
3231 }
3232 DEBUG_EXECUTE_r(if (!did_match)
3233 Perl_re_printf( aTHX_
3234 "Did not find anchored character...\n")
3235 );
3236 }
3237 else if (prog->anchored_substr != NULL
3238 || prog->anchored_utf8 != NULL
3239 || ((prog->float_substr != NULL || prog->float_utf8 != NULL)
3240 && prog->float_max_offset < strend - s)) {
3241 SV *must;
3242 SSize_t back_max;
3243 SSize_t back_min;
3244 char *last;
3245 char *last1; /* Last position checked before */
3246#ifdef DEBUGGING
3247 int did_match = 0;
3248#endif
3249 if (prog->anchored_substr || prog->anchored_utf8) {
3250 if (utf8_target) {
3251 if (! prog->anchored_utf8) {
3252 to_utf8_substr(prog);
3253 }
3254 must = prog->anchored_utf8;
3255 }
3256 else {
3257 if (! prog->anchored_substr) {
3258 if (! to_byte_substr(prog)) {
3259 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
3260 }
3261 }
3262 must = prog->anchored_substr;
3263 }
3264 back_max = back_min = prog->anchored_offset;
3265 } else {
3266 if (utf8_target) {
3267 if (! prog->float_utf8) {
3268 to_utf8_substr(prog);
3269 }
3270 must = prog->float_utf8;
3271 }
3272 else {
3273 if (! prog->float_substr) {
3274 if (! to_byte_substr(prog)) {
3275 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
3276 }
3277 }
3278 must = prog->float_substr;
3279 }
3280 back_max = prog->float_max_offset;
3281 back_min = prog->float_min_offset;
3282 }
3283
3284 if (back_min<0) {
3285 last = strend;
3286 } else {
3287 last = HOP3c(strend, /* Cannot start after this */
3288 -(SSize_t)(CHR_SVLEN(must)
3289 - (SvTAIL(must) != 0) + back_min), strbeg);
3290 }
3291 if (s > reginfo->strbeg)
3292 last1 = HOPc(s, -1);
3293 else
3294 last1 = s - 1; /* bogus */
3295
3296 /* XXXX check_substr already used to find "s", can optimize if
3297 check_substr==must. */
3298 dontbother = 0;
3299 strend = HOPc(strend, -dontbother);
3300 while ( (s <= last) &&
3301 (s = fbm_instr((unsigned char*)HOP4c(s, back_min, strbeg, strend),
3302 (unsigned char*)strend, must,
3303 multiline ? FBMrf_MULTILINE : 0)) ) {
3304 DEBUG_EXECUTE_r( did_match = 1 );
3305 if (HOPc(s, -back_max) > last1) {
3306 last1 = HOPc(s, -back_min);
3307 s = HOPc(s, -back_max);
3308 }
3309 else {
3310 char * const t = (last1 >= reginfo->strbeg)
3311 ? HOPc(last1, 1) : last1 + 1;
3312
3313 last1 = HOPc(s, -back_min);
3314 s = t;
3315 }
3316 if (utf8_target) {
3317 while (s <= last1) {
3318 if (regtry(reginfo, &s))
3319 goto got_it;
3320 if (s >= last1) {
3321 s++; /* to break out of outer loop */
3322 break;
3323 }
3324 s += UTF8SKIP(s);
3325 }
3326 }
3327 else {
3328 while (s <= last1) {
3329 if (regtry(reginfo, &s))
3330 goto got_it;
3331 s++;
3332 }
3333 }
3334 }
3335 DEBUG_EXECUTE_r(if (!did_match) {
3336 RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
3337 SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
3338 Perl_re_printf( aTHX_ "Did not find %s substr %s%s...\n",
3339 ((must == prog->anchored_substr || must == prog->anchored_utf8)
3340 ? "anchored" : "floating"),
3341 quoted, RE_SV_TAIL(must));
3342 });
3343 goto phooey;
3344 }
3345 else if ( (c = progi->regstclass) ) {
3346 if (minlen) {
3347 const OPCODE op = OP(progi->regstclass);
3348 /* don't bother with what can't match */
3349 if (PL_regkind[op] != EXACT && PL_regkind[op] != TRIE)
3350 strend = HOPc(strend, -(minlen - 1));
3351 }
3352 DEBUG_EXECUTE_r({
3353 SV * const prop = sv_newmortal();
3354 regprop(prog, prop, c, reginfo, NULL);
3355 {
3356 RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1),
3357 s,strend-s,60);
3358 Perl_re_printf( aTHX_
3359 "Matching stclass %.*s against %s (%d bytes)\n",
3360 (int)SvCUR(prop), SvPVX_const(prop),
3361 quoted, (int)(strend - s));
3362 }
3363 });
3364 if (find_byclass(prog, c, s, strend, reginfo))
3365 goto got_it;
3366 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "Contradicts stclass... [regexec_flags]\n"));
3367 }
3368 else {
3369 dontbother = 0;
3370 if (prog->float_substr != NULL || prog->float_utf8 != NULL) {
3371 /* Trim the end. */
3372 char *last= NULL;
3373 SV* float_real;
3374 STRLEN len;
3375 const char *little;
3376
3377 if (utf8_target) {
3378 if (! prog->float_utf8) {
3379 to_utf8_substr(prog);
3380 }
3381 float_real = prog->float_utf8;
3382 }
3383 else {
3384 if (! prog->float_substr) {
3385 if (! to_byte_substr(prog)) {
3386 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
3387 }
3388 }
3389 float_real = prog->float_substr;
3390 }
3391
3392 little = SvPV_const(float_real, len);
3393 if (SvTAIL(float_real)) {
3394 /* This means that float_real contains an artificial \n on
3395 * the end due to the presence of something like this:
3396 * /foo$/ where we can match both "foo" and "foo\n" at the
3397 * end of the string. So we have to compare the end of the
3398 * string first against the float_real without the \n and
3399 * then against the full float_real with the string. We
3400 * have to watch out for cases where the string might be
3401 * smaller than the float_real or the float_real without
3402 * the \n. */
3403 char *checkpos= strend - len;
3404 DEBUG_OPTIMISE_r(
3405 Perl_re_printf( aTHX_
3406 "%sChecking for float_real.%s\n",
3407 PL_colors[4], PL_colors[5]));
3408 if (checkpos + 1 < strbeg) {
3409 /* can't match, even if we remove the trailing \n
3410 * string is too short to match */
3411 DEBUG_EXECUTE_r(
3412 Perl_re_printf( aTHX_
3413 "%sString shorter than required trailing substring, cannot match.%s\n",
3414 PL_colors[4], PL_colors[5]));
3415 goto phooey;
3416 } else if (memEQ(checkpos + 1, little, len - 1)) {
3417 /* can match, the end of the string matches without the
3418 * "\n" */
3419 last = checkpos + 1;
3420 } else if (checkpos < strbeg) {
3421 /* cant match, string is too short when the "\n" is
3422 * included */
3423 DEBUG_EXECUTE_r(
3424 Perl_re_printf( aTHX_
3425 "%sString does not contain required trailing substring, cannot match.%s\n",
3426 PL_colors[4], PL_colors[5]));
3427 goto phooey;
3428 } else if (!multiline) {
3429 /* non multiline match, so compare with the "\n" at the
3430 * end of the string */
3431 if (memEQ(checkpos, little, len)) {
3432 last= checkpos;
3433 } else {
3434 DEBUG_EXECUTE_r(
3435 Perl_re_printf( aTHX_
3436 "%sString does not contain required trailing substring, cannot match.%s\n",
3437 PL_colors[4], PL_colors[5]));
3438 goto phooey;
3439 }
3440 } else {
3441 /* multiline match, so we have to search for a place
3442 * where the full string is located */
3443 goto find_last;
3444 }
3445 } else {
3446 find_last:
3447 if (len)
3448 last = rninstr(s, strend, little, little + len);
3449 else
3450 last = strend; /* matching "$" */
3451 }
3452 if (!last) {
3453 /* at one point this block contained a comment which was
3454 * probably incorrect, which said that this was a "should not
3455 * happen" case. Even if it was true when it was written I am
3456 * pretty sure it is not anymore, so I have removed the comment
3457 * and replaced it with this one. Yves */
3458 DEBUG_EXECUTE_r(
3459 Perl_re_printf( aTHX_
3460 "%sString does not contain required substring, cannot match.%s\n",
3461 PL_colors[4], PL_colors[5]
3462 ));
3463 goto phooey;
3464 }
3465 dontbother = strend - last + prog->float_min_offset;
3466 }
3467 if (minlen && (dontbother < minlen))
3468 dontbother = minlen - 1;
3469 strend -= dontbother; /* this one's always in bytes! */
3470 /* We don't know much -- general case. */
3471 if (utf8_target) {
3472 for (;;) {
3473 if (regtry(reginfo, &s))
3474 goto got_it;
3475 if (s >= strend)
3476 break;
3477 s += UTF8SKIP(s);
3478 };
3479 }
3480 else {
3481 do {
3482 if (regtry(reginfo, &s))
3483 goto got_it;
3484 } while (s++ < strend);
3485 }
3486 }
3487
3488 /* Failure. */
3489 goto phooey;
3490
3491 got_it:
3492 /* s/// doesn't like it if $& is earlier than where we asked it to
3493 * start searching (which can happen on something like /.\G/) */
3494 if ( (flags & REXEC_FAIL_ON_UNDERFLOW)
3495 && (prog->offs[0].start < stringarg - strbeg))
3496 {
3497 /* this should only be possible under \G */
3498 assert(prog->intflags & PREGf_GPOS_SEEN);
3499 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
3500 "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
3501 goto phooey;
3502 }
3503
3504 DEBUG_BUFFERS_r(
3505 if (swap)
3506 Perl_re_printf( aTHX_
3507 "rex=0x%"UVxf" freeing offs: 0x%"UVxf"\n",
3508 PTR2UV(prog),
3509 PTR2UV(swap)
3510 );
3511 );
3512 Safefree(swap);
3513
3514 /* clean up; this will trigger destructors that will free all slabs
3515 * above the current one, and cleanup the regmatch_info_aux
3516 * and regmatch_info_aux_eval sructs */
3517
3518 LEAVE_SCOPE(oldsave);
3519
3520 if (RXp_PAREN_NAMES(prog))
3521 (void)hv_iterinit(RXp_PAREN_NAMES(prog));
3522
3523 /* make sure $`, $&, $', and $digit will work later */
3524 if ( !(flags & REXEC_NOT_FIRST) )
3525 S_reg_set_capture_string(aTHX_ rx,
3526 strbeg, reginfo->strend,
3527 sv, flags, utf8_target);
3528
3529 return 1;
3530
3531 phooey:
3532 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%sMatch failed%s\n",
3533 PL_colors[4], PL_colors[5]));
3534
3535 /* clean up; this will trigger destructors that will free all slabs
3536 * above the current one, and cleanup the regmatch_info_aux
3537 * and regmatch_info_aux_eval sructs */
3538
3539 LEAVE_SCOPE(oldsave);
3540
3541 if (swap) {
3542 /* we failed :-( roll it back */
3543 DEBUG_BUFFERS_r(Perl_re_printf( aTHX_
3544 "rex=0x%"UVxf" rolling back offs: freeing=0x%"UVxf" restoring=0x%"UVxf"\n",
3545 PTR2UV(prog),
3546 PTR2UV(prog->offs),
3547 PTR2UV(swap)
3548 ));
3549 Safefree(prog->offs);
3550 prog->offs = swap;
3551 }
3552 return 0;
3553}
3554
3555
3556/* Set which rex is pointed to by PL_reg_curpm, handling ref counting.
3557 * Do inc before dec, in case old and new rex are the same */
3558#define SET_reg_curpm(Re2) \
3559 if (reginfo->info_aux_eval) { \
3560 (void)ReREFCNT_inc(Re2); \
3561 ReREFCNT_dec(PM_GETRE(PL_reg_curpm)); \
3562 PM_SETRE((PL_reg_curpm), (Re2)); \
3563 }
3564
3565
3566/*
3567 - regtry - try match at specific point
3568 */
3569STATIC bool /* 0 failure, 1 success */
3570S_regtry(pTHX_ regmatch_info *reginfo, char **startposp)
3571{
3572 CHECKPOINT lastcp;
3573 REGEXP *const rx = reginfo->prog;
3574 regexp *const prog = ReANY(rx);
3575 SSize_t result;
3576#ifdef DEBUGGING
3577 U32 depth = 0; /* used by REGCP_SET */
3578#endif
3579 RXi_GET_DECL(prog,progi);
3580 GET_RE_DEBUG_FLAGS_DECL;
3581
3582 PERL_ARGS_ASSERT_REGTRY;
3583
3584 reginfo->cutpoint=NULL;
3585
3586 prog->offs[0].start = *startposp - reginfo->strbeg;
3587 prog->lastparen = 0;
3588 prog->lastcloseparen = 0;
3589
3590 /* XXXX What this code is doing here?!!! There should be no need
3591 to do this again and again, prog->lastparen should take care of
3592 this! --ilya*/
3593
3594 /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code.
3595 * Actually, the code in regcppop() (which Ilya may be meaning by
3596 * prog->lastparen), is not needed at all by the test suite
3597 * (op/regexp, op/pat, op/split), but that code is needed otherwise
3598 * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
3599 * Meanwhile, this code *is* needed for the
3600 * above-mentioned test suite tests to succeed. The common theme
3601 * on those tests seems to be returning null fields from matches.
3602 * --jhi updated by dapm */
3603#if 1
3604 if (prog->nparens) {
3605 regexp_paren_pair *pp = prog->offs;
3606 I32 i;
3607 for (i = prog->nparens; i > (I32)prog->lastparen; i--) {
3608 ++pp;
3609 pp->start = -1;
3610 pp->end = -1;
3611 }
3612 }
3613#endif
3614 REGCP_SET(lastcp);
3615 result = regmatch(reginfo, *startposp, progi->program + 1);
3616 if (result != -1) {
3617 prog->offs[0].end = result;
3618 return 1;
3619 }
3620 if (reginfo->cutpoint)
3621 *startposp= reginfo->cutpoint;
3622 REGCP_UNWIND(lastcp);
3623 return 0;
3624}
3625
3626
3627#define sayYES goto yes
3628#define sayNO goto no
3629#define sayNO_SILENT goto no_silent
3630
3631/* we dont use STMT_START/END here because it leads to
3632 "unreachable code" warnings, which are bogus, but distracting. */
3633#define CACHEsayNO \
3634 if (ST.cache_mask) \
3635 reginfo->info_aux->poscache[ST.cache_offset] |= ST.cache_mask; \
3636 sayNO
3637
3638/* this is used to determine how far from the left messages like
3639 'failed...' are printed in regexec.c. It should be set such that
3640 messages are inline with the regop output that created them.
3641*/
3642#define REPORT_CODE_OFF 29
3643#define INDENT_CHARS(depth) ((int)(depth) % 20)
3644#ifdef DEBUGGING
3645int
3646Perl_re_exec_indentf(pTHX_ const char *fmt, U32 depth, ...)
3647{
3648 va_list ap;
3649 int result;
3650 PerlIO *f= Perl_debug_log;
3651 PERL_ARGS_ASSERT_RE_EXEC_INDENTF;
3652 va_start(ap, depth);
3653 PerlIO_printf(f, "%*s|%4"UVuf"| %*s", REPORT_CODE_OFF, "", (UV)depth, INDENT_CHARS(depth), "" );
3654 result = PerlIO_vprintf(f, fmt, ap);
3655 va_end(ap);
3656 return result;
3657}
3658#endif /* DEBUGGING */
3659
3660
3661#define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */
3662#define CHRTEST_VOID -1000 /* the c1/c2 "next char" test should be skipped */
3663#define CHRTEST_NOT_A_CP_1 -999
3664#define CHRTEST_NOT_A_CP_2 -998
3665
3666/* grab a new slab and return the first slot in it */
3667
3668STATIC regmatch_state *
3669S_push_slab(pTHX)
3670{
3671#if PERL_VERSION < 9 && !defined(PERL_CORE)
3672 dMY_CXT;
3673#endif
3674 regmatch_slab *s = PL_regmatch_slab->next;
3675 if (!s) {
3676 Newx(s, 1, regmatch_slab);
3677 s->prev = PL_regmatch_slab;
3678 s->next = NULL;
3679 PL_regmatch_slab->next = s;
3680 }
3681 PL_regmatch_slab = s;
3682 return SLAB_FIRST(s);
3683}
3684
3685
3686/* push a new state then goto it */
3687
3688#define PUSH_STATE_GOTO(state, node, input) \
3689 pushinput = input; \
3690 scan = node; \
3691 st->resume_state = state; \
3692 goto push_state;
3693
3694/* push a new state with success backtracking, then goto it */
3695
3696#define PUSH_YES_STATE_GOTO(state, node, input) \
3697 pushinput = input; \
3698 scan = node; \
3699 st->resume_state = state; \
3700 goto push_yes_state;
3701
3702
3703
3704
3705/*
3706
3707regmatch() - main matching routine
3708
3709This is basically one big switch statement in a loop. We execute an op,
3710set 'next' to point the next op, and continue. If we come to a point which
3711we may need to backtrack to on failure such as (A|B|C), we push a
3712backtrack state onto the backtrack stack. On failure, we pop the top
3713state, and re-enter the loop at the state indicated. If there are no more
3714states to pop, we return failure.
3715
3716Sometimes we also need to backtrack on success; for example /A+/, where
3717after successfully matching one A, we need to go back and try to
3718match another one; similarly for lookahead assertions: if the assertion
3719completes successfully, we backtrack to the state just before the assertion
3720and then carry on. In these cases, the pushed state is marked as
3721'backtrack on success too'. This marking is in fact done by a chain of
3722pointers, each pointing to the previous 'yes' state. On success, we pop to
3723the nearest yes state, discarding any intermediate failure-only states.
3724Sometimes a yes state is pushed just to force some cleanup code to be
3725called at the end of a successful match or submatch; e.g. (??{$re}) uses
3726it to free the inner regex.
3727
3728Note that failure backtracking rewinds the cursor position, while
3729success backtracking leaves it alone.
3730
3731A pattern is complete when the END op is executed, while a subpattern
3732such as (?=foo) is complete when the SUCCESS op is executed. Both of these
3733ops trigger the "pop to last yes state if any, otherwise return true"
3734behaviour.
3735
3736A common convention in this function is to use A and B to refer to the two
3737subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is
3738the subpattern to be matched possibly multiple times, while B is the entire
3739rest of the pattern. Variable and state names reflect this convention.
3740
3741The states in the main switch are the union of ops and failure/success of
3742substates associated with with that op. For example, IFMATCH is the op
3743that does lookahead assertions /(?=A)B/ and so the IFMATCH state means
3744'execute IFMATCH'; while IFMATCH_A is a state saying that we have just
3745successfully matched A and IFMATCH_A_fail is a state saying that we have
3746just failed to match A. Resume states always come in pairs. The backtrack
3747state we push is marked as 'IFMATCH_A', but when that is popped, we resume
3748at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking
3749on success or failure.
3750
3751The struct that holds a backtracking state is actually a big union, with
3752one variant for each major type of op. The variable st points to the
3753top-most backtrack struct. To make the code clearer, within each
3754block of code we #define ST to alias the relevant union.
3755
3756Here's a concrete example of a (vastly oversimplified) IFMATCH
3757implementation:
3758
3759 switch (state) {
3760 ....
3761
3762#define ST st->u.ifmatch
3763
3764 case IFMATCH: // we are executing the IFMATCH op, (?=A)B
3765 ST.foo = ...; // some state we wish to save
3766 ...
3767 // push a yes backtrack state with a resume value of
3768 // IFMATCH_A/IFMATCH_A_fail, then continue execution at the
3769 // first node of A:
3770 PUSH_YES_STATE_GOTO(IFMATCH_A, A, newinput);
3771 // NOTREACHED
3772
3773 case IFMATCH_A: // we have successfully executed A; now continue with B
3774 next = B;
3775 bar = ST.foo; // do something with the preserved value
3776 break;
3777
3778 case IFMATCH_A_fail: // A failed, so the assertion failed
3779 ...; // do some housekeeping, then ...
3780 sayNO; // propagate the failure
3781
3782#undef ST
3783
3784 ...
3785 }
3786
3787For any old-timers reading this who are familiar with the old recursive
3788approach, the code above is equivalent to:
3789
3790 case IFMATCH: // we are executing the IFMATCH op, (?=A)B
3791 {
3792 int foo = ...
3793 ...
3794 if (regmatch(A)) {
3795 next = B;
3796 bar = foo;
3797 break;
3798 }
3799 ...; // do some housekeeping, then ...
3800 sayNO; // propagate the failure
3801 }
3802
3803The topmost backtrack state, pointed to by st, is usually free. If you
3804want to claim it, populate any ST.foo fields in it with values you wish to
3805save, then do one of
3806
3807 PUSH_STATE_GOTO(resume_state, node, newinput);
3808 PUSH_YES_STATE_GOTO(resume_state, node, newinput);
3809
3810which sets that backtrack state's resume value to 'resume_state', pushes a
3811new free entry to the top of the backtrack stack, then goes to 'node'.
3812On backtracking, the free slot is popped, and the saved state becomes the
3813new free state. An ST.foo field in this new top state can be temporarily
3814accessed to retrieve values, but once the main loop is re-entered, it
3815becomes available for reuse.
3816
3817Note that the depth of the backtrack stack constantly increases during the
3818left-to-right execution of the pattern, rather than going up and down with
3819the pattern nesting. For example the stack is at its maximum at Z at the
3820end of the pattern, rather than at X in the following:
3821
3822 /(((X)+)+)+....(Y)+....Z/
3823
3824The only exceptions to this are lookahead/behind assertions and the cut,
3825(?>A), which pop all the backtrack states associated with A before
3826continuing.
3827
3828Backtrack state structs are allocated in slabs of about 4K in size.
3829PL_regmatch_state and st always point to the currently active state,
3830and PL_regmatch_slab points to the slab currently containing
3831PL_regmatch_state. The first time regmatch() is called, the first slab is
3832allocated, and is never freed until interpreter destruction. When the slab
3833is full, a new one is allocated and chained to the end. At exit from
3834regmatch(), slabs allocated since entry are freed.
3835
3836*/
3837
3838
3839#define DEBUG_STATE_pp(pp) \
3840 DEBUG_STATE_r({ \
3841 DUMP_EXEC_POS(locinput, scan, utf8_target,depth); \
3842 Perl_re_printf( aTHX_ \
3843 "%*s" pp " %s%s%s%s%s\n", \
3844 INDENT_CHARS(depth), "", \
3845 PL_reg_name[st->resume_state], \
3846 ((st==yes_state||st==mark_state) ? "[" : ""), \
3847 ((st==yes_state) ? "Y" : ""), \
3848 ((st==mark_state) ? "M" : ""), \
3849 ((st==yes_state||st==mark_state) ? "]" : "") \
3850 ); \
3851 });
3852
3853
3854#define REG_NODE_NUM(x) ((x) ? (int)((x)-prog) : -1)
3855
3856#ifdef DEBUGGING
3857
3858STATIC void
3859S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target,
3860 const char *start, const char *end, const char *blurb)
3861{
3862 const bool utf8_pat = RX_UTF8(prog) ? 1 : 0;
3863
3864 PERL_ARGS_ASSERT_DEBUG_START_MATCH;
3865
3866 if (!PL_colorset)
3867 reginitcolors();
3868 {
3869 RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0),
3870 RX_PRECOMP_const(prog), RX_PRELEN(prog), 60);
3871
3872 RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1),
3873 start, end - start, 60);
3874
3875 Perl_re_printf( aTHX_
3876 "%s%s REx%s %s against %s\n",
3877 PL_colors[4], blurb, PL_colors[5], s0, s1);
3878
3879 if (utf8_target||utf8_pat)
3880 Perl_re_printf( aTHX_ "UTF-8 %s%s%s...\n",
3881 utf8_pat ? "pattern" : "",
3882 utf8_pat && utf8_target ? " and " : "",
3883 utf8_target ? "string" : ""
3884 );
3885 }
3886}
3887
3888STATIC void
3889S_dump_exec_pos(pTHX_ const char *locinput,
3890 const regnode *scan,
3891 const char *loc_regeol,
3892 const char *loc_bostr,
3893 const char *loc_reg_starttry,
3894 const bool utf8_target,
3895 const U32 depth
3896 )
3897{
3898 const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4];
3899 const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */
3900 int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput);
3901 /* The part of the string before starttry has one color
3902 (pref0_len chars), between starttry and current
3903 position another one (pref_len - pref0_len chars),
3904 after the current position the third one.
3905 We assume that pref0_len <= pref_len, otherwise we
3906 decrease pref0_len. */
3907 int pref_len = (locinput - loc_bostr) > (5 + taill) - l
3908 ? (5 + taill) - l : locinput - loc_bostr;
3909 int pref0_len;
3910
3911 PERL_ARGS_ASSERT_DUMP_EXEC_POS;
3912
3913 while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len)))
3914 pref_len++;
3915 pref0_len = pref_len - (locinput - loc_reg_starttry);
3916 if (l + pref_len < (5 + taill) && l < loc_regeol - locinput)
3917 l = ( loc_regeol - locinput > (5 + taill) - pref_len
3918 ? (5 + taill) - pref_len : loc_regeol - locinput);
3919 while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput + l)))
3920 l--;
3921 if (pref0_len < 0)
3922 pref0_len = 0;
3923 if (pref0_len > pref_len)
3924 pref0_len = pref_len;
3925 {
3926 const int is_uni = utf8_target ? 1 : 0;
3927
3928 RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0),
3929 (locinput - pref_len),pref0_len, 60, 4, 5);
3930
3931 RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1),
3932 (locinput - pref_len + pref0_len),
3933 pref_len - pref0_len, 60, 2, 3);
3934
3935 RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2),
3936 locinput, loc_regeol - locinput, 10, 0, 1);
3937
3938 const STRLEN tlen=len0+len1+len2;
3939 Perl_re_printf( aTHX_
3940 "%4"IVdf" <%.*s%.*s%s%.*s>%*s|%4u| ",
3941 (IV)(locinput - loc_bostr),
3942 len0, s0,
3943 len1, s1,
3944 (docolor ? "" : "> <"),
3945 len2, s2,
3946 (int)(tlen > 19 ? 0 : 19 - tlen),
3947 "",
3948 depth);
3949 }
3950}
3951
3952#endif
3953
3954/* reg_check_named_buff_matched()
3955 * Checks to see if a named buffer has matched. The data array of
3956 * buffer numbers corresponding to the buffer is expected to reside
3957 * in the regexp->data->data array in the slot stored in the ARG() of
3958 * node involved. Note that this routine doesn't actually care about the
3959 * name, that information is not preserved from compilation to execution.
3960 * Returns the index of the leftmost defined buffer with the given name
3961 * or 0 if non of the buffers matched.
3962 */
3963STATIC I32
3964S_reg_check_named_buff_matched(const regexp *rex, const regnode *scan)
3965{
3966 I32 n;
3967 RXi_GET_DECL(rex,rexi);
3968 SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
3969 I32 *nums=(I32*)SvPVX(sv_dat);
3970
3971 PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED;
3972
3973 for ( n=0; n<SvIVX(sv_dat); n++ ) {
3974 if ((I32)rex->lastparen >= nums[n] &&
3975 rex->offs[nums[n]].end != -1)
3976 {
3977 return nums[n];
3978 }
3979 }
3980 return 0;
3981}
3982
3983
3984static bool
3985S_setup_EXACTISH_ST_c1_c2(pTHX_ const regnode * const text_node, int *c1p,
3986 U8* c1_utf8, int *c2p, U8* c2_utf8, regmatch_info *reginfo)
3987{
3988 /* This function determines if there are one or two characters that match
3989 * the first character of the passed-in EXACTish node <text_node>, and if
3990 * so, returns them in the passed-in pointers.
3991 *
3992 * If it determines that no possible character in the target string can
3993 * match, it returns FALSE; otherwise TRUE. (The FALSE situation occurs if
3994 * the first character in <text_node> requires UTF-8 to represent, and the
3995 * target string isn't in UTF-8.)
3996 *
3997 * If there are more than two characters that could match the beginning of
3998 * <text_node>, or if more context is required to determine a match or not,
3999 * it sets both *<c1p> and *<c2p> to CHRTEST_VOID.
4000 *
4001 * The motiviation behind this function is to allow the caller to set up
4002 * tight loops for matching. If <text_node> is of type EXACT, there is
4003 * only one possible character that can match its first character, and so
4004 * the situation is quite simple. But things get much more complicated if
4005 * folding is involved. It may be that the first character of an EXACTFish
4006 * node doesn't participate in any possible fold, e.g., punctuation, so it
4007 * can be matched only by itself. The vast majority of characters that are
4008 * in folds match just two things, their lower and upper-case equivalents.
4009 * But not all are like that; some have multiple possible matches, or match
4010 * sequences of more than one character. This function sorts all that out.
4011 *
4012 * Consider the patterns A*B or A*?B where A and B are arbitrary. In a
4013 * loop of trying to match A*, we know we can't exit where the thing
4014 * following it isn't a B. And something can't be a B unless it is the
4015 * beginning of B. By putting a quick test for that beginning in a tight
4016 * loop, we can rule out things that can't possibly be B without having to
4017 * break out of the loop, thus avoiding work. Similarly, if A is a single
4018 * character, we can make a tight loop matching A*, using the outputs of
4019 * this function.
4020 *
4021 * If the target string to match isn't in UTF-8, and there aren't
4022 * complications which require CHRTEST_VOID, *<c1p> and *<c2p> are set to
4023 * the one or two possible octets (which are characters in this situation)
4024 * that can match. In all cases, if there is only one character that can
4025 * match, *<c1p> and *<c2p> will be identical.
4026 *
4027 * If the target string is in UTF-8, the buffers pointed to by <c1_utf8>
4028 * and <c2_utf8> will contain the one or two UTF-8 sequences of bytes that
4029 * can match the beginning of <text_node>. They should be declared with at
4030 * least length UTF8_MAXBYTES+1. (If the target string isn't in UTF-8, it is
4031 * undefined what these contain.) If one or both of the buffers are
4032 * invariant under UTF-8, *<c1p>, and *<c2p> will also be set to the
4033 * corresponding invariant. If variant, the corresponding *<c1p> and/or
4034 * *<c2p> will be set to a negative number(s) that shouldn't match any code
4035 * point (unless inappropriately coerced to unsigned). *<c1p> will equal
4036 * *<c2p> if and only if <c1_utf8> and <c2_utf8> are the same. */
4037
4038 const bool utf8_target = reginfo->is_utf8_target;
4039
4040 UV c1 = (UV)CHRTEST_NOT_A_CP_1;
4041 UV c2 = (UV)CHRTEST_NOT_A_CP_2;
4042 bool use_chrtest_void = FALSE;
4043 const bool is_utf8_pat = reginfo->is_utf8_pat;
4044
4045 /* Used when we have both utf8 input and utf8 output, to avoid converting
4046 * to/from code points */
4047 bool utf8_has_been_setup = FALSE;
4048
4049 dVAR;
4050
4051 U8 *pat = (U8*)STRING(text_node);
4052 U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
4053
4054 if (OP(text_node) == EXACT || OP(text_node) == EXACTL) {
4055
4056 /* In an exact node, only one thing can be matched, that first
4057 * character. If both the pat and the target are UTF-8, we can just
4058 * copy the input to the output, avoiding finding the code point of
4059 * that character */
4060 if (!is_utf8_pat) {
4061 c2 = c1 = *pat;
4062 }
4063 else if (utf8_target) {
4064 Copy(pat, c1_utf8, UTF8SKIP(pat), U8);
4065 Copy(pat, c2_utf8, UTF8SKIP(pat), U8);
4066 utf8_has_been_setup = TRUE;
4067 }
4068 else {
4069 c2 = c1 = valid_utf8_to_uvchr(pat, NULL);
4070 }
4071 }
4072 else { /* an EXACTFish node */
4073 U8 *pat_end = pat + STR_LEN(text_node);
4074
4075 /* An EXACTFL node has at least some characters unfolded, because what
4076 * they match is not known until now. So, now is the time to fold
4077 * the first few of them, as many as are needed to determine 'c1' and
4078 * 'c2' later in the routine. If the pattern isn't UTF-8, we only need
4079 * to fold if in a UTF-8 locale, and then only the Sharp S; everything
4080 * else is 1-1 and isn't assumed to be folded. In a UTF-8 pattern, we
4081 * need to fold as many characters as a single character can fold to,
4082 * so that later we can check if the first ones are such a multi-char
4083 * fold. But, in such a pattern only locale-problematic characters
4084 * aren't folded, so we can skip this completely if the first character
4085 * in the node isn't one of the tricky ones */
4086 if (OP(text_node) == EXACTFL) {
4087
4088 if (! is_utf8_pat) {
4089 if (IN_UTF8_CTYPE_LOCALE && *pat == LATIN_SMALL_LETTER_SHARP_S)
4090 {
4091 folded[0] = folded[1] = 's';
4092 pat = folded;
4093 pat_end = folded + 2;
4094 }
4095 }
4096 else if (is_PROBLEMATIC_LOCALE_FOLDEDS_START_utf8(pat)) {
4097 U8 *s = pat;
4098 U8 *d = folded;
4099 int i;
4100
4101 for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < pat_end; i++) {
4102 if (isASCII(*s)) {
4103 *(d++) = (U8) toFOLD_LC(*s);
4104 s++;
4105 }
4106 else {
4107 STRLEN len;
4108 _to_utf8_fold_flags(s,
4109 d,
4110 &len,
4111 FOLD_FLAGS_FULL | FOLD_FLAGS_LOCALE);
4112 d += len;
4113 s += UTF8SKIP(s);
4114 }
4115 }
4116
4117 pat = folded;
4118 pat_end = d;
4119 }
4120 }
4121
4122 if ((is_utf8_pat && is_MULTI_CHAR_FOLD_utf8_safe(pat, pat_end))
4123 || (!is_utf8_pat && is_MULTI_CHAR_FOLD_latin1_safe(pat, pat_end)))
4124 {
4125 /* Multi-character folds require more context to sort out. Also
4126 * PL_utf8_foldclosures used below doesn't handle them, so have to
4127 * be handled outside this routine */
4128 use_chrtest_void = TRUE;
4129 }
4130 else { /* an EXACTFish node which doesn't begin with a multi-char fold */
4131 c1 = is_utf8_pat ? valid_utf8_to_uvchr(pat, NULL) : *pat;
4132 if (c1 > 255) {
4133 /* Load the folds hash, if not already done */
4134 SV** listp;
4135 if (! PL_utf8_foldclosures) {
4136 _load_PL_utf8_foldclosures();
4137 }
4138
4139 /* The fold closures data structure is a hash with the keys
4140 * being the UTF-8 of every character that is folded to, like
4141 * 'k', and the values each an array of all code points that
4142 * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ].
4143 * Multi-character folds are not included */
4144 if ((! (listp = hv_fetch(PL_utf8_foldclosures,
4145 (char *) pat,
4146 UTF8SKIP(pat),
4147 FALSE))))
4148 {
4149 /* Not found in the hash, therefore there are no folds
4150 * containing it, so there is only a single character that
4151 * could match */
4152 c2 = c1;
4153 }
4154 else { /* Does participate in folds */
4155 AV* list = (AV*) *listp;
4156 if (av_tindex_nomg(list) != 1) {
4157
4158 /* If there aren't exactly two folds to this, it is
4159 * outside the scope of this function */
4160 use_chrtest_void = TRUE;
4161 }
4162 else { /* There are two. Get them */
4163 SV** c_p = av_fetch(list, 0, FALSE);
4164 if (c_p == NULL) {
4165 Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
4166 }
4167 c1 = SvUV(*c_p);
4168
4169 c_p = av_fetch(list, 1, FALSE);
4170 if (c_p == NULL) {
4171 Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
4172 }
4173 c2 = SvUV(*c_p);
4174
4175 /* Folds that cross the 255/256 boundary are forbidden
4176 * if EXACTFL (and isnt a UTF8 locale), or EXACTFA and
4177 * one is ASCIII. Since the pattern character is above
4178 * 255, and its only other match is below 256, the only
4179 * legal match will be to itself. We have thrown away
4180 * the original, so have to compute which is the one
4181 * above 255. */
4182 if ((c1 < 256) != (c2 < 256)) {
4183 if ((OP(text_node) == EXACTFL
4184 && ! IN_UTF8_CTYPE_LOCALE)
4185 || ((OP(text_node) == EXACTFA
4186 || OP(text_node) == EXACTFA_NO_TRIE)
4187 && (isASCII(c1) || isASCII(c2))))
4188 {
4189 if (c1 < 256) {
4190 c1 = c2;
4191 }
4192 else {
4193 c2 = c1;
4194 }
4195 }
4196 }
4197 }
4198 }
4199 }
4200 else /* Here, c1 is <= 255 */
4201 if (utf8_target
4202 && HAS_NONLATIN1_FOLD_CLOSURE(c1)
4203 && ( ! (OP(text_node) == EXACTFL && ! IN_UTF8_CTYPE_LOCALE))
4204 && ((OP(text_node) != EXACTFA
4205 && OP(text_node) != EXACTFA_NO_TRIE)
4206 || ! isASCII(c1)))
4207 {
4208 /* Here, there could be something above Latin1 in the target
4209 * which folds to this character in the pattern. All such
4210 * cases except LATIN SMALL LETTER Y WITH DIAERESIS have more
4211 * than two characters involved in their folds, so are outside
4212 * the scope of this function */
4213 if (UNLIKELY(c1 == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
4214 c2 = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
4215 }
4216 else {
4217 use_chrtest_void = TRUE;
4218 }
4219 }
4220 else { /* Here nothing above Latin1 can fold to the pattern
4221 character */
4222 switch (OP(text_node)) {
4223
4224 case EXACTFL: /* /l rules */
4225 c2 = PL_fold_locale[c1];
4226 break;
4227
4228 case EXACTF: /* This node only generated for non-utf8
4229 patterns */
4230 assert(! is_utf8_pat);
4231 if (! utf8_target) { /* /d rules */
4232 c2 = PL_fold[c1];
4233 break;
4234 }
4235 /* FALLTHROUGH */
4236 /* /u rules for all these. This happens to work for
4237 * EXACTFA as nothing in Latin1 folds to ASCII */
4238 case EXACTFA_NO_TRIE: /* This node only generated for
4239 non-utf8 patterns */
4240 assert(! is_utf8_pat);
4241 /* FALLTHROUGH */
4242 case EXACTFA:
4243 case EXACTFU_SS:
4244 case EXACTFU:
4245 c2 = PL_fold_latin1[c1];
4246 break;
4247
4248 default:
4249 Perl_croak(aTHX_ "panic: Unexpected op %u", OP(text_node));
4250 NOT_REACHED; /* NOTREACHED */
4251 }
4252 }
4253 }
4254 }
4255
4256 /* Here have figured things out. Set up the returns */
4257 if (use_chrtest_void) {
4258 *c2p = *c1p = CHRTEST_VOID;
4259 }
4260 else if (utf8_target) {
4261 if (! utf8_has_been_setup) { /* Don't have the utf8; must get it */
4262 uvchr_to_utf8(c1_utf8, c1);
4263 uvchr_to_utf8(c2_utf8, c2);
4264 }
4265
4266 /* Invariants are stored in both the utf8 and byte outputs; Use
4267 * negative numbers otherwise for the byte ones. Make sure that the
4268 * byte ones are the same iff the utf8 ones are the same */
4269 *c1p = (UTF8_IS_INVARIANT(*c1_utf8)) ? *c1_utf8 : CHRTEST_NOT_A_CP_1;
4270 *c2p = (UTF8_IS_INVARIANT(*c2_utf8))
4271 ? *c2_utf8
4272 : (c1 == c2)
4273 ? CHRTEST_NOT_A_CP_1
4274 : CHRTEST_NOT_A_CP_2;
4275 }
4276 else if (c1 > 255) {
4277 if (c2 > 255) { /* both possibilities are above what a non-utf8 string
4278 can represent */
4279 return FALSE;
4280 }
4281
4282 *c1p = *c2p = c2; /* c2 is the only representable value */
4283 }
4284 else { /* c1 is representable; see about c2 */
4285 *c1p = c1;
4286 *c2p = (c2 < 256) ? c2 : c1;
4287 }
4288
4289 return TRUE;
4290}
4291
4292PERL_STATIC_INLINE bool
4293S_isGCB(const GCB_enum before, const GCB_enum after)
4294{
4295 /* returns a boolean indicating if there is a Grapheme Cluster Boundary
4296 * between the inputs. See http://www.unicode.org/reports/tr29/ */
4297
4298 return GCB_table[before][after];
4299}
4300
4301/* Combining marks attach to most classes that precede them, but this defines
4302 * the exceptions (from TR14) */
4303#define LB_CM_ATTACHES_TO(prev) ( ! ( prev == LB_EDGE \
4304 || prev == LB_Mandatory_Break \
4305 || prev == LB_Carriage_Return \
4306 || prev == LB_Line_Feed \
4307 || prev == LB_Next_Line \
4308 || prev == LB_Space \
4309 || prev == LB_ZWSpace))
4310
4311STATIC bool
4312S_isLB(pTHX_ LB_enum before,
4313 LB_enum after,
4314 const U8 * const strbeg,
4315 const U8 * const curpos,
4316 const U8 * const strend,
4317 const bool utf8_target)
4318{
4319 U8 * temp_pos = (U8 *) curpos;
4320 LB_enum prev = before;
4321
4322 /* Is the boundary between 'before' and 'after' line-breakable?
4323 * Most of this is just a table lookup of a generated table from Unicode
4324 * rules. But some rules require context to decide, and so have to be
4325 * implemented in code */
4326
4327 PERL_ARGS_ASSERT_ISLB;
4328
4329 /* Rule numbers in the comments below are as of Unicode 8.0 */
4330
4331 redo:
4332 before = prev;
4333 switch (LB_table[before][after]) {
4334 case LB_BREAKABLE:
4335 return TRUE;
4336
4337 case LB_NOBREAK:
4338 case LB_NOBREAK_EVEN_WITH_SP_BETWEEN:
4339 return FALSE;
4340
4341 case LB_SP_foo + LB_BREAKABLE:
4342 case LB_SP_foo + LB_NOBREAK:
4343 case LB_SP_foo + LB_NOBREAK_EVEN_WITH_SP_BETWEEN:
4344
4345 /* When we have something following a SP, we have to look at the
4346 * context in order to know what to do.
4347 *
4348 * SP SP should not reach here because LB7: Do not break before
4349 * spaces. (For two spaces in a row there is nothing that
4350 * overrides that) */
4351 assert(after != LB_Space);
4352
4353 /* Here we have a space followed by a non-space. Mostly this is a
4354 * case of LB18: "Break after spaces". But there are complications
4355 * as the handling of spaces is somewhat tricky. They are in a
4356 * number of rules, which have to be applied in priority order, but
4357 * something earlier in the string can cause a rule to be skipped
4358 * and a lower priority rule invoked. A prime example is LB7 which
4359 * says don't break before a space. But rule LB8 (lower priority)
4360 * says that the first break opportunity after a ZW is after any
4361 * span of spaces immediately after it. If a ZW comes before a SP
4362 * in the input, rule LB8 applies, and not LB7. Other such rules
4363 * involve combining marks which are rules 9 and 10, but they may
4364 * override higher priority rules if they come earlier in the
4365 * string. Since we're doing random access into the middle of the
4366 * string, we have to look for rules that should get applied based
4367 * on both string position and priority. Combining marks do not
4368 * attach to either ZW nor SP, so we don't have to consider them
4369 * until later.
4370 *
4371 * To check for LB8, we have to find the first non-space character
4372 * before this span of spaces */
4373 do {
4374 prev = backup_one_LB(strbeg, &temp_pos, utf8_target);
4375 }
4376 while (prev == LB_Space);
4377
4378 /* LB8 Break before any character following a zero-width space,
4379 * even if one or more spaces intervene.
4380 * ZW SP* ÷
4381 * So if we have a ZW just before this span, and to get here this
4382 * is the final space in the span. */
4383 if (prev == LB_ZWSpace) {
4384 return TRUE;
4385 }
4386
4387 /* Here, not ZW SP+. There are several rules that have higher
4388 * priority than LB18 and can be resolved now, as they don't depend
4389 * on anything earlier in the string (except ZW, which we have
4390 * already handled). One of these rules is LB11 Do not break
4391 * before Word joiner, but we have specially encoded that in the
4392 * lookup table so it is caught by the single test below which
4393 * catches the other ones. */
4394 if (LB_table[LB_Space][after] - LB_SP_foo
4395 == LB_NOBREAK_EVEN_WITH_SP_BETWEEN)
4396 {
4397 return FALSE;
4398 }
4399
4400 /* If we get here, we have to XXX consider combining marks. */
4401 if (prev == LB_Combining_Mark) {
4402
4403 /* What happens with these depends on the character they
4404 * follow. */
4405 do {
4406 prev = backup_one_LB(strbeg, &temp_pos, utf8_target);
4407 }
4408 while (prev == LB_Combining_Mark);
4409
4410 /* Most times these attach to and inherit the characteristics
4411 * of that character, but not always, and when not, they are to
4412 * be treated as AL by rule LB10. */
4413 if (! LB_CM_ATTACHES_TO(prev)) {
4414 prev = LB_Alphabetic;
4415 }
4416 }
4417
4418 /* Here, we have the character preceding the span of spaces all set
4419 * up. We follow LB18: "Break after spaces" unless the table shows
4420 * that is overriden */
4421 return LB_table[prev][after] != LB_NOBREAK_EVEN_WITH_SP_BETWEEN;
4422
4423 case LB_CM_foo:
4424
4425 /* We don't know how to treat the CM except by looking at the first
4426 * non-CM character preceding it */
4427 do {
4428 prev = backup_one_LB(strbeg, &temp_pos, utf8_target);
4429 }
4430 while (prev == LB_Combining_Mark);
4431
4432 /* Here, 'prev' is that first earlier non-CM character. If the CM
4433 * attatches to it, then it inherits the behavior of 'prev'. If it
4434 * doesn't attach, it is to be treated as an AL */
4435 if (! LB_CM_ATTACHES_TO(prev)) {
4436 prev = LB_Alphabetic;
4437 }
4438
4439 goto redo;
4440
4441 case LB_HY_or_BA_then_foo + LB_BREAKABLE:
4442 case LB_HY_or_BA_then_foo + LB_NOBREAK:
4443
4444 /* LB21a Don't break after Hebrew + Hyphen.
4445 * HL (HY | BA) × */
4446
4447 if (backup_one_LB(strbeg, &temp_pos, utf8_target)
4448 == LB_Hebrew_Letter)
4449 {
4450 return FALSE;
4451 }
4452
4453 return LB_table[prev][after] - LB_HY_or_BA_then_foo == LB_BREAKABLE;
4454
4455 case LB_PR_or_PO_then_OP_or_HY + LB_BREAKABLE:
4456 case LB_PR_or_PO_then_OP_or_HY + LB_NOBREAK:
4457
4458 /* LB25a (PR | PO) × ( OP | HY )? NU */
4459 if (advance_one_LB(&temp_pos, strend, utf8_target) == LB_Numeric) {
4460 return FALSE;
4461 }
4462
4463 return LB_table[prev][after] - LB_PR_or_PO_then_OP_or_HY
4464 == LB_BREAKABLE;
4465
4466 case LB_SY_or_IS_then_various + LB_BREAKABLE:
4467 case LB_SY_or_IS_then_various + LB_NOBREAK:
4468 {
4469 /* LB25d NU (SY | IS)* × (NU | SY | IS | CL | CP ) */
4470
4471 LB_enum temp = prev;
4472 do {
4473 temp = backup_one_LB(strbeg, &temp_pos, utf8_target);
4474 }
4475 while (temp == LB_Break_Symbols || temp == LB_Infix_Numeric);
4476 if (temp == LB_Numeric) {
4477 return FALSE;
4478 }
4479
4480 return LB_table[prev][after] - LB_SY_or_IS_then_various
4481 == LB_BREAKABLE;
4482 }
4483
4484 case LB_various_then_PO_or_PR + LB_BREAKABLE:
4485 case LB_various_then_PO_or_PR + LB_NOBREAK:
4486 {
4487 /* LB25e NU (SY | IS)* (CL | CP)? × (PO | PR) */
4488
4489 LB_enum temp = prev;
4490 if (temp == LB_Close_Punctuation || temp == LB_Close_Parenthesis)
4491 {
4492 temp = backup_one_LB(strbeg, &temp_pos, utf8_target);
4493 }
4494 while (temp == LB_Break_Symbols || temp == LB_Infix_Numeric) {
4495 temp = backup_one_LB(strbeg, &temp_pos, utf8_target);
4496 }
4497 if (temp == LB_Numeric) {
4498 return FALSE;
4499 }
4500 return LB_various_then_PO_or_PR;
4501 }
4502
4503 default:
4504 break;
4505 }
4506
4507#ifdef DEBUGGING
4508 Perl_re_printf( aTHX_ "Unhandled LB pair: LB_table[%d, %d] = %d\n",
4509 before, after, LB_table[before][after]);
4510 assert(0);
4511#endif
4512 return TRUE;
4513}
4514
4515STATIC LB_enum
4516S_advance_one_LB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
4517{
4518 LB_enum lb;
4519
4520 PERL_ARGS_ASSERT_ADVANCE_ONE_LB;
4521
4522 if (*curpos >= strend) {
4523 return LB_EDGE;
4524 }
4525
4526 if (utf8_target) {
4527 *curpos += UTF8SKIP(*curpos);
4528 if (*curpos >= strend) {
4529 return LB_EDGE;
4530 }
4531 lb = getLB_VAL_UTF8(*curpos, strend);
4532 }
4533 else {
4534 (*curpos)++;
4535 if (*curpos >= strend) {
4536 return LB_EDGE;
4537 }
4538 lb = getLB_VAL_CP(**curpos);
4539 }
4540
4541 return lb;
4542}
4543
4544STATIC LB_enum
4545S_backup_one_LB(pTHX_ const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
4546{
4547 LB_enum lb;
4548
4549 PERL_ARGS_ASSERT_BACKUP_ONE_LB;
4550
4551 if (*curpos < strbeg) {
4552 return LB_EDGE;
4553 }
4554
4555 if (utf8_target) {
4556 U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
4557 U8 * prev_prev_char_pos;
4558
4559 if (! prev_char_pos) {
4560 return LB_EDGE;
4561 }
4562
4563 if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos, -1, strbeg))) {
4564 lb = getLB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
4565 *curpos = prev_char_pos;
4566 prev_char_pos = prev_prev_char_pos;
4567 }
4568 else {
4569 *curpos = (U8 *) strbeg;
4570 return LB_EDGE;
4571 }
4572 }
4573 else {
4574 if (*curpos - 2 < strbeg) {
4575 *curpos = (U8 *) strbeg;
4576 return LB_EDGE;
4577 }
4578 (*curpos)--;
4579 lb = getLB_VAL_CP(*(*curpos - 1));
4580 }
4581
4582 return lb;
4583}
4584
4585STATIC bool
4586S_isSB(pTHX_ SB_enum before,
4587 SB_enum after,
4588 const U8 * const strbeg,
4589 const U8 * const curpos,
4590 const U8 * const strend,
4591 const bool utf8_target)
4592{
4593 /* returns a boolean indicating if there is a Sentence Boundary Break
4594 * between the inputs. See http://www.unicode.org/reports/tr29/ */
4595
4596 U8 * lpos = (U8 *) curpos;
4597 bool has_para_sep = FALSE;
4598 bool has_sp = FALSE;
4599
4600 PERL_ARGS_ASSERT_ISSB;
4601
4602 /* Break at the start and end of text.
4603 SB1. sot ÷
4604 SB2. ÷ eot
4605 But unstated in Unicode is don't break if the text is empty */
4606 if (before == SB_EDGE || after == SB_EDGE) {
4607 return before != after;
4608 }
4609
4610 /* SB 3: Do not break within CRLF. */
4611 if (before == SB_CR && after == SB_LF) {
4612 return FALSE;
4613 }
4614
4615 /* Break after paragraph separators. CR and LF are considered
4616 * so because Unicode views text as like word processing text where there
4617 * are no newlines except between paragraphs, and the word processor takes
4618 * care of wrapping without there being hard line-breaks in the text *./
4619 SB4. Sep | CR | LF ÷ */
4620 if (before == SB_Sep || before == SB_CR || before == SB_LF) {
4621 return TRUE;
4622 }
4623
4624 /* Ignore Format and Extend characters, except after sot, Sep, CR, or LF.
4625 * (See Section 6.2, Replacing Ignore Rules.)
4626 SB5. X (Extend | Format)* → X */
4627 if (after == SB_Extend || after == SB_Format) {
4628
4629 /* Implied is that the these characters attach to everything
4630 * immediately prior to them except for those separator-type
4631 * characters. And the rules earlier have already handled the case
4632 * when one of those immediately precedes the extend char */
4633 return FALSE;
4634 }
4635
4636 if (before == SB_Extend || before == SB_Format) {
4637 U8 * temp_pos = lpos;
4638 const SB_enum backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
4639 if ( backup != SB_EDGE
4640 && backup != SB_Sep
4641 && backup != SB_CR
4642 && backup != SB_LF)
4643 {
4644 before = backup;
4645 lpos = temp_pos;
4646 }
4647
4648 /* Here, both 'before' and 'backup' are these types; implied is that we
4649 * don't break between them */
4650 if (backup == SB_Extend || backup == SB_Format) {
4651 return FALSE;
4652 }
4653 }
4654
4655 /* Do not break after ambiguous terminators like period, if they are
4656 * immediately followed by a number or lowercase letter, if they are
4657 * between uppercase letters, if the first following letter (optionally
4658 * after certain punctuation) is lowercase, or if they are followed by
4659 * "continuation" punctuation such as comma, colon, or semicolon. For
4660 * example, a period may be an abbreviation or numeric period, and thus may
4661 * not mark the end of a sentence.
4662
4663 * SB6. ATerm × Numeric */
4664 if (before == SB_ATerm && after == SB_Numeric) {
4665 return FALSE;
4666 }
4667
4668 /* SB7. (Upper | Lower) ATerm × Upper */
4669 if (before == SB_ATerm && after == SB_Upper) {
4670 U8 * temp_pos = lpos;
4671 SB_enum backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
4672 if (backup == SB_Upper || backup == SB_Lower) {
4673 return FALSE;
4674 }
4675 }
4676
4677 /* The remaining rules that aren't the final one, all require an STerm or
4678 * an ATerm after having backed up over some Close* Sp*, and in one case an
4679 * optional Paragraph separator, although one rule doesn't have any Sp's in it.
4680 * So do that backup now, setting flags if either Sp or a paragraph
4681 * separator are found */
4682
4683 if (before == SB_Sep || before == SB_CR || before == SB_LF) {
4684 has_para_sep = TRUE;
4685 before = backup_one_SB(strbeg, &lpos, utf8_target);
4686 }
4687
4688 if (before == SB_Sp) {
4689 has_sp = TRUE;
4690 do {
4691 before = backup_one_SB(strbeg, &lpos, utf8_target);
4692 }
4693 while (before == SB_Sp);
4694 }
4695
4696 while (before == SB_Close) {
4697 before = backup_one_SB(strbeg, &lpos, utf8_target);
4698 }
4699
4700 /* The next few rules apply only when the backed-up-to is an ATerm, and in
4701 * most cases an STerm */
4702 if (before == SB_STerm || before == SB_ATerm) {
4703
4704 /* So, here the lhs matches
4705 * (STerm | ATerm) Close* Sp* (Sep | CR | LF)?
4706 * and we have set flags if we found an Sp, or the optional Sep,CR,LF.
4707 * The rules that apply here are:
4708 *
4709 * SB8 ATerm Close* Sp* × ( ¬(OLetter | Upper | Lower | Sep | CR
4710 | LF | STerm | ATerm) )* Lower
4711 SB8a (STerm | ATerm) Close* Sp* × (SContinue | STerm | ATerm)
4712 SB9 (STerm | ATerm) Close* × (Close | Sp | Sep | CR | LF)
4713 SB10 (STerm | ATerm) Close* Sp* × (Sp | Sep | CR | LF)
4714 SB11 (STerm | ATerm) Close* Sp* (Sep | CR | LF)? ÷
4715 */
4716
4717 /* And all but SB11 forbid having seen a paragraph separator */
4718 if (! has_para_sep) {
4719 if (before == SB_ATerm) { /* SB8 */
4720 U8 * rpos = (U8 *) curpos;
4721 SB_enum later = after;
4722
4723 while ( later != SB_OLetter
4724 && later != SB_Upper
4725 && later != SB_Lower
4726 && later != SB_Sep
4727 && later != SB_CR
4728 && later != SB_LF
4729 && later != SB_STerm
4730 && later != SB_ATerm
4731 && later != SB_EDGE)
4732 {
4733 later = advance_one_SB(&rpos, strend, utf8_target);
4734 }
4735 if (later == SB_Lower) {
4736 return FALSE;
4737 }
4738 }
4739
4740 if ( after == SB_SContinue /* SB8a */
4741 || after == SB_STerm
4742 || after == SB_ATerm)
4743 {
4744 return FALSE;
4745 }
4746
4747 if (! has_sp) { /* SB9 applies only if there was no Sp* */
4748 if ( after == SB_Close
4749 || after == SB_Sp
4750 || after == SB_Sep
4751 || after == SB_CR
4752 || after == SB_LF)
4753 {
4754 return FALSE;
4755 }
4756 }
4757
4758 /* SB10. This and SB9 could probably be combined some way, but khw
4759 * has decided to follow the Unicode rule book precisely for
4760 * simplified maintenance */
4761 if ( after == SB_Sp
4762 || after == SB_Sep
4763 || after == SB_CR
4764 || after == SB_LF)
4765 {
4766 return FALSE;
4767 }
4768 }
4769
4770 /* SB11. */
4771 return TRUE;
4772 }
4773
4774 /* Otherwise, do not break.
4775 SB12. Any × Any */
4776
4777 return FALSE;
4778}
4779
4780STATIC SB_enum
4781S_advance_one_SB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
4782{
4783 SB_enum sb;
4784
4785 PERL_ARGS_ASSERT_ADVANCE_ONE_SB;
4786
4787 if (*curpos >= strend) {
4788 return SB_EDGE;
4789 }
4790
4791 if (utf8_target) {
4792 do {
4793 *curpos += UTF8SKIP(*curpos);
4794 if (*curpos >= strend) {
4795 return SB_EDGE;
4796 }
4797 sb = getSB_VAL_UTF8(*curpos, strend);
4798 } while (sb == SB_Extend || sb == SB_Format);
4799 }
4800 else {
4801 do {
4802 (*curpos)++;
4803 if (*curpos >= strend) {
4804 return SB_EDGE;
4805 }
4806 sb = getSB_VAL_CP(**curpos);
4807 } while (sb == SB_Extend || sb == SB_Format);
4808 }
4809
4810 return sb;
4811}
4812
4813STATIC SB_enum
4814S_backup_one_SB(pTHX_ const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
4815{
4816 SB_enum sb;
4817
4818 PERL_ARGS_ASSERT_BACKUP_ONE_SB;
4819
4820 if (*curpos < strbeg) {
4821 return SB_EDGE;
4822 }
4823
4824 if (utf8_target) {
4825 U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
4826 if (! prev_char_pos) {
4827 return SB_EDGE;
4828 }
4829
4830 /* Back up over Extend and Format. curpos is always just to the right
4831 * of the characater whose value we are getting */
4832 do {
4833 U8 * prev_prev_char_pos;
4834 if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos, -1,
4835 strbeg)))
4836 {
4837 sb = getSB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
4838 *curpos = prev_char_pos;
4839 prev_char_pos = prev_prev_char_pos;
4840 }
4841 else {
4842 *curpos = (U8 *) strbeg;
4843 return SB_EDGE;
4844 }
4845 } while (sb == SB_Extend || sb == SB_Format);
4846 }
4847 else {
4848 do {
4849 if (*curpos - 2 < strbeg) {
4850 *curpos = (U8 *) strbeg;
4851 return SB_EDGE;
4852 }
4853 (*curpos)--;
4854 sb = getSB_VAL_CP(*(*curpos - 1));
4855 } while (sb == SB_Extend || sb == SB_Format);
4856 }
4857
4858 return sb;
4859}
4860
4861STATIC bool
4862S_isWB(pTHX_ WB_enum previous,
4863 WB_enum before,
4864 WB_enum after,
4865 const U8 * const strbeg,
4866 const U8 * const curpos,
4867 const U8 * const strend,
4868 const bool utf8_target)
4869{
4870 /* Return a boolean as to if the boundary between 'before' and 'after' is
4871 * a Unicode word break, using their published algorithm, but tailored for
4872 * Perl by treating spans of white space as one unit. Context may be
4873 * needed to make this determination. If the value for the character
4874 * before 'before' is known, it is passed as 'previous'; otherwise that
4875 * should be set to WB_UNKNOWN. The other input parameters give the
4876 * boundaries and current position in the matching of the string. That
4877 * is, 'curpos' marks the position where the character whose wb value is
4878 * 'after' begins. See http://www.unicode.org/reports/tr29/ */
4879
4880 U8 * before_pos = (U8 *) curpos;
4881 U8 * after_pos = (U8 *) curpos;
4882 WB_enum prev = before;
4883 WB_enum next;
4884
4885 PERL_ARGS_ASSERT_ISWB;
4886
4887 /* Rule numbers in the comments below are as of Unicode 8.0 */
4888
4889 redo:
4890 before = prev;
4891 switch (WB_table[before][after]) {
4892 case WB_BREAKABLE:
4893 return TRUE;
4894
4895 case WB_NOBREAK:
4896 return FALSE;
4897
4898 case WB_hs_then_hs: /* 2 horizontal spaces in a row */
4899 next = advance_one_WB(&after_pos, strend, utf8_target,
4900 FALSE /* Don't skip Extend nor Format */ );
4901 /* A space immediately preceeding an Extend or Format is attached
4902 * to by them, and hence gets separated from previous spaces.
4903 * Otherwise don't break between horizontal white space */
4904 return next == WB_Extend || next == WB_Format;
4905
4906 /* WB4 Ignore Format and Extend characters, except when they appear at
4907 * the beginning of a region of text. This code currently isn't
4908 * general purpose, but it works as the rules are currently and likely
4909 * to be laid out. The reason it works is that when 'they appear at
4910 * the beginning of a region of text', the rule is to break before
4911 * them, just like any other character. Therefore, the default rule
4912 * applies and we don't have to look in more depth. Should this ever
4913 * change, we would have to have 2 'case' statements, like in the
4914 * rules below, and backup a single character (not spacing over the
4915 * extend ones) and then see if that is one of the region-end
4916 * characters and go from there */
4917 case WB_Ex_or_FO_then_foo:
4918 prev = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
4919 goto redo;
4920
4921 case WB_DQ_then_HL + WB_BREAKABLE:
4922 case WB_DQ_then_HL + WB_NOBREAK:
4923
4924 /* WB7c Hebrew_Letter Double_Quote × Hebrew_Letter */
4925
4926 if (backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
4927 == WB_Hebrew_Letter)
4928 {
4929 return FALSE;
4930 }
4931
4932 return WB_table[before][after] - WB_DQ_then_HL == WB_BREAKABLE;
4933
4934 case WB_HL_then_DQ + WB_BREAKABLE:
4935 case WB_HL_then_DQ + WB_NOBREAK:
4936
4937 /* WB7b Hebrew_Letter × Double_Quote Hebrew_Letter */
4938
4939 if (advance_one_WB(&after_pos, strend, utf8_target,
4940 TRUE /* Do skip Extend and Format */ )
4941 == WB_Hebrew_Letter)
4942 {
4943 return FALSE;
4944 }
4945
4946 return WB_table[before][after] - WB_HL_then_DQ == WB_BREAKABLE;
4947
4948 case WB_LE_or_HL_then_MB_or_ML_or_SQ + WB_NOBREAK:
4949 case WB_LE_or_HL_then_MB_or_ML_or_SQ + WB_BREAKABLE:
4950
4951 /* WB6 (ALetter | Hebrew_Letter) × (MidLetter | MidNumLet
4952 * | Single_Quote) (ALetter | Hebrew_Letter) */
4953
4954 next = advance_one_WB(&after_pos, strend, utf8_target,
4955 TRUE /* Do skip Extend and Format */ );
4956
4957 if (next == WB_ALetter || next == WB_Hebrew_Letter)
4958 {
4959 return FALSE;
4960 }
4961
4962 return WB_table[before][after]
4963 - WB_LE_or_HL_then_MB_or_ML_or_SQ == WB_BREAKABLE;
4964
4965 case WB_MB_or_ML_or_SQ_then_LE_or_HL + WB_NOBREAK:
4966 case WB_MB_or_ML_or_SQ_then_LE_or_HL + WB_BREAKABLE:
4967
4968 /* WB7 (ALetter | Hebrew_Letter) (MidLetter | MidNumLet
4969 * | Single_Quote) × (ALetter | Hebrew_Letter) */
4970
4971 prev = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
4972 if (prev == WB_ALetter || prev == WB_Hebrew_Letter)
4973 {
4974 return FALSE;
4975 }
4976
4977 return WB_table[before][after]
4978 - WB_MB_or_ML_or_SQ_then_LE_or_HL == WB_BREAKABLE;
4979
4980 case WB_MB_or_MN_or_SQ_then_NU + WB_NOBREAK:
4981 case WB_MB_or_MN_or_SQ_then_NU + WB_BREAKABLE:
4982
4983 /* WB11 Numeric (MidNum | (MidNumLet | Single_Quote)) × Numeric
4984 * */
4985
4986 if (backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
4987 == WB_Numeric)
4988 {
4989 return FALSE;
4990 }
4991
4992 return WB_table[before][after]
4993 - WB_MB_or_MN_or_SQ_then_NU == WB_BREAKABLE;
4994
4995 case WB_NU_then_MB_or_MN_or_SQ + WB_NOBREAK:
4996 case WB_NU_then_MB_or_MN_or_SQ + WB_BREAKABLE:
4997
4998 /* WB12 Numeric × (MidNum | MidNumLet | Single_Quote) Numeric */
4999
5000 if (advance_one_WB(&after_pos, strend, utf8_target,
5001 TRUE /* Do skip Extend and Format */ )
5002 == WB_Numeric)
5003 {
5004 return FALSE;
5005 }
5006
5007 return WB_table[before][after]
5008 - WB_NU_then_MB_or_MN_or_SQ == WB_BREAKABLE;
5009
5010 default:
5011 break;
5012 }
5013
5014#ifdef DEBUGGING
5015 Perl_re_printf( aTHX_ "Unhandled WB pair: WB_table[%d, %d] = %d\n",
5016 before, after, WB_table[before][after]);
5017 assert(0);
5018#endif
5019 return TRUE;
5020}
5021
5022STATIC WB_enum
5023S_advance_one_WB(pTHX_ U8 ** curpos,
5024 const U8 * const strend,
5025 const bool utf8_target,
5026 const bool skip_Extend_Format)
5027{
5028 WB_enum wb;
5029
5030 PERL_ARGS_ASSERT_ADVANCE_ONE_WB;
5031
5032 if (*curpos >= strend) {
5033 return WB_EDGE;
5034 }
5035
5036 if (utf8_target) {
5037
5038 /* Advance over Extend and Format */
5039 do {
5040 *curpos += UTF8SKIP(*curpos);
5041 if (*curpos >= strend) {
5042 return WB_EDGE;
5043 }
5044 wb = getWB_VAL_UTF8(*curpos, strend);
5045 } while ( skip_Extend_Format
5046 && (wb == WB_Extend || wb == WB_Format));
5047 }
5048 else {
5049 do {
5050 (*curpos)++;
5051 if (*curpos >= strend) {
5052 return WB_EDGE;
5053 }
5054 wb = getWB_VAL_CP(**curpos);
5055 } while ( skip_Extend_Format
5056 && (wb == WB_Extend || wb == WB_Format));
5057 }
5058
5059 return wb;
5060}
5061
5062STATIC WB_enum
5063S_backup_one_WB(pTHX_ WB_enum * previous, const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
5064{
5065 WB_enum wb;
5066
5067 PERL_ARGS_ASSERT_BACKUP_ONE_WB;
5068
5069 /* If we know what the previous character's break value is, don't have
5070 * to look it up */
5071 if (*previous != WB_UNKNOWN) {
5072 wb = *previous;
5073
5074 /* But we need to move backwards by one */
5075 if (utf8_target) {
5076 *curpos = reghopmaybe3(*curpos, -1, strbeg);
5077 if (! *curpos) {
5078 *previous = WB_EDGE;
5079 *curpos = (U8 *) strbeg;
5080 }
5081 else {
5082 *previous = WB_UNKNOWN;
5083 }
5084 }
5085 else {
5086 (*curpos)--;
5087 *previous = (*curpos <= strbeg) ? WB_EDGE : WB_UNKNOWN;
5088 }
5089
5090 /* And we always back up over these two types */
5091 if (wb != WB_Extend && wb != WB_Format) {
5092 return wb;
5093 }
5094 }
5095
5096 if (*curpos < strbeg) {
5097 return WB_EDGE;
5098 }
5099
5100 if (utf8_target) {
5101 U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
5102 if (! prev_char_pos) {
5103 return WB_EDGE;
5104 }
5105
5106 /* Back up over Extend and Format. curpos is always just to the right
5107 * of the characater whose value we are getting */
5108 do {
5109 U8 * prev_prev_char_pos;
5110 if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos,
5111 -1,
5112 strbeg)))
5113 {
5114 wb = getWB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
5115 *curpos = prev_char_pos;
5116 prev_char_pos = prev_prev_char_pos;
5117 }
5118 else {
5119 *curpos = (U8 *) strbeg;
5120 return WB_EDGE;
5121 }
5122 } while (wb == WB_Extend || wb == WB_Format);
5123 }
5124 else {
5125 do {
5126 if (*curpos - 2 < strbeg) {
5127 *curpos = (U8 *) strbeg;
5128 return WB_EDGE;
5129 }
5130 (*curpos)--;
5131 wb = getWB_VAL_CP(*(*curpos - 1));
5132 } while (wb == WB_Extend || wb == WB_Format);
5133 }
5134
5135 return wb;
5136}
5137
5138#define EVAL_CLOSE_PAREN_IS(st,expr) \
5139( \
5140 ( ( st ) ) && \
5141 ( ( st )->u.eval.close_paren ) && \
5142 ( ( ( st )->u.eval.close_paren ) == ( (expr) + 1 ) ) \
5143)
5144
5145#define EVAL_CLOSE_PAREN_IS_TRUE(st,expr) \
5146( \
5147 ( ( st ) ) && \
5148 ( ( st )->u.eval.close_paren ) && \
5149 ( ( expr ) ) && \
5150 ( ( ( st )->u.eval.close_paren ) == ( (expr) + 1 ) ) \
5151)
5152
5153
5154#define EVAL_CLOSE_PAREN_SET(st,expr) \
5155 (st)->u.eval.close_paren = ( (expr) + 1 )
5156
5157#define EVAL_CLOSE_PAREN_CLEAR(st) \
5158 (st)->u.eval.close_paren = 0
5159
5160/* returns -1 on failure, $+[0] on success */
5161STATIC SSize_t
5162S_regmatch(pTHX_ regmatch_info *reginfo, char *startpos, regnode *prog)
5163{
5164
5165#if PERL_VERSION < 9 && !defined(PERL_CORE)
5166 dMY_CXT;
5167#endif
5168 dVAR;
5169 const bool utf8_target = reginfo->is_utf8_target;
5170 const U32 uniflags = UTF8_ALLOW_DEFAULT;
5171 REGEXP *rex_sv = reginfo->prog;
5172 regexp *rex = ReANY(rex_sv);
5173 RXi_GET_DECL(rex,rexi);
5174 /* the current state. This is a cached copy of PL_regmatch_state */
5175 regmatch_state *st;
5176 /* cache heavy used fields of st in registers */
5177 regnode *scan;
5178 regnode *next;
5179 U32 n = 0; /* general value; init to avoid compiler warning */
5180 SSize_t ln = 0; /* len or last; init to avoid compiler warning */
5181 char *locinput = startpos;
5182 char *pushinput; /* where to continue after a PUSH */
5183 I32 nextchr; /* is always set to UCHARAT(locinput), or -1 at EOS */
5184
5185 bool result = 0; /* return value of S_regmatch */
5186 int depth = 0; /* depth of backtrack stack */
5187 U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */
5188 const U32 max_nochange_depth =
5189 (3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ?
5190 3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH;
5191 regmatch_state *yes_state = NULL; /* state to pop to on success of
5192 subpattern */
5193 /* mark_state piggy backs on the yes_state logic so that when we unwind
5194 the stack on success we can update the mark_state as we go */
5195 regmatch_state *mark_state = NULL; /* last mark state we have seen */
5196 regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */
5197 struct regmatch_state *cur_curlyx = NULL; /* most recent curlyx */
5198 U32 state_num;
5199 bool no_final = 0; /* prevent failure from backtracking? */
5200 bool do_cutgroup = 0; /* no_final only until next branch/trie entry */
5201 char *startpoint = locinput;
5202 SV *popmark = NULL; /* are we looking for a mark? */
5203 SV *sv_commit = NULL; /* last mark name seen in failure */
5204 SV *sv_yes_mark = NULL; /* last mark name we have seen
5205 during a successful match */
5206 U32 lastopen = 0; /* last open we saw */
5207 bool has_cutgroup = RX_HAS_CUTGROUP(rex) ? 1 : 0;
5208 SV* const oreplsv = GvSVn(PL_replgv);
5209 /* these three flags are set by various ops to signal information to
5210 * the very next op. They have a useful lifetime of exactly one loop
5211 * iteration, and are not preserved or restored by state pushes/pops
5212 */
5213 bool sw = 0; /* the condition value in (?(cond)a|b) */
5214 bool minmod = 0; /* the next "{n,m}" is a "{n,m}?" */
5215 int logical = 0; /* the following EVAL is:
5216 0: (?{...})
5217 1: (?(?{...})X|Y)
5218 2: (??{...})
5219 or the following IFMATCH/UNLESSM is:
5220 false: plain (?=foo)
5221 true: used as a condition: (?(?=foo))
5222 */
5223 PAD* last_pad = NULL;
5224 dMULTICALL;
5225 U8 gimme = G_SCALAR;
5226 CV *caller_cv = NULL; /* who called us */
5227 CV *last_pushed_cv = NULL; /* most recently called (?{}) CV */
5228 CHECKPOINT runops_cp; /* savestack position before executing EVAL */
5229 U32 maxopenparen = 0; /* max '(' index seen so far */
5230 int to_complement; /* Invert the result? */
5231 _char_class_number classnum;
5232 bool is_utf8_pat = reginfo->is_utf8_pat;
5233 bool match = FALSE;
5234
5235/* Solaris Studio 12.3 messes up fetching PL_charclass['\n'] */
5236#if (defined(__SUNPRO_C) && (__SUNPRO_C == 0x5120) && defined(__x86_64) && defined(USE_64_BIT_ALL))
5237# define SOLARIS_BAD_OPTIMIZER
5238 const U32 *pl_charclass_dup = PL_charclass;
5239# define PL_charclass pl_charclass_dup
5240#endif
5241
5242#ifdef DEBUGGING
5243 GET_RE_DEBUG_FLAGS_DECL;
5244#endif
5245
5246 /* protect against undef(*^R) */
5247 SAVEFREESV(SvREFCNT_inc_simple_NN(oreplsv));
5248
5249 /* shut up 'may be used uninitialized' compiler warnings for dMULTICALL */
5250 multicall_oldcatch = 0;
5251 PERL_UNUSED_VAR(multicall_cop);
5252
5253 PERL_ARGS_ASSERT_REGMATCH;
5254
5255 DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({
5256 Perl_re_printf( aTHX_ "regmatch start\n");
5257 }));
5258
5259 st = PL_regmatch_state;
5260
5261 /* Note that nextchr is a byte even in UTF */
5262 SET_nextchr;
5263 scan = prog;
5264 while (scan != NULL) {
5265
5266
5267 next = scan + NEXT_OFF(scan);
5268 if (next == scan)
5269 next = NULL;
5270 state_num = OP(scan);
5271
5272 reenter_switch:
5273 DEBUG_EXECUTE_r(
5274 if (state_num <= REGNODE_MAX) {
5275 SV * const prop = sv_newmortal();
5276 regnode *rnext = regnext(scan);
5277
5278 DUMP_EXEC_POS( locinput, scan, utf8_target, depth );
5279 regprop(rex, prop, scan, reginfo, NULL);
5280 Perl_re_printf( aTHX_
5281 "%*s%"IVdf":%s(%"IVdf")\n",
5282 INDENT_CHARS(depth), "",
5283 (IV)(scan - rexi->program),
5284 SvPVX_const(prop),
5285 (PL_regkind[OP(scan)] == END || !rnext) ?
5286 0 : (IV)(rnext - rexi->program));
5287 }
5288 );
5289
5290 to_complement = 0;
5291
5292 SET_nextchr;
5293 assert(nextchr < 256 && (nextchr >= 0 || nextchr == NEXTCHR_EOS));
5294
5295 switch (state_num) {
5296 case SBOL: /* /^../ and /\A../ */
5297 if (locinput == reginfo->strbeg)
5298 break;
5299 sayNO;
5300
5301 case MBOL: /* /^../m */
5302 if (locinput == reginfo->strbeg ||
5303 (!NEXTCHR_IS_EOS && locinput[-1] == '\n'))
5304 {
5305 break;
5306 }
5307 sayNO;
5308
5309 case GPOS: /* \G */
5310 if (locinput == reginfo->ganch)
5311 break;
5312 sayNO;
5313
5314 case KEEPS: /* \K */
5315 /* update the startpoint */
5316 st->u.keeper.val = rex->offs[0].start;
5317 rex->offs[0].start = locinput - reginfo->strbeg;
5318 PUSH_STATE_GOTO(KEEPS_next, next, locinput);
5319 NOT_REACHED; /* NOTREACHED */
5320
5321 case KEEPS_next_fail:
5322 /* rollback the start point change */
5323 rex->offs[0].start = st->u.keeper.val;
5324 sayNO_SILENT;
5325 NOT_REACHED; /* NOTREACHED */
5326
5327 case MEOL: /* /..$/m */
5328 if (!NEXTCHR_IS_EOS && nextchr != '\n')
5329 sayNO;
5330 break;
5331
5332 case SEOL: /* /..$/ */
5333 if (!NEXTCHR_IS_EOS && nextchr != '\n')
5334 sayNO;
5335 if (reginfo->strend - locinput > 1)
5336 sayNO;
5337 break;
5338
5339 case EOS: /* \z */
5340 if (!NEXTCHR_IS_EOS)
5341 sayNO;
5342 break;
5343
5344 case SANY: /* /./s */
5345 if (NEXTCHR_IS_EOS)
5346 sayNO;
5347 goto increment_locinput;
5348
5349 case REG_ANY: /* /./ */
5350 if ((NEXTCHR_IS_EOS) || nextchr == '\n')
5351 sayNO;
5352 goto increment_locinput;
5353
5354
5355#undef ST
5356#define ST st->u.trie
5357 case TRIEC: /* (ab|cd) with known charclass */
5358 /* In this case the charclass data is available inline so
5359 we can fail fast without a lot of extra overhead.
5360 */
5361 if(!NEXTCHR_IS_EOS && !ANYOF_BITMAP_TEST(scan, nextchr)) {
5362 DEBUG_EXECUTE_r(
5363 Perl_re_exec_indentf( aTHX_ "%sfailed to match trie start class...%s\n",
5364 depth, PL_colors[4], PL_colors[5])
5365 );
5366 sayNO_SILENT;
5367 NOT_REACHED; /* NOTREACHED */
5368 }
5369 /* FALLTHROUGH */
5370 case TRIE: /* (ab|cd) */
5371 /* the basic plan of execution of the trie is:
5372 * At the beginning, run though all the states, and
5373 * find the longest-matching word. Also remember the position
5374 * of the shortest matching word. For example, this pattern:
5375 * 1 2 3 4 5
5376 * ab|a|x|abcd|abc
5377 * when matched against the string "abcde", will generate
5378 * accept states for all words except 3, with the longest
5379 * matching word being 4, and the shortest being 2 (with
5380 * the position being after char 1 of the string).
5381 *
5382 * Then for each matching word, in word order (i.e. 1,2,4,5),
5383 * we run the remainder of the pattern; on each try setting
5384 * the current position to the character following the word,
5385 * returning to try the next word on failure.
5386 *
5387 * We avoid having to build a list of words at runtime by
5388 * using a compile-time structure, wordinfo[].prev, which
5389 * gives, for each word, the previous accepting word (if any).
5390 * In the case above it would contain the mappings 1->2, 2->0,
5391 * 3->0, 4->5, 5->1. We can use this table to generate, from
5392 * the longest word (4 above), a list of all words, by
5393 * following the list of prev pointers; this gives us the
5394 * unordered list 4,5,1,2. Then given the current word we have
5395 * just tried, we can go through the list and find the
5396 * next-biggest word to try (so if we just failed on word 2,
5397 * the next in the list is 4).
5398 *
5399 * Since at runtime we don't record the matching position in
5400 * the string for each word, we have to work that out for
5401 * each word we're about to process. The wordinfo table holds
5402 * the character length of each word; given that we recorded
5403 * at the start: the position of the shortest word and its
5404 * length in chars, we just need to move the pointer the
5405 * difference between the two char lengths. Depending on
5406 * Unicode status and folding, that's cheap or expensive.
5407 *
5408 * This algorithm is optimised for the case where are only a
5409 * small number of accept states, i.e. 0,1, or maybe 2.
5410 * With lots of accepts states, and having to try all of them,
5411 * it becomes quadratic on number of accept states to find all
5412 * the next words.
5413 */
5414
5415 {
5416 /* what type of TRIE am I? (utf8 makes this contextual) */
5417 DECL_TRIE_TYPE(scan);
5418
5419 /* what trie are we using right now */
5420 reg_trie_data * const trie
5421 = (reg_trie_data*)rexi->data->data[ ARG( scan ) ];
5422 HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG( scan ) + 1 ]);
5423 U32 state = trie->startstate;
5424
5425 if (scan->flags == EXACTL || scan->flags == EXACTFLU8) {
5426 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
5427 if (utf8_target
5428 && UTF8_IS_ABOVE_LATIN1(nextchr)
5429 && scan->flags == EXACTL)
5430 {
5431 /* We only output for EXACTL, as we let the folder
5432 * output this message for EXACTFLU8 to avoid
5433 * duplication */
5434 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput,
5435 reginfo->strend);
5436 }
5437 }
5438 if ( trie->bitmap
5439 && (NEXTCHR_IS_EOS || !TRIE_BITMAP_TEST(trie, nextchr)))
5440 {
5441 if (trie->states[ state ].wordnum) {
5442 DEBUG_EXECUTE_r(
5443 Perl_re_exec_indentf( aTHX_ "%smatched empty string...%s\n",
5444 depth, PL_colors[4], PL_colors[5])
5445 );
5446 if (!trie->jump)
5447 break;
5448 } else {
5449 DEBUG_EXECUTE_r(
5450 Perl_re_exec_indentf( aTHX_ "%sfailed to match trie start class...%s\n",
5451 depth, PL_colors[4], PL_colors[5])
5452 );
5453 sayNO_SILENT;
5454 }
5455 }
5456
5457 {
5458 U8 *uc = ( U8* )locinput;
5459
5460 STRLEN len = 0;
5461 STRLEN foldlen = 0;
5462 U8 *uscan = (U8*)NULL;
5463 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
5464 U32 charcount = 0; /* how many input chars we have matched */
5465 U32 accepted = 0; /* have we seen any accepting states? */
5466
5467 ST.jump = trie->jump;
5468 ST.me = scan;
5469 ST.firstpos = NULL;
5470 ST.longfold = FALSE; /* char longer if folded => it's harder */
5471 ST.nextword = 0;
5472
5473 /* fully traverse the TRIE; note the position of the
5474 shortest accept state and the wordnum of the longest
5475 accept state */
5476
5477 while ( state && uc <= (U8*)(reginfo->strend) ) {
5478 U32 base = trie->states[ state ].trans.base;
5479 UV uvc = 0;
5480 U16 charid = 0;
5481 U16 wordnum;
5482 wordnum = trie->states[ state ].wordnum;
5483
5484 if (wordnum) { /* it's an accept state */
5485 if (!accepted) {
5486 accepted = 1;
5487 /* record first match position */
5488 if (ST.longfold) {
5489 ST.firstpos = (U8*)locinput;
5490 ST.firstchars = 0;
5491 }
5492 else {
5493 ST.firstpos = uc;
5494 ST.firstchars = charcount;
5495 }
5496 }
5497 if (!ST.nextword || wordnum < ST.nextword)
5498 ST.nextword = wordnum;
5499 ST.topword = wordnum;
5500 }
5501
5502 DEBUG_TRIE_EXECUTE_r({
5503 DUMP_EXEC_POS( (char *)uc, scan, utf8_target, depth );
5504 Perl_re_exec_indentf( aTHX_
5505 "%sState: %4"UVxf" Accepted: %c ",
5506 depth, PL_colors[4],
5507 (UV)state, (accepted ? 'Y' : 'N'));
5508 });
5509
5510 /* read a char and goto next state */
5511 if ( base && (foldlen || uc < (U8*)(reginfo->strend))) {
5512 I32 offset;
5513 REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
5514 uscan, len, uvc, charid, foldlen,
5515 foldbuf, uniflags);
5516 charcount++;
5517 if (foldlen>0)
5518 ST.longfold = TRUE;
5519 if (charid &&
5520 ( ((offset =
5521 base + charid - 1 - trie->uniquecharcount)) >= 0)
5522
5523 && ((U32)offset < trie->lasttrans)
5524 && trie->trans[offset].check == state)
5525 {
5526 state = trie->trans[offset].next;
5527 }
5528 else {
5529 state = 0;
5530 }
5531 uc += len;
5532
5533 }
5534 else {
5535 state = 0;
5536 }
5537 DEBUG_TRIE_EXECUTE_r(
5538 Perl_re_printf( aTHX_
5539 "Charid:%3x CP:%4"UVxf" After State: %4"UVxf"%s\n",
5540 charid, uvc, (UV)state, PL_colors[5] );
5541 );
5542 }
5543 if (!accepted)
5544 sayNO;
5545
5546 /* calculate total number of accept states */
5547 {
5548 U16 w = ST.topword;
5549 accepted = 0;
5550 while (w) {
5551 w = trie->wordinfo[w].prev;
5552 accepted++;
5553 }
5554 ST.accepted = accepted;
5555 }
5556
5557 DEBUG_EXECUTE_r(
5558 Perl_re_exec_indentf( aTHX_ "%sgot %"IVdf" possible matches%s\n",
5559 depth,
5560 PL_colors[4], (IV)ST.accepted, PL_colors[5] );
5561 );
5562 goto trie_first_try; /* jump into the fail handler */
5563 }}
5564 NOT_REACHED; /* NOTREACHED */
5565
5566 case TRIE_next_fail: /* we failed - try next alternative */
5567 {
5568 U8 *uc;
5569 if ( ST.jump) {
5570 REGCP_UNWIND(ST.cp);
5571 UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
5572 }
5573 if (!--ST.accepted) {
5574 DEBUG_EXECUTE_r({
5575 Perl_re_exec_indentf( aTHX_ "%sTRIE failed...%s\n",
5576 depth,
5577 PL_colors[4],
5578 PL_colors[5] );
5579 });
5580 sayNO_SILENT;
5581 }
5582 {
5583 /* Find next-highest word to process. Note that this code
5584 * is O(N^2) per trie run (O(N) per branch), so keep tight */
5585 U16 min = 0;
5586 U16 word;
5587 U16 const nextword = ST.nextword;
5588 reg_trie_wordinfo * const wordinfo
5589 = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo;
5590 for (word=ST.topword; word; word=wordinfo[word].prev) {
5591 if (word > nextword && (!min || word < min))
5592 min = word;
5593 }
5594 ST.nextword = min;
5595 }
5596
5597 trie_first_try:
5598 if (do_cutgroup) {
5599 do_cutgroup = 0;
5600 no_final = 0;
5601 }
5602
5603 if ( ST.jump) {
5604 ST.lastparen = rex->lastparen;
5605 ST.lastcloseparen = rex->lastcloseparen;
5606 REGCP_SET(ST.cp);
5607 }
5608
5609 /* find start char of end of current word */
5610 {
5611 U32 chars; /* how many chars to skip */
5612 reg_trie_data * const trie
5613 = (reg_trie_data*)rexi->data->data[ARG(ST.me)];
5614
5615 assert((trie->wordinfo[ST.nextword].len - trie->prefixlen)
5616 >= ST.firstchars);
5617 chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen)
5618 - ST.firstchars;
5619 uc = ST.firstpos;
5620
5621 if (ST.longfold) {
5622 /* the hard option - fold each char in turn and find
5623 * its folded length (which may be different */
5624 U8 foldbuf[UTF8_MAXBYTES_CASE + 1];
5625 STRLEN foldlen;
5626 STRLEN len;
5627 UV uvc;
5628 U8 *uscan;
5629
5630 while (chars) {
5631 if (utf8_target) {
5632 uvc = utf8n_to_uvchr((U8*)uc, UTF8_MAXLEN, &len,
5633 uniflags);
5634 uc += len;
5635 }
5636 else {
5637 uvc = *uc;
5638 uc++;
5639 }
5640 uvc = to_uni_fold(uvc, foldbuf, &foldlen);
5641 uscan = foldbuf;
5642 while (foldlen) {
5643 if (!--chars)
5644 break;
5645 uvc = utf8n_to_uvchr(uscan, UTF8_MAXLEN, &len,
5646 uniflags);
5647 uscan += len;
5648 foldlen -= len;
5649 }
5650 }
5651 }
5652 else {
5653 if (utf8_target)
5654 while (chars--)
5655 uc += UTF8SKIP(uc);
5656 else
5657 uc += chars;
5658 }
5659 }
5660
5661 scan = ST.me + ((ST.jump && ST.jump[ST.nextword])
5662 ? ST.jump[ST.nextword]
5663 : NEXT_OFF(ST.me));
5664
5665 DEBUG_EXECUTE_r({
5666 Perl_re_exec_indentf( aTHX_ "%sTRIE matched word #%d, continuing%s\n",
5667 depth,
5668 PL_colors[4],
5669 ST.nextword,
5670 PL_colors[5]
5671 );
5672 });
5673
5674 if (ST.accepted > 1 || has_cutgroup) {
5675 PUSH_STATE_GOTO(TRIE_next, scan, (char*)uc);
5676 NOT_REACHED; /* NOTREACHED */
5677 }
5678 /* only one choice left - just continue */
5679 DEBUG_EXECUTE_r({
5680 AV *const trie_words
5681 = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]);
5682 SV ** const tmp = trie_words
5683 ? av_fetch(trie_words, ST.nextword - 1, 0) : NULL;
5684 SV *sv= tmp ? sv_newmortal() : NULL;
5685
5686 Perl_re_exec_indentf( aTHX_ "%sonly one match left, short-circuiting: #%d <%s>%s\n",
5687 depth, PL_colors[4],
5688 ST.nextword,
5689 tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
5690 PL_colors[0], PL_colors[1],
5691 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII
5692 )
5693 : "not compiled under -Dr",
5694 PL_colors[5] );
5695 });
5696
5697 locinput = (char*)uc;
5698 continue; /* execute rest of RE */
5699 /* NOTREACHED */
5700 }
5701#undef ST
5702
5703 case EXACTL: /* /abc/l */
5704 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
5705
5706 /* Complete checking would involve going through every character
5707 * matched by the string to see if any is above latin1. But the
5708 * comparision otherwise might very well be a fast assembly
5709 * language routine, and I (khw) don't think slowing things down
5710 * just to check for this warning is worth it. So this just checks
5711 * the first character */
5712 if (utf8_target && UTF8_IS_ABOVE_LATIN1(*locinput)) {
5713 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
5714 }
5715 /* FALLTHROUGH */
5716 case EXACT: { /* /abc/ */
5717 char *s = STRING(scan);
5718 ln = STR_LEN(scan);
5719 if (utf8_target != is_utf8_pat) {
5720 /* The target and the pattern have differing utf8ness. */
5721 char *l = locinput;
5722 const char * const e = s + ln;
5723
5724 if (utf8_target) {
5725 /* The target is utf8, the pattern is not utf8.
5726 * Above-Latin1 code points can't match the pattern;
5727 * invariants match exactly, and the other Latin1 ones need
5728 * to be downgraded to a single byte in order to do the
5729 * comparison. (If we could be confident that the target
5730 * is not malformed, this could be refactored to have fewer
5731 * tests by just assuming that if the first bytes match, it
5732 * is an invariant, but there are tests in the test suite
5733 * dealing with (??{...}) which violate this) */
5734 while (s < e) {
5735 if (l >= reginfo->strend
5736 || UTF8_IS_ABOVE_LATIN1(* (U8*) l))
5737 {
5738 sayNO;
5739 }
5740 if (UTF8_IS_INVARIANT(*(U8*)l)) {
5741 if (*l != *s) {
5742 sayNO;
5743 }
5744 l++;
5745 }
5746 else {
5747 if (EIGHT_BIT_UTF8_TO_NATIVE(*l, *(l+1)) != * (U8*) s)
5748 {
5749 sayNO;
5750 }
5751 l += 2;
5752 }
5753 s++;
5754 }
5755 }
5756 else {
5757 /* The target is not utf8, the pattern is utf8. */
5758 while (s < e) {
5759 if (l >= reginfo->strend
5760 || UTF8_IS_ABOVE_LATIN1(* (U8*) s))
5761 {
5762 sayNO;
5763 }
5764 if (UTF8_IS_INVARIANT(*(U8*)s)) {
5765 if (*s != *l) {
5766 sayNO;
5767 }
5768 s++;
5769 }
5770 else {
5771 if (EIGHT_BIT_UTF8_TO_NATIVE(*s, *(s+1)) != * (U8*) l)
5772 {
5773 sayNO;
5774 }
5775 s += 2;
5776 }
5777 l++;
5778 }
5779 }
5780 locinput = l;
5781 }
5782 else {
5783 /* The target and the pattern have the same utf8ness. */
5784 /* Inline the first character, for speed. */
5785 if (reginfo->strend - locinput < ln
5786 || UCHARAT(s) != nextchr
5787 || (ln > 1 && memNE(s, locinput, ln)))
5788 {
5789 sayNO;
5790 }
5791 locinput += ln;
5792 }
5793 break;
5794 }
5795
5796 case EXACTFL: { /* /abc/il */
5797 re_fold_t folder;
5798 const U8 * fold_array;
5799 const char * s;
5800 U32 fold_utf8_flags;
5801
5802 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
5803 folder = foldEQ_locale;
5804 fold_array = PL_fold_locale;
5805 fold_utf8_flags = FOLDEQ_LOCALE;
5806 goto do_exactf;
5807
5808 case EXACTFLU8: /* /abc/il; but all 'abc' are above 255, so
5809 is effectively /u; hence to match, target
5810 must be UTF-8. */
5811 if (! utf8_target) {
5812 sayNO;
5813 }
5814 fold_utf8_flags = FOLDEQ_LOCALE | FOLDEQ_S1_ALREADY_FOLDED
5815 | FOLDEQ_S1_FOLDS_SANE;
5816 folder = foldEQ_latin1;
5817 fold_array = PL_fold_latin1;
5818 goto do_exactf;
5819
5820 case EXACTFU_SS: /* /\x{df}/iu */
5821 case EXACTFU: /* /abc/iu */
5822 folder = foldEQ_latin1;
5823 fold_array = PL_fold_latin1;
5824 fold_utf8_flags = is_utf8_pat ? FOLDEQ_S1_ALREADY_FOLDED : 0;
5825 goto do_exactf;
5826
5827 case EXACTFA_NO_TRIE: /* This node only generated for non-utf8
5828 patterns */
5829 assert(! is_utf8_pat);
5830 /* FALLTHROUGH */
5831 case EXACTFA: /* /abc/iaa */
5832 folder = foldEQ_latin1;
5833 fold_array = PL_fold_latin1;
5834 fold_utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
5835 goto do_exactf;
5836
5837 case EXACTF: /* /abc/i This node only generated for
5838 non-utf8 patterns */
5839 assert(! is_utf8_pat);
5840 folder = foldEQ;
5841 fold_array = PL_fold;
5842 fold_utf8_flags = 0;
5843
5844 do_exactf:
5845 s = STRING(scan);
5846 ln = STR_LEN(scan);
5847
5848 if (utf8_target
5849 || is_utf8_pat
5850 || state_num == EXACTFU_SS
5851 || (state_num == EXACTFL && IN_UTF8_CTYPE_LOCALE))
5852 {
5853 /* Either target or the pattern are utf8, or has the issue where
5854 * the fold lengths may differ. */
5855 const char * const l = locinput;
5856 char *e = reginfo->strend;
5857
5858 if (! foldEQ_utf8_flags(s, 0, ln, is_utf8_pat,
5859 l, &e, 0, utf8_target, fold_utf8_flags))
5860 {
5861 sayNO;
5862 }
5863 locinput = e;
5864 break;
5865 }
5866
5867 /* Neither the target nor the pattern are utf8 */
5868 if (UCHARAT(s) != nextchr
5869 && !NEXTCHR_IS_EOS
5870 && UCHARAT(s) != fold_array[nextchr])
5871 {
5872 sayNO;
5873 }
5874 if (reginfo->strend - locinput < ln)
5875 sayNO;
5876 if (ln > 1 && ! folder(s, locinput, ln))
5877 sayNO;
5878 locinput += ln;
5879 break;
5880 }
5881
5882 case NBOUNDL: /* /\B/l */
5883 to_complement = 1;
5884 /* FALLTHROUGH */
5885
5886 case BOUNDL: /* /\b/l */
5887 {
5888 bool b1, b2;
5889 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
5890
5891 if (FLAGS(scan) != TRADITIONAL_BOUND) {
5892 if (! IN_UTF8_CTYPE_LOCALE) {
5893 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
5894 B_ON_NON_UTF8_LOCALE_IS_WRONG);
5895 }
5896 goto boundu;
5897 }
5898
5899 if (utf8_target) {
5900 if (locinput == reginfo->strbeg)
5901 b1 = isWORDCHAR_LC('\n');
5902 else {
5903 b1 = isWORDCHAR_LC_utf8(reghop3((U8*)locinput, -1,
5904 (U8*)(reginfo->strbeg)));
5905 }
5906 b2 = (NEXTCHR_IS_EOS)
5907 ? isWORDCHAR_LC('\n')
5908 : isWORDCHAR_LC_utf8((U8*)locinput);
5909 }
5910 else { /* Here the string isn't utf8 */
5911 b1 = (locinput == reginfo->strbeg)
5912 ? isWORDCHAR_LC('\n')
5913 : isWORDCHAR_LC(UCHARAT(locinput - 1));
5914 b2 = (NEXTCHR_IS_EOS)
5915 ? isWORDCHAR_LC('\n')
5916 : isWORDCHAR_LC(nextchr);
5917 }
5918 if (to_complement ^ (b1 == b2)) {
5919 sayNO;
5920 }
5921 break;
5922 }
5923
5924 case NBOUND: /* /\B/ */
5925 to_complement = 1;
5926 /* FALLTHROUGH */
5927
5928 case BOUND: /* /\b/ */
5929 if (utf8_target) {
5930 goto bound_utf8;
5931 }
5932 goto bound_ascii_match_only;
5933
5934 case NBOUNDA: /* /\B/a */
5935 to_complement = 1;
5936 /* FALLTHROUGH */
5937
5938 case BOUNDA: /* /\b/a */
5939 {
5940 bool b1, b2;
5941
5942 bound_ascii_match_only:
5943 /* Here the string isn't utf8, or is utf8 and only ascii characters
5944 * are to match \w. In the latter case looking at the byte just
5945 * prior to the current one may be just the final byte of a
5946 * multi-byte character. This is ok. There are two cases:
5947 * 1) it is a single byte character, and then the test is doing
5948 * just what it's supposed to.
5949 * 2) it is a multi-byte character, in which case the final byte is
5950 * never mistakable for ASCII, and so the test will say it is
5951 * not a word character, which is the correct answer. */
5952 b1 = (locinput == reginfo->strbeg)
5953 ? isWORDCHAR_A('\n')
5954 : isWORDCHAR_A(UCHARAT(locinput - 1));
5955 b2 = (NEXTCHR_IS_EOS)
5956 ? isWORDCHAR_A('\n')
5957 : isWORDCHAR_A(nextchr);
5958 if (to_complement ^ (b1 == b2)) {
5959 sayNO;
5960 }
5961 break;
5962 }
5963
5964 case NBOUNDU: /* /\B/u */
5965 to_complement = 1;
5966 /* FALLTHROUGH */
5967
5968 case BOUNDU: /* /\b/u */
5969
5970 boundu:
5971 if (UNLIKELY(reginfo->strbeg >= reginfo->strend)) {
5972 match = FALSE;
5973 }
5974 else if (utf8_target) {
5975 bound_utf8:
5976 switch((bound_type) FLAGS(scan)) {
5977 case TRADITIONAL_BOUND:
5978 {
5979 bool b1, b2;
5980 b1 = (locinput == reginfo->strbeg)
5981 ? 0 /* isWORDCHAR_L1('\n') */
5982 : isWORDCHAR_utf8(reghop3((U8*)locinput, -1,
5983 (U8*)(reginfo->strbeg)));
5984 b2 = (NEXTCHR_IS_EOS)
5985 ? 0 /* isWORDCHAR_L1('\n') */
5986 : isWORDCHAR_utf8((U8*)locinput);
5987 match = cBOOL(b1 != b2);
5988 break;
5989 }
5990 case GCB_BOUND:
5991 if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
5992 match = TRUE; /* GCB always matches at begin and
5993 end */
5994 }
5995 else {
5996 /* Find the gcb values of previous and current
5997 * chars, then see if is a break point */
5998 match = isGCB(getGCB_VAL_UTF8(
5999 reghop3((U8*)locinput,
6000 -1,
6001 (U8*)(reginfo->strbeg)),
6002 (U8*) reginfo->strend),
6003 getGCB_VAL_UTF8((U8*) locinput,
6004 (U8*) reginfo->strend));
6005 }
6006 break;
6007
6008 case LB_BOUND:
6009 if (locinput == reginfo->strbeg) {
6010 match = FALSE;
6011 }
6012 else if (NEXTCHR_IS_EOS) {
6013 match = TRUE;
6014 }
6015 else {
6016 match = isLB(getLB_VAL_UTF8(
6017 reghop3((U8*)locinput,
6018 -1,
6019 (U8*)(reginfo->strbeg)),
6020 (U8*) reginfo->strend),
6021 getLB_VAL_UTF8((U8*) locinput,
6022 (U8*) reginfo->strend),
6023 (U8*) reginfo->strbeg,
6024 (U8*) locinput,
6025 (U8*) reginfo->strend,
6026 utf8_target);
6027 }
6028 break;
6029
6030 case SB_BOUND: /* Always matches at begin and end */
6031 if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
6032 match = TRUE;
6033 }
6034 else {
6035 match = isSB(getSB_VAL_UTF8(
6036 reghop3((U8*)locinput,
6037 -1,
6038 (U8*)(reginfo->strbeg)),
6039 (U8*) reginfo->strend),
6040 getSB_VAL_UTF8((U8*) locinput,
6041 (U8*) reginfo->strend),
6042 (U8*) reginfo->strbeg,
6043 (U8*) locinput,
6044 (U8*) reginfo->strend,
6045 utf8_target);
6046 }
6047 break;
6048
6049 case WB_BOUND:
6050 if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
6051 match = TRUE;
6052 }
6053 else {
6054 match = isWB(WB_UNKNOWN,
6055 getWB_VAL_UTF8(
6056 reghop3((U8*)locinput,
6057 -1,
6058 (U8*)(reginfo->strbeg)),
6059 (U8*) reginfo->strend),
6060 getWB_VAL_UTF8((U8*) locinput,
6061 (U8*) reginfo->strend),
6062 (U8*) reginfo->strbeg,
6063 (U8*) locinput,
6064 (U8*) reginfo->strend,
6065 utf8_target);
6066 }
6067 break;
6068 }
6069 }
6070 else { /* Not utf8 target */
6071 switch((bound_type) FLAGS(scan)) {
6072 case TRADITIONAL_BOUND:
6073 {
6074 bool b1, b2;
6075 b1 = (locinput == reginfo->strbeg)
6076 ? 0 /* isWORDCHAR_L1('\n') */
6077 : isWORDCHAR_L1(UCHARAT(locinput - 1));
6078 b2 = (NEXTCHR_IS_EOS)
6079 ? 0 /* isWORDCHAR_L1('\n') */
6080 : isWORDCHAR_L1(nextchr);
6081 match = cBOOL(b1 != b2);
6082 break;
6083 }
6084
6085 case GCB_BOUND:
6086 if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
6087 match = TRUE; /* GCB always matches at begin and
6088 end */
6089 }
6090 else { /* Only CR-LF combo isn't a GCB in 0-255
6091 range */
6092 match = UCHARAT(locinput - 1) != '\r'
6093 || UCHARAT(locinput) != '\n';
6094 }
6095 break;
6096
6097 case LB_BOUND:
6098 if (locinput == reginfo->strbeg) {
6099 match = FALSE;
6100 }
6101 else if (NEXTCHR_IS_EOS) {
6102 match = TRUE;
6103 }
6104 else {
6105 match = isLB(getLB_VAL_CP(UCHARAT(locinput -1)),
6106 getLB_VAL_CP(UCHARAT(locinput)),
6107 (U8*) reginfo->strbeg,
6108 (U8*) locinput,
6109 (U8*) reginfo->strend,
6110 utf8_target);
6111 }
6112 break;
6113
6114 case SB_BOUND: /* Always matches at begin and end */
6115 if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
6116 match = TRUE;
6117 }
6118 else {
6119 match = isSB(getSB_VAL_CP(UCHARAT(locinput -1)),
6120 getSB_VAL_CP(UCHARAT(locinput)),
6121 (U8*) reginfo->strbeg,
6122 (U8*) locinput,
6123 (U8*) reginfo->strend,
6124 utf8_target);
6125 }
6126 break;
6127
6128 case WB_BOUND:
6129 if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
6130 match = TRUE;
6131 }
6132 else {
6133 match = isWB(WB_UNKNOWN,
6134 getWB_VAL_CP(UCHARAT(locinput -1)),
6135 getWB_VAL_CP(UCHARAT(locinput)),
6136 (U8*) reginfo->strbeg,
6137 (U8*) locinput,
6138 (U8*) reginfo->strend,
6139 utf8_target);
6140 }
6141 break;
6142 }
6143 }
6144
6145 if (to_complement ^ ! match) {
6146 sayNO;
6147 }
6148 break;
6149
6150 case ANYOFL: /* /[abc]/l */
6151 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
6152
6153 if (ANYOFL_UTF8_LOCALE_REQD(FLAGS(scan)) && ! IN_UTF8_CTYPE_LOCALE)
6154 {
6155 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), utf8_locale_required);
6156 }
6157 /* FALLTHROUGH */
6158 case ANYOFD: /* /[abc]/d */
6159 case ANYOF: /* /[abc]/ */
6160 if (NEXTCHR_IS_EOS)
6161 sayNO;
6162 if (utf8_target && ! UTF8_IS_INVARIANT(*locinput)) {
6163 if (!reginclass(rex, scan, (U8*)locinput, (U8*)reginfo->strend,
6164 utf8_target))
6165 sayNO;
6166 locinput += UTF8SKIP(locinput);
6167 }
6168 else {
6169 if (!REGINCLASS(rex, scan, (U8*)locinput, utf8_target))
6170 sayNO;
6171 locinput++;
6172 }
6173 break;
6174
6175 /* The argument (FLAGS) to all the POSIX node types is the class number
6176 * */
6177
6178 case NPOSIXL: /* \W or [:^punct:] etc. under /l */
6179 to_complement = 1;
6180 /* FALLTHROUGH */
6181
6182 case POSIXL: /* \w or [:punct:] etc. under /l */
6183 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
6184 if (NEXTCHR_IS_EOS)
6185 sayNO;
6186
6187 /* Use isFOO_lc() for characters within Latin1. (Note that
6188 * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
6189 * wouldn't be invariant) */
6190 if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
6191 if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan), (U8) nextchr)))) {
6192 sayNO;
6193 }
6194 }
6195 else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
6196 if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan),
6197 EIGHT_BIT_UTF8_TO_NATIVE(nextchr,
6198 *(locinput + 1))))))
6199 {
6200 sayNO;
6201 }
6202 }
6203 else { /* Here, must be an above Latin-1 code point */
6204 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
6205 goto utf8_posix_above_latin1;
6206 }
6207
6208 /* Here, must be utf8 */
6209 locinput += UTF8SKIP(locinput);
6210 break;
6211
6212 case NPOSIXD: /* \W or [:^punct:] etc. under /d */
6213 to_complement = 1;
6214 /* FALLTHROUGH */
6215
6216 case POSIXD: /* \w or [:punct:] etc. under /d */
6217 if (utf8_target) {
6218 goto utf8_posix;
6219 }
6220 goto posixa;
6221
6222 case NPOSIXA: /* \W or [:^punct:] etc. under /a */
6223
6224 if (NEXTCHR_IS_EOS) {
6225 sayNO;
6226 }
6227
6228 /* All UTF-8 variants match */
6229 if (! UTF8_IS_INVARIANT(nextchr)) {
6230 goto increment_locinput;
6231 }
6232
6233 to_complement = 1;
6234 goto join_nposixa;
6235
6236 case POSIXA: /* \w or [:punct:] etc. under /a */
6237
6238 posixa:
6239 /* We get here through POSIXD, NPOSIXD, and NPOSIXA when not in
6240 * UTF-8, and also from NPOSIXA even in UTF-8 when the current
6241 * character is a single byte */
6242
6243 if (NEXTCHR_IS_EOS) {
6244 sayNO;
6245 }
6246
6247 join_nposixa:
6248
6249 if (! (to_complement ^ cBOOL(_generic_isCC_A(nextchr,
6250 FLAGS(scan)))))
6251 {
6252 sayNO;
6253 }
6254
6255 /* Here we are either not in utf8, or we matched a utf8-invariant,
6256 * so the next char is the next byte */
6257 locinput++;
6258 break;
6259
6260 case NPOSIXU: /* \W or [:^punct:] etc. under /u */
6261 to_complement = 1;
6262 /* FALLTHROUGH */
6263
6264 case POSIXU: /* \w or [:punct:] etc. under /u */
6265 utf8_posix:
6266 if (NEXTCHR_IS_EOS) {
6267 sayNO;
6268 }
6269
6270 /* Use _generic_isCC() for characters within Latin1. (Note that
6271 * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
6272 * wouldn't be invariant) */
6273 if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
6274 if (! (to_complement ^ cBOOL(_generic_isCC(nextchr,
6275 FLAGS(scan)))))
6276 {
6277 sayNO;
6278 }
6279 locinput++;
6280 }
6281 else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
6282 if (! (to_complement
6283 ^ cBOOL(_generic_isCC(EIGHT_BIT_UTF8_TO_NATIVE(nextchr,
6284 *(locinput + 1)),
6285 FLAGS(scan)))))
6286 {
6287 sayNO;
6288 }
6289 locinput += 2;
6290 }
6291 else { /* Handle above Latin-1 code points */
6292 utf8_posix_above_latin1:
6293 classnum = (_char_class_number) FLAGS(scan);
6294 if (classnum < _FIRST_NON_SWASH_CC) {
6295
6296 /* Here, uses a swash to find such code points. Load if if
6297 * not done already */
6298 if (! PL_utf8_swash_ptrs[classnum]) {
6299 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
6300 PL_utf8_swash_ptrs[classnum]
6301 = _core_swash_init("utf8",
6302 "",
6303 &PL_sv_undef, 1, 0,
6304 PL_XPosix_ptrs[classnum], &flags);
6305 }
6306 if (! (to_complement
6307 ^ cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum],
6308 (U8 *) locinput, TRUE))))
6309 {
6310 sayNO;
6311 }
6312 }
6313 else { /* Here, uses macros to find above Latin-1 code points */
6314 switch (classnum) {
6315 case _CC_ENUM_SPACE:
6316 if (! (to_complement
6317 ^ cBOOL(is_XPERLSPACE_high(locinput))))
6318 {
6319 sayNO;
6320 }
6321 break;
6322 case _CC_ENUM_BLANK:
6323 if (! (to_complement
6324 ^ cBOOL(is_HORIZWS_high(locinput))))
6325 {
6326 sayNO;
6327 }
6328 break;
6329 case _CC_ENUM_XDIGIT:
6330 if (! (to_complement
6331 ^ cBOOL(is_XDIGIT_high(locinput))))
6332 {
6333 sayNO;
6334 }
6335 break;
6336 case _CC_ENUM_VERTSPACE:
6337 if (! (to_complement
6338 ^ cBOOL(is_VERTWS_high(locinput))))
6339 {
6340 sayNO;
6341 }
6342 break;
6343 default: /* The rest, e.g. [:cntrl:], can't match
6344 above Latin1 */
6345 if (! to_complement) {
6346 sayNO;
6347 }
6348 break;
6349 }
6350 }
6351 locinput += UTF8SKIP(locinput);
6352 }
6353 break;
6354
6355 case CLUMP: /* Match \X: logical Unicode character. This is defined as
6356 a Unicode extended Grapheme Cluster */
6357 if (NEXTCHR_IS_EOS)
6358 sayNO;
6359 if (! utf8_target) {
6360
6361 /* Match either CR LF or '.', as all the other possibilities
6362 * require utf8 */
6363 locinput++; /* Match the . or CR */
6364 if (nextchr == '\r' /* And if it was CR, and the next is LF,
6365 match the LF */
6366 && locinput < reginfo->strend
6367 && UCHARAT(locinput) == '\n')
6368 {
6369 locinput++;
6370 }
6371 }
6372 else {
6373
6374 /* Get the gcb type for the current character */
6375 GCB_enum prev_gcb = getGCB_VAL_UTF8((U8*) locinput,
6376 (U8*) reginfo->strend);
6377
6378 /* Then scan through the input until we get to the first
6379 * character whose type is supposed to be a gcb with the
6380 * current character. (There is always a break at the
6381 * end-of-input) */
6382 locinput += UTF8SKIP(locinput);
6383 while (locinput < reginfo->strend) {
6384 GCB_enum cur_gcb = getGCB_VAL_UTF8((U8*) locinput,
6385 (U8*) reginfo->strend);
6386 if (isGCB(prev_gcb, cur_gcb)) {
6387 break;
6388 }
6389
6390 prev_gcb = cur_gcb;
6391 locinput += UTF8SKIP(locinput);
6392 }
6393
6394
6395 }
6396 break;
6397
6398 case NREFFL: /* /\g{name}/il */
6399 { /* The capture buffer cases. The ones beginning with N for the
6400 named buffers just convert to the equivalent numbered and
6401 pretend they were called as the corresponding numbered buffer
6402 op. */
6403 /* don't initialize these in the declaration, it makes C++
6404 unhappy */
6405 const char *s;
6406 char type;
6407 re_fold_t folder;
6408 const U8 *fold_array;
6409 UV utf8_fold_flags;
6410
6411 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
6412 folder = foldEQ_locale;
6413 fold_array = PL_fold_locale;
6414 type = REFFL;
6415 utf8_fold_flags = FOLDEQ_LOCALE;
6416 goto do_nref;
6417
6418 case NREFFA: /* /\g{name}/iaa */
6419 folder = foldEQ_latin1;
6420 fold_array = PL_fold_latin1;
6421 type = REFFA;
6422 utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
6423 goto do_nref;
6424
6425 case NREFFU: /* /\g{name}/iu */
6426 folder = foldEQ_latin1;
6427 fold_array = PL_fold_latin1;
6428 type = REFFU;
6429 utf8_fold_flags = 0;
6430 goto do_nref;
6431
6432 case NREFF: /* /\g{name}/i */
6433 folder = foldEQ;
6434 fold_array = PL_fold;
6435 type = REFF;
6436 utf8_fold_flags = 0;
6437 goto do_nref;
6438
6439 case NREF: /* /\g{name}/ */
6440 type = REF;
6441 folder = NULL;
6442 fold_array = NULL;
6443 utf8_fold_flags = 0;
6444 do_nref:
6445
6446 /* For the named back references, find the corresponding buffer
6447 * number */
6448 n = reg_check_named_buff_matched(rex,scan);
6449
6450 if ( ! n ) {
6451 sayNO;
6452 }
6453 goto do_nref_ref_common;
6454
6455 case REFFL: /* /\1/il */
6456 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
6457 folder = foldEQ_locale;
6458 fold_array = PL_fold_locale;
6459 utf8_fold_flags = FOLDEQ_LOCALE;
6460 goto do_ref;
6461
6462 case REFFA: /* /\1/iaa */
6463 folder = foldEQ_latin1;
6464 fold_array = PL_fold_latin1;
6465 utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
6466 goto do_ref;
6467
6468 case REFFU: /* /\1/iu */
6469 folder = foldEQ_latin1;
6470 fold_array = PL_fold_latin1;
6471 utf8_fold_flags = 0;
6472 goto do_ref;
6473
6474 case REFF: /* /\1/i */
6475 folder = foldEQ;
6476 fold_array = PL_fold;
6477 utf8_fold_flags = 0;
6478 goto do_ref;
6479
6480 case REF: /* /\1/ */
6481 folder = NULL;
6482 fold_array = NULL;
6483 utf8_fold_flags = 0;
6484
6485 do_ref:
6486 type = OP(scan);
6487 n = ARG(scan); /* which paren pair */
6488
6489 do_nref_ref_common:
6490 ln = rex->offs[n].start;
6491 reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
6492 if (rex->lastparen < n || ln == -1)
6493 sayNO; /* Do not match unless seen CLOSEn. */
6494 if (ln == rex->offs[n].end)
6495 break;
6496
6497 s = reginfo->strbeg + ln;
6498 if (type != REF /* REF can do byte comparison */
6499 && (utf8_target || type == REFFU || type == REFFL))
6500 {
6501 char * limit = reginfo->strend;
6502
6503 /* This call case insensitively compares the entire buffer
6504 * at s, with the current input starting at locinput, but
6505 * not going off the end given by reginfo->strend, and
6506 * returns in <limit> upon success, how much of the
6507 * current input was matched */
6508 if (! foldEQ_utf8_flags(s, NULL, rex->offs[n].end - ln, utf8_target,
6509 locinput, &limit, 0, utf8_target, utf8_fold_flags))
6510 {
6511 sayNO;
6512 }
6513 locinput = limit;
6514 break;
6515 }
6516
6517 /* Not utf8: Inline the first character, for speed. */
6518 if (!NEXTCHR_IS_EOS &&
6519 UCHARAT(s) != nextchr &&
6520 (type == REF ||
6521 UCHARAT(s) != fold_array[nextchr]))
6522 sayNO;
6523 ln = rex->offs[n].end - ln;
6524 if (locinput + ln > reginfo->strend)
6525 sayNO;
6526 if (ln > 1 && (type == REF
6527 ? memNE(s, locinput, ln)
6528 : ! folder(s, locinput, ln)))
6529 sayNO;
6530 locinput += ln;
6531 break;
6532 }
6533
6534 case NOTHING: /* null op; e.g. the 'nothing' following
6535 * the '*' in m{(a+|b)*}' */
6536 break;
6537 case TAIL: /* placeholder while compiling (A|B|C) */
6538 break;
6539
6540#undef ST
6541#define ST st->u.eval
6542#define CUR_EVAL cur_eval->u.eval
6543
6544 {
6545 SV *ret;
6546 REGEXP *re_sv;
6547 regexp *re;
6548 regexp_internal *rei;
6549 regnode *startpoint;
6550 U32 arg;
6551
6552 case GOSUB: /* /(...(?1))/ /(...(?&foo))/ */
6553 arg= (U32)ARG(scan);
6554 if (cur_eval && cur_eval->locinput == locinput) {
6555 if ( ++nochange_depth > max_nochange_depth )
6556 Perl_croak(aTHX_
6557 "Pattern subroutine nesting without pos change"
6558 " exceeded limit in regex");
6559 } else {
6560 nochange_depth = 0;
6561 }
6562 re_sv = rex_sv;
6563 re = rex;
6564 rei = rexi;
6565 startpoint = scan + ARG2L(scan);
6566 EVAL_CLOSE_PAREN_SET( st, arg );
6567 /* Detect infinite recursion
6568 *
6569 * A pattern like /(?R)foo/ or /(?<x>(?&y)foo)(?<y>(?&x)bar)/
6570 * or "a"=~/(.(?2))((?<=(?=(?1)).))/ could recurse forever.
6571 * So we track the position in the string we are at each time
6572 * we recurse and if we try to enter the same routine twice from
6573 * the same position we throw an error.
6574 */
6575 if ( rex->recurse_locinput[arg] == locinput ) {
6576 /* FIXME: we should show the regop that is failing as part
6577 * of the error message. */
6578 Perl_croak(aTHX_ "Infinite recursion in regex");
6579 } else {
6580 ST.prev_recurse_locinput= rex->recurse_locinput[arg];
6581 rex->recurse_locinput[arg]= locinput;
6582
6583 DEBUG_r({
6584 GET_RE_DEBUG_FLAGS_DECL;
6585 DEBUG_STACK_r({
6586 Perl_re_exec_indentf( aTHX_
6587 "entering GOSUB, prev_recurse_locinput=%p recurse_locinput[%d]=%p\n",
6588 depth, ST.prev_recurse_locinput, arg, rex->recurse_locinput[arg]
6589 );
6590 });
6591 });
6592 }
6593
6594 /* Save all the positions seen so far. */
6595 ST.cp = regcppush(rex, 0, maxopenparen);
6596 REGCP_SET(ST.lastcp);
6597
6598 /* and then jump to the code we share with EVAL */
6599 goto eval_recurse_doit;
6600 /* NOTREACHED */
6601
6602 case EVAL: /* /(?{A})B/ /(??{A})B/ and /(?(?{A})X|Y)B/ */
6603 if (cur_eval && cur_eval->locinput==locinput) {
6604 if ( ++nochange_depth > max_nochange_depth )
6605 Perl_croak(aTHX_ "EVAL without pos change exceeded limit in regex");
6606 } else {
6607 nochange_depth = 0;
6608 }
6609 {
6610 /* execute the code in the {...} */
6611
6612 dSP;
6613 IV before;
6614 OP * const oop = PL_op;
6615 COP * const ocurcop = PL_curcop;
6616 OP *nop;
6617 CV *newcv;
6618
6619 /* save *all* paren positions */
6620 regcppush(rex, 0, maxopenparen);
6621 REGCP_SET(runops_cp);
6622
6623 if (!caller_cv)
6624 caller_cv = find_runcv(NULL);
6625
6626 n = ARG(scan);
6627
6628 if (rexi->data->what[n] == 'r') { /* code from an external qr */
6629 newcv = (ReANY(
6630 (REGEXP*)(rexi->data->data[n])
6631 ))->qr_anoncv;
6632 nop = (OP*)rexi->data->data[n+1];
6633 }
6634 else if (rexi->data->what[n] == 'l') { /* literal code */
6635 newcv = caller_cv;
6636 nop = (OP*)rexi->data->data[n];
6637 assert(CvDEPTH(newcv));
6638 }
6639 else {
6640 /* literal with own CV */
6641 assert(rexi->data->what[n] == 'L');
6642 newcv = rex->qr_anoncv;
6643 nop = (OP*)rexi->data->data[n];
6644 }
6645
6646 /* normally if we're about to execute code from the same
6647 * CV that we used previously, we just use the existing
6648 * CX stack entry. However, its possible that in the
6649 * meantime we may have backtracked, popped from the save
6650 * stack, and undone the SAVECOMPPAD(s) associated with
6651 * PUSH_MULTICALL; in which case PL_comppad no longer
6652 * points to newcv's pad. */
6653 if (newcv != last_pushed_cv || PL_comppad != last_pad)
6654 {
6655 U8 flags = (CXp_SUB_RE |
6656 ((newcv == caller_cv) ? CXp_SUB_RE_FAKE : 0));
6657 if (last_pushed_cv) {
6658 /* PUSH/POP_MULTICALL save and restore the
6659 * caller's PL_comppad; if we call multiple subs
6660 * using the same CX block, we have to save and
6661 * unwind the varying PL_comppad's ourselves,
6662 * especially restoring the right PL_comppad on
6663 * backtrack - so save it on the save stack */
6664 SAVECOMPPAD();
6665 CHANGE_MULTICALL_FLAGS(newcv, flags);
6666 }
6667 else {
6668 PUSH_MULTICALL_FLAGS(newcv, flags);
6669 }
6670 last_pushed_cv = newcv;
6671 }
6672 else {
6673 /* these assignments are just to silence compiler
6674 * warnings */
6675 multicall_cop = NULL;
6676 }
6677 last_pad = PL_comppad;
6678
6679 /* the initial nextstate you would normally execute
6680 * at the start of an eval (which would cause error
6681 * messages to come from the eval), may be optimised
6682 * away from the execution path in the regex code blocks;
6683 * so manually set PL_curcop to it initially */
6684 {
6685 OP *o = cUNOPx(nop)->op_first;
6686 assert(o->op_type == OP_NULL);
6687 if (o->op_targ == OP_SCOPE) {
6688 o = cUNOPo->op_first;
6689 }
6690 else {
6691 assert(o->op_targ == OP_LEAVE);
6692 o = cUNOPo->op_first;
6693 assert(o->op_type == OP_ENTER);
6694 o = OpSIBLING(o);
6695 }
6696
6697 if (o->op_type != OP_STUB) {
6698 assert( o->op_type == OP_NEXTSTATE
6699 || o->op_type == OP_DBSTATE
6700 || (o->op_type == OP_NULL
6701 && ( o->op_targ == OP_NEXTSTATE
6702 || o->op_targ == OP_DBSTATE
6703 )
6704 )
6705 );
6706 PL_curcop = (COP*)o;
6707 }
6708 }
6709 nop = nop->op_next;
6710
6711 DEBUG_STATE_r( Perl_re_printf( aTHX_
6712 " re EVAL PL_op=0x%"UVxf"\n", PTR2UV(nop)) );
6713
6714 rex->offs[0].end = locinput - reginfo->strbeg;
6715 if (reginfo->info_aux_eval->pos_magic)
6716 MgBYTEPOS_set(reginfo->info_aux_eval->pos_magic,
6717 reginfo->sv, reginfo->strbeg,
6718 locinput - reginfo->strbeg);
6719
6720 if (sv_yes_mark) {
6721 SV *sv_mrk = get_sv("REGMARK", 1);
6722 sv_setsv(sv_mrk, sv_yes_mark);
6723 }
6724
6725 /* we don't use MULTICALL here as we want to call the
6726 * first op of the block of interest, rather than the
6727 * first op of the sub. Also, we don't want to free
6728 * the savestack frame */
6729 before = (IV)(SP-PL_stack_base);
6730 PL_op = nop;
6731 CALLRUNOPS(aTHX); /* Scalar context. */
6732 SPAGAIN;
6733 if ((IV)(SP-PL_stack_base) == before)
6734 ret = &PL_sv_undef; /* protect against empty (?{}) blocks. */
6735 else {
6736 ret = POPs;
6737 PUTBACK;
6738 }
6739
6740 /* before restoring everything, evaluate the returned
6741 * value, so that 'uninit' warnings don't use the wrong
6742 * PL_op or pad. Also need to process any magic vars
6743 * (e.g. $1) *before* parentheses are restored */
6744
6745 PL_op = NULL;
6746
6747 re_sv = NULL;
6748 if (logical == 0) /* (?{})/ */
6749 sv_setsv(save_scalar(PL_replgv), ret); /* $^R */
6750 else if (logical == 1) { /* /(?(?{...})X|Y)/ */
6751 sw = cBOOL(SvTRUE(ret));
6752 logical = 0;
6753 }
6754 else { /* /(??{}) */
6755 /* if its overloaded, let the regex compiler handle
6756 * it; otherwise extract regex, or stringify */
6757 if (SvGMAGICAL(ret))
6758 ret = sv_mortalcopy(ret);
6759 if (!SvAMAGIC(ret)) {
6760 SV *sv = ret;
6761 if (SvROK(sv))
6762 sv = SvRV(sv);
6763 if (SvTYPE(sv) == SVt_REGEXP)
6764 re_sv = (REGEXP*) sv;
6765 else if (SvSMAGICAL(ret)) {
6766 MAGIC *mg = mg_find(ret, PERL_MAGIC_qr);
6767 if (mg)
6768 re_sv = (REGEXP *) mg->mg_obj;
6769 }
6770
6771 /* force any undef warnings here */
6772 if (!re_sv && !SvPOK(ret) && !SvNIOK(ret)) {
6773 ret = sv_mortalcopy(ret);
6774 (void) SvPV_force_nolen(ret);
6775 }
6776 }
6777
6778 }
6779
6780 /* *** Note that at this point we don't restore
6781 * PL_comppad, (or pop the CxSUB) on the assumption it may
6782 * be used again soon. This is safe as long as nothing
6783 * in the regexp code uses the pad ! */
6784 PL_op = oop;
6785 PL_curcop = ocurcop;
6786 S_regcp_restore(aTHX_ rex, runops_cp, &maxopenparen);
6787 PL_curpm = PL_reg_curpm;
6788
6789 if (logical != 2)
6790 break;
6791 }
6792
6793 /* only /(??{})/ from now on */
6794 logical = 0;
6795 {
6796 /* extract RE object from returned value; compiling if
6797 * necessary */
6798
6799 if (re_sv) {
6800 re_sv = reg_temp_copy(NULL, re_sv);
6801 }
6802 else {
6803 U32 pm_flags = 0;
6804
6805 if (SvUTF8(ret) && IN_BYTES) {
6806 /* In use 'bytes': make a copy of the octet
6807 * sequence, but without the flag on */
6808 STRLEN len;
6809 const char *const p = SvPV(ret, len);
6810 ret = newSVpvn_flags(p, len, SVs_TEMP);
6811 }
6812 if (rex->intflags & PREGf_USE_RE_EVAL)
6813 pm_flags |= PMf_USE_RE_EVAL;
6814
6815 /* if we got here, it should be an engine which
6816 * supports compiling code blocks and stuff */
6817 assert(rex->engine && rex->engine->op_comp);
6818 assert(!(scan->flags & ~RXf_PMf_COMPILETIME));
6819 re_sv = rex->engine->op_comp(aTHX_ &ret, 1, NULL,
6820 rex->engine, NULL, NULL,
6821 /* copy /msixn etc to inner pattern */
6822 ARG2L(scan),
6823 pm_flags);
6824
6825 if (!(SvFLAGS(ret)
6826 & (SVs_TEMP | SVs_GMG | SVf_ROK))
6827 && (!SvPADTMP(ret) || SvREADONLY(ret))) {
6828 /* This isn't a first class regexp. Instead, it's
6829 caching a regexp onto an existing, Perl visible
6830 scalar. */
6831 sv_magic(ret, MUTABLE_SV(re_sv), PERL_MAGIC_qr, 0, 0);
6832 }
6833 }
6834 SAVEFREESV(re_sv);
6835 re = ReANY(re_sv);
6836 }
6837 RXp_MATCH_COPIED_off(re);
6838 re->subbeg = rex->subbeg;
6839 re->sublen = rex->sublen;
6840 re->suboffset = rex->suboffset;
6841 re->subcoffset = rex->subcoffset;
6842 re->lastparen = 0;
6843 re->lastcloseparen = 0;
6844 rei = RXi_GET(re);
6845 DEBUG_EXECUTE_r(
6846 debug_start_match(re_sv, utf8_target, locinput,
6847 reginfo->strend, "Matching embedded");
6848 );
6849 startpoint = rei->program + 1;
6850 EVAL_CLOSE_PAREN_CLEAR(st); /* ST.close_paren = 0;
6851 * close_paren only for GOSUB */
6852 ST.prev_recurse_locinput= NULL; /* only used for GOSUB */
6853 /* Save all the seen positions so far. */
6854 ST.cp = regcppush(rex, 0, maxopenparen);
6855 REGCP_SET(ST.lastcp);
6856 /* and set maxopenparen to 0, since we are starting a "fresh" match */
6857 maxopenparen = 0;
6858 /* run the pattern returned from (??{...}) */
6859
6860 eval_recurse_doit: /* Share code with GOSUB below this line
6861 * At this point we expect the stack context to be
6862 * set up correctly */
6863
6864 /* invalidate the S-L poscache. We're now executing a
6865 * different set of WHILEM ops (and their associated
6866 * indexes) against the same string, so the bits in the
6867 * cache are meaningless. Setting maxiter to zero forces
6868 * the cache to be invalidated and zeroed before reuse.
6869 * XXX This is too dramatic a measure. Ideally we should
6870 * save the old cache and restore when running the outer
6871 * pattern again */
6872 reginfo->poscache_maxiter = 0;
6873
6874 /* the new regexp might have a different is_utf8_pat than we do */
6875 is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(re_sv));
6876
6877 ST.prev_rex = rex_sv;
6878 ST.prev_curlyx = cur_curlyx;
6879 rex_sv = re_sv;
6880 SET_reg_curpm(rex_sv);
6881 rex = re;
6882 rexi = rei;
6883 cur_curlyx = NULL;
6884 ST.B = next;
6885 ST.prev_eval = cur_eval;
6886 cur_eval = st;
6887 /* now continue from first node in postoned RE */
6888 PUSH_YES_STATE_GOTO(EVAL_AB, startpoint, locinput);
6889 NOT_REACHED; /* NOTREACHED */
6890 }
6891
6892 case EVAL_AB: /* cleanup after a successful (??{A})B */
6893 /* note: this is called twice; first after popping B, then A */
6894 DEBUG_STACK_r({
6895 Perl_re_exec_indentf( aTHX_ "EVAL_AB cur_eval=%p prev_eval=%p\n",
6896 depth, cur_eval, ST.prev_eval);
6897 });
6898
6899#define SET_RECURSE_LOCINPUT(STR,VAL)\
6900 if ( cur_eval && CUR_EVAL.close_paren ) {\
6901 DEBUG_STACK_r({ \
6902 Perl_re_exec_indentf( aTHX_ STR " GOSUB%d ce=%p recurse_locinput=%p\n",\
6903 depth, \
6904 CUR_EVAL.close_paren - 1,\
6905 cur_eval, \
6906 VAL); \
6907 }); \
6908 rex->recurse_locinput[CUR_EVAL.close_paren - 1] = VAL;\
6909 }
6910
6911 SET_RECURSE_LOCINPUT("EVAL_AB[before]", CUR_EVAL.prev_recurse_locinput);
6912
6913 rex_sv = ST.prev_rex;
6914 is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
6915 SET_reg_curpm(rex_sv);
6916 rex = ReANY(rex_sv);
6917 rexi = RXi_GET(rex);
6918 {
6919 /* preserve $^R across LEAVE's. See Bug 121070. */
6920 SV *save_sv= GvSV(PL_replgv);
6921 SvREFCNT_inc(save_sv);
6922 regcpblow(ST.cp); /* LEAVE in disguise */
6923 sv_setsv(GvSV(PL_replgv), save_sv);
6924 SvREFCNT_dec(save_sv);
6925 }
6926 cur_eval = ST.prev_eval;
6927 cur_curlyx = ST.prev_curlyx;
6928
6929 /* Invalidate cache. See "invalidate" comment above. */
6930 reginfo->poscache_maxiter = 0;
6931 if ( nochange_depth )
6932 nochange_depth--;
6933
6934 SET_RECURSE_LOCINPUT("EVAL_AB[after]", cur_eval->locinput);
6935 sayYES;
6936
6937
6938 case EVAL_AB_fail: /* unsuccessfully ran A or B in (??{A})B */
6939 /* note: this is called twice; first after popping B, then A */
6940 DEBUG_STACK_r({
6941 Perl_re_exec_indentf( aTHX_ "EVAL_AB_fail cur_eval=%p prev_eval=%p\n",
6942 depth, cur_eval, ST.prev_eval);
6943 });
6944
6945 SET_RECURSE_LOCINPUT("EVAL_AB_fail[before]", CUR_EVAL.prev_recurse_locinput);
6946
6947 rex_sv = ST.prev_rex;
6948 is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
6949 SET_reg_curpm(rex_sv);
6950 rex = ReANY(rex_sv);
6951 rexi = RXi_GET(rex);
6952
6953 REGCP_UNWIND(ST.lastcp);
6954 regcppop(rex, &maxopenparen);
6955 cur_eval = ST.prev_eval;
6956 cur_curlyx = ST.prev_curlyx;
6957
6958 /* Invalidate cache. See "invalidate" comment above. */
6959 reginfo->poscache_maxiter = 0;
6960 if ( nochange_depth )
6961 nochange_depth--;
6962
6963 SET_RECURSE_LOCINPUT("EVAL_AB_fail[after]", cur_eval->locinput);
6964 sayNO_SILENT;
6965#undef ST
6966
6967 case OPEN: /* ( */
6968 n = ARG(scan); /* which paren pair */
6969 rex->offs[n].start_tmp = locinput - reginfo->strbeg;
6970 if (n > maxopenparen)
6971 maxopenparen = n;
6972 DEBUG_BUFFERS_r(Perl_re_printf( aTHX_
6973 "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf" tmp; maxopenparen=%"UVuf"\n",
6974 PTR2UV(rex),
6975 PTR2UV(rex->offs),
6976 (UV)n,
6977 (IV)rex->offs[n].start_tmp,
6978 (UV)maxopenparen
6979 ));
6980 lastopen = n;
6981 break;
6982
6983/* XXX really need to log other places start/end are set too */
6984#define CLOSE_CAPTURE \
6985 rex->offs[n].start = rex->offs[n].start_tmp; \
6986 rex->offs[n].end = locinput - reginfo->strbeg; \
6987 DEBUG_BUFFERS_r(Perl_re_printf( aTHX_ \
6988 "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf"..%"IVdf"\n", \
6989 PTR2UV(rex), \
6990 PTR2UV(rex->offs), \
6991 (UV)n, \
6992 (IV)rex->offs[n].start, \
6993 (IV)rex->offs[n].end \
6994 ))
6995
6996 case CLOSE: /* ) */
6997 n = ARG(scan); /* which paren pair */
6998 CLOSE_CAPTURE;
6999 if (n > rex->lastparen)
7000 rex->lastparen = n;
7001 rex->lastcloseparen = n;
7002 if ( EVAL_CLOSE_PAREN_IS( cur_eval, n ) )
7003 goto fake_end;
7004
7005 break;
7006
7007 case ACCEPT: /* (*ACCEPT) */
7008 if (scan->flags)
7009 sv_yes_mark = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
7010 if (ARG2L(scan)){
7011 regnode *cursor;
7012 for (cursor=scan;
7013 cursor && OP(cursor)!=END;
7014 cursor=regnext(cursor))
7015 {
7016 if ( OP(cursor)==CLOSE ){
7017 n = ARG(cursor);
7018 if ( n <= lastopen ) {
7019 CLOSE_CAPTURE;
7020 if (n > rex->lastparen)
7021 rex->lastparen = n;
7022 rex->lastcloseparen = n;
7023 if ( n == ARG(scan) || EVAL_CLOSE_PAREN_IS(cur_eval, n) )
7024 break;
7025 }
7026 }
7027 }
7028 }
7029 goto fake_end;
7030 /* NOTREACHED */
7031
7032 case GROUPP: /* (?(1)) */
7033 n = ARG(scan); /* which paren pair */
7034 sw = cBOOL(rex->lastparen >= n && rex->offs[n].end != -1);
7035 break;
7036
7037 case NGROUPP: /* (?(<name>)) */
7038 /* reg_check_named_buff_matched returns 0 for no match */
7039 sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan));
7040 break;
7041
7042 case INSUBP: /* (?(R)) */
7043 n = ARG(scan);
7044 /* this does not need to use EVAL_CLOSE_PAREN macros, as the arg
7045 * of SCAN is already set up as matches a eval.close_paren */
7046 sw = cur_eval && (n == 0 || CUR_EVAL.close_paren == n);
7047 break;
7048
7049 case DEFINEP: /* (?(DEFINE)) */
7050 sw = 0;
7051 break;
7052
7053 case IFTHEN: /* (?(cond)A|B) */
7054 reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
7055 if (sw)
7056 next = NEXTOPER(NEXTOPER(scan));
7057 else {
7058 next = scan + ARG(scan);
7059 if (OP(next) == IFTHEN) /* Fake one. */
7060 next = NEXTOPER(NEXTOPER(next));
7061 }
7062 break;
7063
7064 case LOGICAL: /* modifier for EVAL and IFMATCH */
7065 logical = scan->flags;
7066 break;
7067
7068/*******************************************************************
7069
7070The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/
7071pattern, where A and B are subpatterns. (For simple A, CURLYM or
7072STAR/PLUS/CURLY/CURLYN are used instead.)
7073
7074A*B is compiled as <CURLYX><A><WHILEM><B>
7075
7076On entry to the subpattern, CURLYX is called. This pushes a CURLYX
7077state, which contains the current count, initialised to -1. It also sets
7078cur_curlyx to point to this state, with any previous value saved in the
7079state block.
7080
7081CURLYX then jumps straight to the WHILEM op, rather than executing A,
7082since the pattern may possibly match zero times (i.e. it's a while {} loop
7083rather than a do {} while loop).
7084
7085Each entry to WHILEM represents a successful match of A. The count in the
7086CURLYX block is incremented, another WHILEM state is pushed, and execution
7087passes to A or B depending on greediness and the current count.
7088
7089For example, if matching against the string a1a2a3b (where the aN are
7090substrings that match /A/), then the match progresses as follows: (the
7091pushed states are interspersed with the bits of strings matched so far):
7092
7093 <CURLYX cnt=-1>
7094 <CURLYX cnt=0><WHILEM>
7095 <CURLYX cnt=1><WHILEM> a1 <WHILEM>
7096 <CURLYX cnt=2><WHILEM> a1 <WHILEM> a2 <WHILEM>
7097 <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM>
7098 <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM> b
7099
7100(Contrast this with something like CURLYM, which maintains only a single
7101backtrack state:
7102
7103 <CURLYM cnt=0> a1
7104 a1 <CURLYM cnt=1> a2
7105 a1 a2 <CURLYM cnt=2> a3
7106 a1 a2 a3 <CURLYM cnt=3> b
7107)
7108
7109Each WHILEM state block marks a point to backtrack to upon partial failure
7110of A or B, and also contains some minor state data related to that
7111iteration. The CURLYX block, pointed to by cur_curlyx, contains the
7112overall state, such as the count, and pointers to the A and B ops.
7113
7114This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx
7115must always point to the *current* CURLYX block, the rules are:
7116
7117When executing CURLYX, save the old cur_curlyx in the CURLYX state block,
7118and set cur_curlyx to point the new block.
7119
7120When popping the CURLYX block after a successful or unsuccessful match,
7121restore the previous cur_curlyx.
7122
7123When WHILEM is about to execute B, save the current cur_curlyx, and set it
7124to the outer one saved in the CURLYX block.
7125
7126When popping the WHILEM block after a successful or unsuccessful B match,
7127restore the previous cur_curlyx.
7128
7129Here's an example for the pattern (AI* BI)*BO
7130I and O refer to inner and outer, C and W refer to CURLYX and WHILEM:
7131
7132cur_
7133curlyx backtrack stack
7134------ ---------------
7135NULL
7136CO <CO prev=NULL> <WO>
7137CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
7138CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
7139NULL <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi <WO prev=CO> bo
7140
7141At this point the pattern succeeds, and we work back down the stack to
7142clean up, restoring as we go:
7143
7144CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
7145CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
7146CO <CO prev=NULL> <WO>
7147NULL
7148
7149*******************************************************************/
7150
7151#define ST st->u.curlyx
7152
7153 case CURLYX: /* start of /A*B/ (for complex A) */
7154 {
7155 /* No need to save/restore up to this paren */
7156 I32 parenfloor = scan->flags;
7157
7158 assert(next); /* keep Coverity happy */
7159 if (OP(PREVOPER(next)) == NOTHING) /* LONGJMP */
7160 next += ARG(next);
7161
7162 /* XXXX Probably it is better to teach regpush to support
7163 parenfloor > maxopenparen ... */
7164 if (parenfloor > (I32)rex->lastparen)
7165 parenfloor = rex->lastparen; /* Pessimization... */
7166
7167 ST.prev_curlyx= cur_curlyx;
7168 cur_curlyx = st;
7169 ST.cp = PL_savestack_ix;
7170
7171 /* these fields contain the state of the current curly.
7172 * they are accessed by subsequent WHILEMs */
7173 ST.parenfloor = parenfloor;
7174 ST.me = scan;
7175 ST.B = next;
7176 ST.minmod = minmod;
7177 minmod = 0;
7178 ST.count = -1; /* this will be updated by WHILEM */
7179 ST.lastloc = NULL; /* this will be updated by WHILEM */
7180
7181 PUSH_YES_STATE_GOTO(CURLYX_end, PREVOPER(next), locinput);
7182 NOT_REACHED; /* NOTREACHED */
7183 }
7184
7185 case CURLYX_end: /* just finished matching all of A*B */
7186 cur_curlyx = ST.prev_curlyx;
7187 sayYES;
7188 NOT_REACHED; /* NOTREACHED */
7189
7190 case CURLYX_end_fail: /* just failed to match all of A*B */
7191 regcpblow(ST.cp);
7192 cur_curlyx = ST.prev_curlyx;
7193 sayNO;
7194 NOT_REACHED; /* NOTREACHED */
7195
7196
7197#undef ST
7198#define ST st->u.whilem
7199
7200 case WHILEM: /* just matched an A in /A*B/ (for complex A) */
7201 {
7202 /* see the discussion above about CURLYX/WHILEM */
7203 I32 n;
7204 int min, max;
7205 regnode *A;
7206
7207 assert(cur_curlyx); /* keep Coverity happy */
7208
7209 min = ARG1(cur_curlyx->u.curlyx.me);
7210 max = ARG2(cur_curlyx->u.curlyx.me);
7211 A = NEXTOPER(cur_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS;
7212 n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */
7213 ST.save_lastloc = cur_curlyx->u.curlyx.lastloc;
7214 ST.cache_offset = 0;
7215 ST.cache_mask = 0;
7216
7217
7218 DEBUG_EXECUTE_r( Perl_re_exec_indentf( aTHX_ "whilem: matched %ld out of %d..%d\n",
7219 depth, (long)n, min, max)
7220 );
7221
7222 /* First just match a string of min A's. */
7223
7224 if (n < min) {
7225 ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
7226 maxopenparen);
7227 cur_curlyx->u.curlyx.lastloc = locinput;
7228 REGCP_SET(ST.lastcp);
7229
7230 PUSH_STATE_GOTO(WHILEM_A_pre, A, locinput);
7231 NOT_REACHED; /* NOTREACHED */
7232 }
7233
7234 /* If degenerate A matches "", assume A done. */
7235
7236 if (locinput == cur_curlyx->u.curlyx.lastloc) {
7237 DEBUG_EXECUTE_r( Perl_re_exec_indentf( aTHX_ "whilem: empty match detected, trying continuation...\n",
7238 depth)
7239 );
7240 goto do_whilem_B_max;
7241 }
7242
7243 /* super-linear cache processing.
7244 *
7245 * The idea here is that for certain types of CURLYX/WHILEM -
7246 * principally those whose upper bound is infinity (and
7247 * excluding regexes that have things like \1 and other very
7248 * non-regular expresssiony things), then if a pattern like
7249 * /....A*.../ fails and we backtrack to the WHILEM, then we
7250 * make a note that this particular WHILEM op was at string
7251 * position 47 (say) when the rest of pattern failed. Then, if
7252 * we ever find ourselves back at that WHILEM, and at string
7253 * position 47 again, we can just fail immediately rather than
7254 * running the rest of the pattern again.
7255 *
7256 * This is very handy when patterns start to go
7257 * 'super-linear', like in (a+)*(a+)*(a+)*, where you end up
7258 * with a combinatorial explosion of backtracking.
7259 *
7260 * The cache is implemented as a bit array, with one bit per
7261 * string byte position per WHILEM op (up to 16) - so its
7262 * between 0.25 and 2x the string size.
7263 *
7264 * To avoid allocating a poscache buffer every time, we do an
7265 * initially countdown; only after we have executed a WHILEM
7266 * op (string-length x #WHILEMs) times do we allocate the
7267 * cache.
7268 *
7269 * The top 4 bits of scan->flags byte say how many different
7270 * relevant CURLLYX/WHILEM op pairs there are, while the
7271 * bottom 4-bits is the identifying index number of this
7272 * WHILEM.
7273 */
7274
7275 if (scan->flags) {
7276
7277 if (!reginfo->poscache_maxiter) {
7278 /* start the countdown: Postpone detection until we
7279 * know the match is not *that* much linear. */
7280 reginfo->poscache_maxiter
7281 = (reginfo->strend - reginfo->strbeg + 1)
7282 * (scan->flags>>4);
7283 /* possible overflow for long strings and many CURLYX's */
7284 if (reginfo->poscache_maxiter < 0)
7285 reginfo->poscache_maxiter = I32_MAX;
7286 reginfo->poscache_iter = reginfo->poscache_maxiter;
7287 }
7288
7289 if (reginfo->poscache_iter-- == 0) {
7290 /* initialise cache */
7291 const SSize_t size = (reginfo->poscache_maxiter + 7)/8;
7292 regmatch_info_aux *const aux = reginfo->info_aux;
7293 if (aux->poscache) {
7294 if ((SSize_t)reginfo->poscache_size < size) {
7295 Renew(aux->poscache, size, char);
7296 reginfo->poscache_size = size;
7297 }
7298 Zero(aux->poscache, size, char);
7299 }
7300 else {
7301 reginfo->poscache_size = size;
7302 Newxz(aux->poscache, size, char);
7303 }
7304 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
7305 "%swhilem: Detected a super-linear match, switching on caching%s...\n",
7306 PL_colors[4], PL_colors[5])
7307 );
7308 }
7309
7310 if (reginfo->poscache_iter < 0) {
7311 /* have we already failed at this position? */
7312 SSize_t offset, mask;
7313
7314 reginfo->poscache_iter = -1; /* stop eventual underflow */
7315 offset = (scan->flags & 0xf) - 1
7316 + (locinput - reginfo->strbeg)
7317 * (scan->flags>>4);
7318 mask = 1 << (offset % 8);
7319 offset /= 8;
7320 if (reginfo->info_aux->poscache[offset] & mask) {
7321 DEBUG_EXECUTE_r( Perl_re_exec_indentf( aTHX_ "whilem: (cache) already tried at this position...\n",
7322 depth)
7323 );
7324 sayNO; /* cache records failure */
7325 }
7326 ST.cache_offset = offset;
7327 ST.cache_mask = mask;
7328 }
7329 }
7330
7331 /* Prefer B over A for minimal matching. */
7332
7333 if (cur_curlyx->u.curlyx.minmod) {
7334 ST.save_curlyx = cur_curlyx;
7335 cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
7336 ST.cp = regcppush(rex, ST.save_curlyx->u.curlyx.parenfloor,
7337 maxopenparen);
7338 REGCP_SET(ST.lastcp);
7339 PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B,
7340 locinput);
7341 NOT_REACHED; /* NOTREACHED */
7342 }
7343
7344 /* Prefer A over B for maximal matching. */
7345
7346 if (n < max) { /* More greed allowed? */
7347 ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
7348 maxopenparen);
7349 cur_curlyx->u.curlyx.lastloc = locinput;
7350 REGCP_SET(ST.lastcp);
7351 PUSH_STATE_GOTO(WHILEM_A_max, A, locinput);
7352 NOT_REACHED; /* NOTREACHED */
7353 }
7354 goto do_whilem_B_max;
7355 }
7356 NOT_REACHED; /* NOTREACHED */
7357
7358 case WHILEM_B_min: /* just matched B in a minimal match */
7359 case WHILEM_B_max: /* just matched B in a maximal match */
7360 cur_curlyx = ST.save_curlyx;
7361 sayYES;
7362 NOT_REACHED; /* NOTREACHED */
7363
7364 case WHILEM_B_max_fail: /* just failed to match B in a maximal match */
7365 cur_curlyx = ST.save_curlyx;
7366 cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
7367 cur_curlyx->u.curlyx.count--;
7368 CACHEsayNO;
7369 NOT_REACHED; /* NOTREACHED */
7370
7371 case WHILEM_A_min_fail: /* just failed to match A in a minimal match */
7372 /* FALLTHROUGH */
7373 case WHILEM_A_pre_fail: /* just failed to match even minimal A */
7374 REGCP_UNWIND(ST.lastcp);
7375 regcppop(rex, &maxopenparen);
7376 cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
7377 cur_curlyx->u.curlyx.count--;
7378 CACHEsayNO;
7379 NOT_REACHED; /* NOTREACHED */
7380
7381 case WHILEM_A_max_fail: /* just failed to match A in a maximal match */
7382 REGCP_UNWIND(ST.lastcp);
7383 regcppop(rex, &maxopenparen); /* Restore some previous $<digit>s? */
7384 DEBUG_EXECUTE_r(Perl_re_exec_indentf( aTHX_ "whilem: failed, trying continuation...\n",
7385 depth)
7386 );
7387 do_whilem_B_max:
7388 if (cur_curlyx->u.curlyx.count >= REG_INFTY
7389 && ckWARN(WARN_REGEXP)
7390 && !reginfo->warned)
7391 {
7392 reginfo->warned = TRUE;
7393 Perl_warner(aTHX_ packWARN(WARN_REGEXP),
7394 "Complex regular subexpression recursion limit (%d) "
7395 "exceeded",
7396 REG_INFTY - 1);
7397 }
7398
7399 /* now try B */
7400 ST.save_curlyx = cur_curlyx;
7401 cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
7402 PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B,
7403 locinput);
7404 NOT_REACHED; /* NOTREACHED */
7405
7406 case WHILEM_B_min_fail: /* just failed to match B in a minimal match */
7407 cur_curlyx = ST.save_curlyx;
7408 REGCP_UNWIND(ST.lastcp);
7409 regcppop(rex, &maxopenparen);
7410
7411 if (cur_curlyx->u.curlyx.count >= /*max*/ARG2(cur_curlyx->u.curlyx.me)) {
7412 /* Maximum greed exceeded */
7413 if (cur_curlyx->u.curlyx.count >= REG_INFTY
7414 && ckWARN(WARN_REGEXP)
7415 && !reginfo->warned)
7416 {
7417 reginfo->warned = TRUE;
7418 Perl_warner(aTHX_ packWARN(WARN_REGEXP),
7419 "Complex regular subexpression recursion "
7420 "limit (%d) exceeded",
7421 REG_INFTY - 1);
7422 }
7423 cur_curlyx->u.curlyx.count--;
7424 CACHEsayNO;
7425 }
7426
7427 DEBUG_EXECUTE_r(Perl_re_exec_indentf( aTHX_ "trying longer...\n", depth)
7428 );
7429 /* Try grabbing another A and see if it helps. */
7430 cur_curlyx->u.curlyx.lastloc = locinput;
7431 ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
7432 maxopenparen);
7433 REGCP_SET(ST.lastcp);
7434 PUSH_STATE_GOTO(WHILEM_A_min,
7435 /*A*/ NEXTOPER(ST.save_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS,
7436 locinput);
7437 NOT_REACHED; /* NOTREACHED */
7438
7439#undef ST
7440#define ST st->u.branch
7441
7442 case BRANCHJ: /* /(...|A|...)/ with long next pointer */
7443 next = scan + ARG(scan);
7444 if (next == scan)
7445 next = NULL;
7446 scan = NEXTOPER(scan);
7447 /* FALLTHROUGH */
7448
7449 case BRANCH: /* /(...|A|...)/ */
7450 scan = NEXTOPER(scan); /* scan now points to inner node */
7451 ST.lastparen = rex->lastparen;
7452 ST.lastcloseparen = rex->lastcloseparen;
7453 ST.next_branch = next;
7454 REGCP_SET(ST.cp);
7455
7456 /* Now go into the branch */
7457 if (has_cutgroup) {
7458 PUSH_YES_STATE_GOTO(BRANCH_next, scan, locinput);
7459 } else {
7460 PUSH_STATE_GOTO(BRANCH_next, scan, locinput);
7461 }
7462 NOT_REACHED; /* NOTREACHED */
7463
7464 case CUTGROUP: /* /(*THEN)/ */
7465 sv_yes_mark = st->u.mark.mark_name = scan->flags
7466 ? MUTABLE_SV(rexi->data->data[ ARG( scan ) ])
7467 : NULL;
7468 PUSH_STATE_GOTO(CUTGROUP_next, next, locinput);
7469 NOT_REACHED; /* NOTREACHED */
7470
7471 case CUTGROUP_next_fail:
7472 do_cutgroup = 1;
7473 no_final = 1;
7474 if (st->u.mark.mark_name)
7475 sv_commit = st->u.mark.mark_name;
7476 sayNO;
7477 NOT_REACHED; /* NOTREACHED */
7478
7479 case BRANCH_next:
7480 sayYES;
7481 NOT_REACHED; /* NOTREACHED */
7482
7483 case BRANCH_next_fail: /* that branch failed; try the next, if any */
7484 if (do_cutgroup) {
7485 do_cutgroup = 0;
7486 no_final = 0;
7487 }
7488 REGCP_UNWIND(ST.cp);
7489 UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
7490 scan = ST.next_branch;
7491 /* no more branches? */
7492 if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) {
7493 DEBUG_EXECUTE_r({
7494 Perl_re_exec_indentf( aTHX_ "%sBRANCH failed...%s\n",
7495 depth,
7496 PL_colors[4],
7497 PL_colors[5] );
7498 });
7499 sayNO_SILENT;
7500 }
7501 continue; /* execute next BRANCH[J] op */
7502 /* NOTREACHED */
7503
7504 case MINMOD: /* next op will be non-greedy, e.g. A*? */
7505 minmod = 1;
7506 break;
7507
7508#undef ST
7509#define ST st->u.curlym
7510
7511 case CURLYM: /* /A{m,n}B/ where A is fixed-length */
7512
7513 /* This is an optimisation of CURLYX that enables us to push
7514 * only a single backtracking state, no matter how many matches
7515 * there are in {m,n}. It relies on the pattern being constant
7516 * length, with no parens to influence future backrefs
7517 */
7518
7519 ST.me = scan;
7520 scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
7521
7522 ST.lastparen = rex->lastparen;
7523 ST.lastcloseparen = rex->lastcloseparen;
7524
7525 /* if paren positive, emulate an OPEN/CLOSE around A */
7526 if (ST.me->flags) {
7527 U32 paren = ST.me->flags;
7528 if (paren > maxopenparen)
7529 maxopenparen = paren;
7530 scan += NEXT_OFF(scan); /* Skip former OPEN. */
7531 }
7532 ST.A = scan;
7533 ST.B = next;
7534 ST.alen = 0;
7535 ST.count = 0;
7536 ST.minmod = minmod;
7537 minmod = 0;
7538 ST.c1 = CHRTEST_UNINIT;
7539 REGCP_SET(ST.cp);
7540
7541 if (!(ST.minmod ? ARG1(ST.me) : ARG2(ST.me))) /* min/max */
7542 goto curlym_do_B;
7543
7544 curlym_do_A: /* execute the A in /A{m,n}B/ */
7545 PUSH_YES_STATE_GOTO(CURLYM_A, ST.A, locinput); /* match A */
7546 NOT_REACHED; /* NOTREACHED */
7547
7548 case CURLYM_A: /* we've just matched an A */
7549 ST.count++;
7550 /* after first match, determine A's length: u.curlym.alen */
7551 if (ST.count == 1) {
7552 if (reginfo->is_utf8_target) {
7553 char *s = st->locinput;
7554 while (s < locinput) {
7555 ST.alen++;
7556 s += UTF8SKIP(s);
7557 }
7558 }
7559 else {
7560 ST.alen = locinput - st->locinput;
7561 }
7562 if (ST.alen == 0)
7563 ST.count = ST.minmod ? ARG1(ST.me) : ARG2(ST.me);
7564 }
7565 DEBUG_EXECUTE_r(
7566 Perl_re_exec_indentf( aTHX_ "CURLYM now matched %"IVdf" times, len=%"IVdf"...\n",
7567 depth, (IV) ST.count, (IV)ST.alen)
7568 );
7569
7570 if (EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)ST.me->flags))
7571 goto fake_end;
7572
7573 {
7574 I32 max = (ST.minmod ? ARG1(ST.me) : ARG2(ST.me));
7575 if ( max == REG_INFTY || ST.count < max )
7576 goto curlym_do_A; /* try to match another A */
7577 }
7578 goto curlym_do_B; /* try to match B */
7579
7580 case CURLYM_A_fail: /* just failed to match an A */
7581 REGCP_UNWIND(ST.cp);
7582
7583
7584 if (ST.minmod || ST.count < ARG1(ST.me) /* min*/
7585 || EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)ST.me->flags))
7586 sayNO;
7587
7588 curlym_do_B: /* execute the B in /A{m,n}B/ */
7589 if (ST.c1 == CHRTEST_UNINIT) {
7590 /* calculate c1 and c2 for possible match of 1st char
7591 * following curly */
7592 ST.c1 = ST.c2 = CHRTEST_VOID;
7593 assert(ST.B);
7594 if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) {
7595 regnode *text_node = ST.B;
7596 if (! HAS_TEXT(text_node))
7597 FIND_NEXT_IMPT(text_node);
7598 /* this used to be
7599
7600 (HAS_TEXT(text_node) && PL_regkind[OP(text_node)] == EXACT)
7601
7602 But the former is redundant in light of the latter.
7603
7604 if this changes back then the macro for
7605 IS_TEXT and friends need to change.
7606 */
7607 if (PL_regkind[OP(text_node)] == EXACT) {
7608 if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
7609 text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
7610 reginfo))
7611 {
7612 sayNO;
7613 }
7614 }
7615 }
7616 }
7617
7618 DEBUG_EXECUTE_r(
7619 Perl_re_exec_indentf( aTHX_ "CURLYM trying tail with matches=%"IVdf"...\n",
7620 depth, (IV)ST.count)
7621 );
7622 if (! NEXTCHR_IS_EOS && ST.c1 != CHRTEST_VOID) {
7623 if (! UTF8_IS_INVARIANT(nextchr) && utf8_target) {
7624 if (memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
7625 && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
7626 {
7627 /* simulate B failing */
7628 DEBUG_OPTIMISE_r(
7629 Perl_re_exec_indentf( aTHX_ "CURLYM Fast bail next target=0x%"UVXf" c1=0x%"UVXf" c2=0x%"UVXf"\n",
7630 depth,
7631 valid_utf8_to_uvchr((U8 *) locinput, NULL),
7632 valid_utf8_to_uvchr(ST.c1_utf8, NULL),
7633 valid_utf8_to_uvchr(ST.c2_utf8, NULL))
7634 );
7635 state_num = CURLYM_B_fail;
7636 goto reenter_switch;
7637 }
7638 }
7639 else if (nextchr != ST.c1 && nextchr != ST.c2) {
7640 /* simulate B failing */
7641 DEBUG_OPTIMISE_r(
7642 Perl_re_exec_indentf( aTHX_ "CURLYM Fast bail next target=0x%X c1=0x%X c2=0x%X\n",
7643 depth,
7644 (int) nextchr, ST.c1, ST.c2)
7645 );
7646 state_num = CURLYM_B_fail;
7647 goto reenter_switch;
7648 }
7649 }
7650
7651 if (ST.me->flags) {
7652 /* emulate CLOSE: mark current A as captured */
7653 I32 paren = ST.me->flags;
7654 if (ST.count) {
7655 rex->offs[paren].start
7656 = HOPc(locinput, -ST.alen) - reginfo->strbeg;
7657 rex->offs[paren].end = locinput - reginfo->strbeg;
7658 if ((U32)paren > rex->lastparen)
7659 rex->lastparen = paren;
7660 rex->lastcloseparen = paren;
7661 }
7662 else
7663 rex->offs[paren].end = -1;
7664
7665 if (EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)ST.me->flags))
7666 {
7667 if (ST.count)
7668 goto fake_end;
7669 else
7670 sayNO;
7671 }
7672 }
7673
7674 PUSH_STATE_GOTO(CURLYM_B, ST.B, locinput); /* match B */
7675 NOT_REACHED; /* NOTREACHED */
7676
7677 case CURLYM_B_fail: /* just failed to match a B */
7678 REGCP_UNWIND(ST.cp);
7679 UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
7680 if (ST.minmod) {
7681 I32 max = ARG2(ST.me);
7682 if (max != REG_INFTY && ST.count == max)
7683 sayNO;
7684 goto curlym_do_A; /* try to match a further A */
7685 }
7686 /* backtrack one A */
7687 if (ST.count == ARG1(ST.me) /* min */)
7688 sayNO;
7689 ST.count--;
7690 SET_locinput(HOPc(locinput, -ST.alen));
7691 goto curlym_do_B; /* try to match B */
7692
7693#undef ST
7694#define ST st->u.curly
7695
7696#define CURLY_SETPAREN(paren, success) \
7697 if (paren) { \
7698 if (success) { \
7699 rex->offs[paren].start = HOPc(locinput, -1) - reginfo->strbeg; \
7700 rex->offs[paren].end = locinput - reginfo->strbeg; \
7701 if (paren > rex->lastparen) \
7702 rex->lastparen = paren; \
7703 rex->lastcloseparen = paren; \
7704 } \
7705 else { \
7706 rex->offs[paren].end = -1; \
7707 rex->lastparen = ST.lastparen; \
7708 rex->lastcloseparen = ST.lastcloseparen; \
7709 } \
7710 }
7711
7712 case STAR: /* /A*B/ where A is width 1 char */
7713 ST.paren = 0;
7714 ST.min = 0;
7715 ST.max = REG_INFTY;
7716 scan = NEXTOPER(scan);
7717 goto repeat;
7718
7719 case PLUS: /* /A+B/ where A is width 1 char */
7720 ST.paren = 0;
7721 ST.min = 1;
7722 ST.max = REG_INFTY;
7723 scan = NEXTOPER(scan);
7724 goto repeat;
7725
7726 case CURLYN: /* /(A){m,n}B/ where A is width 1 char */
7727 ST.paren = scan->flags; /* Which paren to set */
7728 ST.lastparen = rex->lastparen;
7729 ST.lastcloseparen = rex->lastcloseparen;
7730 if (ST.paren > maxopenparen)
7731 maxopenparen = ST.paren;
7732 ST.min = ARG1(scan); /* min to match */
7733 ST.max = ARG2(scan); /* max to match */
7734 if (EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)ST.paren))
7735 {
7736 ST.min=1;
7737 ST.max=1;
7738 }
7739 scan = regnext(NEXTOPER(scan) + NODE_STEP_REGNODE);
7740 goto repeat;
7741
7742 case CURLY: /* /A{m,n}B/ where A is width 1 char */
7743 ST.paren = 0;
7744 ST.min = ARG1(scan); /* min to match */
7745 ST.max = ARG2(scan); /* max to match */
7746 scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
7747 repeat:
7748 /*
7749 * Lookahead to avoid useless match attempts
7750 * when we know what character comes next.
7751 *
7752 * Used to only do .*x and .*?x, but now it allows
7753 * for )'s, ('s and (?{ ... })'s to be in the way
7754 * of the quantifier and the EXACT-like node. -- japhy
7755 */
7756
7757 assert(ST.min <= ST.max);
7758 if (! HAS_TEXT(next) && ! JUMPABLE(next)) {
7759 ST.c1 = ST.c2 = CHRTEST_VOID;
7760 }
7761 else {
7762 regnode *text_node = next;
7763
7764 if (! HAS_TEXT(text_node))
7765 FIND_NEXT_IMPT(text_node);
7766
7767 if (! HAS_TEXT(text_node))
7768 ST.c1 = ST.c2 = CHRTEST_VOID;
7769 else {
7770 if ( PL_regkind[OP(text_node)] != EXACT ) {
7771 ST.c1 = ST.c2 = CHRTEST_VOID;
7772 }
7773 else {
7774
7775 /* Currently we only get here when
7776
7777 PL_rekind[OP(text_node)] == EXACT
7778
7779 if this changes back then the macro for IS_TEXT and
7780 friends need to change. */
7781 if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
7782 text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
7783 reginfo))
7784 {
7785 sayNO;
7786 }
7787 }
7788 }
7789 }
7790
7791 ST.A = scan;
7792 ST.B = next;
7793 if (minmod) {
7794 char *li = locinput;
7795 minmod = 0;
7796 if (ST.min &&
7797 regrepeat(rex, &li, ST.A, reginfo, ST.min, depth)
7798 < ST.min)
7799 sayNO;
7800 SET_locinput(li);
7801 ST.count = ST.min;
7802 REGCP_SET(ST.cp);
7803 if (ST.c1 == CHRTEST_VOID)
7804 goto curly_try_B_min;
7805
7806 ST.oldloc = locinput;
7807
7808 /* set ST.maxpos to the furthest point along the
7809 * string that could possibly match */
7810 if (ST.max == REG_INFTY) {
7811 ST.maxpos = reginfo->strend - 1;
7812 if (utf8_target)
7813 while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos))
7814 ST.maxpos--;
7815 }
7816 else if (utf8_target) {
7817 int m = ST.max - ST.min;
7818 for (ST.maxpos = locinput;
7819 m >0 && ST.maxpos < reginfo->strend; m--)
7820 ST.maxpos += UTF8SKIP(ST.maxpos);
7821 }
7822 else {
7823 ST.maxpos = locinput + ST.max - ST.min;
7824 if (ST.maxpos >= reginfo->strend)
7825 ST.maxpos = reginfo->strend - 1;
7826 }
7827 goto curly_try_B_min_known;
7828
7829 }
7830 else {
7831 /* avoid taking address of locinput, so it can remain
7832 * a register var */
7833 char *li = locinput;
7834 ST.count = regrepeat(rex, &li, ST.A, reginfo, ST.max, depth);
7835 if (ST.count < ST.min)
7836 sayNO;
7837 SET_locinput(li);
7838 if ((ST.count > ST.min)
7839 && (PL_regkind[OP(ST.B)] == EOL) && (OP(ST.B) != MEOL))
7840 {
7841 /* A{m,n} must come at the end of the string, there's
7842 * no point in backing off ... */
7843 ST.min = ST.count;
7844 /* ...except that $ and \Z can match before *and* after
7845 newline at the end. Consider "\n\n" =~ /\n+\Z\n/.
7846 We may back off by one in this case. */
7847 if (UCHARAT(locinput - 1) == '\n' && OP(ST.B) != EOS)
7848 ST.min--;
7849 }
7850 REGCP_SET(ST.cp);
7851 goto curly_try_B_max;
7852 }
7853 NOT_REACHED; /* NOTREACHED */
7854
7855 case CURLY_B_min_known_fail:
7856 /* failed to find B in a non-greedy match where c1,c2 valid */
7857
7858 REGCP_UNWIND(ST.cp);
7859 if (ST.paren) {
7860 UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
7861 }
7862 /* Couldn't or didn't -- move forward. */
7863 ST.oldloc = locinput;
7864 if (utf8_target)
7865 locinput += UTF8SKIP(locinput);
7866 else
7867 locinput++;
7868 ST.count++;
7869 curly_try_B_min_known:
7870 /* find the next place where 'B' could work, then call B */
7871 {
7872 int n;
7873 if (utf8_target) {
7874 n = (ST.oldloc == locinput) ? 0 : 1;
7875 if (ST.c1 == ST.c2) {
7876 /* set n to utf8_distance(oldloc, locinput) */
7877 while (locinput <= ST.maxpos
7878 && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput)))
7879 {
7880 locinput += UTF8SKIP(locinput);
7881 n++;
7882 }
7883 }
7884 else {
7885 /* set n to utf8_distance(oldloc, locinput) */
7886 while (locinput <= ST.maxpos
7887 && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
7888 && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
7889 {
7890 locinput += UTF8SKIP(locinput);
7891 n++;
7892 }
7893 }
7894 }
7895 else { /* Not utf8_target */
7896 if (ST.c1 == ST.c2) {
7897 while (locinput <= ST.maxpos &&
7898 UCHARAT(locinput) != ST.c1)
7899 locinput++;
7900 }
7901 else {
7902 while (locinput <= ST.maxpos
7903 && UCHARAT(locinput) != ST.c1
7904 && UCHARAT(locinput) != ST.c2)
7905 locinput++;
7906 }
7907 n = locinput - ST.oldloc;
7908 }
7909 if (locinput > ST.maxpos)
7910 sayNO;
7911 if (n) {
7912 /* In /a{m,n}b/, ST.oldloc is at "a" x m, locinput is
7913 * at b; check that everything between oldloc and
7914 * locinput matches */
7915 char *li = ST.oldloc;
7916 ST.count += n;
7917 if (regrepeat(rex, &li, ST.A, reginfo, n, depth) < n)
7918 sayNO;
7919 assert(n == REG_INFTY || locinput == li);
7920 }
7921 CURLY_SETPAREN(ST.paren, ST.count);
7922 if (EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)ST.paren))
7923 goto fake_end;
7924 PUSH_STATE_GOTO(CURLY_B_min_known, ST.B, locinput);
7925 }
7926 NOT_REACHED; /* NOTREACHED */
7927
7928 case CURLY_B_min_fail:
7929 /* failed to find B in a non-greedy match where c1,c2 invalid */
7930
7931 REGCP_UNWIND(ST.cp);
7932 if (ST.paren) {
7933 UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
7934 }
7935 /* failed -- move forward one */
7936 {
7937 char *li = locinput;
7938 if (!regrepeat(rex, &li, ST.A, reginfo, 1, depth)) {
7939 sayNO;
7940 }
7941 locinput = li;
7942 }
7943 {
7944 ST.count++;
7945 if (ST.count <= ST.max || (ST.max == REG_INFTY &&
7946 ST.count > 0)) /* count overflow ? */
7947 {
7948 curly_try_B_min:
7949 CURLY_SETPAREN(ST.paren, ST.count);
7950 if (EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)ST.paren))
7951 goto fake_end;
7952 PUSH_STATE_GOTO(CURLY_B_min, ST.B, locinput);
7953 }
7954 }
7955 sayNO;
7956 NOT_REACHED; /* NOTREACHED */
7957
7958 curly_try_B_max:
7959 /* a successful greedy match: now try to match B */
7960 if (EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)ST.paren))
7961 goto fake_end;
7962 {
7963 bool could_match = locinput < reginfo->strend;
7964
7965 /* If it could work, try it. */
7966 if (ST.c1 != CHRTEST_VOID && could_match) {
7967 if (! UTF8_IS_INVARIANT(UCHARAT(locinput)) && utf8_target)
7968 {
7969 could_match = memEQ(locinput,
7970 ST.c1_utf8,
7971 UTF8SKIP(locinput))
7972 || memEQ(locinput,
7973 ST.c2_utf8,
7974 UTF8SKIP(locinput));
7975 }
7976 else {
7977 could_match = UCHARAT(locinput) == ST.c1
7978 || UCHARAT(locinput) == ST.c2;
7979 }
7980 }
7981 if (ST.c1 == CHRTEST_VOID || could_match) {
7982 CURLY_SETPAREN(ST.paren, ST.count);
7983 PUSH_STATE_GOTO(CURLY_B_max, ST.B, locinput);
7984 NOT_REACHED; /* NOTREACHED */
7985 }
7986 }
7987 /* FALLTHROUGH */
7988
7989 case CURLY_B_max_fail:
7990 /* failed to find B in a greedy match */
7991
7992 REGCP_UNWIND(ST.cp);
7993 if (ST.paren) {
7994 UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
7995 }
7996 /* back up. */
7997 if (--ST.count < ST.min)
7998 sayNO;
7999 locinput = HOPc(locinput, -1);
8000 goto curly_try_B_max;
8001
8002#undef ST
8003
8004 case END: /* last op of main pattern */
8005 fake_end:
8006 if (cur_eval) {
8007 /* we've just finished A in /(??{A})B/; now continue with B */
8008 SET_RECURSE_LOCINPUT("FAKE-END[before]", CUR_EVAL.prev_recurse_locinput);
8009 st->u.eval.prev_rex = rex_sv; /* inner */
8010
8011 /* Save *all* the positions. */
8012 st->u.eval.cp = regcppush(rex, 0, maxopenparen);
8013 rex_sv = CUR_EVAL.prev_rex;
8014 is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
8015 SET_reg_curpm(rex_sv);
8016 rex = ReANY(rex_sv);
8017 rexi = RXi_GET(rex);
8018
8019 st->u.eval.prev_curlyx = cur_curlyx;
8020 cur_curlyx = CUR_EVAL.prev_curlyx;
8021
8022 REGCP_SET(st->u.eval.lastcp);
8023
8024 /* Restore parens of the outer rex without popping the
8025 * savestack */
8026 S_regcp_restore(aTHX_ rex, CUR_EVAL.lastcp,
8027 &maxopenparen);
8028
8029 st->u.eval.prev_eval = cur_eval;
8030 cur_eval = CUR_EVAL.prev_eval;
8031 DEBUG_EXECUTE_r(
8032 Perl_re_exec_indentf( aTHX_ "EVAL trying tail ... (cur_eval=%p)\n",
8033 depth, cur_eval););
8034 if ( nochange_depth )
8035 nochange_depth--;
8036
8037 SET_RECURSE_LOCINPUT("FAKE-END[after]", cur_eval->locinput);
8038
8039 PUSH_YES_STATE_GOTO(EVAL_AB, st->u.eval.prev_eval->u.eval.B,
8040 locinput); /* match B */
8041 }
8042
8043 if (locinput < reginfo->till) {
8044 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
8045 "%sMatch possible, but length=%ld is smaller than requested=%ld, failing!%s\n",
8046 PL_colors[4],
8047 (long)(locinput - startpos),
8048 (long)(reginfo->till - startpos),
8049 PL_colors[5]));
8050
8051 sayNO_SILENT; /* Cannot match: too short. */
8052 }
8053 sayYES; /* Success! */
8054
8055 case SUCCEED: /* successful SUSPEND/UNLESSM/IFMATCH/CURLYM */
8056 DEBUG_EXECUTE_r(
8057 Perl_re_exec_indentf( aTHX_ "%ssubpattern success...%s\n",
8058 depth, PL_colors[4], PL_colors[5]));
8059 sayYES; /* Success! */
8060
8061#undef ST
8062#define ST st->u.ifmatch
8063
8064 {
8065 char *newstart;
8066
8067 case SUSPEND: /* (?>A) */
8068 ST.wanted = 1;
8069 newstart = locinput;
8070 goto do_ifmatch;
8071
8072 case UNLESSM: /* -ve lookaround: (?!A), or with flags, (?<!A) */
8073 ST.wanted = 0;
8074 goto ifmatch_trivial_fail_test;
8075
8076 case IFMATCH: /* +ve lookaround: (?=A), or with flags, (?<=A) */
8077 ST.wanted = 1;
8078 ifmatch_trivial_fail_test:
8079 if (scan->flags) {
8080 char * const s = HOPBACKc(locinput, scan->flags);
8081 if (!s) {
8082 /* trivial fail */
8083 if (logical) {
8084 logical = 0;
8085 sw = 1 - cBOOL(ST.wanted);
8086 }
8087 else if (ST.wanted)
8088 sayNO;
8089 next = scan + ARG(scan);
8090 if (next == scan)
8091 next = NULL;
8092 break;
8093 }
8094 newstart = s;
8095 }
8096 else
8097 newstart = locinput;
8098
8099 do_ifmatch:
8100 ST.me = scan;
8101 ST.logical = logical;
8102 logical = 0; /* XXX: reset state of logical once it has been saved into ST */
8103
8104 /* execute body of (?...A) */
8105 PUSH_YES_STATE_GOTO(IFMATCH_A, NEXTOPER(NEXTOPER(scan)), newstart);
8106 NOT_REACHED; /* NOTREACHED */
8107 }
8108
8109 case IFMATCH_A_fail: /* body of (?...A) failed */
8110 ST.wanted = !ST.wanted;
8111 /* FALLTHROUGH */
8112
8113 case IFMATCH_A: /* body of (?...A) succeeded */
8114 if (ST.logical) {
8115 sw = cBOOL(ST.wanted);
8116 }
8117 else if (!ST.wanted)
8118 sayNO;
8119
8120 if (OP(ST.me) != SUSPEND) {
8121 /* restore old position except for (?>...) */
8122 locinput = st->locinput;
8123 }
8124 scan = ST.me + ARG(ST.me);
8125 if (scan == ST.me)
8126 scan = NULL;
8127 continue; /* execute B */
8128
8129#undef ST
8130
8131 case LONGJMP: /* alternative with many branches compiles to
8132 * (BRANCHJ; EXACT ...; LONGJMP ) x N */
8133 next = scan + ARG(scan);
8134 if (next == scan)
8135 next = NULL;
8136 break;
8137
8138 case COMMIT: /* (*COMMIT) */
8139 reginfo->cutpoint = reginfo->strend;
8140 /* FALLTHROUGH */
8141
8142 case PRUNE: /* (*PRUNE) */
8143 if (scan->flags)
8144 sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
8145 PUSH_STATE_GOTO(COMMIT_next, next, locinput);
8146 NOT_REACHED; /* NOTREACHED */
8147
8148 case COMMIT_next_fail:
8149 no_final = 1;
8150 /* FALLTHROUGH */
8151 sayNO;
8152 NOT_REACHED; /* NOTREACHED */
8153
8154 case OPFAIL: /* (*FAIL) */
8155 if (scan->flags)
8156 sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
8157 if (logical) {
8158 /* deal with (?(?!)X|Y) properly,
8159 * make sure we trigger the no branch
8160 * of the trailing IFTHEN structure*/
8161 sw= 0;
8162 break;
8163 } else {
8164 sayNO;
8165 }
8166 NOT_REACHED; /* NOTREACHED */
8167
8168#define ST st->u.mark
8169 case MARKPOINT: /* (*MARK:foo) */
8170 ST.prev_mark = mark_state;
8171 ST.mark_name = sv_commit = sv_yes_mark
8172 = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
8173 mark_state = st;
8174 ST.mark_loc = locinput;
8175 PUSH_YES_STATE_GOTO(MARKPOINT_next, next, locinput);
8176 NOT_REACHED; /* NOTREACHED */
8177
8178 case MARKPOINT_next:
8179 mark_state = ST.prev_mark;
8180 sayYES;
8181 NOT_REACHED; /* NOTREACHED */
8182
8183 case MARKPOINT_next_fail:
8184 if (popmark && sv_eq(ST.mark_name,popmark))
8185 {
8186 if (ST.mark_loc > startpoint)
8187 reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
8188 popmark = NULL; /* we found our mark */
8189 sv_commit = ST.mark_name;
8190
8191 DEBUG_EXECUTE_r({
8192 Perl_re_exec_indentf( aTHX_ "%ssetting cutpoint to mark:%"SVf"...%s\n",
8193 depth,
8194 PL_colors[4], SVfARG(sv_commit), PL_colors[5]);
8195 });
8196 }
8197 mark_state = ST.prev_mark;
8198 sv_yes_mark = mark_state ?
8199 mark_state->u.mark.mark_name : NULL;
8200 sayNO;
8201 NOT_REACHED; /* NOTREACHED */
8202
8203 case SKIP: /* (*SKIP) */
8204 if (!scan->flags) {
8205 /* (*SKIP) : if we fail we cut here*/
8206 ST.mark_name = NULL;
8207 ST.mark_loc = locinput;
8208 PUSH_STATE_GOTO(SKIP_next,next, locinput);
8209 } else {
8210 /* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was,
8211 otherwise do nothing. Meaning we need to scan
8212 */
8213 regmatch_state *cur = mark_state;
8214 SV *find = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
8215
8216 while (cur) {
8217 if ( sv_eq( cur->u.mark.mark_name,
8218 find ) )
8219 {
8220 ST.mark_name = find;
8221 PUSH_STATE_GOTO( SKIP_next, next, locinput);
8222 }
8223 cur = cur->u.mark.prev_mark;
8224 }
8225 }
8226 /* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */
8227 break;
8228
8229 case SKIP_next_fail:
8230 if (ST.mark_name) {
8231 /* (*CUT:NAME) - Set up to search for the name as we
8232 collapse the stack*/
8233 popmark = ST.mark_name;
8234 } else {
8235 /* (*CUT) - No name, we cut here.*/
8236 if (ST.mark_loc > startpoint)
8237 reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
8238 /* but we set sv_commit to latest mark_name if there
8239 is one so they can test to see how things lead to this
8240 cut */
8241 if (mark_state)
8242 sv_commit=mark_state->u.mark.mark_name;
8243 }
8244 no_final = 1;
8245 sayNO;
8246 NOT_REACHED; /* NOTREACHED */
8247#undef ST
8248
8249 case LNBREAK: /* \R */
8250 if ((n=is_LNBREAK_safe(locinput, reginfo->strend, utf8_target))) {
8251 locinput += n;
8252 } else
8253 sayNO;
8254 break;
8255
8256 default:
8257 PerlIO_printf(Perl_error_log, "%"UVxf" %d\n",
8258 PTR2UV(scan), OP(scan));
8259 Perl_croak(aTHX_ "regexp memory corruption");
8260
8261 /* this is a point to jump to in order to increment
8262 * locinput by one character */
8263 increment_locinput:
8264 assert(!NEXTCHR_IS_EOS);
8265 if (utf8_target) {
8266 locinput += PL_utf8skip[nextchr];
8267 /* locinput is allowed to go 1 char off the end, but not 2+ */
8268 if (locinput > reginfo->strend)
8269 sayNO;
8270 }
8271 else
8272 locinput++;
8273 break;
8274
8275 } /* end switch */
8276
8277 /* switch break jumps here */
8278 scan = next; /* prepare to execute the next op and ... */
8279 continue; /* ... jump back to the top, reusing st */
8280 /* NOTREACHED */
8281
8282 push_yes_state:
8283 /* push a state that backtracks on success */
8284 st->u.yes.prev_yes_state = yes_state;
8285 yes_state = st;
8286 /* FALLTHROUGH */
8287 push_state:
8288 /* push a new regex state, then continue at scan */
8289 {
8290 regmatch_state *newst;
8291
8292 DEBUG_STACK_r({
8293 regmatch_state *cur = st;
8294 regmatch_state *curyes = yes_state;
8295 int curd = depth;
8296 regmatch_slab *slab = PL_regmatch_slab;
8297 for (;curd > -1 && (depth-curd < 3);cur--,curd--) {
8298 if (cur < SLAB_FIRST(slab)) {
8299 slab = slab->prev;
8300 cur = SLAB_LAST(slab);
8301 }
8302 Perl_re_exec_indentf( aTHX_ "#%-3d %-10s %s\n",
8303 depth,
8304 curd, PL_reg_name[cur->resume_state],
8305 (curyes == cur) ? "yes" : ""
8306 );
8307 if (curyes == cur)
8308 curyes = cur->u.yes.prev_yes_state;
8309 }
8310 } else
8311 DEBUG_STATE_pp("push")
8312 );
8313 depth++;
8314 st->locinput = locinput;
8315 newst = st+1;
8316 if (newst > SLAB_LAST(PL_regmatch_slab))
8317 newst = S_push_slab(aTHX);
8318 PL_regmatch_state = newst;
8319
8320 locinput = pushinput;
8321 st = newst;
8322 continue;
8323 /* NOTREACHED */
8324 }
8325 }
8326#ifdef SOLARIS_BAD_OPTIMIZER
8327# undef PL_charclass
8328#endif
8329
8330 /*
8331 * We get here only if there's trouble -- normally "case END" is
8332 * the terminating point.
8333 */
8334 Perl_croak(aTHX_ "corrupted regexp pointers");
8335 NOT_REACHED; /* NOTREACHED */
8336
8337 yes:
8338 if (yes_state) {
8339 /* we have successfully completed a subexpression, but we must now
8340 * pop to the state marked by yes_state and continue from there */
8341 assert(st != yes_state);
8342#ifdef DEBUGGING
8343 while (st != yes_state) {
8344 st--;
8345 if (st < SLAB_FIRST(PL_regmatch_slab)) {
8346 PL_regmatch_slab = PL_regmatch_slab->prev;
8347 st = SLAB_LAST(PL_regmatch_slab);
8348 }
8349 DEBUG_STATE_r({
8350 if (no_final) {
8351 DEBUG_STATE_pp("pop (no final)");
8352 } else {
8353 DEBUG_STATE_pp("pop (yes)");
8354 }
8355 });
8356 depth--;
8357 }
8358#else
8359 while (yes_state < SLAB_FIRST(PL_regmatch_slab)
8360 || yes_state > SLAB_LAST(PL_regmatch_slab))
8361 {
8362 /* not in this slab, pop slab */
8363 depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1);
8364 PL_regmatch_slab = PL_regmatch_slab->prev;
8365 st = SLAB_LAST(PL_regmatch_slab);
8366 }
8367 depth -= (st - yes_state);
8368#endif
8369 st = yes_state;
8370 yes_state = st->u.yes.prev_yes_state;
8371 PL_regmatch_state = st;
8372
8373 if (no_final)
8374 locinput= st->locinput;
8375 state_num = st->resume_state + no_final;
8376 goto reenter_switch;
8377 }
8378
8379 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%sMatch successful!%s\n",
8380 PL_colors[4], PL_colors[5]));
8381
8382 if (reginfo->info_aux_eval) {
8383 /* each successfully executed (?{...}) block does the equivalent of
8384 * local $^R = do {...}
8385 * When popping the save stack, all these locals would be undone;
8386 * bypass this by setting the outermost saved $^R to the latest
8387 * value */
8388 /* I dont know if this is needed or works properly now.
8389 * see code related to PL_replgv elsewhere in this file.
8390 * Yves
8391 */
8392 if (oreplsv != GvSV(PL_replgv))
8393 sv_setsv(oreplsv, GvSV(PL_replgv));
8394 }
8395 result = 1;
8396 goto final_exit;
8397
8398 no:
8399 DEBUG_EXECUTE_r(
8400 Perl_re_exec_indentf( aTHX_ "%sfailed...%s\n",
8401 depth,
8402 PL_colors[4], PL_colors[5])
8403 );
8404
8405 no_silent:
8406 if (no_final) {
8407 if (yes_state) {
8408 goto yes;
8409 } else {
8410 goto final_exit;
8411 }
8412 }
8413 if (depth) {
8414 /* there's a previous state to backtrack to */
8415 st--;
8416 if (st < SLAB_FIRST(PL_regmatch_slab)) {
8417 PL_regmatch_slab = PL_regmatch_slab->prev;
8418 st = SLAB_LAST(PL_regmatch_slab);
8419 }
8420 PL_regmatch_state = st;
8421 locinput= st->locinput;
8422
8423 DEBUG_STATE_pp("pop");
8424 depth--;
8425 if (yes_state == st)
8426 yes_state = st->u.yes.prev_yes_state;
8427
8428 state_num = st->resume_state + 1; /* failure = success + 1 */
8429 PERL_ASYNC_CHECK();
8430 goto reenter_switch;
8431 }
8432 result = 0;
8433
8434 final_exit:
8435 if (rex->intflags & PREGf_VERBARG_SEEN) {
8436 SV *sv_err = get_sv("REGERROR", 1);
8437 SV *sv_mrk = get_sv("REGMARK", 1);
8438 if (result) {
8439 sv_commit = &PL_sv_no;
8440 if (!sv_yes_mark)
8441 sv_yes_mark = &PL_sv_yes;
8442 } else {
8443 if (!sv_commit)
8444 sv_commit = &PL_sv_yes;
8445 sv_yes_mark = &PL_sv_no;
8446 }
8447 assert(sv_err);
8448 assert(sv_mrk);
8449 sv_setsv(sv_err, sv_commit);
8450 sv_setsv(sv_mrk, sv_yes_mark);
8451 }
8452
8453
8454 if (last_pushed_cv) {
8455 dSP;
8456 POP_MULTICALL;
8457 PERL_UNUSED_VAR(SP);
8458 }
8459
8460 assert(!result || locinput - reginfo->strbeg >= 0);
8461 return result ? locinput - reginfo->strbeg : -1;
8462}
8463
8464/*
8465 - regrepeat - repeatedly match something simple, report how many
8466 *
8467 * What 'simple' means is a node which can be the operand of a quantifier like
8468 * '+', or {1,3}
8469 *
8470 * startposp - pointer a pointer to the start position. This is updated
8471 * to point to the byte following the highest successful
8472 * match.
8473 * p - the regnode to be repeatedly matched against.
8474 * reginfo - struct holding match state, such as strend
8475 * max - maximum number of things to match.
8476 * depth - (for debugging) backtracking depth.
8477 */
8478STATIC I32
8479S_regrepeat(pTHX_ regexp *prog, char **startposp, const regnode *p,
8480 regmatch_info *const reginfo, I32 max, int depth)
8481{
8482 char *scan; /* Pointer to current position in target string */
8483 I32 c;
8484 char *loceol = reginfo->strend; /* local version */
8485 I32 hardcount = 0; /* How many matches so far */
8486 bool utf8_target = reginfo->is_utf8_target;
8487 unsigned int to_complement = 0; /* Invert the result? */
8488 UV utf8_flags;
8489 _char_class_number classnum;
8490#ifndef DEBUGGING
8491 PERL_UNUSED_ARG(depth);
8492#endif
8493
8494 PERL_ARGS_ASSERT_REGREPEAT;
8495
8496 scan = *startposp;
8497 if (max == REG_INFTY)
8498 max = I32_MAX;
8499 else if (! utf8_target && loceol - scan > max)
8500 loceol = scan + max;
8501
8502 /* Here, for the case of a non-UTF-8 target we have adjusted <loceol> down
8503 * to the maximum of how far we should go in it (leaving it set to the real
8504 * end, if the maximum permissible would take us beyond that). This allows
8505 * us to make the loop exit condition that we haven't gone past <loceol> to
8506 * also mean that we haven't exceeded the max permissible count, saving a
8507 * test each time through the loop. But it assumes that the OP matches a
8508 * single byte, which is true for most of the OPs below when applied to a
8509 * non-UTF-8 target. Those relatively few OPs that don't have this
8510 * characteristic will have to compensate.
8511 *
8512 * There is no adjustment for UTF-8 targets, as the number of bytes per
8513 * character varies. OPs will have to test both that the count is less
8514 * than the max permissible (using <hardcount> to keep track), and that we
8515 * are still within the bounds of the string (using <loceol>. A few OPs
8516 * match a single byte no matter what the encoding. They can omit the max
8517 * test if, for the UTF-8 case, they do the adjustment that was skipped
8518 * above.
8519 *
8520 * Thus, the code above sets things up for the common case; and exceptional
8521 * cases need extra work; the common case is to make sure <scan> doesn't
8522 * go past <loceol>, and for UTF-8 to also use <hardcount> to make sure the
8523 * count doesn't exceed the maximum permissible */
8524
8525 switch (OP(p)) {
8526 case REG_ANY:
8527 if (utf8_target) {
8528 while (scan < loceol && hardcount < max && *scan != '\n') {
8529 scan += UTF8SKIP(scan);
8530 hardcount++;
8531 }
8532 } else {
8533 while (scan < loceol && *scan != '\n')
8534 scan++;
8535 }
8536 break;
8537 case SANY:
8538 if (utf8_target) {
8539 while (scan < loceol && hardcount < max) {
8540 scan += UTF8SKIP(scan);
8541 hardcount++;
8542 }
8543 }
8544 else
8545 scan = loceol;
8546 break;
8547 case EXACTL:
8548 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
8549 if (utf8_target && UTF8_IS_ABOVE_LATIN1(*scan)) {
8550 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(scan, loceol);
8551 }
8552 /* FALLTHROUGH */
8553 case EXACT:
8554 assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
8555
8556 c = (U8)*STRING(p);
8557
8558 /* Can use a simple loop if the pattern char to match on is invariant
8559 * under UTF-8, or both target and pattern aren't UTF-8. Note that we
8560 * can use UTF8_IS_INVARIANT() even if the pattern isn't UTF-8, as it's
8561 * true iff it doesn't matter if the argument is in UTF-8 or not */
8562 if (UTF8_IS_INVARIANT(c) || (! utf8_target && ! reginfo->is_utf8_pat)) {
8563 if (utf8_target && loceol - scan > max) {
8564 /* We didn't adjust <loceol> because is UTF-8, but ok to do so,
8565 * since here, to match at all, 1 char == 1 byte */
8566 loceol = scan + max;
8567 }
8568 while (scan < loceol && UCHARAT(scan) == c) {
8569 scan++;
8570 }
8571 }
8572 else if (reginfo->is_utf8_pat) {
8573 if (utf8_target) {
8574 STRLEN scan_char_len;
8575
8576 /* When both target and pattern are UTF-8, we have to do
8577 * string EQ */
8578 while (hardcount < max
8579 && scan < loceol
8580 && (scan_char_len = UTF8SKIP(scan)) <= STR_LEN(p)
8581 && memEQ(scan, STRING(p), scan_char_len))
8582 {
8583 scan += scan_char_len;
8584 hardcount++;
8585 }
8586 }
8587 else if (! UTF8_IS_ABOVE_LATIN1(c)) {
8588
8589 /* Target isn't utf8; convert the character in the UTF-8
8590 * pattern to non-UTF8, and do a simple loop */
8591 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *(STRING(p) + 1));
8592 while (scan < loceol && UCHARAT(scan) == c) {
8593 scan++;
8594 }
8595 } /* else pattern char is above Latin1, can't possibly match the
8596 non-UTF-8 target */
8597 }
8598 else {
8599
8600 /* Here, the string must be utf8; pattern isn't, and <c> is
8601 * different in utf8 than not, so can't compare them directly.
8602 * Outside the loop, find the two utf8 bytes that represent c, and
8603 * then look for those in sequence in the utf8 string */
8604 U8 high = UTF8_TWO_BYTE_HI(c);
8605 U8 low = UTF8_TWO_BYTE_LO(c);
8606
8607 while (hardcount < max
8608 && scan + 1 < loceol
8609 && UCHARAT(scan) == high
8610 && UCHARAT(scan + 1) == low)
8611 {
8612 scan += 2;
8613 hardcount++;
8614 }
8615 }
8616 break;
8617
8618 case EXACTFA_NO_TRIE: /* This node only generated for non-utf8 patterns */
8619 assert(! reginfo->is_utf8_pat);
8620 /* FALLTHROUGH */
8621 case EXACTFA:
8622 utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
8623 goto do_exactf;
8624
8625 case EXACTFL:
8626 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
8627 utf8_flags = FOLDEQ_LOCALE;
8628 goto do_exactf;
8629
8630 case EXACTF: /* This node only generated for non-utf8 patterns */
8631 assert(! reginfo->is_utf8_pat);
8632 utf8_flags = 0;
8633 goto do_exactf;
8634
8635 case EXACTFLU8:
8636 if (! utf8_target) {
8637 break;
8638 }
8639 utf8_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
8640 | FOLDEQ_S2_FOLDS_SANE;
8641 goto do_exactf;
8642
8643 case EXACTFU_SS:
8644 case EXACTFU:
8645 utf8_flags = reginfo->is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
8646
8647 do_exactf: {
8648 int c1, c2;
8649 U8 c1_utf8[UTF8_MAXBYTES+1], c2_utf8[UTF8_MAXBYTES+1];
8650
8651 assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
8652
8653 if (S_setup_EXACTISH_ST_c1_c2(aTHX_ p, &c1, c1_utf8, &c2, c2_utf8,
8654 reginfo))
8655 {
8656 if (c1 == CHRTEST_VOID) {
8657 /* Use full Unicode fold matching */
8658 char *tmpeol = reginfo->strend;
8659 STRLEN pat_len = reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1;
8660 while (hardcount < max
8661 && foldEQ_utf8_flags(scan, &tmpeol, 0, utf8_target,
8662 STRING(p), NULL, pat_len,
8663 reginfo->is_utf8_pat, utf8_flags))
8664 {
8665 scan = tmpeol;
8666 tmpeol = reginfo->strend;
8667 hardcount++;
8668 }
8669 }
8670 else if (utf8_target) {
8671 if (c1 == c2) {
8672 while (scan < loceol
8673 && hardcount < max
8674 && memEQ(scan, c1_utf8, UTF8SKIP(scan)))
8675 {
8676 scan += UTF8SKIP(scan);
8677 hardcount++;
8678 }
8679 }
8680 else {
8681 while (scan < loceol
8682 && hardcount < max
8683 && (memEQ(scan, c1_utf8, UTF8SKIP(scan))
8684 || memEQ(scan, c2_utf8, UTF8SKIP(scan))))
8685 {
8686 scan += UTF8SKIP(scan);
8687 hardcount++;
8688 }
8689 }
8690 }
8691 else if (c1 == c2) {
8692 while (scan < loceol && UCHARAT(scan) == c1) {
8693 scan++;
8694 }
8695 }
8696 else {
8697 while (scan < loceol &&
8698 (UCHARAT(scan) == c1 || UCHARAT(scan) == c2))
8699 {
8700 scan++;
8701 }
8702 }
8703 }
8704 break;
8705 }
8706 case ANYOFL:
8707 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
8708
8709 if (ANYOFL_UTF8_LOCALE_REQD(FLAGS(p)) && ! IN_UTF8_CTYPE_LOCALE) {
8710 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), utf8_locale_required);
8711 }
8712 /* FALLTHROUGH */
8713 case ANYOFD:
8714 case ANYOF:
8715 if (utf8_target) {
8716 while (hardcount < max
8717 && scan < loceol
8718 && reginclass(prog, p, (U8*)scan, (U8*) loceol, utf8_target))
8719 {
8720 scan += UTF8SKIP(scan);
8721 hardcount++;
8722 }
8723 } else {
8724 while (scan < loceol && REGINCLASS(prog, p, (U8*)scan, 0))
8725 scan++;
8726 }
8727 break;
8728
8729 /* The argument (FLAGS) to all the POSIX node types is the class number */
8730
8731 case NPOSIXL:
8732 to_complement = 1;
8733 /* FALLTHROUGH */
8734
8735 case POSIXL:
8736 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
8737 if (! utf8_target) {
8738 while (scan < loceol && to_complement ^ cBOOL(isFOO_lc(FLAGS(p),
8739 *scan)))
8740 {
8741 scan++;
8742 }
8743 } else {
8744 while (hardcount < max && scan < loceol
8745 && to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(p),
8746 (U8 *) scan)))
8747 {
8748 scan += UTF8SKIP(scan);
8749 hardcount++;
8750 }
8751 }
8752 break;
8753
8754 case POSIXD:
8755 if (utf8_target) {
8756 goto utf8_posix;
8757 }
8758 /* FALLTHROUGH */
8759
8760 case POSIXA:
8761 if (utf8_target && loceol - scan > max) {
8762
8763 /* We didn't adjust <loceol> at the beginning of this routine
8764 * because is UTF-8, but it is actually ok to do so, since here, to
8765 * match, 1 char == 1 byte. */
8766 loceol = scan + max;
8767 }
8768 while (scan < loceol && _generic_isCC_A((U8) *scan, FLAGS(p))) {
8769 scan++;
8770 }
8771 break;
8772
8773 case NPOSIXD:
8774 if (utf8_target) {
8775 to_complement = 1;
8776 goto utf8_posix;
8777 }
8778 /* FALLTHROUGH */
8779
8780 case NPOSIXA:
8781 if (! utf8_target) {
8782 while (scan < loceol && ! _generic_isCC_A((U8) *scan, FLAGS(p))) {
8783 scan++;
8784 }
8785 }
8786 else {
8787
8788 /* The complement of something that matches only ASCII matches all
8789 * non-ASCII, plus everything in ASCII that isn't in the class. */
8790 while (hardcount < max && scan < loceol
8791 && (! isASCII_utf8(scan)
8792 || ! _generic_isCC_A((U8) *scan, FLAGS(p))))
8793 {
8794 scan += UTF8SKIP(scan);
8795 hardcount++;
8796 }
8797 }
8798 break;
8799
8800 case NPOSIXU:
8801 to_complement = 1;
8802 /* FALLTHROUGH */
8803
8804 case POSIXU:
8805 if (! utf8_target) {
8806 while (scan < loceol && to_complement
8807 ^ cBOOL(_generic_isCC((U8) *scan, FLAGS(p))))
8808 {
8809 scan++;
8810 }
8811 }
8812 else {
8813 utf8_posix:
8814 classnum = (_char_class_number) FLAGS(p);
8815 if (classnum < _FIRST_NON_SWASH_CC) {
8816
8817 /* Here, a swash is needed for above-Latin1 code points.
8818 * Process as many Latin1 code points using the built-in rules.
8819 * Go to another loop to finish processing upon encountering
8820 * the first Latin1 code point. We could do that in this loop
8821 * as well, but the other way saves having to test if the swash
8822 * has been loaded every time through the loop: extra space to
8823 * save a test. */
8824 while (hardcount < max && scan < loceol) {
8825 if (UTF8_IS_INVARIANT(*scan)) {
8826 if (! (to_complement ^ cBOOL(_generic_isCC((U8) *scan,
8827 classnum))))
8828 {
8829 break;
8830 }
8831 scan++;
8832 }
8833 else if (UTF8_IS_DOWNGRADEABLE_START(*scan)) {
8834 if (! (to_complement
8835 ^ cBOOL(_generic_isCC(EIGHT_BIT_UTF8_TO_NATIVE(*scan,
8836 *(scan + 1)),
8837 classnum))))
8838 {
8839 break;
8840 }
8841 scan += 2;
8842 }
8843 else {
8844 goto found_above_latin1;
8845 }
8846
8847 hardcount++;
8848 }
8849 }
8850 else {
8851 /* For these character classes, the knowledge of how to handle
8852 * every code point is compiled in to Perl via a macro. This
8853 * code is written for making the loops as tight as possible.
8854 * It could be refactored to save space instead */
8855 switch (classnum) {
8856 case _CC_ENUM_SPACE:
8857 while (hardcount < max
8858 && scan < loceol
8859 && (to_complement ^ cBOOL(isSPACE_utf8(scan))))
8860 {
8861 scan += UTF8SKIP(scan);
8862 hardcount++;
8863 }
8864 break;
8865 case _CC_ENUM_BLANK:
8866 while (hardcount < max
8867 && scan < loceol
8868 && (to_complement ^ cBOOL(isBLANK_utf8(scan))))
8869 {
8870 scan += UTF8SKIP(scan);
8871 hardcount++;
8872 }
8873 break;
8874 case _CC_ENUM_XDIGIT:
8875 while (hardcount < max
8876 && scan < loceol
8877 && (to_complement ^ cBOOL(isXDIGIT_utf8(scan))))
8878 {
8879 scan += UTF8SKIP(scan);
8880 hardcount++;
8881 }
8882 break;
8883 case _CC_ENUM_VERTSPACE:
8884 while (hardcount < max
8885 && scan < loceol
8886 && (to_complement ^ cBOOL(isVERTWS_utf8(scan))))
8887 {
8888 scan += UTF8SKIP(scan);
8889 hardcount++;
8890 }
8891 break;
8892 case _CC_ENUM_CNTRL:
8893 while (hardcount < max
8894 && scan < loceol
8895 && (to_complement ^ cBOOL(isCNTRL_utf8(scan))))
8896 {
8897 scan += UTF8SKIP(scan);
8898 hardcount++;
8899 }
8900 break;
8901 default:
8902 Perl_croak(aTHX_ "panic: regrepeat() node %d='%s' has an unexpected character class '%d'", OP(p), PL_reg_name[OP(p)], classnum);
8903 }
8904 }
8905 }
8906 break;
8907
8908 found_above_latin1: /* Continuation of POSIXU and NPOSIXU */
8909
8910 /* Load the swash if not already present */
8911 if (! PL_utf8_swash_ptrs[classnum]) {
8912 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
8913 PL_utf8_swash_ptrs[classnum] = _core_swash_init(
8914 "utf8",
8915 "",
8916 &PL_sv_undef, 1, 0,
8917 PL_XPosix_ptrs[classnum], &flags);
8918 }
8919
8920 while (hardcount < max && scan < loceol
8921 && to_complement ^ cBOOL(_generic_utf8(
8922 classnum,
8923 scan,
8924 swash_fetch(PL_utf8_swash_ptrs[classnum],
8925 (U8 *) scan,
8926 TRUE))))
8927 {
8928 scan += UTF8SKIP(scan);
8929 hardcount++;
8930 }
8931 break;
8932
8933 case LNBREAK:
8934 if (utf8_target) {
8935 while (hardcount < max && scan < loceol &&
8936 (c=is_LNBREAK_utf8_safe(scan, loceol))) {
8937 scan += c;
8938 hardcount++;
8939 }
8940 } else {
8941 /* LNBREAK can match one or two latin chars, which is ok, but we
8942 * have to use hardcount in this situation, and throw away the
8943 * adjustment to <loceol> done before the switch statement */
8944 loceol = reginfo->strend;
8945 while (scan < loceol && (c=is_LNBREAK_latin1_safe(scan, loceol))) {
8946 scan+=c;
8947 hardcount++;
8948 }
8949 }
8950 break;
8951
8952 case BOUNDL:
8953 case NBOUNDL:
8954 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
8955 /* FALLTHROUGH */
8956 case BOUND:
8957 case BOUNDA:
8958 case BOUNDU:
8959 case EOS:
8960 case GPOS:
8961 case KEEPS:
8962 case NBOUND:
8963 case NBOUNDA:
8964 case NBOUNDU:
8965 case OPFAIL:
8966 case SBOL:
8967 case SEOL:
8968 /* These are all 0 width, so match right here or not at all. */
8969 break;
8970
8971 default:
8972 Perl_croak(aTHX_ "panic: regrepeat() called with unrecognized node type %d='%s'", OP(p), PL_reg_name[OP(p)]);
8973 NOT_REACHED; /* NOTREACHED */
8974
8975 }
8976
8977 if (hardcount)
8978 c = hardcount;
8979 else
8980 c = scan - *startposp;
8981 *startposp = scan;
8982
8983 DEBUG_r({
8984 GET_RE_DEBUG_FLAGS_DECL;
8985 DEBUG_EXECUTE_r({
8986 SV * const prop = sv_newmortal();
8987 regprop(prog, prop, p, reginfo, NULL);
8988 Perl_re_exec_indentf( aTHX_ "%s can match %"IVdf" times out of %"IVdf"...\n",
8989 depth, SvPVX_const(prop),(IV)c,(IV)max);
8990 });
8991 });
8992
8993 return(c);
8994}
8995
8996
8997#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
8998/*
8999- regclass_swash - prepare the utf8 swash. Wraps the shared core version to
9000create a copy so that changes the caller makes won't change the shared one.
9001If <altsvp> is non-null, will return NULL in it, for back-compat.
9002 */
9003SV *
9004Perl_regclass_swash(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
9005{
9006 PERL_ARGS_ASSERT_REGCLASS_SWASH;
9007
9008 if (altsvp) {
9009 *altsvp = NULL;
9010 }
9011
9012 return newSVsv(_get_regclass_nonbitmap_data(prog, node, doinit, listsvp, NULL, NULL));
9013}
9014
9015#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
9016
9017/*
9018 - reginclass - determine if a character falls into a character class
9019
9020 n is the ANYOF-type regnode
9021 p is the target string
9022 p_end points to one byte beyond the end of the target string
9023 utf8_target tells whether p is in UTF-8.
9024
9025 Returns true if matched; false otherwise.
9026
9027 Note that this can be a synthetic start class, a combination of various
9028 nodes, so things you think might be mutually exclusive, such as locale,
9029 aren't. It can match both locale and non-locale
9030
9031 */
9032
9033STATIC bool
9034S_reginclass(pTHX_ regexp * const prog, const regnode * const n, const U8* const p, const U8* const p_end, const bool utf8_target)
9035{
9036 dVAR;
9037 const char flags = ANYOF_FLAGS(n);
9038 bool match = FALSE;
9039 UV c = *p;
9040
9041 PERL_ARGS_ASSERT_REGINCLASS;
9042
9043 /* If c is not already the code point, get it. Note that
9044 * UTF8_IS_INVARIANT() works even if not in UTF-8 */
9045 if (! UTF8_IS_INVARIANT(c) && utf8_target) {
9046 STRLEN c_len = 0;
9047 c = utf8n_to_uvchr(p, p_end - p, &c_len,
9048 (UTF8_ALLOW_DEFAULT & UTF8_ALLOW_ANYUV)
9049 | UTF8_ALLOW_FFFF | UTF8_CHECK_ONLY);
9050 /* see [perl #37836] for UTF8_ALLOW_ANYUV; [perl #38293] for
9051 * UTF8_ALLOW_FFFF */
9052 if (c_len == (STRLEN)-1)
9053 Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
9054 if (c > 255 && OP(n) == ANYOFL && ! ANYOFL_UTF8_LOCALE_REQD(flags)) {
9055 _CHECK_AND_OUTPUT_WIDE_LOCALE_CP_MSG(c);
9056 }
9057 }
9058
9059 /* If this character is potentially in the bitmap, check it */
9060 if (c < NUM_ANYOF_CODE_POINTS) {
9061 if (ANYOF_BITMAP_TEST(n, c))
9062 match = TRUE;
9063 else if ((flags
9064 & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER)
9065 && OP(n) == ANYOFD
9066 && ! utf8_target
9067 && ! isASCII(c))
9068 {
9069 match = TRUE;
9070 }
9071 else if (flags & ANYOF_LOCALE_FLAGS) {
9072 if ((flags & ANYOFL_FOLD)
9073 && c < 256
9074 && ANYOF_BITMAP_TEST(n, PL_fold_locale[c]))
9075 {
9076 match = TRUE;
9077 }
9078 else if (ANYOF_POSIXL_TEST_ANY_SET(n)
9079 && c < 256
9080 ) {
9081
9082 /* The data structure is arranged so bits 0, 2, 4, ... are set
9083 * if the class includes the Posix character class given by
9084 * bit/2; and 1, 3, 5, ... are set if the class includes the
9085 * complemented Posix class given by int(bit/2). So we loop
9086 * through the bits, each time changing whether we complement
9087 * the result or not. Suppose for the sake of illustration
9088 * that bits 0-3 mean respectively, \w, \W, \s, \S. If bit 0
9089 * is set, it means there is a match for this ANYOF node if the
9090 * character is in the class given by the expression (0 / 2 = 0
9091 * = \w). If it is in that class, isFOO_lc() will return 1,
9092 * and since 'to_complement' is 0, the result will stay TRUE,
9093 * and we exit the loop. Suppose instead that bit 0 is 0, but
9094 * bit 1 is 1. That means there is a match if the character
9095 * matches \W. We won't bother to call isFOO_lc() on bit 0,
9096 * but will on bit 1. On the second iteration 'to_complement'
9097 * will be 1, so the exclusive or will reverse things, so we
9098 * are testing for \W. On the third iteration, 'to_complement'
9099 * will be 0, and we would be testing for \s; the fourth
9100 * iteration would test for \S, etc.
9101 *
9102 * Note that this code assumes that all the classes are closed
9103 * under folding. For example, if a character matches \w, then
9104 * its fold does too; and vice versa. This should be true for
9105 * any well-behaved locale for all the currently defined Posix
9106 * classes, except for :lower: and :upper:, which are handled
9107 * by the pseudo-class :cased: which matches if either of the
9108 * other two does. To get rid of this assumption, an outer
9109 * loop could be used below to iterate over both the source
9110 * character, and its fold (if different) */
9111
9112 int count = 0;
9113 int to_complement = 0;
9114
9115 while (count < ANYOF_MAX) {
9116 if (ANYOF_POSIXL_TEST(n, count)
9117 && to_complement ^ cBOOL(isFOO_lc(count/2, (U8) c)))
9118 {
9119 match = TRUE;
9120 break;
9121 }
9122 count++;
9123 to_complement ^= 1;
9124 }
9125 }
9126 }
9127 }
9128
9129
9130 /* If the bitmap didn't (or couldn't) match, and something outside the
9131 * bitmap could match, try that. */
9132 if (!match) {
9133 if (c >= NUM_ANYOF_CODE_POINTS
9134 && (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP))
9135 {
9136 match = TRUE; /* Everything above the bitmap matches */
9137 }
9138 /* Here doesn't match everything above the bitmap. If there is
9139 * some information available beyond the bitmap, we may find a
9140 * match in it. If so, this is most likely because the code point
9141 * is outside the bitmap range. But rarely, it could be because of
9142 * some other reason. If so, various flags are set to indicate
9143 * this possibility. On ANYOFD nodes, there may be matches that
9144 * happen only when the target string is UTF-8; or for other node
9145 * types, because runtime lookup is needed, regardless of the
9146 * UTF-8ness of the target string. Finally, under /il, there may
9147 * be some matches only possible if the locale is a UTF-8 one. */
9148 else if ( ARG(n) != ANYOF_ONLY_HAS_BITMAP
9149 && ( c >= NUM_ANYOF_CODE_POINTS
9150 || ( (flags & ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)
9151 && ( UNLIKELY(OP(n) != ANYOFD)
9152 || (utf8_target && ! isASCII_uni(c)
9153# if NUM_ANYOF_CODE_POINTS > 256
9154 && c < 256
9155# endif
9156 )))
9157 || ( ANYOFL_SOME_FOLDS_ONLY_IN_UTF8_LOCALE(flags)
9158 && IN_UTF8_CTYPE_LOCALE)))
9159 {
9160 SV* only_utf8_locale = NULL;
9161 SV * const sw = _get_regclass_nonbitmap_data(prog, n, TRUE, 0,
9162 &only_utf8_locale, NULL);
9163 if (sw) {
9164 U8 utf8_buffer[2];
9165 U8 * utf8_p;
9166 if (utf8_target) {
9167 utf8_p = (U8 *) p;
9168 } else { /* Convert to utf8 */
9169 utf8_p = utf8_buffer;
9170 append_utf8_from_native_byte(*p, &utf8_p);
9171 utf8_p = utf8_buffer;
9172 }
9173
9174 if (swash_fetch(sw, utf8_p, TRUE)) {
9175 match = TRUE;
9176 }
9177 }
9178 if (! match && only_utf8_locale && IN_UTF8_CTYPE_LOCALE) {
9179 match = _invlist_contains_cp(only_utf8_locale, c);
9180 }
9181 }
9182
9183 if (UNICODE_IS_SUPER(c)
9184 && (flags
9185 & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER)
9186 && OP(n) != ANYOFD
9187 && ckWARN_d(WARN_NON_UNICODE))
9188 {
9189 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
9190 "Matched non-Unicode code point 0x%04"UVXf" against Unicode property; may not be portable", c);
9191 }
9192 }
9193
9194#if ANYOF_INVERT != 1
9195 /* Depending on compiler optimization cBOOL takes time, so if don't have to
9196 * use it, don't */
9197# error ANYOF_INVERT needs to be set to 1, or guarded with cBOOL below,
9198#endif
9199
9200 /* The xor complements the return if to invert: 1^1 = 0, 1^0 = 1 */
9201 return (flags & ANYOF_INVERT) ^ match;
9202}
9203
9204STATIC U8 *
9205S_reghop3(U8 *s, SSize_t off, const U8* lim)
9206{
9207 /* return the position 'off' UTF-8 characters away from 's', forward if
9208 * 'off' >= 0, backwards if negative. But don't go outside of position
9209 * 'lim', which better be < s if off < 0 */
9210
9211 PERL_ARGS_ASSERT_REGHOP3;
9212
9213 if (off >= 0) {
9214 while (off-- && s < lim) {
9215 /* XXX could check well-formedness here */
9216 s += UTF8SKIP(s);
9217 }
9218 }
9219 else {
9220 while (off++ && s > lim) {
9221 s--;
9222 if (UTF8_IS_CONTINUED(*s)) {
9223 while (s > lim && UTF8_IS_CONTINUATION(*s))
9224 s--;
9225 if (! UTF8_IS_START(*s)) {
9226 Perl_croak_nocontext("Malformed UTF-8 character (fatal)");
9227 }
9228 }
9229 /* XXX could check well-formedness here */
9230 }
9231 }
9232 return s;
9233}
9234
9235STATIC U8 *
9236S_reghop4(U8 *s, SSize_t off, const U8* llim, const U8* rlim)
9237{
9238 PERL_ARGS_ASSERT_REGHOP4;
9239
9240 if (off >= 0) {
9241 while (off-- && s < rlim) {
9242 /* XXX could check well-formedness here */
9243 s += UTF8SKIP(s);
9244 }
9245 }
9246 else {
9247 while (off++ && s > llim) {
9248 s--;
9249 if (UTF8_IS_CONTINUED(*s)) {
9250 while (s > llim && UTF8_IS_CONTINUATION(*s))
9251 s--;
9252 if (! UTF8_IS_START(*s)) {
9253 Perl_croak_nocontext("Malformed UTF-8 character (fatal)");
9254 }
9255 }
9256 /* XXX could check well-formedness here */
9257 }
9258 }
9259 return s;
9260}
9261
9262/* like reghop3, but returns NULL on overrun, rather than returning last
9263 * char pos */
9264
9265STATIC U8 *
9266S_reghopmaybe3(U8* s, SSize_t off, const U8* lim)
9267{
9268 PERL_ARGS_ASSERT_REGHOPMAYBE3;
9269
9270 if (off >= 0) {
9271 while (off-- && s < lim) {
9272 /* XXX could check well-formedness here */
9273 s += UTF8SKIP(s);
9274 }
9275 if (off >= 0)
9276 return NULL;
9277 }
9278 else {
9279 while (off++ && s > lim) {
9280 s--;
9281 if (UTF8_IS_CONTINUED(*s)) {
9282 while (s > lim && UTF8_IS_CONTINUATION(*s))
9283 s--;
9284 if (! UTF8_IS_START(*s)) {
9285 Perl_croak_nocontext("Malformed UTF-8 character (fatal)");
9286 }
9287 }
9288 /* XXX could check well-formedness here */
9289 }
9290 if (off <= 0)
9291 return NULL;
9292 }
9293 return s;
9294}
9295
9296
9297/* when executing a regex that may have (?{}), extra stuff needs setting
9298 up that will be visible to the called code, even before the current
9299 match has finished. In particular:
9300
9301 * $_ is localised to the SV currently being matched;
9302 * pos($_) is created if necessary, ready to be updated on each call-out
9303 to code;
9304 * a fake PMOP is created that can be set to PL_curpm (normally PL_curpm
9305 isn't set until the current pattern is successfully finished), so that
9306 $1 etc of the match-so-far can be seen;
9307 * save the old values of subbeg etc of the current regex, and set then
9308 to the current string (again, this is normally only done at the end
9309 of execution)
9310*/
9311
9312static void
9313S_setup_eval_state(pTHX_ regmatch_info *const reginfo)
9314{
9315 MAGIC *mg;
9316 regexp *const rex = ReANY(reginfo->prog);
9317 regmatch_info_aux_eval *eval_state = reginfo->info_aux_eval;
9318
9319 eval_state->rex = rex;
9320
9321 if (reginfo->sv) {
9322 /* Make $_ available to executed code. */
9323 if (reginfo->sv != DEFSV) {
9324 SAVE_DEFSV;
9325 DEFSV_set(reginfo->sv);
9326 }
9327
9328 if (!(mg = mg_find_mglob(reginfo->sv))) {
9329 /* prepare for quick setting of pos */
9330 mg = sv_magicext_mglob(reginfo->sv);
9331 mg->mg_len = -1;
9332 }
9333 eval_state->pos_magic = mg;
9334 eval_state->pos = mg->mg_len;
9335 eval_state->pos_flags = mg->mg_flags;
9336 }
9337 else
9338 eval_state->pos_magic = NULL;
9339
9340 if (!PL_reg_curpm) {
9341 /* PL_reg_curpm is a fake PMOP that we can attach the current
9342 * regex to and point PL_curpm at, so that $1 et al are visible
9343 * within a /(?{})/. It's just allocated once per interpreter the
9344 * first time its needed */
9345 Newxz(PL_reg_curpm, 1, PMOP);
9346#ifdef USE_ITHREADS
9347 {
9348 SV* const repointer = &PL_sv_undef;
9349 /* this regexp is also owned by the new PL_reg_curpm, which
9350 will try to free it. */
9351 av_push(PL_regex_padav, repointer);
9352 PL_reg_curpm->op_pmoffset = av_tindex(PL_regex_padav);
9353 PL_regex_pad = AvARRAY(PL_regex_padav);
9354 }
9355#endif
9356 }
9357 SET_reg_curpm(reginfo->prog);
9358 eval_state->curpm = PL_curpm;
9359 PL_curpm = PL_reg_curpm;
9360 if (RXp_MATCH_COPIED(rex)) {
9361 /* Here is a serious problem: we cannot rewrite subbeg,
9362 since it may be needed if this match fails. Thus
9363 $` inside (?{}) could fail... */
9364 eval_state->subbeg = rex->subbeg;
9365 eval_state->sublen = rex->sublen;
9366 eval_state->suboffset = rex->suboffset;
9367 eval_state->subcoffset = rex->subcoffset;
9368#ifdef PERL_ANY_COW
9369 eval_state->saved_copy = rex->saved_copy;
9370#endif
9371 RXp_MATCH_COPIED_off(rex);
9372 }
9373 else
9374 eval_state->subbeg = NULL;
9375 rex->subbeg = (char *)reginfo->strbeg;
9376 rex->suboffset = 0;
9377 rex->subcoffset = 0;
9378 rex->sublen = reginfo->strend - reginfo->strbeg;
9379}
9380
9381
9382/* destructor to clear up regmatch_info_aux and regmatch_info_aux_eval */
9383
9384static void
9385S_cleanup_regmatch_info_aux(pTHX_ void *arg)
9386{
9387 regmatch_info_aux *aux = (regmatch_info_aux *) arg;
9388 regmatch_info_aux_eval *eval_state = aux->info_aux_eval;
9389 regmatch_slab *s;
9390
9391 Safefree(aux->poscache);
9392
9393 if (eval_state) {
9394
9395 /* undo the effects of S_setup_eval_state() */
9396
9397 if (eval_state->subbeg) {
9398 regexp * const rex = eval_state->rex;
9399 rex->subbeg = eval_state->subbeg;
9400 rex->sublen = eval_state->sublen;
9401 rex->suboffset = eval_state->suboffset;
9402 rex->subcoffset = eval_state->subcoffset;
9403#ifdef PERL_ANY_COW
9404 rex->saved_copy = eval_state->saved_copy;
9405#endif
9406 RXp_MATCH_COPIED_on(rex);
9407 }
9408 if (eval_state->pos_magic)
9409 {
9410 eval_state->pos_magic->mg_len = eval_state->pos;
9411 eval_state->pos_magic->mg_flags =
9412 (eval_state->pos_magic->mg_flags & ~MGf_BYTES)
9413 | (eval_state->pos_flags & MGf_BYTES);
9414 }
9415
9416 PL_curpm = eval_state->curpm;
9417 }
9418
9419 PL_regmatch_state = aux->old_regmatch_state;
9420 PL_regmatch_slab = aux->old_regmatch_slab;
9421
9422 /* free all slabs above current one - this must be the last action
9423 * of this function, as aux and eval_state are allocated within
9424 * slabs and may be freed here */
9425
9426 s = PL_regmatch_slab->next;
9427 if (s) {
9428 PL_regmatch_slab->next = NULL;
9429 while (s) {
9430 regmatch_slab * const osl = s;
9431 s = s->next;
9432 Safefree(osl);
9433 }
9434 }
9435}
9436
9437
9438STATIC void
9439S_to_utf8_substr(pTHX_ regexp *prog)
9440{
9441 /* Converts substr fields in prog from bytes to UTF-8, calling fbm_compile
9442 * on the converted value */
9443
9444 int i = 1;
9445
9446 PERL_ARGS_ASSERT_TO_UTF8_SUBSTR;
9447
9448 do {
9449 if (prog->substrs->data[i].substr
9450 && !prog->substrs->data[i].utf8_substr) {
9451 SV* const sv = newSVsv(prog->substrs->data[i].substr);
9452 prog->substrs->data[i].utf8_substr = sv;
9453 sv_utf8_upgrade(sv);
9454 if (SvVALID(prog->substrs->data[i].substr)) {
9455 if (SvTAIL(prog->substrs->data[i].substr)) {
9456 /* Trim the trailing \n that fbm_compile added last
9457 time. */
9458 SvCUR_set(sv, SvCUR(sv) - 1);
9459 /* Whilst this makes the SV technically "invalid" (as its
9460 buffer is no longer followed by "\0") when fbm_compile()
9461 adds the "\n" back, a "\0" is restored. */
9462 fbm_compile(sv, FBMcf_TAIL);
9463 } else
9464 fbm_compile(sv, 0);
9465 }
9466 if (prog->substrs->data[i].substr == prog->check_substr)
9467 prog->check_utf8 = sv;
9468 }
9469 } while (i--);
9470}
9471
9472STATIC bool
9473S_to_byte_substr(pTHX_ regexp *prog)
9474{
9475 /* Converts substr fields in prog from UTF-8 to bytes, calling fbm_compile
9476 * on the converted value; returns FALSE if can't be converted. */
9477
9478 int i = 1;
9479
9480 PERL_ARGS_ASSERT_TO_BYTE_SUBSTR;
9481
9482 do {
9483 if (prog->substrs->data[i].utf8_substr
9484 && !prog->substrs->data[i].substr) {
9485 SV* sv = newSVsv(prog->substrs->data[i].utf8_substr);
9486 if (! sv_utf8_downgrade(sv, TRUE)) {
9487 return FALSE;
9488 }
9489 if (SvVALID(prog->substrs->data[i].utf8_substr)) {
9490 if (SvTAIL(prog->substrs->data[i].utf8_substr)) {
9491 /* Trim the trailing \n that fbm_compile added last
9492 time. */
9493 SvCUR_set(sv, SvCUR(sv) - 1);
9494 fbm_compile(sv, FBMcf_TAIL);
9495 } else
9496 fbm_compile(sv, 0);
9497 }
9498 prog->substrs->data[i].substr = sv;
9499 if (prog->substrs->data[i].utf8_substr == prog->check_utf8)
9500 prog->check_substr = sv;
9501 }
9502 } while (i--);
9503
9504 return TRUE;
9505}
9506
9507/*
9508 * ex: set ts=8 sts=4 sw=4 et:
9509 */