This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Restore old behavior for perl builds with (still) unflattened ext/.
[perl5.git] / hv.c
... / ...
CommitLineData
1/* hv.c
2 *
3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * I sit beside the fire and think
13 * of all that I have seen.
14 * --Bilbo
15 *
16 * [p.278 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
17 */
18
19/*
20=head1 Hash Manipulation Functions
21
22A HV structure represents a Perl hash. It consists mainly of an array
23of pointers, each of which points to a linked list of HE structures. The
24array is indexed by the hash function of the key, so each linked list
25represents all the hash entries with the same hash value. Each HE contains
26a pointer to the actual value, plus a pointer to a HEK structure which
27holds the key and hash value.
28
29=cut
30
31*/
32
33#include "EXTERN.h"
34#define PERL_IN_HV_C
35#define PERL_HASH_INTERNAL_ACCESS
36#include "perl.h"
37
38#define HV_MAX_LENGTH_BEFORE_SPLIT 14
39
40static const char S_strtab_error[]
41 = "Cannot modify shared string table in hv_%s";
42
43STATIC void
44S_more_he(pTHX)
45{
46 dVAR;
47 /* We could generate this at compile time via (another) auxiliary C
48 program? */
49 const size_t arena_size = Perl_malloc_good_size(PERL_ARENA_SIZE);
50 HE* he = (HE*) Perl_get_arena(aTHX_ arena_size, HE_SVSLOT);
51 HE * const heend = &he[arena_size / sizeof(HE) - 1];
52
53 PL_body_roots[HE_SVSLOT] = he;
54 while (he < heend) {
55 HeNEXT(he) = (HE*)(he + 1);
56 he++;
57 }
58 HeNEXT(he) = 0;
59}
60
61#ifdef PURIFY
62
63#define new_HE() (HE*)safemalloc(sizeof(HE))
64#define del_HE(p) safefree((char*)p)
65
66#else
67
68STATIC HE*
69S_new_he(pTHX)
70{
71 dVAR;
72 HE* he;
73 void ** const root = &PL_body_roots[HE_SVSLOT];
74
75 if (!*root)
76 S_more_he(aTHX);
77 he = (HE*) *root;
78 assert(he);
79 *root = HeNEXT(he);
80 return he;
81}
82
83#define new_HE() new_he()
84#define del_HE(p) \
85 STMT_START { \
86 HeNEXT(p) = (HE*)(PL_body_roots[HE_SVSLOT]); \
87 PL_body_roots[HE_SVSLOT] = p; \
88 } STMT_END
89
90
91
92#endif
93
94STATIC HEK *
95S_save_hek_flags(const char *str, I32 len, U32 hash, int flags)
96{
97 const int flags_masked = flags & HVhek_MASK;
98 char *k;
99 register HEK *hek;
100
101 PERL_ARGS_ASSERT_SAVE_HEK_FLAGS;
102
103 Newx(k, HEK_BASESIZE + len + 2, char);
104 hek = (HEK*)k;
105 Copy(str, HEK_KEY(hek), len, char);
106 HEK_KEY(hek)[len] = 0;
107 HEK_LEN(hek) = len;
108 HEK_HASH(hek) = hash;
109 HEK_FLAGS(hek) = (unsigned char)flags_masked | HVhek_UNSHARED;
110
111 if (flags & HVhek_FREEKEY)
112 Safefree(str);
113 return hek;
114}
115
116/* free the pool of temporary HE/HEK pairs returned by hv_fetch_ent
117 * for tied hashes */
118
119void
120Perl_free_tied_hv_pool(pTHX)
121{
122 dVAR;
123 HE *he = PL_hv_fetch_ent_mh;
124 while (he) {
125 HE * const ohe = he;
126 Safefree(HeKEY_hek(he));
127 he = HeNEXT(he);
128 del_HE(ohe);
129 }
130 PL_hv_fetch_ent_mh = NULL;
131}
132
133#if defined(USE_ITHREADS)
134HEK *
135Perl_hek_dup(pTHX_ HEK *source, CLONE_PARAMS* param)
136{
137 HEK *shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
138
139 PERL_ARGS_ASSERT_HEK_DUP;
140 PERL_UNUSED_ARG(param);
141
142 if (shared) {
143 /* We already shared this hash key. */
144 (void)share_hek_hek(shared);
145 }
146 else {
147 shared
148 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
149 HEK_HASH(source), HEK_FLAGS(source));
150 ptr_table_store(PL_ptr_table, source, shared);
151 }
152 return shared;
153}
154
155HE *
156Perl_he_dup(pTHX_ const HE *e, bool shared, CLONE_PARAMS* param)
157{
158 HE *ret;
159
160 PERL_ARGS_ASSERT_HE_DUP;
161
162 if (!e)
163 return NULL;
164 /* look for it in the table first */
165 ret = (HE*)ptr_table_fetch(PL_ptr_table, e);
166 if (ret)
167 return ret;
168
169 /* create anew and remember what it is */
170 ret = new_HE();
171 ptr_table_store(PL_ptr_table, e, ret);
172
173 HeNEXT(ret) = he_dup(HeNEXT(e),shared, param);
174 if (HeKLEN(e) == HEf_SVKEY) {
175 char *k;
176 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
177 HeKEY_hek(ret) = (HEK*)k;
178 HeKEY_sv(ret) = SvREFCNT_inc(sv_dup(HeKEY_sv(e), param));
179 }
180 else if (shared) {
181 /* This is hek_dup inlined, which seems to be important for speed
182 reasons. */
183 HEK * const source = HeKEY_hek(e);
184 HEK *shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
185
186 if (shared) {
187 /* We already shared this hash key. */
188 (void)share_hek_hek(shared);
189 }
190 else {
191 shared
192 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
193 HEK_HASH(source), HEK_FLAGS(source));
194 ptr_table_store(PL_ptr_table, source, shared);
195 }
196 HeKEY_hek(ret) = shared;
197 }
198 else
199 HeKEY_hek(ret) = save_hek_flags(HeKEY(e), HeKLEN(e), HeHASH(e),
200 HeKFLAGS(e));
201 HeVAL(ret) = SvREFCNT_inc(sv_dup(HeVAL(e), param));
202 return ret;
203}
204#endif /* USE_ITHREADS */
205
206static void
207S_hv_notallowed(pTHX_ int flags, const char *key, I32 klen,
208 const char *msg)
209{
210 SV * const sv = sv_newmortal();
211
212 PERL_ARGS_ASSERT_HV_NOTALLOWED;
213
214 if (!(flags & HVhek_FREEKEY)) {
215 sv_setpvn(sv, key, klen);
216 }
217 else {
218 /* Need to free saved eventually assign to mortal SV */
219 /* XXX is this line an error ???: SV *sv = sv_newmortal(); */
220 sv_usepvn(sv, (char *) key, klen);
221 }
222 if (flags & HVhek_UTF8) {
223 SvUTF8_on(sv);
224 }
225 Perl_croak(aTHX_ msg, SVfARG(sv));
226}
227
228/* (klen == HEf_SVKEY) is special for MAGICAL hv entries, meaning key slot
229 * contains an SV* */
230
231/*
232=for apidoc hv_store
233
234Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is
235the length of the key. The C<hash> parameter is the precomputed hash
236value; if it is zero then Perl will compute it. The return value will be
237NULL if the operation failed or if the value did not need to be actually
238stored within the hash (as in the case of tied hashes). Otherwise it can
239be dereferenced to get the original C<SV*>. Note that the caller is
240responsible for suitably incrementing the reference count of C<val> before
241the call, and decrementing it if the function returned NULL. Effectively
242a successful hv_store takes ownership of one reference to C<val>. This is
243usually what you want; a newly created SV has a reference count of one, so
244if all your code does is create SVs then store them in a hash, hv_store
245will own the only reference to the new SV, and your code doesn't need to do
246anything further to tidy up. hv_store is not implemented as a call to
247hv_store_ent, and does not create a temporary SV for the key, so if your
248key data is not already in SV form then use hv_store in preference to
249hv_store_ent.
250
251See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
252information on how to use this function on tied hashes.
253
254=for apidoc hv_store_ent
255
256Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
257parameter is the precomputed hash value; if it is zero then Perl will
258compute it. The return value is the new hash entry so created. It will be
259NULL if the operation failed or if the value did not need to be actually
260stored within the hash (as in the case of tied hashes). Otherwise the
261contents of the return value can be accessed using the C<He?> macros
262described here. Note that the caller is responsible for suitably
263incrementing the reference count of C<val> before the call, and
264decrementing it if the function returned NULL. Effectively a successful
265hv_store_ent takes ownership of one reference to C<val>. This is
266usually what you want; a newly created SV has a reference count of one, so
267if all your code does is create SVs then store them in a hash, hv_store
268will own the only reference to the new SV, and your code doesn't need to do
269anything further to tidy up. Note that hv_store_ent only reads the C<key>;
270unlike C<val> it does not take ownership of it, so maintaining the correct
271reference count on C<key> is entirely the caller's responsibility. hv_store
272is not implemented as a call to hv_store_ent, and does not create a temporary
273SV for the key, so if your key data is not already in SV form then use
274hv_store in preference to hv_store_ent.
275
276See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
277information on how to use this function on tied hashes.
278
279=for apidoc hv_exists
280
281Returns a boolean indicating whether the specified hash key exists. The
282C<klen> is the length of the key.
283
284=for apidoc hv_fetch
285
286Returns the SV which corresponds to the specified key in the hash. The
287C<klen> is the length of the key. If C<lval> is set then the fetch will be
288part of a store. Check that the return value is non-null before
289dereferencing it to an C<SV*>.
290
291See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
292information on how to use this function on tied hashes.
293
294=for apidoc hv_exists_ent
295
296Returns a boolean indicating whether the specified hash key exists. C<hash>
297can be a valid precomputed hash value, or 0 to ask for it to be
298computed.
299
300=cut
301*/
302
303/* returns an HE * structure with the all fields set */
304/* note that hent_val will be a mortal sv for MAGICAL hashes */
305/*
306=for apidoc hv_fetch_ent
307
308Returns the hash entry which corresponds to the specified key in the hash.
309C<hash> must be a valid precomputed hash number for the given C<key>, or 0
310if you want the function to compute it. IF C<lval> is set then the fetch
311will be part of a store. Make sure the return value is non-null before
312accessing it. The return value when C<tb> is a tied hash is a pointer to a
313static location, so be sure to make a copy of the structure if you need to
314store it somewhere.
315
316See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
317information on how to use this function on tied hashes.
318
319=cut
320*/
321
322/* Common code for hv_delete()/hv_exists()/hv_fetch()/hv_store() */
323void *
324Perl_hv_common_key_len(pTHX_ HV *hv, const char *key, I32 klen_i32,
325 const int action, SV *val, const U32 hash)
326{
327 STRLEN klen;
328 int flags;
329
330 PERL_ARGS_ASSERT_HV_COMMON_KEY_LEN;
331
332 if (klen_i32 < 0) {
333 klen = -klen_i32;
334 flags = HVhek_UTF8;
335 } else {
336 klen = klen_i32;
337 flags = 0;
338 }
339 return hv_common(hv, NULL, key, klen, flags, action, val, hash);
340}
341
342void *
343Perl_hv_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
344 int flags, int action, SV *val, register U32 hash)
345{
346 dVAR;
347 XPVHV* xhv;
348 HE *entry;
349 HE **oentry;
350 SV *sv;
351 bool is_utf8;
352 int masked_flags;
353 const int return_svp = action & HV_FETCH_JUST_SV;
354
355 if (!hv)
356 return NULL;
357 if (SvTYPE(hv) == SVTYPEMASK)
358 return NULL;
359
360 assert(SvTYPE(hv) == SVt_PVHV);
361
362 if (SvSMAGICAL(hv) && SvGMAGICAL(hv) && !(action & HV_DISABLE_UVAR_XKEY)) {
363 MAGIC* mg;
364 if ((mg = mg_find((const SV *)hv, PERL_MAGIC_uvar))) {
365 struct ufuncs * const uf = (struct ufuncs *)mg->mg_ptr;
366 if (uf->uf_set == NULL) {
367 SV* obj = mg->mg_obj;
368
369 if (!keysv) {
370 keysv = newSVpvn_flags(key, klen, SVs_TEMP |
371 ((flags & HVhek_UTF8)
372 ? SVf_UTF8 : 0));
373 }
374
375 mg->mg_obj = keysv; /* pass key */
376 uf->uf_index = action; /* pass action */
377 magic_getuvar(MUTABLE_SV(hv), mg);
378 keysv = mg->mg_obj; /* may have changed */
379 mg->mg_obj = obj;
380
381 /* If the key may have changed, then we need to invalidate
382 any passed-in computed hash value. */
383 hash = 0;
384 }
385 }
386 }
387 if (keysv) {
388 if (flags & HVhek_FREEKEY)
389 Safefree(key);
390 key = SvPV_const(keysv, klen);
391 is_utf8 = (SvUTF8(keysv) != 0);
392 if (SvIsCOW_shared_hash(keysv)) {
393 flags = HVhek_KEYCANONICAL | (is_utf8 ? HVhek_UTF8 : 0);
394 } else {
395 flags = 0;
396 }
397 } else {
398 is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
399 }
400
401 if (action & HV_DELETE) {
402 return (void *) hv_delete_common(hv, keysv, key, klen,
403 flags | (is_utf8 ? HVhek_UTF8 : 0),
404 action, hash);
405 }
406
407 xhv = (XPVHV*)SvANY(hv);
408 if (SvMAGICAL(hv)) {
409 if (SvRMAGICAL(hv) && !(action & (HV_FETCH_ISSTORE|HV_FETCH_ISEXISTS))) {
410 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
411 || SvGMAGICAL((const SV *)hv))
412 {
413 /* FIXME should be able to skimp on the HE/HEK here when
414 HV_FETCH_JUST_SV is true. */
415 if (!keysv) {
416 keysv = newSVpvn_utf8(key, klen, is_utf8);
417 } else {
418 keysv = newSVsv(keysv);
419 }
420 sv = sv_newmortal();
421 mg_copy(MUTABLE_SV(hv), sv, (char *)keysv, HEf_SVKEY);
422
423 /* grab a fake HE/HEK pair from the pool or make a new one */
424 entry = PL_hv_fetch_ent_mh;
425 if (entry)
426 PL_hv_fetch_ent_mh = HeNEXT(entry);
427 else {
428 char *k;
429 entry = new_HE();
430 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
431 HeKEY_hek(entry) = (HEK*)k;
432 }
433 HeNEXT(entry) = NULL;
434 HeSVKEY_set(entry, keysv);
435 HeVAL(entry) = sv;
436 sv_upgrade(sv, SVt_PVLV);
437 LvTYPE(sv) = 'T';
438 /* so we can free entry when freeing sv */
439 LvTARG(sv) = MUTABLE_SV(entry);
440
441 /* XXX remove at some point? */
442 if (flags & HVhek_FREEKEY)
443 Safefree(key);
444
445 if (return_svp) {
446 return entry ? (void *) &HeVAL(entry) : NULL;
447 }
448 return (void *) entry;
449 }
450#ifdef ENV_IS_CASELESS
451 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
452 U32 i;
453 for (i = 0; i < klen; ++i)
454 if (isLOWER(key[i])) {
455 /* Would be nice if we had a routine to do the
456 copy and upercase in a single pass through. */
457 const char * const nkey = strupr(savepvn(key,klen));
458 /* Note that this fetch is for nkey (the uppercased
459 key) whereas the store is for key (the original) */
460 void *result = hv_common(hv, NULL, nkey, klen,
461 HVhek_FREEKEY, /* free nkey */
462 0 /* non-LVAL fetch */
463 | HV_DISABLE_UVAR_XKEY
464 | return_svp,
465 NULL /* no value */,
466 0 /* compute hash */);
467 if (!result && (action & HV_FETCH_LVALUE)) {
468 /* This call will free key if necessary.
469 Do it this way to encourage compiler to tail
470 call optimise. */
471 result = hv_common(hv, keysv, key, klen, flags,
472 HV_FETCH_ISSTORE
473 | HV_DISABLE_UVAR_XKEY
474 | return_svp,
475 newSV(0), hash);
476 } else {
477 if (flags & HVhek_FREEKEY)
478 Safefree(key);
479 }
480 return result;
481 }
482 }
483#endif
484 } /* ISFETCH */
485 else if (SvRMAGICAL(hv) && (action & HV_FETCH_ISEXISTS)) {
486 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
487 || SvGMAGICAL((const SV *)hv)) {
488 /* I don't understand why hv_exists_ent has svret and sv,
489 whereas hv_exists only had one. */
490 SV * const svret = sv_newmortal();
491 sv = sv_newmortal();
492
493 if (keysv || is_utf8) {
494 if (!keysv) {
495 keysv = newSVpvn_utf8(key, klen, TRUE);
496 } else {
497 keysv = newSVsv(keysv);
498 }
499 mg_copy(MUTABLE_SV(hv), sv, (char *)sv_2mortal(keysv), HEf_SVKEY);
500 } else {
501 mg_copy(MUTABLE_SV(hv), sv, key, klen);
502 }
503 if (flags & HVhek_FREEKEY)
504 Safefree(key);
505 magic_existspack(svret, mg_find(sv, PERL_MAGIC_tiedelem));
506 /* This cast somewhat evil, but I'm merely using NULL/
507 not NULL to return the boolean exists.
508 And I know hv is not NULL. */
509 return SvTRUE(svret) ? (void *)hv : NULL;
510 }
511#ifdef ENV_IS_CASELESS
512 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
513 /* XXX This code isn't UTF8 clean. */
514 char * const keysave = (char * const)key;
515 /* Will need to free this, so set FREEKEY flag. */
516 key = savepvn(key,klen);
517 key = (const char*)strupr((char*)key);
518 is_utf8 = FALSE;
519 hash = 0;
520 keysv = 0;
521
522 if (flags & HVhek_FREEKEY) {
523 Safefree(keysave);
524 }
525 flags |= HVhek_FREEKEY;
526 }
527#endif
528 } /* ISEXISTS */
529 else if (action & HV_FETCH_ISSTORE) {
530 bool needs_copy;
531 bool needs_store;
532 hv_magic_check (hv, &needs_copy, &needs_store);
533 if (needs_copy) {
534 const bool save_taint = PL_tainted;
535 if (keysv || is_utf8) {
536 if (!keysv) {
537 keysv = newSVpvn_utf8(key, klen, TRUE);
538 }
539 if (PL_tainting)
540 PL_tainted = SvTAINTED(keysv);
541 keysv = sv_2mortal(newSVsv(keysv));
542 mg_copy(MUTABLE_SV(hv), val, (char*)keysv, HEf_SVKEY);
543 } else {
544 mg_copy(MUTABLE_SV(hv), val, key, klen);
545 }
546
547 TAINT_IF(save_taint);
548 if (!needs_store) {
549 if (flags & HVhek_FREEKEY)
550 Safefree(key);
551 return NULL;
552 }
553#ifdef ENV_IS_CASELESS
554 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
555 /* XXX This code isn't UTF8 clean. */
556 const char *keysave = key;
557 /* Will need to free this, so set FREEKEY flag. */
558 key = savepvn(key,klen);
559 key = (const char*)strupr((char*)key);
560 is_utf8 = FALSE;
561 hash = 0;
562 keysv = 0;
563
564 if (flags & HVhek_FREEKEY) {
565 Safefree(keysave);
566 }
567 flags |= HVhek_FREEKEY;
568 }
569#endif
570 }
571 } /* ISSTORE */
572 } /* SvMAGICAL */
573
574 if (!HvARRAY(hv)) {
575 if ((action & (HV_FETCH_LVALUE | HV_FETCH_ISSTORE))
576#ifdef DYNAMIC_ENV_FETCH /* if it's an %ENV lookup, we may get it on the fly */
577 || (SvRMAGICAL((const SV *)hv)
578 && mg_find((const SV *)hv, PERL_MAGIC_env))
579#endif
580 ) {
581 char *array;
582 Newxz(array,
583 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
584 char);
585 HvARRAY(hv) = (HE**)array;
586 }
587#ifdef DYNAMIC_ENV_FETCH
588 else if (action & HV_FETCH_ISEXISTS) {
589 /* for an %ENV exists, if we do an insert it's by a recursive
590 store call, so avoid creating HvARRAY(hv) right now. */
591 }
592#endif
593 else {
594 /* XXX remove at some point? */
595 if (flags & HVhek_FREEKEY)
596 Safefree(key);
597
598 return NULL;
599 }
600 }
601
602 if (is_utf8 & !(flags & HVhek_KEYCANONICAL)) {
603 char * const keysave = (char *)key;
604 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
605 if (is_utf8)
606 flags |= HVhek_UTF8;
607 else
608 flags &= ~HVhek_UTF8;
609 if (key != keysave) {
610 if (flags & HVhek_FREEKEY)
611 Safefree(keysave);
612 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
613 /* If the caller calculated a hash, it was on the sequence of
614 octets that are the UTF-8 form. We've now changed the sequence
615 of octets stored to that of the equivalent byte representation,
616 so the hash we need is different. */
617 hash = 0;
618 }
619 }
620
621 if (HvREHASH(hv)) {
622 PERL_HASH_INTERNAL(hash, key, klen);
623 /* We don't have a pointer to the hv, so we have to replicate the
624 flag into every HEK, so that hv_iterkeysv can see it. */
625 /* And yes, you do need this even though you are not "storing" because
626 you can flip the flags below if doing an lval lookup. (And that
627 was put in to give the semantics Andreas was expecting.) */
628 flags |= HVhek_REHASH;
629 } else if (!hash) {
630 if (keysv && (SvIsCOW_shared_hash(keysv))) {
631 hash = SvSHARED_HASH(keysv);
632 } else {
633 PERL_HASH(hash, key, klen);
634 }
635 }
636
637 masked_flags = (flags & HVhek_MASK);
638
639#ifdef DYNAMIC_ENV_FETCH
640 if (!HvARRAY(hv)) entry = NULL;
641 else
642#endif
643 {
644 entry = (HvARRAY(hv))[hash & (I32) HvMAX(hv)];
645 }
646 for (; entry; entry = HeNEXT(entry)) {
647 if (HeHASH(entry) != hash) /* strings can't be equal */
648 continue;
649 if (HeKLEN(entry) != (I32)klen)
650 continue;
651 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
652 continue;
653 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
654 continue;
655
656 if (action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE)) {
657 if (HeKFLAGS(entry) != masked_flags) {
658 /* We match if HVhek_UTF8 bit in our flags and hash key's
659 match. But if entry was set previously with HVhek_WASUTF8
660 and key now doesn't (or vice versa) then we should change
661 the key's flag, as this is assignment. */
662 if (HvSHAREKEYS(hv)) {
663 /* Need to swap the key we have for a key with the flags we
664 need. As keys are shared we can't just write to the
665 flag, so we share the new one, unshare the old one. */
666 HEK * const new_hek = share_hek_flags(key, klen, hash,
667 masked_flags);
668 unshare_hek (HeKEY_hek(entry));
669 HeKEY_hek(entry) = new_hek;
670 }
671 else if (hv == PL_strtab) {
672 /* PL_strtab is usually the only hash without HvSHAREKEYS,
673 so putting this test here is cheap */
674 if (flags & HVhek_FREEKEY)
675 Safefree(key);
676 Perl_croak(aTHX_ S_strtab_error,
677 action & HV_FETCH_LVALUE ? "fetch" : "store");
678 }
679 else
680 HeKFLAGS(entry) = masked_flags;
681 if (masked_flags & HVhek_ENABLEHVKFLAGS)
682 HvHASKFLAGS_on(hv);
683 }
684 if (HeVAL(entry) == &PL_sv_placeholder) {
685 /* yes, can store into placeholder slot */
686 if (action & HV_FETCH_LVALUE) {
687 if (SvMAGICAL(hv)) {
688 /* This preserves behaviour with the old hv_fetch
689 implementation which at this point would bail out
690 with a break; (at "if we find a placeholder, we
691 pretend we haven't found anything")
692
693 That break mean that if a placeholder were found, it
694 caused a call into hv_store, which in turn would
695 check magic, and if there is no magic end up pretty
696 much back at this point (in hv_store's code). */
697 break;
698 }
699 /* LVAL fetch which actaully needs a store. */
700 val = newSV(0);
701 HvPLACEHOLDERS(hv)--;
702 } else {
703 /* store */
704 if (val != &PL_sv_placeholder)
705 HvPLACEHOLDERS(hv)--;
706 }
707 HeVAL(entry) = val;
708 } else if (action & HV_FETCH_ISSTORE) {
709 SvREFCNT_dec(HeVAL(entry));
710 HeVAL(entry) = val;
711 }
712 } else if (HeVAL(entry) == &PL_sv_placeholder) {
713 /* if we find a placeholder, we pretend we haven't found
714 anything */
715 break;
716 }
717 if (flags & HVhek_FREEKEY)
718 Safefree(key);
719 if (return_svp) {
720 return entry ? (void *) &HeVAL(entry) : NULL;
721 }
722 return entry;
723 }
724#ifdef DYNAMIC_ENV_FETCH /* %ENV lookup? If so, try to fetch the value now */
725 if (!(action & HV_FETCH_ISSTORE)
726 && SvRMAGICAL((const SV *)hv)
727 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
728 unsigned long len;
729 const char * const env = PerlEnv_ENVgetenv_len(key,&len);
730 if (env) {
731 sv = newSVpvn(env,len);
732 SvTAINTED_on(sv);
733 return hv_common(hv, keysv, key, klen, flags,
734 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
735 sv, hash);
736 }
737 }
738#endif
739
740 if (!entry && SvREADONLY(hv) && !(action & HV_FETCH_ISEXISTS)) {
741 hv_notallowed(flags, key, klen,
742 "Attempt to access disallowed key '%"SVf"' in"
743 " a restricted hash");
744 }
745 if (!(action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE))) {
746 /* Not doing some form of store, so return failure. */
747 if (flags & HVhek_FREEKEY)
748 Safefree(key);
749 return NULL;
750 }
751 if (action & HV_FETCH_LVALUE) {
752 val = newSV(0);
753 if (SvMAGICAL(hv)) {
754 /* At this point the old hv_fetch code would call to hv_store,
755 which in turn might do some tied magic. So we need to make that
756 magic check happen. */
757 /* gonna assign to this, so it better be there */
758 /* If a fetch-as-store fails on the fetch, then the action is to
759 recurse once into "hv_store". If we didn't do this, then that
760 recursive call would call the key conversion routine again.
761 However, as we replace the original key with the converted
762 key, this would result in a double conversion, which would show
763 up as a bug if the conversion routine is not idempotent. */
764 return hv_common(hv, keysv, key, klen, flags,
765 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
766 val, hash);
767 /* XXX Surely that could leak if the fetch-was-store fails?
768 Just like the hv_fetch. */
769 }
770 }
771
772 /* Welcome to hv_store... */
773
774 if (!HvARRAY(hv)) {
775 /* Not sure if we can get here. I think the only case of oentry being
776 NULL is for %ENV with dynamic env fetch. But that should disappear
777 with magic in the previous code. */
778 char *array;
779 Newxz(array,
780 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
781 char);
782 HvARRAY(hv) = (HE**)array;
783 }
784
785 oentry = &(HvARRAY(hv))[hash & (I32) xhv->xhv_max];
786
787 entry = new_HE();
788 /* share_hek_flags will do the free for us. This might be considered
789 bad API design. */
790 if (HvSHAREKEYS(hv))
791 HeKEY_hek(entry) = share_hek_flags(key, klen, hash, flags);
792 else if (hv == PL_strtab) {
793 /* PL_strtab is usually the only hash without HvSHAREKEYS, so putting
794 this test here is cheap */
795 if (flags & HVhek_FREEKEY)
796 Safefree(key);
797 Perl_croak(aTHX_ S_strtab_error,
798 action & HV_FETCH_LVALUE ? "fetch" : "store");
799 }
800 else /* gotta do the real thing */
801 HeKEY_hek(entry) = save_hek_flags(key, klen, hash, flags);
802 HeVAL(entry) = val;
803 HeNEXT(entry) = *oentry;
804 *oentry = entry;
805
806 if (val == &PL_sv_placeholder)
807 HvPLACEHOLDERS(hv)++;
808 if (masked_flags & HVhek_ENABLEHVKFLAGS)
809 HvHASKFLAGS_on(hv);
810
811 {
812 const HE *counter = HeNEXT(entry);
813
814 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
815 if (!counter) { /* initial entry? */
816 xhv->xhv_fill++; /* HvFILL(hv)++ */
817 } else if (xhv->xhv_keys > (IV)xhv->xhv_max) {
818 hsplit(hv);
819 } else if(!HvREHASH(hv)) {
820 U32 n_links = 1;
821
822 while ((counter = HeNEXT(counter)))
823 n_links++;
824
825 if (n_links > HV_MAX_LENGTH_BEFORE_SPLIT) {
826 /* Use only the old HvKEYS(hv) > HvMAX(hv) condition to limit
827 bucket splits on a rehashed hash, as we're not going to
828 split it again, and if someone is lucky (evil) enough to
829 get all the keys in one list they could exhaust our memory
830 as we repeatedly double the number of buckets on every
831 entry. Linear search feels a less worse thing to do. */
832 hsplit(hv);
833 }
834 }
835 }
836
837 if (return_svp) {
838 return entry ? (void *) &HeVAL(entry) : NULL;
839 }
840 return (void *) entry;
841}
842
843STATIC void
844S_hv_magic_check(HV *hv, bool *needs_copy, bool *needs_store)
845{
846 const MAGIC *mg = SvMAGIC(hv);
847
848 PERL_ARGS_ASSERT_HV_MAGIC_CHECK;
849
850 *needs_copy = FALSE;
851 *needs_store = TRUE;
852 while (mg) {
853 if (isUPPER(mg->mg_type)) {
854 *needs_copy = TRUE;
855 if (mg->mg_type == PERL_MAGIC_tied) {
856 *needs_store = FALSE;
857 return; /* We've set all there is to set. */
858 }
859 }
860 mg = mg->mg_moremagic;
861 }
862}
863
864/*
865=for apidoc hv_scalar
866
867Evaluates the hash in scalar context and returns the result. Handles magic when the hash is tied.
868
869=cut
870*/
871
872SV *
873Perl_hv_scalar(pTHX_ HV *hv)
874{
875 SV *sv;
876
877 PERL_ARGS_ASSERT_HV_SCALAR;
878
879 if (SvRMAGICAL(hv)) {
880 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_tied);
881 if (mg)
882 return magic_scalarpack(hv, mg);
883 }
884
885 sv = sv_newmortal();
886 if (HvFILL((const HV *)hv))
887 Perl_sv_setpvf(aTHX_ sv, "%ld/%ld",
888 (long)HvFILL(hv), (long)HvMAX(hv) + 1);
889 else
890 sv_setiv(sv, 0);
891
892 return sv;
893}
894
895/*
896=for apidoc hv_delete
897
898Deletes a key/value pair in the hash. The value SV is removed from the
899hash and returned to the caller. The C<klen> is the length of the key.
900The C<flags> value will normally be zero; if set to G_DISCARD then NULL
901will be returned.
902
903=for apidoc hv_delete_ent
904
905Deletes a key/value pair in the hash. The value SV is removed from the
906hash and returned to the caller. The C<flags> value will normally be zero;
907if set to G_DISCARD then NULL will be returned. C<hash> can be a valid
908precomputed hash value, or 0 to ask for it to be computed.
909
910=cut
911*/
912
913STATIC SV *
914S_hv_delete_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
915 int k_flags, I32 d_flags, U32 hash)
916{
917 dVAR;
918 register XPVHV* xhv;
919 register HE *entry;
920 register HE **oentry;
921 HE *const *first_entry;
922 bool is_utf8 = (k_flags & HVhek_UTF8) ? TRUE : FALSE;
923 int masked_flags;
924
925 if (SvRMAGICAL(hv)) {
926 bool needs_copy;
927 bool needs_store;
928 hv_magic_check (hv, &needs_copy, &needs_store);
929
930 if (needs_copy) {
931 SV *sv;
932 entry = (HE *) hv_common(hv, keysv, key, klen,
933 k_flags & ~HVhek_FREEKEY,
934 HV_FETCH_LVALUE|HV_DISABLE_UVAR_XKEY,
935 NULL, hash);
936 sv = entry ? HeVAL(entry) : NULL;
937 if (sv) {
938 if (SvMAGICAL(sv)) {
939 mg_clear(sv);
940 }
941 if (!needs_store) {
942 if (mg_find(sv, PERL_MAGIC_tiedelem)) {
943 /* No longer an element */
944 sv_unmagic(sv, PERL_MAGIC_tiedelem);
945 return sv;
946 }
947 return NULL; /* element cannot be deleted */
948 }
949#ifdef ENV_IS_CASELESS
950 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
951 /* XXX This code isn't UTF8 clean. */
952 keysv = newSVpvn_flags(key, klen, SVs_TEMP);
953 if (k_flags & HVhek_FREEKEY) {
954 Safefree(key);
955 }
956 key = strupr(SvPVX(keysv));
957 is_utf8 = 0;
958 k_flags = 0;
959 hash = 0;
960 }
961#endif
962 }
963 }
964 }
965 xhv = (XPVHV*)SvANY(hv);
966 if (!HvARRAY(hv))
967 return NULL;
968
969 if (is_utf8) {
970 const char * const keysave = key;
971 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
972
973 if (is_utf8)
974 k_flags |= HVhek_UTF8;
975 else
976 k_flags &= ~HVhek_UTF8;
977 if (key != keysave) {
978 if (k_flags & HVhek_FREEKEY) {
979 /* This shouldn't happen if our caller does what we expect,
980 but strictly the API allows it. */
981 Safefree(keysave);
982 }
983 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
984 }
985 HvHASKFLAGS_on(MUTABLE_SV(hv));
986 }
987
988 if (HvREHASH(hv)) {
989 PERL_HASH_INTERNAL(hash, key, klen);
990 } else if (!hash) {
991 if (keysv && (SvIsCOW_shared_hash(keysv))) {
992 hash = SvSHARED_HASH(keysv);
993 } else {
994 PERL_HASH(hash, key, klen);
995 }
996 }
997
998 masked_flags = (k_flags & HVhek_MASK);
999
1000 first_entry = oentry = &(HvARRAY(hv))[hash & (I32) HvMAX(hv)];
1001 entry = *oentry;
1002 for (; entry; oentry = &HeNEXT(entry), entry = *oentry) {
1003 SV *sv;
1004 if (HeHASH(entry) != hash) /* strings can't be equal */
1005 continue;
1006 if (HeKLEN(entry) != (I32)klen)
1007 continue;
1008 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
1009 continue;
1010 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
1011 continue;
1012
1013 if (hv == PL_strtab) {
1014 if (k_flags & HVhek_FREEKEY)
1015 Safefree(key);
1016 Perl_croak(aTHX_ S_strtab_error, "delete");
1017 }
1018
1019 /* if placeholder is here, it's already been deleted.... */
1020 if (HeVAL(entry) == &PL_sv_placeholder) {
1021 if (k_flags & HVhek_FREEKEY)
1022 Safefree(key);
1023 return NULL;
1024 }
1025 if (SvREADONLY(hv) && HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
1026 hv_notallowed(k_flags, key, klen,
1027 "Attempt to delete readonly key '%"SVf"' from"
1028 " a restricted hash");
1029 }
1030 if (k_flags & HVhek_FREEKEY)
1031 Safefree(key);
1032
1033 if (d_flags & G_DISCARD)
1034 sv = NULL;
1035 else {
1036 sv = sv_2mortal(HeVAL(entry));
1037 HeVAL(entry) = &PL_sv_placeholder;
1038 }
1039
1040 /*
1041 * If a restricted hash, rather than really deleting the entry, put
1042 * a placeholder there. This marks the key as being "approved", so
1043 * we can still access via not-really-existing key without raising
1044 * an error.
1045 */
1046 if (SvREADONLY(hv)) {
1047 SvREFCNT_dec(HeVAL(entry));
1048 HeVAL(entry) = &PL_sv_placeholder;
1049 /* We'll be saving this slot, so the number of allocated keys
1050 * doesn't go down, but the number placeholders goes up */
1051 HvPLACEHOLDERS(hv)++;
1052 } else {
1053 *oentry = HeNEXT(entry);
1054 if(!*first_entry) {
1055 xhv->xhv_fill--; /* HvFILL(hv)-- */
1056 }
1057 if (SvOOK(hv) && entry == HvAUX(hv)->xhv_eiter /* HvEITER(hv) */)
1058 HvLAZYDEL_on(hv);
1059 else
1060 hv_free_ent(hv, entry);
1061 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
1062 if (xhv->xhv_keys == 0)
1063 HvHASKFLAGS_off(hv);
1064 }
1065 return sv;
1066 }
1067 if (SvREADONLY(hv)) {
1068 hv_notallowed(k_flags, key, klen,
1069 "Attempt to delete disallowed key '%"SVf"' from"
1070 " a restricted hash");
1071 }
1072
1073 if (k_flags & HVhek_FREEKEY)
1074 Safefree(key);
1075 return NULL;
1076}
1077
1078STATIC void
1079S_hsplit(pTHX_ HV *hv)
1080{
1081 dVAR;
1082 register XPVHV* const xhv = (XPVHV*)SvANY(hv);
1083 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1084 register I32 newsize = oldsize * 2;
1085 register I32 i;
1086 char *a = (char*) HvARRAY(hv);
1087 register HE **aep;
1088 register HE **oentry;
1089 int longest_chain = 0;
1090 int was_shared;
1091
1092 PERL_ARGS_ASSERT_HSPLIT;
1093
1094 /*PerlIO_printf(PerlIO_stderr(), "hsplit called for %p which had %d\n",
1095 (void*)hv, (int) oldsize);*/
1096
1097 if (HvPLACEHOLDERS_get(hv) && !SvREADONLY(hv)) {
1098 /* Can make this clear any placeholders first for non-restricted hashes,
1099 even though Storable rebuilds restricted hashes by putting in all the
1100 placeholders (first) before turning on the readonly flag, because
1101 Storable always pre-splits the hash. */
1102 hv_clear_placeholders(hv);
1103 }
1104
1105 PL_nomemok = TRUE;
1106#if defined(STRANGE_MALLOC) || defined(MYMALLOC)
1107 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1108 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1109 if (!a) {
1110 PL_nomemok = FALSE;
1111 return;
1112 }
1113 if (SvOOK(hv)) {
1114 Move(&a[oldsize * sizeof(HE*)], &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1115 }
1116#else
1117 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1118 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1119 if (!a) {
1120 PL_nomemok = FALSE;
1121 return;
1122 }
1123 Copy(HvARRAY(hv), a, oldsize * sizeof(HE*), char);
1124 if (SvOOK(hv)) {
1125 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1126 }
1127 if (oldsize >= 64) {
1128 offer_nice_chunk(HvARRAY(hv),
1129 PERL_HV_ARRAY_ALLOC_BYTES(oldsize)
1130 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0));
1131 }
1132 else
1133 Safefree(HvARRAY(hv));
1134#endif
1135
1136 PL_nomemok = FALSE;
1137 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1138 xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
1139 HvARRAY(hv) = (HE**) a;
1140 aep = (HE**)a;
1141
1142 for (i=0; i<oldsize; i++,aep++) {
1143 int left_length = 0;
1144 int right_length = 0;
1145 register HE *entry;
1146 register HE **bep;
1147
1148 if (!*aep) /* non-existent */
1149 continue;
1150 bep = aep+oldsize;
1151 for (oentry = aep, entry = *aep; entry; entry = *oentry) {
1152 if ((HeHASH(entry) & newsize) != (U32)i) {
1153 *oentry = HeNEXT(entry);
1154 HeNEXT(entry) = *bep;
1155 if (!*bep)
1156 xhv->xhv_fill++; /* HvFILL(hv)++ */
1157 *bep = entry;
1158 right_length++;
1159 continue;
1160 }
1161 else {
1162 oentry = &HeNEXT(entry);
1163 left_length++;
1164 }
1165 }
1166 if (!*aep) /* everything moved */
1167 xhv->xhv_fill--; /* HvFILL(hv)-- */
1168 /* I think we don't actually need to keep track of the longest length,
1169 merely flag if anything is too long. But for the moment while
1170 developing this code I'll track it. */
1171 if (left_length > longest_chain)
1172 longest_chain = left_length;
1173 if (right_length > longest_chain)
1174 longest_chain = right_length;
1175 }
1176
1177
1178 /* Pick your policy for "hashing isn't working" here: */
1179 if (longest_chain <= HV_MAX_LENGTH_BEFORE_SPLIT /* split worked? */
1180 || HvREHASH(hv)) {
1181 return;
1182 }
1183
1184 if (hv == PL_strtab) {
1185 /* Urg. Someone is doing something nasty to the string table.
1186 Can't win. */
1187 return;
1188 }
1189
1190 /* Awooga. Awooga. Pathological data. */
1191 /*PerlIO_printf(PerlIO_stderr(), "%p %d of %d with %d/%d buckets\n", (void*)hv,
1192 longest_chain, HvTOTALKEYS(hv), HvFILL(hv), 1+HvMAX(hv));*/
1193
1194 ++newsize;
1195 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1196 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1197 if (SvOOK(hv)) {
1198 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1199 }
1200
1201 was_shared = HvSHAREKEYS(hv);
1202
1203 xhv->xhv_fill = 0;
1204 HvSHAREKEYS_off(hv);
1205 HvREHASH_on(hv);
1206
1207 aep = HvARRAY(hv);
1208
1209 for (i=0; i<newsize; i++,aep++) {
1210 register HE *entry = *aep;
1211 while (entry) {
1212 /* We're going to trash this HE's next pointer when we chain it
1213 into the new hash below, so store where we go next. */
1214 HE * const next = HeNEXT(entry);
1215 UV hash;
1216 HE **bep;
1217
1218 /* Rehash it */
1219 PERL_HASH_INTERNAL(hash, HeKEY(entry), HeKLEN(entry));
1220
1221 if (was_shared) {
1222 /* Unshare it. */
1223 HEK * const new_hek
1224 = save_hek_flags(HeKEY(entry), HeKLEN(entry),
1225 hash, HeKFLAGS(entry));
1226 unshare_hek (HeKEY_hek(entry));
1227 HeKEY_hek(entry) = new_hek;
1228 } else {
1229 /* Not shared, so simply write the new hash in. */
1230 HeHASH(entry) = hash;
1231 }
1232 /*PerlIO_printf(PerlIO_stderr(), "%d ", HeKFLAGS(entry));*/
1233 HEK_REHASH_on(HeKEY_hek(entry));
1234 /*PerlIO_printf(PerlIO_stderr(), "%d\n", HeKFLAGS(entry));*/
1235
1236 /* Copy oentry to the correct new chain. */
1237 bep = ((HE**)a) + (hash & (I32) xhv->xhv_max);
1238 if (!*bep)
1239 xhv->xhv_fill++; /* HvFILL(hv)++ */
1240 HeNEXT(entry) = *bep;
1241 *bep = entry;
1242
1243 entry = next;
1244 }
1245 }
1246 Safefree (HvARRAY(hv));
1247 HvARRAY(hv) = (HE **)a;
1248}
1249
1250void
1251Perl_hv_ksplit(pTHX_ HV *hv, IV newmax)
1252{
1253 dVAR;
1254 register XPVHV* xhv = (XPVHV*)SvANY(hv);
1255 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1256 register I32 newsize;
1257 register I32 i;
1258 register char *a;
1259 register HE **aep;
1260 register HE *entry;
1261 register HE **oentry;
1262
1263 PERL_ARGS_ASSERT_HV_KSPLIT;
1264
1265 newsize = (I32) newmax; /* possible truncation here */
1266 if (newsize != newmax || newmax <= oldsize)
1267 return;
1268 while ((newsize & (1 + ~newsize)) != newsize) {
1269 newsize &= ~(newsize & (1 + ~newsize)); /* get proper power of 2 */
1270 }
1271 if (newsize < newmax)
1272 newsize *= 2;
1273 if (newsize < newmax)
1274 return; /* overflow detection */
1275
1276 a = (char *) HvARRAY(hv);
1277 if (a) {
1278 PL_nomemok = TRUE;
1279#if defined(STRANGE_MALLOC) || defined(MYMALLOC)
1280 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1281 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1282 if (!a) {
1283 PL_nomemok = FALSE;
1284 return;
1285 }
1286 if (SvOOK(hv)) {
1287 Copy(&a[oldsize * sizeof(HE*)], &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1288 }
1289#else
1290 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1291 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1292 if (!a) {
1293 PL_nomemok = FALSE;
1294 return;
1295 }
1296 Copy(HvARRAY(hv), a, oldsize * sizeof(HE*), char);
1297 if (SvOOK(hv)) {
1298 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1299 }
1300 if (oldsize >= 64) {
1301 offer_nice_chunk(HvARRAY(hv),
1302 PERL_HV_ARRAY_ALLOC_BYTES(oldsize)
1303 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0));
1304 }
1305 else
1306 Safefree(HvARRAY(hv));
1307#endif
1308 PL_nomemok = FALSE;
1309 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1310 }
1311 else {
1312 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
1313 }
1314 xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
1315 HvARRAY(hv) = (HE **) a;
1316 if (!xhv->xhv_fill /* !HvFILL(hv) */) /* skip rest if no entries */
1317 return;
1318
1319 aep = (HE**)a;
1320 for (i=0; i<oldsize; i++,aep++) {
1321 if (!*aep) /* non-existent */
1322 continue;
1323 for (oentry = aep, entry = *aep; entry; entry = *oentry) {
1324 register I32 j = (HeHASH(entry) & newsize);
1325
1326 if (j != i) {
1327 j -= i;
1328 *oentry = HeNEXT(entry);
1329 if (!(HeNEXT(entry) = aep[j]))
1330 xhv->xhv_fill++; /* HvFILL(hv)++ */
1331 aep[j] = entry;
1332 continue;
1333 }
1334 else
1335 oentry = &HeNEXT(entry);
1336 }
1337 if (!*aep) /* everything moved */
1338 xhv->xhv_fill--; /* HvFILL(hv)-- */
1339 }
1340}
1341
1342HV *
1343Perl_newHVhv(pTHX_ HV *ohv)
1344{
1345 HV * const hv = newHV();
1346 STRLEN hv_max, hv_fill;
1347
1348 if (!ohv || (hv_fill = HvFILL(ohv)) == 0)
1349 return hv;
1350 hv_max = HvMAX(ohv);
1351
1352 if (!SvMAGICAL((const SV *)ohv)) {
1353 /* It's an ordinary hash, so copy it fast. AMS 20010804 */
1354 STRLEN i;
1355 const bool shared = !!HvSHAREKEYS(ohv);
1356 HE **ents, ** const oents = (HE **)HvARRAY(ohv);
1357 char *a;
1358 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(hv_max+1), char);
1359 ents = (HE**)a;
1360
1361 /* In each bucket... */
1362 for (i = 0; i <= hv_max; i++) {
1363 HE *prev = NULL;
1364 HE *oent = oents[i];
1365
1366 if (!oent) {
1367 ents[i] = NULL;
1368 continue;
1369 }
1370
1371 /* Copy the linked list of entries. */
1372 for (; oent; oent = HeNEXT(oent)) {
1373 const U32 hash = HeHASH(oent);
1374 const char * const key = HeKEY(oent);
1375 const STRLEN len = HeKLEN(oent);
1376 const int flags = HeKFLAGS(oent);
1377 HE * const ent = new_HE();
1378
1379 HeVAL(ent) = newSVsv(HeVAL(oent));
1380 HeKEY_hek(ent)
1381 = shared ? share_hek_flags(key, len, hash, flags)
1382 : save_hek_flags(key, len, hash, flags);
1383 if (prev)
1384 HeNEXT(prev) = ent;
1385 else
1386 ents[i] = ent;
1387 prev = ent;
1388 HeNEXT(ent) = NULL;
1389 }
1390 }
1391
1392 HvMAX(hv) = hv_max;
1393 HvFILL(hv) = hv_fill;
1394 HvTOTALKEYS(hv) = HvTOTALKEYS(ohv);
1395 HvARRAY(hv) = ents;
1396 } /* not magical */
1397 else {
1398 /* Iterate over ohv, copying keys and values one at a time. */
1399 HE *entry;
1400 const I32 riter = HvRITER_get(ohv);
1401 HE * const eiter = HvEITER_get(ohv);
1402
1403 /* Can we use fewer buckets? (hv_max is always 2^n-1) */
1404 while (hv_max && hv_max + 1 >= hv_fill * 2)
1405 hv_max = hv_max / 2;
1406 HvMAX(hv) = hv_max;
1407
1408 hv_iterinit(ohv);
1409 while ((entry = hv_iternext_flags(ohv, 0))) {
1410 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
1411 newSVsv(HeVAL(entry)), HeHASH(entry),
1412 HeKFLAGS(entry));
1413 }
1414 HvRITER_set(ohv, riter);
1415 HvEITER_set(ohv, eiter);
1416 }
1417
1418 return hv;
1419}
1420
1421/* A rather specialised version of newHVhv for copying %^H, ensuring all the
1422 magic stays on it. */
1423HV *
1424Perl_hv_copy_hints_hv(pTHX_ HV *const ohv)
1425{
1426 HV * const hv = newHV();
1427 STRLEN hv_fill;
1428
1429 if (ohv && (hv_fill = HvFILL(ohv))) {
1430 STRLEN hv_max = HvMAX(ohv);
1431 HE *entry;
1432 const I32 riter = HvRITER_get(ohv);
1433 HE * const eiter = HvEITER_get(ohv);
1434
1435 while (hv_max && hv_max + 1 >= hv_fill * 2)
1436 hv_max = hv_max / 2;
1437 HvMAX(hv) = hv_max;
1438
1439 hv_iterinit(ohv);
1440 while ((entry = hv_iternext_flags(ohv, 0))) {
1441 SV *const sv = newSVsv(HeVAL(entry));
1442 sv_magic(sv, NULL, PERL_MAGIC_hintselem,
1443 (char *)newSVhek (HeKEY_hek(entry)), HEf_SVKEY);
1444 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
1445 sv, HeHASH(entry), HeKFLAGS(entry));
1446 }
1447 HvRITER_set(ohv, riter);
1448 HvEITER_set(ohv, eiter);
1449 }
1450 hv_magic(hv, NULL, PERL_MAGIC_hints);
1451 return hv;
1452}
1453
1454void
1455Perl_hv_free_ent(pTHX_ HV *hv, register HE *entry)
1456{
1457 dVAR;
1458 SV *val;
1459
1460 PERL_ARGS_ASSERT_HV_FREE_ENT;
1461
1462 if (!entry)
1463 return;
1464 val = HeVAL(entry);
1465 if (val && isGV(val) && isGV_with_GP(val) && GvCVu(val) && HvNAME_get(hv))
1466 mro_method_changed_in(hv); /* deletion of method from stash */
1467 SvREFCNT_dec(val);
1468 if (HeKLEN(entry) == HEf_SVKEY) {
1469 SvREFCNT_dec(HeKEY_sv(entry));
1470 Safefree(HeKEY_hek(entry));
1471 }
1472 else if (HvSHAREKEYS(hv))
1473 unshare_hek(HeKEY_hek(entry));
1474 else
1475 Safefree(HeKEY_hek(entry));
1476 del_HE(entry);
1477}
1478
1479void
1480Perl_hv_delayfree_ent(pTHX_ HV *hv, register HE *entry)
1481{
1482 dVAR;
1483
1484 PERL_ARGS_ASSERT_HV_DELAYFREE_ENT;
1485
1486 if (!entry)
1487 return;
1488 /* SvREFCNT_inc to counter the SvREFCNT_dec in hv_free_ent */
1489 sv_2mortal(SvREFCNT_inc(HeVAL(entry))); /* free between statements */
1490 if (HeKLEN(entry) == HEf_SVKEY) {
1491 sv_2mortal(SvREFCNT_inc(HeKEY_sv(entry)));
1492 }
1493 hv_free_ent(hv, entry);
1494}
1495
1496/*
1497=for apidoc hv_clear
1498
1499Clears a hash, making it empty.
1500
1501=cut
1502*/
1503
1504void
1505Perl_hv_clear(pTHX_ HV *hv)
1506{
1507 dVAR;
1508 register XPVHV* xhv;
1509 if (!hv)
1510 return;
1511
1512 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1513
1514 xhv = (XPVHV*)SvANY(hv);
1515
1516 if (SvREADONLY(hv) && HvARRAY(hv) != NULL) {
1517 /* restricted hash: convert all keys to placeholders */
1518 STRLEN i;
1519 for (i = 0; i <= xhv->xhv_max; i++) {
1520 HE *entry = (HvARRAY(hv))[i];
1521 for (; entry; entry = HeNEXT(entry)) {
1522 /* not already placeholder */
1523 if (HeVAL(entry) != &PL_sv_placeholder) {
1524 if (HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
1525 SV* const keysv = hv_iterkeysv(entry);
1526 Perl_croak(aTHX_
1527 "Attempt to delete readonly key '%"SVf"' from a restricted hash",
1528 (void*)keysv);
1529 }
1530 SvREFCNT_dec(HeVAL(entry));
1531 HeVAL(entry) = &PL_sv_placeholder;
1532 HvPLACEHOLDERS(hv)++;
1533 }
1534 }
1535 }
1536 goto reset;
1537 }
1538
1539 hfreeentries(hv);
1540 HvPLACEHOLDERS_set(hv, 0);
1541 if (HvARRAY(hv))
1542 Zero(HvARRAY(hv), xhv->xhv_max+1 /* HvMAX(hv)+1 */, HE*);
1543
1544 if (SvRMAGICAL(hv))
1545 mg_clear(MUTABLE_SV(hv));
1546
1547 HvHASKFLAGS_off(hv);
1548 HvREHASH_off(hv);
1549 reset:
1550 if (SvOOK(hv)) {
1551 if(HvNAME_get(hv))
1552 mro_isa_changed_in(hv);
1553 HvEITER_set(hv, NULL);
1554 }
1555}
1556
1557/*
1558=for apidoc hv_clear_placeholders
1559
1560Clears any placeholders from a hash. If a restricted hash has any of its keys
1561marked as readonly and the key is subsequently deleted, the key is not actually
1562deleted but is marked by assigning it a value of &PL_sv_placeholder. This tags
1563it so it will be ignored by future operations such as iterating over the hash,
1564but will still allow the hash to have a value reassigned to the key at some
1565future point. This function clears any such placeholder keys from the hash.
1566See Hash::Util::lock_keys() for an example of its use.
1567
1568=cut
1569*/
1570
1571void
1572Perl_hv_clear_placeholders(pTHX_ HV *hv)
1573{
1574 dVAR;
1575 const U32 items = (U32)HvPLACEHOLDERS_get(hv);
1576
1577 PERL_ARGS_ASSERT_HV_CLEAR_PLACEHOLDERS;
1578
1579 if (items)
1580 clear_placeholders(hv, items);
1581}
1582
1583static void
1584S_clear_placeholders(pTHX_ HV *hv, U32 items)
1585{
1586 dVAR;
1587 I32 i;
1588
1589 PERL_ARGS_ASSERT_CLEAR_PLACEHOLDERS;
1590
1591 if (items == 0)
1592 return;
1593
1594 i = HvMAX(hv);
1595 do {
1596 /* Loop down the linked list heads */
1597 bool first = TRUE;
1598 HE **oentry = &(HvARRAY(hv))[i];
1599 HE *entry;
1600
1601 while ((entry = *oentry)) {
1602 if (HeVAL(entry) == &PL_sv_placeholder) {
1603 *oentry = HeNEXT(entry);
1604 if (first && !*oentry)
1605 HvFILL(hv)--; /* This linked list is now empty. */
1606 if (entry == HvEITER_get(hv))
1607 HvLAZYDEL_on(hv);
1608 else
1609 hv_free_ent(hv, entry);
1610
1611 if (--items == 0) {
1612 /* Finished. */
1613 HvTOTALKEYS(hv) -= (IV)HvPLACEHOLDERS_get(hv);
1614 if (HvKEYS(hv) == 0)
1615 HvHASKFLAGS_off(hv);
1616 HvPLACEHOLDERS_set(hv, 0);
1617 return;
1618 }
1619 } else {
1620 oentry = &HeNEXT(entry);
1621 first = FALSE;
1622 }
1623 }
1624 } while (--i >= 0);
1625 /* You can't get here, hence assertion should always fail. */
1626 assert (items == 0);
1627 assert (0);
1628}
1629
1630STATIC void
1631S_hfreeentries(pTHX_ HV *hv)
1632{
1633 /* This is the array that we're going to restore */
1634 HE **const orig_array = HvARRAY(hv);
1635 HEK *name;
1636 int attempts = 100;
1637
1638 PERL_ARGS_ASSERT_HFREEENTRIES;
1639
1640 if (!orig_array)
1641 return;
1642
1643 if (SvOOK(hv)) {
1644 /* If the hash is actually a symbol table with a name, look after the
1645 name. */
1646 struct xpvhv_aux *iter = HvAUX(hv);
1647
1648 name = iter->xhv_name;
1649 iter->xhv_name = NULL;
1650 } else {
1651 name = NULL;
1652 }
1653
1654 /* orig_array remains unchanged throughout the loop. If after freeing all
1655 the entries it turns out that one of the little blighters has triggered
1656 an action that has caused HvARRAY to be re-allocated, then we set
1657 array to the new HvARRAY, and try again. */
1658
1659 while (1) {
1660 /* This is the one we're going to try to empty. First time round
1661 it's the original array. (Hopefully there will only be 1 time
1662 round) */
1663 HE ** const array = HvARRAY(hv);
1664 I32 i = HvMAX(hv);
1665
1666 /* Because we have taken xhv_name out, the only allocated pointer
1667 in the aux structure that might exist is the backreference array.
1668 */
1669
1670 if (SvOOK(hv)) {
1671 HE *entry;
1672 struct mro_meta *meta;
1673 struct xpvhv_aux *iter = HvAUX(hv);
1674 /* If there are weak references to this HV, we need to avoid
1675 freeing them up here. In particular we need to keep the AV
1676 visible as what we're deleting might well have weak references
1677 back to this HV, so the for loop below may well trigger
1678 the removal of backreferences from this array. */
1679
1680 if (iter->xhv_backreferences) {
1681 /* So donate them to regular backref magic to keep them safe.
1682 The sv_magic will increase the reference count of the AV,
1683 so we need to drop it first. */
1684 SvREFCNT_dec(iter->xhv_backreferences);
1685 if (AvFILLp(iter->xhv_backreferences) == -1) {
1686 /* Turns out that the array is empty. Just free it. */
1687 SvREFCNT_dec(iter->xhv_backreferences);
1688
1689 } else {
1690 sv_magic(MUTABLE_SV(hv),
1691 MUTABLE_SV(iter->xhv_backreferences),
1692 PERL_MAGIC_backref, NULL, 0);
1693 }
1694 iter->xhv_backreferences = NULL;
1695 }
1696
1697 entry = iter->xhv_eiter; /* HvEITER(hv) */
1698 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1699 HvLAZYDEL_off(hv);
1700 hv_free_ent(hv, entry);
1701 }
1702 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1703 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1704
1705 if((meta = iter->xhv_mro_meta)) {
1706 if (meta->mro_linear_all) {
1707 SvREFCNT_dec(MUTABLE_SV(meta->mro_linear_all));
1708 meta->mro_linear_all = NULL;
1709 /* This is just acting as a shortcut pointer. */
1710 meta->mro_linear_current = NULL;
1711 } else if (meta->mro_linear_current) {
1712 /* Only the current MRO is stored, so this owns the data.
1713 */
1714 SvREFCNT_dec(meta->mro_linear_current);
1715 meta->mro_linear_current = NULL;
1716 }
1717 if(meta->mro_nextmethod) SvREFCNT_dec(meta->mro_nextmethod);
1718 SvREFCNT_dec(meta->isa);
1719 Safefree(meta);
1720 iter->xhv_mro_meta = NULL;
1721 }
1722
1723 /* There are now no allocated pointers in the aux structure. */
1724
1725 SvFLAGS(hv) &= ~SVf_OOK; /* Goodbye, aux structure. */
1726 /* What aux structure? */
1727 }
1728
1729 /* make everyone else think the array is empty, so that the destructors
1730 * called for freed entries can't recusively mess with us */
1731 HvARRAY(hv) = NULL;
1732 HvFILL(hv) = 0;
1733 ((XPVHV*) SvANY(hv))->xhv_keys = 0;
1734
1735
1736 do {
1737 /* Loop down the linked list heads */
1738 HE *entry = array[i];
1739
1740 while (entry) {
1741 register HE * const oentry = entry;
1742 entry = HeNEXT(entry);
1743 hv_free_ent(hv, oentry);
1744 }
1745 } while (--i >= 0);
1746
1747 /* As there are no allocated pointers in the aux structure, it's now
1748 safe to free the array we just cleaned up, if it's not the one we're
1749 going to put back. */
1750 if (array != orig_array) {
1751 Safefree(array);
1752 }
1753
1754 if (!HvARRAY(hv)) {
1755 /* Good. No-one added anything this time round. */
1756 break;
1757 }
1758
1759 if (SvOOK(hv)) {
1760 /* Someone attempted to iterate or set the hash name while we had
1761 the array set to 0. We'll catch backferences on the next time
1762 round the while loop. */
1763 assert(HvARRAY(hv));
1764
1765 if (HvAUX(hv)->xhv_name) {
1766 unshare_hek_or_pvn(HvAUX(hv)->xhv_name, 0, 0, 0);
1767 }
1768 }
1769
1770 if (--attempts == 0) {
1771 Perl_die(aTHX_ "panic: hfreeentries failed to free hash - something is repeatedly re-creating entries");
1772 }
1773 }
1774
1775 HvARRAY(hv) = orig_array;
1776
1777 /* If the hash was actually a symbol table, put the name back. */
1778 if (name) {
1779 /* We have restored the original array. If name is non-NULL, then
1780 the original array had an aux structure at the end. So this is
1781 valid: */
1782 SvFLAGS(hv) |= SVf_OOK;
1783 HvAUX(hv)->xhv_name = name;
1784 }
1785}
1786
1787/*
1788=for apidoc hv_undef
1789
1790Undefines the hash.
1791
1792=cut
1793*/
1794
1795void
1796Perl_hv_undef(pTHX_ HV *hv)
1797{
1798 dVAR;
1799 register XPVHV* xhv;
1800 const char *name;
1801
1802 if (!hv)
1803 return;
1804 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1805 xhv = (XPVHV*)SvANY(hv);
1806
1807 if ((name = HvNAME_get(hv)) && !PL_dirty)
1808 mro_isa_changed_in(hv);
1809
1810 hfreeentries(hv);
1811 if (name) {
1812 if (PL_stashcache)
1813 (void)hv_delete(PL_stashcache, name, HvNAMELEN_get(hv), G_DISCARD);
1814 hv_name_set(hv, NULL, 0, 0);
1815 }
1816 SvFLAGS(hv) &= ~SVf_OOK;
1817 Safefree(HvARRAY(hv));
1818 xhv->xhv_max = 7; /* HvMAX(hv) = 7 (it's a normal hash) */
1819 HvARRAY(hv) = 0;
1820 HvPLACEHOLDERS_set(hv, 0);
1821
1822 if (SvRMAGICAL(hv))
1823 mg_clear(MUTABLE_SV(hv));
1824}
1825
1826static struct xpvhv_aux*
1827S_hv_auxinit(HV *hv) {
1828 struct xpvhv_aux *iter;
1829 char *array;
1830
1831 PERL_ARGS_ASSERT_HV_AUXINIT;
1832
1833 if (!HvARRAY(hv)) {
1834 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1835 + sizeof(struct xpvhv_aux), char);
1836 } else {
1837 array = (char *) HvARRAY(hv);
1838 Renew(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1839 + sizeof(struct xpvhv_aux), char);
1840 }
1841 HvARRAY(hv) = (HE**) array;
1842 /* SvOOK_on(hv) attacks the IV flags. */
1843 SvFLAGS(hv) |= SVf_OOK;
1844 iter = HvAUX(hv);
1845
1846 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1847 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1848 iter->xhv_name = 0;
1849 iter->xhv_backreferences = 0;
1850 iter->xhv_mro_meta = NULL;
1851 return iter;
1852}
1853
1854/*
1855=for apidoc hv_iterinit
1856
1857Prepares a starting point to traverse a hash table. Returns the number of
1858keys in the hash (i.e. the same as C<HvKEYS(tb)>). The return value is
1859currently only meaningful for hashes without tie magic.
1860
1861NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number of
1862hash buckets that happen to be in use. If you still need that esoteric
1863value, you can get it through the macro C<HvFILL(tb)>.
1864
1865
1866=cut
1867*/
1868
1869I32
1870Perl_hv_iterinit(pTHX_ HV *hv)
1871{
1872 PERL_ARGS_ASSERT_HV_ITERINIT;
1873
1874 /* FIXME: Are we not NULL, or do we croak? Place bets now! */
1875
1876 if (!hv)
1877 Perl_croak(aTHX_ "Bad hash");
1878
1879 if (SvOOK(hv)) {
1880 struct xpvhv_aux * const iter = HvAUX(hv);
1881 HE * const entry = iter->xhv_eiter; /* HvEITER(hv) */
1882 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1883 HvLAZYDEL_off(hv);
1884 hv_free_ent(hv, entry);
1885 }
1886 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1887 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1888 } else {
1889 hv_auxinit(hv);
1890 }
1891
1892 /* used to be xhv->xhv_fill before 5.004_65 */
1893 return HvTOTALKEYS(hv);
1894}
1895
1896I32 *
1897Perl_hv_riter_p(pTHX_ HV *hv) {
1898 struct xpvhv_aux *iter;
1899
1900 PERL_ARGS_ASSERT_HV_RITER_P;
1901
1902 if (!hv)
1903 Perl_croak(aTHX_ "Bad hash");
1904
1905 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1906 return &(iter->xhv_riter);
1907}
1908
1909HE **
1910Perl_hv_eiter_p(pTHX_ HV *hv) {
1911 struct xpvhv_aux *iter;
1912
1913 PERL_ARGS_ASSERT_HV_EITER_P;
1914
1915 if (!hv)
1916 Perl_croak(aTHX_ "Bad hash");
1917
1918 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1919 return &(iter->xhv_eiter);
1920}
1921
1922void
1923Perl_hv_riter_set(pTHX_ HV *hv, I32 riter) {
1924 struct xpvhv_aux *iter;
1925
1926 PERL_ARGS_ASSERT_HV_RITER_SET;
1927
1928 if (!hv)
1929 Perl_croak(aTHX_ "Bad hash");
1930
1931 if (SvOOK(hv)) {
1932 iter = HvAUX(hv);
1933 } else {
1934 if (riter == -1)
1935 return;
1936
1937 iter = hv_auxinit(hv);
1938 }
1939 iter->xhv_riter = riter;
1940}
1941
1942void
1943Perl_hv_eiter_set(pTHX_ HV *hv, HE *eiter) {
1944 struct xpvhv_aux *iter;
1945
1946 PERL_ARGS_ASSERT_HV_EITER_SET;
1947
1948 if (!hv)
1949 Perl_croak(aTHX_ "Bad hash");
1950
1951 if (SvOOK(hv)) {
1952 iter = HvAUX(hv);
1953 } else {
1954 /* 0 is the default so don't go malloc()ing a new structure just to
1955 hold 0. */
1956 if (!eiter)
1957 return;
1958
1959 iter = hv_auxinit(hv);
1960 }
1961 iter->xhv_eiter = eiter;
1962}
1963
1964void
1965Perl_hv_name_set(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
1966{
1967 dVAR;
1968 struct xpvhv_aux *iter;
1969 U32 hash;
1970
1971 PERL_ARGS_ASSERT_HV_NAME_SET;
1972 PERL_UNUSED_ARG(flags);
1973
1974 if (len > I32_MAX)
1975 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
1976
1977 if (SvOOK(hv)) {
1978 iter = HvAUX(hv);
1979 if (iter->xhv_name) {
1980 unshare_hek_or_pvn(iter->xhv_name, 0, 0, 0);
1981 }
1982 } else {
1983 if (name == 0)
1984 return;
1985
1986 iter = hv_auxinit(hv);
1987 }
1988 PERL_HASH(hash, name, len);
1989 iter->xhv_name = name ? share_hek(name, len, hash) : NULL;
1990}
1991
1992AV **
1993Perl_hv_backreferences_p(pTHX_ HV *hv) {
1994 struct xpvhv_aux * const iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1995
1996 PERL_ARGS_ASSERT_HV_BACKREFERENCES_P;
1997 PERL_UNUSED_CONTEXT;
1998
1999 return &(iter->xhv_backreferences);
2000}
2001
2002void
2003Perl_hv_kill_backrefs(pTHX_ HV *hv) {
2004 AV *av;
2005
2006 PERL_ARGS_ASSERT_HV_KILL_BACKREFS;
2007
2008 if (!SvOOK(hv))
2009 return;
2010
2011 av = HvAUX(hv)->xhv_backreferences;
2012
2013 if (av) {
2014 HvAUX(hv)->xhv_backreferences = 0;
2015 Perl_sv_kill_backrefs(aTHX_ MUTABLE_SV(hv), av);
2016 SvREFCNT_dec(av);
2017 }
2018}
2019
2020/*
2021hv_iternext is implemented as a macro in hv.h
2022
2023=for apidoc hv_iternext
2024
2025Returns entries from a hash iterator. See C<hv_iterinit>.
2026
2027You may call C<hv_delete> or C<hv_delete_ent> on the hash entry that the
2028iterator currently points to, without losing your place or invalidating your
2029iterator. Note that in this case the current entry is deleted from the hash
2030with your iterator holding the last reference to it. Your iterator is flagged
2031to free the entry on the next call to C<hv_iternext>, so you must not discard
2032your iterator immediately else the entry will leak - call C<hv_iternext> to
2033trigger the resource deallocation.
2034
2035=for apidoc hv_iternext_flags
2036
2037Returns entries from a hash iterator. See C<hv_iterinit> and C<hv_iternext>.
2038The C<flags> value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is
2039set the placeholders keys (for restricted hashes) will be returned in addition
2040to normal keys. By default placeholders are automatically skipped over.
2041Currently a placeholder is implemented with a value that is
2042C<&Perl_sv_placeholder>. Note that the implementation of placeholders and
2043restricted hashes may change, and the implementation currently is
2044insufficiently abstracted for any change to be tidy.
2045
2046=cut
2047*/
2048
2049HE *
2050Perl_hv_iternext_flags(pTHX_ HV *hv, I32 flags)
2051{
2052 dVAR;
2053 register XPVHV* xhv;
2054 register HE *entry;
2055 HE *oldentry;
2056 MAGIC* mg;
2057 struct xpvhv_aux *iter;
2058
2059 PERL_ARGS_ASSERT_HV_ITERNEXT_FLAGS;
2060
2061 if (!hv)
2062 Perl_croak(aTHX_ "Bad hash");
2063
2064 xhv = (XPVHV*)SvANY(hv);
2065
2066 if (!SvOOK(hv)) {
2067 /* Too many things (well, pp_each at least) merrily assume that you can
2068 call iv_iternext without calling hv_iterinit, so we'll have to deal
2069 with it. */
2070 hv_iterinit(hv);
2071 }
2072 iter = HvAUX(hv);
2073
2074 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2075 if (SvMAGICAL(hv) && SvRMAGICAL(hv)) {
2076 if ( ( mg = mg_find((const SV *)hv, PERL_MAGIC_tied) ) ) {
2077 SV * const key = sv_newmortal();
2078 if (entry) {
2079 sv_setsv(key, HeSVKEY_force(entry));
2080 SvREFCNT_dec(HeSVKEY(entry)); /* get rid of previous key */
2081 }
2082 else {
2083 char *k;
2084 HEK *hek;
2085
2086 /* one HE per MAGICAL hash */
2087 iter->xhv_eiter = entry = new_HE(); /* HvEITER(hv) = new_HE() */
2088 Zero(entry, 1, HE);
2089 Newxz(k, HEK_BASESIZE + sizeof(const SV *), char);
2090 hek = (HEK*)k;
2091 HeKEY_hek(entry) = hek;
2092 HeKLEN(entry) = HEf_SVKEY;
2093 }
2094 magic_nextpack(MUTABLE_SV(hv),mg,key);
2095 if (SvOK(key)) {
2096 /* force key to stay around until next time */
2097 HeSVKEY_set(entry, SvREFCNT_inc_simple_NN(key));
2098 return entry; /* beware, hent_val is not set */
2099 }
2100 if (HeVAL(entry))
2101 SvREFCNT_dec(HeVAL(entry));
2102 Safefree(HeKEY_hek(entry));
2103 del_HE(entry);
2104 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2105 return NULL;
2106 }
2107 }
2108#if defined(DYNAMIC_ENV_FETCH) && !defined(__riscos__) /* set up %ENV for iteration */
2109 if (!entry && SvRMAGICAL((const SV *)hv)
2110 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
2111 prime_env_iter();
2112#ifdef VMS
2113 /* The prime_env_iter() on VMS just loaded up new hash values
2114 * so the iteration count needs to be reset back to the beginning
2115 */
2116 hv_iterinit(hv);
2117 iter = HvAUX(hv);
2118 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2119#endif
2120 }
2121#endif
2122
2123 /* hv_iterint now ensures this. */
2124 assert (HvARRAY(hv));
2125
2126 /* At start of hash, entry is NULL. */
2127 if (entry)
2128 {
2129 entry = HeNEXT(entry);
2130 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2131 /*
2132 * Skip past any placeholders -- don't want to include them in
2133 * any iteration.
2134 */
2135 while (entry && HeVAL(entry) == &PL_sv_placeholder) {
2136 entry = HeNEXT(entry);
2137 }
2138 }
2139 }
2140 while (!entry) {
2141 /* OK. Come to the end of the current list. Grab the next one. */
2142
2143 iter->xhv_riter++; /* HvRITER(hv)++ */
2144 if (iter->xhv_riter > (I32)xhv->xhv_max /* HvRITER(hv) > HvMAX(hv) */) {
2145 /* There is no next one. End of the hash. */
2146 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2147 break;
2148 }
2149 entry = (HvARRAY(hv))[iter->xhv_riter];
2150
2151 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2152 /* If we have an entry, but it's a placeholder, don't count it.
2153 Try the next. */
2154 while (entry && HeVAL(entry) == &PL_sv_placeholder)
2155 entry = HeNEXT(entry);
2156 }
2157 /* Will loop again if this linked list starts NULL
2158 (for HV_ITERNEXT_WANTPLACEHOLDERS)
2159 or if we run through it and find only placeholders. */
2160 }
2161
2162 if (oldentry && HvLAZYDEL(hv)) { /* was deleted earlier? */
2163 HvLAZYDEL_off(hv);
2164 hv_free_ent(hv, oldentry);
2165 }
2166
2167 /*if (HvREHASH(hv) && entry && !HeKREHASH(entry))
2168 PerlIO_printf(PerlIO_stderr(), "Awooga %p %p\n", (void*)hv, (void*)entry);*/
2169
2170 iter->xhv_eiter = entry; /* HvEITER(hv) = entry */
2171 return entry;
2172}
2173
2174/*
2175=for apidoc hv_iterkey
2176
2177Returns the key from the current position of the hash iterator. See
2178C<hv_iterinit>.
2179
2180=cut
2181*/
2182
2183char *
2184Perl_hv_iterkey(pTHX_ register HE *entry, I32 *retlen)
2185{
2186 PERL_ARGS_ASSERT_HV_ITERKEY;
2187
2188 if (HeKLEN(entry) == HEf_SVKEY) {
2189 STRLEN len;
2190 char * const p = SvPV(HeKEY_sv(entry), len);
2191 *retlen = len;
2192 return p;
2193 }
2194 else {
2195 *retlen = HeKLEN(entry);
2196 return HeKEY(entry);
2197 }
2198}
2199
2200/* unlike hv_iterval(), this always returns a mortal copy of the key */
2201/*
2202=for apidoc hv_iterkeysv
2203
2204Returns the key as an C<SV*> from the current position of the hash
2205iterator. The return value will always be a mortal copy of the key. Also
2206see C<hv_iterinit>.
2207
2208=cut
2209*/
2210
2211SV *
2212Perl_hv_iterkeysv(pTHX_ register HE *entry)
2213{
2214 PERL_ARGS_ASSERT_HV_ITERKEYSV;
2215
2216 return sv_2mortal(newSVhek(HeKEY_hek(entry)));
2217}
2218
2219/*
2220=for apidoc hv_iterval
2221
2222Returns the value from the current position of the hash iterator. See
2223C<hv_iterkey>.
2224
2225=cut
2226*/
2227
2228SV *
2229Perl_hv_iterval(pTHX_ HV *hv, register HE *entry)
2230{
2231 PERL_ARGS_ASSERT_HV_ITERVAL;
2232
2233 if (SvRMAGICAL(hv)) {
2234 if (mg_find((const SV *)hv, PERL_MAGIC_tied)) {
2235 SV* const sv = sv_newmortal();
2236 if (HeKLEN(entry) == HEf_SVKEY)
2237 mg_copy(MUTABLE_SV(hv), sv, (char*)HeKEY_sv(entry), HEf_SVKEY);
2238 else
2239 mg_copy(MUTABLE_SV(hv), sv, HeKEY(entry), HeKLEN(entry));
2240 return sv;
2241 }
2242 }
2243 return HeVAL(entry);
2244}
2245
2246/*
2247=for apidoc hv_iternextsv
2248
2249Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
2250operation.
2251
2252=cut
2253*/
2254
2255SV *
2256Perl_hv_iternextsv(pTHX_ HV *hv, char **key, I32 *retlen)
2257{
2258 HE * const he = hv_iternext_flags(hv, 0);
2259
2260 PERL_ARGS_ASSERT_HV_ITERNEXTSV;
2261
2262 if (!he)
2263 return NULL;
2264 *key = hv_iterkey(he, retlen);
2265 return hv_iterval(hv, he);
2266}
2267
2268/*
2269
2270Now a macro in hv.h
2271
2272=for apidoc hv_magic
2273
2274Adds magic to a hash. See C<sv_magic>.
2275
2276=cut
2277*/
2278
2279/* possibly free a shared string if no one has access to it
2280 * len and hash must both be valid for str.
2281 */
2282void
2283Perl_unsharepvn(pTHX_ const char *str, I32 len, U32 hash)
2284{
2285 unshare_hek_or_pvn (NULL, str, len, hash);
2286}
2287
2288
2289void
2290Perl_unshare_hek(pTHX_ HEK *hek)
2291{
2292 assert(hek);
2293 unshare_hek_or_pvn(hek, NULL, 0, 0);
2294}
2295
2296/* possibly free a shared string if no one has access to it
2297 hek if non-NULL takes priority over the other 3, else str, len and hash
2298 are used. If so, len and hash must both be valid for str.
2299 */
2300STATIC void
2301S_unshare_hek_or_pvn(pTHX_ const HEK *hek, const char *str, I32 len, U32 hash)
2302{
2303 dVAR;
2304 register XPVHV* xhv;
2305 HE *entry;
2306 register HE **oentry;
2307 HE **first;
2308 bool is_utf8 = FALSE;
2309 int k_flags = 0;
2310 const char * const save = str;
2311 struct shared_he *he = NULL;
2312
2313 if (hek) {
2314 /* Find the shared he which is just before us in memory. */
2315 he = (struct shared_he *)(((char *)hek)
2316 - STRUCT_OFFSET(struct shared_he,
2317 shared_he_hek));
2318
2319 /* Assert that the caller passed us a genuine (or at least consistent)
2320 shared hek */
2321 assert (he->shared_he_he.hent_hek == hek);
2322
2323 LOCK_STRTAB_MUTEX;
2324 if (he->shared_he_he.he_valu.hent_refcount - 1) {
2325 --he->shared_he_he.he_valu.hent_refcount;
2326 UNLOCK_STRTAB_MUTEX;
2327 return;
2328 }
2329 UNLOCK_STRTAB_MUTEX;
2330
2331 hash = HEK_HASH(hek);
2332 } else if (len < 0) {
2333 STRLEN tmplen = -len;
2334 is_utf8 = TRUE;
2335 /* See the note in hv_fetch(). --jhi */
2336 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2337 len = tmplen;
2338 if (is_utf8)
2339 k_flags = HVhek_UTF8;
2340 if (str != save)
2341 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2342 }
2343
2344 /* what follows was the moral equivalent of:
2345 if ((Svp = hv_fetch(PL_strtab, tmpsv, FALSE, hash))) {
2346 if (--*Svp == NULL)
2347 hv_delete(PL_strtab, str, len, G_DISCARD, hash);
2348 } */
2349 xhv = (XPVHV*)SvANY(PL_strtab);
2350 /* assert(xhv_array != 0) */
2351 LOCK_STRTAB_MUTEX;
2352 first = oentry = &(HvARRAY(PL_strtab))[hash & (I32) HvMAX(PL_strtab)];
2353 if (he) {
2354 const HE *const he_he = &(he->shared_he_he);
2355 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2356 if (entry == he_he)
2357 break;
2358 }
2359 } else {
2360 const int flags_masked = k_flags & HVhek_MASK;
2361 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2362 if (HeHASH(entry) != hash) /* strings can't be equal */
2363 continue;
2364 if (HeKLEN(entry) != len)
2365 continue;
2366 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2367 continue;
2368 if (HeKFLAGS(entry) != flags_masked)
2369 continue;
2370 break;
2371 }
2372 }
2373
2374 if (entry) {
2375 if (--entry->he_valu.hent_refcount == 0) {
2376 *oentry = HeNEXT(entry);
2377 if (!*first) {
2378 /* There are now no entries in our slot. */
2379 xhv->xhv_fill--; /* HvFILL(hv)-- */
2380 }
2381 Safefree(entry);
2382 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
2383 }
2384 }
2385
2386 UNLOCK_STRTAB_MUTEX;
2387 if (!entry && ckWARN_d(WARN_INTERNAL))
2388 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
2389 "Attempt to free non-existent shared string '%s'%s"
2390 pTHX__FORMAT,
2391 hek ? HEK_KEY(hek) : str,
2392 ((k_flags & HVhek_UTF8) ? " (utf8)" : "") pTHX__VALUE);
2393 if (k_flags & HVhek_FREEKEY)
2394 Safefree(str);
2395}
2396
2397/* get a (constant) string ptr from the global string table
2398 * string will get added if it is not already there.
2399 * len and hash must both be valid for str.
2400 */
2401HEK *
2402Perl_share_hek(pTHX_ const char *str, I32 len, register U32 hash)
2403{
2404 bool is_utf8 = FALSE;
2405 int flags = 0;
2406 const char * const save = str;
2407
2408 PERL_ARGS_ASSERT_SHARE_HEK;
2409
2410 if (len < 0) {
2411 STRLEN tmplen = -len;
2412 is_utf8 = TRUE;
2413 /* See the note in hv_fetch(). --jhi */
2414 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2415 len = tmplen;
2416 /* If we were able to downgrade here, then than means that we were passed
2417 in a key which only had chars 0-255, but was utf8 encoded. */
2418 if (is_utf8)
2419 flags = HVhek_UTF8;
2420 /* If we found we were able to downgrade the string to bytes, then
2421 we should flag that it needs upgrading on keys or each. Also flag
2422 that we need share_hek_flags to free the string. */
2423 if (str != save)
2424 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2425 }
2426
2427 return share_hek_flags (str, len, hash, flags);
2428}
2429
2430STATIC HEK *
2431S_share_hek_flags(pTHX_ const char *str, I32 len, register U32 hash, int flags)
2432{
2433 dVAR;
2434 register HE *entry;
2435 const int flags_masked = flags & HVhek_MASK;
2436 const U32 hindex = hash & (I32) HvMAX(PL_strtab);
2437 register XPVHV * const xhv = (XPVHV*)SvANY(PL_strtab);
2438
2439 PERL_ARGS_ASSERT_SHARE_HEK_FLAGS;
2440
2441 /* what follows is the moral equivalent of:
2442
2443 if (!(Svp = hv_fetch(PL_strtab, str, len, FALSE)))
2444 hv_store(PL_strtab, str, len, NULL, hash);
2445
2446 Can't rehash the shared string table, so not sure if it's worth
2447 counting the number of entries in the linked list
2448 */
2449
2450 /* assert(xhv_array != 0) */
2451 LOCK_STRTAB_MUTEX;
2452 entry = (HvARRAY(PL_strtab))[hindex];
2453 for (;entry; entry = HeNEXT(entry)) {
2454 if (HeHASH(entry) != hash) /* strings can't be equal */
2455 continue;
2456 if (HeKLEN(entry) != len)
2457 continue;
2458 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2459 continue;
2460 if (HeKFLAGS(entry) != flags_masked)
2461 continue;
2462 break;
2463 }
2464
2465 if (!entry) {
2466 /* What used to be head of the list.
2467 If this is NULL, then we're the first entry for this slot, which
2468 means we need to increate fill. */
2469 struct shared_he *new_entry;
2470 HEK *hek;
2471 char *k;
2472 HE **const head = &HvARRAY(PL_strtab)[hindex];
2473 HE *const next = *head;
2474
2475 /* We don't actually store a HE from the arena and a regular HEK.
2476 Instead we allocate one chunk of memory big enough for both,
2477 and put the HEK straight after the HE. This way we can find the
2478 HEK directly from the HE.
2479 */
2480
2481 Newx(k, STRUCT_OFFSET(struct shared_he,
2482 shared_he_hek.hek_key[0]) + len + 2, char);
2483 new_entry = (struct shared_he *)k;
2484 entry = &(new_entry->shared_he_he);
2485 hek = &(new_entry->shared_he_hek);
2486
2487 Copy(str, HEK_KEY(hek), len, char);
2488 HEK_KEY(hek)[len] = 0;
2489 HEK_LEN(hek) = len;
2490 HEK_HASH(hek) = hash;
2491 HEK_FLAGS(hek) = (unsigned char)flags_masked;
2492
2493 /* Still "point" to the HEK, so that other code need not know what
2494 we're up to. */
2495 HeKEY_hek(entry) = hek;
2496 entry->he_valu.hent_refcount = 0;
2497 HeNEXT(entry) = next;
2498 *head = entry;
2499
2500 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
2501 if (!next) { /* initial entry? */
2502 xhv->xhv_fill++; /* HvFILL(hv)++ */
2503 } else if (xhv->xhv_keys > (IV)xhv->xhv_max /* HvKEYS(hv) > HvMAX(hv) */) {
2504 hsplit(PL_strtab);
2505 }
2506 }
2507
2508 ++entry->he_valu.hent_refcount;
2509 UNLOCK_STRTAB_MUTEX;
2510
2511 if (flags & HVhek_FREEKEY)
2512 Safefree(str);
2513
2514 return HeKEY_hek(entry);
2515}
2516
2517I32 *
2518Perl_hv_placeholders_p(pTHX_ HV *hv)
2519{
2520 dVAR;
2521 MAGIC *mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2522
2523 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_P;
2524
2525 if (!mg) {
2526 mg = sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, 0);
2527
2528 if (!mg) {
2529 Perl_die(aTHX_ "panic: hv_placeholders_p");
2530 }
2531 }
2532 return &(mg->mg_len);
2533}
2534
2535
2536I32
2537Perl_hv_placeholders_get(pTHX_ const HV *hv)
2538{
2539 dVAR;
2540 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2541
2542 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_GET;
2543
2544 return mg ? mg->mg_len : 0;
2545}
2546
2547void
2548Perl_hv_placeholders_set(pTHX_ HV *hv, I32 ph)
2549{
2550 dVAR;
2551 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2552
2553 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_SET;
2554
2555 if (mg) {
2556 mg->mg_len = ph;
2557 } else if (ph) {
2558 if (!sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, ph))
2559 Perl_die(aTHX_ "panic: hv_placeholders_set");
2560 }
2561 /* else we don't need to add magic to record 0 placeholders. */
2562}
2563
2564STATIC SV *
2565S_refcounted_he_value(pTHX_ const struct refcounted_he *he)
2566{
2567 dVAR;
2568 SV *value;
2569
2570 PERL_ARGS_ASSERT_REFCOUNTED_HE_VALUE;
2571
2572 switch(he->refcounted_he_data[0] & HVrhek_typemask) {
2573 case HVrhek_undef:
2574 value = newSV(0);
2575 break;
2576 case HVrhek_delete:
2577 value = &PL_sv_placeholder;
2578 break;
2579 case HVrhek_IV:
2580 value = newSViv(he->refcounted_he_val.refcounted_he_u_iv);
2581 break;
2582 case HVrhek_UV:
2583 value = newSVuv(he->refcounted_he_val.refcounted_he_u_uv);
2584 break;
2585 case HVrhek_PV:
2586 case HVrhek_PV_UTF8:
2587 /* Create a string SV that directly points to the bytes in our
2588 structure. */
2589 value = newSV_type(SVt_PV);
2590 SvPV_set(value, (char *) he->refcounted_he_data + 1);
2591 SvCUR_set(value, he->refcounted_he_val.refcounted_he_u_len);
2592 /* This stops anything trying to free it */
2593 SvLEN_set(value, 0);
2594 SvPOK_on(value);
2595 SvREADONLY_on(value);
2596 if ((he->refcounted_he_data[0] & HVrhek_typemask) == HVrhek_PV_UTF8)
2597 SvUTF8_on(value);
2598 break;
2599 default:
2600 Perl_croak(aTHX_ "panic: refcounted_he_value bad flags %x",
2601 he->refcounted_he_data[0]);
2602 }
2603 return value;
2604}
2605
2606/*
2607=for apidoc refcounted_he_chain_2hv
2608
2609Generates and returns a C<HV *> by walking up the tree starting at the passed
2610in C<struct refcounted_he *>.
2611
2612=cut
2613*/
2614HV *
2615Perl_refcounted_he_chain_2hv(pTHX_ const struct refcounted_he *chain)
2616{
2617 dVAR;
2618 HV *hv = newHV();
2619 U32 placeholders = 0;
2620 /* We could chase the chain once to get an idea of the number of keys,
2621 and call ksplit. But for now we'll make a potentially inefficient
2622 hash with only 8 entries in its array. */
2623 const U32 max = HvMAX(hv);
2624
2625 if (!HvARRAY(hv)) {
2626 char *array;
2627 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(max + 1), char);
2628 HvARRAY(hv) = (HE**)array;
2629 }
2630
2631 while (chain) {
2632#ifdef USE_ITHREADS
2633 U32 hash = chain->refcounted_he_hash;
2634#else
2635 U32 hash = HEK_HASH(chain->refcounted_he_hek);
2636#endif
2637 HE **oentry = &((HvARRAY(hv))[hash & max]);
2638 HE *entry = *oentry;
2639 SV *value;
2640
2641 for (; entry; entry = HeNEXT(entry)) {
2642 if (HeHASH(entry) == hash) {
2643 /* We might have a duplicate key here. If so, entry is older
2644 than the key we've already put in the hash, so if they are
2645 the same, skip adding entry. */
2646#ifdef USE_ITHREADS
2647 const STRLEN klen = HeKLEN(entry);
2648 const char *const key = HeKEY(entry);
2649 if (klen == chain->refcounted_he_keylen
2650 && (!!HeKUTF8(entry)
2651 == !!(chain->refcounted_he_data[0] & HVhek_UTF8))
2652 && memEQ(key, REF_HE_KEY(chain), klen))
2653 goto next_please;
2654#else
2655 if (HeKEY_hek(entry) == chain->refcounted_he_hek)
2656 goto next_please;
2657 if (HeKLEN(entry) == HEK_LEN(chain->refcounted_he_hek)
2658 && HeKUTF8(entry) == HEK_UTF8(chain->refcounted_he_hek)
2659 && memEQ(HeKEY(entry), HEK_KEY(chain->refcounted_he_hek),
2660 HeKLEN(entry)))
2661 goto next_please;
2662#endif
2663 }
2664 }
2665 assert (!entry);
2666 entry = new_HE();
2667
2668#ifdef USE_ITHREADS
2669 HeKEY_hek(entry)
2670 = share_hek_flags(REF_HE_KEY(chain),
2671 chain->refcounted_he_keylen,
2672 chain->refcounted_he_hash,
2673 (chain->refcounted_he_data[0]
2674 & (HVhek_UTF8|HVhek_WASUTF8)));
2675#else
2676 HeKEY_hek(entry) = share_hek_hek(chain->refcounted_he_hek);
2677#endif
2678 value = refcounted_he_value(chain);
2679 if (value == &PL_sv_placeholder)
2680 placeholders++;
2681 HeVAL(entry) = value;
2682
2683 /* Link it into the chain. */
2684 HeNEXT(entry) = *oentry;
2685 if (!HeNEXT(entry)) {
2686 /* initial entry. */
2687 HvFILL(hv)++;
2688 }
2689 *oentry = entry;
2690
2691 HvTOTALKEYS(hv)++;
2692
2693 next_please:
2694 chain = chain->refcounted_he_next;
2695 }
2696
2697 if (placeholders) {
2698 clear_placeholders(hv, placeholders);
2699 HvTOTALKEYS(hv) -= placeholders;
2700 }
2701
2702 /* We could check in the loop to see if we encounter any keys with key
2703 flags, but it's probably not worth it, as this per-hash flag is only
2704 really meant as an optimisation for things like Storable. */
2705 HvHASKFLAGS_on(hv);
2706 DEBUG_A(Perl_hv_assert(aTHX_ hv));
2707
2708 return hv;
2709}
2710
2711SV *
2712Perl_refcounted_he_fetch(pTHX_ const struct refcounted_he *chain, SV *keysv,
2713 const char *key, STRLEN klen, int flags, U32 hash)
2714{
2715 dVAR;
2716 /* Just to be awkward, if you're using this interface the UTF-8-or-not-ness
2717 of your key has to exactly match that which is stored. */
2718 SV *value = &PL_sv_placeholder;
2719
2720 if (chain) {
2721 /* No point in doing any of this if there's nothing to find. */
2722 bool is_utf8;
2723
2724 if (keysv) {
2725 if (flags & HVhek_FREEKEY)
2726 Safefree(key);
2727 key = SvPV_const(keysv, klen);
2728 flags = 0;
2729 is_utf8 = (SvUTF8(keysv) != 0);
2730 } else {
2731 is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
2732 }
2733
2734 if (!hash) {
2735 if (keysv && (SvIsCOW_shared_hash(keysv))) {
2736 hash = SvSHARED_HASH(keysv);
2737 } else {
2738 PERL_HASH(hash, key, klen);
2739 }
2740 }
2741
2742 for (; chain; chain = chain->refcounted_he_next) {
2743#ifdef USE_ITHREADS
2744 if (hash != chain->refcounted_he_hash)
2745 continue;
2746 if (klen != chain->refcounted_he_keylen)
2747 continue;
2748 if (memNE(REF_HE_KEY(chain),key,klen))
2749 continue;
2750 if (!!is_utf8 != !!(chain->refcounted_he_data[0] & HVhek_UTF8))
2751 continue;
2752#else
2753 if (hash != HEK_HASH(chain->refcounted_he_hek))
2754 continue;
2755 if (klen != (STRLEN)HEK_LEN(chain->refcounted_he_hek))
2756 continue;
2757 if (memNE(HEK_KEY(chain->refcounted_he_hek),key,klen))
2758 continue;
2759 if (!!is_utf8 != !!HEK_UTF8(chain->refcounted_he_hek))
2760 continue;
2761#endif
2762
2763 value = sv_2mortal(refcounted_he_value(chain));
2764 break;
2765 }
2766 }
2767
2768 if (flags & HVhek_FREEKEY)
2769 Safefree(key);
2770
2771 return value;
2772}
2773
2774/*
2775=for apidoc refcounted_he_new
2776
2777Creates a new C<struct refcounted_he>. As S<key> is copied, and value is
2778stored in a compact form, all references remain the property of the caller.
2779The C<struct refcounted_he> is returned with a reference count of 1.
2780
2781=cut
2782*/
2783
2784struct refcounted_he *
2785Perl_refcounted_he_new(pTHX_ struct refcounted_he *const parent,
2786 SV *const key, SV *const value) {
2787 dVAR;
2788 STRLEN key_len;
2789 const char *key_p = SvPV_const(key, key_len);
2790 STRLEN value_len = 0;
2791 const char *value_p = NULL;
2792 char value_type;
2793 char flags;
2794 bool is_utf8 = SvUTF8(key) ? TRUE : FALSE;
2795
2796 if (SvPOK(value)) {
2797 value_type = HVrhek_PV;
2798 } else if (SvIOK(value)) {
2799 value_type = SvUOK((const SV *)value) ? HVrhek_UV : HVrhek_IV;
2800 } else if (value == &PL_sv_placeholder) {
2801 value_type = HVrhek_delete;
2802 } else if (!SvOK(value)) {
2803 value_type = HVrhek_undef;
2804 } else {
2805 value_type = HVrhek_PV;
2806 }
2807
2808 if (value_type == HVrhek_PV) {
2809 /* Do it this way so that the SvUTF8() test is after the SvPV, in case
2810 the value is overloaded, and doesn't yet have the UTF-8flag set. */
2811 value_p = SvPV_const(value, value_len);
2812 if (SvUTF8(value))
2813 value_type = HVrhek_PV_UTF8;
2814 }
2815 flags = value_type;
2816
2817 if (is_utf8) {
2818 /* Hash keys are always stored normalised to (yes) ISO-8859-1.
2819 As we're going to be building hash keys from this value in future,
2820 normalise it now. */
2821 key_p = (char*)bytes_from_utf8((const U8*)key_p, &key_len, &is_utf8);
2822 flags |= is_utf8 ? HVhek_UTF8 : HVhek_WASUTF8;
2823 }
2824
2825 return refcounted_he_new_common(parent, key_p, key_len, flags, value_type,
2826 ((value_type == HVrhek_PV
2827 || value_type == HVrhek_PV_UTF8) ?
2828 (void *)value_p : (void *)value),
2829 value_len);
2830}
2831
2832static struct refcounted_he *
2833S_refcounted_he_new_common(pTHX_ struct refcounted_he *const parent,
2834 const char *const key_p, const STRLEN key_len,
2835 const char flags, char value_type,
2836 const void *value, const STRLEN value_len) {
2837 dVAR;
2838 struct refcounted_he *he;
2839 U32 hash;
2840 const bool is_pv = value_type == HVrhek_PV || value_type == HVrhek_PV_UTF8;
2841 STRLEN key_offset = is_pv ? value_len + 2 : 1;
2842
2843 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_COMMON;
2844
2845#ifdef USE_ITHREADS
2846 he = (struct refcounted_he*)
2847 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
2848 + key_len
2849 + key_offset);
2850#else
2851 he = (struct refcounted_he*)
2852 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
2853 + key_offset);
2854#endif
2855
2856 he->refcounted_he_next = parent;
2857
2858 if (is_pv) {
2859 Copy((char *)value, he->refcounted_he_data + 1, value_len + 1, char);
2860 he->refcounted_he_val.refcounted_he_u_len = value_len;
2861 } else if (value_type == HVrhek_IV) {
2862 he->refcounted_he_val.refcounted_he_u_iv = SvIVX((const SV *)value);
2863 } else if (value_type == HVrhek_UV) {
2864 he->refcounted_he_val.refcounted_he_u_uv = SvUVX((const SV *)value);
2865 }
2866
2867 PERL_HASH(hash, key_p, key_len);
2868
2869#ifdef USE_ITHREADS
2870 he->refcounted_he_hash = hash;
2871 he->refcounted_he_keylen = key_len;
2872 Copy(key_p, he->refcounted_he_data + key_offset, key_len, char);
2873#else
2874 he->refcounted_he_hek = share_hek_flags(key_p, key_len, hash, flags);
2875#endif
2876
2877 if (flags & HVhek_WASUTF8) {
2878 /* If it was downgraded from UTF-8, then the pointer returned from
2879 bytes_from_utf8 is an allocated pointer that we must free. */
2880 Safefree(key_p);
2881 }
2882
2883 he->refcounted_he_data[0] = flags;
2884 he->refcounted_he_refcnt = 1;
2885
2886 return he;
2887}
2888
2889/*
2890=for apidoc refcounted_he_free
2891
2892Decrements the reference count of the passed in C<struct refcounted_he *>
2893by one. If the reference count reaches zero the structure's memory is freed,
2894and C<refcounted_he_free> iterates onto the parent node.
2895
2896=cut
2897*/
2898
2899void
2900Perl_refcounted_he_free(pTHX_ struct refcounted_he *he) {
2901 dVAR;
2902 PERL_UNUSED_CONTEXT;
2903
2904 while (he) {
2905 struct refcounted_he *copy;
2906 U32 new_count;
2907
2908 HINTS_REFCNT_LOCK;
2909 new_count = --he->refcounted_he_refcnt;
2910 HINTS_REFCNT_UNLOCK;
2911
2912 if (new_count) {
2913 return;
2914 }
2915
2916#ifndef USE_ITHREADS
2917 unshare_hek_or_pvn (he->refcounted_he_hek, 0, 0, 0);
2918#endif
2919 copy = he;
2920 he = he->refcounted_he_next;
2921 PerlMemShared_free(copy);
2922 }
2923}
2924
2925const char *
2926Perl_fetch_cop_label(pTHX_ struct refcounted_he *const chain, STRLEN *len,
2927 U32 *flags) {
2928 if (!chain)
2929 return NULL;
2930#ifdef USE_ITHREADS
2931 if (chain->refcounted_he_keylen != 1)
2932 return NULL;
2933 if (*REF_HE_KEY(chain) != ':')
2934 return NULL;
2935#else
2936 if ((STRLEN)HEK_LEN(chain->refcounted_he_hek) != 1)
2937 return NULL;
2938 if (*HEK_KEY(chain->refcounted_he_hek) != ':')
2939 return NULL;
2940#endif
2941 /* Stop anyone trying to really mess us up by adding their own value for
2942 ':' into %^H */
2943 if ((chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV
2944 && (chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV_UTF8)
2945 return NULL;
2946
2947 if (len)
2948 *len = chain->refcounted_he_val.refcounted_he_u_len;
2949 if (flags) {
2950 *flags = ((chain->refcounted_he_data[0] & HVrhek_typemask)
2951 == HVrhek_PV_UTF8) ? SVf_UTF8 : 0;
2952 }
2953 return chain->refcounted_he_data + 1;
2954}
2955
2956/* As newSTATEOP currently gets passed plain char* labels, we will only provide
2957 that interface. Once it works out how to pass in length and UTF-8 ness, this
2958 function will need superseding. */
2959struct refcounted_he *
2960Perl_store_cop_label(pTHX_ struct refcounted_he *const chain, const char *label)
2961{
2962 PERL_ARGS_ASSERT_STORE_COP_LABEL;
2963
2964 return refcounted_he_new_common(chain, ":", 1, HVrhek_PV, HVrhek_PV,
2965 label, strlen(label));
2966}
2967
2968/*
2969=for apidoc hv_assert
2970
2971Check that a hash is in an internally consistent state.
2972
2973=cut
2974*/
2975
2976#ifdef DEBUGGING
2977
2978void
2979Perl_hv_assert(pTHX_ HV *hv)
2980{
2981 dVAR;
2982 HE* entry;
2983 int withflags = 0;
2984 int placeholders = 0;
2985 int real = 0;
2986 int bad = 0;
2987 const I32 riter = HvRITER_get(hv);
2988 HE *eiter = HvEITER_get(hv);
2989
2990 PERL_ARGS_ASSERT_HV_ASSERT;
2991
2992 (void)hv_iterinit(hv);
2993
2994 while ((entry = hv_iternext_flags(hv, HV_ITERNEXT_WANTPLACEHOLDERS))) {
2995 /* sanity check the values */
2996 if (HeVAL(entry) == &PL_sv_placeholder)
2997 placeholders++;
2998 else
2999 real++;
3000 /* sanity check the keys */
3001 if (HeSVKEY(entry)) {
3002 NOOP; /* Don't know what to check on SV keys. */
3003 } else if (HeKUTF8(entry)) {
3004 withflags++;
3005 if (HeKWASUTF8(entry)) {
3006 PerlIO_printf(Perl_debug_log,
3007 "hash key has both WASUTF8 and UTF8: '%.*s'\n",
3008 (int) HeKLEN(entry), HeKEY(entry));
3009 bad = 1;
3010 }
3011 } else if (HeKWASUTF8(entry))
3012 withflags++;
3013 }
3014 if (!SvTIED_mg((const SV *)hv, PERL_MAGIC_tied)) {
3015 static const char bad_count[] = "Count %d %s(s), but hash reports %d\n";
3016 const int nhashkeys = HvUSEDKEYS(hv);
3017 const int nhashplaceholders = HvPLACEHOLDERS_get(hv);
3018
3019 if (nhashkeys != real) {
3020 PerlIO_printf(Perl_debug_log, bad_count, real, "keys", nhashkeys );
3021 bad = 1;
3022 }
3023 if (nhashplaceholders != placeholders) {
3024 PerlIO_printf(Perl_debug_log, bad_count, placeholders, "placeholder", nhashplaceholders );
3025 bad = 1;
3026 }
3027 }
3028 if (withflags && ! HvHASKFLAGS(hv)) {
3029 PerlIO_printf(Perl_debug_log,
3030 "Hash has HASKFLAGS off but I count %d key(s) with flags\n",
3031 withflags);
3032 bad = 1;
3033 }
3034 if (bad) {
3035 sv_dump(MUTABLE_SV(hv));
3036 }
3037 HvRITER_set(hv, riter); /* Restore hash iterator state */
3038 HvEITER_set(hv, eiter);
3039}
3040
3041#endif
3042
3043/*
3044 * Local variables:
3045 * c-indentation-style: bsd
3046 * c-basic-offset: 4
3047 * indent-tabs-mode: t
3048 * End:
3049 *
3050 * ex: set ts=8 sts=4 sw=4 noet:
3051 */