This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Change parameter type of static fcn
[perl5.git] / utf8.c
... / ...
CommitLineData
1/* utf8.c
2 *
3 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 * by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * 'What a fix!' said Sam. 'That's the one place in all the lands we've ever
13 * heard of that we don't want to see any closer; and that's the one place
14 * we're trying to get to! And that's just where we can't get, nohow.'
15 *
16 * [p.603 of _The Lord of the Rings_, IV/I: "The Taming of Sméagol"]
17 *
18 * 'Well do I understand your speech,' he answered in the same language;
19 * 'yet few strangers do so. Why then do you not speak in the Common Tongue,
20 * as is the custom in the West, if you wish to be answered?'
21 * --Gandalf, addressing Théoden's door wardens
22 *
23 * [p.508 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
24 *
25 * ...the travellers perceived that the floor was paved with stones of many
26 * hues; branching runes and strange devices intertwined beneath their feet.
27 *
28 * [p.512 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
29 */
30
31#include "EXTERN.h"
32#define PERL_IN_UTF8_C
33#include "perl.h"
34#include "invlist_inline.h"
35
36static const char malformed_text[] = "Malformed UTF-8 character";
37static const char unees[] =
38 "Malformed UTF-8 character (unexpected end of string)";
39
40/* Be sure to synchronize this message with the similar one in regcomp.c */
41static const char cp_above_legal_max[] =
42 "Use of code point 0x%" UVXf " is not allowed; the"
43 " permissible max is 0x%" UVXf;
44
45/*
46=head1 Unicode Support
47These are various utility functions for manipulating UTF8-encoded
48strings. For the uninitiated, this is a method of representing arbitrary
49Unicode characters as a variable number of bytes, in such a way that
50characters in the ASCII range are unmodified, and a zero byte never appears
51within non-zero characters.
52
53=cut
54*/
55
56/* helper for Perl__force_out_malformed_utf8_message(). Like
57 * SAVECOMPILEWARNINGS(), but works with PL_curcop rather than
58 * PL_compiling */
59
60static void
61S_restore_cop_warnings(pTHX_ void *p)
62{
63 if (!specialWARN(PL_curcop->cop_warnings))
64 PerlMemShared_free(PL_curcop->cop_warnings);
65 PL_curcop->cop_warnings = (STRLEN*)p;
66}
67
68
69void
70Perl__force_out_malformed_utf8_message(pTHX_
71 const U8 *const p, /* First byte in UTF-8 sequence */
72 const U8 * const e, /* Final byte in sequence (may include
73 multiple chars */
74 const U32 flags, /* Flags to pass to utf8n_to_uvchr(),
75 usually 0, or some DISALLOW flags */
76 const bool die_here) /* If TRUE, this function does not return */
77{
78 /* This core-only function is to be called when a malformed UTF-8 character
79 * is found, in order to output the detailed information about the
80 * malformation before dieing. The reason it exists is for the occasions
81 * when such a malformation is fatal, but warnings might be turned off, so
82 * that normally they would not be actually output. This ensures that they
83 * do get output. Because a sequence may be malformed in more than one
84 * way, multiple messages may be generated, so we can't make them fatal, as
85 * that would cause the first one to die.
86 *
87 * Instead we pretend -W was passed to perl, then die afterwards. The
88 * flexibility is here to return to the caller so they can finish up and
89 * die themselves */
90 U32 errors;
91
92 PERL_ARGS_ASSERT__FORCE_OUT_MALFORMED_UTF8_MESSAGE;
93
94 ENTER;
95 SAVEI8(PL_dowarn);
96 SAVESPTR(PL_curcop);
97
98 PL_dowarn = G_WARN_ALL_ON|G_WARN_ON;
99 if (PL_curcop) {
100 /* this is like SAVECOMPILEWARNINGS() except with PL_curcop rather
101 * than PL_compiling */
102 SAVEDESTRUCTOR_X(S_restore_cop_warnings,
103 (void*)PL_curcop->cop_warnings);
104 PL_curcop->cop_warnings = pWARN_ALL;
105 }
106
107 (void) utf8n_to_uvchr_error(p, e - p, NULL, flags & ~UTF8_CHECK_ONLY, &errors);
108
109 LEAVE;
110
111 if (! errors) {
112 Perl_croak(aTHX_ "panic: _force_out_malformed_utf8_message should"
113 " be called only when there are errors found");
114 }
115
116 if (die_here) {
117 Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
118 }
119}
120
121STATIC HV *
122S_new_msg_hv(pTHX_ const char * const message, /* The message text */
123 U32 categories, /* Packed warning categories */
124 U32 flag) /* Flag associated with this message */
125{
126 /* Creates, populates, and returns an HV* that describes an error message
127 * for the translators between UTF8 and code point */
128
129 SV* msg_sv = newSVpv(message, 0);
130 SV* category_sv = newSVuv(categories);
131 SV* flag_bit_sv = newSVuv(flag);
132
133 HV* msg_hv = newHV();
134
135 PERL_ARGS_ASSERT_NEW_MSG_HV;
136
137 (void) hv_stores(msg_hv, "text", msg_sv);
138 (void) hv_stores(msg_hv, "warn_categories", category_sv);
139 (void) hv_stores(msg_hv, "flag_bit", flag_bit_sv);
140
141 return msg_hv;
142}
143
144/*
145=for apidoc uvoffuni_to_utf8_flags
146
147THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
148Instead, B<Almost all code should use L<perlapi/uvchr_to_utf8> or
149L<perlapi/uvchr_to_utf8_flags>>.
150
151This function is like them, but the input is a strict Unicode
152(as opposed to native) code point. Only in very rare circumstances should code
153not be using the native code point.
154
155For details, see the description for L<perlapi/uvchr_to_utf8_flags>.
156
157=cut
158*/
159
160U8 *
161Perl_uvoffuni_to_utf8_flags(pTHX_ U8 *d, UV uv, const UV flags)
162{
163 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS;
164
165 return uvoffuni_to_utf8_flags_msgs(d, uv, flags, NULL);
166}
167
168/* All these formats take a single UV code point argument */
169const char surrogate_cp_format[] = "UTF-16 surrogate U+%04" UVXf;
170const char nonchar_cp_format[] = "Unicode non-character U+%04" UVXf
171 " is not recommended for open interchange";
172const char super_cp_format[] = "Code point 0x%" UVXf " is not Unicode,"
173 " may not be portable";
174const char perl_extended_cp_format[] = "Code point 0x%" UVXf " is not" \
175 " Unicode, requires a Perl extension," \
176 " and so is not portable";
177
178#define HANDLE_UNICODE_SURROGATE(uv, flags, msgs) \
179 STMT_START { \
180 if (flags & UNICODE_WARN_SURROGATE) { \
181 U32 category = packWARN(WARN_SURROGATE); \
182 const char * format = surrogate_cp_format; \
183 if (msgs) { \
184 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv), \
185 category, \
186 UNICODE_GOT_SURROGATE); \
187 } \
188 else { \
189 Perl_ck_warner_d(aTHX_ category, format, uv); \
190 } \
191 } \
192 if (flags & UNICODE_DISALLOW_SURROGATE) { \
193 return NULL; \
194 } \
195 } STMT_END;
196
197#define HANDLE_UNICODE_NONCHAR(uv, flags, msgs) \
198 STMT_START { \
199 if (flags & UNICODE_WARN_NONCHAR) { \
200 U32 category = packWARN(WARN_NONCHAR); \
201 const char * format = nonchar_cp_format; \
202 if (msgs) { \
203 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv), \
204 category, \
205 UNICODE_GOT_NONCHAR); \
206 } \
207 else { \
208 Perl_ck_warner_d(aTHX_ category, format, uv); \
209 } \
210 } \
211 if (flags & UNICODE_DISALLOW_NONCHAR) { \
212 return NULL; \
213 } \
214 } STMT_END;
215
216/* Use shorter names internally in this file */
217#define SHIFT UTF_ACCUMULATION_SHIFT
218#undef MARK
219#define MARK UTF_CONTINUATION_MARK
220#define MASK UTF_CONTINUATION_MASK
221
222/*
223=for apidoc uvchr_to_utf8_flags_msgs
224
225THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
226
227Most code should use C<L</uvchr_to_utf8_flags>()> rather than call this directly.
228
229This function is for code that wants any warning and/or error messages to be
230returned to the caller rather than be displayed. All messages that would have
231been displayed if all lexical warnings are enabled will be returned.
232
233It is just like C<L</uvchr_to_utf8_flags>> but it takes an extra parameter
234placed after all the others, C<msgs>. If this parameter is 0, this function
235behaves identically to C<L</uvchr_to_utf8_flags>>. Otherwise, C<msgs> should
236be a pointer to an C<HV *> variable, in which this function creates a new HV to
237contain any appropriate messages. The hash has three key-value pairs, as
238follows:
239
240=over 4
241
242=item C<text>
243
244The text of the message as a C<SVpv>.
245
246=item C<warn_categories>
247
248The warning category (or categories) packed into a C<SVuv>.
249
250=item C<flag>
251
252A single flag bit associated with this message, in a C<SVuv>.
253The bit corresponds to some bit in the C<*errors> return value,
254such as C<UNICODE_GOT_SURROGATE>.
255
256=back
257
258It's important to note that specifying this parameter as non-null will cause
259any warnings this function would otherwise generate to be suppressed, and
260instead be placed in C<*msgs>. The caller can check the lexical warnings state
261(or not) when choosing what to do with the returned messages.
262
263The caller, of course, is responsible for freeing any returned HV.
264
265=cut
266*/
267
268/* Undocumented; we don't want people using this. Instead they should use
269 * uvchr_to_utf8_flags_msgs() */
270U8 *
271Perl_uvoffuni_to_utf8_flags_msgs(pTHX_ U8 *d, UV uv, const UV flags, HV** msgs)
272{
273 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS_MSGS;
274
275 if (msgs) {
276 *msgs = NULL;
277 }
278
279 if (OFFUNI_IS_INVARIANT(uv)) {
280 *d++ = LATIN1_TO_NATIVE(uv);
281 return d;
282 }
283
284 if (uv <= MAX_UTF8_TWO_BYTE) {
285 *d++ = I8_TO_NATIVE_UTF8(( uv >> SHIFT) | UTF_START_MARK(2));
286 *d++ = I8_TO_NATIVE_UTF8(( uv & MASK) | MARK);
287 return d;
288 }
289
290 /* Not 2-byte; test for and handle 3-byte result. In the test immediately
291 * below, the 16 is for start bytes E0-EF (which are all the possible ones
292 * for 3 byte characters). The 2 is for 2 continuation bytes; these each
293 * contribute SHIFT bits. This yields 0x4000 on EBCDIC platforms, 0x1_0000
294 * on ASCII; so 3 bytes covers the range 0x400-0x3FFF on EBCDIC;
295 * 0x800-0xFFFF on ASCII */
296 if (uv < (16 * (1U << (2 * SHIFT)))) {
297 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((3 - 1) * SHIFT)) | UTF_START_MARK(3));
298 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
299 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
300
301#ifndef EBCDIC /* These problematic code points are 4 bytes on EBCDIC, so
302 aren't tested here */
303 /* The most likely code points in this range are below the surrogates.
304 * Do an extra test to quickly exclude those. */
305 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST)) {
306 if (UNLIKELY( UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv)
307 || UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv)))
308 {
309 HANDLE_UNICODE_NONCHAR(uv, flags, msgs);
310 }
311 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
312 HANDLE_UNICODE_SURROGATE(uv, flags, msgs);
313 }
314 }
315#endif
316 return d;
317 }
318
319 /* Not 3-byte; that means the code point is at least 0x1_0000 on ASCII
320 * platforms, and 0x4000 on EBCDIC. There are problematic cases that can
321 * happen starting with 4-byte characters on ASCII platforms. We unify the
322 * code for these with EBCDIC, even though some of them require 5-bytes on
323 * those, because khw believes the code saving is worth the very slight
324 * performance hit on these high EBCDIC code points. */
325
326 if (UNLIKELY(UNICODE_IS_SUPER(uv))) {
327 if (UNLIKELY( uv > MAX_LEGAL_CP
328 && ! (flags & UNICODE_ALLOW_ABOVE_IV_MAX)))
329 {
330 Perl_croak(aTHX_ cp_above_legal_max, uv, MAX_LEGAL_CP);
331 }
332 if ( (flags & UNICODE_WARN_SUPER)
333 || ( (flags & UNICODE_WARN_PERL_EXTENDED)
334 && UNICODE_IS_PERL_EXTENDED(uv)))
335 {
336 const char * format = super_cp_format;
337 U32 category = packWARN(WARN_NON_UNICODE);
338 U32 flag = UNICODE_GOT_SUPER;
339
340 /* Choose the more dire applicable warning */
341 if (UNICODE_IS_PERL_EXTENDED(uv)) {
342 format = perl_extended_cp_format;
343 if (flags & (UNICODE_WARN_PERL_EXTENDED
344 |UNICODE_DISALLOW_PERL_EXTENDED))
345 {
346 flag = UNICODE_GOT_PERL_EXTENDED;
347 }
348 }
349
350 if (msgs) {
351 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv),
352 category, flag);
353 }
354 else {
355 Perl_ck_warner_d(aTHX_ packWARN(WARN_NON_UNICODE), format, uv);
356 }
357 }
358 if ( (flags & UNICODE_DISALLOW_SUPER)
359 || ( (flags & UNICODE_DISALLOW_PERL_EXTENDED)
360 && UNICODE_IS_PERL_EXTENDED(uv)))
361 {
362 return NULL;
363 }
364 }
365 else if (UNLIKELY(UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv))) {
366 HANDLE_UNICODE_NONCHAR(uv, flags, msgs);
367 }
368
369 /* Test for and handle 4-byte result. In the test immediately below, the
370 * 8 is for start bytes F0-F7 (which are all the possible ones for 4 byte
371 * characters). The 3 is for 3 continuation bytes; these each contribute
372 * SHIFT bits. This yields 0x4_0000 on EBCDIC platforms, 0x20_0000 on
373 * ASCII, so 4 bytes covers the range 0x4000-0x3_FFFF on EBCDIC;
374 * 0x1_0000-0x1F_FFFF on ASCII */
375 if (uv < (8 * (1U << (3 * SHIFT)))) {
376 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((4 - 1) * SHIFT)) | UTF_START_MARK(4));
377 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((3 - 1) * SHIFT)) & MASK) | MARK);
378 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
379 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
380
381#ifdef EBCDIC /* These were handled on ASCII platforms in the code for 3-byte
382 characters. The end-plane non-characters for EBCDIC were
383 handled just above */
384 if (UNLIKELY(UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv))) {
385 HANDLE_UNICODE_NONCHAR(uv, flags, msgs);
386 }
387 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
388 HANDLE_UNICODE_SURROGATE(uv, flags, msgs);
389 }
390#endif
391
392 return d;
393 }
394
395 /* Not 4-byte; that means the code point is at least 0x20_0000 on ASCII
396 * platforms, and 0x4000 on EBCDIC. At this point we switch to a loop
397 * format. The unrolled version above turns out to not save all that much
398 * time, and at these high code points (well above the legal Unicode range
399 * on ASCII platforms, and well above anything in common use in EBCDIC),
400 * khw believes that less code outweighs slight performance gains. */
401
402 {
403 STRLEN len = OFFUNISKIP(uv);
404 U8 *p = d+len-1;
405 while (p > d) {
406 *p-- = I8_TO_NATIVE_UTF8((uv & MASK) | MARK);
407 uv >>= SHIFT;
408 }
409 *p = I8_TO_NATIVE_UTF8((uv & UTF_START_MASK(len)) | UTF_START_MARK(len));
410 return d+len;
411 }
412}
413
414/*
415=for apidoc uvchr_to_utf8
416
417Adds the UTF-8 representation of the native code point C<uv> to the end
418of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
419C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
420the byte after the end of the new character. In other words,
421
422 d = uvchr_to_utf8(d, uv);
423
424is the recommended wide native character-aware way of saying
425
426 *(d++) = uv;
427
428This function accepts any code point from 0..C<IV_MAX> as input.
429C<IV_MAX> is typically 0x7FFF_FFFF in a 32-bit word.
430
431It is possible to forbid or warn on non-Unicode code points, or those that may
432be problematic by using L</uvchr_to_utf8_flags>.
433
434=cut
435*/
436
437/* This is also a macro */
438PERL_CALLCONV U8* Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv);
439
440U8 *
441Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv)
442{
443 return uvchr_to_utf8(d, uv);
444}
445
446/*
447=for apidoc uvchr_to_utf8_flags
448
449Adds the UTF-8 representation of the native code point C<uv> to the end
450of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
451C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
452the byte after the end of the new character. In other words,
453
454 d = uvchr_to_utf8_flags(d, uv, flags);
455
456or, in most cases,
457
458 d = uvchr_to_utf8_flags(d, uv, 0);
459
460This is the Unicode-aware way of saying
461
462 *(d++) = uv;
463
464If C<flags> is 0, this function accepts any code point from 0..C<IV_MAX> as
465input. C<IV_MAX> is typically 0x7FFF_FFFF in a 32-bit word.
466
467Specifying C<flags> can further restrict what is allowed and not warned on, as
468follows:
469
470If C<uv> is a Unicode surrogate code point and C<UNICODE_WARN_SURROGATE> is set,
471the function will raise a warning, provided UTF8 warnings are enabled. If
472instead C<UNICODE_DISALLOW_SURROGATE> is set, the function will fail and return
473NULL. If both flags are set, the function will both warn and return NULL.
474
475Similarly, the C<UNICODE_WARN_NONCHAR> and C<UNICODE_DISALLOW_NONCHAR> flags
476affect how the function handles a Unicode non-character.
477
478And likewise, the C<UNICODE_WARN_SUPER> and C<UNICODE_DISALLOW_SUPER> flags
479affect the handling of code points that are above the Unicode maximum of
4800x10FFFF. Languages other than Perl may not be able to accept files that
481contain these.
482
483The flag C<UNICODE_WARN_ILLEGAL_INTERCHANGE> selects all three of
484the above WARN flags; and C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> selects all
485three DISALLOW flags. C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> restricts the
486allowed inputs to the strict UTF-8 traditionally defined by Unicode.
487Similarly, C<UNICODE_WARN_ILLEGAL_C9_INTERCHANGE> and
488C<UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE> are shortcuts to select the
489above-Unicode and surrogate flags, but not the non-character ones, as
490defined in
491L<Unicode Corrigendum #9|https://www.unicode.org/versions/corrigendum9.html>.
492See L<perlunicode/Noncharacter code points>.
493
494Extremely high code points were never specified in any standard, and require an
495extension to UTF-8 to express, which Perl does. It is likely that programs
496written in something other than Perl would not be able to read files that
497contain these; nor would Perl understand files written by something that uses a
498different extension. For these reasons, there is a separate set of flags that
499can warn and/or disallow these extremely high code points, even if other
500above-Unicode ones are accepted. They are the C<UNICODE_WARN_PERL_EXTENDED>
501and C<UNICODE_DISALLOW_PERL_EXTENDED> flags. For more information see
502L</C<UTF8_GOT_PERL_EXTENDED>>. Of course C<UNICODE_DISALLOW_SUPER> will
503treat all above-Unicode code points, including these, as malformations. (Note
504that the Unicode standard considers anything above 0x10FFFF to be illegal, but
505there are standards predating it that allow up to 0x7FFF_FFFF (2**31 -1))
506
507A somewhat misleadingly named synonym for C<UNICODE_WARN_PERL_EXTENDED> is
508retained for backward compatibility: C<UNICODE_WARN_ABOVE_31_BIT>. Similarly,
509C<UNICODE_DISALLOW_ABOVE_31_BIT> is usable instead of the more accurately named
510C<UNICODE_DISALLOW_PERL_EXTENDED>. The names are misleading because on EBCDIC
511platforms,these flags can apply to code points that actually do fit in 31 bits.
512The new names accurately describe the situation in all cases.
513
514=cut
515*/
516
517/* This is also a macro */
518PERL_CALLCONV U8* Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags);
519
520U8 *
521Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
522{
523 return uvchr_to_utf8_flags(d, uv, flags);
524}
525
526#ifndef UV_IS_QUAD
527
528STATIC int
529S_is_utf8_cp_above_31_bits(const U8 * const s,
530 const U8 * const e,
531 const bool consider_overlongs)
532{
533 /* Returns TRUE if the first code point represented by the Perl-extended-
534 * UTF-8-encoded string starting at 's', and looking no further than 'e -
535 * 1' doesn't fit into 31 bytes. That is, that if it is >= 2**31.
536 *
537 * The function handles the case where the input bytes do not include all
538 * the ones necessary to represent a full character. That is, they may be
539 * the intial bytes of the representation of a code point, but possibly
540 * the final ones necessary for the complete representation may be beyond
541 * 'e - 1'.
542 *
543 * The function also can handle the case where the input is an overlong
544 * sequence. If 'consider_overlongs' is 0, the function assumes the
545 * input is not overlong, without checking, and will return based on that
546 * assumption. If this parameter is 1, the function will go to the trouble
547 * of figuring out if it actually evaluates to above or below 31 bits.
548 *
549 * The sequence is otherwise assumed to be well-formed, without checking.
550 */
551
552 const STRLEN len = e - s;
553 int is_overlong;
554
555 PERL_ARGS_ASSERT_IS_UTF8_CP_ABOVE_31_BITS;
556
557 assert(! UTF8_IS_INVARIANT(*s) && e > s);
558
559#ifdef EBCDIC
560
561 PERL_UNUSED_ARG(consider_overlongs);
562
563 /* On the EBCDIC code pages we handle, only the native start byte 0xFE can
564 * mean a 32-bit or larger code point (0xFF is an invariant). 0xFE can
565 * also be the start byte for a 31-bit code point; we need at least 2
566 * bytes, and maybe up through 8 bytes, to determine that. (It can also be
567 * the start byte for an overlong sequence, but for 30-bit or smaller code
568 * points, so we don't have to worry about overlongs on EBCDIC.) */
569 if (*s != 0xFE) {
570 return 0;
571 }
572
573 if (len == 1) {
574 return -1;
575 }
576
577#else
578
579 /* On ASCII, FE and FF are the only start bytes that can evaluate to
580 * needing more than 31 bits. */
581 if (LIKELY(*s < 0xFE)) {
582 return 0;
583 }
584
585 /* What we have left are FE and FF. Both of these require more than 31
586 * bits unless they are for overlongs. */
587 if (! consider_overlongs) {
588 return 1;
589 }
590
591 /* Here, we have FE or FF. If the input isn't overlong, it evaluates to
592 * above 31 bits. But we need more than one byte to discern this, so if
593 * passed just the start byte, it could be an overlong evaluating to
594 * smaller */
595 if (len == 1) {
596 return -1;
597 }
598
599 /* Having excluded len==1, and knowing that FE and FF are both valid start
600 * bytes, we can call the function below to see if the sequence is
601 * overlong. (We don't need the full generality of the called function,
602 * but for these huge code points, speed shouldn't be a consideration, and
603 * the compiler does have enough information, since it's static to this
604 * file, to optimize to just the needed parts.) */
605 is_overlong = is_utf8_overlong_given_start_byte_ok(s, len);
606
607 /* If it isn't overlong, more than 31 bits are required. */
608 if (is_overlong == 0) {
609 return 1;
610 }
611
612 /* If it is indeterminate if it is overlong, return that */
613 if (is_overlong < 0) {
614 return -1;
615 }
616
617 /* Here is overlong. Such a sequence starting with FE is below 31 bits, as
618 * the max it can be is 2**31 - 1 */
619 if (*s == 0xFE) {
620 return 0;
621 }
622
623#endif
624
625 /* Here, ASCII and EBCDIC rejoin:
626 * On ASCII: We have an overlong sequence starting with FF
627 * On EBCDIC: We have a sequence starting with FE. */
628
629 { /* For C89, use a block so the declaration can be close to its use */
630
631#ifdef EBCDIC
632
633 /* U+7FFFFFFF (2 ** 31 - 1)
634 * [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 10 11 12 13
635 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x42\x73\x73\x73\x73\x73\x73
636 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x42\x72\x72\x72\x72\x72\x72
637 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x42\x75\x75\x75\x75\x75\x75
638 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA1\xBF\xBF\xBF\xBF\xBF\xBF
639 * U+80000000 (2 ** 31):
640 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
641 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
642 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
643 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA2\xA0\xA0\xA0\xA0\xA0\xA0
644 *
645 * and since we know that *s = \xfe, any continuation sequcence
646 * following it that is gt the below is above 31 bits
647 [0] [1] [2] [3] [4] [5] [6] */
648 const U8 conts_for_highest_30_bit[] = "\x41\x41\x41\x41\x41\x41\x42";
649
650#else
651
652 /* FF overlong for U+7FFFFFFF (2 ** 31 - 1)
653 * ASCII: \xFF\x80\x80\x80\x80\x80\x80\x81\xBF\xBF\xBF\xBF\xBF
654 * FF overlong for U+80000000 (2 ** 31):
655 * ASCII: \xFF\x80\x80\x80\x80\x80\x80\x82\x80\x80\x80\x80\x80
656 * and since we know that *s = \xff, any continuation sequcence
657 * following it that is gt the below is above 30 bits
658 [0] [1] [2] [3] [4] [5] [6] */
659 const U8 conts_for_highest_30_bit[] = "\x80\x80\x80\x80\x80\x80\x81";
660
661
662#endif
663 const STRLEN conts_len = sizeof(conts_for_highest_30_bit) - 1;
664 const STRLEN cmp_len = MIN(conts_len, len - 1);
665
666 /* Now compare the continuation bytes in s with the ones we have
667 * compiled in that are for the largest 30 bit code point. If we have
668 * enough bytes available to determine the answer, or the bytes we do
669 * have differ from them, we can compare the two to get a definitive
670 * answer (Note that in UTF-EBCDIC, the two lowest possible
671 * continuation bytes are \x41 and \x42.) */
672 if (cmp_len >= conts_len || memNE(s + 1,
673 conts_for_highest_30_bit,
674 cmp_len))
675 {
676 return cBOOL(memGT(s + 1, conts_for_highest_30_bit, cmp_len));
677 }
678
679 /* Here, all the bytes we have are the same as the highest 30-bit code
680 * point, but we are missing so many bytes that we can't make the
681 * determination */
682 return -1;
683 }
684}
685
686#endif
687
688PERL_STATIC_INLINE int
689S_is_utf8_overlong_given_start_byte_ok(const U8 * const s, const STRLEN len)
690{
691 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
692 * 's' + 'len' - 1 is an overlong. It returns 1 if it is an overlong; 0 if
693 * it isn't, and -1 if there isn't enough information to tell. This last
694 * return value can happen if the sequence is incomplete, missing some
695 * trailing bytes that would form a complete character. If there are
696 * enough bytes to make a definitive decision, this function does so.
697 * Usually 2 bytes sufficient.
698 *
699 * Overlongs can occur whenever the number of continuation bytes changes.
700 * That means whenever the number of leading 1 bits in a start byte
701 * increases from the next lower start byte. That happens for start bytes
702 * C0, E0, F0, F8, FC, FE, and FF. On modern perls, the following illegal
703 * start bytes have already been excluded, so don't need to be tested here;
704 * ASCII platforms: C0, C1
705 * EBCDIC platforms C0, C1, C2, C3, C4, E0
706 */
707
708 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
709 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
710
711 PERL_ARGS_ASSERT_IS_UTF8_OVERLONG_GIVEN_START_BYTE_OK;
712 assert(len > 1 && UTF8_IS_START(*s));
713
714 /* Each platform has overlongs after the start bytes given above (expressed
715 * in I8 for EBCDIC). What constitutes an overlong varies by platform, but
716 * the logic is the same, except the E0 overlong has already been excluded
717 * on EBCDIC platforms. The values below were found by manually
718 * inspecting the UTF-8 patterns. See the tables in utf8.h and
719 * utfebcdic.h. */
720
721# ifdef EBCDIC
722# define F0_ABOVE_OVERLONG 0xB0
723# define F8_ABOVE_OVERLONG 0xA8
724# define FC_ABOVE_OVERLONG 0xA4
725# define FE_ABOVE_OVERLONG 0xA2
726# define FF_OVERLONG_PREFIX "\xfe\x41\x41\x41\x41\x41\x41\x41"
727 /* I8(0xfe) is FF */
728# else
729
730 if (s0 == 0xE0 && UNLIKELY(s1 < 0xA0)) {
731 return 1;
732 }
733
734# define F0_ABOVE_OVERLONG 0x90
735# define F8_ABOVE_OVERLONG 0x88
736# define FC_ABOVE_OVERLONG 0x84
737# define FE_ABOVE_OVERLONG 0x82
738# define FF_OVERLONG_PREFIX "\xff\x80\x80\x80\x80\x80\x80"
739# endif
740
741
742 if ( (s0 == 0xF0 && UNLIKELY(s1 < F0_ABOVE_OVERLONG))
743 || (s0 == 0xF8 && UNLIKELY(s1 < F8_ABOVE_OVERLONG))
744 || (s0 == 0xFC && UNLIKELY(s1 < FC_ABOVE_OVERLONG))
745 || (s0 == 0xFE && UNLIKELY(s1 < FE_ABOVE_OVERLONG)))
746 {
747 return 1;
748 }
749
750 /* Check for the FF overlong */
751 return isFF_OVERLONG(s, len);
752}
753
754PERL_STATIC_INLINE int
755S_isFF_OVERLONG(const U8 * const s, const STRLEN len)
756{
757 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
758 * 'e' - 1 is an overlong beginning with \xFF. It returns 1 if it is; 0 if
759 * it isn't, and -1 if there isn't enough information to tell. This last
760 * return value can happen if the sequence is incomplete, missing some
761 * trailing bytes that would form a complete character. If there are
762 * enough bytes to make a definitive decision, this function does so. */
763
764 PERL_ARGS_ASSERT_ISFF_OVERLONG;
765
766 /* To be an FF overlong, all the available bytes must match */
767 if (LIKELY(memNE(s, FF_OVERLONG_PREFIX,
768 MIN(len, sizeof(FF_OVERLONG_PREFIX) - 1))))
769 {
770 return 0;
771 }
772
773 /* To be an FF overlong sequence, all the bytes in FF_OVERLONG_PREFIX must
774 * be there; what comes after them doesn't matter. See tables in utf8.h,
775 * utfebcdic.h. */
776 if (len >= sizeof(FF_OVERLONG_PREFIX) - 1) {
777 return 1;
778 }
779
780 /* The missing bytes could cause the result to go one way or the other, so
781 * the result is indeterminate */
782 return -1;
783}
784
785#if defined(UV_IS_QUAD) /* These assume IV_MAX is 2**63-1 */
786# ifdef EBCDIC /* Actually is I8 */
787# define HIGHEST_REPRESENTABLE_UTF8 \
788 "\xFF\xA7\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
789# else
790# define HIGHEST_REPRESENTABLE_UTF8 \
791 "\xFF\x80\x87\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
792# endif
793#endif
794
795PERL_STATIC_INLINE int
796S_does_utf8_overflow(const U8 * const s,
797 const U8 * e,
798 const bool consider_overlongs)
799{
800 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
801 * 'e' - 1 would overflow an IV on this platform; that is if it represents
802 * a code point larger than the highest representable code point. It
803 * returns 1 if it does overflow; 0 if it doesn't, and -1 if there isn't
804 * enough information to tell. This last return value can happen if the
805 * sequence is incomplete, missing some trailing bytes that would form a
806 * complete character. If there are enough bytes to make a definitive
807 * decision, this function does so.
808 *
809 * If 'consider_overlongs' is TRUE, the function checks for the possibility
810 * that the sequence is an overlong that doesn't overflow. Otherwise, it
811 * assumes the sequence is not an overlong. This can give different
812 * results only on ASCII 32-bit platforms.
813 *
814 * (For ASCII platforms, we could use memcmp() because we don't have to
815 * convert each byte to I8, but it's very rare input indeed that would
816 * approach overflow, so the loop below will likely only get executed once.)
817 *
818 * 'e' - 1 must not be beyond a full character. */
819
820
821 PERL_ARGS_ASSERT_DOES_UTF8_OVERFLOW;
822 assert(s <= e && s + UTF8SKIP(s) >= e);
823
824#if ! defined(UV_IS_QUAD)
825
826 return is_utf8_cp_above_31_bits(s, e, consider_overlongs);
827
828#else
829
830 PERL_UNUSED_ARG(consider_overlongs);
831
832 {
833 const STRLEN len = e - s;
834 const U8 *x;
835 const U8 * y = (const U8 *) HIGHEST_REPRESENTABLE_UTF8;
836
837 for (x = s; x < e; x++, y++) {
838
839 if (UNLIKELY(NATIVE_UTF8_TO_I8(*x) == *y)) {
840 continue;
841 }
842
843 /* If this byte is larger than the corresponding highest UTF-8
844 * byte, the sequence overflow; otherwise the byte is less than,
845 * and so the sequence doesn't overflow */
846 return NATIVE_UTF8_TO_I8(*x) > *y;
847
848 }
849
850 /* Got to the end and all bytes are the same. If the input is a whole
851 * character, it doesn't overflow. And if it is a partial character,
852 * there's not enough information to tell */
853 if (len < sizeof(HIGHEST_REPRESENTABLE_UTF8) - 1) {
854 return -1;
855 }
856
857 return 0;
858 }
859
860#endif
861
862}
863
864#if 0
865
866/* This is the portions of the above function that deal with UV_MAX instead of
867 * IV_MAX. They are left here in case we want to combine them so that internal
868 * uses can have larger code points. The only logic difference is that the
869 * 32-bit EBCDIC platform is treate like the 64-bit, and the 32-bit ASCII has
870 * different logic.
871 */
872
873/* Anything larger than this will overflow the word if it were converted into a UV */
874#if defined(UV_IS_QUAD)
875# ifdef EBCDIC /* Actually is I8 */
876# define HIGHEST_REPRESENTABLE_UTF8 \
877 "\xFF\xAF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
878# else
879# define HIGHEST_REPRESENTABLE_UTF8 \
880 "\xFF\x80\x8F\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
881# endif
882#else /* 32-bit */
883# ifdef EBCDIC
884# define HIGHEST_REPRESENTABLE_UTF8 \
885 "\xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA3\xBF\xBF\xBF\xBF\xBF\xBF"
886# else
887# define HIGHEST_REPRESENTABLE_UTF8 "\xFE\x83\xBF\xBF\xBF\xBF\xBF"
888# endif
889#endif
890
891#if ! defined(UV_IS_QUAD) && ! defined(EBCDIC)
892
893 /* On 32 bit ASCII machines, many overlongs that start with FF don't
894 * overflow */
895 if (consider_overlongs && isFF_OVERLONG(s, len) > 0) {
896
897 /* To be such an overlong, the first bytes of 's' must match
898 * FF_OVERLONG_PREFIX, which is "\xff\x80\x80\x80\x80\x80\x80". If we
899 * don't have any additional bytes available, the sequence, when
900 * completed might or might not fit in 32 bits. But if we have that
901 * next byte, we can tell for sure. If it is <= 0x83, then it does
902 * fit. */
903 if (len <= sizeof(FF_OVERLONG_PREFIX) - 1) {
904 return -1;
905 }
906
907 return s[sizeof(FF_OVERLONG_PREFIX) - 1] > 0x83;
908 }
909
910/* Starting with the #else, the rest of the function is identical except
911 * 1. we need to move the 'len' declaration to be global to the function
912 * 2. the endif move to just after the UNUSED_ARG.
913 * An empty endif is given just below to satisfy the preprocessor
914 */
915#endif
916
917#endif
918
919#undef F0_ABOVE_OVERLONG
920#undef F8_ABOVE_OVERLONG
921#undef FC_ABOVE_OVERLONG
922#undef FE_ABOVE_OVERLONG
923#undef FF_OVERLONG_PREFIX
924
925STRLEN
926Perl_is_utf8_char_helper(const U8 * const s, const U8 * e, const U32 flags)
927{
928 STRLEN len;
929 const U8 *x;
930
931 /* A helper function that should not be called directly.
932 *
933 * This function returns non-zero if the string beginning at 's' and
934 * looking no further than 'e - 1' is well-formed Perl-extended-UTF-8 for a
935 * code point; otherwise it returns 0. The examination stops after the
936 * first code point in 's' is validated, not looking at the rest of the
937 * input. If 'e' is such that there are not enough bytes to represent a
938 * complete code point, this function will return non-zero anyway, if the
939 * bytes it does have are well-formed UTF-8 as far as they go, and aren't
940 * excluded by 'flags'.
941 *
942 * A non-zero return gives the number of bytes required to represent the
943 * code point. Be aware that if the input is for a partial character, the
944 * return will be larger than 'e - s'.
945 *
946 * This function assumes that the code point represented is UTF-8 variant.
947 * The caller should have excluded the possibility of it being invariant
948 * before calling this function.
949 *
950 * 'flags' can be 0, or any combination of the UTF8_DISALLOW_foo flags
951 * accepted by L</utf8n_to_uvchr>. If non-zero, this function will return
952 * 0 if the code point represented is well-formed Perl-extended-UTF-8, but
953 * disallowed by the flags. If the input is only for a partial character,
954 * the function will return non-zero if there is any sequence of
955 * well-formed UTF-8 that, when appended to the input sequence, could
956 * result in an allowed code point; otherwise it returns 0. Non characters
957 * cannot be determined based on partial character input. But many of the
958 * other excluded types can be determined with just the first one or two
959 * bytes.
960 *
961 */
962
963 PERL_ARGS_ASSERT_IS_UTF8_CHAR_HELPER;
964
965 assert(0 == (flags & ~(UTF8_DISALLOW_ILLEGAL_INTERCHANGE
966 |UTF8_DISALLOW_PERL_EXTENDED)));
967 assert(! UTF8_IS_INVARIANT(*s));
968
969 /* A variant char must begin with a start byte */
970 if (UNLIKELY(! UTF8_IS_START(*s))) {
971 return 0;
972 }
973
974 /* Examine a maximum of a single whole code point */
975 if (e - s > UTF8SKIP(s)) {
976 e = s + UTF8SKIP(s);
977 }
978
979 len = e - s;
980
981 if (flags && isUTF8_POSSIBLY_PROBLEMATIC(*s)) {
982 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
983
984 /* Here, we are disallowing some set of largish code points, and the
985 * first byte indicates the sequence is for a code point that could be
986 * in the excluded set. We generally don't have to look beyond this or
987 * the second byte to see if the sequence is actually for one of the
988 * excluded classes. The code below is derived from this table:
989 *
990 * UTF-8 UTF-EBCDIC I8
991 * U+D800: \xED\xA0\x80 \xF1\xB6\xA0\xA0 First surrogate
992 * U+DFFF: \xED\xBF\xBF \xF1\xB7\xBF\xBF Final surrogate
993 * U+110000: \xF4\x90\x80\x80 \xF9\xA2\xA0\xA0\xA0 First above Unicode
994 *
995 * Keep in mind that legal continuation bytes range between \x80..\xBF
996 * for UTF-8, and \xA0..\xBF for I8. Anything above those aren't
997 * continuation bytes. Hence, we don't have to test the upper edge
998 * because if any of those is encountered, the sequence is malformed,
999 * and would fail elsewhere in this function.
1000 *
1001 * The code here likewise assumes that there aren't other
1002 * malformations; again the function should fail elsewhere because of
1003 * these. For example, an overlong beginning with FC doesn't actually
1004 * have to be a super; it could actually represent a small code point,
1005 * even U+0000. But, since overlongs (and other malformations) are
1006 * illegal, the function should return FALSE in either case.
1007 */
1008
1009#ifdef EBCDIC /* On EBCDIC, these are actually I8 bytes */
1010# define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xFA
1011# define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF9 && (s1) >= 0xA2)
1012
1013# define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xF1 \
1014 /* B6 and B7 */ \
1015 && ((s1) & 0xFE ) == 0xB6)
1016# define isUTF8_PERL_EXTENDED(s) (*s == I8_TO_NATIVE_UTF8(0xFF))
1017#else
1018# define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xF5
1019# define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF4 && (s1) >= 0x90)
1020# define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xED && (s1) >= 0xA0)
1021# define isUTF8_PERL_EXTENDED(s) (*s >= 0xFE)
1022#endif
1023
1024 if ( (flags & UTF8_DISALLOW_SUPER)
1025 && UNLIKELY(s0 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
1026 {
1027 return 0; /* Above Unicode */
1028 }
1029
1030 if ( (flags & UTF8_DISALLOW_PERL_EXTENDED)
1031 && UNLIKELY(isUTF8_PERL_EXTENDED(s)))
1032 {
1033 return 0;
1034 }
1035
1036 if (len > 1) {
1037 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
1038
1039 if ( (flags & UTF8_DISALLOW_SUPER)
1040 && UNLIKELY(IS_UTF8_2_BYTE_SUPER(s0, s1)))
1041 {
1042 return 0; /* Above Unicode */
1043 }
1044
1045 if ( (flags & UTF8_DISALLOW_SURROGATE)
1046 && UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(s0, s1)))
1047 {
1048 return 0; /* Surrogate */
1049 }
1050
1051 if ( (flags & UTF8_DISALLOW_NONCHAR)
1052 && UNLIKELY(UTF8_IS_NONCHAR(s, e)))
1053 {
1054 return 0; /* Noncharacter code point */
1055 }
1056 }
1057 }
1058
1059 /* Make sure that all that follows are continuation bytes */
1060 for (x = s + 1; x < e; x++) {
1061 if (UNLIKELY(! UTF8_IS_CONTINUATION(*x))) {
1062 return 0;
1063 }
1064 }
1065
1066 /* Here is syntactically valid. Next, make sure this isn't the start of an
1067 * overlong. */
1068 if (len > 1 && is_utf8_overlong_given_start_byte_ok(s, len) > 0) {
1069 return 0;
1070 }
1071
1072 /* And finally, that the code point represented fits in a word on this
1073 * platform */
1074 if (0 < does_utf8_overflow(s, e,
1075 0 /* Don't consider overlongs */
1076 ))
1077 {
1078 return 0;
1079 }
1080
1081 return UTF8SKIP(s);
1082}
1083
1084char *
1085Perl__byte_dump_string(pTHX_ const U8 * const start, const STRLEN len, const bool format)
1086{
1087 /* Returns a mortalized C string that is a displayable copy of the 'len'
1088 * bytes starting at 'start'. 'format' gives how to display each byte.
1089 * Currently, there are only two formats, so it is currently a bool:
1090 * 0 \xab
1091 * 1 ab (that is a space between two hex digit bytes)
1092 */
1093
1094 const STRLEN output_len = 4 * len + 1; /* 4 bytes per each input, plus a
1095 trailing NUL */
1096 const U8 * s = start;
1097 const U8 * const e = start + len;
1098 char * output;
1099 char * d;
1100
1101 PERL_ARGS_ASSERT__BYTE_DUMP_STRING;
1102
1103 Newx(output, output_len, char);
1104 SAVEFREEPV(output);
1105
1106 d = output;
1107 for (s = start; s < e; s++) {
1108 const unsigned high_nibble = (*s & 0xF0) >> 4;
1109 const unsigned low_nibble = (*s & 0x0F);
1110
1111 if (format) {
1112 if (s > start) {
1113 *d++ = ' ';
1114 }
1115 }
1116 else {
1117 *d++ = '\\';
1118 *d++ = 'x';
1119 }
1120
1121 if (high_nibble < 10) {
1122 *d++ = high_nibble + '0';
1123 }
1124 else {
1125 *d++ = high_nibble - 10 + 'a';
1126 }
1127
1128 if (low_nibble < 10) {
1129 *d++ = low_nibble + '0';
1130 }
1131 else {
1132 *d++ = low_nibble - 10 + 'a';
1133 }
1134 }
1135
1136 *d = '\0';
1137 return output;
1138}
1139
1140PERL_STATIC_INLINE char *
1141S_unexpected_non_continuation_text(pTHX_ const U8 * const s,
1142
1143 /* Max number of bytes to print */
1144 STRLEN print_len,
1145
1146 /* Which one is the non-continuation */
1147 const STRLEN non_cont_byte_pos,
1148
1149 /* How many bytes should there be? */
1150 const STRLEN expect_len)
1151{
1152 /* Return the malformation warning text for an unexpected continuation
1153 * byte. */
1154
1155 const char * const where = (non_cont_byte_pos == 1)
1156 ? "immediately"
1157 : Perl_form(aTHX_ "%d bytes",
1158 (int) non_cont_byte_pos);
1159 const U8 * x = s + non_cont_byte_pos;
1160 const U8 * e = s + print_len;
1161
1162 PERL_ARGS_ASSERT_UNEXPECTED_NON_CONTINUATION_TEXT;
1163
1164 /* We don't need to pass this parameter, but since it has already been
1165 * calculated, it's likely faster to pass it; verify under DEBUGGING */
1166 assert(expect_len == UTF8SKIP(s));
1167
1168 /* As a defensive coding measure, don't output anything past a NUL. Such
1169 * bytes shouldn't be in the middle of a malformation, and could mark the
1170 * end of the allocated string, and what comes after is undefined */
1171 for (; x < e; x++) {
1172 if (*x == '\0') {
1173 x++; /* Output this particular NUL */
1174 break;
1175 }
1176 }
1177
1178 return Perl_form(aTHX_ "%s: %s (unexpected non-continuation byte 0x%02x,"
1179 " %s after start byte 0x%02x; need %d bytes, got %d)",
1180 malformed_text,
1181 _byte_dump_string(s, x - s, 0),
1182 *(s + non_cont_byte_pos),
1183 where,
1184 *s,
1185 (int) expect_len,
1186 (int) non_cont_byte_pos);
1187}
1188
1189/*
1190
1191=for apidoc utf8n_to_uvchr
1192
1193THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1194Most code should use L</utf8_to_uvchr_buf>() rather than call this
1195directly.
1196
1197Bottom level UTF-8 decode routine.
1198Returns the native code point value of the first character in the string C<s>,
1199which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than
1200C<curlen> bytes; C<*retlen> (if C<retlen> isn't NULL) will be set to
1201the length, in bytes, of that character.
1202
1203The value of C<flags> determines the behavior when C<s> does not point to a
1204well-formed UTF-8 character. If C<flags> is 0, encountering a malformation
1205causes zero to be returned and C<*retlen> is set so that (S<C<s> + C<*retlen>>)
1206is the next possible position in C<s> that could begin a non-malformed
1207character. Also, if UTF-8 warnings haven't been lexically disabled, a warning
1208is raised. Some UTF-8 input sequences may contain multiple malformations.
1209This function tries to find every possible one in each call, so multiple
1210warnings can be raised for the same sequence.
1211
1212Various ALLOW flags can be set in C<flags> to allow (and not warn on)
1213individual types of malformations, such as the sequence being overlong (that
1214is, when there is a shorter sequence that can express the same code point;
1215overlong sequences are expressly forbidden in the UTF-8 standard due to
1216potential security issues). Another malformation example is the first byte of
1217a character not being a legal first byte. See F<utf8.h> for the list of such
1218flags. Even if allowed, this function generally returns the Unicode
1219REPLACEMENT CHARACTER when it encounters a malformation. There are flags in
1220F<utf8.h> to override this behavior for the overlong malformations, but don't
1221do that except for very specialized purposes.
1222
1223The C<UTF8_CHECK_ONLY> flag overrides the behavior when a non-allowed (by other
1224flags) malformation is found. If this flag is set, the routine assumes that
1225the caller will raise a warning, and this function will silently just set
1226C<retlen> to C<-1> (cast to C<STRLEN>) and return zero.
1227
1228Note that this API requires disambiguation between successful decoding a C<NUL>
1229character, and an error return (unless the C<UTF8_CHECK_ONLY> flag is set), as
1230in both cases, 0 is returned, and, depending on the malformation, C<retlen> may
1231be set to 1. To disambiguate, upon a zero return, see if the first byte of
1232C<s> is 0 as well. If so, the input was a C<NUL>; if not, the input had an
1233error. Or you can use C<L</utf8n_to_uvchr_error>>.
1234
1235Certain code points are considered problematic. These are Unicode surrogates,
1236Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
1237By default these are considered regular code points, but certain situations
1238warrant special handling for them, which can be specified using the C<flags>
1239parameter. If C<flags> contains C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>, all
1240three classes are treated as malformations and handled as such. The flags
1241C<UTF8_DISALLOW_SURROGATE>, C<UTF8_DISALLOW_NONCHAR>, and
1242C<UTF8_DISALLOW_SUPER> (meaning above the legal Unicode maximum) can be set to
1243disallow these categories individually. C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>
1244restricts the allowed inputs to the strict UTF-8 traditionally defined by
1245Unicode. Use C<UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE> to use the strictness
1246definition given by
1247L<Unicode Corrigendum #9|https://www.unicode.org/versions/corrigendum9.html>.
1248The difference between traditional strictness and C9 strictness is that the
1249latter does not forbid non-character code points. (They are still discouraged,
1250however.) For more discussion see L<perlunicode/Noncharacter code points>.
1251
1252The flags C<UTF8_WARN_ILLEGAL_INTERCHANGE>,
1253C<UTF8_WARN_ILLEGAL_C9_INTERCHANGE>, C<UTF8_WARN_SURROGATE>,
1254C<UTF8_WARN_NONCHAR>, and C<UTF8_WARN_SUPER> will cause warning messages to be
1255raised for their respective categories, but otherwise the code points are
1256considered valid (not malformations). To get a category to both be treated as
1257a malformation and raise a warning, specify both the WARN and DISALLOW flags.
1258(But note that warnings are not raised if lexically disabled nor if
1259C<UTF8_CHECK_ONLY> is also specified.)
1260
1261Extremely high code points were never specified in any standard, and require an
1262extension to UTF-8 to express, which Perl does. It is likely that programs
1263written in something other than Perl would not be able to read files that
1264contain these; nor would Perl understand files written by something that uses a
1265different extension. For these reasons, there is a separate set of flags that
1266can warn and/or disallow these extremely high code points, even if other
1267above-Unicode ones are accepted. They are the C<UTF8_WARN_PERL_EXTENDED> and
1268C<UTF8_DISALLOW_PERL_EXTENDED> flags. For more information see
1269L</C<UTF8_GOT_PERL_EXTENDED>>. Of course C<UTF8_DISALLOW_SUPER> will treat all
1270above-Unicode code points, including these, as malformations.
1271(Note that the Unicode standard considers anything above 0x10FFFF to be
1272illegal, but there are standards predating it that allow up to 0x7FFF_FFFF
1273(2**31 -1))
1274
1275A somewhat misleadingly named synonym for C<UTF8_WARN_PERL_EXTENDED> is
1276retained for backward compatibility: C<UTF8_WARN_ABOVE_31_BIT>. Similarly,
1277C<UTF8_DISALLOW_ABOVE_31_BIT> is usable instead of the more accurately named
1278C<UTF8_DISALLOW_PERL_EXTENDED>. The names are misleading because these flags
1279can apply to code points that actually do fit in 31 bits. This happens on
1280EBCDIC platforms, and sometimes when the L<overlong
1281malformation|/C<UTF8_GOT_LONG>> is also present. The new names accurately
1282describe the situation in all cases.
1283
1284
1285All other code points corresponding to Unicode characters, including private
1286use and those yet to be assigned, are never considered malformed and never
1287warn.
1288
1289=for apidoc Amnh||UTF8_CHECK_ONLY
1290=for apidoc Amnh||UTF8_DISALLOW_ILLEGAL_INTERCHANGE
1291=for apidoc Amnh||UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE
1292=for apidoc Amnh||UTF8_DISALLOW_SURROGATE
1293=for apidoc Amnh||UTF8_DISALLOW_NONCHAR
1294=for apidoc Amnh||UTF8_DISALLOW_SUPER
1295=for apidoc Amnh||UTF8_WARN_ILLEGAL_INTERCHANGE
1296=for apidoc Amnh||UTF8_WARN_ILLEGAL_C9_INTERCHANGE
1297=for apidoc Amnh||UTF8_WARN_SURROGATE
1298=for apidoc Amnh||UTF8_WARN_NONCHAR
1299=for apidoc Amnh||UTF8_WARN_SUPER
1300=for apidoc Amnh||UTF8_WARN_PERL_EXTENDED
1301=for apidoc Amnh||UTF8_DISALLOW_PERL_EXTENDED
1302
1303=cut
1304
1305Also implemented as a macro in utf8.h
1306*/
1307
1308UV
1309Perl_utf8n_to_uvchr(const U8 *s,
1310 STRLEN curlen,
1311 STRLEN *retlen,
1312 const U32 flags)
1313{
1314 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR;
1315
1316 return utf8n_to_uvchr_error(s, curlen, retlen, flags, NULL);
1317}
1318
1319/*
1320
1321=for apidoc utf8n_to_uvchr_error
1322
1323THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1324Most code should use L</utf8_to_uvchr_buf>() rather than call this
1325directly.
1326
1327This function is for code that needs to know what the precise malformation(s)
1328are when an error is found. If you also need to know the generated warning
1329messages, use L</utf8n_to_uvchr_msgs>() instead.
1330
1331It is like C<L</utf8n_to_uvchr>> but it takes an extra parameter placed after
1332all the others, C<errors>. If this parameter is 0, this function behaves
1333identically to C<L</utf8n_to_uvchr>>. Otherwise, C<errors> should be a pointer
1334to a C<U32> variable, which this function sets to indicate any errors found.
1335Upon return, if C<*errors> is 0, there were no errors found. Otherwise,
1336C<*errors> is the bit-wise C<OR> of the bits described in the list below. Some
1337of these bits will be set if a malformation is found, even if the input
1338C<flags> parameter indicates that the given malformation is allowed; those
1339exceptions are noted:
1340
1341=over 4
1342
1343=item C<UTF8_GOT_PERL_EXTENDED>
1344
1345The input sequence is not standard UTF-8, but a Perl extension. This bit is
1346set only if the input C<flags> parameter contains either the
1347C<UTF8_DISALLOW_PERL_EXTENDED> or the C<UTF8_WARN_PERL_EXTENDED> flags.
1348
1349Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
1350and so some extension must be used to express them. Perl uses a natural
1351extension to UTF-8 to represent the ones up to 2**36-1, and invented a further
1352extension to represent even higher ones, so that any code point that fits in a
135364-bit word can be represented. Text using these extensions is not likely to
1354be portable to non-Perl code. We lump both of these extensions together and
1355refer to them as Perl extended UTF-8. There exist other extensions that people
1356have invented, incompatible with Perl's.
1357
1358On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
1359extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
1360than on ASCII. Prior to that, code points 2**31 and higher were simply
1361unrepresentable, and a different, incompatible method was used to represent
1362code points between 2**30 and 2**31 - 1.
1363
1364On both platforms, ASCII and EBCDIC, C<UTF8_GOT_PERL_EXTENDED> is set if
1365Perl extended UTF-8 is used.
1366
1367In earlier Perls, this bit was named C<UTF8_GOT_ABOVE_31_BIT>, which you still
1368may use for backward compatibility. That name is misleading, as this flag may
1369be set when the code point actually does fit in 31 bits. This happens on
1370EBCDIC platforms, and sometimes when the L<overlong
1371malformation|/C<UTF8_GOT_LONG>> is also present. The new name accurately
1372describes the situation in all cases.
1373
1374=item C<UTF8_GOT_CONTINUATION>
1375
1376The input sequence was malformed in that the first byte was a a UTF-8
1377continuation byte.
1378
1379=item C<UTF8_GOT_EMPTY>
1380
1381The input C<curlen> parameter was 0.
1382
1383=item C<UTF8_GOT_LONG>
1384
1385The input sequence was malformed in that there is some other sequence that
1386evaluates to the same code point, but that sequence is shorter than this one.
1387
1388Until Unicode 3.1, it was legal for programs to accept this malformation, but
1389it was discovered that this created security issues.
1390
1391=item C<UTF8_GOT_NONCHAR>
1392
1393The code point represented by the input UTF-8 sequence is for a Unicode
1394non-character code point.
1395This bit is set only if the input C<flags> parameter contains either the
1396C<UTF8_DISALLOW_NONCHAR> or the C<UTF8_WARN_NONCHAR> flags.
1397
1398=item C<UTF8_GOT_NON_CONTINUATION>
1399
1400The input sequence was malformed in that a non-continuation type byte was found
1401in a position where only a continuation type one should be. See also
1402L</C<UTF8_GOT_SHORT>>.
1403
1404=item C<UTF8_GOT_OVERFLOW>
1405
1406The input sequence was malformed in that it is for a code point that is not
1407representable in the number of bits available in an IV on the current platform.
1408
1409=item C<UTF8_GOT_SHORT>
1410
1411The input sequence was malformed in that C<curlen> is smaller than required for
1412a complete sequence. In other words, the input is for a partial character
1413sequence.
1414
1415
1416C<UTF8_GOT_SHORT> and C<UTF8_GOT_NON_CONTINUATION> both indicate a too short
1417sequence. The difference is that C<UTF8_GOT_NON_CONTINUATION> indicates always
1418that there is an error, while C<UTF8_GOT_SHORT> means that an incomplete
1419sequence was looked at. If no other flags are present, it means that the
1420sequence was valid as far as it went. Depending on the application, this could
1421mean one of three things:
1422
1423=over
1424
1425=item *
1426
1427The C<curlen> length parameter passed in was too small, and the function was
1428prevented from examining all the necessary bytes.
1429
1430=item *
1431
1432The buffer being looked at is based on reading data, and the data received so
1433far stopped in the middle of a character, so that the next read will
1434read the remainder of this character. (It is up to the caller to deal with the
1435split bytes somehow.)
1436
1437=item *
1438
1439This is a real error, and the partial sequence is all we're going to get.
1440
1441=back
1442
1443=item C<UTF8_GOT_SUPER>
1444
1445The input sequence was malformed in that it is for a non-Unicode code point;
1446that is, one above the legal Unicode maximum.
1447This bit is set only if the input C<flags> parameter contains either the
1448C<UTF8_DISALLOW_SUPER> or the C<UTF8_WARN_SUPER> flags.
1449
1450=item C<UTF8_GOT_SURROGATE>
1451
1452The input sequence was malformed in that it is for a -Unicode UTF-16 surrogate
1453code point.
1454This bit is set only if the input C<flags> parameter contains either the
1455C<UTF8_DISALLOW_SURROGATE> or the C<UTF8_WARN_SURROGATE> flags.
1456
1457=back
1458
1459To do your own error handling, call this function with the C<UTF8_CHECK_ONLY>
1460flag to suppress any warnings, and then examine the C<*errors> return.
1461
1462=cut
1463
1464Also implemented as a macro in utf8.h
1465*/
1466
1467UV
1468Perl_utf8n_to_uvchr_error(const U8 *s,
1469 STRLEN curlen,
1470 STRLEN *retlen,
1471 const U32 flags,
1472 U32 * errors)
1473{
1474 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR_ERROR;
1475
1476 return utf8n_to_uvchr_msgs(s, curlen, retlen, flags, errors, NULL);
1477}
1478
1479/*
1480
1481=for apidoc utf8n_to_uvchr_msgs
1482
1483THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1484Most code should use L</utf8_to_uvchr_buf>() rather than call this
1485directly.
1486
1487This function is for code that needs to know what the precise malformation(s)
1488are when an error is found, and wants the corresponding warning and/or error
1489messages to be returned to the caller rather than be displayed. All messages
1490that would have been displayed if all lexcial warnings are enabled will be
1491returned.
1492
1493It is just like C<L</utf8n_to_uvchr_error>> but it takes an extra parameter
1494placed after all the others, C<msgs>. If this parameter is 0, this function
1495behaves identically to C<L</utf8n_to_uvchr_error>>. Otherwise, C<msgs> should
1496be a pointer to an C<AV *> variable, in which this function creates a new AV to
1497contain any appropriate messages. The elements of the array are ordered so
1498that the first message that would have been displayed is in the 0th element,
1499and so on. Each element is a hash with three key-value pairs, as follows:
1500
1501=over 4
1502
1503=item C<text>
1504
1505The text of the message as a C<SVpv>.
1506
1507=item C<warn_categories>
1508
1509The warning category (or categories) packed into a C<SVuv>.
1510
1511=item C<flag>
1512
1513A single flag bit associated with this message, in a C<SVuv>.
1514The bit corresponds to some bit in the C<*errors> return value,
1515such as C<UTF8_GOT_LONG>.
1516
1517=back
1518
1519It's important to note that specifying this parameter as non-null will cause
1520any warnings this function would otherwise generate to be suppressed, and
1521instead be placed in C<*msgs>. The caller can check the lexical warnings state
1522(or not) when choosing what to do with the returned messages.
1523
1524If the flag C<UTF8_CHECK_ONLY> is passed, no warnings are generated, and hence
1525no AV is created.
1526
1527The caller, of course, is responsible for freeing any returned AV.
1528
1529=cut
1530*/
1531
1532UV
1533Perl__utf8n_to_uvchr_msgs_helper(const U8 *s,
1534 STRLEN curlen,
1535 STRLEN *retlen,
1536 const U32 flags,
1537 U32 * errors,
1538 AV ** msgs)
1539{
1540 const U8 * const s0 = s;
1541 const U8 * send = s0 + curlen;
1542 U32 possible_problems; /* A bit is set here for each potential problem
1543 found as we go along */
1544 UV uv;
1545 STRLEN expectlen; /* How long should this sequence be? */
1546 STRLEN avail_len; /* When input is too short, gives what that is */
1547 U32 discard_errors; /* Used to save branches when 'errors' is NULL; this
1548 gets set and discarded */
1549
1550 /* The below are used only if there is both an overlong malformation and a
1551 * too short one. Otherwise the first two are set to 's0' and 'send', and
1552 * the third not used at all */
1553 U8 * adjusted_s0;
1554 U8 temp_char_buf[UTF8_MAXBYTES + 1]; /* Used to avoid a Newx in this
1555 routine; see [perl #130921] */
1556 UV uv_so_far;
1557 dTHX;
1558
1559 PERL_ARGS_ASSERT__UTF8N_TO_UVCHR_MSGS_HELPER;
1560
1561 /* Here, is one of: a) malformed; b) a problematic code point (surrogate,
1562 * non-unicode, or nonchar); or c) on ASCII platforms, one of the Hangul
1563 * syllables that the dfa doesn't properly handle. Quickly dispose of the
1564 * final case. */
1565
1566#ifndef EBCDIC
1567
1568 /* Each of the affected Hanguls starts with \xED */
1569
1570 if (is_HANGUL_ED_utf8_safe(s0, send)) {
1571 if (retlen) {
1572 *retlen = 3;
1573 }
1574 if (errors) {
1575 *errors = 0;
1576 }
1577 if (msgs) {
1578 *msgs = NULL;
1579 }
1580
1581 return ((0xED & UTF_START_MASK(3)) << (2 * UTF_ACCUMULATION_SHIFT))
1582 | ((s0[1] & UTF_CONTINUATION_MASK) << UTF_ACCUMULATION_SHIFT)
1583 | (s0[2] & UTF_CONTINUATION_MASK);
1584 }
1585
1586#endif
1587
1588 /* In conjunction with the exhaustive tests that can be enabled in
1589 * APItest/t/utf8_warn_base.pl, this can make sure the dfa does precisely
1590 * what it is intended to do, and that no flaws in it are masked by
1591 * dropping down and executing the code below
1592 assert(! isUTF8_CHAR(s0, send)
1593 || UTF8_IS_SURROGATE(s0, send)
1594 || UTF8_IS_SUPER(s0, send)
1595 || UTF8_IS_NONCHAR(s0,send));
1596 */
1597
1598 s = s0;
1599 uv = *s0;
1600 possible_problems = 0;
1601 expectlen = 0;
1602 avail_len = 0;
1603 discard_errors = 0;
1604 adjusted_s0 = (U8 *) s0;
1605 uv_so_far = 0;
1606
1607 if (errors) {
1608 *errors = 0;
1609 }
1610 else {
1611 errors = &discard_errors;
1612 }
1613
1614 /* The order of malformation tests here is important. We should consume as
1615 * few bytes as possible in order to not skip any valid character. This is
1616 * required by the Unicode Standard (section 3.9 of Unicode 6.0); see also
1617 * https://unicode.org/reports/tr36 for more discussion as to why. For
1618 * example, once we've done a UTF8SKIP, we can tell the expected number of
1619 * bytes, and could fail right off the bat if the input parameters indicate
1620 * that there are too few available. But it could be that just that first
1621 * byte is garbled, and the intended character occupies fewer bytes. If we
1622 * blindly assumed that the first byte is correct, and skipped based on
1623 * that number, we could skip over a valid input character. So instead, we
1624 * always examine the sequence byte-by-byte.
1625 *
1626 * We also should not consume too few bytes, otherwise someone could inject
1627 * things. For example, an input could be deliberately designed to
1628 * overflow, and if this code bailed out immediately upon discovering that,
1629 * returning to the caller C<*retlen> pointing to the very next byte (one
1630 * which is actually part of of the overflowing sequence), that could look
1631 * legitimate to the caller, which could discard the initial partial
1632 * sequence and process the rest, inappropriately.
1633 *
1634 * Some possible input sequences are malformed in more than one way. This
1635 * function goes to lengths to try to find all of them. This is necessary
1636 * for correctness, as the inputs may allow one malformation but not
1637 * another, and if we abandon searching for others after finding the
1638 * allowed one, we could allow in something that shouldn't have been.
1639 */
1640
1641 if (UNLIKELY(curlen == 0)) {
1642 possible_problems |= UTF8_GOT_EMPTY;
1643 curlen = 0;
1644 uv = UNICODE_REPLACEMENT;
1645 goto ready_to_handle_errors;
1646 }
1647
1648 expectlen = UTF8SKIP(s);
1649
1650 /* A well-formed UTF-8 character, as the vast majority of calls to this
1651 * function will be for, has this expected length. For efficiency, set
1652 * things up here to return it. It will be overriden only in those rare
1653 * cases where a malformation is found */
1654 if (retlen) {
1655 *retlen = expectlen;
1656 }
1657
1658 /* A continuation character can't start a valid sequence */
1659 if (UNLIKELY(UTF8_IS_CONTINUATION(uv))) {
1660 possible_problems |= UTF8_GOT_CONTINUATION;
1661 curlen = 1;
1662 uv = UNICODE_REPLACEMENT;
1663 goto ready_to_handle_errors;
1664 }
1665
1666 /* Here is not a continuation byte, nor an invariant. The only thing left
1667 * is a start byte (possibly for an overlong). (We can't use UTF8_IS_START
1668 * because it excludes start bytes like \xC0 that always lead to
1669 * overlongs.) */
1670
1671 /* Convert to I8 on EBCDIC (no-op on ASCII), then remove the leading bits
1672 * that indicate the number of bytes in the character's whole UTF-8
1673 * sequence, leaving just the bits that are part of the value. */
1674 uv = NATIVE_UTF8_TO_I8(uv) & UTF_START_MASK(expectlen);
1675
1676 /* Setup the loop end point, making sure to not look past the end of the
1677 * input string, and flag it as too short if the size isn't big enough. */
1678 if (UNLIKELY(curlen < expectlen)) {
1679 possible_problems |= UTF8_GOT_SHORT;
1680 avail_len = curlen;
1681 }
1682 else {
1683 send = (U8*) s0 + expectlen;
1684 }
1685
1686 /* Now, loop through the remaining bytes in the character's sequence,
1687 * accumulating each into the working value as we go. */
1688 for (s = s0 + 1; s < send; s++) {
1689 if (LIKELY(UTF8_IS_CONTINUATION(*s))) {
1690 uv = UTF8_ACCUMULATE(uv, *s);
1691 continue;
1692 }
1693
1694 /* Here, found a non-continuation before processing all expected bytes.
1695 * This byte indicates the beginning of a new character, so quit, even
1696 * if allowing this malformation. */
1697 possible_problems |= UTF8_GOT_NON_CONTINUATION;
1698 break;
1699 } /* End of loop through the character's bytes */
1700
1701 /* Save how many bytes were actually in the character */
1702 curlen = s - s0;
1703
1704 /* Note that there are two types of too-short malformation. One is when
1705 * there is actual wrong data before the normal termination of the
1706 * sequence. The other is that the sequence wasn't complete before the end
1707 * of the data we are allowed to look at, based on the input 'curlen'.
1708 * This means that we were passed data for a partial character, but it is
1709 * valid as far as we saw. The other is definitely invalid. This
1710 * distinction could be important to a caller, so the two types are kept
1711 * separate.
1712 *
1713 * A convenience macro that matches either of the too-short conditions. */
1714# define UTF8_GOT_TOO_SHORT (UTF8_GOT_SHORT|UTF8_GOT_NON_CONTINUATION)
1715
1716 if (UNLIKELY(possible_problems & UTF8_GOT_TOO_SHORT)) {
1717 uv_so_far = uv;
1718 uv = UNICODE_REPLACEMENT;
1719 }
1720
1721 /* Check for overflow. The algorithm requires us to not look past the end
1722 * of the current character, even if partial, so the upper limit is 's' */
1723 if (UNLIKELY(0 < does_utf8_overflow(s0, s,
1724 1 /* Do consider overlongs */
1725 )))
1726 {
1727 possible_problems |= UTF8_GOT_OVERFLOW;
1728 uv = UNICODE_REPLACEMENT;
1729 }
1730
1731 /* Check for overlong. If no problems so far, 'uv' is the correct code
1732 * point value. Simply see if it is expressible in fewer bytes. Otherwise
1733 * we must look at the UTF-8 byte sequence itself to see if it is for an
1734 * overlong */
1735 if ( ( LIKELY(! possible_problems)
1736 && UNLIKELY(expectlen > (STRLEN) OFFUNISKIP(uv)))
1737 || ( UNLIKELY(possible_problems)
1738 && ( UNLIKELY(! UTF8_IS_START(*s0))
1739 || ( curlen > 1
1740 && UNLIKELY(0 < is_utf8_overlong_given_start_byte_ok(s0,
1741 s - s0))))))
1742 {
1743 possible_problems |= UTF8_GOT_LONG;
1744
1745 if ( UNLIKELY( possible_problems & UTF8_GOT_TOO_SHORT)
1746
1747 /* The calculation in the 'true' branch of this 'if'
1748 * below won't work if overflows, and isn't needed
1749 * anyway. Further below we handle all overflow
1750 * cases */
1751 && LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW)))
1752 {
1753 UV min_uv = uv_so_far;
1754 STRLEN i;
1755
1756 /* Here, the input is both overlong and is missing some trailing
1757 * bytes. There is no single code point it could be for, but there
1758 * may be enough information present to determine if what we have
1759 * so far is for an unallowed code point, such as for a surrogate.
1760 * The code further below has the intelligence to determine this,
1761 * but just for non-overlong UTF-8 sequences. What we do here is
1762 * calculate the smallest code point the input could represent if
1763 * there were no too short malformation. Then we compute and save
1764 * the UTF-8 for that, which is what the code below looks at
1765 * instead of the raw input. It turns out that the smallest such
1766 * code point is all we need. */
1767 for (i = curlen; i < expectlen; i++) {
1768 min_uv = UTF8_ACCUMULATE(min_uv,
1769 I8_TO_NATIVE_UTF8(UTF_CONTINUATION_MARK));
1770 }
1771
1772 adjusted_s0 = temp_char_buf;
1773 (void) uvoffuni_to_utf8_flags(adjusted_s0, min_uv, 0);
1774 }
1775 }
1776
1777 /* Here, we have found all the possible problems, except for when the input
1778 * is for a problematic code point not allowed by the input parameters. */
1779
1780 /* uv is valid for overlongs */
1781 if ( ( ( LIKELY(! (possible_problems & ~UTF8_GOT_LONG))
1782
1783 /* isn't problematic if < this */
1784 && uv >= UNICODE_SURROGATE_FIRST)
1785 || ( UNLIKELY(possible_problems)
1786
1787 /* if overflow, we know without looking further
1788 * precisely which of the problematic types it is,
1789 * and we deal with those in the overflow handling
1790 * code */
1791 && LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW))
1792 && ( isUTF8_POSSIBLY_PROBLEMATIC(*adjusted_s0)
1793 || UNLIKELY(isUTF8_PERL_EXTENDED(s0)))))
1794 && ((flags & ( UTF8_DISALLOW_NONCHAR
1795 |UTF8_DISALLOW_SURROGATE
1796 |UTF8_DISALLOW_SUPER
1797 |UTF8_DISALLOW_PERL_EXTENDED
1798 |UTF8_WARN_NONCHAR
1799 |UTF8_WARN_SURROGATE
1800 |UTF8_WARN_SUPER
1801 |UTF8_WARN_PERL_EXTENDED))))
1802 {
1803 /* If there were no malformations, or the only malformation is an
1804 * overlong, 'uv' is valid */
1805 if (LIKELY(! (possible_problems & ~UTF8_GOT_LONG))) {
1806 if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
1807 possible_problems |= UTF8_GOT_SURROGATE;
1808 }
1809 else if (UNLIKELY(uv > PERL_UNICODE_MAX)) {
1810 possible_problems |= UTF8_GOT_SUPER;
1811 }
1812 else if (UNLIKELY(UNICODE_IS_NONCHAR(uv))) {
1813 possible_problems |= UTF8_GOT_NONCHAR;
1814 }
1815 }
1816 else { /* Otherwise, need to look at the source UTF-8, possibly
1817 adjusted to be non-overlong */
1818
1819 if (UNLIKELY(NATIVE_UTF8_TO_I8(*adjusted_s0)
1820 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
1821 {
1822 possible_problems |= UTF8_GOT_SUPER;
1823 }
1824 else if (curlen > 1) {
1825 if (UNLIKELY(IS_UTF8_2_BYTE_SUPER(
1826 NATIVE_UTF8_TO_I8(*adjusted_s0),
1827 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1828 {
1829 possible_problems |= UTF8_GOT_SUPER;
1830 }
1831 else if (UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(
1832 NATIVE_UTF8_TO_I8(*adjusted_s0),
1833 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1834 {
1835 possible_problems |= UTF8_GOT_SURROGATE;
1836 }
1837 }
1838
1839 /* We need a complete well-formed UTF-8 character to discern
1840 * non-characters, so can't look for them here */
1841 }
1842 }
1843
1844 ready_to_handle_errors:
1845
1846 /* At this point:
1847 * curlen contains the number of bytes in the sequence that
1848 * this call should advance the input by.
1849 * avail_len gives the available number of bytes passed in, but
1850 * only if this is less than the expected number of
1851 * bytes, based on the code point's start byte.
1852 * possible_problems' is 0 if there weren't any problems; otherwise a bit
1853 * is set in it for each potential problem found.
1854 * uv contains the code point the input sequence
1855 * represents; or if there is a problem that prevents
1856 * a well-defined value from being computed, it is
1857 * some subsitute value, typically the REPLACEMENT
1858 * CHARACTER.
1859 * s0 points to the first byte of the character
1860 * s points to just after were we left off processing
1861 * the character
1862 * send points to just after where that character should
1863 * end, based on how many bytes the start byte tells
1864 * us should be in it, but no further than s0 +
1865 * avail_len
1866 */
1867
1868 if (UNLIKELY(possible_problems)) {
1869 bool disallowed = FALSE;
1870 const U32 orig_problems = possible_problems;
1871
1872 if (msgs) {
1873 *msgs = NULL;
1874 }
1875
1876 while (possible_problems) { /* Handle each possible problem */
1877 UV pack_warn = 0;
1878 char * message = NULL;
1879 U32 this_flag_bit = 0;
1880
1881 /* Each 'if' clause handles one problem. They are ordered so that
1882 * the first ones' messages will be displayed before the later
1883 * ones; this is kinda in decreasing severity order. But the
1884 * overlong must come last, as it changes 'uv' looked at by the
1885 * others */
1886 if (possible_problems & UTF8_GOT_OVERFLOW) {
1887
1888 /* Overflow means also got a super and are using Perl's
1889 * extended UTF-8, but we handle all three cases here */
1890 possible_problems
1891 &= ~(UTF8_GOT_OVERFLOW|UTF8_GOT_SUPER|UTF8_GOT_PERL_EXTENDED);
1892 *errors |= UTF8_GOT_OVERFLOW;
1893
1894 /* But the API says we flag all errors found */
1895 if (flags & (UTF8_WARN_SUPER|UTF8_DISALLOW_SUPER)) {
1896 *errors |= UTF8_GOT_SUPER;
1897 }
1898 if (flags
1899 & (UTF8_WARN_PERL_EXTENDED|UTF8_DISALLOW_PERL_EXTENDED))
1900 {
1901 *errors |= UTF8_GOT_PERL_EXTENDED;
1902 }
1903
1904 /* Disallow if any of the three categories say to */
1905 if ( ! (flags & UTF8_ALLOW_OVERFLOW)
1906 || (flags & ( UTF8_DISALLOW_SUPER
1907 |UTF8_DISALLOW_PERL_EXTENDED)))
1908 {
1909 disallowed = TRUE;
1910 }
1911
1912 /* Likewise, warn if any say to */
1913 if ( ! (flags & UTF8_ALLOW_OVERFLOW)
1914 || (flags & (UTF8_WARN_SUPER|UTF8_WARN_PERL_EXTENDED)))
1915 {
1916
1917 /* The warnings code explicitly says it doesn't handle the
1918 * case of packWARN2 and two categories which have
1919 * parent-child relationship. Even if it works now to
1920 * raise the warning if either is enabled, it wouldn't
1921 * necessarily do so in the future. We output (only) the
1922 * most dire warning */
1923 if (! (flags & UTF8_CHECK_ONLY)) {
1924 if (msgs || ckWARN_d(WARN_UTF8)) {
1925 pack_warn = packWARN(WARN_UTF8);
1926 }
1927 else if (msgs || ckWARN_d(WARN_NON_UNICODE)) {
1928 pack_warn = packWARN(WARN_NON_UNICODE);
1929 }
1930 if (pack_warn) {
1931 message = Perl_form(aTHX_ "%s: %s (overflows)",
1932 malformed_text,
1933 _byte_dump_string(s0, curlen, 0));
1934 this_flag_bit = UTF8_GOT_OVERFLOW;
1935 }
1936 }
1937 }
1938 }
1939 else if (possible_problems & UTF8_GOT_EMPTY) {
1940 possible_problems &= ~UTF8_GOT_EMPTY;
1941 *errors |= UTF8_GOT_EMPTY;
1942
1943 if (! (flags & UTF8_ALLOW_EMPTY)) {
1944
1945 /* This so-called malformation is now treated as a bug in
1946 * the caller. If you have nothing to decode, skip calling
1947 * this function */
1948 assert(0);
1949
1950 disallowed = TRUE;
1951 if ( (msgs
1952 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
1953 {
1954 pack_warn = packWARN(WARN_UTF8);
1955 message = Perl_form(aTHX_ "%s (empty string)",
1956 malformed_text);
1957 this_flag_bit = UTF8_GOT_EMPTY;
1958 }
1959 }
1960 }
1961 else if (possible_problems & UTF8_GOT_CONTINUATION) {
1962 possible_problems &= ~UTF8_GOT_CONTINUATION;
1963 *errors |= UTF8_GOT_CONTINUATION;
1964
1965 if (! (flags & UTF8_ALLOW_CONTINUATION)) {
1966 disallowed = TRUE;
1967 if (( msgs
1968 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
1969 {
1970 pack_warn = packWARN(WARN_UTF8);
1971 message = Perl_form(aTHX_
1972 "%s: %s (unexpected continuation byte 0x%02x,"
1973 " with no preceding start byte)",
1974 malformed_text,
1975 _byte_dump_string(s0, 1, 0), *s0);
1976 this_flag_bit = UTF8_GOT_CONTINUATION;
1977 }
1978 }
1979 }
1980 else if (possible_problems & UTF8_GOT_SHORT) {
1981 possible_problems &= ~UTF8_GOT_SHORT;
1982 *errors |= UTF8_GOT_SHORT;
1983
1984 if (! (flags & UTF8_ALLOW_SHORT)) {
1985 disallowed = TRUE;
1986 if (( msgs
1987 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
1988 {
1989 pack_warn = packWARN(WARN_UTF8);
1990 message = Perl_form(aTHX_
1991 "%s: %s (too short; %d byte%s available, need %d)",
1992 malformed_text,
1993 _byte_dump_string(s0, send - s0, 0),
1994 (int)avail_len,
1995 avail_len == 1 ? "" : "s",
1996 (int)expectlen);
1997 this_flag_bit = UTF8_GOT_SHORT;
1998 }
1999 }
2000
2001 }
2002 else if (possible_problems & UTF8_GOT_NON_CONTINUATION) {
2003 possible_problems &= ~UTF8_GOT_NON_CONTINUATION;
2004 *errors |= UTF8_GOT_NON_CONTINUATION;
2005
2006 if (! (flags & UTF8_ALLOW_NON_CONTINUATION)) {
2007 disallowed = TRUE;
2008 if (( msgs
2009 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
2010 {
2011
2012 /* If we don't know for sure that the input length is
2013 * valid, avoid as much as possible reading past the
2014 * end of the buffer */
2015 int printlen = (flags & _UTF8_NO_CONFIDENCE_IN_CURLEN)
2016 ? s - s0
2017 : send - s0;
2018 pack_warn = packWARN(WARN_UTF8);
2019 message = Perl_form(aTHX_ "%s",
2020 unexpected_non_continuation_text(s0,
2021 printlen,
2022 s - s0,
2023 (int) expectlen));
2024 this_flag_bit = UTF8_GOT_NON_CONTINUATION;
2025 }
2026 }
2027 }
2028 else if (possible_problems & UTF8_GOT_SURROGATE) {
2029 possible_problems &= ~UTF8_GOT_SURROGATE;
2030
2031 if (flags & UTF8_WARN_SURROGATE) {
2032 *errors |= UTF8_GOT_SURROGATE;
2033
2034 if ( ! (flags & UTF8_CHECK_ONLY)
2035 && (msgs || ckWARN_d(WARN_SURROGATE)))
2036 {
2037 pack_warn = packWARN(WARN_SURROGATE);
2038
2039 /* These are the only errors that can occur with a
2040 * surrogate when the 'uv' isn't valid */
2041 if (orig_problems & UTF8_GOT_TOO_SHORT) {
2042 message = Perl_form(aTHX_
2043 "UTF-16 surrogate (any UTF-8 sequence that"
2044 " starts with \"%s\" is for a surrogate)",
2045 _byte_dump_string(s0, curlen, 0));
2046 }
2047 else {
2048 message = Perl_form(aTHX_ surrogate_cp_format, uv);
2049 }
2050 this_flag_bit = UTF8_GOT_SURROGATE;
2051 }
2052 }
2053
2054 if (flags & UTF8_DISALLOW_SURROGATE) {
2055 disallowed = TRUE;
2056 *errors |= UTF8_GOT_SURROGATE;
2057 }
2058 }
2059 else if (possible_problems & UTF8_GOT_SUPER) {
2060 possible_problems &= ~UTF8_GOT_SUPER;
2061
2062 if (flags & UTF8_WARN_SUPER) {
2063 *errors |= UTF8_GOT_SUPER;
2064
2065 if ( ! (flags & UTF8_CHECK_ONLY)
2066 && (msgs || ckWARN_d(WARN_NON_UNICODE)))
2067 {
2068 pack_warn = packWARN(WARN_NON_UNICODE);
2069
2070 if (orig_problems & UTF8_GOT_TOO_SHORT) {
2071 message = Perl_form(aTHX_
2072 "Any UTF-8 sequence that starts with"
2073 " \"%s\" is for a non-Unicode code point,"
2074 " may not be portable",
2075 _byte_dump_string(s0, curlen, 0));
2076 }
2077 else {
2078 message = Perl_form(aTHX_ super_cp_format, uv);
2079 }
2080 this_flag_bit = UTF8_GOT_SUPER;
2081 }
2082 }
2083
2084 /* Test for Perl's extended UTF-8 after the regular SUPER ones,
2085 * and before possibly bailing out, so that the more dire
2086 * warning will override the regular one. */
2087 if (UNLIKELY(isUTF8_PERL_EXTENDED(s0))) {
2088 if ( ! (flags & UTF8_CHECK_ONLY)
2089 && (flags & (UTF8_WARN_PERL_EXTENDED|UTF8_WARN_SUPER))
2090 && (msgs || ckWARN_d(WARN_NON_UNICODE)))
2091 {
2092 pack_warn = packWARN(WARN_NON_UNICODE);
2093
2094 /* If it is an overlong that evaluates to a code point
2095 * that doesn't have to use the Perl extended UTF-8, it
2096 * still used it, and so we output a message that
2097 * doesn't refer to the code point. The same is true
2098 * if there was a SHORT malformation where the code
2099 * point is not valid. In that case, 'uv' will have
2100 * been set to the REPLACEMENT CHAR, and the message
2101 * below without the code point in it will be selected
2102 * */
2103 if (UNICODE_IS_PERL_EXTENDED(uv)) {
2104 message = Perl_form(aTHX_
2105 perl_extended_cp_format, uv);
2106 }
2107 else {
2108 message = Perl_form(aTHX_
2109 "Any UTF-8 sequence that starts with"
2110 " \"%s\" is a Perl extension, and"
2111 " so is not portable",
2112 _byte_dump_string(s0, curlen, 0));
2113 }
2114 this_flag_bit = UTF8_GOT_PERL_EXTENDED;
2115 }
2116
2117 if (flags & ( UTF8_WARN_PERL_EXTENDED
2118 |UTF8_DISALLOW_PERL_EXTENDED))
2119 {
2120 *errors |= UTF8_GOT_PERL_EXTENDED;
2121
2122 if (flags & UTF8_DISALLOW_PERL_EXTENDED) {
2123 disallowed = TRUE;
2124 }
2125 }
2126 }
2127
2128 if (flags & UTF8_DISALLOW_SUPER) {
2129 *errors |= UTF8_GOT_SUPER;
2130 disallowed = TRUE;
2131 }
2132 }
2133 else if (possible_problems & UTF8_GOT_NONCHAR) {
2134 possible_problems &= ~UTF8_GOT_NONCHAR;
2135
2136 if (flags & UTF8_WARN_NONCHAR) {
2137 *errors |= UTF8_GOT_NONCHAR;
2138
2139 if ( ! (flags & UTF8_CHECK_ONLY)
2140 && (msgs || ckWARN_d(WARN_NONCHAR)))
2141 {
2142 /* The code above should have guaranteed that we don't
2143 * get here with errors other than overlong */
2144 assert (! (orig_problems
2145 & ~(UTF8_GOT_LONG|UTF8_GOT_NONCHAR)));
2146
2147 pack_warn = packWARN(WARN_NONCHAR);
2148 message = Perl_form(aTHX_ nonchar_cp_format, uv);
2149 this_flag_bit = UTF8_GOT_NONCHAR;
2150 }
2151 }
2152
2153 if (flags & UTF8_DISALLOW_NONCHAR) {
2154 disallowed = TRUE;
2155 *errors |= UTF8_GOT_NONCHAR;
2156 }
2157 }
2158 else if (possible_problems & UTF8_GOT_LONG) {
2159 possible_problems &= ~UTF8_GOT_LONG;
2160 *errors |= UTF8_GOT_LONG;
2161
2162 if (flags & UTF8_ALLOW_LONG) {
2163
2164 /* We don't allow the actual overlong value, unless the
2165 * special extra bit is also set */
2166 if (! (flags & ( UTF8_ALLOW_LONG_AND_ITS_VALUE
2167 & ~UTF8_ALLOW_LONG)))
2168 {
2169 uv = UNICODE_REPLACEMENT;
2170 }
2171 }
2172 else {
2173 disallowed = TRUE;
2174
2175 if (( msgs
2176 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
2177 {
2178 pack_warn = packWARN(WARN_UTF8);
2179
2180 /* These error types cause 'uv' to be something that
2181 * isn't what was intended, so can't use it in the
2182 * message. The other error types either can't
2183 * generate an overlong, or else the 'uv' is valid */
2184 if (orig_problems &
2185 (UTF8_GOT_TOO_SHORT|UTF8_GOT_OVERFLOW))
2186 {
2187 message = Perl_form(aTHX_
2188 "%s: %s (any UTF-8 sequence that starts"
2189 " with \"%s\" is overlong which can and"
2190 " should be represented with a"
2191 " different, shorter sequence)",
2192 malformed_text,
2193 _byte_dump_string(s0, send - s0, 0),
2194 _byte_dump_string(s0, curlen, 0));
2195 }
2196 else {
2197 U8 tmpbuf[UTF8_MAXBYTES+1];
2198 const U8 * const e = uvoffuni_to_utf8_flags(tmpbuf,
2199 uv, 0);
2200 /* Don't use U+ for non-Unicode code points, which
2201 * includes those in the Latin1 range */
2202 const char * preface = ( uv > PERL_UNICODE_MAX
2203#ifdef EBCDIC
2204 || uv <= 0xFF
2205#endif
2206 )
2207 ? "0x"
2208 : "U+";
2209 message = Perl_form(aTHX_
2210 "%s: %s (overlong; instead use %s to represent"
2211 " %s%0*" UVXf ")",
2212 malformed_text,
2213 _byte_dump_string(s0, send - s0, 0),
2214 _byte_dump_string(tmpbuf, e - tmpbuf, 0),
2215 preface,
2216 ((uv < 256) ? 2 : 4), /* Field width of 2 for
2217 small code points */
2218 UNI_TO_NATIVE(uv));
2219 }
2220 this_flag_bit = UTF8_GOT_LONG;
2221 }
2222 }
2223 } /* End of looking through the possible flags */
2224
2225 /* Display the message (if any) for the problem being handled in
2226 * this iteration of the loop */
2227 if (message) {
2228 if (msgs) {
2229 assert(this_flag_bit);
2230
2231 if (*msgs == NULL) {
2232 *msgs = newAV();
2233 }
2234
2235 av_push(*msgs, newRV_noinc((SV*) new_msg_hv(message,
2236 pack_warn,
2237 this_flag_bit)));
2238 }
2239 else if (PL_op)
2240 Perl_warner(aTHX_ pack_warn, "%s in %s", message,
2241 OP_DESC(PL_op));
2242 else
2243 Perl_warner(aTHX_ pack_warn, "%s", message);
2244 }
2245 } /* End of 'while (possible_problems)' */
2246
2247 /* Since there was a possible problem, the returned length may need to
2248 * be changed from the one stored at the beginning of this function.
2249 * Instead of trying to figure out if that's needed, just do it. */
2250 if (retlen) {
2251 *retlen = curlen;
2252 }
2253
2254 if (disallowed) {
2255 if (flags & UTF8_CHECK_ONLY && retlen) {
2256 *retlen = ((STRLEN) -1);
2257 }
2258 return 0;
2259 }
2260 }
2261
2262 return UNI_TO_NATIVE(uv);
2263}
2264
2265/*
2266=for apidoc utf8_to_uvchr_buf
2267
2268Returns the native code point of the first character in the string C<s> which
2269is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
2270C<*retlen> will be set to the length, in bytes, of that character.
2271
2272If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
2273enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
2274C<NULL>) to -1. If those warnings are off, the computed value, if well-defined
2275(or the Unicode REPLACEMENT CHARACTER if not), is silently returned, and
2276C<*retlen> is set (if C<retlen> isn't C<NULL>) so that (S<C<s> + C<*retlen>>) is
2277the next possible position in C<s> that could begin a non-malformed character.
2278See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is
2279returned.
2280
2281=cut
2282
2283Also implemented as a macro in utf8.h
2284
2285*/
2286
2287
2288UV
2289Perl_utf8_to_uvchr_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
2290{
2291 PERL_ARGS_ASSERT_UTF8_TO_UVCHR_BUF;
2292
2293 return utf8_to_uvchr_buf_helper(s, send, retlen);
2294}
2295
2296/* This is marked as deprecated
2297 *
2298=for apidoc utf8_to_uvuni_buf
2299
2300Only in very rare circumstances should code need to be dealing in Unicode
2301(as opposed to native) code points. In those few cases, use
2302C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|perlapi/utf8_to_uvchr_buf>> instead.
2303If you are not absolutely sure this is one of those cases, then assume it isn't
2304and use plain C<utf8_to_uvchr_buf> instead.
2305
2306Returns the Unicode (not-native) code point of the first character in the
2307string C<s> which
2308is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
2309C<retlen> will be set to the length, in bytes, of that character.
2310
2311If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
2312enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
2313NULL) to -1. If those warnings are off, the computed value if well-defined (or
2314the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
2315is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
2316next possible position in C<s> that could begin a non-malformed character.
2317See L<perlapi/utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is
2318returned.
2319
2320=cut
2321*/
2322
2323UV
2324Perl_utf8_to_uvuni_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
2325{
2326 PERL_ARGS_ASSERT_UTF8_TO_UVUNI_BUF;
2327
2328 assert(send > s);
2329
2330 return NATIVE_TO_UNI(utf8_to_uvchr_buf(s, send, retlen));
2331}
2332
2333/*
2334=for apidoc utf8_length
2335
2336Returns the number of characters in the sequence of UTF-8-encoded bytes starting
2337at C<s> and ending at the byte just before C<e>. If <s> and <e> point to the
2338same place, it returns 0 with no warning raised.
2339
2340If C<e E<lt> s> or if the scan would end up past C<e>, it raises a UTF8 warning
2341and returns the number of valid characters.
2342
2343=cut
2344*/
2345
2346STRLEN
2347Perl_utf8_length(pTHX_ const U8 *s, const U8 *e)
2348{
2349 STRLEN len = 0;
2350
2351 PERL_ARGS_ASSERT_UTF8_LENGTH;
2352
2353 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g.
2354 * the bitops (especially ~) can create illegal UTF-8.
2355 * In other words: in Perl UTF-8 is not just for Unicode. */
2356
2357 if (UNLIKELY(e < s))
2358 goto warn_and_return;
2359 while (s < e) {
2360 s += UTF8SKIP(s);
2361 len++;
2362 }
2363
2364 if (UNLIKELY(e != s)) {
2365 len--;
2366 warn_and_return:
2367 if (PL_op)
2368 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2369 "%s in %s", unees, OP_DESC(PL_op));
2370 else
2371 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
2372 }
2373
2374 return len;
2375}
2376
2377/*
2378=for apidoc bytes_cmp_utf8
2379
2380Compares the sequence of characters (stored as octets) in C<b>, C<blen> with the
2381sequence of characters (stored as UTF-8)
2382in C<u>, C<ulen>. Returns 0 if they are
2383equal, -1 or -2 if the first string is less than the second string, +1 or +2
2384if the first string is greater than the second string.
2385
2386-1 or +1 is returned if the shorter string was identical to the start of the
2387longer string. -2 or +2 is returned if
2388there was a difference between characters
2389within the strings.
2390
2391=cut
2392*/
2393
2394int
2395Perl_bytes_cmp_utf8(pTHX_ const U8 *b, STRLEN blen, const U8 *u, STRLEN ulen)
2396{
2397 const U8 *const bend = b + blen;
2398 const U8 *const uend = u + ulen;
2399
2400 PERL_ARGS_ASSERT_BYTES_CMP_UTF8;
2401
2402 while (b < bend && u < uend) {
2403 U8 c = *u++;
2404 if (!UTF8_IS_INVARIANT(c)) {
2405 if (UTF8_IS_DOWNGRADEABLE_START(c)) {
2406 if (u < uend) {
2407 U8 c1 = *u++;
2408 if (UTF8_IS_CONTINUATION(c1)) {
2409 c = EIGHT_BIT_UTF8_TO_NATIVE(c, c1);
2410 } else {
2411 /* diag_listed_as: Malformed UTF-8 character%s */
2412 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2413 "%s %s%s",
2414 unexpected_non_continuation_text(u - 2, 2, 1, 2),
2415 PL_op ? " in " : "",
2416 PL_op ? OP_DESC(PL_op) : "");
2417 return -2;
2418 }
2419 } else {
2420 if (PL_op)
2421 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2422 "%s in %s", unees, OP_DESC(PL_op));
2423 else
2424 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
2425 return -2; /* Really want to return undef :-) */
2426 }
2427 } else {
2428 return -2;
2429 }
2430 }
2431 if (*b != c) {
2432 return *b < c ? -2 : +2;
2433 }
2434 ++b;
2435 }
2436
2437 if (b == bend && u == uend)
2438 return 0;
2439
2440 return b < bend ? +1 : -1;
2441}
2442
2443/*
2444=for apidoc utf8_to_bytes
2445
2446Converts a string C<"s"> of length C<*lenp> from UTF-8 into native byte encoding.
2447Unlike L</bytes_to_utf8>, this over-writes the original string, and
2448updates C<*lenp> to contain the new length.
2449Returns zero on failure (leaving C<"s"> unchanged) setting C<*lenp> to -1.
2450
2451Upon successful return, the number of variants in the string can be computed by
2452having saved the value of C<*lenp> before the call, and subtracting the
2453after-call value of C<*lenp> from it.
2454
2455If you need a copy of the string, see L</bytes_from_utf8>.
2456
2457=cut
2458*/
2459
2460U8 *
2461Perl_utf8_to_bytes(pTHX_ U8 *s, STRLEN *lenp)
2462{
2463 U8 * first_variant;
2464
2465 PERL_ARGS_ASSERT_UTF8_TO_BYTES;
2466 PERL_UNUSED_CONTEXT;
2467
2468 /* This is a no-op if no variants at all in the input */
2469 if (is_utf8_invariant_string_loc(s, *lenp, (const U8 **) &first_variant)) {
2470 return s;
2471 }
2472
2473 {
2474 U8 * const save = s;
2475 U8 * const send = s + *lenp;
2476 U8 * d;
2477
2478 /* Nothing before the first variant needs to be changed, so start the real
2479 * work there */
2480 s = first_variant;
2481 while (s < send) {
2482 if (! UTF8_IS_INVARIANT(*s)) {
2483 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
2484 *lenp = ((STRLEN) -1);
2485 return 0;
2486 }
2487 s++;
2488 }
2489 s++;
2490 }
2491
2492 /* Is downgradable, so do it */
2493 d = s = first_variant;
2494 while (s < send) {
2495 U8 c = *s++;
2496 if (! UVCHR_IS_INVARIANT(c)) {
2497 /* Then it is two-byte encoded */
2498 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
2499 s++;
2500 }
2501 *d++ = c;
2502 }
2503 *d = '\0';
2504 *lenp = d - save;
2505
2506 return save;
2507 }
2508}
2509
2510/*
2511=for apidoc bytes_from_utf8
2512
2513Converts a potentially UTF-8 encoded string C<s> of length C<*lenp> into native
2514byte encoding. On input, the boolean C<*is_utf8p> gives whether or not C<s> is
2515actually encoded in UTF-8.
2516
2517Unlike L</utf8_to_bytes> but like L</bytes_to_utf8>, this is non-destructive of
2518the input string.
2519
2520Do nothing if C<*is_utf8p> is 0, or if there are code points in the string
2521not expressible in native byte encoding. In these cases, C<*is_utf8p> and
2522C<*lenp> are unchanged, and the return value is the original C<s>.
2523
2524Otherwise, C<*is_utf8p> is set to 0, and the return value is a pointer to a
2525newly created string containing a downgraded copy of C<s>, and whose length is
2526returned in C<*lenp>, updated. The new string is C<NUL>-terminated. The
2527caller is responsible for arranging for the memory used by this string to get
2528freed.
2529
2530Upon successful return, the number of variants in the string can be computed by
2531having saved the value of C<*lenp> before the call, and subtracting the
2532after-call value of C<*lenp> from it.
2533
2534=cut
2535
2536There is a macro that avoids this function call, but this is retained for
2537anyone who calls it with the Perl_ prefix */
2538
2539U8 *
2540Perl_bytes_from_utf8(pTHX_ const U8 *s, STRLEN *lenp, bool *is_utf8p)
2541{
2542 PERL_ARGS_ASSERT_BYTES_FROM_UTF8;
2543 PERL_UNUSED_CONTEXT;
2544
2545 return bytes_from_utf8_loc(s, lenp, is_utf8p, NULL);
2546}
2547
2548/*
2549=for comment
2550skip apidoc
2551This is not currently externally documented because we don't want people to use
2552it for now. XXX Perhaps that is too paranoid, and it should be documented?
2553
2554=for apidoc bytes_from_utf8_loc
2555
2556Like C<L</bytes_from_utf8>()>, but takes an extra parameter, a pointer to where
2557to store the location of the first character in C<"s"> that cannot be
2558converted to non-UTF8.
2559
2560If that parameter is C<NULL>, this function behaves identically to
2561C<bytes_from_utf8>.
2562
2563Otherwise if C<*is_utf8p> is 0 on input, the function behaves identically to
2564C<bytes_from_utf8>, except it also sets C<*first_non_downgradable> to C<NULL>.
2565
2566Otherwise, the function returns a newly created C<NUL>-terminated string
2567containing the non-UTF8 equivalent of the convertible first portion of
2568C<"s">. C<*lenp> is set to its length, not including the terminating C<NUL>.
2569If the entire input string was converted, C<*is_utf8p> is set to a FALSE value,
2570and C<*first_non_downgradable> is set to C<NULL>.
2571
2572Otherwise, C<*first_non_downgradable> set to point to the first byte of the
2573first character in the original string that wasn't converted. C<*is_utf8p> is
2574unchanged. Note that the new string may have length 0.
2575
2576Another way to look at it is, if C<*first_non_downgradable> is non-C<NULL> and
2577C<*is_utf8p> is TRUE, this function starts at the beginning of C<"s"> and
2578converts as many characters in it as possible stopping at the first one it
2579finds that can't be converted to non-UTF-8. C<*first_non_downgradable> is
2580set to point to that. The function returns the portion that could be converted
2581in a newly created C<NUL>-terminated string, and C<*lenp> is set to its length,
2582not including the terminating C<NUL>. If the very first character in the
2583original could not be converted, C<*lenp> will be 0, and the new string will
2584contain just a single C<NUL>. If the entire input string was converted,
2585C<*is_utf8p> is set to FALSE and C<*first_non_downgradable> is set to C<NULL>.
2586
2587Upon successful return, the number of variants in the converted portion of the
2588string can be computed by having saved the value of C<*lenp> before the call,
2589and subtracting the after-call value of C<*lenp> from it.
2590
2591=cut
2592
2593
2594*/
2595
2596U8 *
2597Perl_bytes_from_utf8_loc(const U8 *s, STRLEN *lenp, bool *is_utf8p, const U8** first_unconverted)
2598{
2599 U8 *d;
2600 const U8 *original = s;
2601 U8 *converted_start;
2602 const U8 *send = s + *lenp;
2603
2604 PERL_ARGS_ASSERT_BYTES_FROM_UTF8_LOC;
2605
2606 if (! *is_utf8p) {
2607 if (first_unconverted) {
2608 *first_unconverted = NULL;
2609 }
2610
2611 return (U8 *) original;
2612 }
2613
2614 Newx(d, (*lenp) + 1, U8);
2615
2616 converted_start = d;
2617 while (s < send) {
2618 U8 c = *s++;
2619 if (! UTF8_IS_INVARIANT(c)) {
2620
2621 /* Then it is multi-byte encoded. If the code point is above 0xFF,
2622 * have to stop now */
2623 if (UNLIKELY (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s - 1, send))) {
2624 if (first_unconverted) {
2625 *first_unconverted = s - 1;
2626 goto finish_and_return;
2627 }
2628 else {
2629 Safefree(converted_start);
2630 return (U8 *) original;
2631 }
2632 }
2633
2634 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
2635 s++;
2636 }
2637 *d++ = c;
2638 }
2639
2640 /* Here, converted the whole of the input */
2641 *is_utf8p = FALSE;
2642 if (first_unconverted) {
2643 *first_unconverted = NULL;
2644 }
2645
2646 finish_and_return:
2647 *d = '\0';
2648 *lenp = d - converted_start;
2649
2650 /* Trim unused space */
2651 Renew(converted_start, *lenp + 1, U8);
2652
2653 return converted_start;
2654}
2655
2656/*
2657=for apidoc bytes_to_utf8
2658
2659Converts a string C<s> of length C<*lenp> bytes from the native encoding into
2660UTF-8.
2661Returns a pointer to the newly-created string, and sets C<*lenp> to
2662reflect the new length in bytes. The caller is responsible for arranging for
2663the memory used by this string to get freed.
2664
2665Upon successful return, the number of variants in the string can be computed by
2666having saved the value of C<*lenp> before the call, and subtracting it from the
2667after-call value of C<*lenp>.
2668
2669A C<NUL> character will be written after the end of the string.
2670
2671If you want to convert to UTF-8 from encodings other than
2672the native (Latin1 or EBCDIC),
2673see L</sv_recode_to_utf8>().
2674
2675=cut
2676*/
2677
2678U8*
2679Perl_bytes_to_utf8(pTHX_ const U8 *s, STRLEN *lenp)
2680{
2681 const U8 * const send = s + (*lenp);
2682 U8 *d;
2683 U8 *dst;
2684
2685 PERL_ARGS_ASSERT_BYTES_TO_UTF8;
2686 PERL_UNUSED_CONTEXT;
2687
2688 /* 1 for each byte + 1 for each byte that expands to two, + trailing NUL */
2689 Newx(d, (*lenp) + variant_under_utf8_count(s, send) + 1, U8);
2690 dst = d;
2691
2692 while (s < send) {
2693 append_utf8_from_native_byte(*s, &d);
2694 s++;
2695 }
2696
2697 *d = '\0';
2698 *lenp = d-dst;
2699
2700 return dst;
2701}
2702
2703/*
2704 * Convert native (big-endian) UTF-16 to UTF-8. For reversed (little-endian),
2705 * use utf16_to_utf8_reversed().
2706 *
2707 * UTF-16 requires 2 bytes for every code point below 0x10000; otherwise 4 bytes.
2708 * UTF-8 requires 1-3 bytes for every code point below 0x1000; otherwise 4 bytes.
2709 * UTF-EBCDIC requires 1-4 bytes for every code point below 0x1000; otherwise 4-5 bytes.
2710 *
2711 * These functions don't check for overflow. The worst case is every code
2712 * point in the input is 2 bytes, and requires 4 bytes on output. (If the code
2713 * is never going to run in EBCDIC, it is 2 bytes requiring 3 on output.) Therefore the
2714 * destination must be pre-extended to 2 times the source length.
2715 *
2716 * Do not use in-place. We optimize for native, for obvious reasons. */
2717
2718U8*
2719Perl_utf16_to_utf8(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2720{
2721 U8* pend;
2722 U8* dstart = d;
2723
2724 PERL_ARGS_ASSERT_UTF16_TO_UTF8;
2725
2726 if (bytelen & 1)
2727 Perl_croak(aTHX_ "panic: utf16_to_utf8: odd bytelen %" UVuf,
2728 (UV)bytelen);
2729
2730 pend = p + bytelen;
2731
2732 while (p < pend) {
2733 UV uv = (p[0] << 8) + p[1]; /* UTF-16BE */
2734 p += 2;
2735 if (OFFUNI_IS_INVARIANT(uv)) {
2736 *d++ = LATIN1_TO_NATIVE((U8) uv);
2737 continue;
2738 }
2739 if (uv <= MAX_UTF8_TWO_BYTE) {
2740 *d++ = UTF8_TWO_BYTE_HI(UNI_TO_NATIVE(uv));
2741 *d++ = UTF8_TWO_BYTE_LO(UNI_TO_NATIVE(uv));
2742 continue;
2743 }
2744
2745#define FIRST_HIGH_SURROGATE UNICODE_SURROGATE_FIRST
2746#define LAST_HIGH_SURROGATE 0xDBFF
2747#define FIRST_LOW_SURROGATE 0xDC00
2748#define LAST_LOW_SURROGATE UNICODE_SURROGATE_LAST
2749#define FIRST_IN_PLANE1 0x10000
2750
2751 /* This assumes that most uses will be in the first Unicode plane, not
2752 * needing surrogates */
2753 if (UNLIKELY(inRANGE(uv, UNICODE_SURROGATE_FIRST,
2754 UNICODE_SURROGATE_LAST)))
2755 {
2756 if (UNLIKELY(p >= pend) || UNLIKELY(uv > LAST_HIGH_SURROGATE)) {
2757 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2758 }
2759 else {
2760 UV low = (p[0] << 8) + p[1];
2761 if (UNLIKELY(! inRANGE(low, FIRST_LOW_SURROGATE,
2762 LAST_LOW_SURROGATE)))
2763 {
2764 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2765 }
2766 p += 2;
2767 uv = ((uv - FIRST_HIGH_SURROGATE) << 10)
2768 + (low - FIRST_LOW_SURROGATE) + FIRST_IN_PLANE1;
2769 }
2770 }
2771#ifdef EBCDIC
2772 d = uvoffuni_to_utf8_flags(d, uv, 0);
2773#else
2774 if (uv < FIRST_IN_PLANE1) {
2775 *d++ = (U8)(( uv >> 12) | 0xe0);
2776 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
2777 *d++ = (U8)(( uv & 0x3f) | 0x80);
2778 continue;
2779 }
2780 else {
2781 *d++ = (U8)(( uv >> 18) | 0xf0);
2782 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
2783 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
2784 *d++ = (U8)(( uv & 0x3f) | 0x80);
2785 continue;
2786 }
2787#endif
2788 }
2789 *newlen = d - dstart;
2790 return d;
2791}
2792
2793/* Note: this one is slightly destructive of the source. */
2794
2795U8*
2796Perl_utf16_to_utf8_reversed(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2797{
2798 U8* s = (U8*)p;
2799 U8* const send = s + bytelen;
2800
2801 PERL_ARGS_ASSERT_UTF16_TO_UTF8_REVERSED;
2802
2803 if (bytelen & 1)
2804 Perl_croak(aTHX_ "panic: utf16_to_utf8_reversed: odd bytelen %" UVuf,
2805 (UV)bytelen);
2806
2807 while (s < send) {
2808 const U8 tmp = s[0];
2809 s[0] = s[1];
2810 s[1] = tmp;
2811 s += 2;
2812 }
2813 return utf16_to_utf8(p, d, bytelen, newlen);
2814}
2815
2816bool
2817Perl__is_uni_FOO(pTHX_ const U8 classnum, const UV c)
2818{
2819 dVAR;
2820 return _invlist_contains_cp(PL_XPosix_ptrs[classnum], c);
2821}
2822
2823bool
2824Perl__is_uni_perl_idcont(pTHX_ UV c)
2825{
2826 dVAR;
2827 return _invlist_contains_cp(PL_utf8_perl_idcont, c);
2828}
2829
2830bool
2831Perl__is_uni_perl_idstart(pTHX_ UV c)
2832{
2833 dVAR;
2834 return _invlist_contains_cp(PL_utf8_perl_idstart, c);
2835}
2836
2837UV
2838Perl__to_upper_title_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp,
2839 const char S_or_s)
2840{
2841 /* We have the latin1-range values compiled into the core, so just use
2842 * those, converting the result to UTF-8. The only difference between upper
2843 * and title case in this range is that LATIN_SMALL_LETTER_SHARP_S is
2844 * either "SS" or "Ss". Which one to use is passed into the routine in
2845 * 'S_or_s' to avoid a test */
2846
2847 UV converted = toUPPER_LATIN1_MOD(c);
2848
2849 PERL_ARGS_ASSERT__TO_UPPER_TITLE_LATIN1;
2850
2851 assert(S_or_s == 'S' || S_or_s == 's');
2852
2853 if (UVCHR_IS_INVARIANT(converted)) { /* No difference between the two for
2854 characters in this range */
2855 *p = (U8) converted;
2856 *lenp = 1;
2857 return converted;
2858 }
2859
2860 /* toUPPER_LATIN1_MOD gives the correct results except for three outliers,
2861 * which it maps to one of them, so as to only have to have one check for
2862 * it in the main case */
2863 if (UNLIKELY(converted == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
2864 switch (c) {
2865 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
2866 converted = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
2867 break;
2868 case MICRO_SIGN:
2869 converted = GREEK_CAPITAL_LETTER_MU;
2870 break;
2871#if UNICODE_MAJOR_VERSION > 2 \
2872 || (UNICODE_MAJOR_VERSION == 2 && UNICODE_DOT_VERSION >= 1 \
2873 && UNICODE_DOT_DOT_VERSION >= 8)
2874 case LATIN_SMALL_LETTER_SHARP_S:
2875 *(p)++ = 'S';
2876 *p = S_or_s;
2877 *lenp = 2;
2878 return 'S';
2879#endif
2880 default:
2881 Perl_croak(aTHX_ "panic: to_upper_title_latin1 did not expect"
2882 " '%c' to map to '%c'",
2883 c, LATIN_SMALL_LETTER_Y_WITH_DIAERESIS);
2884 NOT_REACHED; /* NOTREACHED */
2885 }
2886 }
2887
2888 *(p)++ = UTF8_TWO_BYTE_HI(converted);
2889 *p = UTF8_TWO_BYTE_LO(converted);
2890 *lenp = 2;
2891
2892 return converted;
2893}
2894
2895/* If compiled on an early Unicode version, there may not be auxiliary tables
2896 * */
2897#ifndef HAS_UC_AUX_TABLES
2898# define UC_AUX_TABLE_ptrs NULL
2899# define UC_AUX_TABLE_lengths NULL
2900#endif
2901#ifndef HAS_TC_AUX_TABLES
2902# define TC_AUX_TABLE_ptrs NULL
2903# define TC_AUX_TABLE_lengths NULL
2904#endif
2905#ifndef HAS_LC_AUX_TABLES
2906# define LC_AUX_TABLE_ptrs NULL
2907# define LC_AUX_TABLE_lengths NULL
2908#endif
2909#ifndef HAS_CF_AUX_TABLES
2910# define CF_AUX_TABLE_ptrs NULL
2911# define CF_AUX_TABLE_lengths NULL
2912#endif
2913#ifndef HAS_UC_AUX_TABLES
2914# define UC_AUX_TABLE_ptrs NULL
2915# define UC_AUX_TABLE_lengths NULL
2916#endif
2917
2918/* Call the function to convert a UTF-8 encoded character to the specified case.
2919 * Note that there may be more than one character in the result.
2920 * 's' is a pointer to the first byte of the input character
2921 * 'd' will be set to the first byte of the string of changed characters. It
2922 * needs to have space for UTF8_MAXBYTES_CASE+1 bytes
2923 * 'lenp' will be set to the length in bytes of the string of changed characters
2924 *
2925 * The functions return the ordinal of the first character in the string of
2926 * 'd' */
2927#define CALL_UPPER_CASE(uv, s, d, lenp) \
2928 _to_utf8_case(uv, s, d, lenp, PL_utf8_toupper, \
2929 Uppercase_Mapping_invmap, \
2930 UC_AUX_TABLE_ptrs, \
2931 UC_AUX_TABLE_lengths, \
2932 "uppercase")
2933#define CALL_TITLE_CASE(uv, s, d, lenp) \
2934 _to_utf8_case(uv, s, d, lenp, PL_utf8_totitle, \
2935 Titlecase_Mapping_invmap, \
2936 TC_AUX_TABLE_ptrs, \
2937 TC_AUX_TABLE_lengths, \
2938 "titlecase")
2939#define CALL_LOWER_CASE(uv, s, d, lenp) \
2940 _to_utf8_case(uv, s, d, lenp, PL_utf8_tolower, \
2941 Lowercase_Mapping_invmap, \
2942 LC_AUX_TABLE_ptrs, \
2943 LC_AUX_TABLE_lengths, \
2944 "lowercase")
2945
2946
2947/* This additionally has the input parameter 'specials', which if non-zero will
2948 * cause this to use the specials hash for folding (meaning get full case
2949 * folding); otherwise, when zero, this implies a simple case fold */
2950#define CALL_FOLD_CASE(uv, s, d, lenp, specials) \
2951 (specials) \
2952 ? _to_utf8_case(uv, s, d, lenp, PL_utf8_tofold, \
2953 Case_Folding_invmap, \
2954 CF_AUX_TABLE_ptrs, \
2955 CF_AUX_TABLE_lengths, \
2956 "foldcase") \
2957 : _to_utf8_case(uv, s, d, lenp, PL_utf8_tosimplefold, \
2958 Simple_Case_Folding_invmap, \
2959 NULL, NULL, \
2960 "foldcase")
2961
2962UV
2963Perl_to_uni_upper(pTHX_ UV c, U8* p, STRLEN *lenp)
2964{
2965 /* Convert the Unicode character whose ordinal is <c> to its uppercase
2966 * version and store that in UTF-8 in <p> and its length in bytes in <lenp>.
2967 * Note that the <p> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
2968 * the changed version may be longer than the original character.
2969 *
2970 * The ordinal of the first character of the changed version is returned
2971 * (but note, as explained above, that there may be more.) */
2972
2973 dVAR;
2974 PERL_ARGS_ASSERT_TO_UNI_UPPER;
2975
2976 if (c < 256) {
2977 return _to_upper_title_latin1((U8) c, p, lenp, 'S');
2978 }
2979
2980 return CALL_UPPER_CASE(c, NULL, p, lenp);
2981}
2982
2983UV
2984Perl_to_uni_title(pTHX_ UV c, U8* p, STRLEN *lenp)
2985{
2986 dVAR;
2987 PERL_ARGS_ASSERT_TO_UNI_TITLE;
2988
2989 if (c < 256) {
2990 return _to_upper_title_latin1((U8) c, p, lenp, 's');
2991 }
2992
2993 return CALL_TITLE_CASE(c, NULL, p, lenp);
2994}
2995
2996STATIC U8
2997S_to_lower_latin1(const U8 c, U8* p, STRLEN *lenp, const char dummy)
2998{
2999 /* We have the latin1-range values compiled into the core, so just use
3000 * those, converting the result to UTF-8. Since the result is always just
3001 * one character, we allow <p> to be NULL */
3002
3003 U8 converted = toLOWER_LATIN1(c);
3004
3005 PERL_UNUSED_ARG(dummy);
3006
3007 if (p != NULL) {
3008 if (NATIVE_BYTE_IS_INVARIANT(converted)) {
3009 *p = converted;
3010 *lenp = 1;
3011 }
3012 else {
3013 /* Result is known to always be < 256, so can use the EIGHT_BIT
3014 * macros */
3015 *p = UTF8_EIGHT_BIT_HI(converted);
3016 *(p+1) = UTF8_EIGHT_BIT_LO(converted);
3017 *lenp = 2;
3018 }
3019 }
3020 return converted;
3021}
3022
3023UV
3024Perl_to_uni_lower(pTHX_ UV c, U8* p, STRLEN *lenp)
3025{
3026 dVAR;
3027 PERL_ARGS_ASSERT_TO_UNI_LOWER;
3028
3029 if (c < 256) {
3030 return to_lower_latin1((U8) c, p, lenp, 0 /* 0 is a dummy arg */ );
3031 }
3032
3033 return CALL_LOWER_CASE(c, NULL, p, lenp);
3034}
3035
3036UV
3037Perl__to_fold_latin1(const U8 c, U8* p, STRLEN *lenp, const unsigned int flags)
3038{
3039 /* Corresponds to to_lower_latin1(); <flags> bits meanings:
3040 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
3041 * FOLD_FLAGS_FULL iff full folding is to be used;
3042 *
3043 * Not to be used for locale folds
3044 */
3045
3046 UV converted;
3047
3048 PERL_ARGS_ASSERT__TO_FOLD_LATIN1;
3049
3050 assert (! (flags & FOLD_FLAGS_LOCALE));
3051
3052 if (UNLIKELY(c == MICRO_SIGN)) {
3053 converted = GREEK_SMALL_LETTER_MU;
3054 }
3055#if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
3056 || (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
3057 || UNICODE_DOT_DOT_VERSION > 0)
3058 else if ( (flags & FOLD_FLAGS_FULL)
3059 && UNLIKELY(c == LATIN_SMALL_LETTER_SHARP_S))
3060 {
3061 /* If can't cross 127/128 boundary, can't return "ss"; instead return
3062 * two U+017F characters, as fc("\df") should eq fc("\x{17f}\x{17f}")
3063 * under those circumstances. */
3064 if (flags & FOLD_FLAGS_NOMIX_ASCII) {
3065 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
3066 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
3067 p, *lenp, U8);
3068 return LATIN_SMALL_LETTER_LONG_S;
3069 }
3070 else {
3071 *(p)++ = 's';
3072 *p = 's';
3073 *lenp = 2;
3074 return 's';
3075 }
3076 }
3077#endif
3078 else { /* In this range the fold of all other characters is their lower
3079 case */
3080 converted = toLOWER_LATIN1(c);
3081 }
3082
3083 if (UVCHR_IS_INVARIANT(converted)) {
3084 *p = (U8) converted;
3085 *lenp = 1;
3086 }
3087 else {
3088 *(p)++ = UTF8_TWO_BYTE_HI(converted);
3089 *p = UTF8_TWO_BYTE_LO(converted);
3090 *lenp = 2;
3091 }
3092
3093 return converted;
3094}
3095
3096UV
3097Perl__to_uni_fold_flags(pTHX_ UV c, U8* p, STRLEN *lenp, U8 flags)
3098{
3099
3100 /* Not currently externally documented, and subject to change
3101 * <flags> bits meanings:
3102 * FOLD_FLAGS_FULL iff full folding is to be used;
3103 * FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
3104 * locale are to be used.
3105 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
3106 */
3107
3108 dVAR;
3109 PERL_ARGS_ASSERT__TO_UNI_FOLD_FLAGS;
3110
3111 if (flags & FOLD_FLAGS_LOCALE) {
3112 /* Treat a non-Turkic UTF-8 locale as not being in locale at all,
3113 * except for potentially warning */
3114 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
3115 if (IN_UTF8_CTYPE_LOCALE && ! PL_in_utf8_turkic_locale) {
3116 flags &= ~FOLD_FLAGS_LOCALE;
3117 }
3118 else {
3119 goto needs_full_generality;
3120 }
3121 }
3122
3123 if (c < 256) {
3124 return _to_fold_latin1((U8) c, p, lenp,
3125 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
3126 }
3127
3128 /* Here, above 255. If no special needs, just use the macro */
3129 if ( ! (flags & (FOLD_FLAGS_LOCALE|FOLD_FLAGS_NOMIX_ASCII))) {
3130 return CALL_FOLD_CASE(c, NULL, p, lenp, flags & FOLD_FLAGS_FULL);
3131 }
3132 else { /* Otherwise, _toFOLD_utf8_flags has the intelligence to deal with
3133 the special flags. */
3134 U8 utf8_c[UTF8_MAXBYTES + 1];
3135
3136 needs_full_generality:
3137 uvchr_to_utf8(utf8_c, c);
3138 return _toFOLD_utf8_flags(utf8_c, utf8_c + sizeof(utf8_c),
3139 p, lenp, flags);
3140 }
3141}
3142
3143PERL_STATIC_INLINE bool
3144S_is_utf8_common(pTHX_ const U8 *const p, const U8 * const e,
3145 SV* const invlist)
3146{
3147 /* returns a boolean giving whether or not the UTF8-encoded character that
3148 * starts at <p>, and extending no further than <e - 1> is in the inversion
3149 * list <invlist>. */
3150
3151 UV cp = utf8n_to_uvchr(p, e - p, NULL, 0);
3152
3153 PERL_ARGS_ASSERT_IS_UTF8_COMMON;
3154
3155 if (cp == 0 && (p >= e || *p != '\0')) {
3156 _force_out_malformed_utf8_message(p, e, 0, 1);
3157 NOT_REACHED; /* NOTREACHED */
3158 }
3159
3160 assert(invlist);
3161 return _invlist_contains_cp(invlist, cp);
3162}
3163
3164#if 0 /* Not currently used, but may be needed in the future */
3165PERLVAR(I, seen_deprecated_macro, HV *)
3166
3167STATIC void
3168S_warn_on_first_deprecated_use(pTHX_ const char * const name,
3169 const char * const alternative,
3170 const bool use_locale,
3171 const char * const file,
3172 const unsigned line)
3173{
3174 const char * key;
3175
3176 PERL_ARGS_ASSERT_WARN_ON_FIRST_DEPRECATED_USE;
3177
3178 if (ckWARN_d(WARN_DEPRECATED)) {
3179
3180 key = Perl_form(aTHX_ "%s;%d;%s;%d", name, use_locale, file, line);
3181 if (! hv_fetch(PL_seen_deprecated_macro, key, strlen(key), 0)) {
3182 if (! PL_seen_deprecated_macro) {
3183 PL_seen_deprecated_macro = newHV();
3184 }
3185 if (! hv_store(PL_seen_deprecated_macro, key,
3186 strlen(key), &PL_sv_undef, 0))
3187 {
3188 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3189 }
3190
3191 if (instr(file, "mathoms.c")) {
3192 Perl_warner(aTHX_ WARN_DEPRECATED,
3193 "In %s, line %d, starting in Perl v5.32, %s()"
3194 " will be removed. Avoid this message by"
3195 " converting to use %s().\n",
3196 file, line, name, alternative);
3197 }
3198 else {
3199 Perl_warner(aTHX_ WARN_DEPRECATED,
3200 "In %s, line %d, starting in Perl v5.32, %s() will"
3201 " require an additional parameter. Avoid this"
3202 " message by converting to use %s().\n",
3203 file, line, name, alternative);
3204 }
3205 }
3206 }
3207}
3208#endif
3209
3210bool
3211Perl__is_utf8_FOO(pTHX_ const U8 classnum, const U8 *p, const U8 * const e)
3212{
3213 dVAR;
3214 PERL_ARGS_ASSERT__IS_UTF8_FOO;
3215
3216 return is_utf8_common(p, e, PL_XPosix_ptrs[classnum]);
3217}
3218
3219bool
3220Perl__is_utf8_perl_idstart(pTHX_ const U8 *p, const U8 * const e)
3221{
3222 dVAR;
3223 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDSTART;
3224
3225 return is_utf8_common(p, e, PL_utf8_perl_idstart);
3226}
3227
3228bool
3229Perl__is_utf8_perl_idcont(pTHX_ const U8 *p, const U8 * const e)
3230{
3231 dVAR;
3232 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDCONT;
3233
3234 return is_utf8_common(p, e, PL_utf8_perl_idcont);
3235}
3236
3237STATIC UV
3238S__to_utf8_case(pTHX_ const UV uv1, const U8 *p,
3239 U8* ustrp, STRLEN *lenp,
3240 SV *invlist, const I32 * const invmap,
3241 const U32 * const * const aux_tables,
3242 const U8 * const aux_table_lengths,
3243 const char * const normal)
3244{
3245 STRLEN len = 0;
3246
3247 /* Change the case of code point 'uv1' whose UTF-8 representation (assumed
3248 * by this routine to be valid) begins at 'p'. 'normal' is a string to use
3249 * to name the new case in any generated messages, as a fallback if the
3250 * operation being used is not available. The new case is given by the
3251 * data structures in the remaining arguments.
3252 *
3253 * On return 'ustrp' points to '*lenp' UTF-8 encoded bytes representing the
3254 * entire changed case string, and the return value is the first code point
3255 * in that string */
3256
3257 PERL_ARGS_ASSERT__TO_UTF8_CASE;
3258
3259 /* For code points that don't change case, we already know that the output
3260 * of this function is the unchanged input, so we can skip doing look-ups
3261 * for them. Unfortunately the case-changing code points are scattered
3262 * around. But there are some long consecutive ranges where there are no
3263 * case changing code points. By adding tests, we can eliminate the lookup
3264 * for all the ones in such ranges. This is currently done here only for
3265 * just a few cases where the scripts are in common use in modern commerce
3266 * (and scripts adjacent to those which can be included without additional
3267 * tests). */
3268
3269 if (uv1 >= 0x0590) {
3270 /* This keeps from needing further processing the code points most
3271 * likely to be used in the following non-cased scripts: Hebrew,
3272 * Arabic, Syriac, Thaana, NKo, Samaritan, Mandaic, Devanagari,
3273 * Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada,
3274 * Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar */
3275 if (uv1 < 0x10A0) {
3276 goto cases_to_self;
3277 }
3278
3279 /* The following largish code point ranges also don't have case
3280 * changes, but khw didn't think they warranted extra tests to speed
3281 * them up (which would slightly slow down everything else above them):
3282 * 1100..139F Hangul Jamo, Ethiopic
3283 * 1400..1CFF Unified Canadian Aboriginal Syllabics, Ogham, Runic,
3284 * Tagalog, Hanunoo, Buhid, Tagbanwa, Khmer, Mongolian,
3285 * Limbu, Tai Le, New Tai Lue, Buginese, Tai Tham,
3286 * Combining Diacritical Marks Extended, Balinese,
3287 * Sundanese, Batak, Lepcha, Ol Chiki
3288 * 2000..206F General Punctuation
3289 */
3290
3291 if (uv1 >= 0x2D30) {
3292
3293 /* This keeps the from needing further processing the code points
3294 * most likely to be used in the following non-cased major scripts:
3295 * CJK, Katakana, Hiragana, plus some less-likely scripts.
3296 *
3297 * (0x2D30 above might have to be changed to 2F00 in the unlikely
3298 * event that Unicode eventually allocates the unused block as of
3299 * v8.0 2FE0..2FEF to code points that are cased. khw has verified
3300 * that the test suite will start having failures to alert you
3301 * should that happen) */
3302 if (uv1 < 0xA640) {
3303 goto cases_to_self;
3304 }
3305
3306 if (uv1 >= 0xAC00) {
3307 if (UNLIKELY(UNICODE_IS_SURROGATE(uv1))) {
3308 if (ckWARN_d(WARN_SURROGATE)) {
3309 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
3310 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
3311 "Operation \"%s\" returns its argument for"
3312 " UTF-16 surrogate U+%04" UVXf, desc, uv1);
3313 }
3314 goto cases_to_self;
3315 }
3316
3317 /* AC00..FAFF Catches Hangul syllables and private use, plus
3318 * some others */
3319 if (uv1 < 0xFB00) {
3320 goto cases_to_self;
3321 }
3322
3323 if (UNLIKELY(UNICODE_IS_SUPER(uv1))) {
3324 if (UNLIKELY(uv1 > MAX_LEGAL_CP)) {
3325 Perl_croak(aTHX_ cp_above_legal_max, uv1,
3326 MAX_LEGAL_CP);
3327 }
3328 if (ckWARN_d(WARN_NON_UNICODE)) {
3329 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
3330 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
3331 "Operation \"%s\" returns its argument for"
3332 " non-Unicode code point 0x%04" UVXf, desc, uv1);
3333 }
3334 goto cases_to_self;
3335 }
3336#ifdef HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C
3337 if (UNLIKELY(uv1
3338 > HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C))
3339 {
3340
3341 goto cases_to_self;
3342 }
3343#endif
3344 }
3345 }
3346
3347 /* Note that non-characters are perfectly legal, so no warning should
3348 * be given. */
3349 }
3350
3351 {
3352 unsigned int i;
3353 const unsigned int * cp_list;
3354 U8 * d;
3355
3356 /* 'index' is guaranteed to be non-negative, as this is an inversion
3357 * map that covers all possible inputs. See [perl #133365] */
3358 SSize_t index = _invlist_search(invlist, uv1);
3359 IV base = invmap[index];
3360
3361 /* The data structures are set up so that if 'base' is non-negative,
3362 * the case change is 1-to-1; and if 0, the change is to itself */
3363 if (base >= 0) {
3364 IV lc;
3365
3366 if (base == 0) {
3367 goto cases_to_self;
3368 }
3369
3370 /* This computes, e.g. lc(H) as 'H - A + a', using the lc table */
3371 lc = base + uv1 - invlist_array(invlist)[index];
3372 *lenp = uvchr_to_utf8(ustrp, lc) - ustrp;
3373 return lc;
3374 }
3375
3376 /* Here 'base' is negative. That means the mapping is 1-to-many, and
3377 * requires an auxiliary table look up. abs(base) gives the index into
3378 * a list of such tables which points to the proper aux table. And a
3379 * parallel list gives the length of each corresponding aux table. */
3380 cp_list = aux_tables[-base];
3381
3382 /* Create the string of UTF-8 from the mapped-to code points */
3383 d = ustrp;
3384 for (i = 0; i < aux_table_lengths[-base]; i++) {
3385 d = uvchr_to_utf8(d, cp_list[i]);
3386 }
3387 *d = '\0';
3388 *lenp = d - ustrp;
3389
3390 return cp_list[0];
3391 }
3392
3393 /* Here, there was no mapping defined, which means that the code point maps
3394 * to itself. Return the inputs */
3395 cases_to_self:
3396 if (p) {
3397 len = UTF8SKIP(p);
3398 if (p != ustrp) { /* Don't copy onto itself */
3399 Copy(p, ustrp, len, U8);
3400 }
3401 *lenp = len;
3402 }
3403 else {
3404 *lenp = uvchr_to_utf8(ustrp, uv1) - ustrp;
3405 }
3406
3407 return uv1;
3408
3409}
3410
3411Size_t
3412Perl__inverse_folds(pTHX_ const UV cp, U32 * first_folds_to,
3413 const U32 ** remaining_folds_to)
3414{
3415 /* Returns the count of the number of code points that fold to the input
3416 * 'cp' (besides itself).
3417 *
3418 * If the return is 0, there is nothing else that folds to it, and
3419 * '*first_folds_to' is set to 0, and '*remaining_folds_to' is set to NULL.
3420 *
3421 * If the return is 1, '*first_folds_to' is set to the single code point,
3422 * and '*remaining_folds_to' is set to NULL.
3423 *
3424 * Otherwise, '*first_folds_to' is set to a code point, and
3425 * '*remaining_fold_to' is set to an array that contains the others. The
3426 * length of this array is the returned count minus 1.
3427 *
3428 * The reason for this convolution is to avoid having to deal with
3429 * allocating and freeing memory. The lists are already constructed, so
3430 * the return can point to them, but single code points aren't, so would
3431 * need to be constructed if we didn't employ something like this API
3432 *
3433 * The code points returned by this function are all legal Unicode, which
3434 * occupy at most 21 bits, and so a U32 is sufficient, and the lists are
3435 * constructed with this size (to save space and memory), and we return
3436 * pointers, so they must be this size */
3437
3438 dVAR;
3439 /* 'index' is guaranteed to be non-negative, as this is an inversion map
3440 * that covers all possible inputs. See [perl #133365] */
3441 SSize_t index = _invlist_search(PL_utf8_foldclosures, cp);
3442 I32 base = _Perl_IVCF_invmap[index];
3443
3444 PERL_ARGS_ASSERT__INVERSE_FOLDS;
3445
3446 if (base == 0) { /* No fold */
3447 *first_folds_to = 0;
3448 *remaining_folds_to = NULL;
3449 return 0;
3450 }
3451
3452#ifndef HAS_IVCF_AUX_TABLES /* This Unicode version only has 1-1 folds */
3453
3454 assert(base > 0);
3455
3456#else
3457
3458 if (UNLIKELY(base < 0)) { /* Folds to more than one character */
3459
3460 /* The data structure is set up so that the absolute value of 'base' is
3461 * an index into a table of pointers to arrays, with the array
3462 * corresponding to the index being the list of code points that fold
3463 * to 'cp', and the parallel array containing the length of the list
3464 * array */
3465 *first_folds_to = IVCF_AUX_TABLE_ptrs[-base][0];
3466 *remaining_folds_to = IVCF_AUX_TABLE_ptrs[-base] + 1; /* +1 excludes
3467 *first_folds_to
3468 */
3469 return IVCF_AUX_TABLE_lengths[-base];
3470 }
3471
3472#endif
3473
3474 /* Only the single code point. This works like 'fc(G) = G - A + a' */
3475 *first_folds_to = (U32) (base + cp
3476 - invlist_array(PL_utf8_foldclosures)[index]);
3477 *remaining_folds_to = NULL;
3478 return 1;
3479}
3480
3481STATIC UV
3482S_check_locale_boundary_crossing(pTHX_ const U8* const p, const UV result,
3483 U8* const ustrp, STRLEN *lenp)
3484{
3485 /* This is called when changing the case of a UTF-8-encoded character above
3486 * the Latin1 range, and the operation is in a non-UTF-8 locale. If the
3487 * result contains a character that crosses the 255/256 boundary, disallow
3488 * the change, and return the original code point. See L<perlfunc/lc> for
3489 * why;
3490 *
3491 * p points to the original string whose case was changed; assumed
3492 * by this routine to be well-formed
3493 * result the code point of the first character in the changed-case string
3494 * ustrp points to the changed-case string (<result> represents its
3495 * first char)
3496 * lenp points to the length of <ustrp> */
3497
3498 UV original; /* To store the first code point of <p> */
3499
3500 PERL_ARGS_ASSERT_CHECK_LOCALE_BOUNDARY_CROSSING;
3501
3502 assert(UTF8_IS_ABOVE_LATIN1(*p));
3503
3504 /* We know immediately if the first character in the string crosses the
3505 * boundary, so can skip testing */
3506 if (result > 255) {
3507
3508 /* Look at every character in the result; if any cross the
3509 * boundary, the whole thing is disallowed */
3510 U8* s = ustrp + UTF8SKIP(ustrp);
3511 U8* e = ustrp + *lenp;
3512 while (s < e) {
3513 if (! UTF8_IS_ABOVE_LATIN1(*s)) {
3514 goto bad_crossing;
3515 }
3516 s += UTF8SKIP(s);
3517 }
3518
3519 /* Here, no characters crossed, result is ok as-is, but we warn. */
3520 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(p, p + UTF8SKIP(p));
3521 return result;
3522 }
3523
3524 bad_crossing:
3525
3526 /* Failed, have to return the original */
3527 original = valid_utf8_to_uvchr(p, lenp);
3528
3529 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3530 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3531 "Can't do %s(\"\\x{%" UVXf "}\") on non-UTF-8"
3532 " locale; resolved to \"\\x{%" UVXf "}\".",
3533 OP_DESC(PL_op),
3534 original,
3535 original);
3536 Copy(p, ustrp, *lenp, char);
3537 return original;
3538}
3539
3540STATIC UV
3541S_turkic_fc(pTHX_ const U8 * const p, const U8 * const e,
3542 U8 * ustrp, STRLEN *lenp)
3543{
3544 /* Returns 0 if the foldcase of the input UTF-8 encoded sequence from
3545 * p0..e-1 according to Turkic rules is the same as for non-Turkic.
3546 * Otherwise, it returns the first code point of the Turkic foldcased
3547 * sequence, and the entire sequence will be stored in *ustrp. ustrp will
3548 * contain *lenp bytes
3549 *
3550 * Turkic differs only from non-Turkic in that 'i' and LATIN CAPITAL LETTER
3551 * I WITH DOT ABOVE form a case pair, as do 'I' and LATIN SMALL LETTER
3552 * DOTLESS I */
3553
3554 PERL_ARGS_ASSERT_TURKIC_FC;
3555 assert(e > p);
3556
3557 if (UNLIKELY(*p == 'I')) {
3558 *lenp = 2;
3559 ustrp[0] = UTF8_TWO_BYTE_HI(LATIN_SMALL_LETTER_DOTLESS_I);
3560 ustrp[1] = UTF8_TWO_BYTE_LO(LATIN_SMALL_LETTER_DOTLESS_I);
3561 return LATIN_SMALL_LETTER_DOTLESS_I;
3562 }
3563
3564 if (UNLIKELY(memBEGINs(p, e - p,
3565 LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8)))
3566 {
3567 *lenp = 1;
3568 *ustrp = 'i';
3569 return 'i';
3570 }
3571
3572 return 0;
3573}
3574
3575STATIC UV
3576S_turkic_lc(pTHX_ const U8 * const p0, const U8 * const e,
3577 U8 * ustrp, STRLEN *lenp)
3578{
3579 /* Returns 0 if the lowercase of the input UTF-8 encoded sequence from
3580 * p0..e-1 according to Turkic rules is the same as for non-Turkic.
3581 * Otherwise, it returns the first code point of the Turkic lowercased
3582 * sequence, and the entire sequence will be stored in *ustrp. ustrp will
3583 * contain *lenp bytes */
3584
3585 dVAR;
3586 PERL_ARGS_ASSERT_TURKIC_LC;
3587 assert(e > p0);
3588
3589 /* A 'I' requires context as to what to do */
3590 if (UNLIKELY(*p0 == 'I')) {
3591 const U8 * p = p0 + 1;
3592
3593 /* According to the Unicode SpecialCasing.txt file, a capital 'I'
3594 * modified by a dot above lowercases to 'i' even in turkic locales. */
3595 while (p < e) {
3596 UV cp;
3597
3598 if (memBEGINs(p, e - p, COMBINING_DOT_ABOVE_UTF8)) {
3599 ustrp[0] = 'i';
3600 *lenp = 1;
3601 return 'i';
3602 }
3603
3604 /* For the dot above to modify the 'I', it must be part of a
3605 * combining sequence immediately following the 'I', and no other
3606 * modifier with a ccc of 230 may intervene */
3607 cp = utf8_to_uvchr_buf(p, e, NULL);
3608 if (! _invlist_contains_cp(PL_CCC_non0_non230, cp)) {
3609 break;
3610 }
3611
3612 /* Here the combining sequence continues */
3613 p += UTF8SKIP(p);
3614 }
3615 }
3616
3617 /* In all other cases the lc is the same as the fold */
3618 return turkic_fc(p0, e, ustrp, lenp);
3619}
3620
3621STATIC UV
3622S_turkic_uc(pTHX_ const U8 * const p, const U8 * const e,
3623 U8 * ustrp, STRLEN *lenp)
3624{
3625 /* Returns 0 if the upper or title-case of the input UTF-8 encoded sequence
3626 * from p0..e-1 according to Turkic rules is the same as for non-Turkic.
3627 * Otherwise, it returns the first code point of the Turkic upper or
3628 * title-cased sequence, and the entire sequence will be stored in *ustrp.
3629 * ustrp will contain *lenp bytes
3630 *
3631 * Turkic differs only from non-Turkic in that 'i' and LATIN CAPITAL LETTER
3632 * I WITH DOT ABOVE form a case pair, as do 'I' and and LATIN SMALL LETTER
3633 * DOTLESS I */
3634
3635 PERL_ARGS_ASSERT_TURKIC_UC;
3636 assert(e > p);
3637
3638 if (*p == 'i') {
3639 *lenp = 2;
3640 ustrp[0] = UTF8_TWO_BYTE_HI(LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
3641 ustrp[1] = UTF8_TWO_BYTE_LO(LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
3642 return LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE;
3643 }
3644
3645 if (memBEGINs(p, e - p, LATIN_SMALL_LETTER_DOTLESS_I_UTF8)) {
3646 *lenp = 1;
3647 *ustrp = 'I';
3648 return 'I';
3649 }
3650
3651 return 0;
3652}
3653
3654/* The process for changing the case is essentially the same for the four case
3655 * change types, except there are complications for folding. Otherwise the
3656 * difference is only which case to change to. To make sure that they all do
3657 * the same thing, the bodies of the functions are extracted out into the
3658 * following two macros. The functions are written with the same variable
3659 * names, and these are known and used inside these macros. It would be
3660 * better, of course, to have inline functions to do it, but since different
3661 * macros are called, depending on which case is being changed to, this is not
3662 * feasible in C (to khw's knowledge). Two macros are created so that the fold
3663 * function can start with the common start macro, then finish with its special
3664 * handling; while the other three cases can just use the common end macro.
3665 *
3666 * The algorithm is to use the proper (passed in) macro or function to change
3667 * the case for code points that are below 256. The macro is used if using
3668 * locale rules for the case change; the function if not. If the code point is
3669 * above 255, it is computed from the input UTF-8, and another macro is called
3670 * to do the conversion. If necessary, the output is converted to UTF-8. If
3671 * using a locale, we have to check that the change did not cross the 255/256
3672 * boundary, see check_locale_boundary_crossing() for further details.
3673 *
3674 * The macros are split with the correct case change for the below-256 case
3675 * stored into 'result', and in the middle of an else clause for the above-255
3676 * case. At that point in the 'else', 'result' is not the final result, but is
3677 * the input code point calculated from the UTF-8. The fold code needs to
3678 * realize all this and take it from there.
3679 *
3680 * To deal with Turkic locales, the function specified by the parameter
3681 * 'turkic' is called when appropriate.
3682 *
3683 * If you read the two macros as sequential, it's easier to understand what's
3684 * going on. */
3685#define CASE_CHANGE_BODY_START(locale_flags, LC_L1_change_macro, L1_func, \
3686 L1_func_extra_param, turkic) \
3687 \
3688 if (flags & (locale_flags)) { \
3689 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
3690 if (IN_UTF8_CTYPE_LOCALE) { \
3691 if (UNLIKELY(PL_in_utf8_turkic_locale)) { \
3692 UV ret = turkic(p, e, ustrp, lenp); \
3693 if (ret) return ret; \
3694 } \
3695 \
3696 /* Otherwise, treat a UTF-8 locale as not being in locale at \
3697 * all */ \
3698 flags &= ~(locale_flags); \
3699 } \
3700 } \
3701 \
3702 if (UTF8_IS_INVARIANT(*p)) { \
3703 if (flags & (locale_flags)) { \
3704 result = LC_L1_change_macro(*p); \
3705 } \
3706 else { \
3707 return L1_func(*p, ustrp, lenp, L1_func_extra_param); \
3708 } \
3709 } \
3710 else if UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, e) { \
3711 U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)); \
3712 if (flags & (locale_flags)) { \
3713 result = LC_L1_change_macro(c); \
3714 } \
3715 else { \
3716 return L1_func(c, ustrp, lenp, L1_func_extra_param); \
3717 } \
3718 } \
3719 else { /* malformed UTF-8 or ord above 255 */ \
3720 STRLEN len_result; \
3721 result = utf8n_to_uvchr(p, e - p, &len_result, UTF8_CHECK_ONLY); \
3722 if (len_result == (STRLEN) -1) { \
3723 _force_out_malformed_utf8_message(p, e, 0, 1 /* Die */ ); \
3724 }
3725
3726#define CASE_CHANGE_BODY_END(locale_flags, change_macro) \
3727 result = change_macro(result, p, ustrp, lenp); \
3728 \
3729 if (flags & (locale_flags)) { \
3730 result = check_locale_boundary_crossing(p, result, ustrp, lenp); \
3731 } \
3732 return result; \
3733 } \
3734 \
3735 /* Here, used locale rules. Convert back to UTF-8 */ \
3736 if (UTF8_IS_INVARIANT(result)) { \
3737 *ustrp = (U8) result; \
3738 *lenp = 1; \
3739 } \
3740 else { \
3741 *ustrp = UTF8_EIGHT_BIT_HI((U8) result); \
3742 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result); \
3743 *lenp = 2; \
3744 } \
3745 \
3746 return result;
3747
3748/* Not currently externally documented, and subject to change:
3749 * <flags> is set iff iff the rules from the current underlying locale are to
3750 * be used. */
3751
3752UV
3753Perl__to_utf8_upper_flags(pTHX_ const U8 *p,
3754 const U8 *e,
3755 U8* ustrp,
3756 STRLEN *lenp,
3757 bool flags)
3758{
3759 dVAR;
3760 UV result;
3761
3762 PERL_ARGS_ASSERT__TO_UTF8_UPPER_FLAGS;
3763
3764 /* ~0 makes anything non-zero in 'flags' mean we are using locale rules */
3765 /* 2nd char of uc(U+DF) is 'S' */
3766 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 'S',
3767 turkic_uc);
3768 CASE_CHANGE_BODY_END (~0, CALL_UPPER_CASE);
3769}
3770
3771/* Not currently externally documented, and subject to change:
3772 * <flags> is set iff the rules from the current underlying locale are to be
3773 * used. Since titlecase is not defined in POSIX, for other than a
3774 * UTF-8 locale, uppercase is used instead for code points < 256.
3775 */
3776
3777UV
3778Perl__to_utf8_title_flags(pTHX_ const U8 *p,
3779 const U8 *e,
3780 U8* ustrp,
3781 STRLEN *lenp,
3782 bool flags)
3783{
3784 dVAR;
3785 UV result;
3786
3787 PERL_ARGS_ASSERT__TO_UTF8_TITLE_FLAGS;
3788
3789 /* 2nd char of ucfirst(U+DF) is 's' */
3790 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 's',
3791 turkic_uc);
3792 CASE_CHANGE_BODY_END (~0, CALL_TITLE_CASE);
3793}
3794
3795/* Not currently externally documented, and subject to change:
3796 * <flags> is set iff iff the rules from the current underlying locale are to
3797 * be used.
3798 */
3799
3800UV
3801Perl__to_utf8_lower_flags(pTHX_ const U8 *p,
3802 const U8 *e,
3803 U8* ustrp,
3804 STRLEN *lenp,
3805 bool flags)
3806{
3807 dVAR;
3808 UV result;
3809
3810 PERL_ARGS_ASSERT__TO_UTF8_LOWER_FLAGS;
3811
3812 CASE_CHANGE_BODY_START(~0, toLOWER_LC, to_lower_latin1, 0 /* 0 is dummy */,
3813 turkic_lc);
3814 CASE_CHANGE_BODY_END (~0, CALL_LOWER_CASE)
3815}
3816
3817/* Not currently externally documented, and subject to change,
3818 * in <flags>
3819 * bit FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
3820 * locale are to be used.
3821 * bit FOLD_FLAGS_FULL is set iff full case folds are to be used;
3822 * otherwise simple folds
3823 * bit FOLD_FLAGS_NOMIX_ASCII is set iff folds of non-ASCII to ASCII are
3824 * prohibited
3825 */
3826
3827UV
3828Perl__to_utf8_fold_flags(pTHX_ const U8 *p,
3829 const U8 *e,
3830 U8* ustrp,
3831 STRLEN *lenp,
3832 U8 flags)
3833{
3834 dVAR;
3835 UV result;
3836
3837 PERL_ARGS_ASSERT__TO_UTF8_FOLD_FLAGS;
3838
3839 /* These are mutually exclusive */
3840 assert (! ((flags & FOLD_FLAGS_LOCALE) && (flags & FOLD_FLAGS_NOMIX_ASCII)));
3841
3842 assert(p != ustrp); /* Otherwise overwrites */
3843
3844 CASE_CHANGE_BODY_START(FOLD_FLAGS_LOCALE, toFOLD_LC, _to_fold_latin1,
3845 ((flags) & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII)),
3846 turkic_fc);
3847
3848 result = CALL_FOLD_CASE(result, p, ustrp, lenp, flags & FOLD_FLAGS_FULL);
3849
3850 if (flags & FOLD_FLAGS_LOCALE) {
3851
3852# define LONG_S_T LATIN_SMALL_LIGATURE_LONG_S_T_UTF8
3853# ifdef LATIN_CAPITAL_LETTER_SHARP_S_UTF8
3854# define CAP_SHARP_S LATIN_CAPITAL_LETTER_SHARP_S_UTF8
3855
3856 /* Special case these two characters, as what normally gets
3857 * returned under locale doesn't work */
3858 if (memBEGINs((char *) p, e - p, CAP_SHARP_S))
3859 {
3860 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3861 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3862 "Can't do fc(\"\\x{1E9E}\") on non-UTF-8 locale; "
3863 "resolved to \"\\x{17F}\\x{17F}\".");
3864 goto return_long_s;
3865 }
3866 else
3867#endif
3868 if (memBEGINs((char *) p, e - p, LONG_S_T))
3869 {
3870 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3871 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3872 "Can't do fc(\"\\x{FB05}\") on non-UTF-8 locale; "
3873 "resolved to \"\\x{FB06}\".");
3874 goto return_ligature_st;
3875 }
3876
3877#if UNICODE_MAJOR_VERSION == 3 \
3878 && UNICODE_DOT_VERSION == 0 \
3879 && UNICODE_DOT_DOT_VERSION == 1
3880# define DOTTED_I LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8
3881
3882 /* And special case this on this Unicode version only, for the same
3883 * reaons the other two are special cased. They would cross the
3884 * 255/256 boundary which is forbidden under /l, and so the code
3885 * wouldn't catch that they are equivalent (which they are only in
3886 * this release) */
3887 else if (memBEGINs((char *) p, e - p, DOTTED_I)) {
3888 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3889 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3890 "Can't do fc(\"\\x{0130}\") on non-UTF-8 locale; "
3891 "resolved to \"\\x{0131}\".");
3892 goto return_dotless_i;
3893 }
3894#endif
3895
3896 return check_locale_boundary_crossing(p, result, ustrp, lenp);
3897 }
3898 else if (! (flags & FOLD_FLAGS_NOMIX_ASCII)) {
3899 return result;
3900 }
3901 else {
3902 /* This is called when changing the case of a UTF-8-encoded
3903 * character above the ASCII range, and the result should not
3904 * contain an ASCII character. */
3905
3906 UV original; /* To store the first code point of <p> */
3907
3908 /* Look at every character in the result; if any cross the
3909 * boundary, the whole thing is disallowed */
3910 U8* s = ustrp;
3911 U8* send = ustrp + *lenp;
3912 while (s < send) {
3913 if (isASCII(*s)) {
3914 /* Crossed, have to return the original */
3915 original = valid_utf8_to_uvchr(p, lenp);
3916
3917 /* But in these instances, there is an alternative we can
3918 * return that is valid */
3919 if (original == LATIN_SMALL_LETTER_SHARP_S
3920#ifdef LATIN_CAPITAL_LETTER_SHARP_S /* not defined in early Unicode releases */
3921 || original == LATIN_CAPITAL_LETTER_SHARP_S
3922#endif
3923 ) {
3924 goto return_long_s;
3925 }
3926 else if (original == LATIN_SMALL_LIGATURE_LONG_S_T) {
3927 goto return_ligature_st;
3928 }
3929#if UNICODE_MAJOR_VERSION == 3 \
3930 && UNICODE_DOT_VERSION == 0 \
3931 && UNICODE_DOT_DOT_VERSION == 1
3932
3933 else if (original == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
3934 goto return_dotless_i;
3935 }
3936#endif
3937 Copy(p, ustrp, *lenp, char);
3938 return original;
3939 }
3940 s += UTF8SKIP(s);
3941 }
3942
3943 /* Here, no characters crossed, result is ok as-is */
3944 return result;
3945 }
3946 }
3947
3948 /* Here, used locale rules. Convert back to UTF-8 */
3949 if (UTF8_IS_INVARIANT(result)) {
3950 *ustrp = (U8) result;
3951 *lenp = 1;
3952 }
3953 else {
3954 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
3955 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
3956 *lenp = 2;
3957 }
3958
3959 return result;
3960
3961 return_long_s:
3962 /* Certain folds to 'ss' are prohibited by the options, but they do allow
3963 * folds to a string of two of these characters. By returning this
3964 * instead, then, e.g.,
3965 * fc("\x{1E9E}") eq fc("\x{17F}\x{17F}")
3966 * works. */
3967
3968 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
3969 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
3970 ustrp, *lenp, U8);
3971 return LATIN_SMALL_LETTER_LONG_S;
3972
3973 return_ligature_st:
3974 /* Two folds to 'st' are prohibited by the options; instead we pick one and
3975 * have the other one fold to it */
3976
3977 *lenp = sizeof(LATIN_SMALL_LIGATURE_ST_UTF8) - 1;
3978 Copy(LATIN_SMALL_LIGATURE_ST_UTF8, ustrp, *lenp, U8);
3979 return LATIN_SMALL_LIGATURE_ST;
3980
3981#if UNICODE_MAJOR_VERSION == 3 \
3982 && UNICODE_DOT_VERSION == 0 \
3983 && UNICODE_DOT_DOT_VERSION == 1
3984
3985 return_dotless_i:
3986 *lenp = sizeof(LATIN_SMALL_LETTER_DOTLESS_I_UTF8) - 1;
3987 Copy(LATIN_SMALL_LETTER_DOTLESS_I_UTF8, ustrp, *lenp, U8);
3988 return LATIN_SMALL_LETTER_DOTLESS_I;
3989
3990#endif
3991
3992}
3993
3994bool
3995Perl_check_utf8_print(pTHX_ const U8* s, const STRLEN len)
3996{
3997 /* May change: warns if surrogates, non-character code points, or
3998 * non-Unicode code points are in 's' which has length 'len' bytes.
3999 * Returns TRUE if none found; FALSE otherwise. The only other validity
4000 * check is to make sure that this won't exceed the string's length nor
4001 * overflow */
4002
4003 const U8* const e = s + len;
4004 bool ok = TRUE;
4005
4006 PERL_ARGS_ASSERT_CHECK_UTF8_PRINT;
4007
4008 while (s < e) {
4009 if (UTF8SKIP(s) > len) {
4010 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
4011 "%s in %s", unees, PL_op ? OP_DESC(PL_op) : "print");
4012 return FALSE;
4013 }
4014 if (UNLIKELY(isUTF8_POSSIBLY_PROBLEMATIC(*s))) {
4015 if (UNLIKELY(UTF8_IS_SUPER(s, e))) {
4016 if ( ckWARN_d(WARN_NON_UNICODE)
4017 || UNLIKELY(0 < does_utf8_overflow(s, s + len,
4018 0 /* Don't consider overlongs */
4019 )))
4020 {
4021 /* A side effect of this function will be to warn */
4022 (void) utf8n_to_uvchr(s, e - s, NULL, UTF8_WARN_SUPER);
4023 ok = FALSE;
4024 }
4025 }
4026 else if (UNLIKELY(UTF8_IS_SURROGATE(s, e))) {
4027 if (ckWARN_d(WARN_SURROGATE)) {
4028 /* This has a different warning than the one the called
4029 * function would output, so can't just call it, unlike we
4030 * do for the non-chars and above-unicodes */
4031 UV uv = utf8_to_uvchr_buf(s, e, NULL);
4032 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
4033 "Unicode surrogate U+%04" UVXf " is illegal in UTF-8",
4034 uv);
4035 ok = FALSE;
4036 }
4037 }
4038 else if ( UNLIKELY(UTF8_IS_NONCHAR(s, e))
4039 && (ckWARN_d(WARN_NONCHAR)))
4040 {
4041 /* A side effect of this function will be to warn */
4042 (void) utf8n_to_uvchr(s, e - s, NULL, UTF8_WARN_NONCHAR);
4043 ok = FALSE;
4044 }
4045 }
4046 s += UTF8SKIP(s);
4047 }
4048
4049 return ok;
4050}
4051
4052/*
4053=for apidoc pv_uni_display
4054
4055Build to the scalar C<dsv> a displayable version of the string C<spv>,
4056length C<len>, the displayable version being at most C<pvlim> bytes long
4057(if longer, the rest is truncated and C<"..."> will be appended).
4058
4059The C<flags> argument can have C<UNI_DISPLAY_ISPRINT> set to display
4060C<isPRINT()>able characters as themselves, C<UNI_DISPLAY_BACKSLASH>
4061to display the C<\\[nrfta\\]> as the backslashed versions (like C<"\n">)
4062(C<UNI_DISPLAY_BACKSLASH> is preferred over C<UNI_DISPLAY_ISPRINT> for C<"\\">).
4063C<UNI_DISPLAY_QQ> (and its alias C<UNI_DISPLAY_REGEX>) have both
4064C<UNI_DISPLAY_BACKSLASH> and C<UNI_DISPLAY_ISPRINT> turned on.
4065
4066The pointer to the PV of the C<dsv> is returned.
4067
4068See also L</sv_uni_display>.
4069
4070=cut */
4071char *
4072Perl_pv_uni_display(pTHX_ SV *dsv, const U8 *spv, STRLEN len, STRLEN pvlim,
4073 UV flags)
4074{
4075 int truncated = 0;
4076 const char *s, *e;
4077
4078 PERL_ARGS_ASSERT_PV_UNI_DISPLAY;
4079
4080 SvPVCLEAR(dsv);
4081 SvUTF8_off(dsv);
4082 for (s = (const char *)spv, e = s + len; s < e; s += UTF8SKIP(s)) {
4083 UV u;
4084 /* This serves double duty as a flag and a character to print after
4085 a \ when flags & UNI_DISPLAY_BACKSLASH is true.
4086 */
4087 char ok = 0;
4088
4089 if (pvlim && SvCUR(dsv) >= pvlim) {
4090 truncated++;
4091 break;
4092 }
4093 u = utf8_to_uvchr_buf((U8*)s, (U8*)e, 0);
4094 if (u < 256) {
4095 const unsigned char c = (unsigned char)u & 0xFF;
4096 if (flags & UNI_DISPLAY_BACKSLASH) {
4097 switch (c) {
4098 case '\n':
4099 ok = 'n'; break;
4100 case '\r':
4101 ok = 'r'; break;
4102 case '\t':
4103 ok = 't'; break;
4104 case '\f':
4105 ok = 'f'; break;
4106 case '\a':
4107 ok = 'a'; break;
4108 case '\\':
4109 ok = '\\'; break;
4110 default: break;
4111 }
4112 if (ok) {
4113 const char string = ok;
4114 sv_catpvs(dsv, "\\");
4115 sv_catpvn(dsv, &string, 1);
4116 }
4117 }
4118 /* isPRINT() is the locale-blind version. */
4119 if (!ok && (flags & UNI_DISPLAY_ISPRINT) && isPRINT(c)) {
4120 const char string = c;
4121 sv_catpvn(dsv, &string, 1);
4122 ok = 1;
4123 }
4124 }
4125 if (!ok)
4126 Perl_sv_catpvf(aTHX_ dsv, "\\x{%" UVxf "}", u);
4127 }
4128 if (truncated)
4129 sv_catpvs(dsv, "...");
4130
4131 return SvPVX(dsv);
4132}
4133
4134/*
4135=for apidoc sv_uni_display
4136
4137Build to the scalar C<dsv> a displayable version of the scalar C<sv>,
4138the displayable version being at most C<pvlim> bytes long
4139(if longer, the rest is truncated and "..." will be appended).
4140
4141The C<flags> argument is as in L</pv_uni_display>().
4142
4143The pointer to the PV of the C<dsv> is returned.
4144
4145=cut
4146*/
4147char *
4148Perl_sv_uni_display(pTHX_ SV *dsv, SV *ssv, STRLEN pvlim, UV flags)
4149{
4150 const char * const ptr =
4151 isREGEXP(ssv) ? RX_WRAPPED((REGEXP*)ssv) : SvPVX_const(ssv);
4152
4153 PERL_ARGS_ASSERT_SV_UNI_DISPLAY;
4154
4155 return Perl_pv_uni_display(aTHX_ dsv, (const U8*)ptr,
4156 SvCUR(ssv), pvlim, flags);
4157}
4158
4159/*
4160=for apidoc foldEQ_utf8
4161
4162Returns true if the leading portions of the strings C<s1> and C<s2> (either or
4163both of which may be in UTF-8) are the same case-insensitively; false
4164otherwise. How far into the strings to compare is determined by other input
4165parameters.
4166
4167If C<u1> is true, the string C<s1> is assumed to be in UTF-8-encoded Unicode;
4168otherwise it is assumed to be in native 8-bit encoding. Correspondingly for
4169C<u2> with respect to C<s2>.
4170
4171If the byte length C<l1> is non-zero, it says how far into C<s1> to check for
4172fold equality. In other words, C<s1>+C<l1> will be used as a goal to reach.
4173The scan will not be considered to be a match unless the goal is reached, and
4174scanning won't continue past that goal. Correspondingly for C<l2> with respect
4175to C<s2>.
4176
4177If C<pe1> is non-C<NULL> and the pointer it points to is not C<NULL>, that
4178pointer is considered an end pointer to the position 1 byte past the maximum
4179point in C<s1> beyond which scanning will not continue under any circumstances.
4180(This routine assumes that UTF-8 encoded input strings are not malformed;
4181malformed input can cause it to read past C<pe1>). This means that if both
4182C<l1> and C<pe1> are specified, and C<pe1> is less than C<s1>+C<l1>, the match
4183will never be successful because it can never
4184get as far as its goal (and in fact is asserted against). Correspondingly for
4185C<pe2> with respect to C<s2>.
4186
4187At least one of C<s1> and C<s2> must have a goal (at least one of C<l1> and
4188C<l2> must be non-zero), and if both do, both have to be
4189reached for a successful match. Also, if the fold of a character is multiple
4190characters, all of them must be matched (see tr21 reference below for
4191'folding').
4192
4193Upon a successful match, if C<pe1> is non-C<NULL>,
4194it will be set to point to the beginning of the I<next> character of C<s1>
4195beyond what was matched. Correspondingly for C<pe2> and C<s2>.
4196
4197For case-insensitiveness, the "casefolding" of Unicode is used
4198instead of upper/lowercasing both the characters, see
4199L<https://www.unicode.org/unicode/reports/tr21/> (Case Mappings).
4200
4201=cut */
4202
4203/* A flags parameter has been added which may change, and hence isn't
4204 * externally documented. Currently it is:
4205 * 0 for as-documented above
4206 * FOLDEQ_UTF8_NOMIX_ASCII meaning that if a non-ASCII character folds to an
4207 ASCII one, to not match
4208 * FOLDEQ_LOCALE is set iff the rules from the current underlying
4209 * locale are to be used.
4210 * FOLDEQ_S1_ALREADY_FOLDED s1 has already been folded before calling this
4211 * routine. This allows that step to be skipped.
4212 * Currently, this requires s1 to be encoded as UTF-8
4213 * (u1 must be true), which is asserted for.
4214 * FOLDEQ_S1_FOLDS_SANE With either NOMIX_ASCII or LOCALE, no folds may
4215 * cross certain boundaries. Hence, the caller should
4216 * let this function do the folding instead of
4217 * pre-folding. This code contains an assertion to
4218 * that effect. However, if the caller knows what
4219 * it's doing, it can pass this flag to indicate that,
4220 * and the assertion is skipped.
4221 * FOLDEQ_S2_ALREADY_FOLDED Similar to FOLDEQ_S1_ALREADY_FOLDED, but applies
4222 * to s2, and s2 doesn't have to be UTF-8 encoded.
4223 * This introduces an asymmetry to save a few branches
4224 * in a loop. Currently, this is not a problem, as
4225 * never are both inputs pre-folded. Simply call this
4226 * function with the pre-folded one as the second
4227 * string.
4228 * FOLDEQ_S2_FOLDS_SANE
4229 */
4230I32
4231Perl_foldEQ_utf8_flags(pTHX_ const char *s1, char **pe1, UV l1, bool u1,
4232 const char *s2, char **pe2, UV l2, bool u2,
4233 U32 flags)
4234{
4235 const U8 *p1 = (const U8*)s1; /* Point to current char */
4236 const U8 *p2 = (const U8*)s2;
4237 const U8 *g1 = NULL; /* goal for s1 */
4238 const U8 *g2 = NULL;
4239 const U8 *e1 = NULL; /* Don't scan s1 past this */
4240 U8 *f1 = NULL; /* Point to current folded */
4241 const U8 *e2 = NULL;
4242 U8 *f2 = NULL;
4243 STRLEN n1 = 0, n2 = 0; /* Number of bytes in current char */
4244 U8 foldbuf1[UTF8_MAXBYTES_CASE+1];
4245 U8 foldbuf2[UTF8_MAXBYTES_CASE+1];
4246 U8 flags_for_folder = FOLD_FLAGS_FULL;
4247
4248 PERL_ARGS_ASSERT_FOLDEQ_UTF8_FLAGS;
4249
4250 assert( ! ( (flags & (FOLDEQ_UTF8_NOMIX_ASCII | FOLDEQ_LOCALE))
4251 && (( (flags & FOLDEQ_S1_ALREADY_FOLDED)
4252 && !(flags & FOLDEQ_S1_FOLDS_SANE))
4253 || ( (flags & FOLDEQ_S2_ALREADY_FOLDED)
4254 && !(flags & FOLDEQ_S2_FOLDS_SANE)))));
4255 /* The algorithm is to trial the folds without regard to the flags on
4256 * the first line of the above assert(), and then see if the result
4257 * violates them. This means that the inputs can't be pre-folded to a
4258 * violating result, hence the assert. This could be changed, with the
4259 * addition of extra tests here for the already-folded case, which would
4260 * slow it down. That cost is more than any possible gain for when these
4261 * flags are specified, as the flags indicate /il or /iaa matching which
4262 * is less common than /iu, and I (khw) also believe that real-world /il
4263 * and /iaa matches are most likely to involve code points 0-255, and this
4264 * function only under rare conditions gets called for 0-255. */
4265
4266 if (flags & FOLDEQ_LOCALE) {
4267 if (IN_UTF8_CTYPE_LOCALE) {
4268 if (UNLIKELY(PL_in_utf8_turkic_locale)) {
4269 flags_for_folder |= FOLD_FLAGS_LOCALE;
4270 }
4271 else {
4272 flags &= ~FOLDEQ_LOCALE;
4273 }
4274 }
4275 else {
4276 flags_for_folder |= FOLD_FLAGS_LOCALE;
4277 }
4278 }
4279 if (flags & FOLDEQ_UTF8_NOMIX_ASCII) {
4280 flags_for_folder |= FOLD_FLAGS_NOMIX_ASCII;
4281 }
4282
4283 if (pe1) {
4284 e1 = *(U8**)pe1;
4285 }
4286
4287 if (l1) {
4288 g1 = (const U8*)s1 + l1;
4289 }
4290
4291 if (pe2) {
4292 e2 = *(U8**)pe2;
4293 }
4294
4295 if (l2) {
4296 g2 = (const U8*)s2 + l2;
4297 }
4298
4299 /* Must have at least one goal */
4300 assert(g1 || g2);
4301
4302 if (g1) {
4303
4304 /* Will never match if goal is out-of-bounds */
4305 assert(! e1 || e1 >= g1);
4306
4307 /* Here, there isn't an end pointer, or it is beyond the goal. We
4308 * only go as far as the goal */
4309 e1 = g1;
4310 }
4311 else {
4312 assert(e1); /* Must have an end for looking at s1 */
4313 }
4314
4315 /* Same for goal for s2 */
4316 if (g2) {
4317 assert(! e2 || e2 >= g2);
4318 e2 = g2;
4319 }
4320 else {
4321 assert(e2);
4322 }
4323
4324 /* If both operands are already folded, we could just do a memEQ on the
4325 * whole strings at once, but it would be better if the caller realized
4326 * this and didn't even call us */
4327
4328 /* Look through both strings, a character at a time */
4329 while (p1 < e1 && p2 < e2) {
4330
4331 /* If at the beginning of a new character in s1, get its fold to use
4332 * and the length of the fold. */
4333 if (n1 == 0) {
4334 if (flags & FOLDEQ_S1_ALREADY_FOLDED) {
4335 f1 = (U8 *) p1;
4336 assert(u1);
4337 n1 = UTF8SKIP(f1);
4338 }
4339 else {
4340 if (isASCII(*p1) && ! (flags & FOLDEQ_LOCALE)) {
4341
4342 /* We have to forbid mixing ASCII with non-ASCII if the
4343 * flags so indicate. And, we can short circuit having to
4344 * call the general functions for this common ASCII case,
4345 * all of whose non-locale folds are also ASCII, and hence
4346 * UTF-8 invariants, so the UTF8ness of the strings is not
4347 * relevant. */
4348 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p2)) {
4349 return 0;
4350 }
4351 n1 = 1;
4352 *foldbuf1 = toFOLD(*p1);
4353 }
4354 else if (u1) {
4355 _toFOLD_utf8_flags(p1, e1, foldbuf1, &n1, flags_for_folder);
4356 }
4357 else { /* Not UTF-8, get UTF-8 fold */
4358 _to_uni_fold_flags(*p1, foldbuf1, &n1, flags_for_folder);
4359 }
4360 f1 = foldbuf1;
4361 }
4362 }
4363
4364 if (n2 == 0) { /* Same for s2 */
4365 if (flags & FOLDEQ_S2_ALREADY_FOLDED) {
4366
4367 /* Point to the already-folded character. But for non-UTF-8
4368 * variants, convert to UTF-8 for the algorithm below */
4369 if (UTF8_IS_INVARIANT(*p2)) {
4370 f2 = (U8 *) p2;
4371 n2 = 1;
4372 }
4373 else if (u2) {
4374 f2 = (U8 *) p2;
4375 n2 = UTF8SKIP(f2);
4376 }
4377 else {
4378 foldbuf2[0] = UTF8_EIGHT_BIT_HI(*p2);
4379 foldbuf2[1] = UTF8_EIGHT_BIT_LO(*p2);
4380 f2 = foldbuf2;
4381 n2 = 2;
4382 }
4383 }
4384 else {
4385 if (isASCII(*p2) && ! (flags & FOLDEQ_LOCALE)) {
4386 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p1)) {
4387 return 0;
4388 }
4389 n2 = 1;
4390 *foldbuf2 = toFOLD(*p2);
4391 }
4392 else if (u2) {
4393 _toFOLD_utf8_flags(p2, e2, foldbuf2, &n2, flags_for_folder);
4394 }
4395 else {
4396 _to_uni_fold_flags(*p2, foldbuf2, &n2, flags_for_folder);
4397 }
4398 f2 = foldbuf2;
4399 }
4400 }
4401
4402 /* Here f1 and f2 point to the beginning of the strings to compare.
4403 * These strings are the folds of the next character from each input
4404 * string, stored in UTF-8. */
4405
4406 /* While there is more to look for in both folds, see if they
4407 * continue to match */
4408 while (n1 && n2) {
4409 U8 fold_length = UTF8SKIP(f1);
4410 if (fold_length != UTF8SKIP(f2)
4411 || (fold_length == 1 && *f1 != *f2) /* Short circuit memNE
4412 function call for single
4413 byte */
4414 || memNE((char*)f1, (char*)f2, fold_length))
4415 {
4416 return 0; /* mismatch */
4417 }
4418
4419 /* Here, they matched, advance past them */
4420 n1 -= fold_length;
4421 f1 += fold_length;
4422 n2 -= fold_length;
4423 f2 += fold_length;
4424 }
4425
4426 /* When reach the end of any fold, advance the input past it */
4427 if (n1 == 0) {
4428 p1 += u1 ? UTF8SKIP(p1) : 1;
4429 }
4430 if (n2 == 0) {
4431 p2 += u2 ? UTF8SKIP(p2) : 1;
4432 }
4433 } /* End of loop through both strings */
4434
4435 /* A match is defined by each scan that specified an explicit length
4436 * reaching its final goal, and the other not having matched a partial
4437 * character (which can happen when the fold of a character is more than one
4438 * character). */
4439 if (! ((g1 == 0 || p1 == g1) && (g2 == 0 || p2 == g2)) || n1 || n2) {
4440 return 0;
4441 }
4442
4443 /* Successful match. Set output pointers */
4444 if (pe1) {
4445 *pe1 = (char*)p1;
4446 }
4447 if (pe2) {
4448 *pe2 = (char*)p2;
4449 }
4450 return 1;
4451}
4452
4453/* XXX The next two functions should likely be moved to mathoms.c once all
4454 * occurrences of them are removed from the core; some cpan-upstream modules
4455 * still use them */
4456
4457U8 *
4458Perl_uvuni_to_utf8(pTHX_ U8 *d, UV uv)
4459{
4460 PERL_ARGS_ASSERT_UVUNI_TO_UTF8;
4461
4462 return uvoffuni_to_utf8_flags(d, uv, 0);
4463}
4464
4465/*
4466=for apidoc utf8n_to_uvuni
4467
4468Instead use L<perlapi/utf8_to_uvchr_buf>, or rarely, L<perlapi/utf8n_to_uvchr>.
4469
4470This function was useful for code that wanted to handle both EBCDIC and
4471ASCII platforms with Unicode properties, but starting in Perl v5.20, the
4472distinctions between the platforms have mostly been made invisible to most
4473code, so this function is quite unlikely to be what you want. If you do need
4474this precise functionality, use instead
4475C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|perlapi/utf8_to_uvchr_buf>>
4476or C<L<NATIVE_TO_UNI(utf8n_to_uvchr(...))|perlapi/utf8n_to_uvchr>>.
4477
4478=cut
4479*/
4480
4481UV
4482Perl_utf8n_to_uvuni(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags)
4483{
4484 PERL_ARGS_ASSERT_UTF8N_TO_UVUNI;
4485
4486 return NATIVE_TO_UNI(utf8n_to_uvchr(s, curlen, retlen, flags));
4487}
4488
4489/*
4490=for apidoc uvuni_to_utf8_flags
4491
4492Instead you almost certainly want to use L<perlapi/uvchr_to_utf8> or
4493L<perlapi/uvchr_to_utf8_flags>.
4494
4495This function is a deprecated synonym for L</uvoffuni_to_utf8_flags>,
4496which itself, while not deprecated, should be used only in isolated
4497circumstances. These functions were useful for code that wanted to handle
4498both EBCDIC and ASCII platforms with Unicode properties, but starting in Perl
4499v5.20, the distinctions between the platforms have mostly been made invisible
4500to most code, so this function is quite unlikely to be what you want.
4501
4502=cut
4503*/
4504
4505U8 *
4506Perl_uvuni_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
4507{
4508 PERL_ARGS_ASSERT_UVUNI_TO_UTF8_FLAGS;
4509
4510 return uvoffuni_to_utf8_flags(d, uv, flags);
4511}
4512
4513/*
4514=for apidoc utf8_to_uvchr
4515
4516Returns the native code point of the first character in the string C<s>
4517which is assumed to be in UTF-8 encoding; C<retlen> will be set to the
4518length, in bytes, of that character.
4519
4520Some, but not all, UTF-8 malformations are detected, and in fact, some
4521malformed input could cause reading beyond the end of the input buffer, which
4522is why this function is deprecated. Use L</utf8_to_uvchr_buf> instead.
4523
4524If C<s> points to one of the detected malformations, and UTF8 warnings are
4525enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
4526C<NULL>) to -1. If those warnings are off, the computed value if well-defined (or
4527the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
4528is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
4529next possible position in C<s> that could begin a non-malformed character.
4530See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is returned.
4531
4532=cut
4533*/
4534
4535UV
4536Perl_utf8_to_uvchr(pTHX_ const U8 *s, STRLEN *retlen)
4537{
4538 PERL_ARGS_ASSERT_UTF8_TO_UVCHR;
4539
4540 /* This function is unsafe if malformed UTF-8 input is given it, which is
4541 * why the function is deprecated. If the first byte of the input
4542 * indicates that there are more bytes remaining in the sequence that forms
4543 * the character than there are in the input buffer, it can read past the
4544 * end. But we can make it safe if the input string happens to be
4545 * NUL-terminated, as many strings in Perl are, by refusing to read past a
4546 * NUL, which is what UTF8_CHK_SKIP() does. A NUL indicates the start of
4547 * the next character anyway. If the input isn't NUL-terminated, the
4548 * function remains unsafe, as it always has been. */
4549
4550 return utf8_to_uvchr_buf(s, s + UTF8_CHK_SKIP(s), retlen);
4551}
4552
4553/*
4554 * ex: set ts=8 sts=4 sw=4 et:
4555 */