This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Update Math-BigInt-FastCalc to CPAN version 0.5008
[perl5.git] / numeric.c
... / ...
CommitLineData
1/* numeric.c
2 *
3 * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 * 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * "That only makes eleven (plus one mislaid) and not fourteen,
13 * unless wizards count differently to other people." --Beorn
14 *
15 * [p.115 of _The Hobbit_: "Queer Lodgings"]
16 */
17
18/*
19=head1 Numeric functions
20
21=cut
22
23This file contains all the stuff needed by perl for manipulating numeric
24values, including such things as replacements for the OS's atof() function
25
26*/
27
28#include "EXTERN.h"
29#define PERL_IN_NUMERIC_C
30#include "perl.h"
31
32U32
33Perl_cast_ulong(NV f)
34{
35 if (f < 0.0)
36 return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
37 if (f < U32_MAX_P1) {
38#if CASTFLAGS & 2
39 if (f < U32_MAX_P1_HALF)
40 return (U32) f;
41 f -= U32_MAX_P1_HALF;
42 return ((U32) f) | (1 + (U32_MAX >> 1));
43#else
44 return (U32) f;
45#endif
46 }
47 return f > 0 ? U32_MAX : 0 /* NaN */;
48}
49
50I32
51Perl_cast_i32(NV f)
52{
53 if (f < I32_MAX_P1)
54 return f < I32_MIN ? I32_MIN : (I32) f;
55 if (f < U32_MAX_P1) {
56#if CASTFLAGS & 2
57 if (f < U32_MAX_P1_HALF)
58 return (I32)(U32) f;
59 f -= U32_MAX_P1_HALF;
60 return (I32)(((U32) f) | (1 + (U32_MAX >> 1)));
61#else
62 return (I32)(U32) f;
63#endif
64 }
65 return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
66}
67
68IV
69Perl_cast_iv(NV f)
70{
71 if (f < IV_MAX_P1)
72 return f < IV_MIN ? IV_MIN : (IV) f;
73 if (f < UV_MAX_P1) {
74#if CASTFLAGS & 2
75 /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
76 if (f < UV_MAX_P1_HALF)
77 return (IV)(UV) f;
78 f -= UV_MAX_P1_HALF;
79 return (IV)(((UV) f) | (1 + (UV_MAX >> 1)));
80#else
81 return (IV)(UV) f;
82#endif
83 }
84 return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
85}
86
87UV
88Perl_cast_uv(NV f)
89{
90 if (f < 0.0)
91 return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
92 if (f < UV_MAX_P1) {
93#if CASTFLAGS & 2
94 if (f < UV_MAX_P1_HALF)
95 return (UV) f;
96 f -= UV_MAX_P1_HALF;
97 return ((UV) f) | (1 + (UV_MAX >> 1));
98#else
99 return (UV) f;
100#endif
101 }
102 return f > 0 ? UV_MAX : 0 /* NaN */;
103}
104
105/*
106=for apidoc grok_bin
107
108converts a string representing a binary number to numeric form.
109
110On entry C<start> and C<*len> give the string to scan, C<*flags> gives
111conversion flags, and C<result> should be C<NULL> or a pointer to an NV.
112The scan stops at the end of the string, or the first invalid character.
113Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>, encountering an
114invalid character will also trigger a warning.
115On return C<*len> is set to the length of the scanned string,
116and C<*flags> gives output flags.
117
118If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
119and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_bin>
120returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
121and writes the value to C<*result> (or the value is discarded if C<result>
122is NULL).
123
124The binary number may optionally be prefixed with C<"0b"> or C<"b"> unless
125C<PERL_SCAN_DISALLOW_PREFIX> is set in C<*flags> on entry. If
126C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then the binary
127number may use C<"_"> characters to separate digits.
128
129=cut
130
131Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
132which suppresses any message for non-portable numbers that are still valid
133on this platform.
134 */
135
136UV
137Perl_grok_bin(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
138{
139 const char *s = start;
140 STRLEN len = *len_p;
141 UV value = 0;
142 NV value_nv = 0;
143
144 const UV max_div_2 = UV_MAX / 2;
145 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
146 bool overflowed = FALSE;
147 char bit;
148
149 PERL_ARGS_ASSERT_GROK_BIN;
150
151 if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
152 /* strip off leading b or 0b.
153 for compatibility silently suffer "b" and "0b" as valid binary
154 numbers. */
155 if (len >= 1) {
156 if (isALPHA_FOLD_EQ(s[0], 'b')) {
157 s++;
158 len--;
159 }
160 else if (len >= 2 && s[0] == '0' && (isALPHA_FOLD_EQ(s[1], 'b'))) {
161 s+=2;
162 len-=2;
163 }
164 }
165 }
166
167 for (; len-- && (bit = *s); s++) {
168 if (bit == '0' || bit == '1') {
169 /* Write it in this wonky order with a goto to attempt to get the
170 compiler to make the common case integer-only loop pretty tight.
171 With gcc seems to be much straighter code than old scan_bin. */
172 redo:
173 if (!overflowed) {
174 if (value <= max_div_2) {
175 value = (value << 1) | (bit - '0');
176 continue;
177 }
178 /* Bah. We're just overflowed. */
179 /* diag_listed_as: Integer overflow in %s number */
180 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
181 "Integer overflow in binary number");
182 overflowed = TRUE;
183 value_nv = (NV) value;
184 }
185 value_nv *= 2.0;
186 /* If an NV has not enough bits in its mantissa to
187 * represent a UV this summing of small low-order numbers
188 * is a waste of time (because the NV cannot preserve
189 * the low-order bits anyway): we could just remember when
190 * did we overflow and in the end just multiply value_nv by the
191 * right amount. */
192 value_nv += (NV)(bit - '0');
193 continue;
194 }
195 if (bit == '_' && len && allow_underscores && (bit = s[1])
196 && (bit == '0' || bit == '1'))
197 {
198 --len;
199 ++s;
200 goto redo;
201 }
202 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
203 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
204 "Illegal binary digit '%c' ignored", *s);
205 break;
206 }
207
208 if ( ( overflowed && value_nv > 4294967295.0)
209#if UVSIZE > 4
210 || (!overflowed && value > 0xffffffff
211 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
212#endif
213 ) {
214 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
215 "Binary number > 0b11111111111111111111111111111111 non-portable");
216 }
217 *len_p = s - start;
218 if (!overflowed) {
219 *flags = 0;
220 return value;
221 }
222 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
223 if (result)
224 *result = value_nv;
225 return UV_MAX;
226}
227
228/*
229=for apidoc grok_hex
230
231converts a string representing a hex number to numeric form.
232
233On entry C<start> and C<*len_p> give the string to scan, C<*flags> gives
234conversion flags, and C<result> should be C<NULL> or a pointer to an NV.
235The scan stops at the end of the string, or the first invalid character.
236Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>, encountering an
237invalid character will also trigger a warning.
238On return C<*len> is set to the length of the scanned string,
239and C<*flags> gives output flags.
240
241If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
242and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_hex>
243returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
244and writes the value to C<*result> (or the value is discarded if C<result>
245is C<NULL>).
246
247The hex number may optionally be prefixed with C<"0x"> or C<"x"> unless
248C<PERL_SCAN_DISALLOW_PREFIX> is set in C<*flags> on entry. If
249C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then the hex
250number may use C<"_"> characters to separate digits.
251
252=cut
253
254Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
255which suppresses any message for non-portable numbers, but which are valid
256on this platform.
257 */
258
259UV
260Perl_grok_hex(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
261{
262 const char *s = start;
263 STRLEN len = *len_p;
264 UV value = 0;
265 NV value_nv = 0;
266 const UV max_div_16 = UV_MAX / 16;
267 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
268 bool overflowed = FALSE;
269
270 PERL_ARGS_ASSERT_GROK_HEX;
271
272 if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
273 /* strip off leading x or 0x.
274 for compatibility silently suffer "x" and "0x" as valid hex numbers.
275 */
276 if (len >= 1) {
277 if (isALPHA_FOLD_EQ(s[0], 'x')) {
278 s++;
279 len--;
280 }
281 else if (len >= 2 && s[0] == '0' && (isALPHA_FOLD_EQ(s[1], 'x'))) {
282 s+=2;
283 len-=2;
284 }
285 }
286 }
287
288 for (; len-- && *s; s++) {
289 if (isXDIGIT(*s)) {
290 /* Write it in this wonky order with a goto to attempt to get the
291 compiler to make the common case integer-only loop pretty tight.
292 With gcc seems to be much straighter code than old scan_hex. */
293 redo:
294 if (!overflowed) {
295 if (value <= max_div_16) {
296 value = (value << 4) | XDIGIT_VALUE(*s);
297 continue;
298 }
299 /* Bah. We're just overflowed. */
300 /* diag_listed_as: Integer overflow in %s number */
301 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
302 "Integer overflow in hexadecimal number");
303 overflowed = TRUE;
304 value_nv = (NV) value;
305 }
306 value_nv *= 16.0;
307 /* If an NV has not enough bits in its mantissa to
308 * represent a UV this summing of small low-order numbers
309 * is a waste of time (because the NV cannot preserve
310 * the low-order bits anyway): we could just remember when
311 * did we overflow and in the end just multiply value_nv by the
312 * right amount of 16-tuples. */
313 value_nv += (NV) XDIGIT_VALUE(*s);
314 continue;
315 }
316 if (*s == '_' && len && allow_underscores && s[1]
317 && isXDIGIT(s[1]))
318 {
319 --len;
320 ++s;
321 goto redo;
322 }
323 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
324 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
325 "Illegal hexadecimal digit '%c' ignored", *s);
326 break;
327 }
328
329 if ( ( overflowed && value_nv > 4294967295.0)
330#if UVSIZE > 4
331 || (!overflowed && value > 0xffffffff
332 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
333#endif
334 ) {
335 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
336 "Hexadecimal number > 0xffffffff non-portable");
337 }
338 *len_p = s - start;
339 if (!overflowed) {
340 *flags = 0;
341 return value;
342 }
343 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
344 if (result)
345 *result = value_nv;
346 return UV_MAX;
347}
348
349/*
350=for apidoc grok_oct
351
352converts a string representing an octal number to numeric form.
353
354On entry C<start> and C<*len> give the string to scan, C<*flags> gives
355conversion flags, and C<result> should be C<NULL> or a pointer to an NV.
356The scan stops at the end of the string, or the first invalid character.
357Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>, encountering an
3588 or 9 will also trigger a warning.
359On return C<*len> is set to the length of the scanned string,
360and C<*flags> gives output flags.
361
362If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
363and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_oct>
364returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
365and writes the value to C<*result> (or the value is discarded if C<result>
366is C<NULL>).
367
368If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then the octal
369number may use C<"_"> characters to separate digits.
370
371=cut
372
373Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE>
374which suppresses any message for non-portable numbers, but which are valid
375on this platform.
376 */
377
378UV
379Perl_grok_oct(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
380{
381 const char *s = start;
382 STRLEN len = *len_p;
383 UV value = 0;
384 NV value_nv = 0;
385 const UV max_div_8 = UV_MAX / 8;
386 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
387 bool overflowed = FALSE;
388
389 PERL_ARGS_ASSERT_GROK_OCT;
390
391 for (; len-- && *s; s++) {
392 if (isOCTAL(*s)) {
393 /* Write it in this wonky order with a goto to attempt to get the
394 compiler to make the common case integer-only loop pretty tight.
395 */
396 redo:
397 if (!overflowed) {
398 if (value <= max_div_8) {
399 value = (value << 3) | OCTAL_VALUE(*s);
400 continue;
401 }
402 /* Bah. We're just overflowed. */
403 /* diag_listed_as: Integer overflow in %s number */
404 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
405 "Integer overflow in octal number");
406 overflowed = TRUE;
407 value_nv = (NV) value;
408 }
409 value_nv *= 8.0;
410 /* If an NV has not enough bits in its mantissa to
411 * represent a UV this summing of small low-order numbers
412 * is a waste of time (because the NV cannot preserve
413 * the low-order bits anyway): we could just remember when
414 * did we overflow and in the end just multiply value_nv by the
415 * right amount of 8-tuples. */
416 value_nv += (NV) OCTAL_VALUE(*s);
417 continue;
418 }
419 if (*s == '_' && len && allow_underscores && isOCTAL(s[1])) {
420 --len;
421 ++s;
422 goto redo;
423 }
424 /* Allow \octal to work the DWIM way (that is, stop scanning
425 * as soon as non-octal characters are seen, complain only if
426 * someone seems to want to use the digits eight and nine. Since we
427 * know it is not octal, then if isDIGIT, must be an 8 or 9). */
428 if (isDIGIT(*s)) {
429 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
430 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
431 "Illegal octal digit '%c' ignored", *s);
432 }
433 break;
434 }
435
436 if ( ( overflowed && value_nv > 4294967295.0)
437#if UVSIZE > 4
438 || (!overflowed && value > 0xffffffff
439 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
440#endif
441 ) {
442 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
443 "Octal number > 037777777777 non-portable");
444 }
445 *len_p = s - start;
446 if (!overflowed) {
447 *flags = 0;
448 return value;
449 }
450 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
451 if (result)
452 *result = value_nv;
453 return UV_MAX;
454}
455
456/*
457=for apidoc scan_bin
458
459For backwards compatibility. Use C<grok_bin> instead.
460
461=for apidoc scan_hex
462
463For backwards compatibility. Use C<grok_hex> instead.
464
465=for apidoc scan_oct
466
467For backwards compatibility. Use C<grok_oct> instead.
468
469=cut
470 */
471
472NV
473Perl_scan_bin(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
474{
475 NV rnv;
476 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
477 const UV ruv = grok_bin (start, &len, &flags, &rnv);
478
479 PERL_ARGS_ASSERT_SCAN_BIN;
480
481 *retlen = len;
482 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
483}
484
485NV
486Perl_scan_oct(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
487{
488 NV rnv;
489 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
490 const UV ruv = grok_oct (start, &len, &flags, &rnv);
491
492 PERL_ARGS_ASSERT_SCAN_OCT;
493
494 *retlen = len;
495 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
496}
497
498NV
499Perl_scan_hex(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
500{
501 NV rnv;
502 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
503 const UV ruv = grok_hex (start, &len, &flags, &rnv);
504
505 PERL_ARGS_ASSERT_SCAN_HEX;
506
507 *retlen = len;
508 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
509}
510
511/*
512=for apidoc grok_numeric_radix
513
514Scan and skip for a numeric decimal separator (radix).
515
516=cut
517 */
518bool
519Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
520{
521 PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
522
523#ifdef USE_LOCALE_NUMERIC
524
525 if (IN_LC(LC_NUMERIC)) {
526 STRLEN len;
527 char * radix;
528 bool matches_radix = FALSE;
529 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
530
531 STORE_LC_NUMERIC_FORCE_TO_UNDERLYING();
532
533 radix = SvPV(PL_numeric_radix_sv, len);
534 radix = savepvn(radix, len);
535
536 RESTORE_LC_NUMERIC();
537
538 if (*sp + len <= send) {
539 matches_radix = memEQ(*sp, radix, len);
540 }
541
542 Safefree(radix);
543
544 if (matches_radix) {
545 *sp += len;
546 return TRUE;
547 }
548 }
549
550#endif
551
552 /* always try "." if numeric radix didn't match because
553 * we may have data from different locales mixed */
554 if (*sp < send && **sp == '.') {
555 ++*sp;
556 return TRUE;
557 }
558
559 return FALSE;
560}
561
562/*
563=for apidoc grok_infnan
564
565Helper for C<grok_number()>, accepts various ways of spelling "infinity"
566or "not a number", and returns one of the following flag combinations:
567
568 IS_NUMBER_INFINITY
569 IS_NUMBER_NAN
570 IS_NUMBER_INFINITY | IS_NUMBER_NEG
571 IS_NUMBER_NAN | IS_NUMBER_NEG
572 0
573
574possibly |-ed with C<IS_NUMBER_TRAILING>.
575
576If an infinity or a not-a-number is recognized, C<*sp> will point to
577one byte past the end of the recognized string. If the recognition fails,
578zero is returned, and C<*sp> will not move.
579
580=cut
581*/
582
583int
584Perl_grok_infnan(pTHX_ const char** sp, const char* send)
585{
586 const char* s = *sp;
587 int flags = 0;
588#if defined(NV_INF) || defined(NV_NAN)
589 bool odh = FALSE; /* one-dot-hash: 1.#INF */
590
591 PERL_ARGS_ASSERT_GROK_INFNAN;
592
593 if (*s == '+') {
594 s++; if (s == send) return 0;
595 }
596 else if (*s == '-') {
597 flags |= IS_NUMBER_NEG; /* Yes, -NaN happens. Incorrect but happens. */
598 s++; if (s == send) return 0;
599 }
600
601 if (*s == '1') {
602 /* Visual C: 1.#SNAN, -1.#QNAN, 1#INF, 1.#IND (maybe also 1.#NAN)
603 * Let's keep the dot optional. */
604 s++; if (s == send) return 0;
605 if (*s == '.') {
606 s++; if (s == send) return 0;
607 }
608 if (*s == '#') {
609 s++; if (s == send) return 0;
610 } else
611 return 0;
612 odh = TRUE;
613 }
614
615 if (isALPHA_FOLD_EQ(*s, 'I')) {
616 /* INF or IND (1.#IND is "indeterminate", a certain type of NAN) */
617
618 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
619 s++; if (s == send) return 0;
620 if (isALPHA_FOLD_EQ(*s, 'F')) {
621 s++;
622 if (s < send && (isALPHA_FOLD_EQ(*s, 'I'))) {
623 int fail =
624 flags | IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT | IS_NUMBER_TRAILING;
625 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return fail;
626 s++; if (s == send || isALPHA_FOLD_NE(*s, 'I')) return fail;
627 s++; if (s == send || isALPHA_FOLD_NE(*s, 'T')) return fail;
628 s++; if (s == send || isALPHA_FOLD_NE(*s, 'Y')) return fail;
629 s++;
630 } else if (odh) {
631 while (*s == '0') { /* 1.#INF00 */
632 s++;
633 }
634 }
635 while (s < send && isSPACE(*s))
636 s++;
637 if (s < send && *s) {
638 flags |= IS_NUMBER_TRAILING;
639 }
640 flags |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
641 }
642 else if (isALPHA_FOLD_EQ(*s, 'D') && odh) { /* 1.#IND */
643 s++;
644 flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
645 while (*s == '0') { /* 1.#IND00 */
646 s++;
647 }
648 if (*s) {
649 flags |= IS_NUMBER_TRAILING;
650 }
651 } else
652 return 0;
653 }
654 else {
655 /* Maybe NAN of some sort */
656
657 if (isALPHA_FOLD_EQ(*s, 'S') || isALPHA_FOLD_EQ(*s, 'Q')) {
658 /* snan, qNaN */
659 /* XXX do something with the snan/qnan difference */
660 s++; if (s == send) return 0;
661 }
662
663 if (isALPHA_FOLD_EQ(*s, 'N')) {
664 s++; if (s == send || isALPHA_FOLD_NE(*s, 'A')) return 0;
665 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
666 s++;
667
668 flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
669
670 /* NaN can be followed by various stuff (NaNQ, NaNS), but
671 * there are also multiple different NaN values, and some
672 * implementations output the "payload" values,
673 * e.g. NaN123, NAN(abc), while some legacy implementations
674 * have weird stuff like NaN%. */
675 if (isALPHA_FOLD_EQ(*s, 'q') ||
676 isALPHA_FOLD_EQ(*s, 's')) {
677 /* "nanq" or "nans" are ok, though generating
678 * these portably is tricky. */
679 s++;
680 }
681 if (*s == '(') {
682 /* C99 style "nan(123)" or Perlish equivalent "nan($uv)". */
683 const char *t;
684 s++;
685 if (s == send) {
686 return flags | IS_NUMBER_TRAILING;
687 }
688 t = s + 1;
689 while (t < send && *t && *t != ')') {
690 t++;
691 }
692 if (t == send) {
693 return flags | IS_NUMBER_TRAILING;
694 }
695 if (*t == ')') {
696 int nantype;
697 UV nanval;
698 if (s[0] == '0' && s + 2 < t &&
699 isALPHA_FOLD_EQ(s[1], 'x') &&
700 isXDIGIT(s[2])) {
701 STRLEN len = t - s;
702 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES;
703 nanval = grok_hex(s, &len, &flags, NULL);
704 if ((flags & PERL_SCAN_GREATER_THAN_UV_MAX)) {
705 nantype = 0;
706 } else {
707 nantype = IS_NUMBER_IN_UV;
708 }
709 s += len;
710 } else if (s[0] == '0' && s + 2 < t &&
711 isALPHA_FOLD_EQ(s[1], 'b') &&
712 (s[2] == '0' || s[2] == '1')) {
713 STRLEN len = t - s;
714 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES;
715 nanval = grok_bin(s, &len, &flags, NULL);
716 if ((flags & PERL_SCAN_GREATER_THAN_UV_MAX)) {
717 nantype = 0;
718 } else {
719 nantype = IS_NUMBER_IN_UV;
720 }
721 s += len;
722 } else {
723 const char *u;
724 nantype =
725 grok_number_flags(s, t - s, &nanval,
726 PERL_SCAN_TRAILING |
727 PERL_SCAN_ALLOW_UNDERSCORES);
728 /* Unfortunately grok_number_flags() doesn't
729 * tell how far we got and the ')' will always
730 * be "trailing", so we need to double-check
731 * whether we had something dubious. */
732 for (u = s; u < t; u++) {
733 if (!isDIGIT(*u)) {
734 flags |= IS_NUMBER_TRAILING;
735 break;
736 }
737 }
738 s = u;
739 }
740
741 /* XXX Doesn't do octal: nan("0123").
742 * Probably not a big loss. */
743
744 if ((nantype & IS_NUMBER_NOT_INT) ||
745 !(nantype && IS_NUMBER_IN_UV)) {
746 /* XXX the nanval is currently unused, that is,
747 * not inserted as the NaN payload of the NV.
748 * But the above code already parses the C99
749 * nan(...) format. See below, and see also
750 * the nan() in POSIX.xs.
751 *
752 * Certain configuration combinations where
753 * NVSIZE is greater than UVSIZE mean that
754 * a single UV cannot contain all the possible
755 * NaN payload bits. There would need to be
756 * some more generic syntax than "nan($uv)".
757 *
758 * Issues to keep in mind:
759 *
760 * (1) In most common cases there would
761 * not be an integral number of bytes that
762 * could be set, only a certain number of bits.
763 * For example for the common case of
764 * NVSIZE == UVSIZE == 8 there is room for 52
765 * bits in the payload, but the most significant
766 * bit is commonly reserved for the
767 * signaling/quiet bit, leaving 51 bits.
768 * Furthermore, the C99 nan() is supposed
769 * to generate quiet NaNs, so it is doubtful
770 * whether it should be able to generate
771 * signaling NaNs. For the x86 80-bit doubles
772 * (if building a long double Perl) there would
773 * be 62 bits (s/q bit being the 63rd).
774 *
775 * (2) Endianness of the payload bits. If the
776 * payload is specified as an UV, the low-order
777 * bits of the UV are naturally little-endianed
778 * (rightmost) bits of the payload. The endianness
779 * of UVs and NVs can be different. */
780 return 0;
781 }
782 if (s < t) {
783 flags |= IS_NUMBER_TRAILING;
784 }
785 } else {
786 /* Looked like nan(...), but no close paren. */
787 flags |= IS_NUMBER_TRAILING;
788 }
789 } else {
790 while (s < send && isSPACE(*s))
791 s++;
792 if (s < send && *s) {
793 /* Note that we here implicitly accept (parse as
794 * "nan", but with warnings) also any other weird
795 * trailing stuff for "nan". In the above we just
796 * check that if we got the C99-style "nan(...)",
797 * the "..." looks sane.
798 * If in future we accept more ways of specifying
799 * the nan payload, the accepting would happen around
800 * here. */
801 flags |= IS_NUMBER_TRAILING;
802 }
803 }
804 s = send;
805 }
806 else
807 return 0;
808 }
809
810 while (s < send && isSPACE(*s))
811 s++;
812
813#else
814 PERL_UNUSED_ARG(send);
815#endif /* #if defined(NV_INF) || defined(NV_NAN) */
816 *sp = s;
817 return flags;
818}
819
820/*
821=for apidoc grok_number_flags
822
823Recognise (or not) a number. The type of the number is returned
824(0 if unrecognised), otherwise it is a bit-ORed combination of
825C<IS_NUMBER_IN_UV>, C<IS_NUMBER_GREATER_THAN_UV_MAX>, C<IS_NUMBER_NOT_INT>,
826C<IS_NUMBER_NEG>, C<IS_NUMBER_INFINITY>, C<IS_NUMBER_NAN> (defined in perl.h).
827
828If the value of the number can fit in a UV, it is returned in C<*valuep>.
829C<IS_NUMBER_IN_UV> will be set to indicate that C<*valuep> is valid, C<IS_NUMBER_IN_UV>
830will never be set unless C<*valuep> is valid, but C<*valuep> may have been assigned
831to during processing even though C<IS_NUMBER_IN_UV> is not set on return.
832If C<valuep> is C<NULL>, C<IS_NUMBER_IN_UV> will be set for the same cases as when
833C<valuep> is non-C<NULL>, but no actual assignment (or SEGV) will occur.
834
835C<IS_NUMBER_NOT_INT> will be set with C<IS_NUMBER_IN_UV> if trailing decimals were
836seen (in which case C<*valuep> gives the true value truncated to an integer), and
837C<IS_NUMBER_NEG> if the number is negative (in which case C<*valuep> holds the
838absolute value). C<IS_NUMBER_IN_UV> is not set if e notation was used or the
839number is larger than a UV.
840
841C<flags> allows only C<PERL_SCAN_TRAILING>, which allows for trailing
842non-numeric text on an otherwise successful I<grok>, setting
843C<IS_NUMBER_TRAILING> on the result.
844
845=for apidoc grok_number
846
847Identical to C<grok_number_flags()> with C<flags> set to zero.
848
849=cut
850 */
851int
852Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
853{
854 PERL_ARGS_ASSERT_GROK_NUMBER;
855
856 return grok_number_flags(pv, len, valuep, 0);
857}
858
859static const UV uv_max_div_10 = UV_MAX / 10;
860static const U8 uv_max_mod_10 = UV_MAX % 10;
861
862int
863Perl_grok_number_flags(pTHX_ const char *pv, STRLEN len, UV *valuep, U32 flags)
864{
865 const char *s = pv;
866 const char * const send = pv + len;
867 const char *d;
868 int numtype = 0;
869
870 PERL_ARGS_ASSERT_GROK_NUMBER_FLAGS;
871
872 while (s < send && isSPACE(*s))
873 s++;
874 if (s == send) {
875 return 0;
876 } else if (*s == '-') {
877 s++;
878 numtype = IS_NUMBER_NEG;
879 }
880 else if (*s == '+')
881 s++;
882
883 if (s == send)
884 return 0;
885
886 /* The first digit (after optional sign): note that might
887 * also point to "infinity" or "nan", or "1.#INF". */
888 d = s;
889
890 /* next must be digit or the radix separator or beginning of infinity/nan */
891 if (isDIGIT(*s)) {
892 /* UVs are at least 32 bits, so the first 9 decimal digits cannot
893 overflow. */
894 UV value = *s - '0';
895 /* This construction seems to be more optimiser friendly.
896 (without it gcc does the isDIGIT test and the *s - '0' separately)
897 With it gcc on arm is managing 6 instructions (6 cycles) per digit.
898 In theory the optimiser could deduce how far to unroll the loop
899 before checking for overflow. */
900 if (++s < send) {
901 int digit = *s - '0';
902 if (digit >= 0 && digit <= 9) {
903 value = value * 10 + digit;
904 if (++s < send) {
905 digit = *s - '0';
906 if (digit >= 0 && digit <= 9) {
907 value = value * 10 + digit;
908 if (++s < send) {
909 digit = *s - '0';
910 if (digit >= 0 && digit <= 9) {
911 value = value * 10 + digit;
912 if (++s < send) {
913 digit = *s - '0';
914 if (digit >= 0 && digit <= 9) {
915 value = value * 10 + digit;
916 if (++s < send) {
917 digit = *s - '0';
918 if (digit >= 0 && digit <= 9) {
919 value = value * 10 + digit;
920 if (++s < send) {
921 digit = *s - '0';
922 if (digit >= 0 && digit <= 9) {
923 value = value * 10 + digit;
924 if (++s < send) {
925 digit = *s - '0';
926 if (digit >= 0 && digit <= 9) {
927 value = value * 10 + digit;
928 if (++s < send) {
929 digit = *s - '0';
930 if (digit >= 0 && digit <= 9) {
931 value = value * 10 + digit;
932 if (++s < send) {
933 /* Now got 9 digits, so need to check
934 each time for overflow. */
935 digit = *s - '0';
936 while (digit >= 0 && digit <= 9
937 && (value < uv_max_div_10
938 || (value == uv_max_div_10
939 && digit <= uv_max_mod_10))) {
940 value = value * 10 + digit;
941 if (++s < send)
942 digit = *s - '0';
943 else
944 break;
945 }
946 if (digit >= 0 && digit <= 9
947 && (s < send)) {
948 /* value overflowed.
949 skip the remaining digits, don't
950 worry about setting *valuep. */
951 do {
952 s++;
953 } while (s < send && isDIGIT(*s));
954 numtype |=
955 IS_NUMBER_GREATER_THAN_UV_MAX;
956 goto skip_value;
957 }
958 }
959 }
960 }
961 }
962 }
963 }
964 }
965 }
966 }
967 }
968 }
969 }
970 }
971 }
972 }
973 }
974 }
975 numtype |= IS_NUMBER_IN_UV;
976 if (valuep)
977 *valuep = value;
978
979 skip_value:
980 if (GROK_NUMERIC_RADIX(&s, send)) {
981 numtype |= IS_NUMBER_NOT_INT;
982 while (s < send && isDIGIT(*s)) /* optional digits after the radix */
983 s++;
984 }
985 }
986 else if (GROK_NUMERIC_RADIX(&s, send)) {
987 numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
988 /* no digits before the radix means we need digits after it */
989 if (s < send && isDIGIT(*s)) {
990 do {
991 s++;
992 } while (s < send && isDIGIT(*s));
993 if (valuep) {
994 /* integer approximation is valid - it's 0. */
995 *valuep = 0;
996 }
997 }
998 else
999 return 0;
1000 }
1001
1002 if (s > d && s < send) {
1003 /* we can have an optional exponent part */
1004 if (isALPHA_FOLD_EQ(*s, 'e')) {
1005 s++;
1006 if (s < send && (*s == '-' || *s == '+'))
1007 s++;
1008 if (s < send && isDIGIT(*s)) {
1009 do {
1010 s++;
1011 } while (s < send && isDIGIT(*s));
1012 }
1013 else if (flags & PERL_SCAN_TRAILING)
1014 return numtype | IS_NUMBER_TRAILING;
1015 else
1016 return 0;
1017
1018 /* The only flag we keep is sign. Blow away any "it's UV" */
1019 numtype &= IS_NUMBER_NEG;
1020 numtype |= IS_NUMBER_NOT_INT;
1021 }
1022 }
1023 while (s < send && isSPACE(*s))
1024 s++;
1025 if (s >= send)
1026 return numtype;
1027 if (memEQs(pv, len, "0 but true")) {
1028 if (valuep)
1029 *valuep = 0;
1030 return IS_NUMBER_IN_UV;
1031 }
1032 /* We could be e.g. at "Inf" or "NaN", or at the "#" of "1.#INF". */
1033 if ((s + 2 < send) && strchr("inqs#", toFOLD(*s))) {
1034 /* Really detect inf/nan. Start at d, not s, since the above
1035 * code might have already consumed the "1." or "1". */
1036 const int infnan = Perl_grok_infnan(aTHX_ &d, send);
1037 if ((infnan & IS_NUMBER_INFINITY)) {
1038 return (numtype | infnan); /* Keep sign for infinity. */
1039 }
1040 else if ((infnan & IS_NUMBER_NAN)) {
1041 return (numtype | infnan) & ~IS_NUMBER_NEG; /* Clear sign for nan. */
1042 }
1043 }
1044 else if (flags & PERL_SCAN_TRAILING) {
1045 return numtype | IS_NUMBER_TRAILING;
1046 }
1047
1048 return 0;
1049}
1050
1051/*
1052=for apidoc grok_atoUV
1053
1054parse a string, looking for a decimal unsigned integer.
1055
1056On entry, C<pv> points to the beginning of the string;
1057C<valptr> points to a UV that will receive the converted value, if found;
1058C<endptr> is either NULL or points to a variable that points to one byte
1059beyond the point in C<pv> that this routine should examine.
1060If C<endptr> is NULL, C<pv> is assumed to be NUL-terminated.
1061
1062Returns FALSE if C<pv> doesn't represent a valid unsigned integer value (with
1063no leading zeros). Otherwise it returns TRUE, and sets C<*valptr> to that
1064value.
1065
1066If you constrain the portion of C<pv> that is looked at by this function (by
1067passing a non-NULL C<endptr>), and if the intial bytes of that portion form a
1068valid value, it will return TRUE, setting C<*endptr> to the byte following the
1069final digit of the value. But if there is no constraint at what's looked at,
1070all of C<pv> must be valid in order for TRUE to be returned.
1071
1072The only characters this accepts are the decimal digits '0'..'9'.
1073
1074As opposed to L<atoi(3)> or L<strtol(3)>, C<grok_atoUV> does NOT allow optional
1075leading whitespace, nor negative inputs. If such features are required, the
1076calling code needs to explicitly implement those.
1077
1078Note that this function returns FALSE for inputs that would overflow a UV,
1079or have leading zeros. Thus a single C<0> is accepted, but not C<00> nor
1080C<01>, C<002>, I<etc>.
1081
1082Background: C<atoi> has severe problems with illegal inputs, it cannot be
1083used for incremental parsing, and therefore should be avoided
1084C<atoi> and C<strtol> are also affected by locale settings, which can also be
1085seen as a bug (global state controlled by user environment).
1086
1087=cut
1088
1089*/
1090
1091bool
1092Perl_grok_atoUV(const char *pv, UV *valptr, const char** endptr)
1093{
1094 const char* s = pv;
1095 const char** eptr;
1096 const char* end2; /* Used in case endptr is NULL. */
1097 UV val = 0; /* The parsed value. */
1098
1099 PERL_ARGS_ASSERT_GROK_ATOUV;
1100
1101 if (endptr) {
1102 eptr = endptr;
1103 }
1104 else {
1105 end2 = s + strlen(s);
1106 eptr = &end2;
1107 }
1108
1109 if ( *eptr <= s
1110 || ! isDIGIT(*s))
1111 {
1112 return FALSE;
1113 }
1114
1115 /* Single-digit inputs are quite common. */
1116 val = *s++ - '0';
1117 if (s < *eptr && isDIGIT(*s)) {
1118 /* Fail on extra leading zeros. */
1119 if (val == 0)
1120 return FALSE;
1121 while (s < *eptr && isDIGIT(*s)) {
1122 /* This could be unrolled like in grok_number(), but
1123 * the expected uses of this are not speed-needy, and
1124 * unlikely to need full 64-bitness. */
1125 const U8 digit = *s++ - '0';
1126 if (val < uv_max_div_10 ||
1127 (val == uv_max_div_10 && digit <= uv_max_mod_10)) {
1128 val = val * 10 + digit;
1129 } else {
1130 return FALSE;
1131 }
1132 }
1133 }
1134
1135 if (endptr == NULL) {
1136 if (*s) {
1137 return FALSE; /* If endptr is NULL, no trailing non-digits allowed. */
1138 }
1139 }
1140 else {
1141 *endptr = s;
1142 }
1143
1144 *valptr = val;
1145 return TRUE;
1146}
1147
1148#ifndef Perl_strtod
1149STATIC NV
1150S_mulexp10(NV value, I32 exponent)
1151{
1152 NV result = 1.0;
1153 NV power = 10.0;
1154 bool negative = 0;
1155 I32 bit;
1156
1157 if (exponent == 0)
1158 return value;
1159 if (value == 0)
1160 return (NV)0;
1161
1162 /* On OpenVMS VAX we by default use the D_FLOAT double format,
1163 * and that format does not have *easy* capabilities [1] for
1164 * overflowing doubles 'silently' as IEEE fp does. We also need
1165 * to support G_FLOAT on both VAX and Alpha, and though the exponent
1166 * range is much larger than D_FLOAT it still doesn't do silent
1167 * overflow. Therefore we need to detect early whether we would
1168 * overflow (this is the behaviour of the native string-to-float
1169 * conversion routines, and therefore of native applications, too).
1170 *
1171 * [1] Trying to establish a condition handler to trap floating point
1172 * exceptions is not a good idea. */
1173
1174 /* In UNICOS and in certain Cray models (such as T90) there is no
1175 * IEEE fp, and no way at all from C to catch fp overflows gracefully.
1176 * There is something you can do if you are willing to use some
1177 * inline assembler: the instruction is called DFI-- but that will
1178 * disable *all* floating point interrupts, a little bit too large
1179 * a hammer. Therefore we need to catch potential overflows before
1180 * it's too late. */
1181
1182#if ((defined(VMS) && !defined(_IEEE_FP)) || defined(_UNICOS) || defined(DOUBLE_IS_VAX_FLOAT)) && defined(NV_MAX_10_EXP)
1183 STMT_START {
1184 const NV exp_v = log10(value);
1185 if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP)
1186 return NV_MAX;
1187 if (exponent < 0) {
1188 if (-(exponent + exp_v) >= NV_MAX_10_EXP)
1189 return 0.0;
1190 while (-exponent >= NV_MAX_10_EXP) {
1191 /* combination does not overflow, but 10^(-exponent) does */
1192 value /= 10;
1193 ++exponent;
1194 }
1195 }
1196 } STMT_END;
1197#endif
1198
1199 if (exponent < 0) {
1200 negative = 1;
1201 exponent = -exponent;
1202#ifdef NV_MAX_10_EXP
1203 /* for something like 1234 x 10^-309, the action of calculating
1204 * the intermediate value 10^309 then returning 1234 / (10^309)
1205 * will fail, since 10^309 becomes infinity. In this case try to
1206 * refactor it as 123 / (10^308) etc.
1207 */
1208 while (value && exponent > NV_MAX_10_EXP) {
1209 exponent--;
1210 value /= 10;
1211 }
1212 if (value == 0.0)
1213 return value;
1214#endif
1215 }
1216#if defined(__osf__)
1217 /* Even with cc -ieee + ieee_set_fp_control(IEEE_TRAP_ENABLE_INV)
1218 * Tru64 fp behavior on inf/nan is somewhat broken. Another way
1219 * to do this would be ieee_set_fp_control(IEEE_TRAP_ENABLE_OVF)
1220 * but that breaks another set of infnan.t tests. */
1221# define FP_OVERFLOWS_TO_ZERO
1222#endif
1223 for (bit = 1; exponent; bit <<= 1) {
1224 if (exponent & bit) {
1225 exponent ^= bit;
1226 result *= power;
1227#ifdef FP_OVERFLOWS_TO_ZERO
1228 if (result == 0)
1229# ifdef NV_INF
1230 return value < 0 ? -NV_INF : NV_INF;
1231# else
1232 return value < 0 ? -FLT_MAX : FLT_MAX;
1233# endif
1234#endif
1235 /* Floating point exceptions are supposed to be turned off,
1236 * but if we're obviously done, don't risk another iteration.
1237 */
1238 if (exponent == 0) break;
1239 }
1240 power *= power;
1241 }
1242 return negative ? value / result : value * result;
1243}
1244#endif /* #ifndef Perl_strtod */
1245
1246#ifdef Perl_strtod
1247# define ATOF(s, x) my_atof2(s, &x)
1248#else
1249# define ATOF(s, x) Perl_atof2(s, x)
1250#endif
1251
1252NV
1253Perl_my_atof(pTHX_ const char* s)
1254{
1255 /* 's' must be NUL terminated */
1256
1257 NV x = 0.0;
1258
1259 PERL_ARGS_ASSERT_MY_ATOF;
1260
1261#if ! defined(USE_LOCALE_NUMERIC)
1262
1263 ATOF(s, x);
1264
1265#else
1266
1267 {
1268 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
1269 STORE_LC_NUMERIC_SET_TO_NEEDED();
1270 if (! (PL_numeric_radix_sv && IN_LC(LC_NUMERIC))) {
1271 ATOF(s,x);
1272 }
1273 else {
1274
1275 /* Look through the string for the first thing that looks like a
1276 * decimal point: either the value in the current locale or the
1277 * standard fallback of '.'. The one which appears earliest in the
1278 * input string is the one that we should have atof look for. Note
1279 * that we have to determine this beforehand because on some
1280 * systems, Perl_atof2 is just a wrapper around the system's atof.
1281 * */
1282 const char * const standard_pos = strchr(s, '.');
1283 const char * const local_pos
1284 = strstr(s, SvPV_nolen(PL_numeric_radix_sv));
1285 const bool use_standard_radix
1286 = standard_pos && (!local_pos || standard_pos < local_pos);
1287
1288 if (use_standard_radix) {
1289 SET_NUMERIC_STANDARD();
1290 LOCK_LC_NUMERIC_STANDARD();
1291 }
1292
1293 ATOF(s,x);
1294
1295 if (use_standard_radix) {
1296 UNLOCK_LC_NUMERIC_STANDARD();
1297 SET_NUMERIC_UNDERLYING();
1298 }
1299 }
1300 RESTORE_LC_NUMERIC();
1301 }
1302
1303#endif
1304
1305 return x;
1306}
1307
1308#if defined(NV_INF) || defined(NV_NAN)
1309
1310#ifdef USING_MSVC6
1311# pragma warning(push)
1312# pragma warning(disable:4756;disable:4056)
1313#endif
1314static char*
1315S_my_atof_infnan(pTHX_ const char* s, bool negative, const char* send, NV* value)
1316{
1317 const char *p0 = negative ? s - 1 : s;
1318 const char *p = p0;
1319 const int infnan = grok_infnan(&p, send);
1320 if (infnan && p != p0) {
1321 /* If we can generate inf/nan directly, let's do so. */
1322#ifdef NV_INF
1323 if ((infnan & IS_NUMBER_INFINITY)) {
1324 *value = (infnan & IS_NUMBER_NEG) ? -NV_INF: NV_INF;
1325 return (char*)p;
1326 }
1327#endif
1328#ifdef NV_NAN
1329 if ((infnan & IS_NUMBER_NAN)) {
1330 *value = NV_NAN;
1331 return (char*)p;
1332 }
1333#endif
1334#ifdef Perl_strtod
1335 /* If still here, we didn't have either NV_INF or NV_NAN,
1336 * and can try falling back to native strtod/strtold.
1337 *
1338 * The native interface might not recognize all the possible
1339 * inf/nan strings Perl recognizes. What we can try
1340 * is to try faking the input. We will try inf/-inf/nan
1341 * as the most promising/portable input. */
1342 {
1343 const char* fake = "silence compiler warning";
1344 char* endp;
1345 NV nv;
1346#ifdef NV_INF
1347 if ((infnan & IS_NUMBER_INFINITY)) {
1348 fake = ((infnan & IS_NUMBER_NEG)) ? "-inf" : "inf";
1349 }
1350#endif
1351#ifdef NV_NAN
1352 if ((infnan & IS_NUMBER_NAN)) {
1353 fake = "nan";
1354 }
1355#endif
1356 assert(strNE(fake, "silence compiler warning"));
1357 nv = Perl_strtod(fake, &endp);
1358 if (fake != endp) {
1359#ifdef NV_INF
1360 if ((infnan & IS_NUMBER_INFINITY)) {
1361# ifdef Perl_isinf
1362 if (Perl_isinf(nv))
1363 *value = nv;
1364# else
1365 /* last resort, may generate SIGFPE */
1366 *value = Perl_exp((NV)1e9);
1367 if ((infnan & IS_NUMBER_NEG))
1368 *value = -*value;
1369# endif
1370 return (char*)p; /* p, not endp */
1371 }
1372#endif
1373#ifdef NV_NAN
1374 if ((infnan & IS_NUMBER_NAN)) {
1375# ifdef Perl_isnan
1376 if (Perl_isnan(nv))
1377 *value = nv;
1378# else
1379 /* last resort, may generate SIGFPE */
1380 *value = Perl_log((NV)-1.0);
1381# endif
1382 return (char*)p; /* p, not endp */
1383#endif
1384 }
1385 }
1386 }
1387#endif /* #ifdef Perl_strtod */
1388 }
1389 return NULL;
1390}
1391#ifdef USING_MSVC6
1392# pragma warning(pop)
1393#endif
1394
1395#endif /* if defined(NV_INF) || defined(NV_NAN) */
1396
1397char*
1398Perl_my_atof2(pTHX_ const char* orig, NV* value)
1399{
1400 PERL_ARGS_ASSERT_MY_ATOF2;
1401 return my_atof3(orig, value, 0);
1402}
1403
1404char*
1405Perl_my_atof3(pTHX_ const char* orig, NV* value, STRLEN len)
1406{
1407 const char* s = orig;
1408 NV result[3] = {0.0, 0.0, 0.0};
1409#if defined(USE_PERL_ATOF) || defined(Perl_strtod)
1410 const char* send = s + ((len != 0)
1411 ? len
1412 : strlen(orig)); /* one past the last */
1413 bool negative = 0;
1414#endif
1415#if defined(USE_PERL_ATOF) && !defined(Perl_strtod)
1416 UV accumulator[2] = {0,0}; /* before/after dp */
1417 bool seen_digit = 0;
1418 I32 exp_adjust[2] = {0,0};
1419 I32 exp_acc[2] = {-1, -1};
1420 /* the current exponent adjust for the accumulators */
1421 I32 exponent = 0;
1422 I32 seen_dp = 0;
1423 I32 digit = 0;
1424 I32 old_digit = 0;
1425 I32 sig_digits = 0; /* noof significant digits seen so far */
1426#endif
1427
1428#if defined(USE_PERL_ATOF) || defined(Perl_strtod)
1429 PERL_ARGS_ASSERT_MY_ATOF3;
1430
1431 /* leading whitespace */
1432 while (s < send && isSPACE(*s))
1433 ++s;
1434
1435 /* sign */
1436 switch (*s) {
1437 case '-':
1438 negative = 1;
1439 /* FALLTHROUGH */
1440 case '+':
1441 ++s;
1442 }
1443#endif
1444
1445#ifdef Perl_strtod
1446 {
1447 char* endp;
1448 char* copy = NULL;
1449
1450 if ((endp = S_my_atof_infnan(aTHX_ s, negative, send, value)))
1451 return endp;
1452
1453 /* If the length is passed in, the input string isn't NUL-terminated,
1454 * and in it turns out the function below assumes it is; therefore we
1455 * create a copy and NUL-terminate that */
1456 if (len) {
1457 Newx(copy, len + 1, char);
1458 Copy(orig, copy, len, char);
1459 copy[len] = '\0';
1460 s = copy + (s - orig);
1461 }
1462
1463 result[2] = Perl_strtod(s, &endp);
1464
1465 /* If we created a copy, 'endp' is in terms of that. Convert back to
1466 * the original */
1467 if (copy) {
1468 endp = (endp - copy) + (char *) orig;
1469 Safefree(copy);
1470 }
1471
1472 if (s != endp) {
1473 *value = negative ? -result[2] : result[2];
1474 return endp;
1475 }
1476 return NULL;
1477 }
1478#elif defined(USE_PERL_ATOF)
1479
1480/* There is no point in processing more significant digits
1481 * than the NV can hold. Note that NV_DIG is a lower-bound value,
1482 * while we need an upper-bound value. We add 2 to account for this;
1483 * since it will have been conservative on both the first and last digit.
1484 * For example a 32-bit mantissa with an exponent of 4 would have
1485 * exact values in the set
1486 * 4
1487 * 8
1488 * ..
1489 * 17179869172
1490 * 17179869176
1491 * 17179869180
1492 *
1493 * where for the purposes of calculating NV_DIG we would have to discount
1494 * both the first and last digit, since neither can hold all values from
1495 * 0..9; but for calculating the value we must examine those two digits.
1496 */
1497#ifdef MAX_SIG_DIG_PLUS
1498 /* It is not necessarily the case that adding 2 to NV_DIG gets all the
1499 possible digits in a NV, especially if NVs are not IEEE compliant
1500 (e.g., long doubles on IRIX) - Allen <allens@cpan.org> */
1501# define MAX_SIG_DIGITS (NV_DIG+MAX_SIG_DIG_PLUS)
1502#else
1503# define MAX_SIG_DIGITS (NV_DIG+2)
1504#endif
1505
1506/* the max number we can accumulate in a UV, and still safely do 10*N+9 */
1507#define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10))
1508
1509#if defined(NV_INF) || defined(NV_NAN)
1510 {
1511 char* endp;
1512 if ((endp = S_my_atof_infnan(aTHX_ s, negative, send, value)))
1513 return endp;
1514 }
1515#endif
1516
1517 /* we accumulate digits into an integer; when this becomes too
1518 * large, we add the total to NV and start again */
1519
1520 while (s < send) {
1521 if (isDIGIT(*s)) {
1522 seen_digit = 1;
1523 old_digit = digit;
1524 digit = *s++ - '0';
1525 if (seen_dp)
1526 exp_adjust[1]++;
1527
1528 /* don't start counting until we see the first significant
1529 * digit, eg the 5 in 0.00005... */
1530 if (!sig_digits && digit == 0)
1531 continue;
1532
1533 if (++sig_digits > MAX_SIG_DIGITS) {
1534 /* limits of precision reached */
1535 if (digit > 5) {
1536 ++accumulator[seen_dp];
1537 } else if (digit == 5) {
1538 if (old_digit % 2) { /* round to even - Allen */
1539 ++accumulator[seen_dp];
1540 }
1541 }
1542 if (seen_dp) {
1543 exp_adjust[1]--;
1544 } else {
1545 exp_adjust[0]++;
1546 }
1547 /* skip remaining digits */
1548 while (s < send && isDIGIT(*s)) {
1549 ++s;
1550 if (! seen_dp) {
1551 exp_adjust[0]++;
1552 }
1553 }
1554 /* warn of loss of precision? */
1555 }
1556 else {
1557 if (accumulator[seen_dp] > MAX_ACCUMULATE) {
1558 /* add accumulator to result and start again */
1559 result[seen_dp] = S_mulexp10(result[seen_dp],
1560 exp_acc[seen_dp])
1561 + (NV)accumulator[seen_dp];
1562 accumulator[seen_dp] = 0;
1563 exp_acc[seen_dp] = 0;
1564 }
1565 accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit;
1566 ++exp_acc[seen_dp];
1567 }
1568 }
1569 else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) {
1570 seen_dp = 1;
1571 if (sig_digits > MAX_SIG_DIGITS) {
1572 while (s < send && isDIGIT(*s)) {
1573 ++s;
1574 }
1575 break;
1576 }
1577 }
1578 else {
1579 break;
1580 }
1581 }
1582
1583 result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0];
1584 if (seen_dp) {
1585 result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1];
1586 }
1587
1588 if (s < send && seen_digit && (isALPHA_FOLD_EQ(*s, 'e'))) {
1589 bool expnegative = 0;
1590
1591 ++s;
1592 switch (*s) {
1593 case '-':
1594 expnegative = 1;
1595 /* FALLTHROUGH */
1596 case '+':
1597 ++s;
1598 }
1599 while (s < send && isDIGIT(*s))
1600 exponent = exponent * 10 + (*s++ - '0');
1601 if (expnegative)
1602 exponent = -exponent;
1603 }
1604
1605 /* now apply the exponent */
1606
1607 if (seen_dp) {
1608 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0])
1609 + S_mulexp10(result[1],exponent-exp_adjust[1]);
1610 } else {
1611 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]);
1612 }
1613
1614 /* now apply the sign */
1615 if (negative)
1616 result[2] = -result[2];
1617#endif /* USE_PERL_ATOF */
1618 *value = result[2];
1619 return (char *)s;
1620}
1621
1622/*
1623=for apidoc isinfnan
1624
1625C<Perl_isinfnan()> is utility function that returns true if the NV
1626argument is either an infinity or a C<NaN>, false otherwise. To test
1627in more detail, use C<Perl_isinf()> and C<Perl_isnan()>.
1628
1629This is also the logical inverse of Perl_isfinite().
1630
1631=cut
1632*/
1633bool
1634Perl_isinfnan(NV nv)
1635{
1636 PERL_UNUSED_ARG(nv);
1637#ifdef Perl_isinf
1638 if (Perl_isinf(nv))
1639 return TRUE;
1640#endif
1641#ifdef Perl_isnan
1642 if (Perl_isnan(nv))
1643 return TRUE;
1644#endif
1645 return FALSE;
1646}
1647
1648/*
1649=for apidoc
1650
1651Checks whether the argument would be either an infinity or C<NaN> when used
1652as a number, but is careful not to trigger non-numeric or uninitialized
1653warnings. it assumes the caller has done C<SvGETMAGIC(sv)> already.
1654
1655=cut
1656*/
1657
1658bool
1659Perl_isinfnansv(pTHX_ SV *sv)
1660{
1661 PERL_ARGS_ASSERT_ISINFNANSV;
1662 if (!SvOK(sv))
1663 return FALSE;
1664 if (SvNOKp(sv))
1665 return Perl_isinfnan(SvNVX(sv));
1666 if (SvIOKp(sv))
1667 return FALSE;
1668 {
1669 STRLEN len;
1670 const char *s = SvPV_nomg_const(sv, len);
1671 return cBOOL(grok_infnan(&s, s+len));
1672 }
1673}
1674
1675#ifndef HAS_MODFL
1676/* C99 has truncl, pre-C99 Solaris had aintl. We can use either with
1677 * copysignl to emulate modfl, which is in some platforms missing or
1678 * broken. */
1679# if defined(HAS_TRUNCL) && defined(HAS_COPYSIGNL)
1680long double
1681Perl_my_modfl(long double x, long double *ip)
1682{
1683 *ip = truncl(x);
1684 return (x == *ip ? copysignl(0.0L, x) : x - *ip);
1685}
1686# elif defined(HAS_AINTL) && defined(HAS_COPYSIGNL)
1687long double
1688Perl_my_modfl(long double x, long double *ip)
1689{
1690 *ip = aintl(x);
1691 return (x == *ip ? copysignl(0.0L, x) : x - *ip);
1692}
1693# endif
1694#endif
1695
1696/* Similarly, with ilogbl and scalbnl we can emulate frexpl. */
1697#if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL)
1698long double
1699Perl_my_frexpl(long double x, int *e) {
1700 *e = x == 0.0L ? 0 : ilogbl(x) + 1;
1701 return (scalbnl(x, -*e));
1702}
1703#endif
1704
1705/*
1706=for apidoc Perl_signbit
1707
1708Return a non-zero integer if the sign bit on an NV is set, and 0 if
1709it is not.
1710
1711If F<Configure> detects this system has a C<signbit()> that will work with
1712our NVs, then we just use it via the C<#define> in F<perl.h>. Otherwise,
1713fall back on this implementation. The main use of this function
1714is catching C<-0.0>.
1715
1716C<Configure> notes: This function is called C<'Perl_signbit'> instead of a
1717plain C<'signbit'> because it is easy to imagine a system having a C<signbit()>
1718function or macro that doesn't happen to work with our particular choice
1719of NVs. We shouldn't just re-C<#define> C<signbit> as C<Perl_signbit> and expect
1720the standard system headers to be happy. Also, this is a no-context
1721function (no C<pTHX_>) because C<Perl_signbit()> is usually re-C<#defined> in
1722F<perl.h> as a simple macro call to the system's C<signbit()>.
1723Users should just always call C<Perl_signbit()>.
1724
1725=cut
1726*/
1727#if !defined(HAS_SIGNBIT)
1728int
1729Perl_signbit(NV x) {
1730# ifdef Perl_fp_class_nzero
1731 return Perl_fp_class_nzero(x);
1732 /* Try finding the high byte, and assume it's highest bit
1733 * is the sign. This assumption is probably wrong somewhere. */
1734# elif defined(USE_LONG_DOUBLE) && LONG_DOUBLEKIND == LONG_DOUBLE_IS_X86_80_BIT_LITTLE_ENDIAN
1735 return (((unsigned char *)&x)[9] & 0x80);
1736# elif defined(NV_LITTLE_ENDIAN)
1737 /* Note that NVSIZE is sizeof(NV), which would make the below be
1738 * wrong if the end bytes are unused, which happens with the x86
1739 * 80-bit long doubles, which is why take care of that above. */
1740 return (((unsigned char *)&x)[NVSIZE - 1] & 0x80);
1741# elif defined(NV_BIG_ENDIAN)
1742 return (((unsigned char *)&x)[0] & 0x80);
1743# else
1744 /* This last resort fallback is wrong for the negative zero. */
1745 return (x < 0.0) ? 1 : 0;
1746# endif
1747}
1748#endif
1749
1750/*
1751 * ex: set ts=8 sts=4 sw=4 et:
1752 */