This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
toke.c: Save a branch
[perl5.git] / time64.c
... / ...
CommitLineData
1/*
2
3Copyright (c) 2007-2008 Michael G Schwern
4
5This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
6
7The MIT License:
8
9Permission is hereby granted, free of charge, to any person obtaining a copy
10of this software and associated documentation files (the "Software"), to deal
11in the Software without restriction, including without limitation the rights
12to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13copies of the Software, and to permit persons to whom the Software is
14furnished to do so, subject to the following conditions:
15
16The above copyright notice and this permission notice shall be included in
17all copies or substantial portions of the Software.
18
19THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25THE SOFTWARE.
26
27*/
28
29/*
30
31Programmers who have available to them 64-bit time values as a 'long
32long' type can use localtime64_r() and gmtime64_r() which correctly
33converts the time even on 32-bit systems. Whether you have 64-bit time
34values will depend on the operating system.
35
36Perl_localtime64_r() is a 64-bit equivalent of localtime_r().
37
38Perl_gmtime64_r() is a 64-bit equivalent of gmtime_r().
39
40*/
41
42#include "EXTERN.h"
43#define PERL_IN_TIME64_C
44#include "perl.h"
45#include "time64.h"
46
47static const char days_in_month[2][12] = {
48 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
49 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
50};
51
52static const short julian_days_by_month[2][12] = {
53 {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
54 {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
55};
56
57static const short length_of_year[2] = { 365, 366 };
58
59/* Number of days in a 400 year Gregorian cycle */
60static const Year years_in_gregorian_cycle = 400;
61static const int days_in_gregorian_cycle = (365 * 400) + 100 - 4 + 1;
62
63/* 28 year calendar cycle between 2010 and 2037 */
64#define SOLAR_CYCLE_LENGTH 28
65static const short safe_years[SOLAR_CYCLE_LENGTH] = {
66 2016, 2017, 2018, 2019,
67 2020, 2021, 2022, 2023,
68 2024, 2025, 2026, 2027,
69 2028, 2029, 2030, 2031,
70 2032, 2033, 2034, 2035,
71 2036, 2037, 2010, 2011,
72 2012, 2013, 2014, 2015
73};
74
75/* Let's assume people are going to be looking for dates in the future.
76 Let's provide some cheats so you can skip ahead.
77 This has a 4x speed boost when near 2008.
78*/
79/* Number of days since epoch on Jan 1st, 2008 GMT */
80#define CHEAT_DAYS (1199145600 / 24 / 60 / 60)
81#define CHEAT_YEARS 108
82
83#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
84#undef WRAP /* some <termios.h> define this */
85#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a))
86
87#ifdef USE_SYSTEM_LOCALTIME
88# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \
89 (a) <= SYSTEM_LOCALTIME_MAX && \
90 (a) >= SYSTEM_LOCALTIME_MIN \
91)
92#else
93# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0)
94#endif
95
96#ifdef USE_SYSTEM_GMTIME
97# define SHOULD_USE_SYSTEM_GMTIME(a) ( \
98 (a) <= SYSTEM_GMTIME_MAX && \
99 (a) >= SYSTEM_GMTIME_MIN \
100)
101#else
102# define SHOULD_USE_SYSTEM_GMTIME(a) (0)
103#endif
104
105/* Multi varadic macros are a C99 thing, alas */
106#ifdef TIME_64_DEBUG
107# define TIME64_TRACE(format) (fprintf(stderr, format))
108# define TIME64_TRACE1(format, var1) (fprintf(stderr, format, var1))
109# define TIME64_TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2))
110# define TIME64_TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3))
111#else
112# define TIME64_TRACE(format) ((void)0)
113# define TIME64_TRACE1(format, var1) ((void)0)
114# define TIME64_TRACE2(format, var1, var2) ((void)0)
115# define TIME64_TRACE3(format, var1, var2, var3) ((void)0)
116#endif
117
118static int S_is_exception_century(Year year)
119{
120 const int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
121 TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");
122
123 return(is_exception);
124}
125
126
127static Time64_T S_timegm64(const struct TM *date) {
128 int days = 0;
129 Time64_T seconds = 0;
130
131 if( date->tm_year > 70 ) {
132 Year year = 70;
133 while( year < date->tm_year ) {
134 days += length_of_year[IS_LEAP(year)];
135 year++;
136 }
137 }
138 else if ( date->tm_year < 70 ) {
139 Year year = 69;
140 do {
141 days -= length_of_year[IS_LEAP(year)];
142 year--;
143 } while( year >= date->tm_year );
144 }
145
146 days += julian_days_by_month[IS_LEAP(date->tm_year)][date->tm_mon];
147 days += date->tm_mday - 1;
148
149 /* Avoid overflowing the days integer */
150 seconds = days;
151 seconds = seconds * 60 * 60 * 24;
152
153 seconds += date->tm_hour * 60 * 60;
154 seconds += date->tm_min * 60;
155 seconds += date->tm_sec;
156
157 return(seconds);
158}
159
160
161#ifdef DEBUGGING
162static int S_check_tm(const struct TM *tm)
163{
164 /* Don't forget leap seconds */
165 assert(tm->tm_sec >= 0);
166 assert(tm->tm_sec <= 61);
167
168 assert(tm->tm_min >= 0);
169 assert(tm->tm_min <= 59);
170
171 assert(tm->tm_hour >= 0);
172 assert(tm->tm_hour <= 23);
173
174 assert(tm->tm_mday >= 1);
175 assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
176
177 assert(tm->tm_mon >= 0);
178 assert(tm->tm_mon <= 11);
179
180 assert(tm->tm_wday >= 0);
181 assert(tm->tm_wday <= 6);
182
183 assert(tm->tm_yday >= 0);
184 assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
185
186#ifdef HAS_TM_TM_GMTOFF
187 assert(tm->tm_gmtoff >= -24 * 60 * 60);
188 assert(tm->tm_gmtoff <= 24 * 60 * 60);
189#endif
190
191 return 1;
192}
193#endif
194
195
196/* The exceptional centuries without leap years cause the cycle to
197 shift by 16
198*/
199static Year S_cycle_offset(Year year)
200{
201 const Year start_year = 2000;
202 Year year_diff = year - start_year;
203 Year exceptions;
204
205 if( year > start_year )
206 year_diff--;
207
208 exceptions = year_diff / 100;
209 exceptions -= year_diff / 400;
210
211 TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
212 year, exceptions, year_diff);
213
214 return exceptions * 16;
215}
216
217/* For a given year after 2038, pick the latest possible matching
218 year in the 28 year calendar cycle.
219
220 A matching year...
221 1) Starts on the same day of the week.
222 2) Has the same leap year status.
223
224 This is so the calendars match up.
225
226 Also the previous year must match. When doing Jan 1st you might
227 wind up on Dec 31st the previous year when doing a -UTC time zone.
228
229 Finally, the next year must have the same start day of week. This
230 is for Dec 31st with a +UTC time zone.
231 It doesn't need the same leap year status since we only care about
232 January 1st.
233*/
234static int S_safe_year(Year year)
235{
236 int safe_year;
237 Year year_cycle = year + S_cycle_offset(year);
238
239 /* Change non-leap xx00 years to an equivalent */
240 if( S_is_exception_century(year) )
241 year_cycle += 11;
242
243 /* Also xx01 years, since the previous year will be wrong */
244 if( S_is_exception_century(year - 1) )
245 year_cycle += 17;
246
247 year_cycle %= SOLAR_CYCLE_LENGTH;
248 if( year_cycle < 0 )
249 year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
250
251 assert( year_cycle >= 0 );
252 assert( year_cycle < SOLAR_CYCLE_LENGTH );
253 safe_year = safe_years[year_cycle];
254
255 assert(safe_year <= 2037 && safe_year >= 2010);
256
257 TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
258 year, year_cycle, safe_year);
259
260 return safe_year;
261}
262
263
264static void S_copy_little_tm_to_big_TM(const struct tm *src, struct TM *dest) {
265 assert(src);
266 assert(dest);
267#ifdef USE_TM64
268 dest->tm_sec = src->tm_sec;
269 dest->tm_min = src->tm_min;
270 dest->tm_hour = src->tm_hour;
271 dest->tm_mday = src->tm_mday;
272 dest->tm_mon = src->tm_mon;
273 dest->tm_year = (Year)src->tm_year;
274 dest->tm_wday = src->tm_wday;
275 dest->tm_yday = src->tm_yday;
276 dest->tm_isdst = src->tm_isdst;
277
278# ifdef HAS_TM_TM_GMTOFF
279 dest->tm_gmtoff = src->tm_gmtoff;
280# endif
281
282# ifdef HAS_TM_TM_ZONE
283 dest->tm_zone = src->tm_zone;
284# endif
285
286#else
287 /* They're the same type */
288 memcpy(dest, src, sizeof(*dest));
289#endif
290}
291
292
293#ifndef HAS_LOCALTIME_R
294/* Simulate localtime_r() to the best of our ability */
295static struct tm * S_localtime_r(const time_t *clock, struct tm *result) {
296#ifdef __VMS
297 dTHX; /* the following is defined as Perl_my_localtime(aTHX_ ...) */
298#endif
299 const struct tm * const static_result = localtime(clock);
300
301 assert(result != NULL);
302
303 if( static_result == NULL ) {
304 memset(result, 0, sizeof(*result));
305 return NULL;
306 }
307 else {
308 memcpy(result, static_result, sizeof(*result));
309 return result;
310 }
311}
312#endif
313
314#ifndef HAS_GMTIME_R
315/* Simulate gmtime_r() to the best of our ability */
316static struct tm * S_gmtime_r(const time_t *clock, struct tm *result) {
317#ifdef __VMS
318 dTHX; /* the following is defined as Perl_my_localtime(aTHX_ ...) */
319#endif
320 const struct tm * const static_result = gmtime(clock);
321
322 assert(result != NULL);
323
324 if( static_result == NULL ) {
325 memset(result, 0, sizeof(*result));
326 return NULL;
327 }
328 else {
329 memcpy(result, static_result, sizeof(*result));
330 return result;
331 }
332}
333#endif
334
335struct TM *Perl_gmtime64_r (const Time64_T *in_time, struct TM *p)
336{
337 int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
338 Time64_T v_tm_tday;
339 int leap;
340 Time64_T m;
341 Time64_T time = *in_time;
342 Year year = 70;
343
344 assert(p != NULL);
345
346 /* Use the system gmtime() if time_t is small enough */
347 if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
348 time_t safe_time = (time_t)*in_time;
349 struct tm safe_date;
350 GMTIME_R(&safe_time, &safe_date);
351
352 S_copy_little_tm_to_big_TM(&safe_date, p);
353 assert(S_check_tm(p));
354
355 return p;
356 }
357
358#ifdef HAS_TM_TM_GMTOFF
359 p->tm_gmtoff = 0;
360#endif
361 p->tm_isdst = 0;
362
363#ifdef HAS_TM_TM_ZONE
364 p->tm_zone = (char *)"UTC";
365#endif
366
367 v_tm_sec = (int)Perl_fmod(time, 60.0);
368 time = time >= 0 ? Perl_floor(time / 60.0) : Perl_ceil(time / 60.0);
369 v_tm_min = (int)Perl_fmod(time, 60.0);
370 time = time >= 0 ? Perl_floor(time / 60.0) : Perl_ceil(time / 60.0);
371 v_tm_hour = (int)Perl_fmod(time, 24.0);
372 time = time >= 0 ? Perl_floor(time / 24.0) : Perl_ceil(time / 24.0);
373 v_tm_tday = time;
374
375 WRAP (v_tm_sec, v_tm_min, 60);
376 WRAP (v_tm_min, v_tm_hour, 60);
377 WRAP (v_tm_hour, v_tm_tday, 24);
378
379 v_tm_wday = (int)Perl_fmod((v_tm_tday + 4.0), 7.0);
380 if (v_tm_wday < 0)
381 v_tm_wday += 7;
382 m = v_tm_tday;
383
384 if (m >= CHEAT_DAYS) {
385 year = CHEAT_YEARS;
386 m -= CHEAT_DAYS;
387 }
388
389 if (m >= 0) {
390 /* Gregorian cycles, this is huge optimization for distant times */
391 const int cycles = (int)Perl_floor(m / (Time64_T) days_in_gregorian_cycle);
392 if( cycles ) {
393 m -= (cycles * (Time64_T) days_in_gregorian_cycle);
394 year += (cycles * years_in_gregorian_cycle);
395 }
396
397 /* Years */
398 leap = IS_LEAP (year);
399 while (m >= (Time64_T) length_of_year[leap]) {
400 m -= (Time64_T) length_of_year[leap];
401 year++;
402 leap = IS_LEAP (year);
403 }
404
405 /* Months */
406 v_tm_mon = 0;
407 while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
408 m -= (Time64_T) days_in_month[leap][v_tm_mon];
409 v_tm_mon++;
410 }
411 } else {
412 int cycles;
413
414 year--;
415
416 /* Gregorian cycles */
417 cycles = (int)Perl_ceil((m / (Time64_T) days_in_gregorian_cycle) + 1);
418 if( cycles ) {
419 m -= (cycles * (Time64_T) days_in_gregorian_cycle);
420 year += (cycles * years_in_gregorian_cycle);
421 }
422
423 /* Years */
424 leap = IS_LEAP (year);
425 while (m < (Time64_T) -length_of_year[leap]) {
426 m += (Time64_T) length_of_year[leap];
427 year--;
428 leap = IS_LEAP (year);
429 }
430
431 /* Months */
432 v_tm_mon = 11;
433 while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
434 m += (Time64_T) days_in_month[leap][v_tm_mon];
435 v_tm_mon--;
436 }
437 m += (Time64_T) days_in_month[leap][v_tm_mon];
438 }
439
440 p->tm_year = year;
441 if( p->tm_year != year ) {
442#ifdef EOVERFLOW
443 errno = EOVERFLOW;
444#endif
445 return NULL;
446 }
447
448 /* At this point m is less than a year so casting to an int is safe */
449 p->tm_mday = (int) m + 1;
450 p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
451 p->tm_sec = v_tm_sec;
452 p->tm_min = v_tm_min;
453 p->tm_hour = v_tm_hour;
454 p->tm_mon = v_tm_mon;
455 p->tm_wday = v_tm_wday;
456
457 assert(S_check_tm(p));
458
459 return p;
460}
461
462
463struct TM *Perl_localtime64_r (const Time64_T *time, struct TM *local_tm)
464{
465 time_t safe_time;
466 struct tm safe_date;
467 struct TM gm_tm;
468 Year orig_year;
469 int month_diff;
470
471 assert(local_tm != NULL);
472
473 /* Use the system localtime() if time_t is small enough */
474 if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
475 safe_time = (time_t)*time;
476
477 TIME64_TRACE1("Using system localtime for %lld\n", *time);
478
479 LOCALTIME_R(&safe_time, &safe_date);
480
481 S_copy_little_tm_to_big_TM(&safe_date, local_tm);
482 assert(S_check_tm(local_tm));
483
484 return local_tm;
485 }
486
487 if( Perl_gmtime64_r(time, &gm_tm) == NULL ) {
488 TIME64_TRACE1("gmtime64_r returned null for %lld\n", *time);
489 return NULL;
490 }
491
492 orig_year = gm_tm.tm_year;
493
494 if (gm_tm.tm_year > (2037 - 1900) ||
495 gm_tm.tm_year < (1970 - 1900)
496 )
497 {
498 TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
499 gm_tm.tm_year = S_safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
500 }
501
502 safe_time = (time_t)S_timegm64(&gm_tm);
503 if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
504 TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
505 return NULL;
506 }
507
508 S_copy_little_tm_to_big_TM(&safe_date, local_tm);
509
510 local_tm->tm_year = orig_year;
511 if( local_tm->tm_year != orig_year ) {
512 TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
513 (Year)local_tm->tm_year, (Year)orig_year);
514
515#ifdef EOVERFLOW
516 errno = EOVERFLOW;
517#endif
518 return NULL;
519 }
520
521
522 month_diff = local_tm->tm_mon - gm_tm.tm_mon;
523
524 /* When localtime is Dec 31st previous year and
525 gmtime is Jan 1st next year.
526 */
527 if( month_diff == 11 ) {
528 local_tm->tm_year--;
529 }
530
531 /* When localtime is Jan 1st, next year and
532 gmtime is Dec 31st, previous year.
533 */
534 if( month_diff == -11 ) {
535 local_tm->tm_year++;
536 }
537
538 /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
539 in a non-leap xx00. There is one point in the cycle
540 we can't account for which the safe xx00 year is a leap
541 year. So we need to correct for Dec 31st coming out as
542 the 366th day of the year.
543 */
544 if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
545 local_tm->tm_yday--;
546
547 assert(S_check_tm(local_tm));
548
549 return local_tm;
550}