This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Update Time-Piece to CPAN version 1.29
[perl5.git] / numeric.c
... / ...
CommitLineData
1/* numeric.c
2 *
3 * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 * 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * "That only makes eleven (plus one mislaid) and not fourteen,
13 * unless wizards count differently to other people." --Beorn
14 *
15 * [p.115 of _The Hobbit_: "Queer Lodgings"]
16 */
17
18/*
19=head1 Numeric functions
20
21=cut
22
23This file contains all the stuff needed by perl for manipulating numeric
24values, including such things as replacements for the OS's atof() function
25
26*/
27
28#include "EXTERN.h"
29#define PERL_IN_NUMERIC_C
30#include "perl.h"
31
32U32
33Perl_cast_ulong(NV f)
34{
35 if (f < 0.0)
36 return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
37 if (f < U32_MAX_P1) {
38#if CASTFLAGS & 2
39 if (f < U32_MAX_P1_HALF)
40 return (U32) f;
41 f -= U32_MAX_P1_HALF;
42 return ((U32) f) | (1 + U32_MAX >> 1);
43#else
44 return (U32) f;
45#endif
46 }
47 return f > 0 ? U32_MAX : 0 /* NaN */;
48}
49
50I32
51Perl_cast_i32(NV f)
52{
53 if (f < I32_MAX_P1)
54 return f < I32_MIN ? I32_MIN : (I32) f;
55 if (f < U32_MAX_P1) {
56#if CASTFLAGS & 2
57 if (f < U32_MAX_P1_HALF)
58 return (I32)(U32) f;
59 f -= U32_MAX_P1_HALF;
60 return (I32)(((U32) f) | (1 + U32_MAX >> 1));
61#else
62 return (I32)(U32) f;
63#endif
64 }
65 return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
66}
67
68IV
69Perl_cast_iv(NV f)
70{
71 if (f < IV_MAX_P1)
72 return f < IV_MIN ? IV_MIN : (IV) f;
73 if (f < UV_MAX_P1) {
74#if CASTFLAGS & 2
75 /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
76 if (f < UV_MAX_P1_HALF)
77 return (IV)(UV) f;
78 f -= UV_MAX_P1_HALF;
79 return (IV)(((UV) f) | (1 + UV_MAX >> 1));
80#else
81 return (IV)(UV) f;
82#endif
83 }
84 return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
85}
86
87UV
88Perl_cast_uv(NV f)
89{
90 if (f < 0.0)
91 return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
92 if (f < UV_MAX_P1) {
93#if CASTFLAGS & 2
94 if (f < UV_MAX_P1_HALF)
95 return (UV) f;
96 f -= UV_MAX_P1_HALF;
97 return ((UV) f) | (1 + UV_MAX >> 1);
98#else
99 return (UV) f;
100#endif
101 }
102 return f > 0 ? UV_MAX : 0 /* NaN */;
103}
104
105/*
106=for apidoc grok_bin
107
108converts a string representing a binary number to numeric form.
109
110On entry I<start> and I<*len> give the string to scan, I<*flags> gives
111conversion flags, and I<result> should be NULL or a pointer to an NV.
112The scan stops at the end of the string, or the first invalid character.
113Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
114invalid character will also trigger a warning.
115On return I<*len> is set to the length of the scanned string,
116and I<*flags> gives output flags.
117
118If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
119and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin>
120returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
121and writes the value to I<*result> (or the value is discarded if I<result>
122is NULL).
123
124The binary number may optionally be prefixed with "0b" or "b" unless
125C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
126C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the binary
127number may use '_' characters to separate digits.
128
129=cut
130
131Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
132which suppresses any message for non-portable numbers that are still valid
133on this platform.
134 */
135
136UV
137Perl_grok_bin(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
138{
139 const char *s = start;
140 STRLEN len = *len_p;
141 UV value = 0;
142 NV value_nv = 0;
143
144 const UV max_div_2 = UV_MAX / 2;
145 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
146 bool overflowed = FALSE;
147 char bit;
148
149 PERL_ARGS_ASSERT_GROK_BIN;
150
151 if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
152 /* strip off leading b or 0b.
153 for compatibility silently suffer "b" and "0b" as valid binary
154 numbers. */
155 if (len >= 1) {
156 if (isALPHA_FOLD_EQ(s[0], 'b')) {
157 s++;
158 len--;
159 }
160 else if (len >= 2 && s[0] == '0' && (isALPHA_FOLD_EQ(s[1], 'b'))) {
161 s+=2;
162 len-=2;
163 }
164 }
165 }
166
167 for (; len-- && (bit = *s); s++) {
168 if (bit == '0' || bit == '1') {
169 /* Write it in this wonky order with a goto to attempt to get the
170 compiler to make the common case integer-only loop pretty tight.
171 With gcc seems to be much straighter code than old scan_bin. */
172 redo:
173 if (!overflowed) {
174 if (value <= max_div_2) {
175 value = (value << 1) | (bit - '0');
176 continue;
177 }
178 /* Bah. We're just overflowed. */
179 /* diag_listed_as: Integer overflow in %s number */
180 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
181 "Integer overflow in binary number");
182 overflowed = TRUE;
183 value_nv = (NV) value;
184 }
185 value_nv *= 2.0;
186 /* If an NV has not enough bits in its mantissa to
187 * represent a UV this summing of small low-order numbers
188 * is a waste of time (because the NV cannot preserve
189 * the low-order bits anyway): we could just remember when
190 * did we overflow and in the end just multiply value_nv by the
191 * right amount. */
192 value_nv += (NV)(bit - '0');
193 continue;
194 }
195 if (bit == '_' && len && allow_underscores && (bit = s[1])
196 && (bit == '0' || bit == '1'))
197 {
198 --len;
199 ++s;
200 goto redo;
201 }
202 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
203 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
204 "Illegal binary digit '%c' ignored", *s);
205 break;
206 }
207
208 if ( ( overflowed && value_nv > 4294967295.0)
209#if UVSIZE > 4
210 || (!overflowed && value > 0xffffffff
211 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
212#endif
213 ) {
214 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
215 "Binary number > 0b11111111111111111111111111111111 non-portable");
216 }
217 *len_p = s - start;
218 if (!overflowed) {
219 *flags = 0;
220 return value;
221 }
222 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
223 if (result)
224 *result = value_nv;
225 return UV_MAX;
226}
227
228/*
229=for apidoc grok_hex
230
231converts a string representing a hex number to numeric form.
232
233On entry I<start> and I<*len_p> give the string to scan, I<*flags> gives
234conversion flags, and I<result> should be NULL or a pointer to an NV.
235The scan stops at the end of the string, or the first invalid character.
236Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
237invalid character will also trigger a warning.
238On return I<*len> is set to the length of the scanned string,
239and I<*flags> gives output flags.
240
241If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
242and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex>
243returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
244and writes the value to I<*result> (or the value is discarded if I<result>
245is NULL).
246
247The hex number may optionally be prefixed with "0x" or "x" unless
248C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
249C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the hex
250number may use '_' characters to separate digits.
251
252=cut
253
254Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
255which suppresses any message for non-portable numbers that are still valid
256on this platform.
257 */
258
259UV
260Perl_grok_hex(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
261{
262 const char *s = start;
263 STRLEN len = *len_p;
264 UV value = 0;
265 NV value_nv = 0;
266 const UV max_div_16 = UV_MAX / 16;
267 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
268 bool overflowed = FALSE;
269
270 PERL_ARGS_ASSERT_GROK_HEX;
271
272 if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
273 /* strip off leading x or 0x.
274 for compatibility silently suffer "x" and "0x" as valid hex numbers.
275 */
276 if (len >= 1) {
277 if (isALPHA_FOLD_EQ(s[0], 'x')) {
278 s++;
279 len--;
280 }
281 else if (len >= 2 && s[0] == '0' && (isALPHA_FOLD_EQ(s[1], 'x'))) {
282 s+=2;
283 len-=2;
284 }
285 }
286 }
287
288 for (; len-- && *s; s++) {
289 if (isXDIGIT(*s)) {
290 /* Write it in this wonky order with a goto to attempt to get the
291 compiler to make the common case integer-only loop pretty tight.
292 With gcc seems to be much straighter code than old scan_hex. */
293 redo:
294 if (!overflowed) {
295 if (value <= max_div_16) {
296 value = (value << 4) | XDIGIT_VALUE(*s);
297 continue;
298 }
299 /* Bah. We're just overflowed. */
300 /* diag_listed_as: Integer overflow in %s number */
301 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
302 "Integer overflow in hexadecimal number");
303 overflowed = TRUE;
304 value_nv = (NV) value;
305 }
306 value_nv *= 16.0;
307 /* If an NV has not enough bits in its mantissa to
308 * represent a UV this summing of small low-order numbers
309 * is a waste of time (because the NV cannot preserve
310 * the low-order bits anyway): we could just remember when
311 * did we overflow and in the end just multiply value_nv by the
312 * right amount of 16-tuples. */
313 value_nv += (NV) XDIGIT_VALUE(*s);
314 continue;
315 }
316 if (*s == '_' && len && allow_underscores && s[1]
317 && isXDIGIT(s[1]))
318 {
319 --len;
320 ++s;
321 goto redo;
322 }
323 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
324 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
325 "Illegal hexadecimal digit '%c' ignored", *s);
326 break;
327 }
328
329 if ( ( overflowed && value_nv > 4294967295.0)
330#if UVSIZE > 4
331 || (!overflowed && value > 0xffffffff
332 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
333#endif
334 ) {
335 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
336 "Hexadecimal number > 0xffffffff non-portable");
337 }
338 *len_p = s - start;
339 if (!overflowed) {
340 *flags = 0;
341 return value;
342 }
343 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
344 if (result)
345 *result = value_nv;
346 return UV_MAX;
347}
348
349/*
350=for apidoc grok_oct
351
352converts a string representing an octal number to numeric form.
353
354On entry I<start> and I<*len> give the string to scan, I<*flags> gives
355conversion flags, and I<result> should be NULL or a pointer to an NV.
356The scan stops at the end of the string, or the first invalid character.
357Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
3588 or 9 will also trigger a warning.
359On return I<*len> is set to the length of the scanned string,
360and I<*flags> gives output flags.
361
362If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
363and nothing is written to I<*result>. If the value is > UV_MAX C<grok_oct>
364returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
365and writes the value to I<*result> (or the value is discarded if I<result>
366is NULL).
367
368If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the octal
369number may use '_' characters to separate digits.
370
371=cut
372
373Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE>
374which suppresses any message for non-portable numbers, but which are valid
375on this platform.
376 */
377
378UV
379Perl_grok_oct(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
380{
381 const char *s = start;
382 STRLEN len = *len_p;
383 UV value = 0;
384 NV value_nv = 0;
385 const UV max_div_8 = UV_MAX / 8;
386 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
387 bool overflowed = FALSE;
388
389 PERL_ARGS_ASSERT_GROK_OCT;
390
391 for (; len-- && *s; s++) {
392 if (isOCTAL(*s)) {
393 /* Write it in this wonky order with a goto to attempt to get the
394 compiler to make the common case integer-only loop pretty tight.
395 */
396 redo:
397 if (!overflowed) {
398 if (value <= max_div_8) {
399 value = (value << 3) | OCTAL_VALUE(*s);
400 continue;
401 }
402 /* Bah. We're just overflowed. */
403 /* diag_listed_as: Integer overflow in %s number */
404 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
405 "Integer overflow in octal number");
406 overflowed = TRUE;
407 value_nv = (NV) value;
408 }
409 value_nv *= 8.0;
410 /* If an NV has not enough bits in its mantissa to
411 * represent a UV this summing of small low-order numbers
412 * is a waste of time (because the NV cannot preserve
413 * the low-order bits anyway): we could just remember when
414 * did we overflow and in the end just multiply value_nv by the
415 * right amount of 8-tuples. */
416 value_nv += (NV) OCTAL_VALUE(*s);
417 continue;
418 }
419 if (*s == '_' && len && allow_underscores && isOCTAL(s[1])) {
420 --len;
421 ++s;
422 goto redo;
423 }
424 /* Allow \octal to work the DWIM way (that is, stop scanning
425 * as soon as non-octal characters are seen, complain only if
426 * someone seems to want to use the digits eight and nine. Since we
427 * know it is not octal, then if isDIGIT, must be an 8 or 9). */
428 if (isDIGIT(*s)) {
429 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
430 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
431 "Illegal octal digit '%c' ignored", *s);
432 }
433 break;
434 }
435
436 if ( ( overflowed && value_nv > 4294967295.0)
437#if UVSIZE > 4
438 || (!overflowed && value > 0xffffffff
439 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
440#endif
441 ) {
442 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
443 "Octal number > 037777777777 non-portable");
444 }
445 *len_p = s - start;
446 if (!overflowed) {
447 *flags = 0;
448 return value;
449 }
450 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
451 if (result)
452 *result = value_nv;
453 return UV_MAX;
454}
455
456/*
457=for apidoc scan_bin
458
459For backwards compatibility. Use C<grok_bin> instead.
460
461=for apidoc scan_hex
462
463For backwards compatibility. Use C<grok_hex> instead.
464
465=for apidoc scan_oct
466
467For backwards compatibility. Use C<grok_oct> instead.
468
469=cut
470 */
471
472NV
473Perl_scan_bin(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
474{
475 NV rnv;
476 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
477 const UV ruv = grok_bin (start, &len, &flags, &rnv);
478
479 PERL_ARGS_ASSERT_SCAN_BIN;
480
481 *retlen = len;
482 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
483}
484
485NV
486Perl_scan_oct(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
487{
488 NV rnv;
489 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
490 const UV ruv = grok_oct (start, &len, &flags, &rnv);
491
492 PERL_ARGS_ASSERT_SCAN_OCT;
493
494 *retlen = len;
495 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
496}
497
498NV
499Perl_scan_hex(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
500{
501 NV rnv;
502 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
503 const UV ruv = grok_hex (start, &len, &flags, &rnv);
504
505 PERL_ARGS_ASSERT_SCAN_HEX;
506
507 *retlen = len;
508 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
509}
510
511/*
512=for apidoc grok_numeric_radix
513
514Scan and skip for a numeric decimal separator (radix).
515
516=cut
517 */
518bool
519Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
520{
521#ifdef USE_LOCALE_NUMERIC
522 PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
523
524 if (IN_LC(LC_NUMERIC)) {
525 DECLARE_STORE_LC_NUMERIC_SET_TO_NEEDED();
526 if (PL_numeric_radix_sv) {
527 STRLEN len;
528 const char * const radix = SvPV(PL_numeric_radix_sv, len);
529 if (*sp + len <= send && memEQ(*sp, radix, len)) {
530 *sp += len;
531 RESTORE_LC_NUMERIC();
532 return TRUE;
533 }
534 }
535 RESTORE_LC_NUMERIC();
536 }
537 /* always try "." if numeric radix didn't match because
538 * we may have data from different locales mixed */
539#endif
540
541 PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
542
543 if (*sp < send && **sp == '.') {
544 ++*sp;
545 return TRUE;
546 }
547 return FALSE;
548}
549
550/*
551=for apidoc grok_number_flags
552
553Recognise (or not) a number. The type of the number is returned
554(0 if unrecognised), otherwise it is a bit-ORed combination of
555IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,
556IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).
557
558If the value of the number can fit in a UV, it is returned in the *valuep
559IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV
560will never be set unless *valuep is valid, but *valuep may have been assigned
561to during processing even though IS_NUMBER_IN_UV is not set on return.
562If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when
563valuep is non-NULL, but no actual assignment (or SEGV) will occur.
564
565IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were
566seen (in which case *valuep gives the true value truncated to an integer), and
567IS_NUMBER_NEG if the number is negative (in which case *valuep holds the
568absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the
569number is larger than a UV.
570
571C<flags> allows only C<PERL_SCAN_TRAILING>, which allows for trailing
572non-numeric text on an otherwise successful I<grok>, setting
573C<IS_NUMBER_TRAILING> on the result.
574
575=for apidoc grok_number
576
577Identical to grok_number_flags() with flags set to zero.
578
579=cut
580 */
581int
582Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
583{
584 PERL_ARGS_ASSERT_GROK_NUMBER;
585
586 return grok_number_flags(pv, len, valuep, 0);
587}
588
589/*
590=for apidoc grok_infnan
591
592Helper for grok_number(), accepts various ways of spelling "infinity"
593or "not a number", and returns one of the following flag combinations:
594
595 IS_NUMBER_INFINITE
596 IS_NUMBER_NAN
597 IS_NUMBER_INFINITE | IS_NUMBER_NEG
598 IS_NUMBER_NAN | IS_NUMBER_NEG
599 0
600
601If an infinity or not-a-number is recognized, the *sp will point to
602one past the end of the recognized string. If the recognition fails,
603zero is returned, and the *sp will not move.
604
605=cut
606*/
607
608int
609Perl_grok_infnan(const char** sp, const char* send)
610{
611 const char* s = *sp;
612 int flags = 0;
613
614 PERL_ARGS_ASSERT_GROK_INFNAN;
615
616 if (*s == '+') {
617 s++; if (s == send) return 0;
618 }
619 else if (*s == '-') {
620 flags |= IS_NUMBER_NEG; /* Yes, -NaN happens. Incorrect but happens. */
621 s++; if (s == send) return 0;
622 }
623
624 if (*s == '1') {
625 /* Visual C: 1.#SNAN, -1.#QNAN, 1#INF, 1#.IND (maybe also 1.#NAN) */
626 s++; if (s == send) return 0;
627 if (*s == '.') {
628 s++; if (s == send) return 0;
629 }
630 if (*s == '#') {
631 s++; if (s == send) return 0;
632 } else
633 return 0;
634 }
635
636 if (isALPHA_FOLD_EQ(*s, 'I')) {
637 /* INF or IND (1.#IND is indeterminate, a certain type of NAN) */
638 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
639 s++; if (s == send) return 0;
640 if (isALPHA_FOLD_EQ(*s, 'F')) {
641 s++;
642 if (s < send && (isALPHA_FOLD_EQ(*s, 'I'))) {
643 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
644 s++; if (s == send || isALPHA_FOLD_NE(*s, 'I')) return 0;
645 s++; if (s == send || isALPHA_FOLD_NE(*s, 'T')) return 0;
646 s++; if (s == send ||
647 /* allow either Infinity or Infinite */
648 !(isALPHA_FOLD_EQ(*s, 'Y') ||
649 isALPHA_FOLD_EQ(*s, 'E'))) return 0;
650 s++; if (s < send) return 0;
651 } else if (*s)
652 return 0;
653 flags |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
654 }
655 else if (isALPHA_FOLD_EQ(*s, 'D')) {
656 s++;
657 flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
658 } else
659 return 0;
660 }
661 else {
662 /* NAN */
663 if (isALPHA_FOLD_EQ(*s, 'S') || isALPHA_FOLD_EQ(*s, 'Q')) {
664 /* snan, qNaN */
665 /* XXX do something with the snan/qnan difference */
666 s++; if (s == send) return 0;
667 }
668
669 if (isALPHA_FOLD_EQ(*s, 'N')) {
670 s++; if (s == send || isALPHA_FOLD_NE(*s, 'A')) return 0;
671 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
672 s++;
673
674 flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
675
676 /* NaN can be followed by various stuff (NaNQ, NaNS), but
677 * there are also multiple different NaN values, and some
678 * implementations output the "payload" values,
679 * e.g. NaN123, NAN(abc), while some implementations just
680 * have weird stuff like NaN%. */
681 s = send;
682 }
683 else
684 return 0;
685 }
686
687 *sp = s;
688 return flags;
689}
690
691static const UV uv_max_div_10 = UV_MAX / 10;
692static const U8 uv_max_mod_10 = UV_MAX % 10;
693
694int
695Perl_grok_number_flags(pTHX_ const char *pv, STRLEN len, UV *valuep, U32 flags)
696{
697 const char *s = pv;
698 const char * const send = pv + len;
699 const char *d;
700 int numtype = 0;
701
702 PERL_ARGS_ASSERT_GROK_NUMBER_FLAGS;
703
704 while (s < send && isSPACE(*s))
705 s++;
706 if (s == send) {
707 return 0;
708 } else if (*s == '-') {
709 s++;
710 numtype = IS_NUMBER_NEG;
711 }
712 else if (*s == '+')
713 s++;
714
715 if (s == send)
716 return 0;
717
718 /* The first digit (after optional sign): note that might
719 * also point to "infinity" or "nan", or "1.#INF". */
720 d = s;
721
722 /* next must be digit or the radix separator or beginning of infinity/nan */
723 if (isDIGIT(*s)) {
724 /* UVs are at least 32 bits, so the first 9 decimal digits cannot
725 overflow. */
726 UV value = *s - '0';
727 /* This construction seems to be more optimiser friendly.
728 (without it gcc does the isDIGIT test and the *s - '0' separately)
729 With it gcc on arm is managing 6 instructions (6 cycles) per digit.
730 In theory the optimiser could deduce how far to unroll the loop
731 before checking for overflow. */
732 if (++s < send) {
733 int digit = *s - '0';
734 if (digit >= 0 && digit <= 9) {
735 value = value * 10 + digit;
736 if (++s < send) {
737 digit = *s - '0';
738 if (digit >= 0 && digit <= 9) {
739 value = value * 10 + digit;
740 if (++s < send) {
741 digit = *s - '0';
742 if (digit >= 0 && digit <= 9) {
743 value = value * 10 + digit;
744 if (++s < send) {
745 digit = *s - '0';
746 if (digit >= 0 && digit <= 9) {
747 value = value * 10 + digit;
748 if (++s < send) {
749 digit = *s - '0';
750 if (digit >= 0 && digit <= 9) {
751 value = value * 10 + digit;
752 if (++s < send) {
753 digit = *s - '0';
754 if (digit >= 0 && digit <= 9) {
755 value = value * 10 + digit;
756 if (++s < send) {
757 digit = *s - '0';
758 if (digit >= 0 && digit <= 9) {
759 value = value * 10 + digit;
760 if (++s < send) {
761 digit = *s - '0';
762 if (digit >= 0 && digit <= 9) {
763 value = value * 10 + digit;
764 if (++s < send) {
765 /* Now got 9 digits, so need to check
766 each time for overflow. */
767 digit = *s - '0';
768 while (digit >= 0 && digit <= 9
769 && (value < uv_max_div_10
770 || (value == uv_max_div_10
771 && digit <= uv_max_mod_10))) {
772 value = value * 10 + digit;
773 if (++s < send)
774 digit = *s - '0';
775 else
776 break;
777 }
778 if (digit >= 0 && digit <= 9
779 && (s < send)) {
780 /* value overflowed.
781 skip the remaining digits, don't
782 worry about setting *valuep. */
783 do {
784 s++;
785 } while (s < send && isDIGIT(*s));
786 numtype |=
787 IS_NUMBER_GREATER_THAN_UV_MAX;
788 goto skip_value;
789 }
790 }
791 }
792 }
793 }
794 }
795 }
796 }
797 }
798 }
799 }
800 }
801 }
802 }
803 }
804 }
805 }
806 }
807 numtype |= IS_NUMBER_IN_UV;
808 if (valuep)
809 *valuep = value;
810
811 skip_value:
812 if (GROK_NUMERIC_RADIX(&s, send)) {
813 numtype |= IS_NUMBER_NOT_INT;
814 while (s < send && isDIGIT(*s)) /* optional digits after the radix */
815 s++;
816 }
817 }
818 else if (GROK_NUMERIC_RADIX(&s, send)) {
819 numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
820 /* no digits before the radix means we need digits after it */
821 if (s < send && isDIGIT(*s)) {
822 do {
823 s++;
824 } while (s < send && isDIGIT(*s));
825 if (valuep) {
826 /* integer approximation is valid - it's 0. */
827 *valuep = 0;
828 }
829 }
830 else
831 return 0;
832 }
833
834 if (s < send) {
835 /* we can have an optional exponent part */
836 if (isALPHA_FOLD_EQ(*s, 'e')) {
837 s++;
838 if (s < send && (*s == '-' || *s == '+'))
839 s++;
840 if (s < send && isDIGIT(*s)) {
841 do {
842 s++;
843 } while (s < send && isDIGIT(*s));
844 }
845 else if (flags & PERL_SCAN_TRAILING)
846 return numtype | IS_NUMBER_TRAILING;
847 else
848 return 0;
849
850 /* The only flag we keep is sign. Blow away any "it's UV" */
851 numtype &= IS_NUMBER_NEG;
852 numtype |= IS_NUMBER_NOT_INT;
853 }
854 }
855 while (s < send && isSPACE(*s))
856 s++;
857 if (s >= send)
858 return numtype;
859 if (len == 10 && memEQ(pv, "0 but true", 10)) {
860 if (valuep)
861 *valuep = 0;
862 return IS_NUMBER_IN_UV;
863 }
864 /* We could be e.g. at "Inf" or "NaN", or at the "#" of "1.#INF". */
865 if ((s + 2 < send) && strchr("inqs#", toFOLD(*s))) {
866 /* Really detect inf/nan. Start at d, not s, since the above
867 * code might have already consumed the "1." or "1". */
868 int infnan = Perl_grok_infnan(&d, send);
869 if ((infnan & IS_NUMBER_INFINITY)) {
870 return (numtype | infnan); /* Keep sign for infinity. */
871 }
872 else if ((infnan & IS_NUMBER_NAN)) {
873 return (numtype | infnan) & ~IS_NUMBER_NEG; /* Clear sign for nan. */
874 }
875 }
876 else if (flags & PERL_SCAN_TRAILING) {
877 return numtype | IS_NUMBER_TRAILING;
878 }
879
880 return 0;
881}
882
883/*
884=for apidoc grok_atou
885
886grok_atou is a safer replacement for atoi and strtol.
887
888grok_atou parses a C-style zero-byte terminated string, looking for
889a decimal unsigned integer.
890
891Returns the unsigned integer, if a valid value can be parsed
892from the beginning of the string.
893
894Accepts only the decimal digits '0'..'9'.
895
896As opposed to atoi or strtol, grok_atou does NOT allow optional
897leading whitespace, or negative inputs. If such features are
898required, the calling code needs to explicitly implement those.
899
900If a valid value cannot be parsed, returns either zero (if non-digits
901are met before any digits) or UV_MAX (if the value overflows).
902
903Note that extraneous leading zeros also count as an overflow
904(meaning that only "0" is the zero).
905
906On failure, the *endptr is also set to NULL, unless endptr is NULL.
907
908Trailing non-digit bytes are allowed if the endptr is non-NULL.
909On return the *endptr will contain the pointer to the first non-digit byte.
910
911If the endptr is NULL, the first non-digit byte MUST be
912the zero byte terminating the pv, or zero will be returned.
913
914Background: atoi has severe problems with illegal inputs, it cannot be
915used for incremental parsing, and therefore should be avoided
916atoi and strtol are also affected by locale settings, which can also be
917seen as a bug (global state controlled by user environment).
918
919=cut
920*/
921
922UV
923Perl_grok_atou(const char *pv, const char** endptr)
924{
925 const char* s = pv;
926 const char** eptr;
927 const char* end2; /* Used in case endptr is NULL. */
928 UV val = 0; /* The return value. */
929
930 PERL_ARGS_ASSERT_GROK_ATOU;
931
932 eptr = endptr ? endptr : &end2;
933 if (isDIGIT(*s)) {
934 /* Single-digit inputs are quite common. */
935 val = *s++ - '0';
936 if (isDIGIT(*s)) {
937 /* Extra leading zeros cause overflow. */
938 if (val == 0) {
939 *eptr = NULL;
940 return UV_MAX;
941 }
942 while (isDIGIT(*s)) {
943 /* This could be unrolled like in grok_number(), but
944 * the expected uses of this are not speed-needy, and
945 * unlikely to need full 64-bitness. */
946 U8 digit = *s++ - '0';
947 if (val < uv_max_div_10 ||
948 (val == uv_max_div_10 && digit <= uv_max_mod_10)) {
949 val = val * 10 + digit;
950 } else {
951 *eptr = NULL;
952 return UV_MAX;
953 }
954 }
955 }
956 }
957 if (s == pv) {
958 *eptr = NULL; /* If no progress, failed to parse anything. */
959 return 0;
960 }
961 if (endptr == NULL && *s) {
962 return 0; /* If endptr is NULL, no trailing non-digits allowed. */
963 }
964 *eptr = s;
965 return val;
966}
967
968STATIC NV
969S_mulexp10(NV value, I32 exponent)
970{
971 NV result = 1.0;
972 NV power = 10.0;
973 bool negative = 0;
974 I32 bit;
975
976 if (exponent == 0)
977 return value;
978 if (value == 0)
979 return (NV)0;
980
981 /* On OpenVMS VAX we by default use the D_FLOAT double format,
982 * and that format does not have *easy* capabilities [1] for
983 * overflowing doubles 'silently' as IEEE fp does. We also need
984 * to support G_FLOAT on both VAX and Alpha, and though the exponent
985 * range is much larger than D_FLOAT it still doesn't do silent
986 * overflow. Therefore we need to detect early whether we would
987 * overflow (this is the behaviour of the native string-to-float
988 * conversion routines, and therefore of native applications, too).
989 *
990 * [1] Trying to establish a condition handler to trap floating point
991 * exceptions is not a good idea. */
992
993 /* In UNICOS and in certain Cray models (such as T90) there is no
994 * IEEE fp, and no way at all from C to catch fp overflows gracefully.
995 * There is something you can do if you are willing to use some
996 * inline assembler: the instruction is called DFI-- but that will
997 * disable *all* floating point interrupts, a little bit too large
998 * a hammer. Therefore we need to catch potential overflows before
999 * it's too late. */
1000
1001#if ((defined(VMS) && !defined(_IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP)
1002 STMT_START {
1003 const NV exp_v = log10(value);
1004 if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP)
1005 return NV_MAX;
1006 if (exponent < 0) {
1007 if (-(exponent + exp_v) >= NV_MAX_10_EXP)
1008 return 0.0;
1009 while (-exponent >= NV_MAX_10_EXP) {
1010 /* combination does not overflow, but 10^(-exponent) does */
1011 value /= 10;
1012 ++exponent;
1013 }
1014 }
1015 } STMT_END;
1016#endif
1017
1018 if (exponent < 0) {
1019 negative = 1;
1020 exponent = -exponent;
1021#ifdef NV_MAX_10_EXP
1022 /* for something like 1234 x 10^-309, the action of calculating
1023 * the intermediate value 10^309 then returning 1234 / (10^309)
1024 * will fail, since 10^309 becomes infinity. In this case try to
1025 * refactor it as 123 / (10^308) etc.
1026 */
1027 while (value && exponent > NV_MAX_10_EXP) {
1028 exponent--;
1029 value /= 10;
1030 }
1031#endif
1032 }
1033 for (bit = 1; exponent; bit <<= 1) {
1034 if (exponent & bit) {
1035 exponent ^= bit;
1036 result *= power;
1037 /* Floating point exceptions are supposed to be turned off,
1038 * but if we're obviously done, don't risk another iteration.
1039 */
1040 if (exponent == 0) break;
1041 }
1042 power *= power;
1043 }
1044 return negative ? value / result : value * result;
1045}
1046
1047NV
1048Perl_my_atof(pTHX_ const char* s)
1049{
1050 NV x = 0.0;
1051#ifdef USE_LOCALE_NUMERIC
1052 PERL_ARGS_ASSERT_MY_ATOF;
1053
1054 {
1055 DECLARE_STORE_LC_NUMERIC_SET_TO_NEEDED();
1056 if (PL_numeric_radix_sv && IN_LC(LC_NUMERIC)) {
1057 const char *standard = NULL, *local = NULL;
1058 bool use_standard_radix;
1059
1060 /* Look through the string for the first thing that looks like a
1061 * decimal point: either the value in the current locale or the
1062 * standard fallback of '.'. The one which appears earliest in the
1063 * input string is the one that we should have atof look for. Note
1064 * that we have to determine this beforehand because on some
1065 * systems, Perl_atof2 is just a wrapper around the system's atof.
1066 * */
1067 standard = strchr(s, '.');
1068 local = strstr(s, SvPV_nolen(PL_numeric_radix_sv));
1069
1070 use_standard_radix = standard && (!local || standard < local);
1071
1072 if (use_standard_radix)
1073 SET_NUMERIC_STANDARD();
1074
1075 Perl_atof2(s, x);
1076
1077 if (use_standard_radix)
1078 SET_NUMERIC_LOCAL();
1079 }
1080 else
1081 Perl_atof2(s, x);
1082 RESTORE_LC_NUMERIC();
1083 }
1084#else
1085 Perl_atof2(s, x);
1086#endif
1087 return x;
1088}
1089
1090char*
1091Perl_my_atof2(pTHX_ const char* orig, NV* value)
1092{
1093 NV result[3] = {0.0, 0.0, 0.0};
1094 const char* s = orig;
1095#ifdef USE_PERL_ATOF
1096 UV accumulator[2] = {0,0}; /* before/after dp */
1097 bool negative = 0;
1098 const char* send = s + strlen(orig); /* one past the last */
1099 bool seen_digit = 0;
1100 I32 exp_adjust[2] = {0,0};
1101 I32 exp_acc[2] = {-1, -1};
1102 /* the current exponent adjust for the accumulators */
1103 I32 exponent = 0;
1104 I32 seen_dp = 0;
1105 I32 digit = 0;
1106 I32 old_digit = 0;
1107 I32 sig_digits = 0; /* noof significant digits seen so far */
1108
1109 PERL_ARGS_ASSERT_MY_ATOF2;
1110
1111/* There is no point in processing more significant digits
1112 * than the NV can hold. Note that NV_DIG is a lower-bound value,
1113 * while we need an upper-bound value. We add 2 to account for this;
1114 * since it will have been conservative on both the first and last digit.
1115 * For example a 32-bit mantissa with an exponent of 4 would have
1116 * exact values in the set
1117 * 4
1118 * 8
1119 * ..
1120 * 17179869172
1121 * 17179869176
1122 * 17179869180
1123 *
1124 * where for the purposes of calculating NV_DIG we would have to discount
1125 * both the first and last digit, since neither can hold all values from
1126 * 0..9; but for calculating the value we must examine those two digits.
1127 */
1128#ifdef MAX_SIG_DIG_PLUS
1129 /* It is not necessarily the case that adding 2 to NV_DIG gets all the
1130 possible digits in a NV, especially if NVs are not IEEE compliant
1131 (e.g., long doubles on IRIX) - Allen <allens@cpan.org> */
1132# define MAX_SIG_DIGITS (NV_DIG+MAX_SIG_DIG_PLUS)
1133#else
1134# define MAX_SIG_DIGITS (NV_DIG+2)
1135#endif
1136
1137/* the max number we can accumulate in a UV, and still safely do 10*N+9 */
1138#define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10))
1139
1140 /* leading whitespace */
1141 while (isSPACE(*s))
1142 ++s;
1143
1144 /* sign */
1145 switch (*s) {
1146 case '-':
1147 negative = 1;
1148 /* FALLTHROUGH */
1149 case '+':
1150 ++s;
1151 }
1152
1153 {
1154 const char *p0 = negative ? s - 1 : s;
1155 const char *p = p0;
1156 int infnan = grok_infnan(&p, send);
1157 if (infnan && p != p0) {
1158 /* If we can generate inf/nan directly, let's do so. */
1159#ifdef NV_INF
1160 if ((infnan & IS_NUMBER_INFINITY)) {
1161 *value = (infnan & IS_NUMBER_NEG) ? -NV_INF: NV_INF;
1162 return (char*)p;
1163 }
1164#endif
1165#ifdef NV_NAN
1166 if ((infnan & IS_NUMBER_NAN)) {
1167 *value = NV_NAN;
1168 return (char*)p;
1169 }
1170#endif
1171#ifdef Perl_strtod
1172 /* If still here, we didn't have either NV_INF or INV_NAN,
1173 * and can try falling back to native strtod/strtold.
1174 *
1175 * The native interface might not recognize all the possible
1176 * inf/nan strings Perl recognizes. What we can try
1177 * is to try faking the input. We will try inf/-inf/nan
1178 * as the most promising/portable input. */
1179 {
1180 const char* fake = NULL;
1181 char* endp;
1182 NV nv;
1183 if ((infnan & IS_NUMBER_INFINITY)) {
1184 fake = ((infnan & IS_NUMBER_NEG)) ? "-inf" : "inf";
1185 }
1186 else if ((infnan & IS_NUMBER_NAN)) {
1187 fake = "nan";
1188 }
1189 assert(fake);
1190 nv = Perl_strtod(fake, &endp);
1191 if (fake != endp) {
1192 if ((infnan & IS_NUMBER_INFINITY)) {
1193#ifdef Perl_isinf
1194 if (Perl_isinf(nv))
1195 *value = nv;
1196#else
1197 /* last resort, may generate SIGFPE */
1198 *value = Perl_exp((NV)1e9);
1199 if ((infnan & IS_NUMBER_NEG))
1200 *value = -*value;
1201#endif
1202 return (char*)p; /* p, not endp */
1203 }
1204 else if ((infnan & IS_NUMBER_NAN)) {
1205#ifdef Perl_isnan
1206 if (Perl_isnan(nv))
1207 *value = nv;
1208#else
1209 /* last resort, may generate SIGFPE */
1210 *value = Perl_log((NV)-1.0);
1211#endif
1212 return (char*)p; /* p, not endp */
1213 }
1214 }
1215 }
1216#endif /* #ifdef Perl_strtod */
1217 }
1218 }
1219
1220 /* we accumulate digits into an integer; when this becomes too
1221 * large, we add the total to NV and start again */
1222
1223 while (1) {
1224 if (isDIGIT(*s)) {
1225 seen_digit = 1;
1226 old_digit = digit;
1227 digit = *s++ - '0';
1228 if (seen_dp)
1229 exp_adjust[1]++;
1230
1231 /* don't start counting until we see the first significant
1232 * digit, eg the 5 in 0.00005... */
1233 if (!sig_digits && digit == 0)
1234 continue;
1235
1236 if (++sig_digits > MAX_SIG_DIGITS) {
1237 /* limits of precision reached */
1238 if (digit > 5) {
1239 ++accumulator[seen_dp];
1240 } else if (digit == 5) {
1241 if (old_digit % 2) { /* round to even - Allen */
1242 ++accumulator[seen_dp];
1243 }
1244 }
1245 if (seen_dp) {
1246 exp_adjust[1]--;
1247 } else {
1248 exp_adjust[0]++;
1249 }
1250 /* skip remaining digits */
1251 while (isDIGIT(*s)) {
1252 ++s;
1253 if (! seen_dp) {
1254 exp_adjust[0]++;
1255 }
1256 }
1257 /* warn of loss of precision? */
1258 }
1259 else {
1260 if (accumulator[seen_dp] > MAX_ACCUMULATE) {
1261 /* add accumulator to result and start again */
1262 result[seen_dp] = S_mulexp10(result[seen_dp],
1263 exp_acc[seen_dp])
1264 + (NV)accumulator[seen_dp];
1265 accumulator[seen_dp] = 0;
1266 exp_acc[seen_dp] = 0;
1267 }
1268 accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit;
1269 ++exp_acc[seen_dp];
1270 }
1271 }
1272 else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) {
1273 seen_dp = 1;
1274 if (sig_digits > MAX_SIG_DIGITS) {
1275 do {
1276 ++s;
1277 } while (isDIGIT(*s));
1278 break;
1279 }
1280 }
1281 else {
1282 break;
1283 }
1284 }
1285
1286 result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0];
1287 if (seen_dp) {
1288 result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1];
1289 }
1290
1291 if (seen_digit && (isALPHA_FOLD_EQ(*s, 'e'))) {
1292 bool expnegative = 0;
1293
1294 ++s;
1295 switch (*s) {
1296 case '-':
1297 expnegative = 1;
1298 /* FALLTHROUGH */
1299 case '+':
1300 ++s;
1301 }
1302 while (isDIGIT(*s))
1303 exponent = exponent * 10 + (*s++ - '0');
1304 if (expnegative)
1305 exponent = -exponent;
1306 }
1307
1308
1309
1310 /* now apply the exponent */
1311
1312 if (seen_dp) {
1313 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0])
1314 + S_mulexp10(result[1],exponent-exp_adjust[1]);
1315 } else {
1316 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]);
1317 }
1318
1319 /* now apply the sign */
1320 if (negative)
1321 result[2] = -result[2];
1322#endif /* USE_PERL_ATOF */
1323 *value = result[2];
1324 return (char *)s;
1325}
1326
1327/*
1328=for apidoc isinfnan
1329
1330Perl_isinfnan() is utility function that returns true if the NV
1331argument is either an infinity or a NaN, false otherwise. To test
1332in more detail, use Perl_isinf() and Perl_isnan().
1333
1334=cut
1335*/
1336bool
1337Perl_isinfnan(NV nv)
1338{
1339#ifdef Perl_isinf
1340 if (Perl_isinf(nv))
1341 return TRUE;
1342#endif
1343#ifdef Perl_isnan
1344 if (Perl_isnan(nv))
1345 return TRUE;
1346#endif
1347 return FALSE;
1348}
1349
1350#if ! defined(HAS_MODFL) && defined(HAS_AINTL) && defined(HAS_COPYSIGNL)
1351long double
1352Perl_my_modfl(long double x, long double *ip)
1353{
1354 *ip = aintl(x);
1355 return (x == *ip ? copysignl(0.0L, x) : x - *ip);
1356}
1357#endif
1358
1359#if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL)
1360long double
1361Perl_my_frexpl(long double x, int *e) {
1362 *e = x == 0.0L ? 0 : ilogbl(x) + 1;
1363 return (scalbnl(x, -*e));
1364}
1365#endif
1366
1367/*
1368=for apidoc Perl_signbit
1369
1370Return a non-zero integer if the sign bit on an NV is set, and 0 if
1371it is not.
1372
1373If Configure detects this system has a signbit() that will work with
1374our NVs, then we just use it via the #define in perl.h. Otherwise,
1375fall back on this implementation. The main use of this function
1376is catching -0.0.
1377
1378Configure notes: This function is called 'Perl_signbit' instead of a
1379plain 'signbit' because it is easy to imagine a system having a signbit()
1380function or macro that doesn't happen to work with our particular choice
1381of NVs. We shouldn't just re-#define signbit as Perl_signbit and expect
1382the standard system headers to be happy. Also, this is a no-context
1383function (no pTHX_) because Perl_signbit() is usually re-#defined in
1384perl.h as a simple macro call to the system's signbit().
1385Users should just always call Perl_signbit().
1386
1387=cut
1388*/
1389#if !defined(HAS_SIGNBIT)
1390int
1391Perl_signbit(NV x) {
1392# ifdef Perl_fp_class_nzero
1393 if (x == 0)
1394 return Perl_fp_class_nzero(x);
1395# endif
1396 return (x < 0.0) ? 1 : 0;
1397}
1398#endif
1399
1400/*
1401 * Local variables:
1402 * c-indentation-style: bsd
1403 * c-basic-offset: 4
1404 * indent-tabs-mode: nil
1405 * End:
1406 *
1407 * ex: set ts=8 sts=4 sw=4 et:
1408 */