This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Promote v5.36 usage and feature bundles doc
[perl5.git] / numeric.c
... / ...
CommitLineData
1/* numeric.c
2 *
3 * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 * 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * "That only makes eleven (plus one mislaid) and not fourteen,
13 * unless wizards count differently to other people." --Beorn
14 *
15 * [p.115 of _The Hobbit_: "Queer Lodgings"]
16 */
17
18/*
19
20This file contains all the stuff needed by perl for manipulating numeric
21values, including such things as replacements for the OS's atof() function
22
23*/
24
25#include "EXTERN.h"
26#define PERL_IN_NUMERIC_C
27#include "perl.h"
28
29#ifdef Perl_strtod
30
31PERL_STATIC_INLINE NV
32S_strtod(pTHX_ const char * const s, char ** e)
33{
34 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
35 NV result;
36
37 STORE_LC_NUMERIC_SET_TO_NEEDED();
38
39# ifdef USE_QUADMATH
40
41 result = strtoflt128(s, e);
42
43# elif defined(HAS_STRTOLD) && defined(HAS_LONG_DOUBLE) \
44 && defined(USE_LONG_DOUBLE)
45# if defined(__MINGW64_VERSION_MAJOR)
46 /***********************************************
47 We are unable to use strtold because of
48 https://sourceforge.net/p/mingw-w64/bugs/711/
49 &
50 https://sourceforge.net/p/mingw-w64/bugs/725/
51
52 but __mingw_strtold is fine.
53 ***********************************************/
54
55 result = __mingw_strtold(s, e);
56
57# else
58
59 result = strtold(s, e);
60
61# endif
62# elif defined(HAS_STRTOD)
63
64 result = strtod(s, e);
65
66# else
67# error No strtod() equivalent found
68# endif
69
70 RESTORE_LC_NUMERIC();
71
72 return result;
73}
74
75#endif /* #ifdef Perl_strtod */
76
77/*
78
79=for apidoc my_strtod
80
81This function is equivalent to the libc strtod() function, and is available
82even on platforms that lack plain strtod(). Its return value is the best
83available precision depending on platform capabilities and F<Configure>
84options.
85
86It properly handles the locale radix character, meaning it expects a dot except
87when called from within the scope of S<C<use locale>>, in which case the radix
88character should be that specified by the current locale.
89
90The synonym Strtod() may be used instead.
91
92=cut
93
94*/
95
96NV
97Perl_my_strtod(const char * const s, char **e)
98{
99 dTHX;
100
101 PERL_ARGS_ASSERT_MY_STRTOD;
102
103#ifdef Perl_strtod
104
105 return S_strtod(aTHX_ s, e);
106
107#else
108
109 {
110 NV result;
111 char * end_ptr;
112
113 end_ptr = my_atof2(s, &result);
114 if (e) {
115 *e = end_ptr;
116 }
117
118 if (! end_ptr) {
119 result = 0.0;
120 }
121
122 return result;
123 }
124
125#endif
126
127}
128
129
130U32
131Perl_cast_ulong(NV f)
132{
133 if (f < 0.0)
134 return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
135 if (f < U32_MAX_P1) {
136#if CASTFLAGS & 2
137 if (f < U32_MAX_P1_HALF)
138 return (U32) f;
139 f -= U32_MAX_P1_HALF;
140 return ((U32) f) | (1 + (U32_MAX >> 1));
141#else
142 return (U32) f;
143#endif
144 }
145 return f > 0 ? U32_MAX : 0 /* NaN */;
146}
147
148I32
149Perl_cast_i32(NV f)
150{
151 if (f < I32_MAX_P1)
152 return f < I32_MIN ? I32_MIN : (I32) f;
153 if (f < U32_MAX_P1) {
154#if CASTFLAGS & 2
155 if (f < U32_MAX_P1_HALF)
156 return (I32)(U32) f;
157 f -= U32_MAX_P1_HALF;
158 return (I32)(((U32) f) | (1 + (U32_MAX >> 1)));
159#else
160 return (I32)(U32) f;
161#endif
162 }
163 return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
164}
165
166IV
167Perl_cast_iv(NV f)
168{
169 if (f < IV_MAX_P1)
170 return f < IV_MIN ? IV_MIN : (IV) f;
171 if (f < UV_MAX_P1) {
172#if CASTFLAGS & 2
173 /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
174 if (f < UV_MAX_P1_HALF)
175 return (IV)(UV) f;
176 f -= UV_MAX_P1_HALF;
177 return (IV)(((UV) f) | (1 + (UV_MAX >> 1)));
178#else
179 return (IV)(UV) f;
180#endif
181 }
182 return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
183}
184
185UV
186Perl_cast_uv(NV f)
187{
188 if (f < 0.0)
189 return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
190 if (f < UV_MAX_P1) {
191#if CASTFLAGS & 2
192 if (f < UV_MAX_P1_HALF)
193 return (UV) f;
194 f -= UV_MAX_P1_HALF;
195 return ((UV) f) | (1 + (UV_MAX >> 1));
196#else
197 return (UV) f;
198#endif
199 }
200 return f > 0 ? UV_MAX : 0 /* NaN */;
201}
202
203/*
204=for apidoc grok_bin
205
206converts a string representing a binary number to numeric form.
207
208On entry C<start> and C<*len_p> give the string to scan, C<*flags> gives
209conversion flags, and C<result> should be C<NULL> or a pointer to an NV. The
210scan stops at the end of the string, or at just before the first invalid
211character. Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>,
212encountering an invalid character (except NUL) will also trigger a warning. On
213return C<*len_p> is set to the length of the scanned string, and C<*flags>
214gives output flags.
215
216If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
217and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_bin>
218returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
219and writes an approximation of the correct value into C<*result> (which is an
220NV; or the approximation is discarded if C<result> is NULL).
221
222The binary number may optionally be prefixed with C<"0b"> or C<"b"> unless
223C<PERL_SCAN_DISALLOW_PREFIX> is set in C<*flags> on entry.
224
225If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then any or all pairs of
226digits may be separated from each other by a single underscore; also a single
227leading underscore is accepted.
228
229=for apidoc Amnh||PERL_SCAN_ALLOW_UNDERSCORES
230=for apidoc Amnh||PERL_SCAN_DISALLOW_PREFIX
231=for apidoc Amnh||PERL_SCAN_GREATER_THAN_UV_MAX
232=for apidoc Amnh||PERL_SCAN_SILENT_ILLDIGIT
233
234=cut
235
236Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
237which suppresses any message for non-portable numbers that are still valid
238on this platform.
239 */
240
241UV
242Perl_grok_bin(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
243{
244 PERL_ARGS_ASSERT_GROK_BIN;
245
246 return grok_bin(start, len_p, flags, result);
247}
248
249/*
250=for apidoc grok_hex
251
252converts a string representing a hex number to numeric form.
253
254On entry C<start> and C<*len_p> give the string to scan, C<*flags> gives
255conversion flags, and C<result> should be C<NULL> or a pointer to an NV. The
256scan stops at the end of the string, or at just before the first invalid
257character. Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>,
258encountering an invalid character (except NUL) will also trigger a warning. On
259return C<*len_p> is set to the length of the scanned string, and C<*flags>
260gives output flags.
261
262If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
263and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_hex>
264returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
265and writes an approximation of the correct value into C<*result> (which is an
266NV; or the approximation is discarded if C<result> is NULL).
267
268The hex number may optionally be prefixed with C<"0x"> or C<"x"> unless
269C<PERL_SCAN_DISALLOW_PREFIX> is set in C<*flags> on entry.
270
271If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then any or all pairs of
272digits may be separated from each other by a single underscore; also a single
273leading underscore is accepted.
274
275=cut
276
277Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE>
278which suppresses any message for non-portable numbers, but which are valid
279on this platform. But, C<*flags> will have the corresponding flag bit set.
280 */
281
282UV
283Perl_grok_hex(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
284{
285 PERL_ARGS_ASSERT_GROK_HEX;
286
287 return grok_hex(start, len_p, flags, result);
288}
289
290/*
291=for apidoc grok_oct
292
293converts a string representing an octal number to numeric form.
294
295On entry C<start> and C<*len_p> give the string to scan, C<*flags> gives
296conversion flags, and C<result> should be C<NULL> or a pointer to an NV. The
297scan stops at the end of the string, or at just before the first invalid
298character. Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>,
299encountering an invalid character (except NUL) will also trigger a warning. On
300return C<*len_p> is set to the length of the scanned string, and C<*flags>
301gives output flags.
302
303If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
304and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_oct>
305returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
306and writes an approximation of the correct value into C<*result> (which is an
307NV; or the approximation is discarded if C<result> is NULL).
308
309If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then any or all pairs of
310digits may be separated from each other by a single underscore; also a single
311leading underscore is accepted.
312
313The C<PERL_SCAN_DISALLOW_PREFIX> flag is always treated as being set for
314this function.
315
316=cut
317
318Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE>
319which suppresses any message for non-portable numbers, but which are valid
320on this platform.
321 */
322
323UV
324Perl_grok_oct(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
325{
326 PERL_ARGS_ASSERT_GROK_OCT;
327
328 return grok_oct(start, len_p, flags, result);
329}
330
331STATIC void
332S_output_non_portable(pTHX_ const U8 base)
333{
334 /* Display the proper message for a number in the given input base not
335 * fitting in 32 bits */
336 const char * which = (base == 2)
337 ? "Binary number > 0b11111111111111111111111111111111"
338 : (base == 8)
339 ? "Octal number > 037777777777"
340 : "Hexadecimal number > 0xffffffff";
341
342 PERL_ARGS_ASSERT_OUTPUT_NON_PORTABLE;
343
344 /* Also there are listings for the other two. That's because, since they
345 * are the first word, it would be hard for a user to find them there
346 * starting with a %s */
347 /* diag_listed_as: Hexadecimal number > 0xffffffff non-portable */
348 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE), "%s non-portable", which);
349}
350
351UV
352Perl_grok_bin_oct_hex(pTHX_ const char *start,
353 STRLEN *len_p,
354 I32 *flags,
355 NV *result,
356 const unsigned shift, /* 1 for binary; 3 for octal;
357 4 for hex */
358 const U8 class_bit,
359 const char prefix
360 )
361
362{
363 const char *s0 = start;
364 const char *s;
365 STRLEN len = *len_p;
366 STRLEN bytes_so_far; /* How many real digits have been processed */
367 UV value = 0;
368 NV value_nv = 0;
369 const PERL_UINT_FAST8_T base = 1 << shift; /* 2, 8, or 16 */
370 const UV max_div= UV_MAX / base; /* Value above which, the next digit
371 processed would overflow */
372 const I32 input_flags = *flags;
373 const bool allow_underscores =
374 cBOOL(input_flags & PERL_SCAN_ALLOW_UNDERSCORES);
375 bool overflowed = FALSE;
376
377 /* In overflows, this keeps track of how much to multiply the overflowed NV
378 * by as we continue to parse the remaining digits */
379 NV factor = 0;
380
381 /* This function unifies the core of grok_bin, grok_oct, and grok_hex. It
382 * is optimized for hex conversion. For example, it uses XDIGIT_VALUE to
383 * find the numeric value of a digit. That requires more instructions than
384 * OCTAL_VALUE would, but gives the same result for the narrowed range of
385 * octal digits; same for binary. If it were ever critical to squeeze more
386 * performance from this, the function could become grok_hex, and a regen
387 * perl script could scan it and write out two edited copies for the other
388 * two functions. That would improve the performance of all three
389 * somewhat. Besides eliminating XDIGIT_VALUE for the other two, extra
390 * parameters are now passed to this to avoid conditionals. Those could
391 * become declared consts, like:
392 * const U8 base = 16;
393 * const U8 base = 8;
394 * ...
395 */
396
397 PERL_ARGS_ASSERT_GROK_BIN_OCT_HEX;
398
399 ASSUME(inRANGE(shift, 1, 4) && shift != 2);
400
401 /* Clear output flags; unlikely to find a problem that sets them */
402 *flags = 0;
403
404 if (!(input_flags & PERL_SCAN_DISALLOW_PREFIX)) {
405
406 /* strip off leading b or 0b; x or 0x.
407 for compatibility silently suffer "b" and "0b" as valid binary; "x"
408 and "0x" as valid hex numbers. */
409 if (len >= 1) {
410 if (isALPHA_FOLD_EQ(s0[0], prefix)) {
411 s0++;
412 len--;
413 }
414 else if (len >= 2 && s0[0] == '0' && (isALPHA_FOLD_EQ(s0[1], prefix))) {
415 s0+=2;
416 len-=2;
417 }
418 }
419 }
420
421 s = s0; /* s0 potentially advanced from 'start' */
422
423 /* Unroll the loop so that the first 8 digits are branchless except for the
424 * switch. A ninth hex one overflows a 32 bit word. */
425 switch (len) {
426 case 0:
427 return 0;
428 default:
429 if (UNLIKELY(! generic_isCC_(*s, class_bit))) break;
430 value = (value << shift) | XDIGIT_VALUE(*s);
431 s++;
432 /* FALLTHROUGH */
433 case 7:
434 if (UNLIKELY(! generic_isCC_(*s, class_bit))) break;
435 value = (value << shift) | XDIGIT_VALUE(*s);
436 s++;
437 /* FALLTHROUGH */
438 case 6:
439 if (UNLIKELY(! generic_isCC_(*s, class_bit))) break;
440 value = (value << shift) | XDIGIT_VALUE(*s);
441 s++;
442 /* FALLTHROUGH */
443 case 5:
444 if (UNLIKELY(! generic_isCC_(*s, class_bit))) break;
445 value = (value << shift) | XDIGIT_VALUE(*s);
446 s++;
447 /* FALLTHROUGH */
448 case 4:
449 if (UNLIKELY(! generic_isCC_(*s, class_bit))) break;
450 value = (value << shift) | XDIGIT_VALUE(*s);
451 s++;
452 /* FALLTHROUGH */
453 case 3:
454 if (UNLIKELY(! generic_isCC_(*s, class_bit))) break;
455 value = (value << shift) | XDIGIT_VALUE(*s);
456 s++;
457 /* FALLTHROUGH */
458 case 2:
459 if (UNLIKELY(! generic_isCC_(*s, class_bit))) break;
460 value = (value << shift) | XDIGIT_VALUE(*s);
461 s++;
462 /* FALLTHROUGH */
463 case 1:
464 if (UNLIKELY(! generic_isCC_(*s, class_bit))) break;
465 value = (value << shift) | XDIGIT_VALUE(*s);
466
467 if (LIKELY(len <= 8)) {
468 return value;
469 }
470
471 s++;
472 break;
473 }
474
475 bytes_so_far = s - s0;
476 factor = shift << bytes_so_far;
477 len -= bytes_so_far;
478
479 for (; len--; s++) {
480 if (generic_isCC_(*s, class_bit)) {
481 /* Write it in this wonky order with a goto to attempt to get the
482 compiler to make the common case integer-only loop pretty tight.
483 With gcc seems to be much straighter code than old scan_hex.
484 (khw suspects that adding a LIKELY() just above would do the
485 same thing) */
486 redo:
487 if (LIKELY(value <= max_div)) {
488 value = (value << shift) | XDIGIT_VALUE(*s);
489 /* Note XDIGIT_VALUE() is branchless, works on binary
490 * and octal as well, so can be used here, without
491 * slowing those down */
492 factor *= 1 << shift;
493 continue;
494 }
495
496 /* Bah. We are about to overflow. Instead, add the unoverflowed
497 * value to an NV that contains an approximation to the correct
498 * value. Each time through the loop we have increased 'factor' so
499 * that it gives how much the current approximation needs to
500 * effectively be shifted to make room for this new value */
501 value_nv *= factor;
502 value_nv += (NV) value;
503
504 /* Then we keep accumulating digits, until all are parsed. We
505 * start over using the current input value. This will be added to
506 * 'value_nv' eventually, either when all digits are gone, or we
507 * have overflowed this fresh start. */
508 value = XDIGIT_VALUE(*s);
509 factor = 1 << shift;
510
511 if (! overflowed) {
512 overflowed = TRUE;
513 if ( ! (input_flags & PERL_SCAN_SILENT_OVERFLOW)
514 && ckWARN_d(WARN_OVERFLOW))
515 {
516 Perl_warner(aTHX_ packWARN(WARN_OVERFLOW),
517 "Integer overflow in %s number",
518 (base == 16) ? "hexadecimal"
519 : (base == 2)
520 ? "binary"
521 : "octal");
522 }
523 }
524 continue;
525 }
526
527 if ( *s == '_'
528 && len
529 && allow_underscores
530 && generic_isCC_(s[1], class_bit)
531
532 /* Don't allow a leading underscore if the only-medial bit is
533 * set */
534 && ( LIKELY(s > s0)
535 || UNLIKELY((input_flags & PERL_SCAN_ALLOW_MEDIAL_UNDERSCORES)
536 != PERL_SCAN_ALLOW_MEDIAL_UNDERSCORES)))
537 {
538 --len;
539 ++s;
540 goto redo;
541 }
542
543 if (*s) {
544 if ( ! (input_flags & PERL_SCAN_SILENT_ILLDIGIT)
545 && ckWARN(WARN_DIGIT))
546 {
547 if (base != 8) {
548 Perl_warner(aTHX_ packWARN(WARN_DIGIT),
549 "Illegal %s digit '%c' ignored",
550 ((base == 2)
551 ? "binary"
552 : "hexadecimal"),
553 *s);
554 }
555 else if (isDIGIT(*s)) { /* octal base */
556
557 /* Allow \octal to work the DWIM way (that is, stop
558 * scanning as soon as non-octal characters are seen,
559 * complain only if someone seems to want to use the digits
560 * eight and nine. Since we know it is not octal, then if
561 * isDIGIT, must be an 8 or 9). */
562 Perl_warner(aTHX_ packWARN(WARN_DIGIT),
563 "Illegal octal digit '%c' ignored", *s);
564 }
565 }
566
567 if (input_flags & PERL_SCAN_NOTIFY_ILLDIGIT) {
568 *flags |= PERL_SCAN_NOTIFY_ILLDIGIT;
569 }
570 }
571
572 break;
573 }
574
575 *len_p = s - start;
576
577 if (LIKELY(! overflowed)) {
578#if UVSIZE > 4
579 if ( UNLIKELY(value > 0xffffffff)
580 && ! (input_flags & PERL_SCAN_SILENT_NON_PORTABLE))
581 {
582 output_non_portable(base);
583 *flags |= PERL_SCAN_SILENT_NON_PORTABLE;
584 }
585#endif
586 return value;
587 }
588
589 /* Overflowed: Calculate the final overflow approximation */
590 value_nv *= factor;
591 value_nv += (NV) value;
592
593 output_non_portable(base);
594
595 *flags |= PERL_SCAN_GREATER_THAN_UV_MAX
596 | PERL_SCAN_SILENT_NON_PORTABLE;
597 if (result)
598 *result = value_nv;
599 return UV_MAX;
600}
601
602/*
603=for apidoc scan_bin
604
605For backwards compatibility. Use C<grok_bin> instead.
606
607=for apidoc scan_hex
608
609For backwards compatibility. Use C<grok_hex> instead.
610
611=for apidoc scan_oct
612
613For backwards compatibility. Use C<grok_oct> instead.
614
615=cut
616 */
617
618NV
619Perl_scan_bin(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
620{
621 NV rnv;
622 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
623 const UV ruv = grok_bin (start, &len, &flags, &rnv);
624
625 PERL_ARGS_ASSERT_SCAN_BIN;
626
627 *retlen = len;
628 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
629}
630
631NV
632Perl_scan_oct(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
633{
634 NV rnv;
635 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
636 const UV ruv = grok_oct (start, &len, &flags, &rnv);
637
638 PERL_ARGS_ASSERT_SCAN_OCT;
639
640 *retlen = len;
641 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
642}
643
644NV
645Perl_scan_hex(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
646{
647 NV rnv;
648 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
649 const UV ruv = grok_hex (start, &len, &flags, &rnv);
650
651 PERL_ARGS_ASSERT_SCAN_HEX;
652
653 *retlen = len;
654 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
655}
656
657/*
658=for apidoc grok_numeric_radix
659
660Scan and skip for a numeric decimal separator (radix).
661
662=cut
663 */
664bool
665Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
666{
667 PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
668
669#ifdef USE_LOCALE_NUMERIC
670
671 if (IN_LC(LC_NUMERIC)) {
672 STRLEN len;
673 char * radix;
674 bool matches_radix = FALSE;
675 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
676
677 STORE_LC_NUMERIC_FORCE_TO_UNDERLYING();
678
679 radix = SvPV(PL_numeric_radix_sv, len);
680 radix = savepvn(radix, len);
681
682 RESTORE_LC_NUMERIC();
683
684 if (*sp + len <= send) {
685 matches_radix = memEQ(*sp, radix, len);
686 }
687
688 Safefree(radix);
689
690 if (matches_radix) {
691 *sp += len;
692 return TRUE;
693 }
694 }
695
696#endif
697
698 /* always try "." if numeric radix didn't match because
699 * we may have data from different locales mixed */
700 if (*sp < send && **sp == '.') {
701 ++*sp;
702 return TRUE;
703 }
704
705 return FALSE;
706}
707
708/*
709=for apidoc grok_infnan
710
711Helper for C<grok_number()>, accepts various ways of spelling "infinity"
712or "not a number", and returns one of the following flag combinations:
713
714 IS_NUMBER_INFINITY
715 IS_NUMBER_NAN
716 IS_NUMBER_INFINITY | IS_NUMBER_NEG
717 IS_NUMBER_NAN | IS_NUMBER_NEG
718 0
719
720possibly |-ed with C<IS_NUMBER_TRAILING>.
721
722If an infinity or a not-a-number is recognized, C<*sp> will point to
723one byte past the end of the recognized string. If the recognition fails,
724zero is returned, and C<*sp> will not move.
725
726=for apidoc Amnh|bool|IS_NUMBER_GREATER_THAN_UV_MAX
727=for apidoc Amnh|bool|IS_NUMBER_INFINITY
728=for apidoc Amnh|bool|IS_NUMBER_IN_UV
729=for apidoc Amnh|bool|IS_NUMBER_NAN
730=for apidoc Amnh|bool|IS_NUMBER_NEG
731=for apidoc Amnh|bool|IS_NUMBER_NOT_INT
732
733=cut
734*/
735
736int
737Perl_grok_infnan(pTHX_ const char** sp, const char* send)
738{
739 const char* s = *sp;
740 int flags = 0;
741#if defined(NV_INF) || defined(NV_NAN)
742 bool odh = FALSE; /* one-dot-hash: 1.#INF */
743
744 PERL_ARGS_ASSERT_GROK_INFNAN;
745
746 if (*s == '+') {
747 s++; if (s == send) return 0;
748 }
749 else if (*s == '-') {
750 flags |= IS_NUMBER_NEG; /* Yes, -NaN happens. Incorrect but happens. */
751 s++; if (s == send) return 0;
752 }
753
754 if (*s == '1') {
755 /* Visual C: 1.#SNAN, -1.#QNAN, 1#INF, 1.#IND (maybe also 1.#NAN)
756 * Let's keep the dot optional. */
757 s++; if (s == send) return 0;
758 if (*s == '.') {
759 s++; if (s == send) return 0;
760 }
761 if (*s == '#') {
762 s++; if (s == send) return 0;
763 } else
764 return 0;
765 odh = TRUE;
766 }
767
768 if (isALPHA_FOLD_EQ(*s, 'I')) {
769 /* INF or IND (1.#IND is "indeterminate", a certain type of NAN) */
770
771 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
772 s++; if (s == send) return 0;
773 if (isALPHA_FOLD_EQ(*s, 'F')) {
774 flags |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
775 *sp = ++s;
776 if (s < send && (isALPHA_FOLD_EQ(*s, 'I'))) {
777 int trail = flags | IS_NUMBER_TRAILING;
778 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return trail;
779 s++; if (s == send || isALPHA_FOLD_NE(*s, 'I')) return trail;
780 s++; if (s == send || isALPHA_FOLD_NE(*s, 'T')) return trail;
781 s++; if (s == send || isALPHA_FOLD_NE(*s, 'Y')) return trail;
782 *sp = ++s;
783 } else if (odh) {
784 while (s < send && *s == '0') { /* 1.#INF00 */
785 s++;
786 }
787 }
788 goto ok_check_space;
789 }
790 else if (isALPHA_FOLD_EQ(*s, 'D') && odh) { /* 1.#IND */
791 s++;
792 flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
793 while (s < send && *s == '0') { /* 1.#IND00 */
794 s++;
795 }
796 goto ok_check_space;
797 } else
798 return 0;
799 }
800 else {
801 /* Maybe NAN of some sort */
802
803 if (isALPHA_FOLD_EQ(*s, 'S') || isALPHA_FOLD_EQ(*s, 'Q')) {
804 /* snan, qNaN */
805 /* XXX do something with the snan/qnan difference */
806 s++; if (s == send) return 0;
807 }
808
809 if (isALPHA_FOLD_EQ(*s, 'N')) {
810 s++; if (s == send || isALPHA_FOLD_NE(*s, 'A')) return 0;
811 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
812 flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
813 *sp = ++s;
814
815 if (s == send) {
816 return flags;
817 }
818
819 /* NaN can be followed by various stuff (NaNQ, NaNS), but
820 * there are also multiple different NaN values, and some
821 * implementations output the "payload" values,
822 * e.g. NaN123, NAN(abc), while some legacy implementations
823 * have weird stuff like NaN%. */
824 if (isALPHA_FOLD_EQ(*s, 'q') ||
825 isALPHA_FOLD_EQ(*s, 's')) {
826 /* "nanq" or "nans" are ok, though generating
827 * these portably is tricky. */
828 *sp = ++s;
829 if (s == send) {
830 return flags;
831 }
832 }
833 if (*s == '(') {
834 /* C99 style "nan(123)" or Perlish equivalent "nan($uv)". */
835 const char *t;
836 int trail = flags | IS_NUMBER_TRAILING;
837 s++;
838 if (s == send) { return trail; }
839 t = s + 1;
840 while (t < send && *t && *t != ')') {
841 t++;
842 }
843 if (t == send) { return trail; }
844 if (*t == ')') {
845 int nantype;
846 UV nanval;
847 if (s[0] == '0' && s + 2 < t &&
848 isALPHA_FOLD_EQ(s[1], 'x') &&
849 isXDIGIT(s[2])) {
850 STRLEN len = t - s;
851 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES;
852 nanval = grok_hex(s, &len, &flags, NULL);
853 if ((flags & PERL_SCAN_GREATER_THAN_UV_MAX)) {
854 nantype = 0;
855 } else {
856 nantype = IS_NUMBER_IN_UV;
857 }
858 s += len;
859 } else if (s[0] == '0' && s + 2 < t &&
860 isALPHA_FOLD_EQ(s[1], 'b') &&
861 (s[2] == '0' || s[2] == '1')) {
862 STRLEN len = t - s;
863 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES;
864 nanval = grok_bin(s, &len, &flags, NULL);
865 if ((flags & PERL_SCAN_GREATER_THAN_UV_MAX)) {
866 nantype = 0;
867 } else {
868 nantype = IS_NUMBER_IN_UV;
869 }
870 s += len;
871 } else {
872 const char *u;
873 nantype =
874 grok_number_flags(s, t - s, &nanval,
875 PERL_SCAN_TRAILING |
876 PERL_SCAN_ALLOW_UNDERSCORES);
877 /* Unfortunately grok_number_flags() doesn't
878 * tell how far we got and the ')' will always
879 * be "trailing", so we need to double-check
880 * whether we had something dubious. */
881 for (u = s; u < t; u++) {
882 if (!isDIGIT(*u))
883 break;
884 }
885 s = u;
886 }
887
888 /* XXX Doesn't do octal: nan("0123").
889 * Probably not a big loss. */
890
891 /* XXX the nanval is currently unused, that is,
892 * not inserted as the NaN payload of the NV.
893 * But the above code already parses the C99
894 * nan(...) format. See below, and see also
895 * the nan() in POSIX.xs.
896 *
897 * Certain configuration combinations where
898 * NVSIZE is greater than UVSIZE mean that
899 * a single UV cannot contain all the possible
900 * NaN payload bits. There would need to be
901 * some more generic syntax than "nan($uv)".
902 *
903 * Issues to keep in mind:
904 *
905 * (1) In most common cases there would
906 * not be an integral number of bytes that
907 * could be set, only a certain number of bits.
908 * For example for the common case of
909 * NVSIZE == UVSIZE == 8 there is room for 52
910 * bits in the payload, but the most significant
911 * bit is commonly reserved for the
912 * signaling/quiet bit, leaving 51 bits.
913 * Furthermore, the C99 nan() is supposed
914 * to generate quiet NaNs, so it is doubtful
915 * whether it should be able to generate
916 * signaling NaNs. For the x86 80-bit doubles
917 * (if building a long double Perl) there would
918 * be 62 bits (s/q bit being the 63rd).
919 *
920 * (2) Endianness of the payload bits. If the
921 * payload is specified as an UV, the low-order
922 * bits of the UV are naturally little-endianed
923 * (rightmost) bits of the payload. The endianness
924 * of UVs and NVs can be different. */
925
926 if ((nantype & IS_NUMBER_NOT_INT) ||
927 !(nantype && IS_NUMBER_IN_UV)) {
928 /* treat "NaN(invalid)" the same as "NaNgarbage" */
929 return trail;
930 }
931 else {
932 /* allow whitespace between valid payload and ')' */
933 while (s < t && isSPACE(*s))
934 s++;
935 /* but on anything else treat the whole '(...)' chunk
936 * as trailing garbage */
937 if (s < t)
938 return trail;
939 s = t + 1;
940 goto ok_check_space;
941 }
942 } else {
943 /* Looked like nan(...), but no close paren. */
944 return trail;
945 }
946 } else {
947 /* Note that we here implicitly accept (parse as
948 * "nan", but with warnings) also any other weird
949 * trailing stuff for "nan". In the above we just
950 * check that if we got the C99-style "nan(...)",
951 * the "..." looks sane.
952 * If in future we accept more ways of specifying
953 * the nan payload, the accepting would happen around
954 * here. */
955 goto ok_check_space;
956 }
957 }
958 else
959 return 0;
960 }
961 NOT_REACHED; /* NOTREACHED */
962
963 /* We parsed something valid, s points after it, flags describes it */
964 ok_check_space:
965 while (s < send && isSPACE(*s))
966 s++;
967 *sp = s;
968 return flags | (s < send ? IS_NUMBER_TRAILING : 0);
969
970#else
971 PERL_UNUSED_ARG(send);
972 *sp = s;
973 return flags;
974#endif /* #if defined(NV_INF) || defined(NV_NAN) */
975}
976
977/*
978=for apidoc grok_number_flags
979
980Recognise (or not) a number. The type of the number is returned
981(0 if unrecognised), otherwise it is a bit-ORed combination of
982C<IS_NUMBER_IN_UV>, C<IS_NUMBER_GREATER_THAN_UV_MAX>, C<IS_NUMBER_NOT_INT>,
983C<IS_NUMBER_NEG>, C<IS_NUMBER_INFINITY>, C<IS_NUMBER_NAN> (defined in perl.h).
984
985If the value of the number can fit in a UV, it is returned in C<*valuep>.
986C<IS_NUMBER_IN_UV> will be set to indicate that C<*valuep> is valid, C<IS_NUMBER_IN_UV>
987will never be set unless C<*valuep> is valid, but C<*valuep> may have been assigned
988to during processing even though C<IS_NUMBER_IN_UV> is not set on return.
989If C<valuep> is C<NULL>, C<IS_NUMBER_IN_UV> will be set for the same cases as when
990C<valuep> is non-C<NULL>, but no actual assignment (or SEGV) will occur.
991
992C<IS_NUMBER_NOT_INT> will be set with C<IS_NUMBER_IN_UV> if trailing decimals were
993seen (in which case C<*valuep> gives the true value truncated to an integer), and
994C<IS_NUMBER_NEG> if the number is negative (in which case C<*valuep> holds the
995absolute value). C<IS_NUMBER_IN_UV> is not set if C<e> notation was used or the
996number is larger than a UV.
997
998C<flags> allows only C<PERL_SCAN_TRAILING>, which allows for trailing
999non-numeric text on an otherwise successful I<grok>, setting
1000C<IS_NUMBER_TRAILING> on the result.
1001
1002=for apidoc Amnh||PERL_SCAN_TRAILING
1003
1004=for apidoc grok_number
1005
1006Identical to C<grok_number_flags()> with C<flags> set to zero.
1007
1008=cut
1009 */
1010int
1011Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
1012{
1013 PERL_ARGS_ASSERT_GROK_NUMBER;
1014
1015 return grok_number_flags(pv, len, valuep, 0);
1016}
1017
1018static const UV uv_max_div_10 = UV_MAX / 10;
1019static const U8 uv_max_mod_10 = UV_MAX % 10;
1020
1021int
1022Perl_grok_number_flags(pTHX_ const char *pv, STRLEN len, UV *valuep, U32 flags)
1023{
1024 const char *s = pv;
1025 const char * const send = pv + len;
1026 const char *d;
1027 int numtype = 0;
1028
1029 PERL_ARGS_ASSERT_GROK_NUMBER_FLAGS;
1030
1031 if (UNLIKELY(isSPACE(*s))) {
1032 s++;
1033 while (s < send) {
1034 if (LIKELY(! isSPACE(*s))) goto non_space;
1035 s++;
1036 }
1037 return 0;
1038 non_space: ;
1039 }
1040
1041 /* See if signed. This assumes it is more likely to be unsigned, so
1042 * penalizes signed by an extra conditional; rewarding unsigned by one fewer
1043 * (because we detect '+' and '-' with a single test and then add a
1044 * conditional to determine which) */
1045 if (UNLIKELY((*s & ~('+' ^ '-')) == ('+' & '-') )) {
1046
1047 /* Here, on ASCII platforms, *s is one of: 0x29 = ')', 2B = '+', 2D = '-',
1048 * 2F = '/'. That is, it is either a sign, or a character that doesn't
1049 * belong in a number at all (unless it's a radix character in a weird
1050 * locale). Given this, it's far more likely to be a minus than the
1051 * others. (On EBCDIC it is one of 42, 44, 46, 48, 4A, 4C, 4E, (not 40
1052 * because can't be a space) 60, 62, 64, 66, 68, 6A, 6C, 6E. Again,
1053 * only potentially a weird radix character, or 4E='+', or 60='-') */
1054 if (LIKELY(*s == '-')) {
1055 s++;
1056 numtype = IS_NUMBER_NEG;
1057 }
1058 else if (LIKELY(*s == '+'))
1059 s++;
1060 else /* Can't just return failure here, as it could be a weird radix
1061 character */
1062 goto done_sign;
1063
1064 if (UNLIKELY(s == send))
1065 return 0;
1066 done_sign: ;
1067 }
1068
1069 /* The first digit (after optional sign): note that might
1070 * also point to "infinity" or "nan", or "1.#INF". */
1071 d = s;
1072
1073 /* next must be digit or the radix separator or beginning of infinity/nan */
1074 if (LIKELY(isDIGIT(*s))) {
1075 /* UVs are at least 32 bits, so the first 9 decimal digits cannot
1076 overflow. */
1077 UV value = *s - '0'; /* Process this first (perhaps only) digit */
1078 int digit;
1079
1080 s++;
1081
1082 switch(send - s) {
1083 default: /* 8 or more remaining characters */
1084 digit = *s - '0';
1085 if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
1086 value = value * 10 + digit;
1087 s++;
1088 /* FALLTHROUGH */
1089 case 7:
1090 digit = *s - '0';
1091 if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
1092 value = value * 10 + digit;
1093 s++;
1094 /* FALLTHROUGH */
1095 case 6:
1096 digit = *s - '0';
1097 if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
1098 value = value * 10 + digit;
1099 s++;
1100 /* FALLTHROUGH */
1101 case 5:
1102 digit = *s - '0';
1103 if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
1104 value = value * 10 + digit;
1105 s++;
1106 /* FALLTHROUGH */
1107 case 4:
1108 digit = *s - '0';
1109 if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
1110 value = value * 10 + digit;
1111 s++;
1112 /* FALLTHROUGH */
1113 case 3:
1114 digit = *s - '0';
1115 if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
1116 value = value * 10 + digit;
1117 s++;
1118 /* FALLTHROUGH */
1119 case 2:
1120 digit = *s - '0';
1121 if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
1122 value = value * 10 + digit;
1123 s++;
1124 /* FALLTHROUGH */
1125 case 1:
1126 digit = *s - '0';
1127 if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
1128 value = value * 10 + digit;
1129 s++;
1130 /* FALLTHROUGH */
1131 case 0: /* This case means the string consists of just the one
1132 digit we already have processed */
1133
1134 /* If we got here by falling through other than the default: case, we
1135 * have processed the whole string, and know it consists entirely of
1136 * digits, and can't have overflowed. */
1137 if (s >= send) {
1138 if (valuep)
1139 *valuep = value;
1140 return numtype|IS_NUMBER_IN_UV;
1141 }
1142
1143 /* Here, there are extra characters beyond the first 9 digits. Use a
1144 * loop to accumulate any remaining digits, until we get a non-digit or
1145 * would overflow. Note that leading zeros could cause us to get here
1146 * without being close to overflowing.
1147 *
1148 * (The conditional 's >= send' above could be eliminated by making the
1149 * default: in the switch to instead be 'case 8:', and process longer
1150 * strings separately by using the loop below. This would penalize
1151 * these inputs by the extra instructions needed for looping. That
1152 * could be eliminated by copying the unwound code from above to handle
1153 * the firt 9 digits of these. khw didn't think this saving of a
1154 * single conditional was worth it.) */
1155 do {
1156 digit = *s - '0';
1157 if (! inRANGE(digit, 0, 9)) goto mantissa_done;
1158 if ( value < uv_max_div_10
1159 || ( value == uv_max_div_10
1160 && digit <= uv_max_mod_10))
1161 {
1162 value = value * 10 + digit;
1163 s++;
1164 }
1165 else { /* value would overflow. skip the remaining digits, don't
1166 worry about setting *valuep. */
1167 do {
1168 s++;
1169 } while (s < send && isDIGIT(*s));
1170 numtype |=
1171 IS_NUMBER_GREATER_THAN_UV_MAX;
1172 goto skip_value;
1173 }
1174 } while (s < send);
1175 } /* End switch on input length */
1176
1177 mantissa_done:
1178 numtype |= IS_NUMBER_IN_UV;
1179 if (valuep)
1180 *valuep = value;
1181
1182 skip_value:
1183 if (GROK_NUMERIC_RADIX(&s, send)) {
1184 numtype |= IS_NUMBER_NOT_INT;
1185 while (s < send && isDIGIT(*s)) /* optional digits after the radix */
1186 s++;
1187 }
1188 } /* End of *s is a digit */
1189 else if (GROK_NUMERIC_RADIX(&s, send)) {
1190 numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
1191 /* no digits before the radix means we need digits after it */
1192 if (s < send && isDIGIT(*s)) {
1193 do {
1194 s++;
1195 } while (s < send && isDIGIT(*s));
1196 if (valuep) {
1197 /* integer approximation is valid - it's 0. */
1198 *valuep = 0;
1199 }
1200 }
1201 else
1202 return 0;
1203 }
1204
1205 if (LIKELY(s > d) && s < send) {
1206 /* we can have an optional exponent part */
1207 if (UNLIKELY(isALPHA_FOLD_EQ(*s, 'e'))) {
1208 s++;
1209 if (s < send && (*s == '-' || *s == '+'))
1210 s++;
1211 if (s < send && isDIGIT(*s)) {
1212 do {
1213 s++;
1214 } while (s < send && isDIGIT(*s));
1215 }
1216 else if (flags & PERL_SCAN_TRAILING)
1217 return numtype | IS_NUMBER_TRAILING;
1218 else
1219 return 0;
1220
1221 /* The only flag we keep is sign. Blow away any "it's UV" */
1222 numtype &= IS_NUMBER_NEG;
1223 numtype |= IS_NUMBER_NOT_INT;
1224 }
1225 }
1226
1227 while (s < send) {
1228 if (LIKELY(! isSPACE(*s))) goto end_space;
1229 s++;
1230 }
1231 return numtype;
1232
1233 end_space:
1234
1235 if (UNLIKELY(memEQs(pv, len, "0 but true"))) {
1236 if (valuep)
1237 *valuep = 0;
1238 return IS_NUMBER_IN_UV;
1239 }
1240
1241 /* We could be e.g. at "Inf" or "NaN", or at the "#" of "1.#INF". */
1242 if ((s + 2 < send) && UNLIKELY(memCHRs("inqs#", toFOLD(*s)))) {
1243 /* Really detect inf/nan. Start at d, not s, since the above
1244 * code might have already consumed the "1." or "1". */
1245 const int infnan = Perl_grok_infnan(aTHX_ &d, send);
1246
1247 if ((infnan & IS_NUMBER_TRAILING) && !(flags & PERL_SCAN_TRAILING)) {
1248 return 0;
1249 }
1250 if ((infnan & IS_NUMBER_INFINITY)) {
1251 return (numtype | infnan); /* Keep sign for infinity. */
1252 }
1253 else if ((infnan & IS_NUMBER_NAN)) {
1254 return (numtype | infnan) & ~IS_NUMBER_NEG; /* Clear sign for nan. */
1255 }
1256 }
1257 else if (flags & PERL_SCAN_TRAILING) {
1258 return numtype | IS_NUMBER_TRAILING;
1259 }
1260
1261 return 0;
1262}
1263
1264/*
1265=for apidoc grok_atoUV
1266
1267parse a string, looking for a decimal unsigned integer.
1268
1269On entry, C<pv> points to the beginning of the string;
1270C<valptr> points to a UV that will receive the converted value, if found;
1271C<endptr> is either NULL or points to a variable that points to one byte
1272beyond the point in C<pv> that this routine should examine.
1273If C<endptr> is NULL, C<pv> is assumed to be NUL-terminated.
1274
1275Returns FALSE if C<pv> doesn't represent a valid unsigned integer value (with
1276no leading zeros). Otherwise it returns TRUE, and sets C<*valptr> to that
1277value.
1278
1279If you constrain the portion of C<pv> that is looked at by this function (by
1280passing a non-NULL C<endptr>), and if the intial bytes of that portion form a
1281valid value, it will return TRUE, setting C<*endptr> to the byte following the
1282final digit of the value. But if there is no constraint at what's looked at,
1283all of C<pv> must be valid in order for TRUE to be returned. C<*endptr> is
1284unchanged from its value on input if FALSE is returned;
1285
1286The only characters this accepts are the decimal digits '0'..'9'.
1287
1288As opposed to L<atoi(3)> or L<strtol(3)>, C<grok_atoUV> does NOT allow optional
1289leading whitespace, nor negative inputs. If such features are required, the
1290calling code needs to explicitly implement those.
1291
1292Note that this function returns FALSE for inputs that would overflow a UV,
1293or have leading zeros. Thus a single C<0> is accepted, but not C<00> nor
1294C<01>, C<002>, I<etc>.
1295
1296Background: C<atoi> has severe problems with illegal inputs, it cannot be
1297used for incremental parsing, and therefore should be avoided
1298C<atoi> and C<strtol> are also affected by locale settings, which can also be
1299seen as a bug (global state controlled by user environment).
1300
1301=cut
1302
1303*/
1304
1305bool
1306Perl_grok_atoUV(const char *pv, UV *valptr, const char** endptr)
1307{
1308 const char* s = pv;
1309 const char** eptr;
1310 const char* end2; /* Used in case endptr is NULL. */
1311 UV val = 0; /* The parsed value. */
1312
1313 PERL_ARGS_ASSERT_GROK_ATOUV;
1314
1315 if (endptr) {
1316 eptr = endptr;
1317 }
1318 else {
1319 end2 = s + strlen(s);
1320 eptr = &end2;
1321 }
1322
1323 if ( *eptr <= s
1324 || ! isDIGIT(*s))
1325 {
1326 return FALSE;
1327 }
1328
1329 /* Single-digit inputs are quite common. */
1330 val = *s++ - '0';
1331 if (s < *eptr && isDIGIT(*s)) {
1332 /* Fail on extra leading zeros. */
1333 if (val == 0)
1334 return FALSE;
1335 while (s < *eptr && isDIGIT(*s)) {
1336 /* This could be unrolled like in grok_number(), but
1337 * the expected uses of this are not speed-needy, and
1338 * unlikely to need full 64-bitness. */
1339 const U8 digit = *s++ - '0';
1340 if (val < uv_max_div_10 ||
1341 (val == uv_max_div_10 && digit <= uv_max_mod_10)) {
1342 val = val * 10 + digit;
1343 } else {
1344 return FALSE;
1345 }
1346 }
1347 }
1348
1349 if (endptr == NULL) {
1350 if (*s) {
1351 return FALSE; /* If endptr is NULL, no trailing non-digits allowed. */
1352 }
1353 }
1354 else {
1355 *endptr = s;
1356 }
1357
1358 *valptr = val;
1359 return TRUE;
1360}
1361
1362#ifndef Perl_strtod
1363STATIC NV
1364S_mulexp10(NV value, I32 exponent)
1365{
1366 NV result = 1.0;
1367 NV power = 10.0;
1368 bool negative = 0;
1369 I32 bit;
1370
1371 if (exponent == 0)
1372 return value;
1373 if (value == 0)
1374 return (NV)0;
1375
1376 /* On OpenVMS VAX we by default use the D_FLOAT double format,
1377 * and that format does not have *easy* capabilities [1] for
1378 * overflowing doubles 'silently' as IEEE fp does. We also need
1379 * to support G_FLOAT on both VAX and Alpha, and though the exponent
1380 * range is much larger than D_FLOAT it still doesn't do silent
1381 * overflow. Therefore we need to detect early whether we would
1382 * overflow (this is the behaviour of the native string-to-float
1383 * conversion routines, and therefore of native applications, too).
1384 *
1385 * [1] Trying to establish a condition handler to trap floating point
1386 * exceptions is not a good idea. */
1387
1388 /* In UNICOS and in certain Cray models (such as T90) there is no
1389 * IEEE fp, and no way at all from C to catch fp overflows gracefully.
1390 * There is something you can do if you are willing to use some
1391 * inline assembler: the instruction is called DFI-- but that will
1392 * disable *all* floating point interrupts, a little bit too large
1393 * a hammer. Therefore we need to catch potential overflows before
1394 * it's too late. */
1395
1396#if ((defined(VMS) && !defined(_IEEE_FP)) || defined(_UNICOS) || defined(DOUBLE_IS_VAX_FLOAT)) && defined(NV_MAX_10_EXP)
1397 STMT_START {
1398 const NV exp_v = log10(value);
1399 if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP)
1400 return NV_MAX;
1401 if (exponent < 0) {
1402 if (-(exponent + exp_v) >= NV_MAX_10_EXP)
1403 return 0.0;
1404 while (-exponent >= NV_MAX_10_EXP) {
1405 /* combination does not overflow, but 10^(-exponent) does */
1406 value /= 10;
1407 ++exponent;
1408 }
1409 }
1410 } STMT_END;
1411#endif
1412
1413 if (exponent < 0) {
1414 negative = 1;
1415 exponent = -exponent;
1416#ifdef NV_MAX_10_EXP
1417 /* for something like 1234 x 10^-309, the action of calculating
1418 * the intermediate value 10^309 then returning 1234 / (10^309)
1419 * will fail, since 10^309 becomes infinity. In this case try to
1420 * refactor it as 123 / (10^308) etc.
1421 */
1422 while (value && exponent > NV_MAX_10_EXP) {
1423 exponent--;
1424 value /= 10;
1425 }
1426 if (value == 0.0)
1427 return value;
1428#endif
1429 }
1430#if defined(__osf__)
1431 /* Even with cc -ieee + ieee_set_fp_control(IEEE_TRAP_ENABLE_INV)
1432 * Tru64 fp behavior on inf/nan is somewhat broken. Another way
1433 * to do this would be ieee_set_fp_control(IEEE_TRAP_ENABLE_OVF)
1434 * but that breaks another set of infnan.t tests. */
1435# define FP_OVERFLOWS_TO_ZERO
1436#endif
1437 for (bit = 1; exponent; bit <<= 1) {
1438 if (exponent & bit) {
1439 exponent ^= bit;
1440 result *= power;
1441#ifdef FP_OVERFLOWS_TO_ZERO
1442 if (result == 0)
1443# ifdef NV_INF
1444 return value < 0 ? -NV_INF : NV_INF;
1445# else
1446 return value < 0 ? -FLT_MAX : FLT_MAX;
1447# endif
1448#endif
1449 /* Floating point exceptions are supposed to be turned off,
1450 * but if we're obviously done, don't risk another iteration.
1451 */
1452 if (exponent == 0) break;
1453 }
1454 power *= power;
1455 }
1456 return negative ? value / result : value * result;
1457}
1458#endif /* #ifndef Perl_strtod */
1459
1460#ifdef Perl_strtod
1461# define ATOF(s, x) my_atof2(s, &x)
1462#else
1463# define ATOF(s, x) Perl_atof2(s, x)
1464#endif
1465
1466NV
1467Perl_my_atof(pTHX_ const char* s)
1468{
1469
1470/*
1471=for apidoc my_atof
1472
1473L<C<atof>(3)>, but properly works with Perl locale handling, accepting a dot
1474radix character always, but also the current locale's radix character if and
1475only if called from within the lexical scope of a Perl C<use locale> statement.
1476
1477N.B. C<s> must be NUL terminated.
1478
1479=cut
1480*/
1481
1482 NV x = 0.0;
1483
1484 PERL_ARGS_ASSERT_MY_ATOF;
1485
1486#if ! defined(USE_LOCALE_NUMERIC)
1487
1488 ATOF(s, x);
1489
1490#else
1491
1492 {
1493 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
1494 STORE_LC_NUMERIC_SET_TO_NEEDED();
1495 if (! (PL_numeric_radix_sv && IN_LC(LC_NUMERIC))) {
1496 ATOF(s,x);
1497 }
1498 else {
1499
1500 /* Look through the string for the first thing that looks like a
1501 * decimal point: either the value in the current locale or the
1502 * standard fallback of '.'. The one which appears earliest in the
1503 * input string is the one that we should have atof look for. Note
1504 * that we have to determine this beforehand because on some
1505 * systems, Perl_atof2 is just a wrapper around the system's atof.
1506 * */
1507 const char * const standard_pos = strchr(s, '.');
1508 const char * const local_pos
1509 = strstr(s, SvPV_nolen(PL_numeric_radix_sv));
1510 const bool use_standard_radix
1511 = standard_pos && (!local_pos || standard_pos < local_pos);
1512
1513 if (use_standard_radix) {
1514 SET_NUMERIC_STANDARD();
1515 LOCK_LC_NUMERIC_STANDARD();
1516 }
1517
1518 ATOF(s,x);
1519
1520 if (use_standard_radix) {
1521 UNLOCK_LC_NUMERIC_STANDARD();
1522 SET_NUMERIC_UNDERLYING();
1523 }
1524 }
1525 RESTORE_LC_NUMERIC();
1526 }
1527
1528#endif
1529
1530 return x;
1531}
1532
1533#if defined(NV_INF) || defined(NV_NAN)
1534
1535static char*
1536S_my_atof_infnan(pTHX_ const char* s, bool negative, const char* send, NV* value)
1537{
1538 const char *p0 = negative ? s - 1 : s;
1539 const char *p = p0;
1540 const int infnan = grok_infnan(&p, send);
1541 /* We act like PERL_SCAN_TRAILING here to permit trailing garbage,
1542 * it is not clear if that is desirable.
1543 */
1544 if (infnan && p != p0) {
1545 /* If we can generate inf/nan directly, let's do so. */
1546#ifdef NV_INF
1547 if ((infnan & IS_NUMBER_INFINITY)) {
1548 *value = (infnan & IS_NUMBER_NEG) ? -NV_INF: NV_INF;
1549 return (char*)p;
1550 }
1551#endif
1552#ifdef NV_NAN
1553 if ((infnan & IS_NUMBER_NAN)) {
1554 *value = NV_NAN;
1555 return (char*)p;
1556 }
1557#endif
1558#ifdef Perl_strtod
1559 /* If still here, we didn't have either NV_INF or NV_NAN,
1560 * and can try falling back to native strtod/strtold.
1561 *
1562 * The native interface might not recognize all the possible
1563 * inf/nan strings Perl recognizes. What we can try
1564 * is to try faking the input. We will try inf/-inf/nan
1565 * as the most promising/portable input. */
1566 {
1567 const char* fake = "silence compiler warning";
1568 char* endp;
1569 NV nv;
1570#ifdef NV_INF
1571 if ((infnan & IS_NUMBER_INFINITY)) {
1572 fake = ((infnan & IS_NUMBER_NEG)) ? "-inf" : "inf";
1573 }
1574#endif
1575#ifdef NV_NAN
1576 if ((infnan & IS_NUMBER_NAN)) {
1577 fake = "nan";
1578 }
1579#endif
1580 assert(strNE(fake, "silence compiler warning"));
1581 nv = S_strtod(aTHX_ fake, &endp);
1582 if (fake != endp) {
1583#ifdef NV_INF
1584 if ((infnan & IS_NUMBER_INFINITY)) {
1585# ifdef Perl_isinf
1586 if (Perl_isinf(nv))
1587 *value = nv;
1588# else
1589 /* last resort, may generate SIGFPE */
1590 *value = Perl_exp((NV)1e9);
1591 if ((infnan & IS_NUMBER_NEG))
1592 *value = -*value;
1593# endif
1594 return (char*)p; /* p, not endp */
1595 }
1596#endif
1597#ifdef NV_NAN
1598 if ((infnan & IS_NUMBER_NAN)) {
1599# ifdef Perl_isnan
1600 if (Perl_isnan(nv))
1601 *value = nv;
1602# else
1603 /* last resort, may generate SIGFPE */
1604 *value = Perl_log((NV)-1.0);
1605# endif
1606 return (char*)p; /* p, not endp */
1607#endif
1608 }
1609 }
1610 }
1611#endif /* #ifdef Perl_strtod */
1612 }
1613 return NULL;
1614}
1615
1616#endif /* if defined(NV_INF) || defined(NV_NAN) */
1617
1618char*
1619Perl_my_atof2(pTHX_ const char* orig, NV* value)
1620{
1621 PERL_ARGS_ASSERT_MY_ATOF2;
1622 return my_atof3(orig, value, 0);
1623}
1624
1625char*
1626Perl_my_atof3(pTHX_ const char* orig, NV* value, const STRLEN len)
1627{
1628 const char* s = orig;
1629 NV result[3] = {0.0, 0.0, 0.0};
1630#if defined(USE_PERL_ATOF) || defined(Perl_strtod)
1631 const char* send = s + ((len != 0)
1632 ? len
1633 : strlen(orig)); /* one past the last */
1634#endif
1635#if defined(USE_PERL_ATOF) && !defined(Perl_strtod)
1636 bool negative = 0;
1637 UV accumulator[2] = {0,0}; /* before/after dp */
1638 bool seen_digit = 0;
1639 I32 exp_adjust[2] = {0,0};
1640 I32 exp_acc[2] = {-1, -1};
1641 /* the current exponent adjust for the accumulators */
1642 I32 exponent = 0;
1643 I32 seen_dp = 0;
1644 I32 digit = 0;
1645 I32 old_digit = 0;
1646 I32 sig_digits = 0; /* noof significant digits seen so far */
1647#endif
1648
1649#if defined(USE_PERL_ATOF) || defined(Perl_strtod)
1650 PERL_ARGS_ASSERT_MY_ATOF3;
1651
1652 /* leading whitespace */
1653 while (s < send && isSPACE(*s))
1654 ++s;
1655
1656# if defined(NV_INF) || defined(NV_NAN)
1657 {
1658 char* endp;
1659 if ((endp = S_my_atof_infnan(aTHX_ s, FALSE, send, value)))
1660 return endp;
1661 }
1662# endif
1663
1664 /* sign */
1665 switch (*s) {
1666 case '-':
1667# if !defined(Perl_strtod)
1668 negative = 1;
1669# endif
1670 /* FALLTHROUGH */
1671 case '+':
1672 ++s;
1673 }
1674#endif
1675
1676#ifdef Perl_strtod
1677 {
1678 char* endp;
1679 char* copy = NULL;
1680
1681 /* strtold() accepts 0x-prefixed hex and in POSIX implementations,
1682 0b-prefixed binary numbers, which is backward incompatible
1683 */
1684 if ((len == 0 || len - (s-orig) >= 2) && *s == '0' &&
1685 (isALPHA_FOLD_EQ(s[1], 'x') || isALPHA_FOLD_EQ(s[1], 'b'))) {
1686 *value = 0;
1687 return (char *)s+1;
1688 }
1689
1690 /* We do not want strtod to parse whitespace after the sign, since
1691 * that would give backward-incompatible results. So we rewind and
1692 * let strtod handle the whitespace and sign character itself. */
1693 s = orig;
1694
1695 /* If the length is passed in, the input string isn't NUL-terminated,
1696 * and in it turns out the function below assumes it is; therefore we
1697 * create a copy and NUL-terminate that */
1698 if (len) {
1699 Newx(copy, len + 1, char);
1700 Copy(orig, copy, len, char);
1701 copy[len] = '\0';
1702 s = copy;
1703 }
1704
1705 result[2] = S_strtod(aTHX_ s, &endp);
1706
1707 /* If we created a copy, 'endp' is in terms of that. Convert back to
1708 * the original */
1709 if (copy) {
1710 s = (s - copy) + (char *) orig;
1711 endp = (endp - copy) + (char *) orig;
1712 Safefree(copy);
1713 }
1714
1715 if (s != endp) {
1716 /* Note that negation is handled by strtod. */
1717 *value = result[2];
1718 return endp;
1719 }
1720 return NULL;
1721 }
1722#elif defined(USE_PERL_ATOF)
1723
1724/* There is no point in processing more significant digits
1725 * than the NV can hold. Note that NV_DIG is a lower-bound value,
1726 * while we need an upper-bound value. We add 2 to account for this;
1727 * since it will have been conservative on both the first and last digit.
1728 * For example a 32-bit mantissa with an exponent of 4 would have
1729 * exact values in the set
1730 * 4
1731 * 8
1732 * ..
1733 * 17179869172
1734 * 17179869176
1735 * 17179869180
1736 *
1737 * where for the purposes of calculating NV_DIG we would have to discount
1738 * both the first and last digit, since neither can hold all values from
1739 * 0..9; but for calculating the value we must examine those two digits.
1740 */
1741# ifdef MAX_SIG_DIG_PLUS
1742 /* It is not necessarily the case that adding 2 to NV_DIG gets all the
1743 possible digits in a NV, especially if NVs are not IEEE compliant
1744 (e.g., long doubles on IRIX) - Allen <allens@cpan.org> */
1745# define MAX_SIG_DIGITS (NV_DIG+MAX_SIG_DIG_PLUS)
1746# else
1747# define MAX_SIG_DIGITS (NV_DIG+2)
1748# endif
1749
1750/* the max number we can accumulate in a UV, and still safely do 10*N+9 */
1751# define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10))
1752
1753 /* we accumulate digits into an integer; when this becomes too
1754 * large, we add the total to NV and start again */
1755
1756 while (s < send) {
1757 if (isDIGIT(*s)) {
1758 seen_digit = 1;
1759 old_digit = digit;
1760 digit = *s++ - '0';
1761 if (seen_dp)
1762 exp_adjust[1]++;
1763
1764 /* don't start counting until we see the first significant
1765 * digit, eg the 5 in 0.00005... */
1766 if (!sig_digits && digit == 0)
1767 continue;
1768
1769 if (++sig_digits > MAX_SIG_DIGITS) {
1770 /* limits of precision reached */
1771 if (digit > 5) {
1772 ++accumulator[seen_dp];
1773 } else if (digit == 5) {
1774 if (old_digit % 2) { /* round to even - Allen */
1775 ++accumulator[seen_dp];
1776 }
1777 }
1778 if (seen_dp) {
1779 exp_adjust[1]--;
1780 } else {
1781 exp_adjust[0]++;
1782 }
1783 /* skip remaining digits */
1784 while (s < send && isDIGIT(*s)) {
1785 ++s;
1786 if (! seen_dp) {
1787 exp_adjust[0]++;
1788 }
1789 }
1790 /* warn of loss of precision? */
1791 }
1792 else {
1793 if (accumulator[seen_dp] > MAX_ACCUMULATE) {
1794 /* add accumulator to result and start again */
1795 result[seen_dp] = S_mulexp10(result[seen_dp],
1796 exp_acc[seen_dp])
1797 + (NV)accumulator[seen_dp];
1798 accumulator[seen_dp] = 0;
1799 exp_acc[seen_dp] = 0;
1800 }
1801 accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit;
1802 ++exp_acc[seen_dp];
1803 }
1804 }
1805 else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) {
1806 seen_dp = 1;
1807 if (sig_digits > MAX_SIG_DIGITS) {
1808 while (s < send && isDIGIT(*s)) {
1809 ++s;
1810 }
1811 break;
1812 }
1813 }
1814 else {
1815 break;
1816 }
1817 }
1818
1819 result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0];
1820 if (seen_dp) {
1821 result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1];
1822 }
1823
1824 if (s < send && seen_digit && (isALPHA_FOLD_EQ(*s, 'e'))) {
1825 bool expnegative = 0;
1826
1827 ++s;
1828 switch (*s) {
1829 case '-':
1830 expnegative = 1;
1831 /* FALLTHROUGH */
1832 case '+':
1833 ++s;
1834 }
1835 while (s < send && isDIGIT(*s))
1836 exponent = exponent * 10 + (*s++ - '0');
1837 if (expnegative)
1838 exponent = -exponent;
1839 }
1840
1841 /* now apply the exponent */
1842
1843 if (seen_dp) {
1844 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0])
1845 + S_mulexp10(result[1],exponent-exp_adjust[1]);
1846 } else {
1847 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]);
1848 }
1849
1850 /* now apply the sign */
1851 if (negative)
1852 result[2] = -result[2];
1853 *value = result[2];
1854 return (char *)s;
1855#else /* USE_PERL_ATOF */
1856 /* If you see this error you both don't have strtod (or configured -Ud_strtod or
1857 or it's long double/quadmath equivalent) and disabled USE_PERL_ATOF, thus
1858 removing any way for perl to convert strings to floating point numbers.
1859 */
1860# error No mechanism to convert strings to numbers available
1861#endif
1862}
1863
1864/*
1865=for apidoc isinfnan
1866
1867C<Perl_isinfnan()> is a utility function that returns true if the NV
1868argument is either an infinity or a C<NaN>, false otherwise. To test
1869in more detail, use C<Perl_isinf()> and C<Perl_isnan()>.
1870
1871This is also the logical inverse of Perl_isfinite().
1872
1873=cut
1874*/
1875bool
1876Perl_isinfnan(NV nv)
1877{
1878 PERL_UNUSED_ARG(nv);
1879#ifdef Perl_isinf
1880 if (Perl_isinf(nv))
1881 return TRUE;
1882#endif
1883#ifdef Perl_isnan
1884 if (Perl_isnan(nv))
1885 return TRUE;
1886#endif
1887 return FALSE;
1888}
1889
1890/*
1891=for apidoc isinfnansv
1892
1893Checks whether the argument would be either an infinity or C<NaN> when used
1894as a number, but is careful not to trigger non-numeric or uninitialized
1895warnings. it assumes the caller has done C<SvGETMAGIC(sv)> already.
1896
1897Note that this always accepts trailing garbage (similar to C<grok_number_flags>
1898with C<PERL_SCAN_TRAILING>), so C<"inferior"> and C<"NAND gates"> will
1899return true.
1900
1901=cut
1902*/
1903
1904bool
1905Perl_isinfnansv(pTHX_ SV *sv)
1906{
1907 PERL_ARGS_ASSERT_ISINFNANSV;
1908 if (!SvOK(sv))
1909 return FALSE;
1910 if (SvNOKp(sv))
1911 return Perl_isinfnan(SvNVX(sv));
1912 if (SvIOKp(sv))
1913 return FALSE;
1914 {
1915 STRLEN len;
1916 const char *s = SvPV_nomg_const(sv, len);
1917 return cBOOL(grok_infnan(&s, s+len));
1918 }
1919}
1920
1921#ifndef HAS_MODFL
1922/* C99 has truncl, pre-C99 Solaris had aintl. We can use either with
1923 * copysignl to emulate modfl, which is in some platforms missing or
1924 * broken. */
1925# if defined(HAS_TRUNCL) && defined(HAS_COPYSIGNL)
1926long double
1927Perl_my_modfl(long double x, long double *ip)
1928{
1929 *ip = truncl(x);
1930 return (x == *ip ? copysignl(0.0L, x) : x - *ip);
1931}
1932# elif defined(HAS_AINTL) && defined(HAS_COPYSIGNL)
1933long double
1934Perl_my_modfl(long double x, long double *ip)
1935{
1936 *ip = aintl(x);
1937 return (x == *ip ? copysignl(0.0L, x) : x - *ip);
1938}
1939# endif
1940#endif
1941
1942/* Similarly, with ilogbl and scalbnl we can emulate frexpl. */
1943#if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL)
1944long double
1945Perl_my_frexpl(long double x, int *e) {
1946 *e = x == 0.0L ? 0 : ilogbl(x) + 1;
1947 return (scalbnl(x, -*e));
1948}
1949#endif
1950
1951/*
1952=for apidoc Perl_signbit
1953
1954Return a non-zero integer if the sign bit on an NV is set, and 0 if
1955it is not.
1956
1957If F<Configure> detects this system has a C<signbit()> that will work with
1958our NVs, then we just use it via the C<#define> in F<perl.h>. Otherwise,
1959fall back on this implementation. The main use of this function
1960is catching C<-0.0>.
1961
1962C<Configure> notes: This function is called C<'Perl_signbit'> instead of a
1963plain C<'signbit'> because it is easy to imagine a system having a C<signbit()>
1964function or macro that doesn't happen to work with our particular choice
1965of NVs. We shouldn't just re-C<#define> C<signbit> as C<Perl_signbit> and expect
1966the standard system headers to be happy. Also, this is a no-context
1967function (no C<pTHX_>) because C<Perl_signbit()> is usually re-C<#defined> in
1968F<perl.h> as a simple macro call to the system's C<signbit()>.
1969Users should just always call C<Perl_signbit()>.
1970
1971=cut
1972*/
1973#if !defined(HAS_SIGNBIT)
1974int
1975Perl_signbit(NV x) {
1976# ifdef Perl_fp_class_nzero
1977 return Perl_fp_class_nzero(x);
1978 /* Try finding the high byte, and assume it's highest bit
1979 * is the sign. This assumption is probably wrong somewhere. */
1980# elif defined(USE_LONG_DOUBLE) && LONG_DOUBLEKIND == LONG_DOUBLE_IS_X86_80_BIT_LITTLE_ENDIAN
1981 return (((unsigned char *)&x)[9] & 0x80);
1982# elif defined(NV_LITTLE_ENDIAN)
1983 /* Note that NVSIZE is sizeof(NV), which would make the below be
1984 * wrong if the end bytes are unused, which happens with the x86
1985 * 80-bit long doubles, which is why take care of that above. */
1986 return (((unsigned char *)&x)[NVSIZE - 1] & 0x80);
1987# elif defined(NV_BIG_ENDIAN)
1988 return (((unsigned char *)&x)[0] & 0x80);
1989# else
1990 /* This last resort fallback is wrong for the negative zero. */
1991 return (x < 0.0) ? 1 : 0;
1992# endif
1993}
1994#endif
1995
1996/*
1997 * ex: set ts=8 sts=4 sw=4 et:
1998 */