This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
pod/.gitignore - remove redundant perlmacos.pod entry
[perl5.git] / pod / perlcall.pod
CommitLineData
a0d0e21e
LW
1=head1 NAME
2
3perlcall - Perl calling conventions from C
4
5=head1 DESCRIPTION
6
d1b91892 7The purpose of this document is to show you how to call Perl subroutines
5f05dabc 8directly from C, i.e., how to write I<callbacks>.
a0d0e21e 9
d1b91892
AD
10Apart from discussing the C interface provided by Perl for writing
11callbacks the document uses a series of examples to show how the
12interface actually works in practice. In addition some techniques for
13coding callbacks are covered.
a0d0e21e 14
d1b91892 15Examples where callbacks are necessary include
a0d0e21e
LW
16
17=over 5
18
d1b91892 19=item * An Error Handler
a0d0e21e
LW
20
21You have created an XSUB interface to an application's C API.
22
23A fairly common feature in applications is to allow you to define a C
d1b91892
AD
24function that will be called whenever something nasty occurs. What we
25would like is to be able to specify a Perl subroutine that will be
26called instead.
a0d0e21e 27
95e84303 28=item * An Event-Driven Program
a0d0e21e 29
d1b91892 30The classic example of where callbacks are used is when writing an
b0b54b5e 31event driven program, such as for an X11 application. In this case
184e9718 32you register functions to be called whenever specific events occur,
5f05dabc 33e.g., a mouse button is pressed, the cursor moves into a window or a
d1b91892 34menu item is selected.
a0d0e21e
LW
35
36=back
37
d1b91892
AD
38Although the techniques described here are applicable when embedding
39Perl in a C program, this is not the primary goal of this document.
40There are other details that must be considered and are specific to
41embedding Perl. For details on embedding Perl in C refer to
42L<perlembed>.
a0d0e21e 43
d1b91892 44Before you launch yourself head first into the rest of this document,
02f6dca1
FC
45it would be a good idea to have read the following two documents--L<perlxs>
46and L<perlguts>.
a0d0e21e 47
4929bf7b 48=head1 THE CALL_ FUNCTIONS
a0d0e21e 49
d1b91892
AD
50Although this stuff is easier to explain using examples, you first need
51be aware of a few important definitions.
a0d0e21e 52
d1b91892
AD
53Perl has a number of C functions that allow you to call Perl
54subroutines. They are
a0d0e21e 55
4358a253
SS
56 I32 call_sv(SV* sv, I32 flags);
57 I32 call_pv(char *subname, I32 flags);
58 I32 call_method(char *methname, I32 flags);
5aaab254 59 I32 call_argv(char *subname, I32 flags, char **argv);
a0d0e21e 60
4929bf7b 61The key function is I<call_sv>. All the other functions are
d1b91892 62fairly simple wrappers which make it easier to call Perl subroutines in
4929bf7b 63special cases. At the end of the day they will all call I<call_sv>
5f05dabc 64to invoke the Perl subroutine.
d1b91892 65
4929bf7b 66All the I<call_*> functions have a C<flags> parameter which is
d1b91892
AD
67used to pass a bit mask of options to Perl. This bit mask operates
68identically for each of the functions. The settings available in the
d0554719 69bit mask are discussed in L</FLAG VALUES>.
d1b91892
AD
70
71Each of the functions will now be discussed in turn.
72
73=over 5
74
4929bf7b 75=item call_sv
d1b91892 76
02f6dca1 77I<call_sv> takes two parameters. The first, C<sv>, is an SV*.
d1b91892
AD
78This allows you to specify the Perl subroutine to be called either as a
79C string (which has first been converted to an SV) or a reference to a
d0554719 80subroutine. The section, L</Using call_sv>, shows how you can make
4929bf7b 81use of I<call_sv>.
d1b91892 82
4929bf7b 83=item call_pv
d1b91892 84
4929bf7b 85The function, I<call_pv>, is similar to I<call_sv> except it
d1b91892 86expects its first parameter to be a C char* which identifies the Perl
4929bf7b 87subroutine you want to call, e.g., C<call_pv("fred", 0)>. If the
d1b91892 88subroutine you want to call is in another package, just include the
5f05dabc 89package name in the string, e.g., C<"pkg::fred">.
d1b91892 90
4929bf7b 91=item call_method
d1b91892 92
4929bf7b 93The function I<call_method> is used to call a method from a Perl
d1b91892
AD
94class. The parameter C<methname> corresponds to the name of the method
95to be called. Note that the class that the method belongs to is passed
96on the Perl stack rather than in the parameter list. This class can be
97either the name of the class (for a static method) or a reference to an
98object (for a virtual method). See L<perlobj> for more information on
d0554719 99static and virtual methods and L</Using call_method> for an example
4929bf7b 100of using I<call_method>.
d1b91892 101
4929bf7b 102=item call_argv
d1b91892 103
4929bf7b 104I<call_argv> calls the Perl subroutine specified by the C string
d1b91892 105stored in the C<subname> parameter. It also takes the usual C<flags>
02f6dca1 106parameter. The final parameter, C<argv>, consists of a NULL-terminated
d1b91892 107list of C strings to be passed as parameters to the Perl subroutine.
d0554719 108See L</Using call_argv>.
d1b91892
AD
109
110=back
111
112All the functions return an integer. This is a count of the number of
113items returned by the Perl subroutine. The actual items returned by the
114subroutine are stored on the Perl stack.
115
116As a general rule you should I<always> check the return value from
117these functions. Even if you are expecting only a particular number of
118values to be returned from the Perl subroutine, there is nothing to
19799a22 119stop someone from doing something unexpected--don't say you haven't
d1b91892
AD
120been warned.
121
122=head1 FLAG VALUES
123
87b26de2 124The C<flags> parameter in all the I<call_*> functions is one of C<G_VOID>,
eb7e169e 125C<G_SCALAR>, or C<G_LIST>, which indicate the call context, OR'ed together
0b06a753 126with a bit mask of any combination of the other G_* symbols defined below.
d1b91892 127
54310121 128=head2 G_VOID
129
52ae2233
KW
130=for apidoc AmnUh||G_VOID
131
54310121 132Calls the Perl subroutine in a void context.
133
134This flag has 2 effects:
135
136=over 5
137
138=item 1.
139
140It indicates to the subroutine being called that it is executing in
141a void context (if it executes I<wantarray> the result will be the
142undefined value).
143
144=item 2.
145
146It ensures that nothing is actually returned from the subroutine.
147
148=back
149
4929bf7b 150The value returned by the I<call_*> function indicates how many
02f6dca1 151items have been returned by the Perl subroutine--in this case it will
54310121 152be 0.
153
154
d1b91892
AD
155=head2 G_SCALAR
156
52ae2233
KW
157=for apidoc AmnUh||G_SCALAR
158
d1b91892 159Calls the Perl subroutine in a scalar context. This is the default
4929bf7b 160context flag setting for all the I<call_*> functions.
d1b91892 161
184e9718 162This flag has 2 effects:
d1b91892
AD
163
164=over 5
165
166=item 1.
167
184e9718 168It indicates to the subroutine being called that it is executing in a
d1b91892 169scalar context (if it executes I<wantarray> the result will be false).
a0d0e21e 170
d1b91892
AD
171=item 2.
172
184e9718 173It ensures that only a scalar is actually returned from the subroutine.
d1b91892
AD
174The subroutine can, of course, ignore the I<wantarray> and return a
175list anyway. If so, then only the last element of the list will be
176returned.
177
178=back
179
4929bf7b 180The value returned by the I<call_*> function indicates how many
d1b91892
AD
181items have been returned by the Perl subroutine - in this case it will
182be either 0 or 1.
a0d0e21e 183
d1b91892 184If 0, then you have specified the G_DISCARD flag.
a0d0e21e 185
d1b91892 186If 1, then the item actually returned by the Perl subroutine will be
d0554719 187stored on the Perl stack - the section L</Returning a Scalar> shows how
d1b91892
AD
188to access this value on the stack. Remember that regardless of how
189many items the Perl subroutine returns, only the last one will be
190accessible from the stack - think of the case where only one value is
191returned as being a list with only one element. Any other items that
192were returned will not exist by the time control returns from the
d0554719
TC
193I<call_*> function. The section L</Returning a List in Scalar
194Context> shows an example of this behavior.
a0d0e21e 195
a0d0e21e 196
eb7e169e 197=head2 G_LIST
a0d0e21e 198
eb7e169e 199=for apidoc AmnUh||G_LIST
52ae2233 200
eb7e169e
PE
201Calls the Perl subroutine in a list context. Prior to Perl version
2025.35.1 this was called C<G_ARRAY>.
a0d0e21e 203
184e9718 204As with G_SCALAR, this flag has 2 effects:
a0d0e21e
LW
205
206=over 5
207
d1b91892
AD
208=item 1.
209
90fdbbb7
DC
210It indicates to the subroutine being called that it is executing in a
211list context (if it executes I<wantarray> the result will be true).
a0d0e21e 212
d1b91892 213=item 2.
a0d0e21e 214
184e9718 215It ensures that all items returned from the subroutine will be
4929bf7b 216accessible when control returns from the I<call_*> function.
a0d0e21e 217
d1b91892 218=back
a0d0e21e 219
4929bf7b 220The value returned by the I<call_*> function indicates how many
d1b91892 221items have been returned by the Perl subroutine.
a0d0e21e 222
184e9718 223If 0, then you have specified the G_DISCARD flag.
a0d0e21e 224
d1b91892
AD
225If not 0, then it will be a count of the number of items returned by
226the subroutine. These items will be stored on the Perl stack. The
d0554719 227section L</Returning a List of Values> gives an example of using the
eb7e169e 228G_LIST flag and the mechanics of accessing the returned items from the
d1b91892 229Perl stack.
a0d0e21e 230
d1b91892 231=head2 G_DISCARD
a0d0e21e 232
52ae2233
KW
233=for apidoc AmnUh||G_DISCARD
234
4929bf7b 235By default, the I<call_*> functions place the items returned from
d1b91892
AD
236by the Perl subroutine on the stack. If you are not interested in
237these items, then setting this flag will make Perl get rid of them
238automatically for you. Note that it is still possible to indicate a
eb7e169e 239context to the Perl subroutine by using either G_SCALAR or G_LIST.
a0d0e21e 240
d1b91892 241If you do not set this flag then it is I<very> important that you make
5f05dabc 242sure that any temporaries (i.e., parameters passed to the Perl
d1b91892 243subroutine and values returned from the subroutine) are disposed of
d0554719
TC
244yourself. The section L</Returning a Scalar> gives details of how to
245dispose of these temporaries explicitly and the section L</Using Perl to
246Dispose of Temporaries> discusses the specific circumstances where you
d1b91892 247can ignore the problem and let Perl deal with it for you.
a0d0e21e 248
d1b91892 249=head2 G_NOARGS
a0d0e21e 250
52ae2233
KW
251=for apidoc AmnUh||G_NOARGS
252
4929bf7b 253Whenever a Perl subroutine is called using one of the I<call_*>
d1b91892
AD
254functions, it is assumed by default that parameters are to be passed to
255the subroutine. If you are not passing any parameters to the Perl
256subroutine, you can save a bit of time by setting this flag. It has
257the effect of not creating the C<@_> array for the Perl subroutine.
a0d0e21e 258
d1b91892
AD
259Although the functionality provided by this flag may seem
260straightforward, it should be used only if there is a good reason to do
02f6dca1 261so. The reason for being cautious is that, even if you have specified
d1b91892
AD
262the G_NOARGS flag, it is still possible for the Perl subroutine that
263has been called to think that you have passed it parameters.
a0d0e21e 264
d1b91892
AD
265In fact, what can happen is that the Perl subroutine you have called
266can access the C<@_> array from a previous Perl subroutine. This will
4929bf7b 267occur when the code that is executing the I<call_*> function has
d1b91892
AD
268itself been called from another Perl subroutine. The code below
269illustrates this
a0d0e21e 270
84f709e7
JH
271 sub fred
272 { print "@_\n" }
a0d0e21e 273
84f709e7
JH
274 sub joe
275 { &fred }
a0d0e21e 276
4358a253 277 &joe(1,2,3);
a0d0e21e
LW
278
279This will print
280
d1b91892
AD
281 1 2 3
282
283What has happened is that C<fred> accesses the C<@_> array which
284belongs to C<joe>.
a0d0e21e 285
a0d0e21e 286
54310121 287=head2 G_EVAL
a0d0e21e 288
52ae2233
KW
289=for apidoc AmnUh||G_EVAL
290
d1b91892 291It is possible for the Perl subroutine you are calling to terminate
5f05dabc 292abnormally, e.g., by calling I<die> explicitly or by not actually
268118b2
HS
293existing. By default, when either of these events occurs, the
294process will terminate immediately. If you want to trap this
d1b91892
AD
295type of event, specify the G_EVAL flag. It will put an I<eval { }>
296around the subroutine call.
a0d0e21e 297
4929bf7b 298Whenever control returns from the I<call_*> function you need to
d1b91892
AD
299check the C<$@> variable as you would in a normal Perl script.
300
4929bf7b 301The value returned from the I<call_*> function is dependent on
d1b91892 302what other flags have been specified and whether an error has
184e9718 303occurred. Here are all the different cases that can occur:
d1b91892
AD
304
305=over 5
306
307=item *
308
4929bf7b 309If the I<call_*> function returns normally, then the value
d1b91892
AD
310returned is as specified in the previous sections.
311
312=item *
313
314If G_DISCARD is specified, the return value will always be 0.
315
316=item *
317
eb7e169e 318If G_LIST is specified I<and> an error has occurred, the return value
d1b91892
AD
319will always be 0.
320
321=item *
a0d0e21e 322
d1b91892
AD
323If G_SCALAR is specified I<and> an error has occurred, the return value
324will be 1 and the value on the top of the stack will be I<undef>. This
325means that if you have already detected the error by checking C<$@> and
326you want the program to continue, you must remember to pop the I<undef>
327from the stack.
a0d0e21e
LW
328
329=back
330
d0554719 331See L</Using G_EVAL> for details on using G_EVAL.
d1b91892 332
c07a80fd 333=head2 G_KEEPERR
334
52ae2233
KW
335=for apidoc AmnUh||G_KEEPERR
336
7ce09284
Z
337Using the G_EVAL flag described above will always set C<$@>: clearing
338it if there was no error, and setting it to describe the error if there
339was an error in the called code. This is what you want if your intention
340is to handle possible errors, but sometimes you just want to trap errors
341and stop them interfering with the rest of the program.
342
343This scenario will mostly be applicable to code that is meant to be called
344from within destructors, asynchronous callbacks, and signal handlers.
345In such situations, where the code being called has little relation to the
346surrounding dynamic context, the main program needs to be insulated from
347errors in the called code, even if they can't be handled intelligently.
348It may also be useful to do this with code for C<__DIE__> or C<__WARN__>
349hooks, and C<tie> functions.
c07a80fd 350
351The G_KEEPERR flag is meant to be used in conjunction with G_EVAL in
be064c4a
DM
352I<call_*> functions that are used to implement such code, or with
353C<eval_sv>. This flag has no effect on the C<call_*> functions when
354G_EVAL is not used.
c07a80fd 355
7ce09284
Z
356When G_KEEPERR is used, any error in the called code will terminate the
357call as usual, and the error will not propagate beyond the call (as usual
358for G_EVAL), but it will not go into C<$@>. Instead the error will be
359converted into a warning, prefixed with the string "\t(in cleanup)".
360This can be disabled using C<no warnings 'misc'>. If there is no error,
361C<$@> will not be cleared.
c07a80fd 362
be064c4a
DM
363Note that the G_KEEPERR flag does not propagate into inner evals; these
364may still set C<$@>.
365
c07a80fd 366The G_KEEPERR flag was introduced in Perl version 5.002.
367
d0554719 368See L</Using G_KEEPERR> for an example of a situation that warrants the
c07a80fd 369use of this flag.
370
54310121 371=head2 Determining the Context
d1b91892
AD
372
373As mentioned above, you can determine the context of the currently
54310121 374executing subroutine in Perl with I<wantarray>. The equivalent test
375can be made in C by using the C<GIMME_V> macro, which returns
eb7e169e 376C<G_LIST> if you have been called in a list context, C<G_SCALAR> if
02f6dca1 377in a scalar context, or C<G_VOID> if in a void context (i.e., the
54310121 378return value will not be used). An older version of this macro is
379called C<GIMME>; in a void context it returns C<G_SCALAR> instead of
380C<G_VOID>. An example of using the C<GIMME_V> macro is shown in
d0554719 381section L</Using GIMME_V>.
d1b91892 382
a0d0e21e
LW
383=head1 EXAMPLES
384
02f6dca1 385Enough of the definition talk! Let's have a few examples.
a0d0e21e 386
d1b91892
AD
387Perl provides many macros to assist in accessing the Perl stack.
388Wherever possible, these macros should always be used when interfacing
5f05dabc 389to Perl internals. We hope this should make the code less vulnerable
d1b91892 390to any changes made to Perl in the future.
a0d0e21e 391
d1b91892 392Another point worth noting is that in the first series of examples I
4929bf7b 393have made use of only the I<call_pv> function. This has been done
d1b91892 394to keep the code simpler and ease you into the topic. Wherever
4929bf7b
GS
395possible, if the choice is between using I<call_pv> and
396I<call_sv>, you should always try to use I<call_sv>. See
d0554719 397L</Using call_sv> for details.
a0d0e21e 398
02f6dca1 399=head2 No Parameters, Nothing Returned
a0d0e21e 400
d1b91892
AD
401This first trivial example will call a Perl subroutine, I<PrintUID>, to
402print out the UID of the process.
a0d0e21e 403
84f709e7
JH
404 sub PrintUID
405 {
4358a253 406 print "UID is $<\n";
a0d0e21e
LW
407 }
408
d1b91892 409and here is a C function to call it
a0d0e21e 410
d1b91892 411 static void
a0d0e21e
LW
412 call_PrintUID()
413 {
4358a253 414 dSP;
a0d0e21e 415
4358a253
SS
416 PUSHMARK(SP);
417 call_pv("PrintUID", G_DISCARD|G_NOARGS);
a0d0e21e
LW
418 }
419
02f6dca1 420Simple, eh?
a0d0e21e 421
02f6dca1 422A few points to note about this example:
a0d0e21e
LW
423
424=over 5
425
d1b91892 426=item 1.
a0d0e21e 427
924508f0 428Ignore C<dSP> and C<PUSHMARK(SP)> for now. They will be discussed in
d1b91892 429the next example.
a0d0e21e
LW
430
431=item 2.
432
d1b91892
AD
433We aren't passing any parameters to I<PrintUID> so G_NOARGS can be
434specified.
a0d0e21e 435
d1b91892 436=item 3.
a0d0e21e
LW
437
438We aren't interested in anything returned from I<PrintUID>, so
5f05dabc 439G_DISCARD is specified. Even if I<PrintUID> was changed to
a0d0e21e 440return some value(s), having specified G_DISCARD will mean that they
4929bf7b 441will be wiped by the time control returns from I<call_pv>.
a0d0e21e 442
d1b91892 443=item 4.
a0d0e21e 444
4929bf7b 445As I<call_pv> is being used, the Perl subroutine is specified as a
d1b91892
AD
446C string. In this case the subroutine name has been 'hard-wired' into the
447code.
a0d0e21e
LW
448
449=item 5.
450
d1b91892 451Because we specified G_DISCARD, it is not necessary to check the value
4929bf7b 452returned from I<call_pv>. It will always be 0.
a0d0e21e
LW
453
454=back
455
d1b91892 456=head2 Passing Parameters
a0d0e21e 457
d1b91892 458Now let's make a slightly more complex example. This time we want to
19799a22
GS
459call a Perl subroutine, C<LeftString>, which will take 2 parameters--a
460string ($s) and an integer ($n). The subroutine will simply
461print the first $n characters of the string.
a0d0e21e 462
02f6dca1 463So the Perl subroutine would look like this:
a0d0e21e 464
84f709e7
JH
465 sub LeftString
466 {
4358a253
SS
467 my($s, $n) = @_;
468 print substr($s, 0, $n), "\n";
a0d0e21e
LW
469 }
470
02f6dca1 471The C function required to call I<LeftString> would look like this:
a0d0e21e
LW
472
473 static void
474 call_LeftString(a, b)
4358a253
SS
475 char * a;
476 int b;
a0d0e21e 477 {
4358a253 478 dSP;
a0d0e21e 479
4358a253
SS
480 ENTER;
481 SAVETMPS;
9b6570b4 482
4358a253 483 PUSHMARK(SP);
d0554719
TC
484 EXTEND(SP, 2);
485 PUSHs(sv_2mortal(newSVpv(a, 0)));
486 PUSHs(sv_2mortal(newSViv(b)));
4358a253 487 PUTBACK;
a0d0e21e 488
4929bf7b 489 call_pv("LeftString", G_DISCARD);
9b6570b4 490
4358a253
SS
491 FREETMPS;
492 LEAVE;
a0d0e21e
LW
493 }
494
a0d0e21e
LW
495Here are a few notes on the C function I<call_LeftString>.
496
497=over 5
498
d1b91892 499=item 1.
a0d0e21e 500
d1b91892
AD
501Parameters are passed to the Perl subroutine using the Perl stack.
502This is the purpose of the code beginning with the line C<dSP> and
1e62ac33 503ending with the line C<PUTBACK>. The C<dSP> declares a local copy
924508f0
GS
504of the stack pointer. This local copy should B<always> be accessed
505as C<SP>.
a0d0e21e 506
d1b91892 507=item 2.
a0d0e21e
LW
508
509If you are going to put something onto the Perl stack, you need to know
19799a22 510where to put it. This is the purpose of the macro C<dSP>--it declares
d1b91892 511and initializes a I<local> copy of the Perl stack pointer.
a0d0e21e
LW
512
513All the other macros which will be used in this example require you to
d1b91892 514have used this macro.
a0d0e21e 515
d1b91892
AD
516The exception to this rule is if you are calling a Perl subroutine
517directly from an XSUB function. In this case it is not necessary to
19799a22 518use the C<dSP> macro explicitly--it will be declared for you
d1b91892 519automatically.
a0d0e21e 520
d1b91892 521=item 3.
a0d0e21e
LW
522
523Any parameters to be pushed onto the stack should be bracketed by the
d1b91892 524C<PUSHMARK> and C<PUTBACK> macros. The purpose of these two macros, in
5f05dabc 525this context, is to count the number of parameters you are
526pushing automatically. Then whenever Perl is creating the C<@_> array for the
d1b91892
AD
527subroutine, it knows how big to make it.
528
529The C<PUSHMARK> macro tells Perl to make a mental note of the current
530stack pointer. Even if you aren't passing any parameters (like the
d0554719 531example shown in the section L</No Parameters, Nothing Returned>) you
d1b91892 532must still call the C<PUSHMARK> macro before you can call any of the
4929bf7b 533I<call_*> functions--Perl still needs to know that there are no
d1b91892
AD
534parameters.
535
536The C<PUTBACK> macro sets the global copy of the stack pointer to be
02f6dca1 537the same as our local copy. If we didn't do this, I<call_pv>
19799a22 538wouldn't know where the two parameters we pushed were--remember that
d1b91892
AD
539up to now all the stack pointer manipulation we have done is with our
540local copy, I<not> the global copy.
541
542=item 4.
543
d0554719
TC
544Next, we come to EXTEND and PUSHs. This is where the parameters
545actually get pushed onto the stack. In this case we are pushing a
546string and an integer.
547
548Alternatively you can use the XPUSHs() macro, which combines a
549C<EXTEND(SP, 1)> and C<PUSHs()>. This is less efficient if you're
550pushing multiple values.
a0d0e21e 551
54310121 552See L<perlguts/"XSUBs and the Argument Stack"> for details
d0554719 553on how the PUSH macros work.
a0d0e21e 554
087fe227 555=item 5.
a0d0e21e 556
9b6570b4
AB
557Because we created temporary values (by means of sv_2mortal() calls)
558we will have to tidy up the Perl stack and dispose of mortal SVs.
559
560This is the purpose of
561
4358a253
SS
562 ENTER;
563 SAVETMPS;
9b6570b4
AB
564
565at the start of the function, and
566
4358a253
SS
567 FREETMPS;
568 LEAVE;
9b6570b4
AB
569
570at the end. The C<ENTER>/C<SAVETMPS> pair creates a boundary for any
571temporaries we create. This means that the temporaries we get rid of
572will be limited to those which were created after these calls.
573
574The C<FREETMPS>/C<LEAVE> pair will get rid of any values returned by
575the Perl subroutine (see next example), plus it will also dump the
576mortal SVs we have created. Having C<ENTER>/C<SAVETMPS> at the
577beginning of the code makes sure that no other mortals are destroyed.
578
02f6dca1 579Think of these macros as working a bit like C<{> and C<}> in Perl
9b6570b4
AB
580to limit the scope of local variables.
581
d0554719 582See the section L</Using Perl to Dispose of Temporaries> for details of
9b6570b4
AB
583an alternative to using these macros.
584
087fe227 585=item 6.
9b6570b4 586
087fe227
JA
587Finally, I<LeftString> can now be called via the I<call_pv> function.
588The only flag specified this time is G_DISCARD. Because we are passing
5892 parameters to the Perl subroutine this time, we have not specified
590G_NOARGS.
a0d0e21e
LW
591
592=back
593
d1b91892 594=head2 Returning a Scalar
a0d0e21e 595
d1b91892
AD
596Now for an example of dealing with the items returned from a Perl
597subroutine.
a0d0e21e 598
5f05dabc 599Here is a Perl subroutine, I<Adder>, that takes 2 integer parameters
d1b91892 600and simply returns their sum.
a0d0e21e 601
84f709e7
JH
602 sub Adder
603 {
4358a253
SS
604 my($a, $b) = @_;
605 $a + $b;
a0d0e21e
LW
606 }
607
5f05dabc 608Because we are now concerned with the return value from I<Adder>, the C
d1b91892 609function required to call it is now a bit more complex.
a0d0e21e
LW
610
611 static void
612 call_Adder(a, b)
4358a253
SS
613 int a;
614 int b;
a0d0e21e 615 {
4358a253
SS
616 dSP;
617 int count;
a0d0e21e 618
4358a253 619 ENTER;
a0d0e21e
LW
620 SAVETMPS;
621
4358a253 622 PUSHMARK(SP);
d0554719
TC
623 EXTEND(SP, 2);
624 PUSHs(sv_2mortal(newSViv(a)));
625 PUSHs(sv_2mortal(newSViv(b)));
4358a253 626 PUTBACK;
a0d0e21e 627
4929bf7b 628 count = call_pv("Adder", G_SCALAR);
a0d0e21e 629
4358a253 630 SPAGAIN;
a0d0e21e 631
d1b91892 632 if (count != 1)
4358a253 633 croak("Big trouble\n");
a0d0e21e 634
4358a253 635 printf ("The sum of %d and %d is %d\n", a, b, POPi);
a0d0e21e 636
4358a253
SS
637 PUTBACK;
638 FREETMPS;
639 LEAVE;
a0d0e21e
LW
640 }
641
a0d0e21e
LW
642Points to note this time are
643
644=over 5
645
54310121 646=item 1.
a0d0e21e 647
02f6dca1 648The only flag specified this time was G_SCALAR. That means that the C<@_>
d1b91892 649array will be created and that the value returned by I<Adder> will
4929bf7b 650still exist after the call to I<call_pv>.
a0d0e21e 651
a0d0e21e
LW
652=item 2.
653
a0d0e21e
LW
654The purpose of the macro C<SPAGAIN> is to refresh the local copy of the
655stack pointer. This is necessary because it is possible that the memory
ed874981 656allocated to the Perl stack has been reallocated during the
4929bf7b 657I<call_pv> call.
a0d0e21e 658
d1b91892 659If you are making use of the Perl stack pointer in your code you must
54310121 660always refresh the local copy using SPAGAIN whenever you make use
4929bf7b 661of the I<call_*> functions or any other Perl internal function.
a0d0e21e 662
9b6570b4 663=item 3.
a0d0e21e 664
d1b91892 665Although only a single value was expected to be returned from I<Adder>,
4929bf7b 666it is still good practice to check the return code from I<call_pv>
d1b91892 667anyway.
a0d0e21e 668
d1b91892
AD
669Expecting a single value is not quite the same as knowing that there
670will be one. If someone modified I<Adder> to return a list and we
671didn't check for that possibility and take appropriate action the Perl
672stack would end up in an inconsistent state. That is something you
5f05dabc 673I<really> don't want to happen ever.
a0d0e21e 674
9b6570b4 675=item 4.
a0d0e21e 676
d1b91892
AD
677The C<POPi> macro is used here to pop the return value from the stack.
678In this case we wanted an integer, so C<POPi> was used.
a0d0e21e
LW
679
680
d1b91892
AD
681Here is the complete list of POP macros available, along with the types
682they return.
a0d0e21e 683
d1b91892 684 POPs SV
d0554719
TC
685 POPp pointer (PV)
686 POPpbytex pointer to bytes (PV)
687 POPn double (NV)
688 POPi integer (IV)
689 POPu unsigned integer (UV)
d1b91892 690 POPl long
d0554719
TC
691 POPul unsigned long
692
693Since these macros have side-effects don't use them as arguments to
694macros that may evaluate their argument several times, for example:
695
696 /* Bad idea, don't do this */
697 STRLEN len;
698 const char *s = SvPV(POPs, len);
699
700Instead, use a temporary:
701
702 STRLEN len;
703 SV *sv = POPs;
704 const char *s = SvPV(sv, len);
705
706or a macro that guarantees it will evaluate its arguments only once:
707
708 STRLEN len;
709 const char *s = SvPVx(POPs, len);
a0d0e21e 710
9b6570b4 711=item 5.
a0d0e21e 712
d1b91892
AD
713The final C<PUTBACK> is used to leave the Perl stack in a consistent
714state before exiting the function. This is necessary because when we
715popped the return value from the stack with C<POPi> it updated only our
716local copy of the stack pointer. Remember, C<PUTBACK> sets the global
717stack pointer to be the same as our local copy.
a0d0e21e
LW
718
719=back
720
721
02f6dca1 722=head2 Returning a List of Values
a0d0e21e 723
d1b91892
AD
724Now, let's extend the previous example to return both the sum of the
725parameters and the difference.
a0d0e21e 726
d1b91892 727Here is the Perl subroutine
a0d0e21e 728
84f709e7
JH
729 sub AddSubtract
730 {
4358a253
SS
731 my($a, $b) = @_;
732 ($a+$b, $a-$b);
a0d0e21e
LW
733 }
734
a0d0e21e
LW
735and this is the C function
736
737 static void
738 call_AddSubtract(a, b)
4358a253
SS
739 int a;
740 int b;
a0d0e21e 741 {
4358a253
SS
742 dSP;
743 int count;
a0d0e21e 744
4358a253 745 ENTER;
a0d0e21e
LW
746 SAVETMPS;
747
4358a253 748 PUSHMARK(SP);
d0554719
TC
749 EXTEND(SP, 2);
750 PUSHs(sv_2mortal(newSViv(a)));
751 PUSHs(sv_2mortal(newSViv(b)));
4358a253 752 PUTBACK;
a0d0e21e 753
eb7e169e 754 count = call_pv("AddSubtract", G_LIST);
a0d0e21e 755
4358a253 756 SPAGAIN;
a0d0e21e 757
d1b91892 758 if (count != 2)
4358a253 759 croak("Big trouble\n");
a0d0e21e 760
4358a253
SS
761 printf ("%d - %d = %d\n", a, b, POPi);
762 printf ("%d + %d = %d\n", a, b, POPi);
a0d0e21e 763
4358a253
SS
764 PUTBACK;
765 FREETMPS;
766 LEAVE;
a0d0e21e
LW
767 }
768
d1b91892
AD
769If I<call_AddSubtract> is called like this
770
4358a253 771 call_AddSubtract(7, 4);
d1b91892
AD
772
773then here is the output
774
775 7 - 4 = 3
776 7 + 4 = 11
a0d0e21e
LW
777
778Notes
779
780=over 5
781
782=item 1.
783
eb7e169e 784We wanted list context, so G_LIST was used.
a0d0e21e
LW
785
786=item 2.
787
d1b91892
AD
788Not surprisingly C<POPi> is used twice this time because we were
789retrieving 2 values from the stack. The important thing to note is that
790when using the C<POP*> macros they come off the stack in I<reverse>
791order.
a0d0e21e
LW
792
793=back
794
d0554719 795=head2 Returning a List in Scalar Context
d1b91892
AD
796
797Say the Perl subroutine in the previous section was called in a scalar
798context, like this
799
800 static void
801 call_AddSubScalar(a, b)
4358a253
SS
802 int a;
803 int b;
d1b91892 804 {
4358a253
SS
805 dSP;
806 int count;
807 int i;
d1b91892 808
4358a253 809 ENTER;
d1b91892
AD
810 SAVETMPS;
811
4358a253 812 PUSHMARK(SP);
d0554719
TC
813 EXTEND(SP, 2);
814 PUSHs(sv_2mortal(newSViv(a)));
815 PUSHs(sv_2mortal(newSViv(b)));
4358a253 816 PUTBACK;
d1b91892 817
4929bf7b 818 count = call_pv("AddSubtract", G_SCALAR);
d1b91892 819
4358a253 820 SPAGAIN;
d1b91892 821
4358a253 822 printf ("Items Returned = %d\n", count);
d1b91892 823
4358a253
SS
824 for (i = 1; i <= count; ++i)
825 printf ("Value %d = %d\n", i, POPi);
d1b91892 826
4358a253
SS
827 PUTBACK;
828 FREETMPS;
829 LEAVE;
d1b91892
AD
830 }
831
832The other modification made is that I<call_AddSubScalar> will print the
833number of items returned from the Perl subroutine and their value (for
834simplicity it assumes that they are integer). So if
835I<call_AddSubScalar> is called
836
4358a253 837 call_AddSubScalar(7, 4);
d1b91892
AD
838
839then the output will be
840
841 Items Returned = 1
842 Value 1 = 3
843
844In this case the main point to note is that only the last item in the
48052fe5 845list is returned from the subroutine. I<AddSubtract> actually made it back to
d1b91892
AD
846I<call_AddSubScalar>.
847
848
02f6dca1 849=head2 Returning Data from Perl via the Parameter List
a0d0e21e 850
48052fe5
FC
851It is also possible to return values directly via the parameter
852list--whether it is actually desirable to do it is another matter entirely.
a0d0e21e 853
d1b91892
AD
854The Perl subroutine, I<Inc>, below takes 2 parameters and increments
855each directly.
a0d0e21e 856
84f709e7
JH
857 sub Inc
858 {
4358a253
SS
859 ++ $_[0];
860 ++ $_[1];
a0d0e21e
LW
861 }
862
863and here is a C function to call it.
864
865 static void
866 call_Inc(a, b)
4358a253
SS
867 int a;
868 int b;
a0d0e21e 869 {
4358a253
SS
870 dSP;
871 int count;
872 SV * sva;
873 SV * svb;
a0d0e21e 874
4358a253 875 ENTER;
a0d0e21e
LW
876 SAVETMPS;
877
4358a253
SS
878 sva = sv_2mortal(newSViv(a));
879 svb = sv_2mortal(newSViv(b));
a0d0e21e 880
4358a253 881 PUSHMARK(SP);
d0554719
TC
882 EXTEND(SP, 2);
883 PUSHs(sva);
884 PUSHs(svb);
4358a253 885 PUTBACK;
a0d0e21e 886
4929bf7b 887 count = call_pv("Inc", G_DISCARD);
a0d0e21e
LW
888
889 if (count != 0)
d1b91892 890 croak ("call_Inc: expected 0 values from 'Inc', got %d\n",
4358a253 891 count);
a0d0e21e 892
4358a253
SS
893 printf ("%d + 1 = %d\n", a, SvIV(sva));
894 printf ("%d + 1 = %d\n", b, SvIV(svb));
a0d0e21e 895
4358a253
SS
896 FREETMPS;
897 LEAVE;
a0d0e21e
LW
898 }
899
d1b91892 900To be able to access the two parameters that were pushed onto the stack
4929bf7b 901after they return from I<call_pv> it is necessary to make a note
19799a22 902of their addresses--thus the two variables C<sva> and C<svb>.
a0d0e21e 903
d1b91892
AD
904The reason this is necessary is that the area of the Perl stack which
905held them will very likely have been overwritten by something else by
4929bf7b 906the time control returns from I<call_pv>.
a0d0e21e
LW
907
908
909
910
d1b91892 911=head2 Using G_EVAL
a0d0e21e 912
d1b91892
AD
913Now an example using G_EVAL. Below is a Perl subroutine which computes
914the difference of its 2 parameters. If this would result in a negative
915result, the subroutine calls I<die>.
a0d0e21e 916
84f709e7
JH
917 sub Subtract
918 {
4358a253 919 my ($a, $b) = @_;
a0d0e21e 920
4358a253 921 die "death can be fatal\n" if $a < $b;
a0d0e21e 922
4358a253 923 $a - $b;
a0d0e21e
LW
924 }
925
926and some C to call it
927
e46aa1dd
KW
928 static void
929 call_Subtract(a, b)
930 int a;
931 int b;
932 {
933 dSP;
934 int count;
935 SV *err_tmp;
936
937 ENTER;
938 SAVETMPS;
939
940 PUSHMARK(SP);
941 EXTEND(SP, 2);
942 PUSHs(sv_2mortal(newSViv(a)));
943 PUSHs(sv_2mortal(newSViv(b)));
944 PUTBACK;
945
946 count = call_pv("Subtract", G_EVAL|G_SCALAR);
947
948 SPAGAIN;
949
950 /* Check the eval first */
951 err_tmp = ERRSV;
952 if (SvTRUE(err_tmp))
953 {
954 printf ("Uh oh - %s\n", SvPV_nolen(err_tmp));
955 POPs;
956 }
957 else
958 {
959 if (count != 1)
960 croak("call_Subtract: wanted 1 value from 'Subtract', got %d\n",
961 count);
962
963 printf ("%d - %d = %d\n", a, b, POPi);
964 }
965
966 PUTBACK;
967 FREETMPS;
968 LEAVE;
969 }
a0d0e21e
LW
970
971If I<call_Subtract> is called thus
972
d1b91892 973 call_Subtract(4, 5)
a0d0e21e
LW
974
975the following will be printed
976
d1b91892 977 Uh oh - death can be fatal
a0d0e21e
LW
978
979Notes
980
981=over 5
982
983=item 1.
984
d1b91892
AD
985We want to be able to catch the I<die> so we have used the G_EVAL
986flag. Not specifying this flag would mean that the program would
987terminate immediately at the I<die> statement in the subroutine
988I<Subtract>.
a0d0e21e
LW
989
990=item 2.
991
54310121 992The code
a0d0e21e 993
d0554719
TC
994 err_tmp = ERRSV;
995 if (SvTRUE(err_tmp))
d1b91892 996 {
d0554719 997 printf ("Uh oh - %s\n", SvPV_nolen(err_tmp));
4358a253 998 POPs;
d1b91892 999 }
a0d0e21e 1000
d1b91892 1001is the direct equivalent of this bit of Perl
a0d0e21e 1002
4358a253 1003 print "Uh oh - $@\n" if $@;
a0d0e21e 1004
d0554719
TC
1005C<PL_errgv> is a perl global of type C<GV *> that points to the symbol
1006table entry containing the error. C<ERRSV> therefore refers to the C
3da3c74d 1007equivalent of C<$@>. We use a local temporary, C<err_tmp>, since
d0554719
TC
1008C<ERRSV> is a macro that calls a function, and C<SvTRUE(ERRSV)> would
1009end up calling that function multiple times.
c07a80fd 1010
cd66fec1 1011=for apidoc AmnUh|GV *|PL_errgv
31b83e34 1012
d1b91892 1013=item 3.
a0d0e21e 1014
d1b91892 1015Note that the stack is popped using C<POPs> in the block where
d0554719 1016C<SvTRUE(err_tmp)> is true. This is necessary because whenever a
4929bf7b 1017I<call_*> function invoked with G_EVAL|G_SCALAR returns an error,
5f05dabc 1018the top of the stack holds the value I<undef>. Because we want the
d1b91892 1019program to continue after detecting this error, it is essential that
6c818a50 1020the stack be tidied up by removing the I<undef>.
a0d0e21e
LW
1021
1022=back
1023
1024
c07a80fd 1025=head2 Using G_KEEPERR
1026
1027Consider this rather facetious example, where we have used an XS
1028version of the call_Subtract example above inside a destructor:
1029
1030 package Foo;
84f709e7 1031 sub new { bless {}, $_[0] }
54310121 1032 sub Subtract {
84f709e7 1033 my($a,$b) = @_;
4358a253 1034 die "death can be fatal" if $a < $b;
84f709e7 1035 $a - $b;
c07a80fd 1036 }
84f709e7
JH
1037 sub DESTROY { call_Subtract(5, 4); }
1038 sub foo { die "foo dies"; }
c07a80fd 1039
1040 package main;
7ce09284
Z
1041 {
1042 my $foo = Foo->new;
1043 eval { $foo->foo };
1044 }
c07a80fd 1045 print "Saw: $@" if $@; # should be, but isn't
1046
1047This example will fail to recognize that an error occurred inside the
1048C<eval {}>. Here's why: the call_Subtract code got executed while perl
7ce09284 1049was cleaning up temporaries when exiting the outer braced block, and because
4929bf7b 1050call_Subtract is implemented with I<call_pv> using the G_EVAL
c07a80fd 1051flag, it promptly reset C<$@>. This results in the failure of the
1052outermost test for C<$@>, and thereby the failure of the error trap.
1053
4929bf7b 1054Appending the G_KEEPERR flag, so that the I<call_pv> call in
c07a80fd 1055call_Subtract reads:
1056
4929bf7b 1057 count = call_pv("Subtract", G_EVAL|G_SCALAR|G_KEEPERR);
c07a80fd 1058
1059will preserve the error and restore reliable error handling.
1060
4929bf7b 1061=head2 Using call_sv
a0d0e21e 1062
d1b91892
AD
1063In all the previous examples I have 'hard-wired' the name of the Perl
1064subroutine to be called from C. Most of the time though, it is more
1065convenient to be able to specify the name of the Perl subroutine from
d0554719
TC
1066within the Perl script, and you'll want to use
1067L<call_sv|perlapi/call_sv>.
a0d0e21e
LW
1068
1069Consider the Perl code below
1070
84f709e7
JH
1071 sub fred
1072 {
4358a253 1073 print "Hello there\n";
d1b91892
AD
1074 }
1075
4358a253 1076 CallSubPV("fred");
d1b91892
AD
1077
1078Here is a snippet of XSUB which defines I<CallSubPV>.
1079
1080 void
1081 CallSubPV(name)
1082 char * name
1083 CODE:
4358a253
SS
1084 PUSHMARK(SP);
1085 call_pv(name, G_DISCARD|G_NOARGS);
a0d0e21e 1086
54310121 1087That is fine as far as it goes. The thing is, the Perl subroutine
94a37a2f
BF
1088can be specified as only a string, however, Perl allows references
1089to subroutines and anonymous subroutines.
4929bf7b 1090This is where I<call_sv> is useful.
d1b91892
AD
1091
1092The code below for I<CallSubSV> is identical to I<CallSubPV> except
1093that the C<name> parameter is now defined as an SV* and we use
4929bf7b 1094I<call_sv> instead of I<call_pv>.
d1b91892
AD
1095
1096 void
1097 CallSubSV(name)
1098 SV * name
1099 CODE:
4358a253
SS
1100 PUSHMARK(SP);
1101 call_sv(name, G_DISCARD|G_NOARGS);
a0d0e21e 1102
1d45ec27 1103Because we are using an SV to call I<fred> the following can all be used:
a0d0e21e 1104
4358a253
SS
1105 CallSubSV("fred");
1106 CallSubSV(\&fred);
1107 $ref = \&fred;
1108 CallSubSV($ref);
1109 CallSubSV( sub { print "Hello there\n" } );
a0d0e21e 1110
4929bf7b 1111As you can see, I<call_sv> gives you much greater flexibility in
d1b91892
AD
1112how you can specify the Perl subroutine.
1113
1d45ec27 1114You should note that, if it is necessary to store the SV (C<name> in the
d1b91892 1115example above) which corresponds to the Perl subroutine so that it can
5f05dabc 1116be used later in the program, it not enough just to store a copy of the
1d45ec27 1117pointer to the SV. Say the code above had been like this:
d1b91892 1118
4358a253 1119 static SV * rememberSub;
d1b91892
AD
1120
1121 void
1122 SaveSub1(name)
1123 SV * name
1124 CODE:
4358a253 1125 rememberSub = name;
d1b91892
AD
1126
1127 void
1128 CallSavedSub1()
1129 CODE:
4358a253
SS
1130 PUSHMARK(SP);
1131 call_sv(rememberSub, G_DISCARD|G_NOARGS);
a0d0e21e 1132
1d45ec27 1133The reason this is wrong is that, by the time you come to use the
d1b91892
AD
1134pointer C<rememberSub> in C<CallSavedSub1>, it may or may not still refer
1135to the Perl subroutine that was recorded in C<SaveSub1>. This is
1d45ec27 1136particularly true for these cases:
a0d0e21e 1137
4358a253
SS
1138 SaveSub1(\&fred);
1139 CallSavedSub1();
a0d0e21e 1140
4358a253
SS
1141 SaveSub1( sub { print "Hello there\n" } );
1142 CallSavedSub1();
a0d0e21e 1143
1d45ec27 1144By the time each of the C<SaveSub1> statements above has been executed,
54310121 1145the SV*s which corresponded to the parameters will no longer exist.
d1b91892 1146Expect an error message from Perl of the form
a0d0e21e 1147
d1b91892 1148 Can't use an undefined value as a subroutine reference at ...
a0d0e21e 1149
d1b91892 1150for each of the C<CallSavedSub1> lines.
a0d0e21e 1151
54310121 1152Similarly, with this code
a0d0e21e 1153
4358a253
SS
1154 $ref = \&fred;
1155 SaveSub1($ref);
1156 $ref = 47;
1157 CallSavedSub1();
a0d0e21e 1158
54310121 1159you can expect one of these messages (which you actually get is dependent on
1160the version of Perl you are using)
a0d0e21e 1161
d1b91892
AD
1162 Not a CODE reference at ...
1163 Undefined subroutine &main::47 called ...
a0d0e21e 1164
19799a22 1165The variable $ref may have referred to the subroutine C<fred>
d1b91892 1166whenever the call to C<SaveSub1> was made but by the time
5f05dabc 1167C<CallSavedSub1> gets called it now holds the number C<47>. Because we
d1b91892 1168saved only a pointer to the original SV in C<SaveSub1>, any changes to
19799a22 1169$ref will be tracked by the pointer C<rememberSub>. This means that
d1b91892
AD
1170whenever C<CallSavedSub1> gets called, it will attempt to execute the
1171code which is referenced by the SV* C<rememberSub>. In this case
1172though, it now refers to the integer C<47>, so expect Perl to complain
1173loudly.
a0d0e21e 1174
1d45ec27 1175A similar but more subtle problem is illustrated with this code:
a0d0e21e 1176
4358a253
SS
1177 $ref = \&fred;
1178 SaveSub1($ref);
1179 $ref = \&joe;
1180 CallSavedSub1();
a0d0e21e 1181
1d45ec27 1182This time whenever C<CallSavedSub1> gets called it will execute the Perl
54310121 1183subroutine C<joe> (assuming it exists) rather than C<fred> as was
d1b91892 1184originally requested in the call to C<SaveSub1>.
a0d0e21e 1185
d1b91892 1186To get around these problems it is necessary to take a full copy of the
1d45ec27 1187SV. The code below shows C<SaveSub2> modified to do that.
a0d0e21e 1188
d0554719 1189 /* this isn't thread-safe */
4358a253 1190 static SV * keepSub = (SV*)NULL;
d1b91892
AD
1191
1192 void
1193 SaveSub2(name)
1194 SV * name
1195 CODE:
1196 /* Take a copy of the callback */
1197 if (keepSub == (SV*)NULL)
1198 /* First time, so create a new SV */
4358a253 1199 keepSub = newSVsv(name);
d1b91892
AD
1200 else
1201 /* Been here before, so overwrite */
4358a253 1202 SvSetSV(keepSub, name);
d1b91892
AD
1203
1204 void
1205 CallSavedSub2()
1206 CODE:
4358a253
SS
1207 PUSHMARK(SP);
1208 call_sv(keepSub, G_DISCARD|G_NOARGS);
d1b91892 1209
5f05dabc 1210To avoid creating a new SV every time C<SaveSub2> is called,
d1b91892
AD
1211the function first checks to see if it has been called before. If not,
1212then space for a new SV is allocated and the reference to the Perl
1d45ec27
FC
1213subroutine C<name> is copied to the variable C<keepSub> in one
1214operation using C<newSVsv>. Thereafter, whenever C<SaveSub2> is called,
d1b91892
AD
1215the existing SV, C<keepSub>, is overwritten with the new value using
1216C<SvSetSV>.
1217
d0554719
TC
1218Note: using a static or global variable to store the SV isn't
1219thread-safe. You can either use the C<MY_CXT> mechanism documented in
1220L<perlxs/Safely Storing Static Data in XS> which is fast, or store the
1221values in perl global variables, using get_sv(), which is much slower.
1222
4929bf7b 1223=head2 Using call_argv
d1b91892
AD
1224
1225Here is a Perl subroutine which prints whatever parameters are passed
1226to it.
1227
84f709e7
JH
1228 sub PrintList
1229 {
4358a253 1230 my(@list) = @_;
d1b91892 1231
84f709e7 1232 foreach (@list) { print "$_\n" }
d1b91892
AD
1233 }
1234
1d45ec27 1235And here is an example of I<call_argv> which will call
d1b91892
AD
1236I<PrintList>.
1237
4358a253 1238 static char * words[] = {"alpha", "beta", "gamma", "delta", NULL};
d1b91892
AD
1239
1240 static void
1241 call_PrintList()
1242 {
4358a253 1243 call_argv("PrintList", G_DISCARD, words);
d1b91892
AD
1244 }
1245
1246Note that it is not necessary to call C<PUSHMARK> in this instance.
4929bf7b 1247This is because I<call_argv> will do it for you.
d1b91892 1248
4929bf7b 1249=head2 Using call_method
a0d0e21e 1250
1d45ec27 1251Consider the following Perl code:
a0d0e21e 1252
d1b91892 1253 {
4358a253 1254 package Mine;
84f709e7
JH
1255
1256 sub new
1257 {
4358a253 1258 my($type) = shift;
84f709e7
JH
1259 bless [@_]
1260 }
1261
1262 sub Display
1263 {
4358a253
SS
1264 my ($self, $index) = @_;
1265 print "$index: $$self[$index]\n";
84f709e7
JH
1266 }
1267
1268 sub PrintID
1269 {
4358a253
SS
1270 my($class) = @_;
1271 print "This is Class $class version 1.0\n";
84f709e7 1272 }
d1b91892
AD
1273 }
1274
5f05dabc 1275It implements just a very simple class to manage an array. Apart from
d1b91892 1276the constructor, C<new>, it declares methods, one static and one
5f05dabc 1277virtual. The static method, C<PrintID>, prints out simply the class
d1b91892 1278name and a version number. The virtual method, C<Display>, prints out a
1d45ec27 1279single element of the array. Here is an all-Perl example of using it.
d1b91892 1280
797f796a 1281 $a = Mine->new('red', 'green', 'blue');
4358a253 1282 $a->Display(1);
797f796a 1283 Mine->PrintID;
a0d0e21e 1284
d1b91892 1285will print
a0d0e21e 1286
d1b91892 1287 1: green
54310121 1288 This is Class Mine version 1.0
a0d0e21e 1289
d1b91892 1290Calling a Perl method from C is fairly straightforward. The following
1d45ec27 1291things are required:
a0d0e21e 1292
d1b91892
AD
1293=over 5
1294
1295=item *
1296
1d45ec27
FC
1297A reference to the object for a virtual method or the name of the class
1298for a static method
d1b91892
AD
1299
1300=item *
1301
1d45ec27 1302The name of the method
d1b91892
AD
1303
1304=item *
1305
1d45ec27 1306Any other parameters specific to the method
d1b91892
AD
1307
1308=back
1309
1310Here is a simple XSUB which illustrates the mechanics of calling both
1311the C<PrintID> and C<Display> methods from C.
1312
1313 void
1314 call_Method(ref, method, index)
1315 SV * ref
1316 char * method
1317 int index
1318 CODE:
924508f0 1319 PUSHMARK(SP);
d0554719
TC
1320 EXTEND(SP, 2);
1321 PUSHs(ref);
1322 PUSHs(sv_2mortal(newSViv(index)));
d1b91892
AD
1323 PUTBACK;
1324
4358a253 1325 call_method(method, G_DISCARD);
d1b91892
AD
1326
1327 void
1328 call_PrintID(class, method)
1329 char * class
1330 char * method
1331 CODE:
924508f0 1332 PUSHMARK(SP);
4358a253 1333 XPUSHs(sv_2mortal(newSVpv(class, 0)));
d1b91892
AD
1334 PUTBACK;
1335
4358a253 1336 call_method(method, G_DISCARD);
d1b91892
AD
1337
1338
1d45ec27 1339So the methods C<PrintID> and C<Display> can be invoked like this:
d1b91892 1340
797f796a 1341 $a = Mine->new('red', 'green', 'blue');
4358a253
SS
1342 call_Method($a, 'Display', 1);
1343 call_PrintID('Mine', 'PrintID');
d1b91892 1344
1d45ec27 1345The only thing to note is that, in both the static and virtual methods,
19799a22 1346the method name is not passed via the stack--it is used as the first
4929bf7b 1347parameter to I<call_method>.
d1b91892 1348
54310121 1349=head2 Using GIMME_V
d1b91892 1350
54310121 1351Here is a trivial XSUB which prints the context in which it is
d1b91892
AD
1352currently executing.
1353
1354 void
1355 PrintContext()
1356 CODE:
1c23e2bd 1357 U8 gimme = GIMME_V;
54310121 1358 if (gimme == G_VOID)
4358a253 1359 printf ("Context is Void\n");
54310121 1360 else if (gimme == G_SCALAR)
4358a253 1361 printf ("Context is Scalar\n");
d1b91892 1362 else
4358a253 1363 printf ("Context is Array\n");
d1b91892 1364
1d45ec27 1365And here is some Perl to test it.
d1b91892 1366
4358a253
SS
1367 PrintContext;
1368 $a = PrintContext;
1369 @a = PrintContext;
d1b91892
AD
1370
1371The output from that will be
1372
54310121 1373 Context is Void
d1b91892
AD
1374 Context is Scalar
1375 Context is Array
1376
02f6dca1 1377=head2 Using Perl to Dispose of Temporaries
d1b91892
AD
1378
1379In the examples given to date, any temporaries created in the callback
4929bf7b 1380(i.e., parameters passed on the stack to the I<call_*> function or
1d45ec27 1381values returned via the stack) have been freed by one of these methods:
d1b91892
AD
1382
1383=over 5
1384
1385=item *
1386
1d45ec27 1387Specifying the G_DISCARD flag with I<call_*>
d1b91892
AD
1388
1389=item *
1390
1d45ec27 1391Explicitly using the C<ENTER>/C<SAVETMPS>--C<FREETMPS>/C<LEAVE> pairing
d1b91892
AD
1392
1393=back
1394
1395There is another method which can be used, namely letting Perl do it
1396for you automatically whenever it regains control after the callback
1397has terminated. This is done by simply not using the
1398
4358a253
SS
1399 ENTER;
1400 SAVETMPS;
d1b91892 1401 ...
4358a253
SS
1402 FREETMPS;
1403 LEAVE;
d1b91892
AD
1404
1405sequence in the callback (and not, of course, specifying the G_DISCARD
1406flag).
1407
1408If you are going to use this method you have to be aware of a possible
1409memory leak which can arise under very specific circumstances. To
1410explain these circumstances you need to know a bit about the flow of
1411control between Perl and the callback routine.
1412
1413The examples given at the start of the document (an error handler and
1414an event driven program) are typical of the two main sorts of flow
1415control that you are likely to encounter with callbacks. There is a
1416very important distinction between them, so pay attention.
1417
1418In the first example, an error handler, the flow of control could be as
1419follows. You have created an interface to an external library.
1420Control can reach the external library like this
1421
1422 perl --> XSUB --> external library
1423
1424Whilst control is in the library, an error condition occurs. You have
1425previously set up a Perl callback to handle this situation, so it will
1426get executed. Once the callback has finished, control will drop back to
1427Perl again. Here is what the flow of control will be like in that
1428situation
1429
1430 perl --> XSUB --> external library
1431 ...
1432 error occurs
1433 ...
4929bf7b 1434 external library --> call_* --> perl
d1b91892 1435 |
4929bf7b 1436 perl <-- XSUB <-- external library <-- call_* <----+
d1b91892 1437
4929bf7b 1438After processing of the error using I<call_*> is completed,
d1b91892
AD
1439control reverts back to Perl more or less immediately.
1440
1441In the diagram, the further right you go the more deeply nested the
1442scope is. It is only when control is back with perl on the extreme
1443left of the diagram that you will have dropped back to the enclosing
1444scope and any temporaries you have left hanging around will be freed.
1445
1446In the second example, an event driven program, the flow of control
1447will be more like this
1448
1449 perl --> XSUB --> event handler
1450 ...
4929bf7b 1451 event handler --> call_* --> perl
d1b91892 1452 |
4929bf7b 1453 event handler <-- call_* <----+
d1b91892 1454 ...
4929bf7b 1455 event handler --> call_* --> perl
d1b91892 1456 |
4929bf7b 1457 event handler <-- call_* <----+
d1b91892 1458 ...
4929bf7b 1459 event handler --> call_* --> perl
d1b91892 1460 |
4929bf7b 1461 event handler <-- call_* <----+
d1b91892
AD
1462
1463In this case the flow of control can consist of only the repeated
1464sequence
1465
4929bf7b 1466 event handler --> call_* --> perl
d1b91892 1467
54310121 1468for practically the complete duration of the program. This means that
1469control may I<never> drop back to the surrounding scope in Perl at the
1470extreme left.
d1b91892
AD
1471
1472So what is the big problem? Well, if you are expecting Perl to tidy up
1473those temporaries for you, you might be in for a long wait. For Perl
5f05dabc 1474to dispose of your temporaries, control must drop back to the
d1b91892 1475enclosing scope at some stage. In the event driven scenario that may
1d45ec27 1476never happen. This means that, as time goes on, your program will
d1b91892
AD
1477create more and more temporaries, none of which will ever be freed. As
1478each of these temporaries consumes some memory your program will
19799a22 1479eventually consume all the available memory in your system--kapow!
d1b91892 1480
19799a22 1481So here is the bottom line--if you are sure that control will revert
d1b91892 1482back to the enclosing Perl scope fairly quickly after the end of your
5f05dabc 1483callback, then it isn't absolutely necessary to dispose explicitly of
d1b91892
AD
1484any temporaries you may have created. Mind you, if you are at all
1485uncertain about what to do, it doesn't do any harm to tidy up anyway.
1486
1487
02f6dca1 1488=head2 Strategies for Storing Callback Context Information
d1b91892
AD
1489
1490
1491Potentially one of the trickiest problems to overcome when designing a
1492callback interface can be figuring out how to store the mapping between
1493the C callback function and the Perl equivalent.
1494
1495To help understand why this can be a real problem first consider how a
1496callback is set up in an all C environment. Typically a C API will
1497provide a function to register a callback. This will expect a pointer
1498to a function as one of its parameters. Below is a call to a
1499hypothetical function C<register_fatal> which registers the C function
1500to get called when a fatal error occurs.
1501
4358a253 1502 register_fatal(cb1);
d1b91892
AD
1503
1504The single parameter C<cb1> is a pointer to a function, so you must
1505have defined C<cb1> in your code, say something like this
1506
1507 static void
1508 cb1()
1509 {
4358a253
SS
1510 printf ("Fatal Error\n");
1511 exit(1);
d1b91892
AD
1512 }
1513
1514Now change that to call a Perl subroutine instead
1515
1516 static SV * callback = (SV*)NULL;
1517
1518 static void
1519 cb1()
1520 {
4358a253 1521 dSP;
d1b91892 1522
4358a253 1523 PUSHMARK(SP);
d1b91892
AD
1524
1525 /* Call the Perl sub to process the callback */
4358a253 1526 call_sv(callback, G_DISCARD);
d1b91892
AD
1527 }
1528
1529
1530 void
1531 register_fatal(fn)
1532 SV * fn
1533 CODE:
1534 /* Remember the Perl sub */
1535 if (callback == (SV*)NULL)
4358a253 1536 callback = newSVsv(fn);
d1b91892 1537 else
4358a253 1538 SvSetSV(callback, fn);
d1b91892
AD
1539
1540 /* register the callback with the external library */
4358a253 1541 register_fatal(cb1);
d1b91892
AD
1542
1543where the Perl equivalent of C<register_fatal> and the callback it
1544registers, C<pcb1>, might look like this
1545
1546 # Register the sub pcb1
4358a253 1547 register_fatal(\&pcb1);
d1b91892 1548
84f709e7
JH
1549 sub pcb1
1550 {
4358a253 1551 die "I'm dying...\n";
d1b91892
AD
1552 }
1553
1554The mapping between the C callback and the Perl equivalent is stored in
1555the global variable C<callback>.
1556
5f05dabc 1557This will be adequate if you ever need to have only one callback
d1b91892
AD
1558registered at any time. An example could be an error handler like the
1559code sketched out above. Remember though, repeated calls to
1560C<register_fatal> will replace the previously registered callback
1561function with the new one.
1562
1563Say for example you want to interface to a library which allows asynchronous
1564file i/o. In this case you may be able to register a callback whenever
1565a read operation has completed. To be of any use we want to be able to
1566call separate Perl subroutines for each file that is opened. As it
1567stands, the error handler example above would not be adequate as it
1568allows only a single callback to be defined at any time. What we
1569require is a means of storing the mapping between the opened file and
1570the Perl subroutine we want to be called for that file.
1571
1572Say the i/o library has a function C<asynch_read> which associates a C
19799a22 1573function C<ProcessRead> with a file handle C<fh>--this assumes that it
d1b91892
AD
1574has also provided some routine to open the file and so obtain the file
1575handle.
1576
1577 asynch_read(fh, ProcessRead)
1578
1579This may expect the C I<ProcessRead> function of this form
1580
1581 void
1582 ProcessRead(fh, buffer)
4358a253
SS
1583 int fh;
1584 char * buffer;
d1b91892 1585 {
54310121 1586 ...
d1b91892
AD
1587 }
1588
1589To provide a Perl interface to this library we need to be able to map
1590between the C<fh> parameter and the Perl subroutine we want called. A
1591hash is a convenient mechanism for storing this mapping. The code
1592below shows a possible implementation
1593
4358a253 1594 static HV * Mapping = (HV*)NULL;
a0d0e21e 1595
d1b91892
AD
1596 void
1597 asynch_read(fh, callback)
1598 int fh
1599 SV * callback
1600 CODE:
1601 /* If the hash doesn't already exist, create it */
1602 if (Mapping == (HV*)NULL)
4358a253 1603 Mapping = newHV();
d1b91892
AD
1604
1605 /* Save the fh -> callback mapping */
4358a253 1606 hv_store(Mapping, (char*)&fh, sizeof(fh), newSVsv(callback), 0);
d1b91892
AD
1607
1608 /* Register with the C Library */
4358a253 1609 asynch_read(fh, asynch_read_if);
d1b91892
AD
1610
1611and C<asynch_read_if> could look like this
1612
1613 static void
1614 asynch_read_if(fh, buffer)
4358a253
SS
1615 int fh;
1616 char * buffer;
d1b91892 1617 {
4358a253
SS
1618 dSP;
1619 SV ** sv;
d1b91892
AD
1620
1621 /* Get the callback associated with fh */
4358a253 1622 sv = hv_fetch(Mapping, (char*)&fh , sizeof(fh), FALSE);
d1b91892 1623 if (sv == (SV**)NULL)
4358a253 1624 croak("Internal error...\n");
d1b91892 1625
4358a253 1626 PUSHMARK(SP);
d0554719
TC
1627 EXTEND(SP, 2);
1628 PUSHs(sv_2mortal(newSViv(fh)));
1629 PUSHs(sv_2mortal(newSVpv(buffer, 0)));
4358a253 1630 PUTBACK;
d1b91892
AD
1631
1632 /* Call the Perl sub */
4358a253 1633 call_sv(*sv, G_DISCARD);
d1b91892
AD
1634 }
1635
1636For completeness, here is C<asynch_close>. This shows how to remove
1637the entry from the hash C<Mapping>.
1638
1639 void
1640 asynch_close(fh)
1641 int fh
1642 CODE:
1643 /* Remove the entry from the hash */
4358a253 1644 (void) hv_delete(Mapping, (char*)&fh, sizeof(fh), G_DISCARD);
a0d0e21e 1645
d1b91892 1646 /* Now call the real asynch_close */
4358a253 1647 asynch_close(fh);
a0d0e21e 1648
d1b91892
AD
1649So the Perl interface would look like this
1650
84f709e7
JH
1651 sub callback1
1652 {
4358a253 1653 my($handle, $buffer) = @_;
d1b91892 1654 }
a0d0e21e 1655
d1b91892 1656 # Register the Perl callback
4358a253 1657 asynch_read($fh, \&callback1);
a0d0e21e 1658
4358a253 1659 asynch_close($fh);
d1b91892
AD
1660
1661The mapping between the C callback and Perl is stored in the global
1662hash C<Mapping> this time. Using a hash has the distinct advantage that
1663it allows an unlimited number of callbacks to be registered.
1664
1665What if the interface provided by the C callback doesn't contain a
1666parameter which allows the file handle to Perl subroutine mapping? Say
1667in the asynchronous i/o package, the callback function gets passed only
1668the C<buffer> parameter like this
1669
1670 void
1671 ProcessRead(buffer)
4358a253 1672 char * buffer;
d1b91892
AD
1673 {
1674 ...
1675 }
a0d0e21e 1676
d1b91892
AD
1677Without the file handle there is no straightforward way to map from the
1678C callback to the Perl subroutine.
a0d0e21e 1679
54310121 1680In this case a possible way around this problem is to predefine a
d1b91892
AD
1681series of C functions to act as the interface to Perl, thus
1682
1683 #define MAX_CB 3
1684 #define NULL_HANDLE -1
4358a253 1685 typedef void (*FnMap)();
d1b91892
AD
1686
1687 struct MapStruct {
4358a253
SS
1688 FnMap Function;
1689 SV * PerlSub;
1690 int Handle;
1691 };
d1b91892 1692
4358a253
SS
1693 static void fn1();
1694 static void fn2();
1695 static void fn3();
d1b91892
AD
1696
1697 static struct MapStruct Map [MAX_CB] =
1698 {
1699 { fn1, NULL, NULL_HANDLE },
1700 { fn2, NULL, NULL_HANDLE },
1701 { fn3, NULL, NULL_HANDLE }
4358a253 1702 };
d1b91892
AD
1703
1704 static void
1705 Pcb(index, buffer)
4358a253
SS
1706 int index;
1707 char * buffer;
d1b91892 1708 {
4358a253 1709 dSP;
d1b91892 1710
4358a253
SS
1711 PUSHMARK(SP);
1712 XPUSHs(sv_2mortal(newSVpv(buffer, 0)));
1713 PUTBACK;
d1b91892
AD
1714
1715 /* Call the Perl sub */
4358a253 1716 call_sv(Map[index].PerlSub, G_DISCARD);
d1b91892
AD
1717 }
1718
1719 static void
1720 fn1(buffer)
4358a253 1721 char * buffer;
d1b91892 1722 {
4358a253 1723 Pcb(0, buffer);
d1b91892
AD
1724 }
1725
1726 static void
1727 fn2(buffer)
4358a253 1728 char * buffer;
d1b91892 1729 {
4358a253 1730 Pcb(1, buffer);
d1b91892
AD
1731 }
1732
1733 static void
1734 fn3(buffer)
4358a253 1735 char * buffer;
d1b91892 1736 {
4358a253 1737 Pcb(2, buffer);
d1b91892
AD
1738 }
1739
1740 void
1741 array_asynch_read(fh, callback)
1742 int fh
1743 SV * callback
1744 CODE:
4358a253
SS
1745 int index;
1746 int null_index = MAX_CB;
d1b91892
AD
1747
1748 /* Find the same handle or an empty entry */
4358a253 1749 for (index = 0; index < MAX_CB; ++index)
d1b91892
AD
1750 {
1751 if (Map[index].Handle == fh)
4358a253 1752 break;
d1b91892
AD
1753
1754 if (Map[index].Handle == NULL_HANDLE)
4358a253 1755 null_index = index;
d1b91892
AD
1756 }
1757
1758 if (index == MAX_CB && null_index == MAX_CB)
4358a253 1759 croak ("Too many callback functions registered\n");
d1b91892
AD
1760
1761 if (index == MAX_CB)
4358a253 1762 index = null_index;
d1b91892
AD
1763
1764 /* Save the file handle */
4358a253 1765 Map[index].Handle = fh;
d1b91892
AD
1766
1767 /* Remember the Perl sub */
1768 if (Map[index].PerlSub == (SV*)NULL)
4358a253 1769 Map[index].PerlSub = newSVsv(callback);
d1b91892 1770 else
4358a253 1771 SvSetSV(Map[index].PerlSub, callback);
d1b91892 1772
4358a253 1773 asynch_read(fh, Map[index].Function);
d1b91892
AD
1774
1775 void
1776 array_asynch_close(fh)
1777 int fh
1778 CODE:
4358a253 1779 int index;
d1b91892
AD
1780
1781 /* Find the file handle */
4358a253 1782 for (index = 0; index < MAX_CB; ++ index)
d1b91892 1783 if (Map[index].Handle == fh)
4358a253 1784 break;
d1b91892
AD
1785
1786 if (index == MAX_CB)
4358a253 1787 croak ("could not close fh %d\n", fh);
d1b91892 1788
4358a253
SS
1789 Map[index].Handle = NULL_HANDLE;
1790 SvREFCNT_dec(Map[index].PerlSub);
1791 Map[index].PerlSub = (SV*)NULL;
d1b91892 1792
4358a253 1793 asynch_close(fh);
d1b91892 1794
5f05dabc 1795In this case the functions C<fn1>, C<fn2>, and C<fn3> are used to
d1b91892 1796remember the Perl subroutine to be called. Each of the functions holds
4a6725af 1797a separate hard-wired index which is used in the function C<Pcb> to
d1b91892
AD
1798access the C<Map> array and actually call the Perl subroutine.
1799
1800There are some obvious disadvantages with this technique.
1801
1802Firstly, the code is considerably more complex than with the previous
1803example.
1804
4a6725af 1805Secondly, there is a hard-wired limit (in this case 3) to the number of
d1b91892
AD
1806callbacks that can exist simultaneously. The only way to increase the
1807limit is by modifying the code to add more functions and then
54310121 1808recompiling. None the less, as long as the number of functions is
d1b91892
AD
1809chosen with some care, it is still a workable solution and in some
1810cases is the only one available.
1811
1812To summarize, here are a number of possible methods for you to consider
1813for storing the mapping between C and the Perl callback
1814
1815=over 5
1816
1817=item 1. Ignore the problem - Allow only 1 callback
1818
1819For a lot of situations, like interfacing to an error handler, this may
1820be a perfectly adequate solution.
1821
1822=item 2. Create a sequence of callbacks - hard wired limit
1823
1824If it is impossible to tell from the parameters passed back from the C
1825callback what the context is, then you may need to create a sequence of C
1826callback interface functions, and store pointers to each in an array.
1827
1828=item 3. Use a parameter to map to the Perl callback
1829
1830A hash is an ideal mechanism to store the mapping between C and Perl.
1831
1832=back
a0d0e21e 1833
a0d0e21e
LW
1834
1835=head2 Alternate Stack Manipulation
1836
a0d0e21e 1837
d1b91892
AD
1838Although I have made use of only the C<POP*> macros to access values
1839returned from Perl subroutines, it is also possible to bypass these
8e07c86e 1840macros and read the stack using the C<ST> macro (See L<perlxs> for a
d1b91892
AD
1841full description of the C<ST> macro).
1842
1d45ec27 1843Most of the time the C<POP*> macros should be adequate; the main
d1b91892
AD
1844problem with them is that they force you to process the returned values
1845in sequence. This may not be the most suitable way to process the
1846values in some cases. What we want is to be able to access the stack in
1847a random order. The C<ST> macro as used when coding an XSUB is ideal
1848for this purpose.
1849
d0554719 1850The code below is the example given in the section L</Returning a List
1d45ec27 1851of Values> recoded to use C<ST> instead of C<POP*>.
d1b91892
AD
1852
1853 static void
1854 call_AddSubtract2(a, b)
4358a253
SS
1855 int a;
1856 int b;
d1b91892 1857 {
4358a253
SS
1858 dSP;
1859 I32 ax;
1860 int count;
d1b91892 1861
4358a253 1862 ENTER;
d1b91892
AD
1863 SAVETMPS;
1864
4358a253 1865 PUSHMARK(SP);
d0554719
TC
1866 EXTEND(SP, 2);
1867 PUSHs(sv_2mortal(newSViv(a)));
1868 PUSHs(sv_2mortal(newSViv(b)));
4358a253 1869 PUTBACK;
d1b91892 1870
eb7e169e 1871 count = call_pv("AddSubtract", G_LIST);
d1b91892 1872
4358a253
SS
1873 SPAGAIN;
1874 SP -= count;
1875 ax = (SP - PL_stack_base) + 1;
d1b91892
AD
1876
1877 if (count != 2)
4358a253 1878 croak("Big trouble\n");
a0d0e21e 1879
4358a253
SS
1880 printf ("%d + %d = %d\n", a, b, SvIV(ST(0)));
1881 printf ("%d - %d = %d\n", a, b, SvIV(ST(1)));
d1b91892 1882
4358a253
SS
1883 PUTBACK;
1884 FREETMPS;
1885 LEAVE;
d1b91892
AD
1886 }
1887
1888Notes
1889
1890=over 5
1891
1892=item 1.
1893
1894Notice that it was necessary to define the variable C<ax>. This is
1895because the C<ST> macro expects it to exist. If we were in an XSUB it
1896would not be necessary to define C<ax> as it is already defined for
1d45ec27 1897us.
d1b91892
AD
1898
1899=item 2.
1900
1901The code
1902
4358a253
SS
1903 SPAGAIN;
1904 SP -= count;
1905 ax = (SP - PL_stack_base) + 1;
d1b91892
AD
1906
1907sets the stack up so that we can use the C<ST> macro.
1908
1909=item 3.
1910
1911Unlike the original coding of this example, the returned
1912values are not accessed in reverse order. So C<ST(0)> refers to the
54310121 1913first value returned by the Perl subroutine and C<ST(count-1)>
d1b91892
AD
1914refers to the last.
1915
1916=back
a0d0e21e 1917
02f6dca1 1918=head2 Creating and Calling an Anonymous Subroutine in C
8f183262 1919
4929bf7b 1920As we've already shown, C<call_sv> can be used to invoke an
c2611fb3
GS
1921anonymous subroutine. However, our example showed a Perl script
1922invoking an XSUB to perform this operation. Let's see how it can be
8f183262
DM
1923done inside our C code:
1924
8f183262
DM
1925 ...
1926
e46aa1dd
KW
1927 SV *cvrv
1928 = eval_pv("sub {
1929 print 'You will not find me cluttering any namespace!'
1930 }", TRUE);
8f183262
DM
1931
1932 ...
1933
4929bf7b 1934 call_sv(cvrv, G_VOID|G_NOARGS);
8f183262 1935
4929bf7b
GS
1936C<eval_pv> is used to compile the anonymous subroutine, which
1937will be the return value as well (read more about C<eval_pv> in
4a4eefd0 1938L<perlapi/eval_pv>). Once this code reference is in hand, it
8f183262
DM
1939can be mixed in with all the previous examples we've shown.
1940
9850bf21
RH
1941=head1 LIGHTWEIGHT CALLBACKS
1942
1943Sometimes you need to invoke the same subroutine repeatedly.
1944This usually happens with a function that acts on a list of
1945values, such as Perl's built-in sort(). You can pass a
1946comparison function to sort(), which will then be invoked
1947for every pair of values that needs to be compared. The first()
1948and reduce() functions from L<List::Util> follow a similar
1949pattern.
1950
1951In this case it is possible to speed up the routine (often
1952quite substantially) by using the lightweight callback API.
1953The idea is that the calling context only needs to be
1954created and destroyed once, and the sub can be called
1955arbitrarily many times in between.
1956
ac036724 1957It is usual to pass parameters using global variables (typically
1958$_ for one parameter, or $a and $b for two parameters) rather
9850bf21
RH
1959than via @_. (It is possible to use the @_ mechanism if you know
1960what you're doing, though there is as yet no supported API for
1961it. It's also inherently slower.)
1962
1963The pattern of macro calls is like this:
1964
82f35e8b 1965 dMULTICALL; /* Declare local variables */
1c23e2bd 1966 U8 gimme = G_SCALAR; /* context of the call: G_SCALAR,
eb7e169e 1967 * G_LIST, or G_VOID */
9850bf21 1968
82f35e8b
RH
1969 PUSH_MULTICALL(cv); /* Set up the context for calling cv,
1970 and set local vars appropriately */
9850bf21
RH
1971
1972 /* loop */ {
1973 /* set the value(s) af your parameter variables */
1974 MULTICALL; /* Make the actual call */
1975 } /* end of loop */
1976
1977 POP_MULTICALL; /* Tear down the calling context */
1978
1979For some concrete examples, see the implementation of the
1980first() and reduce() functions of List::Util 1.18. There you
1981will also find a header file that emulates the multicall API
1982on older versions of perl.
1983
a0d0e21e
LW
1984=head1 SEE ALSO
1985
8e07c86e 1986L<perlxs>, L<perlguts>, L<perlembed>
a0d0e21e
LW
1987
1988=head1 AUTHOR
1989
0536e0eb 1990Paul Marquess
a0d0e21e 1991
d1b91892
AD
1992Special thanks to the following people who assisted in the creation of
1993the document.
a0d0e21e 1994
c07a80fd 1995Jeff Okamoto, Tim Bunce, Nick Gianniotis, Steve Kelem, Gurusamy Sarathy
1996and Larry Wall.
a0d0e21e
LW
1997
1998=head1 DATE
1999
d0554719 2000Last updated for perl 5.23.1.