This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Add --early-fixup and --late-fixup to bisect.pl, for user-controlled patching.
[perl5.git] / regen / regcharclass.pl
CommitLineData
1f00b0d6 1#!perl
e64b1bd1 2package CharClass::Matcher;
12b72891 3use strict;
8770da0e 4use 5.008;
12b72891 5use warnings;
e64b1bd1 6use warnings FATAL => 'all';
12b72891 7use Text::Wrap qw(wrap);
12b72891 8use Data::Dumper;
e64b1bd1
YO
9$Data::Dumper::Useqq= 1;
10our $hex_fmt= "0x%02X";
12b72891 11
75929b4b
KW
12sub DEBUG () { 0 }
13$|=1 if DEBUG;
14
295bcca9
KW
15sub ASCII_PLATFORM { (ord('A') == 65) }
16
8770da0e
NC
17require 'regen/regen_lib.pl';
18
ab84f958 19=head1 NAME
0ccab2bc 20
e64b1bd1 21CharClass::Matcher -- Generate C macros that match character classes efficiently
12b72891 22
e64b1bd1
YO
23=head1 SYNOPSIS
24
ab84f958 25 perl Porting/regcharclass.pl
e64b1bd1
YO
26
27=head1 DESCRIPTION
12b72891
RGS
28
29Dynamically generates macros for detecting special charclasses
e64b1bd1 30in latin-1, utf8, and codepoint forms. Macros can be set to return
cc08b31c 31the length (in bytes) of the matched codepoint, and/or the codepoint itself.
12b72891 32
cc08b31c 33To regenerate F<regcharclass.h>, run this script from perl-root. No arguments
12b72891
RGS
34are necessary.
35
cc08b31c
KW
36Using WHATEVER as an example the following macros can be produced, depending
37on the input parameters (how to get each is described by internal comments at
38the C<__DATA__> line):
12b72891
RGS
39
40=over 4
41
cc08b31c 42=item C<is_WHATEVER(s,is_utf8)>
12b72891 43
cc08b31c 44=item C<is_WHATEVER_safe(s,e,is_utf8)>
12b72891 45
cc08b31c
KW
46Do a lookup as appropriate based on the C<is_utf8> flag. When possible
47comparisons involving octect<128 are done before checking the C<is_utf8>
12b72891
RGS
48flag, hopefully saving time.
49
cc08b31c
KW
50The version without the C<_safe> suffix should be used only when the input is
51known to be well-formed.
12b72891 52
cc08b31c
KW
53=item C<is_WHATEVER_utf8(s)>
54
55=item C<is_WHATEVER_utf8_safe(s,e)>
12b72891
RGS
56
57Do a lookup assuming the string is encoded in (normalized) UTF8.
58
cc08b31c
KW
59The version without the C<_safe> suffix should be used only when the input is
60known to be well-formed.
61
62=item C<is_WHATEVER_latin1(s)>
12b72891 63
cc08b31c 64=item C<is_WHATEVER_latin1_safe(s,e)>
12b72891
RGS
65
66Do a lookup assuming the string is encoded in latin-1 (aka plan octets).
67
cc08b31c
KW
68The version without the C<_safe> suffix should be used only when it is known
69that C<s> contains at least one character.
70
71=item C<is_WHATEVER_cp(cp)>
12b72891 72
47e01c32 73Check to see if the string matches a given codepoint (hypothetically a
b6a6e956 74U32). The condition is constructed as to "break out" as early as
12b72891
RGS
75possible if the codepoint is out of range of the condition.
76
77IOW:
78
79 (cp==X || (cp>X && (cp==Y || (cp>Y && ...))))
80
81Thus if the character is X+1 only two comparisons will be done. Making
82matching lookups slower, but non-matching faster.
83
cc08b31c
KW
84=item C<what_len_WHATEVER_FOO(arg1, ..., len)>
85
86A variant form of each of the macro types described above can be generated, in
87which the code point is returned by the macro, and an extra parameter (in the
88final position) is added, which is a pointer for the macro to set the byte
89length of the returned code point.
90
91These forms all have a C<what_len> prefix instead of the C<is_>, for example
92C<what_len_WHATEVER_safe(s,e,is_utf8,len)> and
93C<what_len_WHATEVER_utf8(s,len)>.
94
95These forms should not be used I<except> on small sets of mostly widely
96separated code points; otherwise the code generated is inefficient. For these
97cases, it is best to use the C<is_> forms, and then find the code point with
98C<utf8_to_uvchr_buf>(). This program can fail with a "deep recursion"
99message on the worst of the inappropriate sets. Examine the generated macro
100to see if it is acceptable.
12b72891 101
cc08b31c
KW
102=item C<what_WHATEVER_FOO(arg1, ...)>
103
104A variant form of each of the C<is_> macro types described above can be generated, in
105which the code point and not the length is returned by the macro. These have
106the same caveat as L</what_len_WHATEVER_FOO(arg1, ..., len)>, plus they should
107not be used where the set contains a NULL, as 0 is returned for two different
108cases: a) the set doesn't include the input code point; b) the set does
109include it, and it is a NULL.
110
111=back
e64b1bd1
YO
112
113=head2 CODE FORMAT
114
115perltidy -st -bt=1 -bbt=0 -pt=0 -sbt=1 -ce -nwls== "%f"
116
117
118=head1 AUTHOR
119
cc08b31c 120Author: Yves Orton (demerphq) 2007. Maintained by Perl5 Porters.
e64b1bd1
YO
121
122=head1 BUGS
123
124No tests directly here (although the regex engine will fail tests
125if this code is broken). Insufficient documentation and no Getopts
126handler for using the module as a script.
127
128=head1 LICENSE
129
130You may distribute under the terms of either the GNU General Public
131License or the Artistic License, as specified in the README file.
132
12b72891
RGS
133=cut
134
e64b1bd1
YO
135# Sub naming convention:
136# __func : private subroutine, can not be called as a method
137# _func : private method, not meant for external use
138# func : public method.
139
140# private subs
141#-------------------------------------------------------------------------------
142#
143# ($cp,$n,$l,$u)=__uni_latin($str);
144#
47e01c32 145# Return a list of arrays, each of which when interpreted correctly
e64b1bd1
YO
146# represent the string in some given encoding with specific conditions.
147#
148# $cp - list of codepoints that make up the string.
295bcca9
KW
149# $n - list of octets that make up the string if all codepoints are invariant
150# regardless of if the string is in UTF-8 or not.
e64b1bd1 151# $l - list of octets that make up the string in latin1 encoding if all
295bcca9
KW
152# codepoints < 256, and at least one codepoint is UTF-8 variant.
153# $u - list of octets that make up the string in utf8 if any codepoint is
154# UTF-8 variant
e64b1bd1
YO
155#
156# High CP | Defined
157#-----------+----------
295bcca9 158# 0 - 127 : $n (127/128 are the values for ASCII platforms)
e64b1bd1
YO
159# 128 - 255 : $l, $u
160# 256 - ... : $u
161#
162
163sub __uni_latin1 {
164 my $str= shift;
165 my $max= 0;
166 my @cp;
900c17f9 167 my @cp_high;
295bcca9 168 my $only_has_invariants = 1;
e64b1bd1
YO
169 for my $ch ( split //, $str ) {
170 my $cp= ord $ch;
171 push @cp, $cp;
900c17f9 172 push @cp_high, $cp if $cp > 255;
e64b1bd1 173 $max= $cp if $max < $cp;
295bcca9
KW
174 if (! ASCII_PLATFORM && $only_has_invariants) {
175 if ($cp > 255) {
176 $only_has_invariants = 0;
177 }
178 else {
179 my $temp = chr($cp);
180 utf8::upgrade($temp);
181 my @utf8 = unpack "U0C*", $temp;
182 $only_has_invariants = (@utf8 == 1 && $utf8[0] == $cp);
183 }
184 }
e64b1bd1
YO
185 }
186 my ( $n, $l, $u );
295bcca9
KW
187 $only_has_invariants = $max < 128 if ASCII_PLATFORM;
188 if ($only_has_invariants) {
e64b1bd1
YO
189 $n= [@cp];
190 } else {
191 $l= [@cp] if $max && $max < 256;
192
ca51670f
KW
193 $u= $str;
194 utf8::upgrade($u);
195 $u= [ unpack "U0C*", $u ] if defined $u;
12b72891 196 }
900c17f9 197 return ( \@cp, \@cp_high, $n, $l, $u );
12b72891
RGS
198}
199
12b72891 200#
e64b1bd1
YO
201# $clean= __clean($expr);
202#
203# Cleanup a ternary expression, removing unnecessary parens and apply some
204# simplifications using regexes.
205#
206
207sub __clean {
208 my ( $expr )= @_;
8fdb8a9d 209
9a3182e9
YO
210 #return $expr;
211
e64b1bd1
YO
212 our $parens;
213 $parens= qr/ (?> \( (?> (?: (?> [^()]+ ) | (??{ $parens }) )* ) \) ) /x;
214
8fdb8a9d 215 ## remove redundant parens
e64b1bd1 216 1 while $expr =~ s/ \( \s* ( $parens ) \s* \) /$1/gx;
8fdb8a9d
YO
217
218
219 # repeatedly simplify conditions like
220 # ( (cond1) ? ( (cond2) ? X : Y ) : Y )
221 # into
222 # ( ( (cond1) && (cond2) ) ? X : Y )
6c4f0678
YO
223 # Also similarly handles expressions like:
224 # : (cond1) ? ( (cond2) ? X : Y ) : Y )
225 # Note the inclusion of the close paren in ([:()]) and the open paren in ([()]) is
226 # purely to ensure we have a balanced set of parens in the expression which makes
227 # it easier to understand the pattern in an editor that understands paren's, we do
228 # not expect either of these cases to actually fire. - Yves
8fdb8a9d 229 1 while $expr =~ s/
6c4f0678 230 ([:()]) \s*
8fdb8a9d
YO
231 ($parens) \s*
232 \? \s*
233 \( \s* ($parens) \s*
6c4f0678
YO
234 \? \s* ($parens|[^()?:\s]+?) \s*
235 : \s* ($parens|[^()?:\s]+?) \s*
8fdb8a9d 236 \) \s*
6c4f0678
YO
237 : \s* \5 \s*
238 ([()])
239 /$1 ( $2 && $3 ) ? $4 : $5 $6/gx;
39a0f513
YO
240 #$expr=~s/\(\(U8\*\)s\)\[(\d+)\]/S$1/g if length $expr > 8000;
241 #$expr=~s/\s+//g if length $expr > 8000;
242
243 die "Expression too long" if length $expr > 8000;
8fdb8a9d 244
e64b1bd1 245 return $expr;
12b72891
RGS
246}
247
e64b1bd1
YO
248#
249# $text= __macro(@args);
250# Join args together by newlines, and then neatly add backslashes to the end
251# of every line as expected by the C pre-processor for #define's.
252#
253
254sub __macro {
255 my $str= join "\n", @_;
256 $str =~ s/\s*$//;
257 my @lines= map { s/\s+$//; s/\t/ /g; $_ } split /\n/, $str;
258 my $last= pop @lines;
259 $str= join "\n", ( map { sprintf "%-76s\\", $_ } @lines ), $last;
260 1 while $str =~ s/^(\t*) {8}/$1\t/gm;
261 return $str . "\n";
12b72891
RGS
262}
263
e64b1bd1
YO
264#
265# my $op=__incrdepth($op);
266#
267# take an 'op' hashref and add one to it and all its childrens depths.
268#
269
270sub __incrdepth {
271 my $op= shift;
272 return unless ref $op;
273 $op->{depth} += 1;
274 __incrdepth( $op->{yes} );
275 __incrdepth( $op->{no} );
276 return $op;
277}
278
279# join two branches of an opcode together with a condition, incrementing
280# the depth on the yes branch when we do so.
281# returns the new root opcode of the tree.
282sub __cond_join {
283 my ( $cond, $yes, $no )= @_;
284 return {
285 test => $cond,
286 yes => __incrdepth( $yes ),
287 no => $no,
288 depth => 0,
289 };
290}
291
292# Methods
293
294# constructor
295#
296# my $obj=CLASS->new(op=>'SOMENAME',title=>'blah',txt=>[..]);
297#
298# Create a new CharClass::Matcher object by parsing the text in
299# the txt array. Currently applies the following rules:
300#
301# Element starts with C<0x>, line is evaled the result treated as
302# a number which is passed to chr().
303#
304# Element starts with C<">, line is evaled and the result treated
305# as a string.
306#
307# Each string is then stored in the 'strs' subhash as a hash record
308# made up of the results of __uni_latin1, using the keynames
b1af8fef 309# 'low','latin1','utf8', as well as the synthesized 'LATIN1', 'high', and
b6a6e956 310# 'UTF8' which hold a merge of 'low' and their lowercase equivalents.
e64b1bd1
YO
311#
312# Size data is tracked per type in the 'size' subhash.
313#
314# Return an object
315#
12b72891
RGS
316sub new {
317 my $class= shift;
e64b1bd1
YO
318 my %opt= @_;
319 for ( qw(op txt) ) {
320 die "in " . __PACKAGE__ . " constructor '$_;' is a mandatory field"
321 if !exists $opt{$_};
322 }
323
324 my $self= bless {
325 op => $opt{op},
326 title => $opt{title} || '',
327 }, $class;
328 foreach my $txt ( @{ $opt{txt} } ) {
329 my $str= $txt;
330 if ( $str =~ /^[""]/ ) {
331 $str= eval $str;
05b688d9
KW
332 } elsif ($str =~ / - /x ) { # A range: Replace this element on the
333 # list with its expansion
334 my ($lower, $upper) = $str =~ / 0x (.+?) \s* - \s* 0x (.+) /x;
335 die "Format must be like '0xDEAD - 0xBEAF'; instead was '$str'" if ! defined $lower || ! defined $upper;
336 foreach my $cp (hex $lower .. hex $upper) {
337 push @{$opt{txt}}, sprintf "0x%X", $cp;
338 }
339 next;
295bcca9
KW
340 } elsif ($str =~ s/ ^ N (?= 0x ) //x ) {
341 # Otherwise undocumented, a leading N means is already in the
342 # native character set; don't convert.
e64b1bd1 343 $str= chr eval $str;
295bcca9
KW
344 } elsif ( $str =~ /^0x/ ) {
345 $str= eval $str;
346
347 # Convert from Unicode/ASCII to native, if necessary
348 $str = utf8::unicode_to_native($str) if ! ASCII_PLATFORM
349 && $str <= 0xFF;
350 $str = chr $str;
05b688d9
KW
351 } elsif ( $str =~ / \s* \\p \{ ( .*? ) \} /x) {
352 my $property = $1;
353 use Unicode::UCD qw(prop_invlist);
354
355 my @invlist = prop_invlist($property, '_perl_core_internal_ok');
356 if (! @invlist) {
357
358 # An empty return could mean an unknown property, or merely
359 # that it is empty. Call in scalar context to differentiate
360 my $count = prop_invlist($property, '_perl_core_internal_ok');
361 die "$property not found" unless defined $count;
362 }
363
364 # Replace this element on the list with the property's expansion
365 for (my $i = 0; $i < @invlist; $i += 2) {
366 foreach my $cp ($invlist[$i] .. $invlist[$i+1] - 1) {
295bcca9
KW
367
368 # prop_invlist() returns native values; add leading 'N'
369 # to indicate that.
370 push @{$opt{txt}}, sprintf "N0x%X", $cp;
05b688d9
KW
371 }
372 }
373 next;
60910c93
KW
374 } elsif ($str =~ / ^ do \s+ ( .* ) /x) {
375 die "do '$1' failed: $!$@" if ! do $1 or $@;
376 next;
377 } elsif ($str =~ / ^ & \s* ( .* ) /x) { # user-furnished sub() call
378 my @results = eval "$1";
379 die "eval '$1' failed: $@" if $@;
380 push @{$opt{txt}}, @results;
381 next;
12b72891 382 } else {
5e6c6c1e 383 die "Unparsable line: $txt\n";
12b72891 384 }
900c17f9 385 my ( $cp, $cp_high, $low, $latin1, $utf8 )= __uni_latin1( $str );
e64b1bd1
YO
386 my $UTF8= $low || $utf8;
387 my $LATIN1= $low || $latin1;
b1af8fef 388 my $high = (scalar grep { $_ < 256 } @$cp) ? 0 : $utf8;
dda856b2
YO
389 #die Dumper($txt,$cp,$low,$latin1,$utf8)
390 # if $txt=~/NEL/ or $utf8 and @$utf8>3;
e64b1bd1 391
900c17f9
KW
392 @{ $self->{strs}{$str} }{qw( str txt low utf8 latin1 high cp cp_high UTF8 LATIN1 )}=
393 ( $str, $txt, $low, $utf8, $latin1, $high, $cp, $cp_high, $UTF8, $LATIN1 );
e64b1bd1 394 my $rec= $self->{strs}{$str};
900c17f9 395 foreach my $key ( qw(low utf8 latin1 high cp cp_high UTF8 LATIN1) ) {
e64b1bd1
YO
396 $self->{size}{$key}{ 0 + @{ $self->{strs}{$str}{$key} } }++
397 if $self->{strs}{$str}{$key};
12b72891 398 }
e64b1bd1
YO
399 $self->{has_multi} ||= @$cp > 1;
400 $self->{has_ascii} ||= $latin1 && @$latin1;
401 $self->{has_low} ||= $low && @$low;
402 $self->{has_high} ||= !$low && !$latin1;
12b72891 403 }
e64b1bd1
YO
404 $self->{val_fmt}= $hex_fmt;
405 $self->{count}= 0 + keys %{ $self->{strs} };
12b72891
RGS
406 return $self;
407}
408
e64b1bd1 409# my $trie = make_trie($type,$maxlen);
12b72891 410#
47e01c32 411# using the data stored in the object build a trie of a specific type,
e64b1bd1
YO
412# and with specific maximum depth. The trie is made up the elements of
413# the given types array for each string in the object (assuming it is
414# not too long.)
415#
47e01c32 416# returns the trie, or undef if there was no relevant data in the object.
e64b1bd1
YO
417#
418
419sub make_trie {
420 my ( $self, $type, $maxlen )= @_;
421
422 my $strs= $self->{strs};
423 my %trie;
424 foreach my $rec ( values %$strs ) {
425 die "panic: unknown type '$type'"
426 if !exists $rec->{$type};
427 my $dat= $rec->{$type};
428 next unless $dat;
429 next if $maxlen && @$dat > $maxlen;
430 my $node= \%trie;
431 foreach my $elem ( @$dat ) {
432 $node->{$elem} ||= {};
433 $node= $node->{$elem};
12b72891 434 }
e64b1bd1 435 $node->{''}= $rec->{str};
12b72891 436 }
e64b1bd1 437 return 0 + keys( %trie ) ? \%trie : undef;
12b72891
RGS
438}
439
2efb8143
KW
440sub pop_count ($) {
441 my $word = shift;
442
443 # This returns a list of the positions of the bits in the input word that
444 # are 1.
445
446 my @positions;
447 my $position = 0;
448 while ($word) {
449 push @positions, $position if $word & 1;
450 $position++;
451 $word >>= 1;
452 }
453 return @positions;
454}
455
e64b1bd1
YO
456# my $optree= _optree()
457#
458# recursively convert a trie to an optree where every node represents
459# an if else branch.
12b72891 460#
12b72891 461#
12b72891 462
e64b1bd1
YO
463sub _optree {
464 my ( $self, $trie, $test_type, $ret_type, $else, $depth )= @_;
465 return unless defined $trie;
466 if ( $self->{has_multi} and $ret_type =~ /cp|both/ ) {
467 die "Can't do 'cp' optree from multi-codepoint strings";
12b72891 468 }
e64b1bd1
YO
469 $ret_type ||= 'len';
470 $else= 0 unless defined $else;
471 $depth= 0 unless defined $depth;
472
b6a6e956 473 # if we have an empty string as a key it means we are in an
e405c23a
YO
474 # accepting state and unless we can match further on should
475 # return the value of the '' key.
895e25a5 476 if (exists $trie->{''} ) {
e405c23a
YO
477 # we can now update the "else" value, anything failing to match
478 # after this point should return the value from this.
e64b1bd1
YO
479 if ( $ret_type eq 'cp' ) {
480 $else= $self->{strs}{ $trie->{''} }{cp}[0];
481 $else= sprintf "$self->{val_fmt}", $else if $else > 9;
482 } elsif ( $ret_type eq 'len' ) {
483 $else= $depth;
484 } elsif ( $ret_type eq 'both') {
485 $else= $self->{strs}{ $trie->{''} }{cp}[0];
486 $else= sprintf "$self->{val_fmt}", $else if $else > 9;
487 $else= "len=$depth, $else";
12b72891 488 }
e64b1bd1 489 }
e405c23a
YO
490 # extract the meaningful keys from the trie, filter out '' as
491 # it means we are an accepting state (end of sequence).
492 my @conds= sort { $a <=> $b } grep { length $_ } keys %$trie;
493
b6a6e956 494 # if we haven't any keys there is no further we can match and we
e405c23a 495 # can return the "else" value.
e64b1bd1 496 return $else if !@conds;
e405c23a
YO
497
498
900c17f9 499 my $test= $test_type =~ /^cp/ ? "cp" : "((U8*)s)[$depth]";
9a3182e9
YO
500 # first we loop over the possible keys/conditions and find out what they look like
501 # we group conditions with the same optree together.
502 my %dmp_res;
503 my @res_order;
e405c23a
YO
504 local $Data::Dumper::Sortkeys=1;
505 foreach my $cond ( @conds ) {
506
507 # get the optree for this child/condition
508 my $res= $self->_optree( $trie->{$cond}, $test_type, $ret_type, $else, $depth + 1 );
509 # convert it to a string with Dumper
e64b1bd1 510 my $res_code= Dumper( $res );
e405c23a 511
9a3182e9
YO
512 push @{$dmp_res{$res_code}{vals}}, $cond;
513 if (!$dmp_res{$res_code}{optree}) {
514 $dmp_res{$res_code}{optree}= $res;
515 push @res_order, $res_code;
516 }
517 }
518
519 # now that we have deduped the optrees we construct a new optree containing the merged
520 # results.
521 my %root;
522 my $node= \%root;
523 foreach my $res_code_idx (0 .. $#res_order) {
524 my $res_code= $res_order[$res_code_idx];
525 $node->{vals}= $dmp_res{$res_code}{vals};
526 $node->{test}= $test;
527 $node->{yes}= $dmp_res{$res_code}{optree};
528 $node->{depth}= $depth;
529 if ($res_code_idx < $#res_order) {
530 $node= $node->{no}= {};
12b72891 531 } else {
9a3182e9 532 $node->{no}= $else;
12b72891
RGS
533 }
534 }
e405c23a
YO
535
536 # return the optree.
537 return \%root;
12b72891
RGS
538}
539
e64b1bd1
YO
540# my $optree= optree(%opts);
541#
542# Convert a trie to an optree, wrapper for _optree
543
544sub optree {
545 my $self= shift;
546 my %opt= @_;
547 my $trie= $self->make_trie( $opt{type}, $opt{max_depth} );
548 $opt{ret_type} ||= 'len';
900c17f9 549 my $test_type= $opt{type} =~ /^cp/ ? 'cp' : 'depth';
e64b1bd1 550 return $self->_optree( $trie, $test_type, $opt{ret_type}, $opt{else}, 0 );
12b72891
RGS
551}
552
e64b1bd1
YO
553# my $optree= generic_optree(%opts);
554#
555# build a "generic" optree out of the three 'low', 'latin1', 'utf8'
556# sets of strings, including a branch for handling the string type check.
557#
558
559sub generic_optree {
560 my $self= shift;
561 my %opt= @_;
562
563 $opt{ret_type} ||= 'len';
564 my $test_type= 'depth';
565 my $else= $opt{else} || 0;
566
567 my $latin1= $self->make_trie( 'latin1', $opt{max_depth} );
568 my $utf8= $self->make_trie( 'utf8', $opt{max_depth} );
569
570 $_= $self->_optree( $_, $test_type, $opt{ret_type}, $else, 0 )
571 for $latin1, $utf8;
572
573 if ( $utf8 ) {
574 $else= __cond_join( "( is_utf8 )", $utf8, $latin1 || $else );
575 } elsif ( $latin1 ) {
576 $else= __cond_join( "!( is_utf8 )", $latin1, $else );
577 }
87894a24 578 if ($opt{type} eq 'generic') {
61de6bbc
KW
579 my $low= $self->make_trie( 'low', $opt{max_depth} );
580 if ( $low ) {
581 $else= $self->_optree( $low, $test_type, $opt{ret_type}, $else, 0 );
582 }
87894a24 583 }
e64b1bd1
YO
584
585 return $else;
12b72891
RGS
586}
587
e64b1bd1 588# length_optree()
12b72891 589#
e64b1bd1 590# create a string length guarded optree.
12b72891 591#
e64b1bd1
YO
592
593sub length_optree {
594 my $self= shift;
595 my %opt= @_;
596 my $type= $opt{type};
597
598 die "Can't do a length_optree on type 'cp', makes no sense."
900c17f9 599 if $type =~ /^cp/;
e64b1bd1
YO
600
601 my ( @size, $method );
602
87894a24 603 if ( $type =~ /generic/ ) {
e64b1bd1
YO
604 $method= 'generic_optree';
605 my %sizes= (
606 %{ $self->{size}{low} || {} },
607 %{ $self->{size}{latin1} || {} },
608 %{ $self->{size}{utf8} || {} }
609 );
610 @size= sort { $a <=> $b } keys %sizes;
611 } else {
612 $method= 'optree';
613 @size= sort { $a <=> $b } keys %{ $self->{size}{$type} };
12b72891 614 }
e64b1bd1
YO
615
616 my $else= ( $opt{else} ||= 0 );
617 for my $size ( @size ) {
618 my $optree= $self->$method( %opt, type => $type, max_depth => $size );
619 my $cond= "((e)-(s) > " . ( $size - 1 ).")";
620 $else= __cond_join( $cond, $optree, $else );
621 }
622 return $else;
12b72891
RGS
623}
624
2efb8143 625sub calculate_mask(@) {
75929b4b
KW
626 # Look at the input list of byte values. This routine returns an array of
627 # mask/base pairs to generate that list.
628
2efb8143
KW
629 my @list = @_;
630 my $list_count = @list;
631
75929b4b
KW
632 # Consider a set of byte values, A, B, C .... If we want to determine if
633 # <c> is one of them, we can write c==A || c==B || c==C .... If the
634 # values are consecutive, we can shorten that to A<=c && c<=Z, which uses
635 # far fewer branches. If only some of them are consecutive we can still
636 # save some branches by creating range tests for just those that are
637 # consecutive. _cond_as_str() does this work for looking for ranges.
638 #
639 # Another approach is to look at the bit patterns for A, B, C .... and see
640 # if they have some commonalities. That's what this function does. For
641 # example, consider a set consisting of the bytes
642 # 0xF0, 0xF1, 0xF2, and 0xF3. We could write:
2efb8143
KW
643 # 0xF0 <= c && c <= 0xF4
644 # But the following mask/compare also works, and has just one test:
75929b4b
KW
645 # (c & 0xFC) == 0xF0
646 # The reason it works is that the set consists of exactly those bytes
2efb8143 647 # whose first 4 bits are 1, and the next two are 0. (The value of the
75929b4b 648 # other 2 bits is immaterial in determining if a byte is in the set or
2efb8143 649 # not.) The mask masks out those 2 irrelevant bits, and the comparison
75929b4b
KW
650 # makes sure that the result matches all bytes which match those 6
651 # material bits exactly. In other words, the set of bytes contains
2efb8143
KW
652 # exactly those whose bottom two bit positions are either 0 or 1. The
653 # same principle applies to bit positions that are not necessarily
654 # adjacent. And it can be applied to bytes that differ in 1 through all 8
655 # bit positions. In order to be a candidate for this optimization, the
75929b4b
KW
656 # number of bytes in the set must be a power of 2.
657 #
658 # Consider a different example, the set 0x53, 0x54, 0x73, and 0x74. That
659 # requires 4 tests using either ranges or individual values, and even
660 # though the number in the set is a power of 2, it doesn't qualify for the
661 # mask optimization described above because the number of bits that are
662 # different is too large for that. However, the set can be expressed as
663 # two branches with masks thusly:
664 # (c & 0xDF) == 0x53 || (c & 0xDF) == 0x54
665 # a branch savings of 50%. This is done by splitting the set into two
666 # subsets each of which has 2 elements, and within each set the values
667 # differ by 1 byte.
668 #
669 # This function attempts to find some way to save some branches using the
670 # mask technique. If not, it returns an empty list; if so, it
671 # returns a list consisting of
672 # [ [compare1, mask1], [compare2, mask2], ...
673 # [compare_n, undef], [compare_m, undef], ...
674 # ]
675 # The <mask> is undef in the above for those bytes that must be tested
676 # for individually.
677 #
678 # This function does not attempt to find the optimal set. To do so would
679 # probably require testing all possible combinations, and keeping track of
680 # the current best one.
681 #
682 # There are probably much better algorithms, but this is the one I (khw)
683 # came up with. We start with doing a bit-wise compare of every byte in
684 # the set with every other byte. The results are sorted into arrays of
685 # all those that differ by the same bit positions. These are stored in a
686 # hash with the each key being the bits they differ in. Here is the hash
687 # for the 0x53, 0x54, 0x73, 0x74 set:
688 # {
689 # 4 => {
690 # "0,1,2,5" => [
691 # 83,
692 # 116,
693 # 84,
694 # 115
695 # ]
696 # },
697 # 3 => {
698 # "0,1,2" => [
699 # 83,
700 # 84,
701 # 115,
702 # 116
703 # ]
704 # }
705 # 1 => {
706 # 5 => [
707 # 83,
708 # 115,
709 # 84,
710 # 116
711 # ]
712 # },
713 # }
714 #
715 # The set consisting of values which differ in the 4 bit positions 0, 1,
716 # 2, and 5 from some other value in the set consists of all 4 values.
717 # Likewise all 4 values differ from some other value in the 3 bit
718 # positions 0, 1, and 2; and all 4 values differ from some other value in
719 # the single bit position 5. The keys at the uppermost level in the above
720 # hash, 1, 3, and 4, give the number of bit positions that each sub-key
721 # below it has. For example, the 4 key could have as its value an array
722 # consisting of "0,1,2,5", "0,1,2,6", and "3,4,6,7", if the inputs were
723 # such. The best optimization will group the most values into a single
724 # mask. The most values will be the ones that differ in the most
725 # positions, the ones with the largest value for the topmost key. These
726 # keys, are thus just for convenience of sorting by that number, and do
727 # not have any bearing on the core of the algorithm.
728 #
729 # We start with an element from largest number of differing bits. The
730 # largest in this case is 4 bits, and there is only one situation in this
731 # set which has 4 differing bits, "0,1,2,5". We look for any subset of
732 # this set which has 16 values that differ in these 4 bits. There aren't
733 # any, because there are only 4 values in the entire set. We then look at
734 # the next possible thing, which is 3 bits differing in positions "0,1,2".
735 # We look for a subset that has 8 values that differ in these 3 bits.
736 # Again there are none. So we go to look for the next possible thing,
737 # which is a subset of 2**1 values that differ only in bit position 5. 83
738 # and 115 do, so we calculate a mask and base for those and remove them
739 # from every set. Since there is only the one set remaining, we remove
740 # them from just this one. We then look to see if there is another set of
741 # 2 values that differ in bit position 5. 84 and 116 do, so we calculate
742 # a mask and base for those and remove them from every set (again only
743 # this set remains in this example). The set is now empty, and there are
744 # no more sets to look at, so we are done.
745
746 if ($list_count == 256) { # All 256 is trivially masked
2efb8143
KW
747 return (0, 0);
748 }
749
75929b4b
KW
750 my %hash;
751
752 # Generate bits-differing lists for each element compared against each
753 # other element
754 for my $i (0 .. $list_count - 2) {
755 for my $j ($i + 1 .. $list_count - 1) {
756 my @bits_that_differ = pop_count($list[$i] ^ $list[$j]);
757 my $differ_count = @bits_that_differ;
758 my $key = join ",", @bits_that_differ;
759 push @{$hash{$differ_count}{$key}}, $list[$i] unless grep { $_ == $list[$i] } @{$hash{$differ_count}{$key}};
760 push @{$hash{$differ_count}{$key}}, $list[$j];
761 }
762 }
2efb8143 763
75929b4b 764 print STDERR __LINE__, ": calculate_mask() called: List of values grouped by differing bits: ", Dumper \%hash if DEBUG;
2efb8143 765
75929b4b
KW
766 my @final_results;
767 foreach my $count (reverse sort { $a <=> $b } keys %hash) {
768 my $need = 2 ** $count; # Need 8 values for 3 differing bits, etc
122a2d8f 769 foreach my $bits (sort keys $hash{$count}) {
2efb8143 770
75929b4b 771 print STDERR __LINE__, ": For $count bit(s) difference ($bits), need $need; have ", scalar @{$hash{$count}{$bits}}, "\n" if DEBUG;
2efb8143 772
75929b4b
KW
773 # Look only as long as there are at least as many elements in the
774 # subset as are needed
775 while ((my $cur_count = @{$hash{$count}{$bits}}) >= $need) {
2efb8143 776
75929b4b 777 print STDERR __LINE__, ": Looking at bit positions ($bits): ", Dumper $hash{$count}{$bits} if DEBUG;
2efb8143 778
75929b4b
KW
779 # Start with the first element in it
780 my $try_base = $hash{$count}{$bits}[0];
781 my @subset = $try_base;
782
783 # If it succeeds, we return a mask and a base to compare
784 # against the masked value. That base will be the AND of
785 # every element in the subset. Initialize to the one element
786 # we have so far.
787 my $compare = $try_base;
788
789 # We are trying to find a subset of this that has <need>
790 # elements that differ in the bit positions given by the
791 # string $bits, which is comma separated.
792 my @bits = split ",", $bits;
793
794 TRY: # Look through the remainder of the list for other
795 # elements that differ only by these bit positions.
796
797 for (my $i = 1; $i < $cur_count; $i++) {
798 my $try_this = $hash{$count}{$bits}[$i];
799 my @positions = pop_count($try_base ^ $try_this);
800
801 print STDERR __LINE__, ": $try_base vs $try_this: is (", join(',', @positions), ") a subset of ($bits)?" if DEBUG;;
802
803 foreach my $pos (@positions) {
804 unless (grep { $pos == $_ } @bits) {
805 print STDERR " No\n" if DEBUG;
806 my $remaining = $cur_count - $i - 1;
807 if ($remaining && @subset + $remaining < $need) {
808 print STDERR __LINE__, ": Can stop trying $try_base, because even if all the remaining $remaining values work, they wouldn't add up to the needed $need when combined with the existing ", scalar @subset, " ones\n" if DEBUG;
809 last TRY;
810 }
811 next TRY;
812 }
813 }
814
815 print STDERR " Yes\n" if DEBUG;
816 push @subset, $try_this;
817
818 # Add this to the mask base, in case it ultimately
819 # succeeds,
820 $compare &= $try_this;
821 }
822
823 print STDERR __LINE__, ": subset (", join(", ", @subset), ") has ", scalar @subset, " elements; needs $need\n" if DEBUG;
824
825 if (@subset < $need) {
826 shift @{$hash{$count}{$bits}};
827 next; # Try with next value
828 }
2efb8143 829
75929b4b
KW
830 # Create the mask
831 my $mask = 0;
832 foreach my $position (@bits) {
833 $mask |= 1 << $position;
834 }
835 $mask = ~$mask & 0xFF;
836 push @final_results, [$compare, $mask];
837
838 printf STDERR "%d: Got it: compare=%d=0x%X; mask=%X\n", __LINE__, $compare, $compare, $mask if DEBUG;
839
840 # These values are now spoken for. Remove them from future
841 # consideration
122a2d8f
YO
842 foreach my $remove_count (sort keys %hash) {
843 foreach my $bits (sort keys %{$hash{$remove_count}}) {
75929b4b
KW
844 foreach my $to_remove (@subset) {
845 @{$hash{$remove_count}{$bits}} = grep { $_ != $to_remove } @{$hash{$remove_count}{$bits}};
846 }
847 }
848 }
849 }
850 }
2efb8143
KW
851 }
852
75929b4b
KW
853 # Any values that remain in the list are ones that have to be tested for
854 # individually.
855 my @individuals;
856 foreach my $count (reverse sort { $a <=> $b } keys %hash) {
122a2d8f 857 foreach my $bits (sort keys $hash{$count}) {
75929b4b
KW
858 foreach my $remaining (@{$hash{$count}{$bits}}) {
859
860 # If we already know about this value, just ignore it.
861 next if grep { $remaining == $_ } @individuals;
862
863 # Otherwise it needs to be returned as something to match
864 # individually
865 push @final_results, [$remaining, undef];
866 push @individuals, $remaining;
867 }
868 }
2efb8143 869 }
2efb8143 870
75929b4b
KW
871 # Sort by increasing numeric value
872 @final_results = sort { $a->[0] <=> $b->[0] } @final_results;
873
874 print STDERR __LINE__, ": Final return: ", Dumper \@final_results if DEBUG;
875
876 return @final_results;
2efb8143
KW
877}
878
e64b1bd1
YO
879# _cond_as_str
880# turn a list of conditions into a text expression
881# - merges ranges of conditions, and joins the result with ||
882sub _cond_as_str {
ba073cf2 883 my ( $self, $op, $combine, $opts_ref )= @_;
e64b1bd1
YO
884 my $cond= $op->{vals};
885 my $test= $op->{test};
2efb8143 886 my $is_cp_ret = $opts_ref->{ret_type} eq "cp";
e64b1bd1
YO
887 return "( $test )" if !defined $cond;
888
f5772832 889 # rangify the list.
e64b1bd1
YO
890 my @ranges;
891 my $Update= sub {
f5772832
KW
892 # We skip this if there are optimizations that
893 # we can apply (below) to the individual ranges
894 if ( ($is_cp_ret || $combine) && @ranges && ref $ranges[-1]) {
e64b1bd1
YO
895 if ( $ranges[-1][0] == $ranges[-1][1] ) {
896 $ranges[-1]= $ranges[-1][0];
897 } elsif ( $ranges[-1][0] + 1 == $ranges[-1][1] ) {
898 $ranges[-1]= $ranges[-1][0];
899 push @ranges, $ranges[-1] + 1;
900 }
901 }
902 };
4a8ca70e
KW
903 for my $condition ( @$cond ) {
904 if ( !@ranges || $condition != $ranges[-1][1] + 1 ) {
e64b1bd1 905 $Update->();
4a8ca70e 906 push @ranges, [ $condition, $condition ];
e64b1bd1
YO
907 } else {
908 $ranges[-1][1]++;
909 }
910 }
911 $Update->();
f5772832 912
e64b1bd1
YO
913 return $self->_combine( $test, @ranges )
914 if $combine;
f5772832
KW
915
916 if ($is_cp_ret) {
1f063c57
KW
917 @ranges= map {
918 ref $_
919 ? sprintf(
920 "( $self->{val_fmt} <= $test && $test <= $self->{val_fmt} )",
921 @$_ )
922 : sprintf( "$self->{val_fmt} == $test", $_ );
923 } @ranges;
6a52943c
KW
924
925 return "( " . join( " || ", @ranges ) . " )";
f5772832 926 }
75929b4b 927
2358c533
KW
928 # If the input set has certain characteristics, we can optimize tests
929 # for it. This doesn't apply if returning the code point, as we want
930 # each element of the set individually. The code above is for this
931 # simpler case.
932
933 return 1 if @$cond == 256; # If all bytes match, is trivially true
934
75929b4b 935 my @masks;
2358c533 936 if (@ranges > 1) {
75929b4b 937
b6a6e956 938 # See if the entire set shares optimizable characteristics, and if so,
2358c533
KW
939 # return the optimization. We delay checking for this on sets with
940 # just a single range, as there may be better optimizations available
941 # in that case.
75929b4b
KW
942 @masks = calculate_mask(@$cond);
943
944 # Stringify the output of calculate_mask()
945 if (@masks) {
946 my @return;
947 foreach my $mask_ref (@masks) {
948 if (defined $mask_ref->[1]) {
949 push @return, sprintf "( ( $test & $self->{val_fmt} ) == $self->{val_fmt} )", $mask_ref->[1], $mask_ref->[0];
950 }
951 else { # An undefined mask means to use the value as-is
952 push @return, sprintf "$test == $self->{val_fmt}", $mask_ref->[0];
953 }
954 }
955
956 # The best possible case below for specifying this set of values via
957 # ranges is 1 branch per range. If our mask method yielded better
958 # results, there is no sense trying something that is bound to be
959 # worse.
960 if (@return < @ranges) {
961 return "( " . join( " || ", @return ) . " )";
962 }
963
964 @masks = @return;
6e130234 965 }
2358c533 966 }
f5772832 967
75929b4b
KW
968 # Here, there was no entire-class optimization that was clearly better
969 # than doing things by ranges. Look at each range.
970 my $range_count_extra = 0;
2358c533
KW
971 for (my $i = 0; $i < @ranges; $i++) {
972 if (! ref $ranges[$i]) { # Trivial case: no range
973 $ranges[$i] = sprintf "$self->{val_fmt} == $test", $ranges[$i];
974 }
975 elsif ($ranges[$i]->[0] == $ranges[$i]->[1]) {
976 $ranges[$i] = # Trivial case: single element range
977 sprintf "$self->{val_fmt} == $test", $ranges[$i]->[0];
978 }
979 else {
980 my $output = "";
981
982 # Well-formed UTF-8 continuation bytes on ascii platforms must be
983 # in the range 0x80 .. 0xBF. If we know that the input is
984 # well-formed (indicated by not trying to be 'safe'), we can omit
985 # tests that verify that the input is within either of these
986 # bounds. (No legal UTF-8 character can begin with anything in
987 # this range, so we don't have to worry about this being a
988 # continuation byte or not.)
989 if (ASCII_PLATFORM
990 && ! $opts_ref->{safe}
991 && $opts_ref->{type} =~ / ^ (?: utf8 | high ) $ /xi)
992 {
993 my $lower_limit_is_80 = ($ranges[$i]->[0] == 0x80);
994 my $upper_limit_is_BF = ($ranges[$i]->[1] == 0xBF);
995
996 # If the range is the entire legal range, it matches any legal
997 # byte, so we can omit both tests. (This should happen only
998 # if the number of ranges is 1.)
999 if ($lower_limit_is_80 && $upper_limit_is_BF) {
1000 return 1;
6e130234 1001 }
2358c533
KW
1002 elsif ($lower_limit_is_80) { # Just use the upper limit test
1003 $output = sprintf("( $test <= $self->{val_fmt} )",
1004 $ranges[$i]->[1]);
f5772832 1005 }
2358c533
KW
1006 elsif ($upper_limit_is_BF) { # Just use the lower limit test
1007 $output = sprintf("( $test >= $self->{val_fmt} )",
1008 $ranges[$i]->[0]);
f5772832 1009 }
2358c533
KW
1010 }
1011
1012 # If we didn't change to omit a test above, see if the number of
1013 # elements is a power of 2 (only a single bit in the
1014 # representation of its count will be set) and if so, it may be
1015 # that a mask/compare optimization is possible.
1016 if ($output eq ""
1017 && pop_count($ranges[$i]->[1] - $ranges[$i]->[0] + 1) == 1)
1018 {
1019 my @list;
1020 push @list, $_ for ($ranges[$i]->[0] .. $ranges[$i]->[1]);
75929b4b
KW
1021 my @this_masks = calculate_mask(@list);
1022
1023 # Use the mask if there is just one for the whole range.
1024 # Otherwise there is no savings over the two branches that can
1025 # define the range.
1026 if (@this_masks == 1 && defined $this_masks[0][1]) {
1027 $output = sprintf "( $test & $self->{val_fmt} ) == $self->{val_fmt}", $this_masks[0][1], $this_masks[0][0];
f5772832
KW
1028 }
1029 }
2358c533
KW
1030
1031 if ($output ne "") { # Prefer any optimization
1032 $ranges[$i] = $output;
1033 }
75929b4b 1034 else {
2358c533
KW
1035 # No optimization happened. We need a test that the code
1036 # point is within both bounds. But, if the bounds are
1037 # adjacent code points, it is cleaner to say
1038 # 'first == test || second == test'
1039 # than it is to say
1040 # 'first <= test && test <= second'
75929b4b
KW
1041
1042 $range_count_extra++; # This range requires 2 branches to
1043 # represent
e2a80cb5
KW
1044 if ($ranges[$i]->[0] + 1 == $ranges[$i]->[1]) {
1045 $ranges[$i] = "( "
1046 . join( " || ", ( map
1047 { sprintf "$self->{val_fmt} == $test", $_ }
1048 @{$ranges[$i]} ) )
1049 . " )";
1050 }
1051 else { # Full bounds checking
1052 $ranges[$i] = sprintf("( $self->{val_fmt} <= $test && $test <= $self->{val_fmt} )", $ranges[$i]->[0], $ranges[$i]->[1]);
1053 }
75929b4b 1054 }
f5772832 1055 }
2358c533 1056 }
f5772832 1057
75929b4b
KW
1058 # We have generated the list of bytes in two ways; one trying to use masks
1059 # to cut the number of branches down, and the other to look at individual
1060 # ranges (some of which could be cut down by using a mask for just it).
1061 # We return whichever method uses the fewest branches.
1062 return "( "
1063 . join( " || ", (@masks && @masks < @ranges + $range_count_extra)
1064 ? @masks
1065 : @ranges)
1066 . " )";
12b72891
RGS
1067}
1068
e64b1bd1
YO
1069# _combine
1070# recursively turn a list of conditions into a fast break-out condition
1071# used by _cond_as_str() for 'cp' type macros.
1072sub _combine {
1073 my ( $self, $test, @cond )= @_;
1074 return if !@cond;
1075 my $item= shift @cond;
1076 my ( $cstr, $gtv );
1077 if ( ref $item ) {
1078 $cstr=
1079 sprintf( "( $self->{val_fmt} <= $test && $test <= $self->{val_fmt} )",
1080 @$item );
1081 $gtv= sprintf "$self->{val_fmt}", $item->[1];
12b72891 1082 } else {
e64b1bd1
YO
1083 $cstr= sprintf( "$self->{val_fmt} == $test", $item );
1084 $gtv= sprintf "$self->{val_fmt}", $item;
12b72891 1085 }
e64b1bd1 1086 if ( @cond ) {
ee98d22d
YO
1087 my $combine= $self->_combine( $test, @cond );
1088 if (@cond >1) {
1089 return "( $cstr || ( $gtv < $test &&\n"
1090 . $combine . " ) )";
1091 } else {
1092 return "( $cstr || $combine )";
1093 }
12b72891 1094 } else {
e64b1bd1 1095 return $cstr;
12b72891 1096 }
e64b1bd1 1097}
12b72891 1098
e64b1bd1
YO
1099# _render()
1100# recursively convert an optree to text with reasonably neat formatting
1101sub _render {
39a0f513 1102 my ( $self, $op, $combine, $brace, $opts_ref, $def, $submacros )= @_;
2e39f0c2 1103 return 0 if ! defined $op; # The set is empty
e64b1bd1
YO
1104 if ( !ref $op ) {
1105 return $op;
12b72891 1106 }
ba073cf2 1107 my $cond= $self->_cond_as_str( $op, $combine, $opts_ref );
cc08b31c
KW
1108 #no warnings 'recursion'; # This would allow really really inefficient
1109 # code to be generated. See pod
39a0f513 1110 my $yes= $self->_render( $op->{yes}, $combine, 1, $opts_ref, $def, $submacros );
30188af7
KW
1111 return $yes if $cond eq '1';
1112
39a0f513 1113 my $no= $self->_render( $op->{no}, $combine, 0, $opts_ref, $def, $submacros );
e64b1bd1
YO
1114 return "( $cond )" if $yes eq '1' and $no eq '0';
1115 my ( $lb, $rb )= $brace ? ( "( ", " )" ) : ( "", "" );
1116 return "$lb$cond ? $yes : $no$rb"
1117 if !ref( $op->{yes} ) && !ref( $op->{no} );
1118 my $ind1= " " x 4;
1119 my $ind= "\n" . ( $ind1 x $op->{depth} );
1120
1121 if ( ref $op->{yes} ) {
1122 $yes= $ind . $ind1 . $yes;
1123 } else {
1124 $yes= " " . $yes;
1125 }
1126
39a0f513
YO
1127 my $str= "$lb$cond ?$yes$ind: $no$rb";
1128 if (length $str > 6000) {
1129 push @$submacros, sprintf "#define $def\n( %s )", "_part" . (my $yes_idx= 0+@$submacros), $yes;
1130 push @$submacros, sprintf "#define $def\n( %s )", "_part" . (my $no_idx= 0+@$submacros), $no;
1131 return sprintf "%s%s ? $def : $def%s", $lb, $cond, "_part$yes_idx", "_part$no_idx", $rb;
1132 }
1133 return $str;
12b72891 1134}
32e6a07c 1135
e64b1bd1
YO
1136# $expr=render($op,$combine)
1137#
1138# convert an optree to text with reasonably neat formatting. If $combine
1139# is true then the condition is created using "fast breakouts" which
1140# produce uglier expressions that are more efficient for common case,
1141# longer lists such as that resulting from type 'cp' output.
1142# Currently only used for type 'cp' macros.
1143sub render {
39a0f513
YO
1144 my ( $self, $op, $combine, $opts_ref, $def_fmt )= @_;
1145
1146 my @submacros;
1147 my $macro= sprintf "#define $def_fmt\n( %s )", "", $self->_render( $op, $combine, 0, $opts_ref, $def_fmt, \@submacros );
1148
1149 return join "\n\n", map { "/*** GENERATED CODE ***/\n" . __macro( __clean( $_ ) ) } @submacros, $macro;
12b72891 1150}
e64b1bd1
YO
1151
1152# make_macro
1153# make a macro of a given type.
1154# calls into make_trie and (generic_|length_)optree as needed
1155# Opts are:
900c17f9 1156# type : 'cp','cp_high', 'generic','high','low','latin1','utf8','LATIN1','UTF8'
e64b1bd1
YO
1157# ret_type : 'cp' or 'len'
1158# safe : add length guards to macro
1159#
1160# type defaults to 'generic', and ret_type to 'len' unless type is 'cp'
1161# in which case it defaults to 'cp' as well.
1162#
1163# it is illegal to do a type 'cp' macro on a pattern with multi-codepoint
1164# sequences in it, as the generated macro will accept only a single codepoint
1165# as an argument.
1166#
1167# returns the macro.
1168
1169
1170sub make_macro {
1171 my $self= shift;
1172 my %opts= @_;
1173 my $type= $opts{type} || 'generic';
1174 die "Can't do a 'cp' on multi-codepoint character class '$self->{op}'"
900c17f9 1175 if $type =~ /^cp/
e64b1bd1 1176 and $self->{has_multi};
900c17f9 1177 my $ret_type= $opts{ret_type} || ( $opts{type} =~ /^cp/ ? 'cp' : 'len' );
e64b1bd1
YO
1178 my $method;
1179 if ( $opts{safe} ) {
1180 $method= 'length_optree';
87894a24 1181 } elsif ( $type =~ /generic/ ) {
e64b1bd1
YO
1182 $method= 'generic_optree';
1183 } else {
1184 $method= 'optree';
1185 }
900c17f9 1186 my @args= $type =~ /^cp/ ? 'cp' : 's';
e64b1bd1 1187 push @args, "e" if $opts{safe};
87894a24 1188 push @args, "is_utf8" if $type =~ /generic/;
e64b1bd1
YO
1189 push @args, "len" if $ret_type eq 'both';
1190 my $pfx= $ret_type eq 'both' ? 'what_len_' :
1191 $ret_type eq 'cp' ? 'what_' : 'is_';
87894a24
KW
1192 my $ext= $type =~ /generic/ ? '' : '_' . lc( $type );
1193 $ext .= '_non_low' if $type eq 'generic_non_low';
e64b1bd1
YO
1194 $ext .= "_safe" if $opts{safe};
1195 my $argstr= join ",", @args;
39a0f513
YO
1196 my $def_fmt="$pfx$self->{op}$ext%s($argstr)";
1197 my $optree= $self->$method( %opts, type => $type, ret_type => $ret_type );
1198 return $self->render( $optree, ($type =~ /^cp/) ? 1 : 0, \%opts, $def_fmt );
32e6a07c 1199}
e64b1bd1 1200
b6a6e956 1201# if we aren't being used as a module (highly likely) then process
e64b1bd1
YO
1202# the __DATA__ below and produce macros in regcharclass.h
1203# if an argument is provided to the script then it is assumed to
1204# be the path of the file to output to, if the arg is '-' outputs
1205# to STDOUT.
1206if ( !caller ) {
e64b1bd1 1207 $|++;
8770da0e 1208 my $path= shift @ARGV || "regcharclass.h";
e64b1bd1
YO
1209 my $out_fh;
1210 if ( $path eq '-' ) {
1211 $out_fh= \*STDOUT;
1212 } else {
29c22b52 1213 $out_fh = open_new( $path );
e64b1bd1 1214 }
8770da0e
NC
1215 print $out_fh read_only_top( lang => 'C', by => $0,
1216 file => 'regcharclass.h', style => '*',
2eee27d7 1217 copyright => [2007, 2011] );
d10c72f2 1218 print $out_fh "\n#ifndef H_REGCHARCLASS /* Guard against nested #includes */\n#define H_REGCHARCLASS 1\n\n";
12b72891 1219
bb949220 1220 my ( $op, $title, @txt, @types, %mods );
e64b1bd1
YO
1221 my $doit= sub {
1222 return unless $op;
ae1d4929
KW
1223
1224 # Skip if to compile on a different platform.
1225 return if delete $mods{only_ascii_platform} && ! ASCII_PLATFORM;
1226 return if delete $mods{only_ebcdic_platform} && ord 'A' != 193;
1227
e64b1bd1
YO
1228 print $out_fh "/*\n\t$op: $title\n\n";
1229 print $out_fh join "\n", ( map { "\t$_" } @txt ), "*/", "";
1230 my $obj= __PACKAGE__->new( op => $op, title => $title, txt => \@txt );
1231
bb949220
KW
1232 #die Dumper(\@types,\%mods);
1233
1234 my @mods;
1235 push @mods, 'safe' if delete $mods{safe};
1236 unshift @mods, 'fast' if delete $mods{fast} || ! @mods; # Default to 'fast'
1237 # do this one
1238 # first, as
1239 # traditional
1240 if (%mods) {
122a2d8f 1241 die "Unknown modifiers: ", join ", ", map { "'$_'" } sort keys %mods;
bb949220 1242 }
e64b1bd1
YO
1243
1244 foreach my $type_spec ( @types ) {
1245 my ( $type, $ret )= split /-/, $type_spec;
1246 $ret ||= 'len';
1247 foreach my $mod ( @mods ) {
900c17f9 1248 next if $mod eq 'safe' and $type =~ /^cp/;
bb949220 1249 delete $mods{$mod};
e64b1bd1
YO
1250 my $macro= $obj->make_macro(
1251 type => $type,
1252 ret_type => $ret,
1253 safe => $mod eq 'safe'
1254 );
1255 print $out_fh $macro, "\n";
1256 }
32e6a07c 1257 }
e64b1bd1
YO
1258 };
1259
1260 while ( <DATA> ) {
5e6c6c1e 1261 s/^ \s* (?: \# .* ) ? $ //x; # squeeze out comment and blanks
e64b1bd1
YO
1262 next unless /\S/;
1263 chomp;
fbd1cbdd 1264 if ( /^[A-Z]/ ) {
cc08b31c 1265 $doit->(); # This starts a new definition; do the previous one
e64b1bd1
YO
1266 ( $op, $title )= split /\s*:\s*/, $_, 2;
1267 @txt= ();
1268 } elsif ( s/^=>// ) {
1269 my ( $type, $modifier )= split /:/, $_;
1270 @types= split ' ', $type;
bb949220
KW
1271 undef %mods;
1272 map { $mods{$_} = 1 } split ' ', $modifier;
e64b1bd1
YO
1273 } else {
1274 push @txt, "$_";
12b72891
RGS
1275 }
1276 }
e64b1bd1 1277 $doit->();
d10c72f2
KW
1278
1279 print $out_fh "\n#endif /* H_REGCHARCLASS */\n";
1280
8770da0e
NC
1281 if($path eq '-') {
1282 print $out_fh "/* ex: set ro: */\n";
1283 } else {
1284 read_only_bottom_close_and_rename($out_fh)
1285 }
12b72891 1286}
e64b1bd1 1287
cc08b31c
KW
1288# The form of the input is a series of definitions to make macros for.
1289# The first line gives the base name of the macro, followed by a colon, and
1290# then text to be used in comments associated with the macro that are its
1291# title or description. In all cases the first (perhaps only) parameter to
1292# the macro is a pointer to the first byte of the code point it is to test to
1293# see if it is in the class determined by the macro. In the case of non-UTF8,
1294# the code point consists only of a single byte.
1295#
1296# The second line must begin with a '=>' and be followed by the types of
1297# macro(s) to be generated; these are specified below. A colon follows the
1298# types, followed by the modifiers, also specified below. At least one
1299# modifier is required.
1300#
1301# The subsequent lines give what code points go into the class defined by the
1302# macro. Multiple characters may be specified via a string like "\x0D\x0A",
60910c93
KW
1303# enclosed in quotes. Otherwise the lines consist of one of:
1304# 1) a single Unicode code point, prefaced by 0x
1305# 2) a single range of Unicode code points separated by a minus (and
1306# optional space)
1307# 3) a single Unicode property specified in the standard Perl form
1308# "\p{...}"
1309# 4) a line like 'do path'. This will do a 'do' on the file given by
1310# 'path'. It is assumed that this does nothing but load subroutines
1311# (See item 5 below). The reason 'require path' is not used instead is
1312# because 'do' doesn't assume that path is in @INC.
1313# 5) a subroutine call
1314# &pkg::foo(arg1, ...)
1315# where pkg::foo was loaded by a 'do' line (item 4). The subroutine
1316# returns an array of entries of forms like items 1-3 above. This
1317# allows more complex inputs than achievable from the other input types.
cc08b31c
KW
1318#
1319# A blank line or one whose first non-blank character is '#' is a comment.
1320# The definition of the macro is terminated by a line unlike those described.
1321#
1322# Valid types:
1323# low generate a macro whose name is 'is_BASE_low' and defines a
1324# class that includes only ASCII-range chars. (BASE is the
1325# input macro base name.)
1326# latin1 generate a macro whose name is 'is_BASE_latin1' and defines a
1327# class that includes only upper-Latin1-range chars. It is not
1328# designed to take a UTF-8 input parameter.
b1af8fef
KW
1329# high generate a macro whose name is 'is_BASE_high' and defines a
1330# class that includes all relevant code points that are above
1331# the Latin1 range. This is for very specialized uses only.
1332# It is designed to take only an input UTF-8 parameter.
cc08b31c
KW
1333# utf8 generate a macro whose name is 'is_BASE_utf8' and defines a
1334# class that includes all relevant characters that aren't ASCII.
1335# It is designed to take only an input UTF-8 parameter.
1336# LATIN1 generate a macro whose name is 'is_BASE_latin1' and defines a
1337# class that includes both ASCII and upper-Latin1-range chars.
1338# It is not designed to take a UTF-8 input parameter.
1339# UTF8 generate a macro whose name is 'is_BASE_utf8' and defines a
1340# class that can include any code point, adding the 'low' ones
1341# to what 'utf8' works on. It is designed to take only an input
1342# UTF-8 parameter.
1343# generic generate a macro whose name is 'is_BASE". It has a 2nd,
1344# boolean, parameter which indicates if the first one points to
1345# a UTF-8 string or not. Thus it works in all circumstances.
87894a24
KW
1346# generic_non_low generate a macro whose name is 'is_BASE_non_low". It has
1347# a 2nd, boolean, parameter which indicates if the first one
1348# points to a UTF-8 string or not. It excludes any ASCII-range
1349# matches, but otherwise it works in all circumstances.
cc08b31c
KW
1350# cp generate a macro whose name is 'is_BASE_cp' and defines a
1351# class that returns true if the UV parameter is a member of the
1352# class; false if not.
900c17f9
KW
1353# cp_high like cp, but it is assumed that it is known that the UV
1354# parameter is above Latin1. The name of the generated macro is
1355# 'is_BASE_cp_high'. This is different from high-cp, derived
1356# below.
cc08b31c
KW
1357# A macro of the given type is generated for each type listed in the input.
1358# The default return value is the number of octets read to generate the match.
1359# Append "-cp" to the type to have it instead return the matched codepoint.
1360# The macro name is changed to 'what_BASE...'. See pod for
1361# caveats
1362# Appending '-both" instead adds an extra parameter to the end of the argument
1363# list, which is a pointer as to where to store the number of
1364# bytes matched, while also returning the code point. The macro
1365# name is changed to 'what_len_BASE...'. See pod for caveats
1366#
1367# Valid modifiers:
1368# safe The input string is not necessarily valid UTF-8. In
1369# particular an extra parameter (always the 2nd) to the macro is
1370# required, which points to one beyond the end of the string.
1371# The macro will make sure not to read off the end of the
1372# string. In the case of non-UTF8, it makes sure that the
1373# string has at least one byte in it. The macro name has
1374# '_safe' appended to it.
1375# fast The input string is valid UTF-8. No bounds checking is done,
1376# and the macro can make assumptions that lead to faster
1377# execution.
ae1d4929
KW
1378# only_ascii_platform Skip this definition if this program is being run on
1379# a non-ASCII platform.
1380# only_ebcdic_platform Skip this definition if this program is being run on
1381# a non-EBCDIC platform.
cc08b31c
KW
1382# No modifier need be specified; fast is assumed for this case. If both
1383# 'fast', and 'safe' are specified, two macros will be created for each
1384# 'type'.
e90ac8de 1385#
295bcca9 1386# If run on a non-ASCII platform will automatically convert the Unicode input
cc08b31c
KW
1387# to native. The documentation above is slightly wrong in this case. 'low'
1388# actually refers to code points whose UTF-8 representation is the same as the
1389# non-UTF-8 version (invariants); and 'latin1' refers to all the rest of the
1390# code points less than 256.
5e6c6c1e
KW
1391
13921; # in the unlikely case we are being used as a module
1393
1394__DATA__
1395# This is no longer used, but retained in case it is needed some day.
e90ac8de
KW
1396# TRICKYFOLD: Problematic fold case letters. When adding to this list, also should add them to regcomp.c and fold_grind.t
1397# => generic cp generic-cp generic-both :fast safe
1398# 0x00DF # LATIN SMALL LETTER SHARP S
1399# 0x0390 # GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
1400# 0x03B0 # GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
1401# 0x1E9E # LATIN CAPITAL LETTER SHARP S, because maps to same as 00DF
1402# 0x1FD3 # GREEK SMALL LETTER IOTA WITH DIALYTIKA AND OXIA; maps same as 0390
1403# 0x1FE3 # GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND OXIA; maps same as 03B0
1404
12b72891 1405LNBREAK: Line Break: \R
e64b1bd1 1406=> generic UTF8 LATIN1 :fast safe
12b72891 1407"\x0D\x0A" # CRLF - Network (Windows) line ending
05b688d9 1408\p{VertSpace}
12b72891
RGS
1409
1410HORIZWS: Horizontal Whitespace: \h \H
2cafb56b 1411=> generic UTF8 LATIN1 high cp cp_high :fast safe
05b688d9 1412\p{HorizSpace}
12b72891
RGS
1413
1414VERTWS: Vertical Whitespace: \v \V
840f8e92 1415=> generic UTF8 high LATIN1 cp cp_high :fast safe
05b688d9 1416\p{VertSpace}
612ead59 1417
4ac6419d
KW
1418XDIGIT: Hexadecimal digits
1419=> UTF8 high cp_high :fast
1420\p{XDigit}
1421
bedac28b
KW
1422XPERLSPACE: \p{XPerlSpace}
1423=> generic UTF8 high cp_high :fast
1424\p{XPerlSpace}
1425
b96a92fb
KW
1426REPLACEMENT: Unicode REPLACEMENT CHARACTER
1427=> UTF8 :safe
14280xFFFD
1429
1430NONCHAR: Non character code points
1431=> UTF8 :fast
1432\p{Nchar}
1433
1434SURROGATE: Surrogate characters
1435=> UTF8 :fast
1436\p{Gc=Cs}
1437
612ead59
KW
1438GCB_L: Grapheme_Cluster_Break=L
1439=> UTF8 :fast
1440\p{_X_GCB_L}
1441
1442GCB_LV_LVT_V: Grapheme_Cluster_Break=(LV or LVT or V)
1443=> UTF8 :fast
1444\p{_X_LV_LVT_V}
1445
1446GCB_Prepend: Grapheme_Cluster_Break=Prepend
1447=> UTF8 :fast
1448\p{_X_GCB_Prepend}
1449
1450GCB_RI: Grapheme_Cluster_Break=RI
1451=> UTF8 :fast
1452\p{_X_RI}
1453
bff53399 1454GCB_SPECIAL_BEGIN_START: Grapheme_Cluster_Break=special_begin_starts
612ead59 1455=> UTF8 :fast
bff53399 1456\p{_X_Special_Begin_Start}
612ead59
KW
1457
1458GCB_T: Grapheme_Cluster_Break=T
1459=> UTF8 :fast
1460\p{_X_GCB_T}
1461
1462GCB_V: Grapheme_Cluster_Break=V
1463=> UTF8 :fast
1464\p{_X_GCB_V}
685289b5 1465
4d646140
KW
1466# This program was run with this enabled, and the results copied to utf8.h;
1467# then this was commented out because it takes so long to figure out these 2
1468# million code points. The results would not change unless utf8.h decides it
1469# wants a maximum other than 4 bytes, or this program creates better
1470# optimizations
1471#UTF8_CHAR: Matches utf8 from 1 to 4 bytes
1472#=> UTF8 :safe only_ascii_platform
1473#0x0 - 0x1FFFFF
1474
1475# This hasn't been commented out, because we haven't an EBCDIC platform to run
1476# it on, and the 3 types of EBCDIC allegedly supported by Perl would have
1477# different results
1478UTF8_CHAR: Matches utf8 from 1 to 5 bytes
1479=> UTF8 :safe only_ebcdic_platform
14800x0 - 0x3FFFFF:
1481
685289b5
KW
1482QUOTEMETA: Meta-characters that \Q should quote
1483=> high :fast
1484\p{_Perl_Quotemeta}
8769f413
KW
1485
1486MULTI_CHAR_FOLD: multi-char strings that are folded to by a single character
1487=> UTF8 :safe
1488do regen/regcharclass_multi_char_folds.pl
1489
1490# 1 => All folds
1491&regcharclass_multi_char_folds::multi_char_folds(1)
1492
40b1ba4f
KW
1493MULTI_CHAR_FOLD: multi-char strings that are folded to by a single character
1494=> LATIN1 :safe
8769f413 1495
8769f413 1496&regcharclass_multi_char_folds::multi_char_folds(0)
40b1ba4f 1497# 0 => Latin1-only
0b50d62a
KW
1498
1499PATWS: pattern white space
f3b7b534 1500=> generic generic_non_low cp : fast safe
0b50d62a 1501\p{PatWS}