This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Implement fatalization of dump()
[perl5.git] / regen / mk_invlists.pl
CommitLineData
9d9177be
KW
1#!perl -w
2use 5.015;
3use strict;
4use warnings;
99f21fb9
KW
5use Unicode::UCD qw(prop_aliases
6 prop_values
7 prop_value_aliases
8 prop_invlist
9 prop_invmap search_invlist
463b4a67 10 charprop
a1c8344d 11 num
99f21fb9 12 );
3d7c117d
MB
13require './regen/regen_lib.pl';
14require './regen/charset_translations.pl';
4eea95a6 15require './lib/unicore/Heavy.pl';
db95f459 16use re "/aa";
9d9177be
KW
17
18# This program outputs charclass_invlists.h, which contains various inversion
19# lists in the form of C arrays that are to be used as-is for inversion lists.
20# Thus, the lists it contains are essentially pre-compiled, and need only a
21# light-weight fast wrapper to make them usable at run-time.
22
23# As such, this code knows about the internal structure of these lists, and
24# any change made to that has to be done here as well. A random number stored
25# in the headers is used to minimize the possibility of things getting
26# out-of-sync, or the wrong data structure being passed. Currently that
27# random number is:
99f21fb9 28
1c7f0e60
KW
29my $VERSION_DATA_STRUCTURE_TYPE = 148565664;
30
b72e0f31
KW
31# charclass_invlists.h now also contains inversion maps and enum definitions
32# for those maps that have a finite number of possible values
99f21fb9 33
99f21fb9 34# integer or float
db95f459 35my $numeric_re = qr/ ^ -? \d+ (:? \. \d+ )? $ /x;
99f21fb9 36
f4b10e8e 37my %keywords;
cef72199 38my $table_name_prefix = "UNI_";
4eea95a6 39
99f21fb9
KW
40# Matches valid C language enum names: begins with ASCII alphabetic, then any
41# ASCII \w
42my $enum_name_re = qr / ^ [[:alpha:]] \w* $ /ax;
43
9d9177be 44my $out_fh = open_new('charclass_invlists.h', '>',
74e28a4a 45 {style => '*', by => 'regen/mk_invlists.pl',
9d9177be
KW
46 from => "Unicode::UCD"});
47
0f8eed22 48my $in_file_pound_if = "";
43b443dd 49
289ce9cc
KW
50my $max_hdr_len = 3; # In headings, how wide a name is allowed?
51
9d9177be
KW
52print $out_fh "/* See the generating file for comments */\n\n";
53
d74e7480
KW
54# enums that should be made public
55my %public_enums = (
f52cc976 56 _Perl_SCX => 1
d74e7480
KW
57 );
58
bffc0129
KW
59# The symbols generated by this program are all currently defined only in a
60# single dot c each. The code knows where most of them go, but this hash
61# gives overrides for the exceptions to the typical place
62my %exceptions_to_where_to_define =
7dddaf74 63 (
03d17b6e 64 #_Perl_IVCF => 'PERL_IN_REGCOMP_C',
bffc0129 65 );
4761f74a 66
c0221e16 67my %where_to_define_enums = ();
015bb97c 68
59fc10af
KW
69my $applies_to_all_charsets_text = "all charsets";
70
973a28ed
KW
71my %gcb_enums;
72my @gcb_short_enums;
289ce9cc 73my %gcb_abbreviations;
6b659339
KW
74my %lb_enums;
75my @lb_short_enums;
289ce9cc 76my %lb_abbreviations;
7e54b87f
KW
77my %wb_enums;
78my @wb_short_enums;
289ce9cc 79my %wb_abbreviations;
6b659339 80
99f21fb9
KW
81my @a2n;
82
394d2d3f
KW
83my %prop_name_aliases;
84# Invert this hash so that for each canonical name, we get a list of things
85# that map to it (excluding itself)
86foreach my $name (sort keys %utf8::loose_property_name_of) {
87 my $canonical = $utf8::loose_property_name_of{$name};
88 push @{$prop_name_aliases{$canonical}}, $name if $canonical ne $name;
89}
90
2d74dcf2 91# Output these tables in the same vicinity as each other, so that will get
1aefa327
KW
92# paged in at about the same time. These are also assumed to be the exact
93# same list as those properties used internally by perl.
2d74dcf2
KW
94my %keep_together = (
95 assigned => 1,
96 ascii => 1,
7a6f6841
KW
97 upper => 1,
98 lower => 1,
99 title => 1,
2d74dcf2 100 cased => 1,
7a6f6841
KW
101 uppercaseletter => 1,
102 lowercaseletter => 1,
103 titlecaseletter => 1,
104 casedletter => 1,
2d74dcf2
KW
105 vertspace => 1,
106 xposixalnum => 1,
107 xposixalpha => 1,
108 xposixblank => 1,
109 xposixcntrl => 1,
110 xposixdigit => 1,
111 xposixgraph => 1,
112 xposixlower => 1,
113 xposixprint => 1,
114 xposixpunct => 1,
115 xposixspace => 1,
116 xposixupper => 1,
117 xposixword => 1,
118 xposixxdigit => 1,
119 posixalnum => 1,
120 posixalpha => 1,
121 posixblank => 1,
122 posixcntrl => 1,
123 posixdigit => 1,
124 posixgraph => 1,
125 posixlower => 1,
126 posixprint => 1,
127 posixpunct => 1,
128 posixspace => 1,
129 posixupper => 1,
130 posixword => 1,
131 posixxdigit => 1,
132 _perl_any_folds => 1,
133 _perl_folds_to_multi_char => 1,
134 _perl_idstart => 1,
135 _perl_idcont => 1,
136 _perl_charname_begin => 1,
137 _perl_charname_continue => 1,
138 _perl_problematic_locale_foldeds_start => 1,
139 _perl_problematic_locale_folds => 1,
140 _perl_quotemeta => 1,
141 );
1aefa327 142my %perl_tags; # So can find synonyms of the above properties
2d74dcf2 143
2027d365
KW
144my $unused_table_hdr = 'u'; # Heading for row or column for unused values
145
99f21fb9
KW
146sub uniques {
147 # Returns non-duplicated input values. From "Perl Best Practices:
148 # Encapsulated Cleverness". p. 455 in first edition.
149
150 my %seen;
151 return grep { ! $seen{$_}++ } @_;
152}
153
154sub a2n($) {
155 my $cp = shift;
156
157 # Returns the input Unicode code point translated to native.
158
159 return $cp if $cp !~ $numeric_re || $cp > 255;
160 return $a2n[$cp];
161}
162
bffc0129
KW
163sub end_file_pound_if {
164 if ($in_file_pound_if) {
165 print $out_fh "\n#endif\t/* $in_file_pound_if */\n";
0f8eed22 166 $in_file_pound_if = "";
bffc0129
KW
167 }
168}
169
48737b77
KW
170sub end_charset_pound_if {
171 print $out_fh "\n" . get_conditional_compile_line_end();
172}
173
8ec55631 174sub switch_pound_if ($$;$) {
bffc0129
KW
175 my $name = shift;
176 my $new_pound_if = shift;
8ec55631
KW
177 my $charset = shift;
178
62a54bb7 179 my @new_pound_if = ref ($new_pound_if)
0f8eed22 180 ? sort @$new_pound_if
62a54bb7 181 : $new_pound_if;
bffc0129
KW
182
183 # Switch to new #if given by the 2nd argument. If there is an override
184 # for this, it instead switches to that. The 1st argument is the
0f8eed22 185 # static's name, used only to check if there is an override for this
8ec55631
KW
186 #
187 # The 'charset' parmameter, if present, is used to first end the charset
188 # #if if we actually do a switch, and then restart it afterwards. This
189 # code, then assumes that the charset #if's are enclosed in the file ones.
bffc0129
KW
190
191 if (exists $exceptions_to_where_to_define{$name}) {
62a54bb7 192 @new_pound_if = $exceptions_to_where_to_define{$name};
bffc0129
KW
193 }
194
0f8eed22 195 foreach my $element (@new_pound_if) {
cef72199
KW
196
197 # regcomp.c is arranged so that the tables are not compiled in
198 # re_comp.c */
199 my $no_xsub = 1 if $element =~ / PERL_IN_ (?: REGCOMP ) _C /x;
0f8eed22 200 $element = "defined($element)";
cef72199 201 $element = "($element && ! defined(PERL_IN_XSUB_RE))" if $no_xsub;
bffc0129 202 }
0f8eed22 203 $new_pound_if = join " || ", @new_pound_if;
bffc0129 204
0f8eed22
KW
205 # Change to the new one if different from old
206 if ($in_file_pound_if ne $new_pound_if) {
207
8ec55631
KW
208 end_charset_pound_if() if defined $charset;
209
0f8eed22
KW
210 # Exit any current #if
211 if ($in_file_pound_if) {
212 end_file_pound_if;
62a54bb7 213 }
0f8eed22
KW
214
215 $in_file_pound_if = $new_pound_if;
bffc0129 216 print $out_fh "\n#if $in_file_pound_if\n";
8ec55631
KW
217
218 start_charset_pound_if ($charset, 1) if defined $charset;
43b443dd
KW
219 }
220}
221
48737b77
KW
222sub start_charset_pound_if ($;$) {
223 print $out_fh "\n" . get_conditional_compile_line_start(shift, shift);
224}
225
cef72199
KW
226{ # Closure
227 my $fh;
228 my $in_doinit = 0;
229
230 sub output_table_header($$$;$@) {
231
232 # Output to $fh the heading for a table given by the other inputs
233
234 $fh = shift;
235 my ($type, # typedef of table, like UV, UV*
236 $name, # name of table
237 $comment, # Optional comment to put on header line
238 @sizes # Optional sizes of each array index. If omitted,
239 # there is a single index whose size is computed by
240 # the C compiler.
241 ) = @_;
242
243 $type =~ s/ \s+ $ //x;
244
245 # If a the typedef is a ptr, add in an extra const
246 $type .= " const" if $type =~ / \* $ /x;
247
248 $comment = "" unless defined $comment;
249 $comment = " /* $comment */" if $comment;
250
251 my $array_declaration;
252 if (@sizes) {
253 $array_declaration = "";
254 $array_declaration .= "[$_]" for @sizes;
255 }
256 else {
257 $array_declaration = '[]';
258 }
259
260 my $declaration = "$type ${name}$array_declaration";
261
262 # Things not matching this are static. Otherwise, it is an external
263 # constant, initialized only under DOINIT.
264 #
265 # (Currently everything is static)
266 if ($in_file_pound_if !~ / PERL_IN_ (?: ) _C /x) {
267 $in_doinit = 0;
268 print $fh "\nstatic const $declaration = {$comment\n";
269 }
270 else {
271 $in_doinit = 1;
272 print $fh <<EOF;
273
274# ifndef DOINIT
275
276EXTCONST $declaration;
277
278# else
279
280EXTCONST $declaration = {$comment
281EOF
282 }
283 }
284
285 sub output_table_trailer() {
286
287 # Close out a table started by output_table_header()
288
289 print $fh "};\n";
290 if ($in_doinit) {
291 print $fh "\n# endif /* DOINIT */\n\n";
292 $in_doinit = 0;
293 }
294 }
295} # End closure
296
297
0c4ecf42 298sub output_invlist ($$;$) {
9d9177be
KW
299 my $name = shift;
300 my $invlist = shift; # Reference to inversion list array
0c4ecf42 301 my $charset = shift // ""; # name of character set for comment
9d9177be 302
76d3994c 303 die "No inversion list for $name" unless defined $invlist
ad85f59a 304 && ref $invlist eq 'ARRAY';
76d3994c 305
9d9177be
KW
306 # Output the inversion list $invlist using the name $name for it.
307 # It is output in the exact internal form for inversion lists.
308
a0316a6c
KW
309 # Is the last element of the header 0, or 1 ?
310 my $zero_or_one = 0;
ad85f59a 311 if (@$invlist && $invlist->[0] != 0) {
a0316a6c 312 unshift @$invlist, 0;
9d9177be
KW
313 $zero_or_one = 1;
314 }
315
cef72199
KW
316 $charset = "for $charset" if $charset;
317 output_table_header($out_fh, "UV", "${name}_invlist", $charset);
9d9177be 318
cef72199
KW
319 my $count = @$invlist;
320 print $out_fh <<EOF;
321\t$count,\t/* Number of elements */
322\t$VERSION_DATA_STRUCTURE_TYPE, /* Version and data structure type */
323\t$zero_or_one,\t/* 0 if the list starts at 0;
324\t\t 1 if it starts at the element beyond 0 */
325EOF
9d9177be
KW
326
327 # The main body are the UVs passed in to this routine. Do the final
328 # element separately
47d53124
KW
329 for my $i (0 .. @$invlist - 1) {
330 printf $out_fh "\t0x%X", $invlist->[$i];
331 print $out_fh "," if $i < @$invlist - 1;
332 print $out_fh "\n";
9d9177be
KW
333 }
334
cef72199 335 output_table_trailer();
9d9177be
KW
336}
337
99f21fb9
KW
338sub output_invmap ($$$$$$$) {
339 my $name = shift;
340 my $invmap = shift; # Reference to inversion map array
341 my $prop_name = shift;
342 my $input_format = shift; # The inversion map's format
343 my $default = shift; # The property value for code points who
344 # otherwise don't have a value specified.
345 my $extra_enums = shift; # comma-separated list of our additions to the
346 # property's standard possible values
347 my $charset = shift // ""; # name of character set for comment
348
349 # Output the inversion map $invmap for property $prop_name, but use $name
350 # as the actual data structure's name.
351
352 my $count = @$invmap;
353
354 my $output_format;
18230d9d
KW
355 my $invmap_declaration_type;
356 my $enum_declaration_type;
357 my $aux_declaration_type;
99f21fb9
KW
358 my %enums;
359 my $name_prefix;
360
18230d9d 361 if ($input_format =~ / ^ [as] l? $ /x) {
02f811dd
KW
362 $prop_name = (prop_aliases($prop_name))[1] // $prop_name =~ s/^_Perl_//r; # Get full name
363 my $short_name = (prop_aliases($prop_name))[0] // $prop_name;
226b74db 364 my @input_enums;
f79a09fc 365
226b74db 366 # Find all the possible input values. These become the enum names
34623dbb
KW
367 # that comprise the inversion map. For inputs that don't have sub
368 # lists, we can just get the unique values. Otherwise, we have to
369 # expand the sublists first.
18230d9d 370 if ($input_format !~ / ^ a /x) {
563f8b93
KW
371 if ($input_format ne 'sl') {
372 @input_enums = sort(uniques(@$invmap));
373 }
374 else {
375 foreach my $element (@$invmap) {
376 if (ref $element) {
377 push @input_enums, @$element;
378 }
379 else {
380 push @input_enums, $element;
381 }
34623dbb 382 }
563f8b93 383 @input_enums = sort(uniques(@input_enums));
34623dbb 384 }
18230d9d 385 }
6b659339 386
226b74db 387 # The internal enums come last, and in the order specified.
2027d365
KW
388 #
389 # The internal one named EDGE is also used a marker. Any ones that
390 # come after it are used in the algorithms below, and so must be
391 # defined, even if the release of Unicode this is being compiled for
392 # doesn't use them. But since no code points are assigned to them in
393 # such a release, those values will never be accessed. We collapse
394 # all of them into a single placholder row and a column. The
395 # algorithms below will fill in those cells with essentially garbage,
396 # but they are never read, so it doesn't matter. This allows the
397 # algorithm to remain the same from release to release.
398 #
399 # In one case, regexec.c also uses a placeholder which must be defined
400 # here, and we put it in the unused row and column as its value is
401 # never read.
402 #
226b74db 403 my @enums = @input_enums;
27a619f7 404 my @extras;
2027d365
KW
405 my @unused_enums;
406 my $unused_enum_value = @enums;
27a619f7
KW
407 if ($extra_enums ne "") {
408 @extras = split /,/, $extra_enums;
2027d365 409 my $seen_EDGE = 0;
226b74db
KW
410
411 # Don't add if already there.
412 foreach my $this_extra (@extras) {
413 next if grep { $_ eq $this_extra } @enums;
2027d365
KW
414 if ($this_extra eq 'EDGE') {
415 push @enums, $this_extra;
416 $seen_EDGE = 1;
417 }
418 elsif ($seen_EDGE) {
419 push @unused_enums, $this_extra;
420 }
421 else {
422 push @enums, $this_extra;
423 }
226b74db 424 }
2027d365
KW
425
426 @unused_enums = sort @unused_enums;
427 $unused_enum_value = @enums; # All unused have the same value,
428 # one beyond the final used one
27a619f7 429 }
289ce9cc 430
226b74db
KW
431 # Assign a value to each element of the enum type we are creating.
432 # The default value always gets 0; the others are arbitrarily
433 # assigned.
27a619f7
KW
434 my $enum_val = 0;
435 my $canonical_default = prop_value_aliases($prop_name, $default);
436 $default = $canonical_default if defined $canonical_default;
437 $enums{$default} = $enum_val++;
226b74db 438
27a619f7
KW
439 for my $enum (@enums) {
440 $enums{$enum} = $enum_val++ unless exists $enums{$enum};
441 }
442
226b74db 443 # Calculate the data for the special tables output for these properties.
27a619f7
KW
444 if ($name =~ / ^ _Perl_ (?: GCB | LB | WB ) $ /x) {
445
226b74db
KW
446 # The data includes the hashes %gcb_enums, %lb_enums, etc.
447 # Similarly we calculate column headings for the tables.
448 #
27a619f7 449 # We use string evals to allow the same code to work on
226b74db 450 # all the tables
27a619f7
KW
451 my $type = lc $prop_name;
452
27a619f7
KW
453 # Skip if we've already done this code, which populated
454 # this hash
455 if (eval "! \%${type}_enums") {
456
226b74db 457 # For each enum in the type ...
27a619f7
KW
458 foreach my $enum (sort keys %enums) {
459 my $value = $enums{$enum};
460 my $short;
461 my $abbreviated_from;
462
463 # Special case this wb property value to make the
464 # name more clear
465 if ($enum eq 'Perl_Tailored_HSpace') {
466 $short = 'hs';
467 $abbreviated_from = $enum;
468 }
27a619f7 469 else {
226b74db
KW
470
471 # Use the official short name, if found.
27a619f7
KW
472 ($short) = prop_value_aliases($type, $enum);
473
226b74db
KW
474 if (! defined $short) {
475
476 # But if there is no official name, use the name
477 # that came from the data (if any). Otherwise,
478 # the name had to come from the extras list.
479 # There are two types of values in that list.
480 #
481 # First are those enums that are not part of the
482 # property, but are defined by this code. By
2027d365
KW
483 # convention these have all-caps names. We use
484 # the lowercased name for these.
226b74db 485 #
2027d365
KW
486 # Second are enums that are needed to get the
487 # algorithms below to work and/or to get regexec.c
488 # to compile, but don't exist in all Unicode
489 # releases. These are handled outside this loop
490 # as 'unused_enums'
226b74db
KW
491 if (grep { $_ eq $enum } @input_enums) {
492 $short = $enum
493 }
226b74db
KW
494 else {
495 $short = lc $enum;
496 }
497 }
27a619f7
KW
498 }
499
500 # If our short name is too long, or we already
501 # know that the name is an abbreviation, truncate
502 # to make sure it's short enough, and remember
226b74db
KW
503 # that we did this so we can later add a comment in the
504 # generated file
27a619f7
KW
505 if ( $abbreviated_from
506 || length $short > $max_hdr_len)
507 {
508 $short = substr($short, 0, $max_hdr_len);
509 $abbreviated_from = $enum
510 unless $abbreviated_from;
511 # If the name we are to display conflicts, try
512 # another.
513 while (eval "exists
514 \$${type}_abbreviations{$short}")
515 {
289ce9cc 516 die $@ if $@;
256fceb3
KW
517
518 # The increment operator on strings doesn't work
519 # on those containing an '_', so just use the
520 # final portion.
521 my @short = split '_', $short;
522 $short[-1]++;
523 $short = join "_", @short;
289ce9cc 524 }
19a5f1d5 525
27a619f7 526 eval "\$${type}_abbreviations{$short} = '$enum'";
19a5f1d5 527 die $@ if $@;
7e54b87f 528 }
27a619f7
KW
529
530 # Remember the mapping from the property value
531 # (enum) name to its value.
532 eval "\$${type}_enums{$enum} = $value";
533 die $@ if $@;
534
535 # Remember the inverse mapping to the short name
536 # so that we can properly label the generated
537 # table's rows and columns
538 eval "\$${type}_short_enums[$value] = '$short'";
539 die $@ if $@;
7e54b87f 540 }
2027d365
KW
541
542 # Each unused enum has the same value. They all are collapsed
543 # into one row and one column, named $unused_table_hdr.
544 if (@unused_enums) {
545 eval "\$${type}_short_enums['$unused_enum_value'] = '$unused_table_hdr'";
546 die $@ if $@;
547
548 foreach my $enum (@unused_enums) {
549 eval "\$${type}_enums{$enum} = $unused_enum_value";
550 die $@ if $@;
551 }
552 }
99f21fb9 553 }
19a5f1d5 554 }
99f21fb9 555
19a5f1d5
KW
556 # The short names tend to be two lower case letters, but it looks
557 # better for those if they are upper. XXX
558 $short_name = uc($short_name) if length($short_name) < 3
226b74db 559 || substr($short_name, 0, 1) =~ /[[:lower:]]/;
19a5f1d5 560 $name_prefix = "${short_name}_";
cdc243dd 561
226b74db 562 # Start the enum definition for this map
f99e0590 563 my @enum_definition;
19a5f1d5
KW
564 my @enum_list;
565 foreach my $enum (keys %enums) {
566 $enum_list[$enums{$enum}] = $enum;
99f21fb9 567 }
19a5f1d5 568 foreach my $i (0 .. @enum_list - 1) {
f99e0590 569 push @enum_definition, ",\n" if $i > 0;
34623dbb 570
19a5f1d5 571 my $name = $enum_list[$i];
f99e0590 572 push @enum_definition, "\t${name_prefix}$name = $i";
19a5f1d5 573 }
2027d365
KW
574 if (@unused_enums) {
575 foreach my $unused (@unused_enums) {
576 push @enum_definition,
577 ",\n\t${name_prefix}$unused = $unused_enum_value";
578 }
579 }
34623dbb 580
18230d9d 581 # For an 'l' property, we need extra enums, because some of the
34623dbb
KW
582 # elements are lists. Each such distinct list is placed in its own
583 # auxiliary map table. Here, we go through the inversion map, and for
584 # each distinct list found, create an enum value for it, numbered -1,
585 # -2, ....
586 my %multiples;
587 my $aux_table_prefix = "AUX_TABLE_";
18230d9d 588 if ($input_format =~ /l/) {
34623dbb
KW
589 foreach my $element (@$invmap) {
590
591 # A regular scalar is not one of the lists we're looking for
592 # at this stage.
593 next unless ref $element;
594
18230d9d
KW
595 my $joined;
596 if ($input_format =~ /a/) { # These are already ordered
597 $joined = join ",", @$element;
598 }
599 else {
600 $joined = join ",", sort @$element;
601 }
34623dbb
KW
602 my $already_found = exists $multiples{$joined};
603
604 my $i;
605 if ($already_found) { # Use any existing one
606 $i = $multiples{$joined};
607 }
608 else { # Otherwise increment to get a new table number
609 $i = keys(%multiples) + 1;
610 $multiples{$joined} = $i;
611 }
612
613 # This changes the inversion map for this entry to not be the
614 # list
615 $element = "use_$aux_table_prefix$i";
616
617 # And add to the enum values
618 if (! $already_found) {
f99e0590 619 push @enum_definition, ",\n\t${name_prefix}$element = -$i";
34623dbb
KW
620 }
621 }
622 }
623
18230d9d 624 $enum_declaration_type = "${name_prefix}enum";
f99e0590 625
c454388e
KW
626 # Finished with the enum definition. Inversion map stuff is used only
627 # by regexec or utf-8 (if it is for code points) , unless it is in the
628 # enum exception list
629 my $where = (exists $where_to_define_enums{$name})
630 ? $where_to_define_enums{$name}
631 : ($input_format =~ /a/)
632 ? 'PERL_IN_UTF8_C'
633 : 'PERL_IN_REGEXEC_C';
634
8ec55631
KW
635 if (! exists $public_enums{$name}) {
636 switch_pound_if($name, $where, $charset);
637 }
638 else {
639 end_charset_pound_if;
640 end_file_pound_if;
641 start_charset_pound_if($charset, 1);
642 }
c454388e
KW
643
644 # If the enum only contains one element, that is a dummy, default one
f99e0590
KW
645 if (scalar @enum_definition > 1) {
646
647 # Currently unneeded
648 #print $out_fh "\n#define ${name_prefix}ENUM_COUNT ",
649 # ..scalar keys %enums, "\n";
650
651 if ($input_format =~ /l/) {
652 print $out_fh
653 "\n",
654 "/* Negative enum values indicate the need to use an",
655 " auxiliary table\n",
656 " * consisting of the list of enums this one expands to.",
657 " The absolute\n",
658 " * values of the negative enums are indices into a table",
659 " of the auxiliary\n",
660 " * tables' addresses */";
661 }
662 print $out_fh "\ntypedef enum {\n";
663 print $out_fh join "", @enum_definition;
664 print $out_fh "\n";
18230d9d 665 print $out_fh "} $enum_declaration_type;\n";
f99e0590 666 }
19a5f1d5 667
8ec55631 668 switch_pound_if($name, $where, $charset);
d74e7480 669
18230d9d
KW
670 $invmap_declaration_type = ($input_format =~ /s/)
671 ? $enum_declaration_type
341bb5b7 672 : "int";
18230d9d
KW
673 $aux_declaration_type = ($input_format =~ /s/)
674 ? $enum_declaration_type
e39a4130 675 : "unsigned int";
18230d9d 676
19a5f1d5 677 $output_format = "${name_prefix}%s";
34623dbb
KW
678
679 # If there are auxiliary tables, output them.
680 if (%multiples) {
681
682 print $out_fh "\n#define HAS_${name_prefix}AUX_TABLES\n";
683
684 # Invert keys and values
685 my %inverted_mults;
686 while (my ($key, $value) = each %multiples) {
687 $inverted_mults{$value} = $key;
688 }
689
690 # Output them in sorted order
691 my @sorted_table_list = sort { $a <=> $b } keys %inverted_mults;
692
693 # Keep track of how big each aux table is
694 my @aux_counts;
695
696 # Output each aux table.
697 foreach my $table_number (@sorted_table_list) {
698 my $table = $inverted_mults{$table_number};
cef72199
KW
699 output_table_header($out_fh,
700 $aux_declaration_type,
701 "$name_prefix$aux_table_prefix$table_number");
34623dbb
KW
702
703 # Earlier, we joined the elements of this table together with a comma
704 my @elements = split ",", $table;
705
706 $aux_counts[$table_number] = scalar @elements;
707 for my $i (0 .. @elements - 1) {
708 print $out_fh ",\n" if $i > 0;
18230d9d
KW
709 if ($input_format =~ /a/) {
710 printf $out_fh "\t0x%X", $elements[$i];
711 }
712 else {
713 print $out_fh "\t${name_prefix}$elements[$i]";
714 }
34623dbb 715 }
cef72199
KW
716
717 print $out_fh "\n";
718 output_table_trailer();
34623dbb
KW
719 }
720
721 # Output the table that is indexed by the absolute value of the
722 # aux table enum and contains pointers to the tables output just
723 # above
cef72199
KW
724 output_table_header($out_fh, "$aux_declaration_type *",
725 "${name_prefix}${aux_table_prefix}ptrs");
34623dbb
KW
726 print $out_fh "\tNULL,\t/* Placeholder */\n";
727 for my $i (1 .. @sorted_table_list) {
728 print $out_fh ",\n" if $i > 1;
729 print $out_fh "\t$name_prefix$aux_table_prefix$i";
730 }
cef72199
KW
731 print $out_fh "\n";
732 output_table_trailer();
34623dbb
KW
733
734 print $out_fh
735 "\n/* Parallel table to the above, giving the number of elements"
736 . " in each table\n * pointed to */\n";
cef72199
KW
737 output_table_header($out_fh, "U8",
738 "${name_prefix}${aux_table_prefix}lengths");
34623dbb
KW
739 print $out_fh "\t0,\t/* Placeholder */\n";
740 for my $i (1 .. @sorted_table_list) {
741 print $out_fh ",\n" if $i > 1;
742 print $out_fh "\t$aux_counts[$i]\t/* $name_prefix$aux_table_prefix$i */";
743 }
cef72199
KW
744 print $out_fh "\n";
745 output_table_trailer();
34623dbb 746 } # End of outputting the auxiliary and associated tables
463b4a67
KW
747
748 # The scx property used in regexec.c needs a specialized table which
749 # is most convenient to output here, while the data structures set up
750 # above are still extant. This table contains the code point that is
751 # the zero digit of each script, indexed by script enum value.
752 if (lc $short_name eq 'scx') {
753 my @decimals_invlist = prop_invlist("Numeric_Type=Decimal");
754 my %script_zeros;
755
756 # Find all the decimal digits. The 0 of each range is always the
757 # 0th element, except in some early Unicode releases, so check for
758 # that.
759 for (my $i = 0; $i < @decimals_invlist; $i += 2) {
760 my $code_point = $decimals_invlist[$i];
a1c8344d 761 next if num(chr($code_point)) ne '0';
463b4a67
KW
762
763 # Turn the scripts this zero is in into a list.
764 my @scripts = split ",",
765 charprop($code_point, "_Perl_SCX", '_perl_core_internal_ok');
766 $code_point = sprintf("0x%x", $code_point);
767
768 foreach my $script (@scripts) {
769 if (! exists $script_zeros{$script}) {
770 $script_zeros{$script} = $code_point;
771 }
772 elsif (ref $script_zeros{$script}) {
773 push $script_zeros{$script}->@*, $code_point;
774 }
775 else { # Turn into a list if this is the 2nd zero of the
776 # script
777 my $existing = $script_zeros{$script};
778 undef $script_zeros{$script};
779 push $script_zeros{$script}->@*, $existing, $code_point;
780 }
781 }
782 }
783
784 # @script_zeros contains the zero, sorted by the script's enum
785 # value
786 my @script_zeros;
787 foreach my $script (keys %script_zeros) {
788 my $enum_value = $enums{$script};
789 $script_zeros[$enum_value] = $script_zeros{$script};
790 }
791
792 print $out_fh
793 "\n/* This table, indexed by the script enum, gives the zero"
794 . " code point for that\n * script; 0 if the script has multiple"
795 . " digit sequences. Scripts without a\n * digit sequence use"
796 . " ASCII [0-9], hence are marked '0' */\n";
cef72199 797 output_table_header($out_fh, "UV", "script_zeros");
463b4a67
KW
798 for my $i (0 .. @script_zeros - 1) {
799 my $code_point = $script_zeros[$i];
800 if (defined $code_point) {
801 $code_point = " 0" if ref $code_point;
802 print $out_fh "\t$code_point";
803 }
804 elsif (lc $enum_list[$i] eq 'inherited') {
805 print $out_fh "\t 0";
806 }
807 else { # The only digits a script without its own set accepts
808 # is [0-9]
809 print $out_fh "\t'0'";
810 }
811 print $out_fh "," if $i < @script_zeros - 1;
812 print $out_fh "\t/* $enum_list[$i] */";
813 print $out_fh "\n";
814 }
cef72199 815 output_table_trailer();
463b4a67 816 } # End of special handling of scx
99f21fb9
KW
817 }
818 else {
819 die "'$input_format' invmap() format for '$prop_name' unimplemented";
820 }
821
822 die "No inversion map for $prop_name" unless defined $invmap
823 && ref $invmap eq 'ARRAY'
824 && $count;
825
226b74db 826 # Now output the inversion map proper
cef72199
KW
827 $charset = "for $charset" if $charset;
828 output_table_header($out_fh, $invmap_declaration_type,
829 "${name}_invmap",
830 $charset);
99f21fb9
KW
831
832 # The main body are the scalars passed in to this routine.
833 for my $i (0 .. $count - 1) {
834 my $element = $invmap->[$i];
02f811dd 835 my $full_element_name = prop_value_aliases($prop_name, $element);
18230d9d
KW
836 if ($input_format =~ /a/ && $element !~ /\D/) {
837 $element = ($element == 0)
838 ? 0
839 : sprintf("0x%X", $element);
840 }
841 else {
02f811dd
KW
842 $element = $full_element_name if defined $full_element_name;
843 $element = $name_prefix . $element;
18230d9d 844 }
99f21fb9
KW
845 print $out_fh "\t$element";
846 print $out_fh "," if $i < $count - 1;
847 print $out_fh "\n";
848 }
cef72199 849 output_table_trailer();
99f21fb9
KW
850}
851
5a7e5385 852sub mk_invlist_from_sorted_cp_list {
a02047bf
KW
853
854 # Returns an inversion list constructed from the sorted input array of
855 # code points
856
857 my $list_ref = shift;
858
99f21fb9
KW
859 return unless @$list_ref;
860
a02047bf
KW
861 # Initialize to just the first element
862 my @invlist = ( $list_ref->[0], $list_ref->[0] + 1);
863
864 # For each succeeding element, if it extends the previous range, adjust
865 # up, otherwise add it.
866 for my $i (1 .. @$list_ref - 1) {
867 if ($invlist[-1] == $list_ref->[$i]) {
868 $invlist[-1]++;
869 }
870 else {
871 push @invlist, $list_ref->[$i], $list_ref->[$i] + 1;
872 }
873 }
874 return @invlist;
875}
876
877# Read in the Case Folding rules, and construct arrays of code points for the
878# properties we need.
d2aadf62 879my ($cp_ref, $folds_ref, $format, $default) = prop_invmap("Case_Folding");
a02047bf
KW
880die "Could not find inversion map for Case_Folding" unless defined $format;
881die "Incorrect format '$format' for Case_Folding inversion map"
347b9066
KW
882 unless $format eq 'al'
883 || $format eq 'a';
a02047bf
KW
884my @has_multi_char_fold;
885my @is_non_final_fold;
886
887for my $i (0 .. @$folds_ref - 1) {
888 next unless ref $folds_ref->[$i]; # Skip single-char folds
889 push @has_multi_char_fold, $cp_ref->[$i];
890
b6a6e956 891 # Add to the non-finals list each code point that is in a non-final
a02047bf
KW
892 # position
893 for my $j (0 .. @{$folds_ref->[$i]} - 2) {
e498c235 894 push @is_non_final_fold, $folds_ref->[$i][$j];
a02047bf 895 }
e498c235 896 @is_non_final_fold = uniques @is_non_final_fold;
a02047bf
KW
897}
898
a02047bf
KW
899sub _Perl_Non_Final_Folds {
900 @is_non_final_fold = sort { $a <=> $b } @is_non_final_fold;
8843f0de
KW
901 my @return = mk_invlist_from_sorted_cp_list(\@is_non_final_fold);
902 return \@return;
a02047bf
KW
903}
904
d2aadf62
KW
905sub _Perl_IVCF {
906
907 # This creates a map of the inversion of case folding. i.e., given a
908 # character, it gives all the other characters that fold to it.
909 #
910 # Inversion maps function kind of like a hash, with the inversion list
911 # specifying the buckets (keys) and the inversion maps specifying the
912 # contents of the corresponding bucket. Effectively this function just
913 # swaps the keys and values of the case fold hash. But there are
914 # complications. Most importantly, More than one character can each have
915 # the same fold. This is solved by having a list of characters that fold
916 # to a given one.
917
918 my %new;
919
920 # Go through the inversion list.
921 for (my $i = 0; $i < @$cp_ref; $i++) {
922
923 # Skip if nothing folds to this
924 next if $folds_ref->[$i] == 0;
925
926 # This entry which is valid from here to up (but not including) the
927 # next entry is for the next $count characters, so that, for example,
928 # A-Z is represented by one entry.
929 my $cur_list = $cp_ref->[$i];
930 my $count = $cp_ref->[$i+1] - $cur_list;
931
932 # The fold of [$i] can be not just a single character, but a sequence
933 # of multiple ones. We deal with those here by just creating a string
934 # consisting of them. Otherwise, we use the single code point [$i]
935 # folds to.
936 my $cur_map = (ref $folds_ref->[$i])
937 ? join "", map { chr } $folds_ref->[$i]->@*
938 : $folds_ref->[$i];
939
940 # Expand out this range
941 while ($count > 0) {
942 push @{$new{$cur_map}}, $cur_list;
943
944 # A multiple-character fold is a string, and shouldn't need
945 # incrementing anyway
946 if (ref $folds_ref->[$i]) {
947 die sprintf("Case fold for %x is multiple chars; should have"
948 . " a count of 1, but instead it was $count", $count)
949 unless $count == 1;
950 }
951 else {
952 $cur_map++;
953 $cur_list++;
954 }
955 $count--;
956 }
957 }
958
959 # Now go through and make some adjustments. We add synthetic entries for
960 # two cases.
961 # 1) Two or more code points can fold to the same multiple character,
962 # sequence, as U+FB05 and U+FB06 both fold to 'st'. This code is only
963 # for single character folds, but FB05 and FB06 are single characters
964 # that are equivalent folded, so we add entries so that they are
965 # considered to fold to each other
966 # 2) If two or more above-Latin1 code points fold to the same Latin1 range
967 # one, we also add entries so that they are considered to fold to each
968 # other. This is so that under /aa or /l matching, where folding to
969 # their Latin1 range code point is illegal, they still can fold to each
970 # other. This situation happens in Unicode 3.0.1, but probably no
971 # other version.
972 foreach my $fold (keys %new) {
db95f459 973 my $folds_to_string = $fold =~ /\D/;
d2aadf62
KW
974
975 # If the bucket contains only one element, convert from an array to a
976 # scalar
977 if (scalar $new{$fold}->@* == 1) {
978 $new{$fold} = $new{$fold}[0];
979 }
980 else {
981
982 # Otherwise, sort numerically. This places the highest code point
983 # in the list at the tail end. This is because Unicode keeps the
984 # lowercase code points as higher ordinals than the uppercase, at
985 # least for the ones that matter so far. These are synthetic
986 # entries, and we want to predictably have the lowercase (which is
987 # more likely to be what gets folded to) in the same corresponding
988 # position, so that other code can rely on that. If some new
989 # version of Unicode came along that violated this, we might have
990 # to change so that the sort is based on upper vs lower instead.
991 # (The lower-comes-after isn't true of native EBCDIC, but here we
992 # are dealing strictly with Unicode values).
993 @{$new{$fold}} = sort { $a <=> $b } $new{$fold}->@*
994 unless $folds_to_string;
995 # We will be working with a copy of this sorted entry.
996 my @source_list = $new{$fold}->@*;
997 if (! $folds_to_string) {
998
999 # This handles situation 2) listed above, which only arises if
1000 # what is being folded-to (the fold) is in the Latin1 range.
1001 if ($fold > 255 ) {
1002 undef @source_list;
1003 }
1004 else {
1005 # And it only arises if there are two or more folders that
1006 # fold to it above Latin1. We look at just those.
1007 @source_list = grep { $_ > 255 } @source_list;
1008 undef @source_list if @source_list == 1;
1009 }
1010 }
1011
1012 # Here, we've found the items we want to set up synthetic folds
1013 # for. Add entries so that each folds to each other.
1014 foreach my $cp (@source_list) {
1015 my @rest = grep { $cp != $_ } @source_list;
1016 if (@rest == 1) {
1017 $new{$cp} = $rest[0];
1018 }
1019 else {
1020 push @{$new{$cp}}, @rest;
1021 }
1022 }
1023 }
1024
1025 # We don't otherwise deal with multiple-character folds
1026 delete $new{$fold} if $folds_to_string;
1027 }
1028
1029
1030 # Now we have a hash that is the inversion of the case fold property.
1031 # Convert it to an inversion map.
1032
1033 my @sorted_folds = sort { $a <=> $b } keys %new;
1034 my (@invlist, @invmap);
1035
1036 # We know that nothing folds to the controls (whose ordinals start at 0).
1037 # And the first real entries are the lowest in the hash.
1038 push @invlist, 0, $sorted_folds[0];
1039 push @invmap, 0, $new{$sorted_folds[0]};
1040
1041 # Go through the remainder of the hash keys (which are the folded code
1042 # points)
1043 for (my $i = 1; $i < @sorted_folds; $i++) {
1044
1045 # Get the current one, and the one prior to it.
1046 my $fold = $sorted_folds[$i];
1047 my $prev_fold = $sorted_folds[$i-1];
1048
1049 # If the current one is not just 1 away from the prior one, we close
1050 # out the range containing the previous fold, and know that the gap
1051 # doesn't have anything that folds.
1052 if ($fold - 1 != $prev_fold) {
1053 push @invlist, $prev_fold + 1;
1054 push @invmap, 0;
1055
1056 # And start a new range
1057 push @invlist, $fold;
1058 push @invmap, $new{$fold};
1059 }
1060 elsif ($new{$fold} - 1 != $new{$prev_fold}) {
1061
1062 # Here the current fold is just 1 greater than the previous, but
1063 # the new map isn't correspondingly 1 greater than the previous,
1064 # the old range is ended, but since there is no gap, we don't have
1065 # to insert anything else.
1066 push @invlist, $fold;
1067 push @invmap, $new{$fold};
1068
1069 } # else { Otherwise, this new entry just extends the previous }
1070
1071 die "In IVCF: $invlist[-1] <= $invlist[-2]"
1072 if $invlist[-1] <= $invlist[-2];
1073 }
1074
1075 # And add an entry that indicates that everything above this, to infinity,
1076 # does not have a case fold.
1077 push @invlist, $sorted_folds[-1] + 1;
1078 push @invmap, 0;
1079
1080 # All Unicode versions have some places where multiple code points map to
1081 # the same one, so the format always has an 'l'
1082 return \@invlist, \@invmap, 'al', $default;
1083}
1084
99f21fb9
KW
1085sub prop_name_for_cmp ($) { # Sort helper
1086 my $name = shift;
1087
1088 # Returns the input lowercased, with non-alphas removed, as well as
1089 # everything starting with a comma
1090
1091 $name =~ s/,.*//;
1092 $name =~ s/[[:^alpha:]]//g;
1093 return lc $name;
1094}
1095
892d8259 1096sub UpperLatin1 {
8843f0de
KW
1097 my @return = mk_invlist_from_sorted_cp_list([ 128 .. 255 ]);
1098 return \@return;
892d8259
KW
1099}
1100
289ce9cc
KW
1101sub output_table_common {
1102
1103 # Common subroutine to actually output the generated rules table.
1104
1105 my ($property,
1106 $table_value_defines_ref,
1107 $table_ref,
1108 $names_ref,
1109 $abbreviations_ref) = @_;
1110 my $size = @$table_ref;
1111
1112 # Output the #define list, sorted by numeric value
1113 if ($table_value_defines_ref) {
1114 my $max_name_length = 0;
1115 my @defines;
1116
1117 # Put in order, and at the same time find the longest name
1118 while (my ($enum, $value) = each %$table_value_defines_ref) {
1119 $defines[$value] = $enum;
1120
1121 my $length = length $enum;
1122 $max_name_length = $length if $length > $max_name_length;
1123 }
1124
1125 print $out_fh "\n";
1126
1127 # Output, so that the values are vertically aligned in a column after
1128 # the longest name
1129 foreach my $i (0 .. @defines - 1) {
1130 next unless defined $defines[$i];
1131 printf $out_fh "#define %-*s %2d\n",
1132 $max_name_length,
1133 $defines[$i],
1134 $i;
1135 }
1136 }
1137
1138 my $column_width = 2; # We currently allow 2 digits for the number
1139
1140 # If the maximum value in the table is 1, it can be a bool. (Being above
1141 # a U8 is not currently handled
1142 my $max_element = 0;
1143 for my $i (0 .. $size - 1) {
1144 for my $j (0 .. $size - 1) {
1145 next if $max_element >= $table_ref->[$i][$j];
1146 $max_element = $table_ref->[$i][$j];
1147 }
1148 }
1149 die "Need wider table column width given '$max_element"
1150 if length $max_element > $column_width;
1151
1152 my $table_type = ($max_element == 1)
1153 ? 'bool'
1154 : 'U8';
1155
1156 # If a name is longer than the width set aside for a column, its column
1157 # needs to have increased spacing so that the name doesn't get truncated
1158 # nor run into an adjacent column
1159 my @spacers;
1160
2027d365
KW
1161 # Is there a row and column for unused values in this release?
1162 my $has_unused = $names_ref->[$size-1] eq $unused_table_hdr;
289ce9cc
KW
1163
1164 for my $i (0 .. $size - 1) {
1165 no warnings 'numeric';
289ce9cc
KW
1166 $spacers[$i] = " " x (length($names_ref->[$i]) - $column_width);
1167 }
1168
cef72199 1169 output_table_header($out_fh, $table_type, "${property}_table", undef, $size, $size);
289ce9cc
KW
1170
1171 # Calculate the column heading line
1172 my $header_line = "/* "
1173 . (" " x $max_hdr_len) # We let the row heading meld to
1174 # the '*/' for those that are at
1175 # the max
1176 . " " x 3; # Space for '*/ '
1177 # Now each column
1178 for my $i (0 .. $size - 1) {
1179 $header_line .= sprintf "%s%*s",
1180 $spacers[$i],
1181 $column_width + 1, # 1 for the ','
1182 $names_ref->[$i];
1183 }
1184 $header_line .= " */\n";
1185
1186 # If we have annotations, output it now.
2027d365 1187 if ($has_unused || scalar %$abbreviations_ref) {
289ce9cc
KW
1188 my $text = "";
1189 foreach my $abbr (sort keys %$abbreviations_ref) {
1190 $text .= "; " if $text;
1191 $text .= "'$abbr' stands for '$abbreviations_ref->{$abbr}'";
1192 }
2027d365
KW
1193 if ($has_unused) {
1194 $text .= "; $unused_table_hdr stands for 'unused in this Unicode"
1195 . " release (and the data in the row or column are garbage)"
289ce9cc
KW
1196 }
1197
1198 my $indent = " " x 3;
1199 $text = $indent . "/* $text */";
1200
1201 # Wrap the text so that it is no wider than the table, which the
1202 # header line gives.
1203 my $output_width = length $header_line;
1204 while (length $text > $output_width) {
1205 my $cur_line = substr($text, 0, $output_width);
1206
1207 # Find the first blank back from the right end to wrap at.
1208 for (my $i = $output_width -1; $i > 0; $i--) {
1209 if (substr($text, $i, 1) eq " ") {
1210 print $out_fh substr($text, 0, $i), "\n";
1211
1212 # Set so will look at just the remaining tail (which will
1213 # be indented and have a '*' after the indent
1214 $text = $indent . " * " . substr($text, $i + 1);
1215 last;
1216 }
1217 }
1218 }
1219
1220 # And any remaining
1221 print $out_fh $text, "\n" if $text;
1222 }
1223
1224 # We calculated the header line earlier just to get its width so that we
1225 # could make sure the annotations fit into that.
1226 print $out_fh $header_line;
1227
1228 # Now output the bulk of the table.
1229 for my $i (0 .. $size - 1) {
1230
1231 # First the row heading.
1232 printf $out_fh "/* %-*s*/ ", $max_hdr_len, $names_ref->[$i];
1233 print $out_fh "{"; # Then the brace for this row
1234
1235 # Then each column
1236 for my $j (0 .. $size -1) {
1237 print $out_fh $spacers[$j];
1238 printf $out_fh "%*d", $column_width, $table_ref->[$i][$j];
1239 print $out_fh "," if $j < $size - 1;
1240 }
1241 print $out_fh " }";
1242 print $out_fh "," if $i < $size - 1;
1243 print $out_fh "\n";
1244 }
1245
cef72199 1246 output_table_trailer();
289ce9cc
KW
1247}
1248
973a28ed
KW
1249sub output_GCB_table() {
1250
1251 # Create and output the pair table for use in determining Grapheme Cluster
1252 # Breaks, given in http://www.unicode.org/reports/tr29/.
b0e24409
KW
1253 my %gcb_actions = (
1254 GCB_NOBREAK => 0,
1255 GCB_BREAKABLE => 1,
1256 GCB_RI_then_RI => 2, # Rules 12 and 13
1257 GCB_EX_then_EM => 3, # Rule 10
c0734505 1258 GCB_Maybe_Emoji_NonBreak => 4,
b0e24409 1259 );
973a28ed
KW
1260
1261 # The table is constructed in reverse order of the rules, to make the
1262 # lower-numbered, higher priority ones override the later ones, as the
1263 # algorithm stops at the earliest matching rule
1264
1265 my @gcb_table;
1266 my $table_size = @gcb_short_enums;
1267
1268 # Otherwise, break everywhere.
b0e24409 1269 # GB99 Any ÷ Any
973a28ed
KW
1270 for my $i (0 .. $table_size - 1) {
1271 for my $j (0 .. $table_size - 1) {
1272 $gcb_table[$i][$j] = 1;
1273 }
1274 }
1275
b0e24409
KW
1276 # Do not break within emoji flag sequences. That is, do not break between
1277 # regional indicator (RI) symbols if there is an odd number of RI
1278 # characters before the break point. Must be resolved in runtime code.
1279 #
c492f156 1280 # GB12 sot (RI RI)* RI × RI
b0e24409
KW
1281 # GB13 [^RI] (RI RI)* RI × RI
1282 $gcb_table[$gcb_enums{'Regional_Indicator'}]
1283 [$gcb_enums{'Regional_Indicator'}] = $gcb_actions{GCB_RI_then_RI};
1284
c0734505
KW
1285 # Post 11.0: GB11 \p{Extended_Pictographic} Extend* ZWJ
1286 # × \p{Extended_Pictographic}
1287 $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'XPG_XX'}] =
1288 $gcb_actions{GCB_Maybe_Emoji_NonBreak};
1289
1290 # This and the rule GB10 obsolete starting with Unicode 11.0, can be left
1291 # in as there are no code points that match, so the code won't ever get
1292 # executed.
b0e24409 1293 # Do not break within emoji modifier sequences or emoji zwj sequences.
c0734505 1294 # Pre 11.0: GB11 ZWJ × ( Glue_After_Zwj | E_Base_GAZ )
b0e24409
KW
1295 $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'Glue_After_Zwj'}] = 0;
1296 $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'E_Base_GAZ'}] = 0;
1297
1298 # GB10 ( E_Base | E_Base_GAZ ) Extend* × E_Modifier
1299 $gcb_table[$gcb_enums{'Extend'}][$gcb_enums{'E_Modifier'}]
1300 = $gcb_actions{GCB_EX_then_EM};
1301 $gcb_table[$gcb_enums{'E_Base'}][$gcb_enums{'E_Modifier'}] = 0;
1302 $gcb_table[$gcb_enums{'E_Base_GAZ'}][$gcb_enums{'E_Modifier'}] = 0;
1303
1304 # Do not break before extending characters or ZWJ.
973a28ed 1305 # Do not break before SpacingMarks, or after Prepend characters.
973a28ed 1306 # GB9b Prepend ×
b0e24409
KW
1307 # GB9a × SpacingMark
1308 # GB9 × ( Extend | ZWJ )
973a28ed 1309 for my $i (0 .. @gcb_table - 1) {
289ce9cc 1310 $gcb_table[$gcb_enums{'Prepend'}][$i] = 0;
b0e24409
KW
1311 $gcb_table[$i][$gcb_enums{'SpacingMark'}] = 0;
1312 $gcb_table[$i][$gcb_enums{'Extend'}] = 0;
1313 $gcb_table[$i][$gcb_enums{'ZWJ'}] = 0;
973a28ed
KW
1314 }
1315
973a28ed
KW
1316 # Do not break Hangul syllable sequences.
1317 # GB8 ( LVT | T) × T
1318 $gcb_table[$gcb_enums{'LVT'}][$gcb_enums{'T'}] = 0;
1319 $gcb_table[$gcb_enums{'T'}][$gcb_enums{'T'}] = 0;
1320
1321 # GB7 ( LV | V ) × ( V | T )
1322 $gcb_table[$gcb_enums{'LV'}][$gcb_enums{'V'}] = 0;
1323 $gcb_table[$gcb_enums{'LV'}][$gcb_enums{'T'}] = 0;
1324 $gcb_table[$gcb_enums{'V'}][$gcb_enums{'V'}] = 0;
1325 $gcb_table[$gcb_enums{'V'}][$gcb_enums{'T'}] = 0;
1326
1327 # GB6 L × ( L | V | LV | LVT )
1328 $gcb_table[$gcb_enums{'L'}][$gcb_enums{'L'}] = 0;
1329 $gcb_table[$gcb_enums{'L'}][$gcb_enums{'V'}] = 0;
1330 $gcb_table[$gcb_enums{'L'}][$gcb_enums{'LV'}] = 0;
1331 $gcb_table[$gcb_enums{'L'}][$gcb_enums{'LVT'}] = 0;
1332
289ce9cc
KW
1333 # Do not break between a CR and LF. Otherwise, break before and after
1334 # controls.
973a28ed
KW
1335 # GB5 ÷ ( Control | CR | LF )
1336 # GB4 ( Control | CR | LF ) ÷
1337 for my $i (0 .. @gcb_table - 1) {
289ce9cc 1338 $gcb_table[$i][$gcb_enums{'Control'}] = 1;
973a28ed
KW
1339 $gcb_table[$i][$gcb_enums{'CR'}] = 1;
1340 $gcb_table[$i][$gcb_enums{'LF'}] = 1;
289ce9cc 1341 $gcb_table[$gcb_enums{'Control'}][$i] = 1;
973a28ed
KW
1342 $gcb_table[$gcb_enums{'CR'}][$i] = 1;
1343 $gcb_table[$gcb_enums{'LF'}][$i] = 1;
1344 }
1345
1346 # GB3 CR × LF
1347 $gcb_table[$gcb_enums{'CR'}][$gcb_enums{'LF'}] = 0;
1348
b0e24409 1349 # Break at the start and end of text, unless the text is empty
973a28ed
KW
1350 # GB1 sot ÷
1351 # GB2 ÷ eot
1352 for my $i (0 .. @gcb_table - 1) {
289ce9cc
KW
1353 $gcb_table[$i][$gcb_enums{'EDGE'}] = 1;
1354 $gcb_table[$gcb_enums{'EDGE'}][$i] = 1;
973a28ed 1355 }
289ce9cc 1356 $gcb_table[$gcb_enums{'EDGE'}][$gcb_enums{'EDGE'}] = 0;
973a28ed 1357
b0e24409 1358 output_table_common('GCB', \%gcb_actions,
289ce9cc 1359 \@gcb_table, \@gcb_short_enums, \%gcb_abbreviations);
973a28ed
KW
1360}
1361
6b659339
KW
1362sub output_LB_table() {
1363
1364 # Create and output the enums, #defines, and pair table for use in
1365 # determining Line Breaks. This uses the default line break algorithm,
1366 # given in http://www.unicode.org/reports/tr14/, but tailored by example 7
1367 # in that page, as the Unicode-furnished tests assume that tailoring.
1368
6b659339
KW
1369 # The result is really just true or false. But we follow along with tr14,
1370 # creating a rule which is false for something like X SP* X. That gets
1371 # encoding 2. The rest of the actions are synthetic ones that indicate
1372 # some context handling is required. These each are added to the
1373 # underlying 0, 1, or 2, instead of replacing them, so that the underlying
1374 # value can be retrieved. Actually only rules from 7 through 18 (which
1375 # are the ones where space matter) are possible to have 2 added to them.
1376 # The others below add just 0 or 1. It might be possible for one
1377 # synthetic rule to be added to another, yielding a larger value. This
1378 # doesn't happen in the Unicode 8.0 rule set, and as you can see from the
1379 # names of the middle grouping below, it is impossible for that to occur
1380 # for them because they all start with mutually exclusive classes. That
1381 # the final rule can't be added to any of the others isn't obvious from
1382 # its name, so it is assigned a power of 2 higher than the others can get
1383 # to so any addition would preserve all data. (And the code will reach an
1384 # assert(0) on debugging builds should this happen.)
1385 my %lb_actions = (
1386 LB_NOBREAK => 0,
1387 LB_BREAKABLE => 1,
1388 LB_NOBREAK_EVEN_WITH_SP_BETWEEN => 2,
1389
b0e24409 1390 LB_CM_ZWJ_foo => 3, # Rule 9
6b659339
KW
1391 LB_SP_foo => 6, # Rule 18
1392 LB_PR_or_PO_then_OP_or_HY => 9, # Rule 25
1393 LB_SY_or_IS_then_various => 11, # Rule 25
1394 LB_HY_or_BA_then_foo => 13, # Rule 21
b0e24409 1395 LB_RI_then_RI => 15, # Rule 30a
6b659339 1396
b0e24409 1397 LB_various_then_PO_or_PR => (1<<5), # Rule 25
6b659339
KW
1398 );
1399
6b659339
KW
1400 # Construct the LB pair table. This is based on the rules in
1401 # http://www.unicode.org/reports/tr14/, but modified as those rules are
1402 # designed for someone taking a string of text and sequentially going
1403 # through it to find the break opportunities, whereas, Perl requires
1404 # determining if a given random spot is a break opportunity, without
1405 # knowing all the entire string before it.
1406 #
1407 # The table is constructed in reverse order of the rules, to make the
1408 # lower-numbered, higher priority ones override the later ones, as the
1409 # algorithm stops at the earliest matching rule
1410
1411 my @lb_table;
1412 my $table_size = @lb_short_enums;
1413
1414 # LB31. Break everywhere else
1415 for my $i (0 .. $table_size - 1) {
1416 for my $j (0 .. $table_size - 1) {
1417 $lb_table[$i][$j] = $lb_actions{'LB_BREAKABLE'};
1418 }
1419 }
1420
b0e24409
KW
1421 # LB30b Do not break between an emoji base and an emoji modifier.
1422 # EB × EM
1423 $lb_table[$lb_enums{'E_Base'}][$lb_enums{'E_Modifier'}]
1424 = $lb_actions{'LB_NOBREAK'};
1425
1426 # LB30a Break between two regional indicator symbols if and only if there
1427 # are an even number of regional indicators preceding the position of the
1428 # break.
1429 # sot (RI RI)* RI × RI
1430 # [^RI] (RI RI)* RI × RI
289ce9cc 1431 $lb_table[$lb_enums{'Regional_Indicator'}]
b0e24409 1432 [$lb_enums{'Regional_Indicator'}] = $lb_actions{'LB_RI_then_RI'};
6b659339
KW
1433
1434 # LB30 Do not break between letters, numbers, or ordinary symbols and
1435 # opening or closing parentheses.
1436 # (AL | HL | NU) × OP
289ce9cc
KW
1437 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Open_Punctuation'}]
1438 = $lb_actions{'LB_NOBREAK'};
1439 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Open_Punctuation'}]
1440 = $lb_actions{'LB_NOBREAK'};
1441 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Open_Punctuation'}]
1442 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1443
1444 # CP × (AL | HL | NU)
289ce9cc
KW
1445 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Alphabetic'}]
1446 = $lb_actions{'LB_NOBREAK'};
1447 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Hebrew_Letter'}]
1448 = $lb_actions{'LB_NOBREAK'};
1449 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Numeric'}]
1450 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1451
1452 # LB29 Do not break between numeric punctuation and alphabetics (“e.g.”).
1453 # IS × (AL | HL)
289ce9cc
KW
1454 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Alphabetic'}]
1455 = $lb_actions{'LB_NOBREAK'};
1456 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
1457 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1458
1459 # LB28 Do not break between alphabetics (“at”).
1460 # (AL | HL) × (AL | HL)
289ce9cc
KW
1461 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Alphabetic'}]
1462 = $lb_actions{'LB_NOBREAK'};
1463 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Alphabetic'}]
1464 = $lb_actions{'LB_NOBREAK'};
1465 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Hebrew_Letter'}]
1466 = $lb_actions{'LB_NOBREAK'};
1467 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Hebrew_Letter'}]
1468 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1469
1470 # LB27 Treat a Korean Syllable Block the same as ID.
1471 # (JL | JV | JT | H2 | H3) × IN
289ce9cc
KW
1472 $lb_table[$lb_enums{'JL'}][$lb_enums{'Inseparable'}]
1473 = $lb_actions{'LB_NOBREAK'};
1474 $lb_table[$lb_enums{'JV'}][$lb_enums{'Inseparable'}]
1475 = $lb_actions{'LB_NOBREAK'};
1476 $lb_table[$lb_enums{'JT'}][$lb_enums{'Inseparable'}]
1477 = $lb_actions{'LB_NOBREAK'};
1478 $lb_table[$lb_enums{'H2'}][$lb_enums{'Inseparable'}]
1479 = $lb_actions{'LB_NOBREAK'};
1480 $lb_table[$lb_enums{'H3'}][$lb_enums{'Inseparable'}]
1481 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1482
1483 # (JL | JV | JT | H2 | H3) × PO
289ce9cc
KW
1484 $lb_table[$lb_enums{'JL'}][$lb_enums{'Postfix_Numeric'}]
1485 = $lb_actions{'LB_NOBREAK'};
1486 $lb_table[$lb_enums{'JV'}][$lb_enums{'Postfix_Numeric'}]
1487 = $lb_actions{'LB_NOBREAK'};
1488 $lb_table[$lb_enums{'JT'}][$lb_enums{'Postfix_Numeric'}]
1489 = $lb_actions{'LB_NOBREAK'};
1490 $lb_table[$lb_enums{'H2'}][$lb_enums{'Postfix_Numeric'}]
1491 = $lb_actions{'LB_NOBREAK'};
1492 $lb_table[$lb_enums{'H3'}][$lb_enums{'Postfix_Numeric'}]
1493 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1494
1495 # PR × (JL | JV | JT | H2 | H3)
289ce9cc
KW
1496 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JL'}]
1497 = $lb_actions{'LB_NOBREAK'};
1498 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JV'}]
1499 = $lb_actions{'LB_NOBREAK'};
1500 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JT'}]
1501 = $lb_actions{'LB_NOBREAK'};
1502 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'H2'}]
1503 = $lb_actions{'LB_NOBREAK'};
1504 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'H3'}]
1505 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1506
1507 # LB26 Do not break a Korean syllable.
1508 # JL × (JL | JV | H2 | H3)
1509 $lb_table[$lb_enums{'JL'}][$lb_enums{'JL'}] = $lb_actions{'LB_NOBREAK'};
1510 $lb_table[$lb_enums{'JL'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
1511 $lb_table[$lb_enums{'JL'}][$lb_enums{'H2'}] = $lb_actions{'LB_NOBREAK'};
1512 $lb_table[$lb_enums{'JL'}][$lb_enums{'H3'}] = $lb_actions{'LB_NOBREAK'};
1513
1514 # (JV | H2) × (JV | JT)
1515 $lb_table[$lb_enums{'JV'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
1516 $lb_table[$lb_enums{'H2'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
1517 $lb_table[$lb_enums{'JV'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1518 $lb_table[$lb_enums{'H2'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1519
1520 # (JT | H3) × JT
1521 $lb_table[$lb_enums{'JT'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1522 $lb_table[$lb_enums{'H3'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1523
1524 # LB25 Do not break between the following pairs of classes relevant to
1525 # numbers, as tailored by example 7 in
1526 # http://www.unicode.org/reports/tr14/#Examples
1527 # We follow that tailoring because Unicode's test cases expect it
1528 # (PR | PO) × ( OP | HY )? NU
289ce9cc
KW
1529 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Numeric'}]
1530 = $lb_actions{'LB_NOBREAK'};
1531 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Numeric'}]
1532 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1533
1534 # Given that (OP | HY )? is optional, we have to test for it in code.
1535 # We add in the action (instead of overriding) for this, so that in
1536 # the code we can recover the underlying break value.
289ce9cc 1537 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Open_Punctuation'}]
6b659339 1538 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
289ce9cc 1539 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Open_Punctuation'}]
6b659339 1540 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
289ce9cc 1541 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Hyphen'}]
6b659339 1542 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
289ce9cc 1543 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Hyphen'}]
6b659339
KW
1544 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
1545
1546 # ( OP | HY ) × NU
289ce9cc
KW
1547 $lb_table[$lb_enums{'Open_Punctuation'}][$lb_enums{'Numeric'}]
1548 = $lb_actions{'LB_NOBREAK'};
1549 $lb_table[$lb_enums{'Hyphen'}][$lb_enums{'Numeric'}]
1550 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1551
1552 # NU (NU | SY | IS)* × (NU | SY | IS | CL | CP )
1553 # which can be rewritten as:
1554 # NU (SY | IS)* × (NU | SY | IS | CL | CP )
289ce9cc
KW
1555 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Numeric'}]
1556 = $lb_actions{'LB_NOBREAK'};
1557 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Break_Symbols'}]
1558 = $lb_actions{'LB_NOBREAK'};
1559 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Infix_Numeric'}]
1560 = $lb_actions{'LB_NOBREAK'};
1561 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Close_Punctuation'}]
1562 = $lb_actions{'LB_NOBREAK'};
1563 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Close_Parenthesis'}]
1564 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1565
1566 # Like earlier where we have to test in code, we add in the action so
1567 # that we can recover the underlying values. This is done in rules
1568 # below, as well. The code assumes that we haven't added 2 actions.
1569 # Shoul a later Unicode release break that assumption, then tests
1570 # should start failing.
289ce9cc 1571 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Numeric'}]
6b659339 1572 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1573 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Break_Symbols'}]
6b659339 1574 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1575 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Infix_Numeric'}]
6b659339 1576 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1577 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Close_Punctuation'}]
6b659339 1578 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1579 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Close_Parenthesis'}]
6b659339 1580 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1581 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Numeric'}]
6b659339 1582 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1583 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Break_Symbols'}]
6b659339 1584 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1585 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Infix_Numeric'}]
6b659339 1586 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1587 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Close_Punctuation'}]
6b659339 1588 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1589 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Close_Parenthesis'}]
6b659339
KW
1590 += $lb_actions{'LB_SY_or_IS_then_various'};
1591
1592 # NU (NU | SY | IS)* (CL | CP)? × (PO | PR)
1593 # which can be rewritten as:
1594 # NU (SY | IS)* (CL | CP)? × (PO | PR)
289ce9cc
KW
1595 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Postfix_Numeric'}]
1596 = $lb_actions{'LB_NOBREAK'};
1597 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Prefix_Numeric'}]
1598 = $lb_actions{'LB_NOBREAK'};
6b659339 1599
289ce9cc 1600 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Postfix_Numeric'}]
6b659339 1601 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1602 $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Postfix_Numeric'}]
6b659339 1603 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1604 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Postfix_Numeric'}]
6b659339 1605 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1606 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Postfix_Numeric'}]
6b659339
KW
1607 += $lb_actions{'LB_various_then_PO_or_PR'};
1608
289ce9cc 1609 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Prefix_Numeric'}]
6b659339 1610 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1611 $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Prefix_Numeric'}]
6b659339 1612 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1613 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Prefix_Numeric'}]
6b659339 1614 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1615 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Prefix_Numeric'}]
6b659339
KW
1616 += $lb_actions{'LB_various_then_PO_or_PR'};
1617
b0e24409
KW
1618 # LB24 Do not break between numeric prefix/postfix and letters, or between
1619 # letters and prefix/postfix.
1620 # (PR | PO) × (AL | HL)
289ce9cc
KW
1621 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Alphabetic'}]
1622 = $lb_actions{'LB_NOBREAK'};
1623 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
1624 = $lb_actions{'LB_NOBREAK'};
289ce9cc
KW
1625 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Alphabetic'}]
1626 = $lb_actions{'LB_NOBREAK'};
1627 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
1628 = $lb_actions{'LB_NOBREAK'};
6b659339 1629
b0e24409
KW
1630 # (AL | HL) × (PR | PO)
1631 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Prefix_Numeric'}]
1632 = $lb_actions{'LB_NOBREAK'};
1633 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Prefix_Numeric'}]
1634 = $lb_actions{'LB_NOBREAK'};
1635 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Postfix_Numeric'}]
1636 = $lb_actions{'LB_NOBREAK'};
1637 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Postfix_Numeric'}]
1638 = $lb_actions{'LB_NOBREAK'};
1639
1640 # LB23a Do not break between numeric prefixes and ideographs, or between
1641 # ideographs and numeric postfixes.
1642 # PR × (ID | EB | EM)
1643 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Ideographic'}]
1644 = $lb_actions{'LB_NOBREAK'};
1645 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'E_Base'}]
1646 = $lb_actions{'LB_NOBREAK'};
1647 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'E_Modifier'}]
1648 = $lb_actions{'LB_NOBREAK'};
1649
1650 # (ID | EB | EM) × PO
289ce9cc
KW
1651 $lb_table[$lb_enums{'Ideographic'}][$lb_enums{'Postfix_Numeric'}]
1652 = $lb_actions{'LB_NOBREAK'};
b0e24409
KW
1653 $lb_table[$lb_enums{'E_Base'}][$lb_enums{'Postfix_Numeric'}]
1654 = $lb_actions{'LB_NOBREAK'};
1655 $lb_table[$lb_enums{'E_Modifier'}][$lb_enums{'Postfix_Numeric'}]
1656 = $lb_actions{'LB_NOBREAK'};
6b659339 1657
b0e24409 1658 # LB23 Do not break between digits and letters
6b659339 1659 # (AL | HL) × NU
289ce9cc
KW
1660 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Numeric'}]
1661 = $lb_actions{'LB_NOBREAK'};
1662 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Numeric'}]
1663 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1664
1665 # NU × (AL | HL)
289ce9cc
KW
1666 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Alphabetic'}]
1667 = $lb_actions{'LB_NOBREAK'};
1668 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Hebrew_Letter'}]
1669 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1670
1671 # LB22 Do not break between two ellipses, or between letters, numbers or
1672 # exclamations and ellipsis.
1673 # (AL | HL) × IN
289ce9cc
KW
1674 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Inseparable'}]
1675 = $lb_actions{'LB_NOBREAK'};
1676 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Inseparable'}]
1677 = $lb_actions{'LB_NOBREAK'};
6b659339 1678
289ce9cc
KW
1679 # Exclamation × IN
1680 $lb_table[$lb_enums{'Exclamation'}][$lb_enums{'Inseparable'}]
1681 = $lb_actions{'LB_NOBREAK'};
6b659339 1682
b0e24409 1683 # (ID | EB | EM) × IN
289ce9cc
KW
1684 $lb_table[$lb_enums{'Ideographic'}][$lb_enums{'Inseparable'}]
1685 = $lb_actions{'LB_NOBREAK'};
b0e24409
KW
1686 $lb_table[$lb_enums{'E_Base'}][$lb_enums{'Inseparable'}]
1687 = $lb_actions{'LB_NOBREAK'};
1688 $lb_table[$lb_enums{'E_Modifier'}][$lb_enums{'Inseparable'}]
1689 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1690
1691 # IN × IN
289ce9cc
KW
1692 $lb_table[$lb_enums{'Inseparable'}][$lb_enums{'Inseparable'}]
1693 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1694
1695 # NU × IN
289ce9cc
KW
1696 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Inseparable'}]
1697 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1698
1699 # LB21b Don’t break between Solidus and Hebrew letters.
1700 # SY × HL
289ce9cc
KW
1701 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Hebrew_Letter'}]
1702 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1703
1704 # LB21a Don't break after Hebrew + Hyphen.
1705 # HL (HY | BA) ×
1706 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1707 $lb_table[$lb_enums{'Hyphen'}][$i]
1708 += $lb_actions{'LB_HY_or_BA_then_foo'};
1709 $lb_table[$lb_enums{'Break_After'}][$i]
1710 += $lb_actions{'LB_HY_or_BA_then_foo'};
6b659339
KW
1711 }
1712
1713 # LB21 Do not break before hyphen-minus, other hyphens, fixed-width
1714 # spaces, small kana, and other non-starters, or after acute accents.
1715 # × BA
1716 # × HY
1717 # × NS
1718 # BB ×
1719 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1720 $lb_table[$i][$lb_enums{'Break_After'}] = $lb_actions{'LB_NOBREAK'};
1721 $lb_table[$i][$lb_enums{'Hyphen'}] = $lb_actions{'LB_NOBREAK'};
1722 $lb_table[$i][$lb_enums{'Nonstarter'}] = $lb_actions{'LB_NOBREAK'};
1723 $lb_table[$lb_enums{'Break_Before'}][$i] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1724 }
1725
1726 # LB20 Break before and after unresolved CB.
1727 # ÷ CB
1728 # CB ÷
1729 # Conditional breaks should be resolved external to the line breaking
1730 # rules. However, the default action is to treat unresolved CB as breaking
1731 # before and after.
1732 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1733 $lb_table[$i][$lb_enums{'Contingent_Break'}]
1734 = $lb_actions{'LB_BREAKABLE'};
1735 $lb_table[$lb_enums{'Contingent_Break'}][$i]
1736 = $lb_actions{'LB_BREAKABLE'};
6b659339
KW
1737 }
1738
1739 # LB19 Do not break before or after quotation marks, such as ‘ ” ’.
1740 # × QU
1741 # QU ×
1742 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1743 $lb_table[$i][$lb_enums{'Quotation'}] = $lb_actions{'LB_NOBREAK'};
1744 $lb_table[$lb_enums{'Quotation'}][$i] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1745 }
1746
1747 # LB18 Break after spaces
1748 # SP ÷
1749 for my $i (0 .. @lb_table - 1) {
289ce9cc 1750 $lb_table[$lb_enums{'Space'}][$i] = $lb_actions{'LB_BREAKABLE'};
6b659339
KW
1751 }
1752
1753 # LB17 Do not break within ‘——’, even with intervening spaces.
1754 # B2 SP* × B2
289ce9cc 1755 $lb_table[$lb_enums{'Break_Both'}][$lb_enums{'Break_Both'}]
6b659339
KW
1756 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1757
1758 # LB16 Do not break between closing punctuation and a nonstarter even with
1759 # intervening spaces.
1760 # (CL | CP) SP* × NS
289ce9cc 1761 $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Nonstarter'}]
6b659339 1762 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1763 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Nonstarter'}]
6b659339
KW
1764 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1765
1766
1767 # LB15 Do not break within ‘”[’, even with intervening spaces.
1768 # QU SP* × OP
289ce9cc 1769 $lb_table[$lb_enums{'Quotation'}][$lb_enums{'Open_Punctuation'}]
6b659339
KW
1770 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1771
1772 # LB14 Do not break after ‘[’, even after spaces.
1773 # OP SP* ×
1774 for my $i (0 .. @lb_table - 1) {
289ce9cc 1775 $lb_table[$lb_enums{'Open_Punctuation'}][$i]
6b659339
KW
1776 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1777 }
1778
1779 # LB13 Do not break before ‘]’ or ‘!’ or ‘;’ or ‘/’, even after spaces, as
1780 # tailored by example 7 in http://www.unicode.org/reports/tr14/#Examples
1781 # [^NU] × CL
1782 # [^NU] × CP
1783 # × EX
1784 # [^NU] × IS
1785 # [^NU] × SY
1786 for my $i (0 .. @lb_table - 1) {
289ce9cc 1787 $lb_table[$i][$lb_enums{'Exclamation'}]
6b659339
KW
1788 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1789
289ce9cc 1790 next if $i == $lb_enums{'Numeric'};
6b659339 1791
289ce9cc 1792 $lb_table[$i][$lb_enums{'Close_Punctuation'}]
6b659339 1793 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1794 $lb_table[$i][$lb_enums{'Close_Parenthesis'}]
6b659339 1795 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1796 $lb_table[$i][$lb_enums{'Infix_Numeric'}]
6b659339 1797 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1798 $lb_table[$i][$lb_enums{'Break_Symbols'}]
6b659339
KW
1799 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1800 }
1801
1802 # LB12a Do not break before NBSP and related characters, except after
1803 # spaces and hyphens.
1804 # [^SP BA HY] × GL
1805 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1806 next if $i == $lb_enums{'Space'}
1807 || $i == $lb_enums{'Break_After'}
1808 || $i == $lb_enums{'Hyphen'};
6b659339
KW
1809
1810 # We don't break, but if a property above has said don't break even
1811 # with space between, don't override that (also in the next few rules)
289ce9cc 1812 next if $lb_table[$i][$lb_enums{'Glue'}]
6b659339 1813 == $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1814 $lb_table[$i][$lb_enums{'Glue'}] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1815 }
1816
1817 # LB12 Do not break after NBSP and related characters.
1818 # GL ×
1819 for my $i (0 .. @lb_table - 1) {
289ce9cc 1820 next if $lb_table[$lb_enums{'Glue'}][$i]
6b659339 1821 == $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1822 $lb_table[$lb_enums{'Glue'}][$i] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1823 }
1824
1825 # LB11 Do not break before or after Word joiner and related characters.
1826 # × WJ
1827 # WJ ×
1828 for my $i (0 .. @lb_table - 1) {
289ce9cc 1829 if ($lb_table[$i][$lb_enums{'Word_Joiner'}]
6b659339
KW
1830 != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
1831 {
289ce9cc 1832 $lb_table[$i][$lb_enums{'Word_Joiner'}] = $lb_actions{'LB_NOBREAK'};
6b659339 1833 }
289ce9cc 1834 if ($lb_table[$lb_enums{'Word_Joiner'}][$i]
6b659339
KW
1835 != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
1836 {
289ce9cc 1837 $lb_table[$lb_enums{'Word_Joiner'}][$i] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1838 }
1839 }
1840
1841 # Special case this here to avoid having to do a special case in the code,
1842 # by making this the same as other things with a SP in front of them that
1843 # don't break, we avoid an extra test
289ce9cc 1844 $lb_table[$lb_enums{'Space'}][$lb_enums{'Word_Joiner'}]
6b659339
KW
1845 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1846
1847 # LB9 and LB10 are done in the same loop
1848 #
1849 # LB9 Do not break a combining character sequence; treat it as if it has
1850 # the line breaking class of the base character in all of the
b0e24409
KW
1851 # higher-numbered rules. Treat ZWJ as if it were CM
1852 # Treat X (CM|ZWJ)* as if it were X.
6b659339
KW
1853 # where X is any line break class except BK, CR, LF, NL, SP, or ZW.
1854
b0e24409
KW
1855 # LB10 Treat any remaining combining mark or ZWJ as AL. This catches the
1856 # case where a CM or ZWJ is the first character on the line or follows SP,
1857 # BK, CR, LF, NL, or ZW.
6b659339
KW
1858 for my $i (0 .. @lb_table - 1) {
1859
b0e24409
KW
1860 # When the CM or ZWJ is the first in the pair, we don't know without
1861 # looking behind whether the CM or ZWJ is going to attach to an
1862 # earlier character, or not. So have to figure this out at runtime in
1863 # the code
1864 $lb_table[$lb_enums{'Combining_Mark'}][$i]
1865 = $lb_actions{'LB_CM_ZWJ_foo'};
1866 $lb_table[$lb_enums{'ZWJ'}][$i] = $lb_actions{'LB_CM_ZWJ_foo'};
289ce9cc
KW
1867
1868 if ( $i == $lb_enums{'Mandatory_Break'}
1869 || $i == $lb_enums{'EDGE'}
1870 || $i == $lb_enums{'Carriage_Return'}
1871 || $i == $lb_enums{'Line_Feed'}
1872 || $i == $lb_enums{'Next_Line'}
1873 || $i == $lb_enums{'Space'}
1874 || $i == $lb_enums{'ZWSpace'})
6b659339
KW
1875 {
1876 # For these classes, a following CM doesn't combine, and should do
289ce9cc
KW
1877 # whatever 'Alphabetic' would do.
1878 $lb_table[$i][$lb_enums{'Combining_Mark'}]
1879 = $lb_table[$i][$lb_enums{'Alphabetic'}];
b0e24409
KW
1880 $lb_table[$i][$lb_enums{'ZWJ'}]
1881 = $lb_table[$i][$lb_enums{'Alphabetic'}];
6b659339
KW
1882 }
1883 else {
b0e24409
KW
1884 # For these classes, the CM or ZWJ combines, so doesn't break,
1885 # inheriting the type of nobreak from the master character.
289ce9cc 1886 if ($lb_table[$i][$lb_enums{'Combining_Mark'}]
6b659339
KW
1887 != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
1888 {
289ce9cc
KW
1889 $lb_table[$i][$lb_enums{'Combining_Mark'}]
1890 = $lb_actions{'LB_NOBREAK'};
6b659339 1891 }
b0e24409
KW
1892 if ($lb_table[$i][$lb_enums{'ZWJ'}]
1893 != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
1894 {
1895 $lb_table[$i][$lb_enums{'ZWJ'}]
1896 = $lb_actions{'LB_NOBREAK'};
1897 }
6b659339
KW
1898 }
1899 }
1900
8a6698d7
UC
1901 # LB8a Do not break after a zero width joiner
1902 # ZWJ ×
1903 for my $i (0 .. @lb_table - 1) {
1904 $lb_table[$lb_enums{'ZWJ'}][$i] = $lb_actions{'LB_NOBREAK'};
1905 }
b0e24409 1906
6b659339
KW
1907 # LB8 Break before any character following a zero-width space, even if one
1908 # or more spaces intervene.
1909 # ZW SP* ÷
1910 for my $i (0 .. @lb_table - 1) {
289ce9cc 1911 $lb_table[$lb_enums{'ZWSpace'}][$i] = $lb_actions{'LB_BREAKABLE'};
6b659339
KW
1912 }
1913
1914 # Because of LB8-10, we need to look at context for "SP x", and this must
1915 # be done in the code. So override the existing rules for that, by adding
1916 # a constant to get new rules that tell the code it needs to look at
1917 # context. By adding this action instead of replacing the existing one,
1918 # we can get back to the original rule if necessary.
1919 for my $i (0 .. @lb_table - 1) {
289ce9cc 1920 $lb_table[$lb_enums{'Space'}][$i] += $lb_actions{'LB_SP_foo'};
6b659339
KW
1921 }
1922
1923 # LB7 Do not break before spaces or zero width space.
1924 # × SP
1925 # × ZW
1926 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1927 $lb_table[$i][$lb_enums{'Space'}] = $lb_actions{'LB_NOBREAK'};
1928 $lb_table[$i][$lb_enums{'ZWSpace'}] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1929 }
1930
1931 # LB6 Do not break before hard line breaks.
1932 # × ( BK | CR | LF | NL )
1933 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1934 $lb_table[$i][$lb_enums{'Mandatory_Break'}] = $lb_actions{'LB_NOBREAK'};
1935 $lb_table[$i][$lb_enums{'Carriage_Return'}] = $lb_actions{'LB_NOBREAK'};
1936 $lb_table[$i][$lb_enums{'Line_Feed'}] = $lb_actions{'LB_NOBREAK'};
1937 $lb_table[$i][$lb_enums{'Next_Line'}] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1938 }
1939
1940 # LB5 Treat CR followed by LF, as well as CR, LF, and NL as hard line breaks.
1941 # CR × LF
1942 # CR !
1943 # LF !
1944 # NL !
1945 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1946 $lb_table[$lb_enums{'Carriage_Return'}][$i]
1947 = $lb_actions{'LB_BREAKABLE'};
1948 $lb_table[$lb_enums{'Line_Feed'}][$i] = $lb_actions{'LB_BREAKABLE'};
1949 $lb_table[$lb_enums{'Next_Line'}][$i] = $lb_actions{'LB_BREAKABLE'};
6b659339 1950 }
289ce9cc
KW
1951 $lb_table[$lb_enums{'Carriage_Return'}][$lb_enums{'Line_Feed'}]
1952 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1953
1954 # LB4 Always break after hard line breaks.
1955 # BK !
1956 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1957 $lb_table[$lb_enums{'Mandatory_Break'}][$i]
1958 = $lb_actions{'LB_BREAKABLE'};
6b659339
KW
1959 }
1960
6b659339
KW
1961 # LB3 Always break at the end of text.
1962 # ! eot
b0e24409
KW
1963 # LB2 Never break at the start of text.
1964 # sot ×
6b659339 1965 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1966 $lb_table[$i][$lb_enums{'EDGE'}] = $lb_actions{'LB_BREAKABLE'};
1967 $lb_table[$lb_enums{'EDGE'}][$i] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1968 }
1969
1970 # LB1 Assign a line breaking class to each code point of the input.
1971 # Resolve AI, CB, CJ, SA, SG, and XX into other line breaking classes
1972 # depending on criteria outside the scope of this algorithm.
1973 #
1974 # In the absence of such criteria all characters with a specific
1975 # combination of original class and General_Category property value are
1976 # resolved as follows:
1977 # Original Resolved General_Category
1978 # AI, SG, XX AL Any
1979 # SA CM Only Mn or Mc
1980 # SA AL Any except Mn and Mc
1981 # CJ NS Any
1982 #
1983 # This is done in mktables, so we never see any of the remapped-from
1984 # classes.
1985
289ce9cc
KW
1986 output_table_common('LB', \%lb_actions,
1987 \@lb_table, \@lb_short_enums, \%lb_abbreviations);
6b659339
KW
1988}
1989
7e54b87f
KW
1990sub output_WB_table() {
1991
1992 # Create and output the enums, #defines, and pair table for use in
1993 # determining Word Breaks, given in http://www.unicode.org/reports/tr29/.
1994
1995 # This uses the same mechanism in the other bounds tables generated by
1996 # this file. The actions that could override a 0 or 1 are added to those
1997 # numbers; the actions that clearly don't depend on the underlying rule
1998 # simply overwrite
1999 my %wb_actions = (
2000 WB_NOBREAK => 0,
2001 WB_BREAKABLE => 1,
2002 WB_hs_then_hs => 2,
b0e24409 2003 WB_Ex_or_FO_or_ZWJ_then_foo => 3,
7e54b87f
KW
2004 WB_DQ_then_HL => 4,
2005 WB_HL_then_DQ => 6,
2006 WB_LE_or_HL_then_MB_or_ML_or_SQ => 8,
2007 WB_MB_or_ML_or_SQ_then_LE_or_HL => 10,
2008 WB_MB_or_MN_or_SQ_then_NU => 12,
2009 WB_NU_then_MB_or_MN_or_SQ => 14,
b0e24409 2010 WB_RI_then_RI => 16,
7e54b87f
KW
2011 );
2012
7e54b87f
KW
2013 # Construct the WB pair table.
2014 # The table is constructed in reverse order of the rules, to make the
2015 # lower-numbered, higher priority ones override the later ones, as the
2016 # algorithm stops at the earliest matching rule
2017
2018 my @wb_table;
2027d365 2019 my $table_size = @wb_short_enums;
7e54b87f
KW
2020
2021 # Otherwise, break everywhere (including around ideographs).
b0e24409 2022 # WB99 Any ÷ Any
7e54b87f
KW
2023 for my $i (0 .. $table_size - 1) {
2024 for my $j (0 .. $table_size - 1) {
2025 $wb_table[$i][$j] = $wb_actions{'WB_BREAKABLE'};
2026 }
2027 }
2028
b0e24409
KW
2029 # Do not break within emoji flag sequences. That is, do not break between
2030 # regional indicator (RI) symbols if there is an odd number of RI
2031 # characters before the break point.
2032 # WB16 [^RI] (RI RI)* RI × RI
c492f156 2033 # WB15 sot (RI RI)* RI × RI
289ce9cc 2034 $wb_table[$wb_enums{'Regional_Indicator'}]
b0e24409
KW
2035 [$wb_enums{'Regional_Indicator'}] = $wb_actions{'WB_RI_then_RI'};
2036
2037 # Do not break within emoji modifier sequences.
2038 # WB14 ( E_Base | EBG ) × E_Modifier
2039 $wb_table[$wb_enums{'E_Base'}][$wb_enums{'E_Modifier'}]
2040 = $wb_actions{'WB_NOBREAK'};
2041 $wb_table[$wb_enums{'E_Base_GAZ'}][$wb_enums{'E_Modifier'}]
2042 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2043
2044 # Do not break from extenders.
2045 # WB13b ExtendNumLet × (ALetter | Hebrew_Letter | Numeric | Katakana)
289ce9cc
KW
2046 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ALetter'}]
2047 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2048 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'XPG_LE'}]
2049 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2050 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Hebrew_Letter'}]
2051 = $wb_actions{'WB_NOBREAK'};
2052 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Numeric'}]
2053 = $wb_actions{'WB_NOBREAK'};
2054 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Katakana'}]
2055 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2056
2057 # WB13a (ALetter | Hebrew_Letter | Numeric | Katakana | ExtendNumLet)
d21ae9f6 2058 # × ExtendNumLet
289ce9cc
KW
2059 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'ExtendNumLet'}]
2060 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2061 $wb_table[$wb_enums{'XPG_LE'}][$wb_enums{'ExtendNumLet'}]
2062 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2063 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ExtendNumLet'}]
2064 = $wb_actions{'WB_NOBREAK'};
2065 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ExtendNumLet'}]
2066 = $wb_actions{'WB_NOBREAK'};
2067 $wb_table[$wb_enums{'Katakana'}][$wb_enums{'ExtendNumLet'}]
2068 = $wb_actions{'WB_NOBREAK'};
2069 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ExtendNumLet'}]
2070 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2071
2072 # Do not break between Katakana.
2073 # WB13 Katakana × Katakana
289ce9cc
KW
2074 $wb_table[$wb_enums{'Katakana'}][$wb_enums{'Katakana'}]
2075 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2076
2077 # Do not break within sequences, such as “3.2” or “3,456.789”.
2078 # WB12 Numeric × (MidNum | MidNumLet | Single_Quote) Numeric
289ce9cc 2079 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'MidNumLet'}]
7e54b87f 2080 += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
289ce9cc 2081 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'MidNum'}]
7e54b87f 2082 += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
289ce9cc 2083 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Single_Quote'}]
7e54b87f
KW
2084 += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
2085
2086 # WB11 Numeric (MidNum | (MidNumLet | Single_Quote)) × Numeric
289ce9cc 2087 $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'Numeric'}]
7e54b87f 2088 += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
289ce9cc 2089 $wb_table[$wb_enums{'MidNum'}][$wb_enums{'Numeric'}]
7e54b87f 2090 += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
289ce9cc 2091 $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'Numeric'}]
7e54b87f
KW
2092 += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
2093
2094 # Do not break within sequences of digits, or digits adjacent to letters
2095 # (“3a”, or “A3”).
2096 # WB10 Numeric × (ALetter | Hebrew_Letter)
289ce9cc
KW
2097 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ALetter'}]
2098 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2099 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'XPG_LE'}]
2100 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2101 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Hebrew_Letter'}]
2102 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2103
2104 # WB9 (ALetter | Hebrew_Letter) × Numeric
289ce9cc
KW
2105 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Numeric'}]
2106 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2107 $wb_table[$wb_enums{'XPG_LE'}][$wb_enums{'Numeric'}]
2108 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2109 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Numeric'}]
2110 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2111
2112 # WB8 Numeric × Numeric
289ce9cc
KW
2113 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Numeric'}]
2114 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2115
2116 # Do not break letters across certain punctuation.
2117 # WB7c Hebrew_Letter Double_Quote × Hebrew_Letter
289ce9cc
KW
2118 $wb_table[$wb_enums{'Double_Quote'}][$wb_enums{'Hebrew_Letter'}]
2119 += $wb_actions{'WB_DQ_then_HL'};
7e54b87f
KW
2120
2121 # WB7b Hebrew_Letter × Double_Quote Hebrew_Letter
289ce9cc
KW
2122 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Double_Quote'}]
2123 += $wb_actions{'WB_HL_then_DQ'};
7e54b87f
KW
2124
2125 # WB7a Hebrew_Letter × Single_Quote
289ce9cc
KW
2126 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Single_Quote'}]
2127 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2128
2129 # WB7 (ALetter | Hebrew_Letter) (MidLetter | MidNumLet | Single_Quote)
2130 # × (ALetter | Hebrew_Letter)
289ce9cc 2131 $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'ALetter'}]
7e54b87f 2132 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
c0734505
KW
2133 $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'XPG_LE'}]
2134 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
289ce9cc 2135 $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'Hebrew_Letter'}]
7e54b87f 2136 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
289ce9cc 2137 $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'ALetter'}]
7e54b87f 2138 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
c0734505
KW
2139 $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'XPG_LE'}]
2140 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
289ce9cc 2141 $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'Hebrew_Letter'}]
7e54b87f 2142 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
289ce9cc 2143 $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'ALetter'}]
7e54b87f 2144 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
c0734505
KW
2145 $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'XPG_LE'}]
2146 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
289ce9cc 2147 $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'Hebrew_Letter'}]
7e54b87f
KW
2148 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2149
2150 # WB6 (ALetter | Hebrew_Letter) × (MidLetter | MidNumLet
2151 # | Single_Quote) (ALetter | Hebrew_Letter)
289ce9cc 2152 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'MidNumLet'}]
7e54b87f 2153 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
c0734505
KW
2154 $wb_table[$wb_enums{'XPG_LE'}][$wb_enums{'MidNumLet'}]
2155 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
289ce9cc 2156 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'MidNumLet'}]
7e54b87f 2157 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
289ce9cc 2158 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'MidLetter'}]
7e54b87f 2159 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
c0734505
KW
2160 $wb_table[$wb_enums{'XPG_LE'}][$wb_enums{'MidLetter'}]
2161 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
289ce9cc 2162 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'MidLetter'}]
7e54b87f 2163 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
289ce9cc 2164 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Single_Quote'}]
7e54b87f 2165 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
c0734505
KW
2166 $wb_table[$wb_enums{'XPG_LE'}][$wb_enums{'Single_Quote'}]
2167 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
289ce9cc 2168 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Single_Quote'}]
7e54b87f
KW
2169 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2170
2171 # Do not break between most letters.
2172 # WB5 (ALetter | Hebrew_Letter) × (ALetter | Hebrew_Letter)
289ce9cc
KW
2173 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'ALetter'}]
2174 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2175 $wb_table[$wb_enums{'XPG_LE'}][$wb_enums{'ALetter'}]
2176 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2177 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Hebrew_Letter'}]
2178 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2179 $wb_table[$wb_enums{'XPG_LE'}][$wb_enums{'Hebrew_Letter'}]
2180 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2181 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ALetter'}]
2182 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2183 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'XPG_LE'}]
2184 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2185 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Hebrew_Letter'}]
2186 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2187 $wb_table[$wb_enums{'XPG_LE'}][$wb_enums{'XPG_LE'}]
2188 = $wb_actions{'WB_NOBREAK'};
7e54b87f 2189
b0e24409
KW
2190 # Ignore Format and Extend characters, except after sot, CR, LF, and
2191 # Newline. This also has the effect of: Any × (Format | Extend | ZWJ)
2192 # WB4 X (Extend | Format | ZWJ)* → X
7e54b87f 2193 for my $i (0 .. @wb_table - 1) {
289ce9cc 2194 $wb_table[$wb_enums{'Extend'}][$i]
b0e24409 2195 = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
289ce9cc 2196 $wb_table[$wb_enums{'Format'}][$i]
b0e24409
KW
2197 = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
2198 $wb_table[$wb_enums{'ZWJ'}][$i]
2199 = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
2200 }
2201 for my $i (0 .. @wb_table - 1) {
2202 $wb_table[$i][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'};
2203 $wb_table[$i][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'};
2204 $wb_table[$i][$wb_enums{'ZWJ'}] = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2205 }
2206
2207 # Implied is that these attach to the character before them, except for
2208 # the characters that mark the end of a region of text. The rules below
2209 # override the ones set up here, for all the characters that need
2210 # overriding.
2211 for my $i (0 .. @wb_table - 1) {
289ce9cc
KW
2212 $wb_table[$i][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'};
2213 $wb_table[$i][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2214 }
2215
c0734505
KW
2216 # Keep horizontal whitespace together
2217 # Use perl's tailoring instead
2218 # WB3d WSegSpace × WSegSpace
2219 #$wb_table[$wb_enums{'WSegSpace'}][$wb_enums{'WSegSpace'}]
2220 # = $wb_actions{'WB_NOBREAK'};
2221
b0e24409
KW
2222 # Do not break within emoji zwj sequences.
2223 # WB3c ZWJ × ( Glue_After_Zwj | EBG )
2224 $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'Glue_After_Zwj'}]
2225 = $wb_actions{'WB_NOBREAK'};
2226 $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'E_Base_GAZ'}]
2227 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2228 $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'XPG_XX'}]
2229 = $wb_actions{'WB_NOBREAK'};
2230 $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'XPG_LE'}]
2231 = $wb_actions{'WB_NOBREAK'};
b0e24409 2232
d21ae9f6 2233 # Break before and after newlines
7e54b87f
KW
2234 # WB3b ÷ (Newline | CR | LF)
2235 # WB3a (Newline | CR | LF) ÷
2236 # et. al.
289ce9cc 2237 for my $i ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
7e54b87f
KW
2238 for my $j (0 .. @wb_table - 1) {
2239 $wb_table[$j][$wb_enums{$i}] = $wb_actions{'WB_BREAKABLE'};
2240 $wb_table[$wb_enums{$i}][$j] = $wb_actions{'WB_BREAKABLE'};
2241 }
2242 }
2243
2244 # But do not break within white space.
2245 # WB3 CR × LF
2246 # et.al.
289ce9cc
KW
2247 for my $i ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
2248 for my $j ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
7e54b87f
KW
2249 $wb_table[$wb_enums{$i}][$wb_enums{$j}] = $wb_actions{'WB_NOBREAK'};
2250 }
2251 }
2252
b0e24409 2253 # And do not break horizontal space followed by Extend or Format or ZWJ
289ce9cc
KW
2254 $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'Extend'}]
2255 = $wb_actions{'WB_NOBREAK'};
2256 $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'Format'}]
2257 = $wb_actions{'WB_NOBREAK'};
b0e24409
KW
2258 $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'ZWJ'}]
2259 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2260 $wb_table[$wb_enums{'Perl_Tailored_HSpace'}]
2261 [$wb_enums{'Perl_Tailored_HSpace'}]
2262 = $wb_actions{'WB_hs_then_hs'};
7e54b87f 2263
b0e24409
KW
2264 # Break at the start and end of text, unless the text is empty
2265 # WB2 Any ÷ eot
2266 # WB1 sot ÷ Any
7e54b87f 2267 for my $i (0 .. @wb_table - 1) {
289ce9cc
KW
2268 $wb_table[$i][$wb_enums{'EDGE'}] = $wb_actions{'WB_BREAKABLE'};
2269 $wb_table[$wb_enums{'EDGE'}][$i] = $wb_actions{'WB_BREAKABLE'};
7e54b87f 2270 }
289ce9cc 2271 $wb_table[$wb_enums{'EDGE'}][$wb_enums{'EDGE'}] = 0;
7e54b87f 2272
289ce9cc
KW
2273 output_table_common('WB', \%wb_actions,
2274 \@wb_table, \@wb_short_enums, \%wb_abbreviations);
7e54b87f
KW
2275}
2276
4eea95a6
KW
2277sub sanitize_name ($) {
2278 # Change the non-word characters in the input string to standardized word
2279 # equivalents
2280 #
2281 my $sanitized = shift;
2282 $sanitized =~ s/=/__/;
2283 $sanitized =~ s/&/_AMP_/;
2284 $sanitized =~ s/\./_DOT_/;
2285 $sanitized =~ s/-/_MINUS_/;
2286 $sanitized =~ s!/!_SLASH_!;
2287
2288 return $sanitized;
2289}
2290
cef72199 2291switch_pound_if ('ALL', 'PERL_IN_REGCOMP_C');
4eea95a6 2292
9d9177be
KW
2293output_invlist("Latin1", [ 0, 256 ]);
2294output_invlist("AboveLatin1", [ 256 ]);
2295
bffc0129 2296end_file_pound_if;
43b443dd 2297
3f427fd9
KW
2298# We construct lists for all the POSIX and backslash sequence character
2299# classes in two forms:
2300# 1) ones which match only in the ASCII range
2301# 2) ones which match either in the Latin1 range, or the entire Unicode range
2302#
2303# These get compiled in, and hence affect the memory footprint of every Perl
2304# program, even those not using Unicode. To minimize the size, currently
2305# the Latin1 version is generated for the beyond ASCII range except for those
2306# lists that are quite small for the entire range, such as for \s, which is 22
2307# UVs long plus 4 UVs (currently) for the header.
2308#
2309# To save even more memory, the ASCII versions could be derived from the
2310# larger ones at runtime, saving some memory (minus the expense of the machine
2311# instructions to do so), but these are all small anyway, so their total is
2312# about 100 UVs.
2313#
2314# In the list of properties below that get generated, the L1 prefix is a fake
2315# property that means just the Latin1 range of the full property (whose name
2316# has an X prefix instead of L1).
a02047bf
KW
2317#
2318# An initial & means to use the subroutine from this file instead of an
2319# official inversion list.
3f427fd9 2320
53146480
KW
2321# Below is the list of property names to generate. '&' means to use the
2322# subroutine to generate the inversion list instead of the generic code
2323# below. Some properties have a comma-separated list after the name,
2324# These are extra enums to add to those found in the Unicode tables.
2325no warnings 'qw';
2326 # Ignore non-alpha in sort
4eea95a6
KW
2327my @props;
2328push @props, sort { prop_name_for_cmp($a) cmp prop_name_for_cmp($b) } qw(
2329 &NonL1_Perl_Non_Final_Folds
2330 &UpperLatin1
2027d365
KW
2331 _Perl_GCB,EDGE,E_Base,E_Base_GAZ,E_Modifier,Glue_After_Zwj,LV,Prepend,Regional_Indicator,SpacingMark,ZWJ,XPG_XX
2332 _Perl_LB,EDGE,Close_Parenthesis,Hebrew_Letter,Next_Line,Regional_Indicator,ZWJ,Contingent_Break,E_Base,E_Modifier,H2,H3,JL,JT,JV,Word_Joiner
2333 _Perl_SB,EDGE,SContinue,CR,Extend,LF
2334 _Perl_WB,Perl_Tailored_HSpace,EDGE,UNKNOWN,CR,Double_Quote,E_Base,E_Base_GAZ,E_Modifier,Extend,Glue_After_Zwj,Hebrew_Letter,LF,MidNumLet,Newline,Regional_Indicator,Single_Quote,ZWJ,XPG_XX,XPG_LE
4eea95a6
KW
2335 _Perl_SCX,Latin,Inherited,Unknown,Kore,Jpan,Hanb,INVALID
2336 Lowercase_Mapping
2337 Titlecase_Mapping
2338 Uppercase_Mapping
2339 Simple_Case_Folding
2340 Case_Folding
2341 &_Perl_IVCF
2342 );
2343 # NOTE that the convention is that extra enum values come
2344 # after the property name, separated by commas, with the enums
2345 # that aren't ever defined by Unicode coming last, at least 4
2346 # all-uppercase characters. The others are enum names that
2347 # are needed by perl, but aren't in all Unicode releases.
2348
2349my @bin_props;
1aefa327 2350my @perl_prop_synonyms;
4eea95a6 2351my %enums;
2d74dcf2
KW
2352my @deprecated_messages = ""; # Element [0] is a placeholder
2353my %deprecated_tags;
4eea95a6 2354
27097618
KW
2355my $float_e_format = qr/ ^ -? \d \. \d+ e [-+] \d+ $ /x;
2356
2357# Create another hash that maps floating point x.yyEzz representation to what
2358# %stricter_to_file_of does for the equivalent rational. A typical entry in
2359# the latter hash is
2360#
2361# 'nv=1/2' => 'Nv/1_2',
2362#
2363# From that, this loop creates an entry
2364#
2365# 'nv=5.00e-01' => 'Nv/1_2',
2366#
2367# %stricter_to_file_of contains far more than just the rationals. Instead we
2368# use %utf8::nv_floating_to_rational which should have an entry for each
2369# nv in the former hash.
2370my %floating_to_file_of;
2371foreach my $key (keys %utf8::nv_floating_to_rational) {
2372 my $value = $utf8::nv_floating_to_rational{$key};
2373 $floating_to_file_of{$key} = $utf8::stricter_to_file_of{"nv=$value"};
2374}
2375
4eea95a6
KW
2376# Collect all the binary properties from data in lib/unicore
2377# Sort so that complements come after the main table, and the shortest
8091afe3 2378# names first, finally alphabetically. Also, sort together the tables we want
f81c4731
KW
2379# to be kept together, and prefer those with 'posix' in their names, which is
2380# what the C code is expecting their names to be.
4eea95a6 2381foreach my $property (sort
2d74dcf2 2382 { exists $keep_together{lc $b} <=> exists $keep_together{lc $a}
f81c4731
KW
2383 or $b =~ /posix/i <=> $a =~ /posix/i
2384 or $b =~ /perl/i <=> $a =~ /perl/i
27097618 2385 or $a =~ $float_e_format <=> $b =~ $float_e_format
2d74dcf2 2386 or $a =~ /!/ <=> $b =~ /!/
4eea95a6
KW
2387 or length $a <=> length $b
2388 or $a cmp $b
2389 } keys %utf8::loose_to_file_of,
27097618
KW
2390 keys %utf8::stricter_to_file_of,
2391 keys %floating_to_file_of
53146480 2392) {
0f5e3c71 2393
4eea95a6
KW
2394 # These two hashes map properties to values that can be considered to
2395 # be checksums. If two properties have the same checksum, they have
2396 # identical entries. Otherwise they differ in some way.
2397 my $tag = $utf8::loose_to_file_of{$property};
2398 $tag = $utf8::stricter_to_file_of{$property} unless defined $tag;
27097618 2399 $tag = $floating_to_file_of{$property} unless defined $tag;
4eea95a6
KW
2400
2401 # The tag may contain an '!' meaning it is identical to the one formed
394d2d3f
KW
2402 # by removing the !, except that it is inverted.
2403 my $inverted = $tag =~ s/!//;
4eea95a6 2404
27097618
KW
2405 # This hash is lacking the property name
2406 $property = "nv=$property" if $property =~ $float_e_format;
2407
4eea95a6
KW
2408 # The list of 'prop=value' entries that this single entry expands to
2409 my @this_entries;
2410
2411 # Split 'property=value' on the equals sign, with $lhs being the whole
2412 # thing if there is no '='
2413 my ($lhs, $rhs) = $property =~ / ( [^=]* ) ( =? .*) /x;
2414
394d2d3f
KW
2415 # $lhs then becomes the property name. See if there are any synonyms
2416 # for this property.
2417 if (exists $prop_name_aliases{$lhs}) {
2418
2419 # If so, do the combinatorics so that a new entry is added for
2420 # each legal property combined with the property value (which is
2421 # $rhs)
2422 foreach my $alias (@{$prop_name_aliases{$lhs}}) {
2423
2424 # But, there are some ambiguities, like 'script' is a synonym
2425 # for 'sc', and 'sc' can stand alone, meaning something
2426 # entirely different than 'script'. 'script' cannot stand
2427 # alone. Don't add if the potential new lhs is in the hash of
2428 # stand-alone properties.
2429 no warnings 'once';
2430 next if $rhs eq "" && grep { $alias eq $_ }
2431 keys %utf8::loose_property_to_file_of;
2432
2433 my $new_entry = $alias . $rhs;
e498c235 2434 push @this_entries, $new_entry;
394d2d3f
KW
2435 }
2436 }
2437
2438 # Above, we added the synonyms for the base entry we're now
2439 # processing. But we haven't dealt with it yet. If we already have a
2440 # property with the identical characteristics, this becomes just a
2441 # synonym for it.
2442 if (exists $enums{$tag}) {
2443 push @this_entries, $property;
2444 }
2445 else { # Otherwise, create a new entry.
2446
4eea95a6
KW
2447 # Add to the list of properties to generate inversion lists for.
2448 push @bin_props, uc $property;
2449
394d2d3f 2450 # Create a rule for the parser
f4b10e8e
KW
2451 if (! exists $keywords{$property}) {
2452 $keywords{$property} = token_name($property);
2453 }
394d2d3f 2454
4eea95a6
KW
2455 # And create an enum for it.
2456 $enums{$tag} = $table_name_prefix . uc sanitize_name($property);
394d2d3f 2457
1aefa327
KW
2458 $perl_tags{$tag} = 1 if exists $keep_together{lc $property};
2459
394d2d3f
KW
2460 # Some properties are deprecated. This hash tells us so, and the
2461 # warning message to raise if they are used.
2462 if (exists $utf8::why_deprecated{$tag}) {
2463 $deprecated_tags{$enums{$tag}} = scalar @deprecated_messages;
2464 push @deprecated_messages, $utf8::why_deprecated{$tag};
2465 }
2466
2467 # Our sort above should have made sure that we see the
2468 # non-inverted version first, but this makes sure.
2469 warn "$property is inverted!!!" if $inverted;
2470 }
2471
2472 # Everything else is #defined to be the base enum, inversion is
2473 # indicated by negating the value.
2474 my $defined_to = "";
2475 $defined_to .= "-" if $inverted;
2476 $defined_to .= $enums{$tag};
2477
2478 # Go through the entries that evaluate to this.
e498c235 2479 @this_entries = uniques @this_entries;
394d2d3f
KW
2480 foreach my $define (@this_entries) {
2481
2482 # There is a rule for the parser for each.
f4b10e8e 2483 $keywords{$define} = $defined_to;
1aefa327
KW
2484
2485 # And a #define for all simple names equivalent to a perl property,
2486 # except those that begin with 'is' or 'in';
2487 if (exists $perl_tags{$tag} && $property !~ / ^ i[ns] | = /x) {
2488 push @perl_prop_synonyms, "#define "
2489 . $table_name_prefix
2490 . uc(sanitize_name($define))
2491 . " $defined_to";
2492 }
4eea95a6
KW
2493 }
2494}
2495
2d74dcf2
KW
2496@bin_props = sort { exists $keep_together{lc $b} <=> exists $keep_together{lc $a}
2497 or $a cmp $b
4eea95a6 2498 } @bin_props;
1aefa327 2499@perl_prop_synonyms = sort(uniques(@perl_prop_synonyms));
4eea95a6
KW
2500push @props, @bin_props;
2501
2502foreach my $prop (@props) {
2503
2504 # For the Latin1 properties, we change to use the eXtended version of the
2505 # base property, then go through the result and get rid of everything not
2506 # in Latin1 (above 255). Actually, we retain the element for the range
2507 # that crosses the 255/256 boundary if it is one that matches the
2508 # property. For example, in the Word property, there is a range of code
2509 # points that start at U+00F8 and goes through U+02C1. Instead of
2510 # artificially cutting that off at 256 because 256 is the first code point
2511 # above Latin1, we let the range go to its natural ending. That gives us
2512 # extra information with no added space taken. But if the range that
2513 # crosses the boundary is one that doesn't match the property, we don't
2514 # start a new range above 255, as that could be construed as going to
2515 # infinity. For example, the Upper property doesn't include the character
2516 # at 255, but does include the one at 256. We don't include the 256 one.
2517 my $prop_name = $prop;
2518 my $is_local_sub = $prop_name =~ s/^&//;
2519 my $extra_enums = "";
2520 $extra_enums = $1 if $prop_name =~ s/, ( .* ) //x;
2521 my $lookup_prop = $prop_name;
2522 $prop_name = sanitize_name($prop_name);
2523 $prop_name = $table_name_prefix . $prop_name if grep { lc $lookup_prop eq lc $_ } @bin_props;
2524 my $l1_only = ($lookup_prop =~ s/^L1Posix/XPosix/
2525 or $lookup_prop =~ s/^L1//);
2526 my $nonl1_only = 0;
2527 $nonl1_only = $lookup_prop =~ s/^NonL1// unless $l1_only;
2528 ($lookup_prop, my $has_suffixes) = $lookup_prop =~ / (.*) ( , .* )? /x;
2529
4761f74a
KW
2530 for my $charset (get_supported_code_pages()) {
2531 @a2n = @{get_a2n($charset)};
2532
0f5e3c71 2533 my @invlist;
99f21fb9
KW
2534 my @invmap;
2535 my $map_format;
2536 my $map_default;
2537 my $maps_to_code_point;
2538 my $to_adjust;
59fc10af 2539 my $same_in_all_code_pages;
0f5e3c71 2540 if ($is_local_sub) {
8843f0de 2541 my @return = eval $lookup_prop;
289ce9cc 2542 die $@ if $@;
8843f0de
KW
2543 my $invlist_ref = shift @return;
2544 @invlist = @$invlist_ref;
d2aadf62
KW
2545 if (@return) { # If has other values returned , must be an
2546 # inversion map
2547 my $invmap_ref = shift @return;
2548 @invmap = @$invmap_ref;
2549 $map_format = shift @return;
2550 $map_default = shift @return;
2551 }
0f5e3c71
KW
2552 }
2553 else {
2554 @invlist = prop_invlist($lookup_prop, '_perl_core_internal_ok');
99f21fb9 2555 if (! @invlist) {
99f21fb9 2556
ad85f59a
KW
2557 # If couldn't find a non-empty inversion list, see if it is
2558 # instead an inversion map
2559 my ($list_ref, $map_ref, $format, $default)
99f21fb9 2560 = prop_invmap($lookup_prop, '_perl_core_internal_ok');
ad85f59a
KW
2561 if (! $list_ref) {
2562 # An empty return here could mean an unknown property, or
2563 # merely that the original inversion list is empty. Call
2564 # in scalar context to differentiate
2565 my $count = prop_invlist($lookup_prop,
2566 '_perl_core_internal_ok');
d99e65da
KW
2567 if (defined $count) {
2568 # Short-circuit an empty inversion list.
2569 output_invlist($prop_name, \@invlist, $charset);
59fc10af 2570 last;
d99e65da 2571 }
ad85f59a 2572 die "Could not find inversion list for '$lookup_prop'"
ad85f59a
KW
2573 }
2574 else {
18b852b3
KW
2575 @invlist = @$list_ref;
2576 @invmap = @$map_ref;
2577 $map_format = $format;
2578 $map_default = $default;
b148e8b1 2579 $maps_to_code_point = $map_format =~ / a ($ | [^r] ) /x;
18b852b3 2580 $to_adjust = $map_format =~ /a/;
ad85f59a 2581 }
99f21fb9 2582 }
0f5e3c71 2583 }
ad85f59a 2584
99f21fb9
KW
2585 # Re-order the Unicode code points to native ones for this platform.
2586 # This is only needed for code points below 256, because native code
2587 # points are only in that range. For inversion maps of properties
2588 # where the mappings are adjusted (format =~ /a/), this reordering
2589 # could mess up the adjustment pattern that was in the input, so that
2590 # has to be dealt with.
2591 #
2592 # And inversion maps that map to code points need to eventually have
2593 # all those code points remapped to native, and it's better to do that
2594 # here, going through the whole list not just those below 256. This
2595 # is because some inversion maps have adjustments (format =~ /a/)
2596 # which may be affected by the reordering. This code needs to be done
2597 # both for when we are translating the inversion lists for < 256, and
2598 # for the inversion maps for everything. By doing both in this loop,
2599 # we can share that code.
2600 #
2601 # So, we go through everything for an inversion map to code points;
2602 # otherwise, we can skip any remapping at all if we are going to
2603 # output only the above-Latin1 values, or if the range spans the whole
2604 # of 0..256, as the remap will also include all of 0..256 (256 not
2605 # 255 because a re-ordering could cause 256 to need to be in the same
2606 # range as 255.)
2b3e8a91 2607 if ( (@invmap && $maps_to_code_point)
e4e80abb
KW
2608 || ( @invlist
2609 && $invlist[0] < 256
2b3e8a91 2610 && ( $invlist[0] != 0
e4e80abb 2611 || (scalar @invlist != 1 && $invlist[1] < 256))))
ceb1de32 2612 {
59fc10af 2613 $same_in_all_code_pages = 0;
99f21fb9 2614 if (! @invmap) { # Straight inversion list
563f8b93
KW
2615 # Look at all the ranges that start before 257.
2616 my @latin1_list;
2617 while (@invlist) {
2618 last if $invlist[0] > 256;
2619 my $upper = @invlist > 1
2620 ? $invlist[1] - 1 # In range
2621
2622 # To infinity. You may want to stop much much
2623 # earlier; going this high may expose perl
2624 # deficiencies with very large numbers.
7d2c6c24 2625 : 256;
563f8b93
KW
2626 for my $j ($invlist[0] .. $upper) {
2627 push @latin1_list, a2n($j);
2628 }
fb4554ea 2629
563f8b93
KW
2630 shift @invlist; # Shift off the range that's in the list
2631 shift @invlist; # Shift off the range not in the list
2632 }
fb4554ea 2633
563f8b93
KW
2634 # Here @invlist contains all the ranges in the original that
2635 # start at code points above 256, and @latin1_list contains
2636 # all the native code points for ranges that start with a
2637 # Unicode code point below 257. We sort the latter and
2638 # convert it to inversion list format. Then simply prepend it
2639 # to the list of the higher code points.
2640 @latin1_list = sort { $a <=> $b } @latin1_list;
2641 @latin1_list = mk_invlist_from_sorted_cp_list(\@latin1_list);
2642 unshift @invlist, @latin1_list;
99f21fb9
KW
2643 }
2644 else { # Is an inversion map
2645
2646 # This is a similar procedure as plain inversion list, but has
2647 # multiple buckets. A plain inversion list just has two
2648 # buckets, 1) 'in' the list; and 2) 'not' in the list, and we
2649 # pretty much can ignore the 2nd bucket, as it is completely
2650 # defined by the 1st. But here, what we do is create buckets
2651 # which contain the code points that map to each, translated
2652 # to native and turned into an inversion list. Thus each
2653 # bucket is an inversion list of native code points that map
2654 # to it or don't map to it. We use these to create an
2655 # inversion map for the whole property.
2656
2657 # As mentioned earlier, we use this procedure to not just
2658 # remap the inversion list to native values, but also the maps
2659 # of code points to native ones. In the latter case we have
2660 # to look at the whole of the inversion map (or at least to
2661 # above Unicode; as the maps of code points above that should
2662 # all be to the default).
c125794e
KW
2663 my $upper_limit = (! $maps_to_code_point)
2664 ? 256
2665 : (Unicode::UCD::UnicodeVersion() eq '1.1.5')
2666 ? 0xFFFF
2667 : 0x10FFFF;
99f21fb9
KW
2668
2669 my %mapped_lists; # A hash whose keys are the buckets.
2670 while (@invlist) {
2671 last if $invlist[0] > $upper_limit;
2672
2673 # This shouldn't actually happen, as prop_invmap() returns
2674 # an extra element at the end that is beyond $upper_limit
7e2c536f 2675 die "inversion map (for $prop_name) that extends to infinity is unimplemented" unless @invlist > 1;
99f21fb9
KW
2676
2677 my $bucket;
2678
2679 # A hash key can't be a ref (we are only expecting arrays
2680 # of scalars here), so convert any such to a string that
2681 # will be converted back later (using a vertical tab as
b148e8b1 2682 # the separator).
99f21fb9 2683 if (ref $invmap[0]) {
b148e8b1 2684 $bucket = join "\cK", map { a2n($_) } @{$invmap[0]};
99f21fb9
KW
2685 }
2686 elsif ($maps_to_code_point && $invmap[0] =~ $numeric_re) {
2687
2688 # Do convert to native for maps to single code points.
2689 # There are some properties that have a few outlier
2690 # maps that aren't code points, so the above test
2691 # skips those.
2692 $bucket = a2n($invmap[0]);
2693 } else {
2694 $bucket = $invmap[0];
2695 }
2696
2697 # We now have the bucket that all code points in the range
2698 # map to, though possibly they need to be adjusted. Go
2699 # through the range and put each translated code point in
2700 # it into its bucket.
2701 my $base_map = $invmap[0];
2702 for my $j ($invlist[0] .. $invlist[1] - 1) {
2703 if ($to_adjust
2704 # The 1st code point doesn't need adjusting
2705 && $j > $invlist[0]
2706
2707 # Skip any non-numeric maps: these are outliers
2708 # that aren't code points.
2709 && $base_map =~ $numeric_re
2710
2711 # 'ne' because the default can be a string
2712 && $base_map ne $map_default)
2713 {
2714 # We adjust, by incrementing each the bucket and
2715 # the map. For code point maps, translate to
2716 # native
2717 $base_map++;
2718 $bucket = ($maps_to_code_point)
2719 ? a2n($base_map)
2720 : $base_map;
2721 }
2722
2723 # Add the native code point to the bucket for the
2724 # current map
2725 push @{$mapped_lists{$bucket}}, a2n($j);
2726 } # End of loop through all code points in the range
2727
2728 # Get ready for the next range
2729 shift @invlist;
2730 shift @invmap;
2731 } # End of loop through all ranges in the map.
2732
2733 # Here, @invlist and @invmap retain all the ranges from the
2734 # originals that start with code points above $upper_limit.
2735 # Each bucket in %mapped_lists contains all the code points
2736 # that map to that bucket. If the bucket is for a map to a
5174a821
KW
2737 # single code point, the bucket has been converted to native.
2738 # If something else (including multiple code points), no
2739 # conversion is done.
99f21fb9
KW
2740 #
2741 # Now we recreate the inversion map into %xlated, but this
2742 # time for the native character set.
2743 my %xlated;
2744 foreach my $bucket (keys %mapped_lists) {
2745
2746 # Sort and convert this bucket to an inversion list. The
2747 # result will be that ranges that start with even-numbered
2748 # indexes will be for code points that map to this bucket;
2749 # odd ones map to some other bucket, and are discarded
2750 # below.
2751 @{$mapped_lists{$bucket}}
2752 = sort{ $a <=> $b} @{$mapped_lists{$bucket}};
2753 @{$mapped_lists{$bucket}}
2754 = mk_invlist_from_sorted_cp_list(\@{$mapped_lists{$bucket}});
2755
2756 # Add each even-numbered range in the bucket to %xlated;
2757 # so that the keys of %xlated become the range start code
2758 # points, and the values are their corresponding maps.
2759 while (@{$mapped_lists{$bucket}}) {
2760 my $range_start = $mapped_lists{$bucket}->[0];
2761 if ($bucket =~ /\cK/) {
2762 @{$xlated{$range_start}} = split /\cK/, $bucket;
2763 }
2764 else {
e113b1b3
KW
2765 # If adjusting, and there is more than one thing
2766 # that maps to the same thing, they must be split
2767 # so that later the adjusting doesn't think the
2768 # subsequent items can go away because of the
2769 # adjusting.
2770 my $range_end = ($to_adjust && $bucket != $map_default)
2771 ? $mapped_lists{$bucket}->[1] - 1
2772 : $range_start;
2773 for my $i ($range_start .. $range_end) {
2774 $xlated{$i} = $bucket;
2775 }
99f21fb9
KW
2776 }
2777 shift @{$mapped_lists{$bucket}}; # Discard odd ranges
2778 shift @{$mapped_lists{$bucket}}; # Get ready for next
2779 # iteration
2780 }
2781 } # End of loop through all the buckets.
2782
2783 # Here %xlated's keys are the range starts of all the code
2784 # points in the inversion map. Construct an inversion list
2785 # from them.
2786 my @new_invlist = sort { $a <=> $b } keys %xlated;
2787
2788 # If the list is adjusted, we want to munge this list so that
2789 # we only have one entry for where consecutive code points map
2790 # to consecutive values. We just skip the subsequent entries
2791 # where this is the case.
2792 if ($to_adjust) {
2793 my @temp;
2794 for my $i (0 .. @new_invlist - 1) {
2795 next if $i > 0
2796 && $new_invlist[$i-1] + 1 == $new_invlist[$i]
2797 && $xlated{$new_invlist[$i-1]} =~ $numeric_re
2798 && $xlated{$new_invlist[$i]} =~ $numeric_re
2799 && $xlated{$new_invlist[$i-1]} + 1 == $xlated{$new_invlist[$i]};
2800 push @temp, $new_invlist[$i];
2801 }
2802 @new_invlist = @temp;
2803 }
2804
2805 # The inversion map comes from %xlated's values. We can
2806 # unshift each onto the front of the untouched portion, in
2807 # reverse order of the portion we did process.
2808 foreach my $start (reverse @new_invlist) {
2809 unshift @invmap, $xlated{$start};
2810 }
2811
2812 # Finally prepend the inversion list we have just constructed to the
2813 # one that contains anything we didn't process.
2814 unshift @invlist, @new_invlist;
2815 }
2816 }
e4e80abb
KW
2817 elsif (@invmap) { # inversion maps can't cope with this variable
2818 # being true, even if it could be true
2819 $same_in_all_code_pages = 0;
2820 }
59fc10af
KW
2821 else {
2822 $same_in_all_code_pages = 1;
2823 }
99f21fb9
KW
2824
2825 # prop_invmap() returns an extra final entry, which we can now
2826 # discard.
2827 if (@invmap) {
2828 pop @invlist;
2829 pop @invmap;
ceb1de32 2830 }
0f5e3c71
KW
2831
2832 if ($l1_only) {
99f21fb9 2833 die "Unimplemented to do a Latin-1 only inversion map" if @invmap;
0f5e3c71
KW
2834 for my $i (0 .. @invlist - 1 - 1) {
2835 if ($invlist[$i] > 255) {
2836
2837 # In an inversion list, even-numbered elements give the code
2838 # points that begin ranges that match the property;
2839 # odd-numbered give ones that begin ranges that don't match.
2840 # If $i is odd, we are at the first code point above 255 that
2841 # doesn't match, which means the range it is ending does
2842 # match, and crosses the 255/256 boundary. We want to include
2843 # this ending point, so increment $i, so the splice below
2844 # includes it. Conversely, if $i is even, it is the first
2845 # code point above 255 that matches, which means there was no
2846 # matching range that crossed the boundary, and we don't want
2847 # to include this code point, so splice before it.
2848 $i++ if $i % 2 != 0;
2849
2850 # Remove everything past this.
2851 splice @invlist, $i;
99f21fb9 2852 splice @invmap, $i if @invmap;
0f5e3c71
KW
2853 last;
2854 }
0c4ecf42
KW
2855 }
2856 }
0f5e3c71
KW
2857 elsif ($nonl1_only) {
2858 my $found_nonl1 = 0;
2859 for my $i (0 .. @invlist - 1 - 1) {
2860 next if $invlist[$i] < 256;
2861
2862 # Here, we have the first element in the array that indicates an
2863 # element above Latin1. Get rid of all previous ones.
2864 splice @invlist, 0, $i;
99f21fb9 2865 splice @invmap, 0, $i if @invmap;
0f5e3c71
KW
2866
2867 # If this one's index is not divisible by 2, it means that this
2868 # element is inverting away from being in the list, which means
99f21fb9
KW
2869 # all code points from 256 to this one are in this list (or
2870 # map to the default for inversion maps)
2871 if ($i % 2 != 0) {
2872 unshift @invlist, 256;
2873 unshift @invmap, $map_default if @invmap;
2874 }
0f5e3c71 2875 $found_nonl1 = 1;
3f427fd9
KW
2876 last;
2877 }
0f0b3751
KW
2878 if (! $found_nonl1) {
2879 warn "No non-Latin1 code points in $prop_name";
2880 output_invlist($prop_name, []);
2881 last;
2882 }
3f427fd9 2883 }
3f427fd9 2884
cef72199 2885 switch_pound_if ($prop_name, 'PERL_IN_REGCOMP_C');
59fc10af 2886 start_charset_pound_if($charset, 1) unless $same_in_all_code_pages;
4761f74a 2887
59fc10af
KW
2888 output_invlist($prop_name, \@invlist, ($same_in_all_code_pages)
2889 ? $applies_to_all_charsets_text
2890 : $charset);
4761f74a
KW
2891
2892 if (@invmap) {
2893 output_invmap($prop_name, \@invmap, $lookup_prop, $map_format,
2894 $map_default, $extra_enums, $charset);
2895 }
59fc10af
KW
2896
2897 last if $same_in_all_code_pages;
4761f74a 2898 end_charset_pound_if;
0f5e3c71 2899 }
9d9177be
KW
2900}
2901
cef72199 2902switch_pound_if ('binary_property_tables', 'PERL_IN_REGCOMP_C');
394d2d3f
KW
2903
2904print $out_fh "\nconst char * deprecated_property_msgs[] = {\n\t";
2905print $out_fh join ",\n\t", map { "\"$_\"" } @deprecated_messages;
2906print $out_fh "\n};\n";
2907
394d2d3f
KW
2908my @enums = sort values %enums;
2909
2910# Save a copy of these before modification
2911my @invlist_names = map { "${_}_invlist" } @enums;
2912
2913# Post-process the enums for deprecated properties.
2914if (scalar keys %deprecated_tags) {
2915 my $seen_deprecated = 0;
2916 foreach my $enum (@enums) {
2917 if (grep { $_ eq $enum } keys %deprecated_tags) {
2918
2919 # Change the enum name for this deprecated property to a
2920 # munged one to act as a placeholder in the typedef. Then
2921 # make the real name be a #define whose value is such that
2922 # its modulus with the number of enums yields the index into
2923 # the table occupied by the placeholder. And so that dividing
2924 # the #define value by the table length gives an index into
2925 # the table of deprecation messages for the corresponding
2926 # warning.
2927 my $revised_enum = "${enum}_perl_aux";
2928 if (! $seen_deprecated) {
2929 $seen_deprecated = 1;
2930 print $out_fh "\n";
2931 }
2932 print $out_fh "#define $enum ($revised_enum + (MAX_UNI_KEYWORD_INDEX * $deprecated_tags{$enum}))\n";
2933 $enum = $revised_enum;
2934 }
2935 }
2936}
2937
2938print $out_fh "\ntypedef enum {\n\tPERL_BIN_PLACEHOLDER = 0,\n\t";
2939print $out_fh join ",\n\t", @enums;
2940print $out_fh "\n";
2941print $out_fh "} binary_invlist_enum;\n";
2942print $out_fh "\n#define MAX_UNI_KEYWORD_INDEX $enums[-1]\n";
394d2d3f 2943
cef72199 2944output_table_header($out_fh, "UV *", "uni_prop_ptrs");
394d2d3f 2945print $out_fh "\tNULL,\t/* Placeholder */\n\t";
cef72199 2946print $out_fh "\t";
394d2d3f
KW
2947print $out_fh join ",\n\t", @invlist_names;
2948print $out_fh "\n";
cef72199
KW
2949
2950output_table_trailer();
2951
2952print $out_fh join "\n", "\n",
2953 #'# ifdef DOINIT',
2954 #"\n",
2955 "/* Synonyms for perl properties */",
2956 @perl_prop_synonyms,
2957 #"\n",
2958 #"# endif /* DOINIT */",
2959 "\n";
394d2d3f 2960
973a28ed
KW
2961switch_pound_if('Boundary_pair_tables', 'PERL_IN_REGEXEC_C');
2962
2963output_GCB_table();
6b659339 2964output_LB_table();
7e54b87f 2965output_WB_table();
6b659339 2966
973a28ed
KW
2967end_file_pound_if;
2968
2308ab83 2969my $sources_list = "lib/unicore/mktables.lst";
74e28a4a
TC
2970my @sources = qw(regen/mk_invlists.pl
2971 lib/unicore/mktables
2972 lib/Unicode/UCD.pm
2973 regen/charset_translations.pl
f7b69ff8 2974 regen/mk_PL_charclass.pl
74e28a4a 2975 );
9a3da3ad
FC
2976{
2977 # Depend on mktables’ own sources. It’s a shorter list of files than
2978 # those that Unicode::UCD uses.
1ae6ead9 2979 if (! open my $mktables_list, '<', $sources_list) {
2308ab83
KW
2980
2981 # This should force a rebuild once $sources_list exists
2982 push @sources, $sources_list;
2983 }
2984 else {
2985 while(<$mktables_list>) {
2986 last if /===/;
2987 chomp;
2988 push @sources, "lib/unicore/$_" if /^[^#]/;
2989 }
9a3da3ad
FC
2990 }
2991}
6b659339
KW
2992
2993read_only_bottom_close_and_rename($out_fh, \@sources);
394d2d3f 2994
afde5508 2995require './regen/mph.pl';
394d2d3f
KW
2996
2997sub token_name
2998{
2999 my $name = sanitize_name(shift);
db95f459 3000 warn "$name contains non-word" if $name =~ /\W/;
394d2d3f 3001
afde5508 3002 return "$table_name_prefix\U$name"
394d2d3f
KW
3003}
3004
afde5508 3005my $keywords_fh = open_new('uni_keywords.h', '>',
394d2d3f 3006 {style => '*', by => 'regen/mk_invlists.pl',
afde5508 3007 from => "mph.pl"});
394d2d3f 3008
27097618
KW
3009no warnings 'once';
3010print $keywords_fh <<"EOF";
5ae55d32 3011/* The precision to use in "%.*e" formats */
27097618
KW
3012#define PL_E_FORMAT_PRECISION $utf8::e_precision
3013
3014EOF
3015
f4b10e8e 3016my ($second_level, $seed1, $length_all_keys, $smart_blob, $rows) = MinimalPerfectHash::make_mph_from_hash(\%keywords);
afde5508
KW
3017print $keywords_fh MinimalPerfectHash::make_algo($second_level, $seed1, $length_all_keys, $smart_blob, $rows, undef, undef, undef, 'match_uniprop' );
3018
3019push @sources, 'regen/mph.pl';
394d2d3f 3020read_only_bottom_close_and_rename($keywords_fh, \@sources);