This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Integrate Memoize 0.64. Few tweaks were required in
[perl5.git] / numeric.c
CommitLineData
98994639
HS
1/* numeric.c
2 *
3 * Copyright (c) 2001, Larry Wall
4 *
5 * You may distribute under the terms of either the GNU General Public
6 * License or the Artistic License, as specified in the README file.
7 *
8 */
9
10/*
11 * "That only makes eleven (plus one mislaid) and not fourteen, unless
12 * wizards count differently to other people."
13 */
14
15#include "EXTERN.h"
16#define PERL_IN_NUMERIC_C
17#include "perl.h"
18
19U32
20Perl_cast_ulong(pTHX_ NV f)
21{
22 if (f < 0.0)
23 return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
24 if (f < U32_MAX_P1) {
25#if CASTFLAGS & 2
26 if (f < U32_MAX_P1_HALF)
27 return (U32) f;
28 f -= U32_MAX_P1_HALF;
29 return ((U32) f) | (1 + U32_MAX >> 1);
30#else
31 return (U32) f;
32#endif
33 }
34 return f > 0 ? U32_MAX : 0 /* NaN */;
35}
36
37I32
38Perl_cast_i32(pTHX_ NV f)
39{
40 if (f < I32_MAX_P1)
41 return f < I32_MIN ? I32_MIN : (I32) f;
42 if (f < U32_MAX_P1) {
43#if CASTFLAGS & 2
44 if (f < U32_MAX_P1_HALF)
45 return (I32)(U32) f;
46 f -= U32_MAX_P1_HALF;
47 return (I32)(((U32) f) | (1 + U32_MAX >> 1));
48#else
49 return (I32)(U32) f;
50#endif
51 }
52 return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
53}
54
55IV
56Perl_cast_iv(pTHX_ NV f)
57{
58 if (f < IV_MAX_P1)
59 return f < IV_MIN ? IV_MIN : (IV) f;
60 if (f < UV_MAX_P1) {
61#if CASTFLAGS & 2
62 /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
63 if (f < UV_MAX_P1_HALF)
64 return (IV)(UV) f;
65 f -= UV_MAX_P1_HALF;
66 return (IV)(((UV) f) | (1 + UV_MAX >> 1));
67#else
68 return (IV)(UV) f;
69#endif
70 }
71 return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
72}
73
74UV
75Perl_cast_uv(pTHX_ NV f)
76{
77 if (f < 0.0)
78 return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
79 if (f < UV_MAX_P1) {
80#if CASTFLAGS & 2
81 if (f < UV_MAX_P1_HALF)
82 return (UV) f;
83 f -= UV_MAX_P1_HALF;
84 return ((UV) f) | (1 + UV_MAX >> 1);
85#else
86 return (UV) f;
87#endif
88 }
89 return f > 0 ? UV_MAX : 0 /* NaN */;
90}
91
92#if defined(HUGE_VAL) || (defined(USE_LONG_DOUBLE) && defined(HUGE_VALL))
93/*
94 * This hack is to force load of "huge" support from libm.a
95 * So it is in perl for (say) POSIX to use.
96 * Needed for SunOS with Sun's 'acc' for example.
97 */
98NV
99Perl_huge(void)
100{
101# if defined(USE_LONG_DOUBLE) && defined(HUGE_VALL)
102 return HUGE_VALL;
103# endif
104 return HUGE_VAL;
105}
106#endif
107
108NV
109Perl_scan_bin(pTHX_ char *start, STRLEN len, STRLEN *retlen)
110{
111 register char *s = start;
112 register NV rnv = 0.0;
113 register UV ruv = 0;
114 register bool seenb = FALSE;
115 register bool overflowed = FALSE;
116
117 for (; len-- && *s; s++) {
118 if (!(*s == '0' || *s == '1')) {
119 if (*s == '_' && len && *retlen
120 && (s[1] == '0' || s[1] == '1'))
121 {
122 --len;
123 ++s;
124 }
125 else if (seenb == FALSE && *s == 'b' && ruv == 0) {
126 /* Disallow 0bbb0b0bbb... */
127 seenb = TRUE;
128 continue;
129 }
130 else {
131 if (ckWARN(WARN_DIGIT))
132 Perl_warner(aTHX_ WARN_DIGIT,
133 "Illegal binary digit '%c' ignored", *s);
134 break;
135 }
136 }
137 if (!overflowed) {
138 register UV xuv = ruv << 1;
139
140 if ((xuv >> 1) != ruv) {
141 overflowed = TRUE;
142 rnv = (NV) ruv;
143 if (ckWARN_d(WARN_OVERFLOW))
144 Perl_warner(aTHX_ WARN_OVERFLOW,
145 "Integer overflow in binary number");
146 }
147 else
148 ruv = xuv | (*s - '0');
149 }
150 if (overflowed) {
151 rnv *= 2;
152 /* If an NV has not enough bits in its mantissa to
153 * represent an UV this summing of small low-order numbers
154 * is a waste of time (because the NV cannot preserve
155 * the low-order bits anyway): we could just remember when
156 * did we overflow and in the end just multiply rnv by the
157 * right amount. */
158 rnv += (*s - '0');
159 }
160 }
161 if (!overflowed)
162 rnv = (NV) ruv;
163 if ( ( overflowed && rnv > 4294967295.0)
164#if UVSIZE > 4
165 || (!overflowed && ruv > 0xffffffff )
166#endif
167 ) {
168 if (ckWARN(WARN_PORTABLE))
169 Perl_warner(aTHX_ WARN_PORTABLE,
170 "Binary number > 0b11111111111111111111111111111111 non-portable");
171 }
172 *retlen = s - start;
173 return rnv;
174}
175
176NV
177Perl_scan_oct(pTHX_ char *start, STRLEN len, STRLEN *retlen)
178{
179 register char *s = start;
180 register NV rnv = 0.0;
181 register UV ruv = 0;
182 register bool overflowed = FALSE;
183
184 for (; len-- && *s; s++) {
185 if (!(*s >= '0' && *s <= '7')) {
186 if (*s == '_' && len && *retlen
187 && (s[1] >= '0' && s[1] <= '7'))
188 {
189 --len;
190 ++s;
191 }
192 else {
193 /* Allow \octal to work the DWIM way (that is, stop scanning
194 * as soon as non-octal characters are seen, complain only iff
195 * someone seems to want to use the digits eight and nine). */
196 if (*s == '8' || *s == '9') {
197 if (ckWARN(WARN_DIGIT))
198 Perl_warner(aTHX_ WARN_DIGIT,
199 "Illegal octal digit '%c' ignored", *s);
200 }
201 break;
202 }
203 }
204 if (!overflowed) {
205 register UV xuv = ruv << 3;
206
207 if ((xuv >> 3) != ruv) {
208 overflowed = TRUE;
209 rnv = (NV) ruv;
210 if (ckWARN_d(WARN_OVERFLOW))
211 Perl_warner(aTHX_ WARN_OVERFLOW,
212 "Integer overflow in octal number");
213 }
214 else
215 ruv = xuv | (*s - '0');
216 }
217 if (overflowed) {
218 rnv *= 8.0;
219 /* If an NV has not enough bits in its mantissa to
220 * represent an UV this summing of small low-order numbers
221 * is a waste of time (because the NV cannot preserve
222 * the low-order bits anyway): we could just remember when
223 * did we overflow and in the end just multiply rnv by the
224 * right amount of 8-tuples. */
225 rnv += (NV)(*s - '0');
226 }
227 }
228 if (!overflowed)
229 rnv = (NV) ruv;
230 if ( ( overflowed && rnv > 4294967295.0)
231#if UVSIZE > 4
232 || (!overflowed && ruv > 0xffffffff )
233#endif
234 ) {
235 if (ckWARN(WARN_PORTABLE))
236 Perl_warner(aTHX_ WARN_PORTABLE,
237 "Octal number > 037777777777 non-portable");
238 }
239 *retlen = s - start;
240 return rnv;
241}
242
243NV
244Perl_scan_hex(pTHX_ char *start, STRLEN len, STRLEN *retlen)
245{
246 register char *s = start;
247 register NV rnv = 0.0;
248 register UV ruv = 0;
249 register bool overflowed = FALSE;
250 char *hexdigit;
251
252 if (len > 2) {
253 if (s[0] == 'x') {
254 s++;
255 len--;
256 }
257 else if (len > 3 && s[0] == '0' && s[1] == 'x') {
258 s+=2;
259 len-=2;
260 }
261 }
262
263 for (; len-- && *s; s++) {
264 hexdigit = strchr((char *) PL_hexdigit, *s);
265 if (!hexdigit) {
266 if (*s == '_' && len && *retlen && s[1]
267 && (hexdigit = strchr((char *) PL_hexdigit, s[1])))
268 {
269 --len;
270 ++s;
271 }
272 else {
273 if (ckWARN(WARN_DIGIT))
274 Perl_warner(aTHX_ WARN_DIGIT,
275 "Illegal hexadecimal digit '%c' ignored", *s);
276 break;
277 }
278 }
279 if (!overflowed) {
280 register UV xuv = ruv << 4;
281
282 if ((xuv >> 4) != ruv) {
283 overflowed = TRUE;
284 rnv = (NV) ruv;
285 if (ckWARN_d(WARN_OVERFLOW))
286 Perl_warner(aTHX_ WARN_OVERFLOW,
287 "Integer overflow in hexadecimal number");
288 }
289 else
290 ruv = xuv | ((hexdigit - PL_hexdigit) & 15);
291 }
292 if (overflowed) {
293 rnv *= 16.0;
294 /* If an NV has not enough bits in its mantissa to
295 * represent an UV this summing of small low-order numbers
296 * is a waste of time (because the NV cannot preserve
297 * the low-order bits anyway): we could just remember when
298 * did we overflow and in the end just multiply rnv by the
299 * right amount of 16-tuples. */
300 rnv += (NV)((hexdigit - PL_hexdigit) & 15);
301 }
302 }
303 if (!overflowed)
304 rnv = (NV) ruv;
305 if ( ( overflowed && rnv > 4294967295.0)
306#if UVSIZE > 4
307 || (!overflowed && ruv > 0xffffffff )
308#endif
309 ) {
310 if (ckWARN(WARN_PORTABLE))
311 Perl_warner(aTHX_ WARN_PORTABLE,
312 "Hexadecimal number > 0xffffffff non-portable");
313 }
314 *retlen = s - start;
315 return rnv;
316}
317
318/*
319=for apidoc grok_numeric_radix
320
321Scan and skip for a numeric decimal separator (radix).
322
323=cut
324 */
325bool
326Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
327{
328#ifdef USE_LOCALE_NUMERIC
329 if (PL_numeric_radix_sv && IN_LOCALE) {
330 STRLEN len;
331 char* radix = SvPV(PL_numeric_radix_sv, len);
332 if (*sp + len <= send && memEQ(*sp, radix, len)) {
333 *sp += len;
334 return TRUE;
335 }
336 }
337 /* always try "." if numeric radix didn't match because
338 * we may have data from different locales mixed */
339#endif
340 if (*sp < send && **sp == '.') {
341 ++*sp;
342 return TRUE;
343 }
344 return FALSE;
345}
346
347/*
348=for apidoc grok_number
349
350Recognise (or not) a number. The type of the number is returned
351(0 if unrecognised), otherwise it is a bit-ORed combination of
352IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,
353IS_NUMBER_NEG, IS_NUMBER_INFINITY (defined in perl.h). If the value
354of the number can fit an in UV, it is returned in the *valuep.
355
356=cut
357 */
358int
359Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
360{
361 const char *s = pv;
362 const char *send = pv + len;
363 const UV max_div_10 = UV_MAX / 10;
364 const char max_mod_10 = UV_MAX % 10 + '0';
365 int numtype = 0;
366 int sawinf = 0;
367
368 while (isSPACE(*s))
369 s++;
370 if (*s == '-') {
371 s++;
372 numtype = IS_NUMBER_NEG;
373 }
374 else if (*s == '+')
375 s++;
376
377 /* next must be digit or the radix separator or beginning of infinity */
378 if (isDIGIT(*s)) {
379 /* UVs are at least 32 bits, so the first 9 decimal digits cannot
380 overflow. */
381 UV value = *s - '0';
382 /* This construction seems to be more optimiser friendly.
383 (without it gcc does the isDIGIT test and the *s - '0' separately)
384 With it gcc on arm is managing 6 instructions (6 cycles) per digit.
385 In theory the optimiser could deduce how far to unroll the loop
386 before checking for overflow. */
387 int digit = *++s - '0';
388 if (digit >= 0 && digit <= 9) {
389 value = value * 10 + digit;
390 digit = *++s - '0';
391 if (digit >= 0 && digit <= 9) {
392 value = value * 10 + digit;
393 digit = *++s - '0';
394 if (digit >= 0 && digit <= 9) {
395 value = value * 10 + digit;
396 digit = *++s - '0';
397 if (digit >= 0 && digit <= 9) {
398 value = value * 10 + digit;
399 digit = *++s - '0';
400 if (digit >= 0 && digit <= 9) {
401 value = value * 10 + digit;
402 digit = *++s - '0';
403 if (digit >= 0 && digit <= 9) {
404 value = value * 10 + digit;
405 digit = *++s - '0';
406 if (digit >= 0 && digit <= 9) {
407 value = value * 10 + digit;
408 digit = *++s - '0';
409 if (digit >= 0 && digit <= 9) {
410 value = value * 10 + digit;
411 /* Now got 9 digits, so need to check
412 each time for overflow. */
413 digit = *++s - '0';
414 while (digit >= 0 && digit <= 9
415 && (value < max_div_10
416 || (value == max_div_10
417 && *s <= max_mod_10))) {
418 value = value * 10 + digit;
419 digit = *++s - '0';
420 }
421 if (digit >= 0 && digit <= 9) {
422 /* value overflowed.
423 skip the remaining digits, don't
424 worry about setting *valuep. */
425 do {
426 s++;
427 } while (isDIGIT(*s));
428 numtype |=
429 IS_NUMBER_GREATER_THAN_UV_MAX;
430 goto skip_value;
431 }
432 }
433 }
434 }
435 }
436 }
437 }
438 }
439 }
440 numtype |= IS_NUMBER_IN_UV;
441 if (valuep)
442 *valuep = value;
443
444 skip_value:
445 if (GROK_NUMERIC_RADIX(&s, send)) {
446 numtype |= IS_NUMBER_NOT_INT;
447 while (isDIGIT(*s)) /* optional digits after the radix */
448 s++;
449 }
450 }
451 else if (GROK_NUMERIC_RADIX(&s, send)) {
452 numtype |= IS_NUMBER_NOT_INT;
453 /* no digits before the radix means we need digits after it */
454 if (isDIGIT(*s)) {
455 do {
456 s++;
457 } while (isDIGIT(*s));
458 numtype |= IS_NUMBER_IN_UV;
459 if (valuep) {
460 /* integer approximation is valid - it's 0. */
461 *valuep = 0;
462 }
463 }
464 else
465 return 0;
466 }
467 else if (*s == 'I' || *s == 'i') {
468 s++; if (*s != 'N' && *s != 'n') return 0;
469 s++; if (*s != 'F' && *s != 'f') return 0;
470 s++; if (*s == 'I' || *s == 'i') {
471 s++; if (*s != 'N' && *s != 'n') return 0;
472 s++; if (*s != 'I' && *s != 'i') return 0;
473 s++; if (*s != 'T' && *s != 't') return 0;
474 s++; if (*s != 'Y' && *s != 'y') return 0;
475 s++;
476 }
477 sawinf = 1;
478 }
479 else /* Add test for NaN here. */
480 return 0;
481
482 if (sawinf) {
483 numtype &= IS_NUMBER_NEG; /* Keep track of sign */
484 numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
485 } else {
486 /* we can have an optional exponent part */
487 if (*s == 'e' || *s == 'E') {
488 /* The only flag we keep is sign. Blow away any "it's UV" */
489 numtype &= IS_NUMBER_NEG;
490 numtype |= IS_NUMBER_NOT_INT;
491 s++;
492 if (*s == '-' || *s == '+')
493 s++;
494 if (isDIGIT(*s)) {
495 do {
496 s++;
497 } while (isDIGIT(*s));
498 }
499 else
500 return 0;
501 }
502 }
503 while (isSPACE(*s))
504 s++;
505 if (s >= send)
506 return numtype;
507 if (len == 10 && memEQ(pv, "0 but true", 10)) {
508 if (valuep)
509 *valuep = 0;
510 return IS_NUMBER_IN_UV;
511 }
512 return 0;
513}
514
515NV
516S_mulexp10(NV value, I32 exponent)
517{
518 NV result = 1.0;
519 NV power = 10.0;
520 bool negative = 0;
521 I32 bit;
522
523 if (exponent == 0)
524 return value;
525 else if (exponent < 0) {
526 negative = 1;
527 exponent = -exponent;
528 }
529 for (bit = 1; exponent; bit <<= 1) {
530 if (exponent & bit) {
531 exponent ^= bit;
532 result *= power;
533 }
534 power *= power;
535 }
536 return negative ? value / result : value * result;
537}
538
539NV
540Perl_my_atof(pTHX_ const char* s)
541{
542 NV x = 0.0;
543#ifdef USE_LOCALE_NUMERIC
544 if (PL_numeric_local && IN_LOCALE) {
545 NV y;
546
547 /* Scan the number twice; once using locale and once without;
548 * choose the larger result (in absolute value). */
549 Perl_atof2(aTHX_ s, &x);
550 SET_NUMERIC_STANDARD();
551 Perl_atof2(aTHX_ s, &y);
552 SET_NUMERIC_LOCAL();
553 if ((y < 0.0 && y < x) || (y > 0.0 && y > x))
554 return y;
555 }
556 else
557 Perl_atof2(aTHX_ s, &x);
558#else
559 Perl_atof2(aTHX_ s, &x);
560#endif
561 return x;
562}
563
564char*
565Perl_my_atof2(pTHX_ const char* orig, NV* value)
566{
567 NV result = 0.0;
568 bool negative = 0;
569 char* s = (char*)orig;
570 char* send = s + strlen(orig) - 1;
571 bool seendigit = 0;
572 I32 expextra = 0;
573 I32 exponent = 0;
574 I32 i;
575/* this is arbitrary */
576#define PARTLIM 6
577/* we want the largest integers we can usefully use */
578#if defined(HAS_QUAD) && defined(USE_64_BIT_INT)
579# define PARTSIZE ((int)TYPE_DIGITS(U64)-1)
580 U64 part[PARTLIM];
581#else
582# define PARTSIZE ((int)TYPE_DIGITS(U32)-1)
583 U32 part[PARTLIM];
584#endif
585 I32 ipart = 0; /* index into part[] */
586 I32 offcount; /* number of digits in least significant part */
587
588 /* sign */
589 switch (*s) {
590 case '-':
591 negative = 1;
592 /* fall through */
593 case '+':
594 ++s;
595 }
596
597 part[0] = offcount = 0;
598 if (isDIGIT(*s)) {
599 seendigit = 1; /* get this over with */
600
601 /* skip leading zeros */
602 while (*s == '0')
603 ++s;
604 }
605
606 /* integer digits */
607 while (isDIGIT(*s)) {
608 if (++offcount > PARTSIZE) {
609 if (++ipart < PARTLIM) {
610 part[ipart] = 0;
611 offcount = 1; /* ++0 */
612 }
613 else {
614 /* limits of precision reached */
615 --ipart;
616 --offcount;
617 if (*s >= '5')
618 ++part[ipart];
619 while (isDIGIT(*s)) {
620 ++expextra;
621 ++s;
622 }
623 /* warn of loss of precision? */
624 break;
625 }
626 }
627 part[ipart] = part[ipart] * 10 + (*s++ - '0');
628 }
629
630 /* decimal point */
631 if (GROK_NUMERIC_RADIX((const char **)&s, send)) {
632 if (isDIGIT(*s))
633 seendigit = 1; /* get this over with */
634
635 /* decimal digits */
636 while (isDIGIT(*s)) {
637 if (++offcount > PARTSIZE) {
638 if (++ipart < PARTLIM) {
639 part[ipart] = 0;
640 offcount = 1; /* ++0 */
641 }
642 else {
643 /* limits of precision reached */
644 --ipart;
645 --offcount;
646 if (*s >= '5')
647 ++part[ipart];
648 while (isDIGIT(*s))
649 ++s;
650 /* warn of loss of precision? */
651 break;
652 }
653 }
654 --expextra;
655 part[ipart] = part[ipart] * 10 + (*s++ - '0');
656 }
657 }
658
659 /* combine components of mantissa */
660 for (i = 0; i <= ipart; ++i)
661 result += S_mulexp10((NV)part[ipart - i],
662 i ? offcount + (i - 1) * PARTSIZE : 0);
663
664 if (seendigit && (*s == 'e' || *s == 'E')) {
665 bool expnegative = 0;
666
667 ++s;
668 switch (*s) {
669 case '-':
670 expnegative = 1;
671 /* fall through */
672 case '+':
673 ++s;
674 }
675 while (isDIGIT(*s))
676 exponent = exponent * 10 + (*s++ - '0');
677 if (expnegative)
678 exponent = -exponent;
679 }
680
681 /* now apply the exponent */
682 exponent += expextra;
683 result = S_mulexp10(result, exponent);
684
685 /* now apply the sign */
686 if (negative)
687 result = -result;
688 *value = result;
689 return s;
690}
691