This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
perldiag: rewording
[perl5.git] / pod / perlcall.pod
CommitLineData
a0d0e21e
LW
1=head1 NAME
2
3perlcall - Perl calling conventions from C
4
5=head1 DESCRIPTION
6
d1b91892 7The purpose of this document is to show you how to call Perl subroutines
5f05dabc 8directly from C, i.e., how to write I<callbacks>.
a0d0e21e 9
d1b91892
AD
10Apart from discussing the C interface provided by Perl for writing
11callbacks the document uses a series of examples to show how the
12interface actually works in practice. In addition some techniques for
13coding callbacks are covered.
a0d0e21e 14
d1b91892 15Examples where callbacks are necessary include
a0d0e21e
LW
16
17=over 5
18
d1b91892 19=item * An Error Handler
a0d0e21e
LW
20
21You have created an XSUB interface to an application's C API.
22
23A fairly common feature in applications is to allow you to define a C
d1b91892
AD
24function that will be called whenever something nasty occurs. What we
25would like is to be able to specify a Perl subroutine that will be
26called instead.
a0d0e21e 27
95e84303 28=item * An Event-Driven Program
a0d0e21e 29
d1b91892 30The classic example of where callbacks are used is when writing an
95e84303 31event driven program, such as for an X windows application. In this case
184e9718 32you register functions to be called whenever specific events occur,
5f05dabc 33e.g., a mouse button is pressed, the cursor moves into a window or a
d1b91892 34menu item is selected.
a0d0e21e
LW
35
36=back
37
d1b91892
AD
38Although the techniques described here are applicable when embedding
39Perl in a C program, this is not the primary goal of this document.
40There are other details that must be considered and are specific to
41embedding Perl. For details on embedding Perl in C refer to
42L<perlembed>.
a0d0e21e 43
d1b91892 44Before you launch yourself head first into the rest of this document,
02f6dca1
FC
45it would be a good idea to have read the following two documents--L<perlxs>
46and L<perlguts>.
a0d0e21e 47
4929bf7b 48=head1 THE CALL_ FUNCTIONS
a0d0e21e 49
d1b91892
AD
50Although this stuff is easier to explain using examples, you first need
51be aware of a few important definitions.
a0d0e21e 52
d1b91892
AD
53Perl has a number of C functions that allow you to call Perl
54subroutines. They are
a0d0e21e 55
4358a253
SS
56 I32 call_sv(SV* sv, I32 flags);
57 I32 call_pv(char *subname, I32 flags);
58 I32 call_method(char *methname, I32 flags);
59 I32 call_argv(char *subname, I32 flags, register char **argv);
a0d0e21e 60
4929bf7b 61The key function is I<call_sv>. All the other functions are
d1b91892 62fairly simple wrappers which make it easier to call Perl subroutines in
4929bf7b 63special cases. At the end of the day they will all call I<call_sv>
5f05dabc 64to invoke the Perl subroutine.
d1b91892 65
4929bf7b 66All the I<call_*> functions have a C<flags> parameter which is
d1b91892
AD
67used to pass a bit mask of options to Perl. This bit mask operates
68identically for each of the functions. The settings available in the
69bit mask are discussed in L<FLAG VALUES>.
70
71Each of the functions will now be discussed in turn.
72
73=over 5
74
4929bf7b 75=item call_sv
d1b91892 76
02f6dca1 77I<call_sv> takes two parameters. The first, C<sv>, is an SV*.
d1b91892
AD
78This allows you to specify the Perl subroutine to be called either as a
79C string (which has first been converted to an SV) or a reference to a
4929bf7b
GS
80subroutine. The section, I<Using call_sv>, shows how you can make
81use of I<call_sv>.
d1b91892 82
4929bf7b 83=item call_pv
d1b91892 84
4929bf7b 85The function, I<call_pv>, is similar to I<call_sv> except it
d1b91892 86expects its first parameter to be a C char* which identifies the Perl
4929bf7b 87subroutine you want to call, e.g., C<call_pv("fred", 0)>. If the
d1b91892 88subroutine you want to call is in another package, just include the
5f05dabc 89package name in the string, e.g., C<"pkg::fred">.
d1b91892 90
4929bf7b 91=item call_method
d1b91892 92
4929bf7b 93The function I<call_method> is used to call a method from a Perl
d1b91892
AD
94class. The parameter C<methname> corresponds to the name of the method
95to be called. Note that the class that the method belongs to is passed
96on the Perl stack rather than in the parameter list. This class can be
97either the name of the class (for a static method) or a reference to an
98object (for a virtual method). See L<perlobj> for more information on
4929bf7b
GS
99static and virtual methods and L<Using call_method> for an example
100of using I<call_method>.
d1b91892 101
4929bf7b 102=item call_argv
d1b91892 103
4929bf7b 104I<call_argv> calls the Perl subroutine specified by the C string
d1b91892 105stored in the C<subname> parameter. It also takes the usual C<flags>
02f6dca1 106parameter. The final parameter, C<argv>, consists of a NULL-terminated
d1b91892 107list of C strings to be passed as parameters to the Perl subroutine.
4929bf7b 108See I<Using call_argv>.
d1b91892
AD
109
110=back
111
112All the functions return an integer. This is a count of the number of
113items returned by the Perl subroutine. The actual items returned by the
114subroutine are stored on the Perl stack.
115
116As a general rule you should I<always> check the return value from
117these functions. Even if you are expecting only a particular number of
118values to be returned from the Perl subroutine, there is nothing to
19799a22 119stop someone from doing something unexpected--don't say you haven't
d1b91892
AD
120been warned.
121
122=head1 FLAG VALUES
123
0b06a753
NT
124The C<flags> parameter in all the I<call_*> functions is one of G_VOID,
125G_SCALAR, or G_ARRAY, which indicate the call context, OR'ed together
126with a bit mask of any combination of the other G_* symbols defined below.
d1b91892 127
54310121 128=head2 G_VOID
129
130Calls the Perl subroutine in a void context.
131
132This flag has 2 effects:
133
134=over 5
135
136=item 1.
137
138It indicates to the subroutine being called that it is executing in
139a void context (if it executes I<wantarray> the result will be the
140undefined value).
141
142=item 2.
143
144It ensures that nothing is actually returned from the subroutine.
145
146=back
147
4929bf7b 148The value returned by the I<call_*> function indicates how many
02f6dca1 149items have been returned by the Perl subroutine--in this case it will
54310121 150be 0.
151
152
d1b91892
AD
153=head2 G_SCALAR
154
155Calls the Perl subroutine in a scalar context. This is the default
4929bf7b 156context flag setting for all the I<call_*> functions.
d1b91892 157
184e9718 158This flag has 2 effects:
d1b91892
AD
159
160=over 5
161
162=item 1.
163
184e9718 164It indicates to the subroutine being called that it is executing in a
d1b91892 165scalar context (if it executes I<wantarray> the result will be false).
a0d0e21e 166
d1b91892
AD
167=item 2.
168
184e9718 169It ensures that only a scalar is actually returned from the subroutine.
d1b91892
AD
170The subroutine can, of course, ignore the I<wantarray> and return a
171list anyway. If so, then only the last element of the list will be
172returned.
173
174=back
175
4929bf7b 176The value returned by the I<call_*> function indicates how many
d1b91892
AD
177items have been returned by the Perl subroutine - in this case it will
178be either 0 or 1.
a0d0e21e 179
d1b91892 180If 0, then you have specified the G_DISCARD flag.
a0d0e21e 181
d1b91892
AD
182If 1, then the item actually returned by the Perl subroutine will be
183stored on the Perl stack - the section I<Returning a Scalar> shows how
184to access this value on the stack. Remember that regardless of how
185many items the Perl subroutine returns, only the last one will be
186accessible from the stack - think of the case where only one value is
187returned as being a list with only one element. Any other items that
188were returned will not exist by the time control returns from the
4929bf7b 189I<call_*> function. The section I<Returning a list in a scalar
54310121 190context> shows an example of this behavior.
a0d0e21e 191
a0d0e21e 192
d1b91892 193=head2 G_ARRAY
a0d0e21e 194
d1b91892 195Calls the Perl subroutine in a list context.
a0d0e21e 196
184e9718 197As with G_SCALAR, this flag has 2 effects:
a0d0e21e
LW
198
199=over 5
200
d1b91892
AD
201=item 1.
202
90fdbbb7
DC
203It indicates to the subroutine being called that it is executing in a
204list context (if it executes I<wantarray> the result will be true).
a0d0e21e 205
a0d0e21e 206
d1b91892 207=item 2.
a0d0e21e 208
184e9718 209It ensures that all items returned from the subroutine will be
4929bf7b 210accessible when control returns from the I<call_*> function.
a0d0e21e 211
d1b91892 212=back
a0d0e21e 213
4929bf7b 214The value returned by the I<call_*> function indicates how many
d1b91892 215items have been returned by the Perl subroutine.
a0d0e21e 216
184e9718 217If 0, then you have specified the G_DISCARD flag.
a0d0e21e 218
d1b91892
AD
219If not 0, then it will be a count of the number of items returned by
220the subroutine. These items will be stored on the Perl stack. The
221section I<Returning a list of values> gives an example of using the
222G_ARRAY flag and the mechanics of accessing the returned items from the
223Perl stack.
a0d0e21e 224
d1b91892 225=head2 G_DISCARD
a0d0e21e 226
4929bf7b 227By default, the I<call_*> functions place the items returned from
d1b91892
AD
228by the Perl subroutine on the stack. If you are not interested in
229these items, then setting this flag will make Perl get rid of them
230automatically for you. Note that it is still possible to indicate a
231context to the Perl subroutine by using either G_SCALAR or G_ARRAY.
a0d0e21e 232
d1b91892 233If you do not set this flag then it is I<very> important that you make
5f05dabc 234sure that any temporaries (i.e., parameters passed to the Perl
d1b91892
AD
235subroutine and values returned from the subroutine) are disposed of
236yourself. The section I<Returning a Scalar> gives details of how to
5f05dabc 237dispose of these temporaries explicitly and the section I<Using Perl to
d1b91892
AD
238dispose of temporaries> discusses the specific circumstances where you
239can ignore the problem and let Perl deal with it for you.
a0d0e21e 240
d1b91892 241=head2 G_NOARGS
a0d0e21e 242
4929bf7b 243Whenever a Perl subroutine is called using one of the I<call_*>
d1b91892
AD
244functions, it is assumed by default that parameters are to be passed to
245the subroutine. If you are not passing any parameters to the Perl
246subroutine, you can save a bit of time by setting this flag. It has
247the effect of not creating the C<@_> array for the Perl subroutine.
a0d0e21e 248
d1b91892
AD
249Although the functionality provided by this flag may seem
250straightforward, it should be used only if there is a good reason to do
02f6dca1 251so. The reason for being cautious is that, even if you have specified
d1b91892
AD
252the G_NOARGS flag, it is still possible for the Perl subroutine that
253has been called to think that you have passed it parameters.
a0d0e21e 254
d1b91892
AD
255In fact, what can happen is that the Perl subroutine you have called
256can access the C<@_> array from a previous Perl subroutine. This will
4929bf7b 257occur when the code that is executing the I<call_*> function has
d1b91892
AD
258itself been called from another Perl subroutine. The code below
259illustrates this
a0d0e21e 260
84f709e7
JH
261 sub fred
262 { print "@_\n" }
a0d0e21e 263
84f709e7
JH
264 sub joe
265 { &fred }
a0d0e21e 266
4358a253 267 &joe(1,2,3);
a0d0e21e
LW
268
269This will print
270
d1b91892
AD
271 1 2 3
272
273What has happened is that C<fred> accesses the C<@_> array which
274belongs to C<joe>.
a0d0e21e 275
a0d0e21e 276
54310121 277=head2 G_EVAL
a0d0e21e 278
d1b91892 279It is possible for the Perl subroutine you are calling to terminate
5f05dabc 280abnormally, e.g., by calling I<die> explicitly or by not actually
268118b2
HS
281existing. By default, when either of these events occurs, the
282process will terminate immediately. If you want to trap this
d1b91892
AD
283type of event, specify the G_EVAL flag. It will put an I<eval { }>
284around the subroutine call.
a0d0e21e 285
4929bf7b 286Whenever control returns from the I<call_*> function you need to
d1b91892
AD
287check the C<$@> variable as you would in a normal Perl script.
288
4929bf7b 289The value returned from the I<call_*> function is dependent on
d1b91892 290what other flags have been specified and whether an error has
184e9718 291occurred. Here are all the different cases that can occur:
d1b91892
AD
292
293=over 5
294
295=item *
296
4929bf7b 297If the I<call_*> function returns normally, then the value
d1b91892
AD
298returned is as specified in the previous sections.
299
300=item *
301
302If G_DISCARD is specified, the return value will always be 0.
303
304=item *
305
306If G_ARRAY is specified I<and> an error has occurred, the return value
307will always be 0.
308
309=item *
a0d0e21e 310
d1b91892
AD
311If G_SCALAR is specified I<and> an error has occurred, the return value
312will be 1 and the value on the top of the stack will be I<undef>. This
313means that if you have already detected the error by checking C<$@> and
314you want the program to continue, you must remember to pop the I<undef>
315from the stack.
a0d0e21e
LW
316
317=back
318
54310121 319See I<Using G_EVAL> for details on using G_EVAL.
d1b91892 320
c07a80fd 321=head2 G_KEEPERR
322
7ce09284
Z
323Using the G_EVAL flag described above will always set C<$@>: clearing
324it if there was no error, and setting it to describe the error if there
325was an error in the called code. This is what you want if your intention
326is to handle possible errors, but sometimes you just want to trap errors
327and stop them interfering with the rest of the program.
328
329This scenario will mostly be applicable to code that is meant to be called
330from within destructors, asynchronous callbacks, and signal handlers.
331In such situations, where the code being called has little relation to the
332surrounding dynamic context, the main program needs to be insulated from
333errors in the called code, even if they can't be handled intelligently.
334It may also be useful to do this with code for C<__DIE__> or C<__WARN__>
335hooks, and C<tie> functions.
c07a80fd 336
337The G_KEEPERR flag is meant to be used in conjunction with G_EVAL in
be064c4a
DM
338I<call_*> functions that are used to implement such code, or with
339C<eval_sv>. This flag has no effect on the C<call_*> functions when
340G_EVAL is not used.
c07a80fd 341
7ce09284
Z
342When G_KEEPERR is used, any error in the called code will terminate the
343call as usual, and the error will not propagate beyond the call (as usual
344for G_EVAL), but it will not go into C<$@>. Instead the error will be
345converted into a warning, prefixed with the string "\t(in cleanup)".
346This can be disabled using C<no warnings 'misc'>. If there is no error,
347C<$@> will not be cleared.
c07a80fd 348
be064c4a
DM
349Note that the G_KEEPERR flag does not propagate into inner evals; these
350may still set C<$@>.
351
c07a80fd 352The G_KEEPERR flag was introduced in Perl version 5.002.
353
354See I<Using G_KEEPERR> for an example of a situation that warrants the
355use of this flag.
356
54310121 357=head2 Determining the Context
d1b91892
AD
358
359As mentioned above, you can determine the context of the currently
54310121 360executing subroutine in Perl with I<wantarray>. The equivalent test
361can be made in C by using the C<GIMME_V> macro, which returns
90fdbbb7 362C<G_ARRAY> if you have been called in a list context, C<G_SCALAR> if
02f6dca1 363in a scalar context, or C<G_VOID> if in a void context (i.e., the
54310121 364return value will not be used). An older version of this macro is
365called C<GIMME>; in a void context it returns C<G_SCALAR> instead of
366C<G_VOID>. An example of using the C<GIMME_V> macro is shown in
367section I<Using GIMME_V>.
d1b91892 368
a0d0e21e
LW
369=head1 EXAMPLES
370
02f6dca1 371Enough of the definition talk! Let's have a few examples.
a0d0e21e 372
d1b91892
AD
373Perl provides many macros to assist in accessing the Perl stack.
374Wherever possible, these macros should always be used when interfacing
5f05dabc 375to Perl internals. We hope this should make the code less vulnerable
d1b91892 376to any changes made to Perl in the future.
a0d0e21e 377
d1b91892 378Another point worth noting is that in the first series of examples I
4929bf7b 379have made use of only the I<call_pv> function. This has been done
d1b91892 380to keep the code simpler and ease you into the topic. Wherever
4929bf7b
GS
381possible, if the choice is between using I<call_pv> and
382I<call_sv>, you should always try to use I<call_sv>. See
383I<Using call_sv> for details.
a0d0e21e 384
02f6dca1 385=head2 No Parameters, Nothing Returned
a0d0e21e 386
d1b91892
AD
387This first trivial example will call a Perl subroutine, I<PrintUID>, to
388print out the UID of the process.
a0d0e21e 389
84f709e7
JH
390 sub PrintUID
391 {
4358a253 392 print "UID is $<\n";
a0d0e21e
LW
393 }
394
d1b91892 395and here is a C function to call it
a0d0e21e 396
d1b91892 397 static void
a0d0e21e
LW
398 call_PrintUID()
399 {
4358a253 400 dSP;
a0d0e21e 401
4358a253
SS
402 PUSHMARK(SP);
403 call_pv("PrintUID", G_DISCARD|G_NOARGS);
a0d0e21e
LW
404 }
405
02f6dca1 406Simple, eh?
a0d0e21e 407
02f6dca1 408A few points to note about this example:
a0d0e21e
LW
409
410=over 5
411
d1b91892 412=item 1.
a0d0e21e 413
924508f0 414Ignore C<dSP> and C<PUSHMARK(SP)> for now. They will be discussed in
d1b91892 415the next example.
a0d0e21e
LW
416
417=item 2.
418
d1b91892
AD
419We aren't passing any parameters to I<PrintUID> so G_NOARGS can be
420specified.
a0d0e21e 421
d1b91892 422=item 3.
a0d0e21e
LW
423
424We aren't interested in anything returned from I<PrintUID>, so
5f05dabc 425G_DISCARD is specified. Even if I<PrintUID> was changed to
a0d0e21e 426return some value(s), having specified G_DISCARD will mean that they
4929bf7b 427will be wiped by the time control returns from I<call_pv>.
a0d0e21e 428
d1b91892 429=item 4.
a0d0e21e 430
4929bf7b 431As I<call_pv> is being used, the Perl subroutine is specified as a
d1b91892
AD
432C string. In this case the subroutine name has been 'hard-wired' into the
433code.
a0d0e21e
LW
434
435=item 5.
436
d1b91892 437Because we specified G_DISCARD, it is not necessary to check the value
4929bf7b 438returned from I<call_pv>. It will always be 0.
a0d0e21e
LW
439
440=back
441
d1b91892 442=head2 Passing Parameters
a0d0e21e 443
d1b91892 444Now let's make a slightly more complex example. This time we want to
19799a22
GS
445call a Perl subroutine, C<LeftString>, which will take 2 parameters--a
446string ($s) and an integer ($n). The subroutine will simply
447print the first $n characters of the string.
a0d0e21e 448
02f6dca1 449So the Perl subroutine would look like this:
a0d0e21e 450
84f709e7
JH
451 sub LeftString
452 {
4358a253
SS
453 my($s, $n) = @_;
454 print substr($s, 0, $n), "\n";
a0d0e21e
LW
455 }
456
02f6dca1 457The C function required to call I<LeftString> would look like this:
a0d0e21e
LW
458
459 static void
460 call_LeftString(a, b)
4358a253
SS
461 char * a;
462 int b;
a0d0e21e 463 {
4358a253 464 dSP;
a0d0e21e 465
4358a253
SS
466 ENTER;
467 SAVETMPS;
9b6570b4 468
4358a253 469 PUSHMARK(SP);
a0d0e21e
LW
470 XPUSHs(sv_2mortal(newSVpv(a, 0)));
471 XPUSHs(sv_2mortal(newSViv(b)));
4358a253 472 PUTBACK;
a0d0e21e 473
4929bf7b 474 call_pv("LeftString", G_DISCARD);
9b6570b4 475
4358a253
SS
476 FREETMPS;
477 LEAVE;
a0d0e21e
LW
478 }
479
a0d0e21e
LW
480Here are a few notes on the C function I<call_LeftString>.
481
482=over 5
483
d1b91892 484=item 1.
a0d0e21e 485
d1b91892
AD
486Parameters are passed to the Perl subroutine using the Perl stack.
487This is the purpose of the code beginning with the line C<dSP> and
1e62ac33 488ending with the line C<PUTBACK>. The C<dSP> declares a local copy
924508f0
GS
489of the stack pointer. This local copy should B<always> be accessed
490as C<SP>.
a0d0e21e 491
d1b91892 492=item 2.
a0d0e21e
LW
493
494If you are going to put something onto the Perl stack, you need to know
19799a22 495where to put it. This is the purpose of the macro C<dSP>--it declares
d1b91892 496and initializes a I<local> copy of the Perl stack pointer.
a0d0e21e
LW
497
498All the other macros which will be used in this example require you to
d1b91892 499have used this macro.
a0d0e21e 500
d1b91892
AD
501The exception to this rule is if you are calling a Perl subroutine
502directly from an XSUB function. In this case it is not necessary to
19799a22 503use the C<dSP> macro explicitly--it will be declared for you
d1b91892 504automatically.
a0d0e21e 505
d1b91892 506=item 3.
a0d0e21e
LW
507
508Any parameters to be pushed onto the stack should be bracketed by the
d1b91892 509C<PUSHMARK> and C<PUTBACK> macros. The purpose of these two macros, in
5f05dabc 510this context, is to count the number of parameters you are
511pushing automatically. Then whenever Perl is creating the C<@_> array for the
d1b91892
AD
512subroutine, it knows how big to make it.
513
514The C<PUSHMARK> macro tells Perl to make a mental note of the current
515stack pointer. Even if you aren't passing any parameters (like the
02f6dca1 516example shown in the section I<No Parameters, Nothing Returned>) you
d1b91892 517must still call the C<PUSHMARK> macro before you can call any of the
4929bf7b 518I<call_*> functions--Perl still needs to know that there are no
d1b91892
AD
519parameters.
520
521The C<PUTBACK> macro sets the global copy of the stack pointer to be
02f6dca1 522the same as our local copy. If we didn't do this, I<call_pv>
19799a22 523wouldn't know where the two parameters we pushed were--remember that
d1b91892
AD
524up to now all the stack pointer manipulation we have done is with our
525local copy, I<not> the global copy.
526
527=item 4.
528
a0d0e21e 529Next, we come to XPUSHs. This is where the parameters actually get
d1b91892
AD
530pushed onto the stack. In this case we are pushing a string and an
531integer.
a0d0e21e 532
54310121 533See L<perlguts/"XSUBs and the Argument Stack"> for details
d1b91892 534on how the XPUSH macros work.
a0d0e21e 535
087fe227 536=item 5.
a0d0e21e 537
9b6570b4
AB
538Because we created temporary values (by means of sv_2mortal() calls)
539we will have to tidy up the Perl stack and dispose of mortal SVs.
540
541This is the purpose of
542
4358a253
SS
543 ENTER;
544 SAVETMPS;
9b6570b4
AB
545
546at the start of the function, and
547
4358a253
SS
548 FREETMPS;
549 LEAVE;
9b6570b4
AB
550
551at the end. The C<ENTER>/C<SAVETMPS> pair creates a boundary for any
552temporaries we create. This means that the temporaries we get rid of
553will be limited to those which were created after these calls.
554
555The C<FREETMPS>/C<LEAVE> pair will get rid of any values returned by
556the Perl subroutine (see next example), plus it will also dump the
557mortal SVs we have created. Having C<ENTER>/C<SAVETMPS> at the
558beginning of the code makes sure that no other mortals are destroyed.
559
02f6dca1 560Think of these macros as working a bit like C<{> and C<}> in Perl
9b6570b4
AB
561to limit the scope of local variables.
562
02f6dca1 563See the section I<Using Perl to Dispose of Temporaries> for details of
9b6570b4
AB
564an alternative to using these macros.
565
087fe227 566=item 6.
9b6570b4 567
087fe227
JA
568Finally, I<LeftString> can now be called via the I<call_pv> function.
569The only flag specified this time is G_DISCARD. Because we are passing
5702 parameters to the Perl subroutine this time, we have not specified
571G_NOARGS.
a0d0e21e
LW
572
573=back
574
d1b91892 575=head2 Returning a Scalar
a0d0e21e 576
d1b91892
AD
577Now for an example of dealing with the items returned from a Perl
578subroutine.
a0d0e21e 579
5f05dabc 580Here is a Perl subroutine, I<Adder>, that takes 2 integer parameters
d1b91892 581and simply returns their sum.
a0d0e21e 582
84f709e7
JH
583 sub Adder
584 {
4358a253
SS
585 my($a, $b) = @_;
586 $a + $b;
a0d0e21e
LW
587 }
588
5f05dabc 589Because we are now concerned with the return value from I<Adder>, the C
d1b91892 590function required to call it is now a bit more complex.
a0d0e21e
LW
591
592 static void
593 call_Adder(a, b)
4358a253
SS
594 int a;
595 int b;
a0d0e21e 596 {
4358a253
SS
597 dSP;
598 int count;
a0d0e21e 599
4358a253 600 ENTER;
a0d0e21e
LW
601 SAVETMPS;
602
4358a253 603 PUSHMARK(SP);
a0d0e21e
LW
604 XPUSHs(sv_2mortal(newSViv(a)));
605 XPUSHs(sv_2mortal(newSViv(b)));
4358a253 606 PUTBACK;
a0d0e21e 607
4929bf7b 608 count = call_pv("Adder", G_SCALAR);
a0d0e21e 609
4358a253 610 SPAGAIN;
a0d0e21e 611
d1b91892 612 if (count != 1)
4358a253 613 croak("Big trouble\n");
a0d0e21e 614
4358a253 615 printf ("The sum of %d and %d is %d\n", a, b, POPi);
a0d0e21e 616
4358a253
SS
617 PUTBACK;
618 FREETMPS;
619 LEAVE;
a0d0e21e
LW
620 }
621
a0d0e21e
LW
622Points to note this time are
623
624=over 5
625
54310121 626=item 1.
a0d0e21e 627
02f6dca1 628The only flag specified this time was G_SCALAR. That means that the C<@_>
d1b91892 629array will be created and that the value returned by I<Adder> will
4929bf7b 630still exist after the call to I<call_pv>.
a0d0e21e 631
a0d0e21e
LW
632=item 2.
633
a0d0e21e
LW
634The purpose of the macro C<SPAGAIN> is to refresh the local copy of the
635stack pointer. This is necessary because it is possible that the memory
ed874981 636allocated to the Perl stack has been reallocated during the
4929bf7b 637I<call_pv> call.
a0d0e21e 638
d1b91892 639If you are making use of the Perl stack pointer in your code you must
54310121 640always refresh the local copy using SPAGAIN whenever you make use
4929bf7b 641of the I<call_*> functions or any other Perl internal function.
a0d0e21e 642
9b6570b4 643=item 3.
a0d0e21e 644
d1b91892 645Although only a single value was expected to be returned from I<Adder>,
4929bf7b 646it is still good practice to check the return code from I<call_pv>
d1b91892 647anyway.
a0d0e21e 648
d1b91892
AD
649Expecting a single value is not quite the same as knowing that there
650will be one. If someone modified I<Adder> to return a list and we
651didn't check for that possibility and take appropriate action the Perl
652stack would end up in an inconsistent state. That is something you
5f05dabc 653I<really> don't want to happen ever.
a0d0e21e 654
9b6570b4 655=item 4.
a0d0e21e 656
d1b91892
AD
657The C<POPi> macro is used here to pop the return value from the stack.
658In this case we wanted an integer, so C<POPi> was used.
a0d0e21e
LW
659
660
d1b91892
AD
661Here is the complete list of POP macros available, along with the types
662they return.
a0d0e21e 663
d1b91892
AD
664 POPs SV
665 POPp pointer
666 POPn double
667 POPi integer
668 POPl long
a0d0e21e 669
9b6570b4 670=item 5.
a0d0e21e 671
d1b91892
AD
672The final C<PUTBACK> is used to leave the Perl stack in a consistent
673state before exiting the function. This is necessary because when we
674popped the return value from the stack with C<POPi> it updated only our
675local copy of the stack pointer. Remember, C<PUTBACK> sets the global
676stack pointer to be the same as our local copy.
a0d0e21e
LW
677
678=back
679
680
02f6dca1 681=head2 Returning a List of Values
a0d0e21e 682
d1b91892
AD
683Now, let's extend the previous example to return both the sum of the
684parameters and the difference.
a0d0e21e 685
d1b91892 686Here is the Perl subroutine
a0d0e21e 687
84f709e7
JH
688 sub AddSubtract
689 {
4358a253
SS
690 my($a, $b) = @_;
691 ($a+$b, $a-$b);
a0d0e21e
LW
692 }
693
a0d0e21e
LW
694and this is the C function
695
696 static void
697 call_AddSubtract(a, b)
4358a253
SS
698 int a;
699 int b;
a0d0e21e 700 {
4358a253
SS
701 dSP;
702 int count;
a0d0e21e 703
4358a253 704 ENTER;
a0d0e21e
LW
705 SAVETMPS;
706
4358a253 707 PUSHMARK(SP);
a0d0e21e
LW
708 XPUSHs(sv_2mortal(newSViv(a)));
709 XPUSHs(sv_2mortal(newSViv(b)));
4358a253 710 PUTBACK;
a0d0e21e 711
4929bf7b 712 count = call_pv("AddSubtract", G_ARRAY);
a0d0e21e 713
4358a253 714 SPAGAIN;
a0d0e21e 715
d1b91892 716 if (count != 2)
4358a253 717 croak("Big trouble\n");
a0d0e21e 718
4358a253
SS
719 printf ("%d - %d = %d\n", a, b, POPi);
720 printf ("%d + %d = %d\n", a, b, POPi);
a0d0e21e 721
4358a253
SS
722 PUTBACK;
723 FREETMPS;
724 LEAVE;
a0d0e21e
LW
725 }
726
d1b91892
AD
727If I<call_AddSubtract> is called like this
728
4358a253 729 call_AddSubtract(7, 4);
d1b91892
AD
730
731then here is the output
732
733 7 - 4 = 3
734 7 + 4 = 11
a0d0e21e
LW
735
736Notes
737
738=over 5
739
740=item 1.
741
90fdbbb7 742We wanted list context, so G_ARRAY was used.
a0d0e21e
LW
743
744=item 2.
745
d1b91892
AD
746Not surprisingly C<POPi> is used twice this time because we were
747retrieving 2 values from the stack. The important thing to note is that
748when using the C<POP*> macros they come off the stack in I<reverse>
749order.
a0d0e21e
LW
750
751=back
752
02f6dca1 753=head2 Returning a List in a Scalar Context
d1b91892
AD
754
755Say the Perl subroutine in the previous section was called in a scalar
756context, like this
757
758 static void
759 call_AddSubScalar(a, b)
4358a253
SS
760 int a;
761 int b;
d1b91892 762 {
4358a253
SS
763 dSP;
764 int count;
765 int i;
d1b91892 766
4358a253 767 ENTER;
d1b91892
AD
768 SAVETMPS;
769
4358a253 770 PUSHMARK(SP);
d1b91892
AD
771 XPUSHs(sv_2mortal(newSViv(a)));
772 XPUSHs(sv_2mortal(newSViv(b)));
4358a253 773 PUTBACK;
d1b91892 774
4929bf7b 775 count = call_pv("AddSubtract", G_SCALAR);
d1b91892 776
4358a253 777 SPAGAIN;
d1b91892 778
4358a253 779 printf ("Items Returned = %d\n", count);
d1b91892 780
4358a253
SS
781 for (i = 1; i <= count; ++i)
782 printf ("Value %d = %d\n", i, POPi);
d1b91892 783
4358a253
SS
784 PUTBACK;
785 FREETMPS;
786 LEAVE;
d1b91892
AD
787 }
788
789The other modification made is that I<call_AddSubScalar> will print the
790number of items returned from the Perl subroutine and their value (for
791simplicity it assumes that they are integer). So if
792I<call_AddSubScalar> is called
793
4358a253 794 call_AddSubScalar(7, 4);
d1b91892
AD
795
796then the output will be
797
798 Items Returned = 1
799 Value 1 = 3
800
801In this case the main point to note is that only the last item in the
48052fe5 802list is returned from the subroutine. I<AddSubtract> actually made it back to
d1b91892
AD
803I<call_AddSubScalar>.
804
805
02f6dca1 806=head2 Returning Data from Perl via the Parameter List
a0d0e21e 807
48052fe5
FC
808It is also possible to return values directly via the parameter
809list--whether it is actually desirable to do it is another matter entirely.
a0d0e21e 810
d1b91892
AD
811The Perl subroutine, I<Inc>, below takes 2 parameters and increments
812each directly.
a0d0e21e 813
84f709e7
JH
814 sub Inc
815 {
4358a253
SS
816 ++ $_[0];
817 ++ $_[1];
a0d0e21e
LW
818 }
819
820and here is a C function to call it.
821
822 static void
823 call_Inc(a, b)
4358a253
SS
824 int a;
825 int b;
a0d0e21e 826 {
4358a253
SS
827 dSP;
828 int count;
829 SV * sva;
830 SV * svb;
a0d0e21e 831
4358a253 832 ENTER;
a0d0e21e
LW
833 SAVETMPS;
834
4358a253
SS
835 sva = sv_2mortal(newSViv(a));
836 svb = sv_2mortal(newSViv(b));
a0d0e21e 837
4358a253 838 PUSHMARK(SP);
a0d0e21e
LW
839 XPUSHs(sva);
840 XPUSHs(svb);
4358a253 841 PUTBACK;
a0d0e21e 842
4929bf7b 843 count = call_pv("Inc", G_DISCARD);
a0d0e21e
LW
844
845 if (count != 0)
d1b91892 846 croak ("call_Inc: expected 0 values from 'Inc', got %d\n",
4358a253 847 count);
a0d0e21e 848
4358a253
SS
849 printf ("%d + 1 = %d\n", a, SvIV(sva));
850 printf ("%d + 1 = %d\n", b, SvIV(svb));
a0d0e21e 851
4358a253
SS
852 FREETMPS;
853 LEAVE;
a0d0e21e
LW
854 }
855
d1b91892 856To be able to access the two parameters that were pushed onto the stack
4929bf7b 857after they return from I<call_pv> it is necessary to make a note
19799a22 858of their addresses--thus the two variables C<sva> and C<svb>.
a0d0e21e 859
d1b91892
AD
860The reason this is necessary is that the area of the Perl stack which
861held them will very likely have been overwritten by something else by
4929bf7b 862the time control returns from I<call_pv>.
a0d0e21e
LW
863
864
865
866
d1b91892 867=head2 Using G_EVAL
a0d0e21e 868
d1b91892
AD
869Now an example using G_EVAL. Below is a Perl subroutine which computes
870the difference of its 2 parameters. If this would result in a negative
871result, the subroutine calls I<die>.
a0d0e21e 872
84f709e7
JH
873 sub Subtract
874 {
4358a253 875 my ($a, $b) = @_;
a0d0e21e 876
4358a253 877 die "death can be fatal\n" if $a < $b;
a0d0e21e 878
4358a253 879 $a - $b;
a0d0e21e
LW
880 }
881
882and some C to call it
883
884 static void
885 call_Subtract(a, b)
4358a253
SS
886 int a;
887 int b;
a0d0e21e 888 {
4358a253
SS
889 dSP;
890 int count;
a0d0e21e 891
4358a253 892 ENTER;
a0d0e21e
LW
893 SAVETMPS;
894
4358a253 895 PUSHMARK(SP);
a0d0e21e
LW
896 XPUSHs(sv_2mortal(newSViv(a)));
897 XPUSHs(sv_2mortal(newSViv(b)));
4358a253 898 PUTBACK;
a0d0e21e 899
4929bf7b 900 count = call_pv("Subtract", G_EVAL|G_SCALAR);
a0d0e21e 901
4358a253 902 SPAGAIN;
d1b91892
AD
903
904 /* Check the eval first */
9cde0e7f 905 if (SvTRUE(ERRSV))
d1b91892 906 {
1c5b513e 907 printf ("Uh oh - %s\n", SvPV_nolen(ERRSV));
4358a253 908 POPs;
d1b91892
AD
909 }
910 else
911 {
912 if (count != 1)
913 croak("call_Subtract: wanted 1 value from 'Subtract', got %d\n",
4358a253 914 count);
a0d0e21e 915
4358a253 916 printf ("%d - %d = %d\n", a, b, POPi);
d1b91892 917 }
a0d0e21e 918
4358a253
SS
919 PUTBACK;
920 FREETMPS;
921 LEAVE;
a0d0e21e
LW
922 }
923
924If I<call_Subtract> is called thus
925
d1b91892 926 call_Subtract(4, 5)
a0d0e21e
LW
927
928the following will be printed
929
d1b91892 930 Uh oh - death can be fatal
a0d0e21e
LW
931
932Notes
933
934=over 5
935
936=item 1.
937
d1b91892
AD
938We want to be able to catch the I<die> so we have used the G_EVAL
939flag. Not specifying this flag would mean that the program would
940terminate immediately at the I<die> statement in the subroutine
941I<Subtract>.
a0d0e21e
LW
942
943=item 2.
944
54310121 945The code
a0d0e21e 946
9cde0e7f 947 if (SvTRUE(ERRSV))
d1b91892 948 {
1c5b513e 949 printf ("Uh oh - %s\n", SvPV_nolen(ERRSV));
4358a253 950 POPs;
d1b91892 951 }
a0d0e21e 952
d1b91892 953is the direct equivalent of this bit of Perl
a0d0e21e 954
4358a253 955 print "Uh oh - $@\n" if $@;
a0d0e21e 956
9cde0e7f
GS
957C<PL_errgv> is a perl global of type C<GV *> that points to the
958symbol table entry containing the error. C<ERRSV> therefore
c07a80fd 959refers to the C equivalent of C<$@>.
960
d1b91892 961=item 3.
a0d0e21e 962
d1b91892 963Note that the stack is popped using C<POPs> in the block where
9cde0e7f 964C<SvTRUE(ERRSV)> is true. This is necessary because whenever a
4929bf7b 965I<call_*> function invoked with G_EVAL|G_SCALAR returns an error,
5f05dabc 966the top of the stack holds the value I<undef>. Because we want the
d1b91892 967program to continue after detecting this error, it is essential that
6c818a50 968the stack be tidied up by removing the I<undef>.
a0d0e21e
LW
969
970=back
971
972
c07a80fd 973=head2 Using G_KEEPERR
974
975Consider this rather facetious example, where we have used an XS
976version of the call_Subtract example above inside a destructor:
977
978 package Foo;
84f709e7 979 sub new { bless {}, $_[0] }
54310121 980 sub Subtract {
84f709e7 981 my($a,$b) = @_;
4358a253 982 die "death can be fatal" if $a < $b;
84f709e7 983 $a - $b;
c07a80fd 984 }
84f709e7
JH
985 sub DESTROY { call_Subtract(5, 4); }
986 sub foo { die "foo dies"; }
c07a80fd 987
988 package main;
7ce09284
Z
989 {
990 my $foo = Foo->new;
991 eval { $foo->foo };
992 }
c07a80fd 993 print "Saw: $@" if $@; # should be, but isn't
994
995This example will fail to recognize that an error occurred inside the
996C<eval {}>. Here's why: the call_Subtract code got executed while perl
7ce09284 997was cleaning up temporaries when exiting the outer braced block, and because
4929bf7b 998call_Subtract is implemented with I<call_pv> using the G_EVAL
c07a80fd 999flag, it promptly reset C<$@>. This results in the failure of the
1000outermost test for C<$@>, and thereby the failure of the error trap.
1001
4929bf7b 1002Appending the G_KEEPERR flag, so that the I<call_pv> call in
c07a80fd 1003call_Subtract reads:
1004
4929bf7b 1005 count = call_pv("Subtract", G_EVAL|G_SCALAR|G_KEEPERR);
c07a80fd 1006
1007will preserve the error and restore reliable error handling.
1008
4929bf7b 1009=head2 Using call_sv
a0d0e21e 1010
d1b91892
AD
1011In all the previous examples I have 'hard-wired' the name of the Perl
1012subroutine to be called from C. Most of the time though, it is more
1013convenient to be able to specify the name of the Perl subroutine from
1014within the Perl script.
a0d0e21e
LW
1015
1016Consider the Perl code below
1017
84f709e7
JH
1018 sub fred
1019 {
4358a253 1020 print "Hello there\n";
d1b91892
AD
1021 }
1022
4358a253 1023 CallSubPV("fred");
d1b91892
AD
1024
1025Here is a snippet of XSUB which defines I<CallSubPV>.
1026
1027 void
1028 CallSubPV(name)
1029 char * name
1030 CODE:
4358a253
SS
1031 PUSHMARK(SP);
1032 call_pv(name, G_DISCARD|G_NOARGS);
a0d0e21e 1033
54310121 1034That is fine as far as it goes. The thing is, the Perl subroutine
5f05dabc 1035can be specified as only a string. For Perl 4 this was adequate,
d1b91892 1036but Perl 5 allows references to subroutines and anonymous subroutines.
4929bf7b 1037This is where I<call_sv> is useful.
d1b91892
AD
1038
1039The code below for I<CallSubSV> is identical to I<CallSubPV> except
1040that the C<name> parameter is now defined as an SV* and we use
4929bf7b 1041I<call_sv> instead of I<call_pv>.
d1b91892
AD
1042
1043 void
1044 CallSubSV(name)
1045 SV * name
1046 CODE:
4358a253
SS
1047 PUSHMARK(SP);
1048 call_sv(name, G_DISCARD|G_NOARGS);
a0d0e21e 1049
1d45ec27 1050Because we are using an SV to call I<fred> the following can all be used:
a0d0e21e 1051
4358a253
SS
1052 CallSubSV("fred");
1053 CallSubSV(\&fred);
1054 $ref = \&fred;
1055 CallSubSV($ref);
1056 CallSubSV( sub { print "Hello there\n" } );
a0d0e21e 1057
4929bf7b 1058As you can see, I<call_sv> gives you much greater flexibility in
d1b91892
AD
1059how you can specify the Perl subroutine.
1060
1d45ec27 1061You should note that, if it is necessary to store the SV (C<name> in the
d1b91892 1062example above) which corresponds to the Perl subroutine so that it can
5f05dabc 1063be used later in the program, it not enough just to store a copy of the
1d45ec27 1064pointer to the SV. Say the code above had been like this:
d1b91892 1065
4358a253 1066 static SV * rememberSub;
d1b91892
AD
1067
1068 void
1069 SaveSub1(name)
1070 SV * name
1071 CODE:
4358a253 1072 rememberSub = name;
d1b91892
AD
1073
1074 void
1075 CallSavedSub1()
1076 CODE:
4358a253
SS
1077 PUSHMARK(SP);
1078 call_sv(rememberSub, G_DISCARD|G_NOARGS);
a0d0e21e 1079
1d45ec27 1080The reason this is wrong is that, by the time you come to use the
d1b91892
AD
1081pointer C<rememberSub> in C<CallSavedSub1>, it may or may not still refer
1082to the Perl subroutine that was recorded in C<SaveSub1>. This is
1d45ec27 1083particularly true for these cases:
a0d0e21e 1084
4358a253
SS
1085 SaveSub1(\&fred);
1086 CallSavedSub1();
a0d0e21e 1087
4358a253
SS
1088 SaveSub1( sub { print "Hello there\n" } );
1089 CallSavedSub1();
a0d0e21e 1090
1d45ec27 1091By the time each of the C<SaveSub1> statements above has been executed,
54310121 1092the SV*s which corresponded to the parameters will no longer exist.
d1b91892 1093Expect an error message from Perl of the form
a0d0e21e 1094
d1b91892 1095 Can't use an undefined value as a subroutine reference at ...
a0d0e21e 1096
d1b91892 1097for each of the C<CallSavedSub1> lines.
a0d0e21e 1098
54310121 1099Similarly, with this code
a0d0e21e 1100
4358a253
SS
1101 $ref = \&fred;
1102 SaveSub1($ref);
1103 $ref = 47;
1104 CallSavedSub1();
a0d0e21e 1105
54310121 1106you can expect one of these messages (which you actually get is dependent on
1107the version of Perl you are using)
a0d0e21e 1108
d1b91892
AD
1109 Not a CODE reference at ...
1110 Undefined subroutine &main::47 called ...
a0d0e21e 1111
19799a22 1112The variable $ref may have referred to the subroutine C<fred>
d1b91892 1113whenever the call to C<SaveSub1> was made but by the time
5f05dabc 1114C<CallSavedSub1> gets called it now holds the number C<47>. Because we
d1b91892 1115saved only a pointer to the original SV in C<SaveSub1>, any changes to
19799a22 1116$ref will be tracked by the pointer C<rememberSub>. This means that
d1b91892
AD
1117whenever C<CallSavedSub1> gets called, it will attempt to execute the
1118code which is referenced by the SV* C<rememberSub>. In this case
1119though, it now refers to the integer C<47>, so expect Perl to complain
1120loudly.
a0d0e21e 1121
1d45ec27 1122A similar but more subtle problem is illustrated with this code:
a0d0e21e 1123
4358a253
SS
1124 $ref = \&fred;
1125 SaveSub1($ref);
1126 $ref = \&joe;
1127 CallSavedSub1();
a0d0e21e 1128
1d45ec27 1129This time whenever C<CallSavedSub1> gets called it will execute the Perl
54310121 1130subroutine C<joe> (assuming it exists) rather than C<fred> as was
d1b91892 1131originally requested in the call to C<SaveSub1>.
a0d0e21e 1132
d1b91892 1133To get around these problems it is necessary to take a full copy of the
1d45ec27 1134SV. The code below shows C<SaveSub2> modified to do that.
a0d0e21e 1135
4358a253 1136 static SV * keepSub = (SV*)NULL;
d1b91892
AD
1137
1138 void
1139 SaveSub2(name)
1140 SV * name
1141 CODE:
1142 /* Take a copy of the callback */
1143 if (keepSub == (SV*)NULL)
1144 /* First time, so create a new SV */
4358a253 1145 keepSub = newSVsv(name);
d1b91892
AD
1146 else
1147 /* Been here before, so overwrite */
4358a253 1148 SvSetSV(keepSub, name);
d1b91892
AD
1149
1150 void
1151 CallSavedSub2()
1152 CODE:
4358a253
SS
1153 PUSHMARK(SP);
1154 call_sv(keepSub, G_DISCARD|G_NOARGS);
d1b91892 1155
5f05dabc 1156To avoid creating a new SV every time C<SaveSub2> is called,
d1b91892
AD
1157the function first checks to see if it has been called before. If not,
1158then space for a new SV is allocated and the reference to the Perl
1d45ec27
FC
1159subroutine C<name> is copied to the variable C<keepSub> in one
1160operation using C<newSVsv>. Thereafter, whenever C<SaveSub2> is called,
d1b91892
AD
1161the existing SV, C<keepSub>, is overwritten with the new value using
1162C<SvSetSV>.
1163
4929bf7b 1164=head2 Using call_argv
d1b91892
AD
1165
1166Here is a Perl subroutine which prints whatever parameters are passed
1167to it.
1168
84f709e7
JH
1169 sub PrintList
1170 {
4358a253 1171 my(@list) = @_;
d1b91892 1172
84f709e7 1173 foreach (@list) { print "$_\n" }
d1b91892
AD
1174 }
1175
1d45ec27 1176And here is an example of I<call_argv> which will call
d1b91892
AD
1177I<PrintList>.
1178
4358a253 1179 static char * words[] = {"alpha", "beta", "gamma", "delta", NULL};
d1b91892
AD
1180
1181 static void
1182 call_PrintList()
1183 {
4358a253 1184 dSP;
d1b91892 1185
4358a253 1186 call_argv("PrintList", G_DISCARD, words);
d1b91892
AD
1187 }
1188
1189Note that it is not necessary to call C<PUSHMARK> in this instance.
4929bf7b 1190This is because I<call_argv> will do it for you.
d1b91892 1191
4929bf7b 1192=head2 Using call_method
a0d0e21e 1193
1d45ec27 1194Consider the following Perl code:
a0d0e21e 1195
d1b91892 1196 {
4358a253 1197 package Mine;
84f709e7
JH
1198
1199 sub new
1200 {
4358a253 1201 my($type) = shift;
84f709e7
JH
1202 bless [@_]
1203 }
1204
1205 sub Display
1206 {
4358a253
SS
1207 my ($self, $index) = @_;
1208 print "$index: $$self[$index]\n";
84f709e7
JH
1209 }
1210
1211 sub PrintID
1212 {
4358a253
SS
1213 my($class) = @_;
1214 print "This is Class $class version 1.0\n";
84f709e7 1215 }
d1b91892
AD
1216 }
1217
5f05dabc 1218It implements just a very simple class to manage an array. Apart from
d1b91892 1219the constructor, C<new>, it declares methods, one static and one
5f05dabc 1220virtual. The static method, C<PrintID>, prints out simply the class
d1b91892 1221name and a version number. The virtual method, C<Display>, prints out a
1d45ec27 1222single element of the array. Here is an all-Perl example of using it.
d1b91892 1223
797f796a 1224 $a = Mine->new('red', 'green', 'blue');
4358a253 1225 $a->Display(1);
797f796a 1226 Mine->PrintID;
a0d0e21e 1227
d1b91892 1228will print
a0d0e21e 1229
d1b91892 1230 1: green
54310121 1231 This is Class Mine version 1.0
a0d0e21e 1232
d1b91892 1233Calling a Perl method from C is fairly straightforward. The following
1d45ec27 1234things are required:
a0d0e21e 1235
d1b91892
AD
1236=over 5
1237
1238=item *
1239
1d45ec27
FC
1240A reference to the object for a virtual method or the name of the class
1241for a static method
d1b91892
AD
1242
1243=item *
1244
1d45ec27 1245The name of the method
d1b91892
AD
1246
1247=item *
1248
1d45ec27 1249Any other parameters specific to the method
d1b91892
AD
1250
1251=back
1252
1253Here is a simple XSUB which illustrates the mechanics of calling both
1254the C<PrintID> and C<Display> methods from C.
1255
1256 void
1257 call_Method(ref, method, index)
1258 SV * ref
1259 char * method
1260 int index
1261 CODE:
924508f0 1262 PUSHMARK(SP);
d1b91892 1263 XPUSHs(ref);
4358a253 1264 XPUSHs(sv_2mortal(newSViv(index)));
d1b91892
AD
1265 PUTBACK;
1266
4358a253 1267 call_method(method, G_DISCARD);
d1b91892
AD
1268
1269 void
1270 call_PrintID(class, method)
1271 char * class
1272 char * method
1273 CODE:
924508f0 1274 PUSHMARK(SP);
4358a253 1275 XPUSHs(sv_2mortal(newSVpv(class, 0)));
d1b91892
AD
1276 PUTBACK;
1277
4358a253 1278 call_method(method, G_DISCARD);
d1b91892
AD
1279
1280
1d45ec27 1281So the methods C<PrintID> and C<Display> can be invoked like this:
d1b91892 1282
797f796a 1283 $a = Mine->new('red', 'green', 'blue');
4358a253
SS
1284 call_Method($a, 'Display', 1);
1285 call_PrintID('Mine', 'PrintID');
d1b91892 1286
1d45ec27 1287The only thing to note is that, in both the static and virtual methods,
19799a22 1288the method name is not passed via the stack--it is used as the first
4929bf7b 1289parameter to I<call_method>.
d1b91892 1290
54310121 1291=head2 Using GIMME_V
d1b91892 1292
54310121 1293Here is a trivial XSUB which prints the context in which it is
d1b91892
AD
1294currently executing.
1295
1296 void
1297 PrintContext()
1298 CODE:
54310121 1299 I32 gimme = GIMME_V;
1300 if (gimme == G_VOID)
4358a253 1301 printf ("Context is Void\n");
54310121 1302 else if (gimme == G_SCALAR)
4358a253 1303 printf ("Context is Scalar\n");
d1b91892 1304 else
4358a253 1305 printf ("Context is Array\n");
d1b91892 1306
1d45ec27 1307And here is some Perl to test it.
d1b91892 1308
4358a253
SS
1309 PrintContext;
1310 $a = PrintContext;
1311 @a = PrintContext;
d1b91892
AD
1312
1313The output from that will be
1314
54310121 1315 Context is Void
d1b91892
AD
1316 Context is Scalar
1317 Context is Array
1318
02f6dca1 1319=head2 Using Perl to Dispose of Temporaries
d1b91892
AD
1320
1321In the examples given to date, any temporaries created in the callback
4929bf7b 1322(i.e., parameters passed on the stack to the I<call_*> function or
1d45ec27 1323values returned via the stack) have been freed by one of these methods:
d1b91892
AD
1324
1325=over 5
1326
1327=item *
1328
1d45ec27 1329Specifying the G_DISCARD flag with I<call_*>
d1b91892
AD
1330
1331=item *
1332
1d45ec27 1333Explicitly using the C<ENTER>/C<SAVETMPS>--C<FREETMPS>/C<LEAVE> pairing
d1b91892
AD
1334
1335=back
1336
1337There is another method which can be used, namely letting Perl do it
1338for you automatically whenever it regains control after the callback
1339has terminated. This is done by simply not using the
1340
4358a253
SS
1341 ENTER;
1342 SAVETMPS;
d1b91892 1343 ...
4358a253
SS
1344 FREETMPS;
1345 LEAVE;
d1b91892
AD
1346
1347sequence in the callback (and not, of course, specifying the G_DISCARD
1348flag).
1349
1350If you are going to use this method you have to be aware of a possible
1351memory leak which can arise under very specific circumstances. To
1352explain these circumstances you need to know a bit about the flow of
1353control between Perl and the callback routine.
1354
1355The examples given at the start of the document (an error handler and
1356an event driven program) are typical of the two main sorts of flow
1357control that you are likely to encounter with callbacks. There is a
1358very important distinction between them, so pay attention.
1359
1360In the first example, an error handler, the flow of control could be as
1361follows. You have created an interface to an external library.
1362Control can reach the external library like this
1363
1364 perl --> XSUB --> external library
1365
1366Whilst control is in the library, an error condition occurs. You have
1367previously set up a Perl callback to handle this situation, so it will
1368get executed. Once the callback has finished, control will drop back to
1369Perl again. Here is what the flow of control will be like in that
1370situation
1371
1372 perl --> XSUB --> external library
1373 ...
1374 error occurs
1375 ...
4929bf7b 1376 external library --> call_* --> perl
d1b91892 1377 |
4929bf7b 1378 perl <-- XSUB <-- external library <-- call_* <----+
d1b91892 1379
4929bf7b 1380After processing of the error using I<call_*> is completed,
d1b91892
AD
1381control reverts back to Perl more or less immediately.
1382
1383In the diagram, the further right you go the more deeply nested the
1384scope is. It is only when control is back with perl on the extreme
1385left of the diagram that you will have dropped back to the enclosing
1386scope and any temporaries you have left hanging around will be freed.
1387
1388In the second example, an event driven program, the flow of control
1389will be more like this
1390
1391 perl --> XSUB --> event handler
1392 ...
4929bf7b 1393 event handler --> call_* --> perl
d1b91892 1394 |
4929bf7b 1395 event handler <-- call_* <----+
d1b91892 1396 ...
4929bf7b 1397 event handler --> call_* --> perl
d1b91892 1398 |
4929bf7b 1399 event handler <-- call_* <----+
d1b91892 1400 ...
4929bf7b 1401 event handler --> call_* --> perl
d1b91892 1402 |
4929bf7b 1403 event handler <-- call_* <----+
d1b91892
AD
1404
1405In this case the flow of control can consist of only the repeated
1406sequence
1407
4929bf7b 1408 event handler --> call_* --> perl
d1b91892 1409
54310121 1410for practically the complete duration of the program. This means that
1411control may I<never> drop back to the surrounding scope in Perl at the
1412extreme left.
d1b91892
AD
1413
1414So what is the big problem? Well, if you are expecting Perl to tidy up
1415those temporaries for you, you might be in for a long wait. For Perl
5f05dabc 1416to dispose of your temporaries, control must drop back to the
d1b91892 1417enclosing scope at some stage. In the event driven scenario that may
1d45ec27 1418never happen. This means that, as time goes on, your program will
d1b91892
AD
1419create more and more temporaries, none of which will ever be freed. As
1420each of these temporaries consumes some memory your program will
19799a22 1421eventually consume all the available memory in your system--kapow!
d1b91892 1422
19799a22 1423So here is the bottom line--if you are sure that control will revert
d1b91892 1424back to the enclosing Perl scope fairly quickly after the end of your
5f05dabc 1425callback, then it isn't absolutely necessary to dispose explicitly of
d1b91892
AD
1426any temporaries you may have created. Mind you, if you are at all
1427uncertain about what to do, it doesn't do any harm to tidy up anyway.
1428
1429
02f6dca1 1430=head2 Strategies for Storing Callback Context Information
d1b91892
AD
1431
1432
1433Potentially one of the trickiest problems to overcome when designing a
1434callback interface can be figuring out how to store the mapping between
1435the C callback function and the Perl equivalent.
1436
1437To help understand why this can be a real problem first consider how a
1438callback is set up in an all C environment. Typically a C API will
1439provide a function to register a callback. This will expect a pointer
1440to a function as one of its parameters. Below is a call to a
1441hypothetical function C<register_fatal> which registers the C function
1442to get called when a fatal error occurs.
1443
4358a253 1444 register_fatal(cb1);
d1b91892
AD
1445
1446The single parameter C<cb1> is a pointer to a function, so you must
1447have defined C<cb1> in your code, say something like this
1448
1449 static void
1450 cb1()
1451 {
4358a253
SS
1452 printf ("Fatal Error\n");
1453 exit(1);
d1b91892
AD
1454 }
1455
1456Now change that to call a Perl subroutine instead
1457
1458 static SV * callback = (SV*)NULL;
1459
1460 static void
1461 cb1()
1462 {
4358a253 1463 dSP;
d1b91892 1464
4358a253 1465 PUSHMARK(SP);
d1b91892
AD
1466
1467 /* Call the Perl sub to process the callback */
4358a253 1468 call_sv(callback, G_DISCARD);
d1b91892
AD
1469 }
1470
1471
1472 void
1473 register_fatal(fn)
1474 SV * fn
1475 CODE:
1476 /* Remember the Perl sub */
1477 if (callback == (SV*)NULL)
4358a253 1478 callback = newSVsv(fn);
d1b91892 1479 else
4358a253 1480 SvSetSV(callback, fn);
d1b91892
AD
1481
1482 /* register the callback with the external library */
4358a253 1483 register_fatal(cb1);
d1b91892
AD
1484
1485where the Perl equivalent of C<register_fatal> and the callback it
1486registers, C<pcb1>, might look like this
1487
1488 # Register the sub pcb1
4358a253 1489 register_fatal(\&pcb1);
d1b91892 1490
84f709e7
JH
1491 sub pcb1
1492 {
4358a253 1493 die "I'm dying...\n";
d1b91892
AD
1494 }
1495
1496The mapping between the C callback and the Perl equivalent is stored in
1497the global variable C<callback>.
1498
5f05dabc 1499This will be adequate if you ever need to have only one callback
d1b91892
AD
1500registered at any time. An example could be an error handler like the
1501code sketched out above. Remember though, repeated calls to
1502C<register_fatal> will replace the previously registered callback
1503function with the new one.
1504
1505Say for example you want to interface to a library which allows asynchronous
1506file i/o. In this case you may be able to register a callback whenever
1507a read operation has completed. To be of any use we want to be able to
1508call separate Perl subroutines for each file that is opened. As it
1509stands, the error handler example above would not be adequate as it
1510allows only a single callback to be defined at any time. What we
1511require is a means of storing the mapping between the opened file and
1512the Perl subroutine we want to be called for that file.
1513
1514Say the i/o library has a function C<asynch_read> which associates a C
19799a22 1515function C<ProcessRead> with a file handle C<fh>--this assumes that it
d1b91892
AD
1516has also provided some routine to open the file and so obtain the file
1517handle.
1518
1519 asynch_read(fh, ProcessRead)
1520
1521This may expect the C I<ProcessRead> function of this form
1522
1523 void
1524 ProcessRead(fh, buffer)
4358a253
SS
1525 int fh;
1526 char * buffer;
d1b91892 1527 {
54310121 1528 ...
d1b91892
AD
1529 }
1530
1531To provide a Perl interface to this library we need to be able to map
1532between the C<fh> parameter and the Perl subroutine we want called. A
1533hash is a convenient mechanism for storing this mapping. The code
1534below shows a possible implementation
1535
4358a253 1536 static HV * Mapping = (HV*)NULL;
a0d0e21e 1537
d1b91892
AD
1538 void
1539 asynch_read(fh, callback)
1540 int fh
1541 SV * callback
1542 CODE:
1543 /* If the hash doesn't already exist, create it */
1544 if (Mapping == (HV*)NULL)
4358a253 1545 Mapping = newHV();
d1b91892
AD
1546
1547 /* Save the fh -> callback mapping */
4358a253 1548 hv_store(Mapping, (char*)&fh, sizeof(fh), newSVsv(callback), 0);
d1b91892
AD
1549
1550 /* Register with the C Library */
4358a253 1551 asynch_read(fh, asynch_read_if);
d1b91892
AD
1552
1553and C<asynch_read_if> could look like this
1554
1555 static void
1556 asynch_read_if(fh, buffer)
4358a253
SS
1557 int fh;
1558 char * buffer;
d1b91892 1559 {
4358a253
SS
1560 dSP;
1561 SV ** sv;
d1b91892
AD
1562
1563 /* Get the callback associated with fh */
4358a253 1564 sv = hv_fetch(Mapping, (char*)&fh , sizeof(fh), FALSE);
d1b91892 1565 if (sv == (SV**)NULL)
4358a253 1566 croak("Internal error...\n");
d1b91892 1567
4358a253
SS
1568 PUSHMARK(SP);
1569 XPUSHs(sv_2mortal(newSViv(fh)));
1570 XPUSHs(sv_2mortal(newSVpv(buffer, 0)));
1571 PUTBACK;
d1b91892
AD
1572
1573 /* Call the Perl sub */
4358a253 1574 call_sv(*sv, G_DISCARD);
d1b91892
AD
1575 }
1576
1577For completeness, here is C<asynch_close>. This shows how to remove
1578the entry from the hash C<Mapping>.
1579
1580 void
1581 asynch_close(fh)
1582 int fh
1583 CODE:
1584 /* Remove the entry from the hash */
4358a253 1585 (void) hv_delete(Mapping, (char*)&fh, sizeof(fh), G_DISCARD);
a0d0e21e 1586
d1b91892 1587 /* Now call the real asynch_close */
4358a253 1588 asynch_close(fh);
a0d0e21e 1589
d1b91892
AD
1590So the Perl interface would look like this
1591
84f709e7
JH
1592 sub callback1
1593 {
4358a253 1594 my($handle, $buffer) = @_;
d1b91892 1595 }
a0d0e21e 1596
d1b91892 1597 # Register the Perl callback
4358a253 1598 asynch_read($fh, \&callback1);
a0d0e21e 1599
4358a253 1600 asynch_close($fh);
d1b91892
AD
1601
1602The mapping between the C callback and Perl is stored in the global
1603hash C<Mapping> this time. Using a hash has the distinct advantage that
1604it allows an unlimited number of callbacks to be registered.
1605
1606What if the interface provided by the C callback doesn't contain a
1607parameter which allows the file handle to Perl subroutine mapping? Say
1608in the asynchronous i/o package, the callback function gets passed only
1609the C<buffer> parameter like this
1610
1611 void
1612 ProcessRead(buffer)
4358a253 1613 char * buffer;
d1b91892
AD
1614 {
1615 ...
1616 }
a0d0e21e 1617
d1b91892
AD
1618Without the file handle there is no straightforward way to map from the
1619C callback to the Perl subroutine.
a0d0e21e 1620
54310121 1621In this case a possible way around this problem is to predefine a
d1b91892
AD
1622series of C functions to act as the interface to Perl, thus
1623
1624 #define MAX_CB 3
1625 #define NULL_HANDLE -1
4358a253 1626 typedef void (*FnMap)();
d1b91892
AD
1627
1628 struct MapStruct {
4358a253
SS
1629 FnMap Function;
1630 SV * PerlSub;
1631 int Handle;
1632 };
d1b91892 1633
4358a253
SS
1634 static void fn1();
1635 static void fn2();
1636 static void fn3();
d1b91892
AD
1637
1638 static struct MapStruct Map [MAX_CB] =
1639 {
1640 { fn1, NULL, NULL_HANDLE },
1641 { fn2, NULL, NULL_HANDLE },
1642 { fn3, NULL, NULL_HANDLE }
4358a253 1643 };
d1b91892
AD
1644
1645 static void
1646 Pcb(index, buffer)
4358a253
SS
1647 int index;
1648 char * buffer;
d1b91892 1649 {
4358a253 1650 dSP;
d1b91892 1651
4358a253
SS
1652 PUSHMARK(SP);
1653 XPUSHs(sv_2mortal(newSVpv(buffer, 0)));
1654 PUTBACK;
d1b91892
AD
1655
1656 /* Call the Perl sub */
4358a253 1657 call_sv(Map[index].PerlSub, G_DISCARD);
d1b91892
AD
1658 }
1659
1660 static void
1661 fn1(buffer)
4358a253 1662 char * buffer;
d1b91892 1663 {
4358a253 1664 Pcb(0, buffer);
d1b91892
AD
1665 }
1666
1667 static void
1668 fn2(buffer)
4358a253 1669 char * buffer;
d1b91892 1670 {
4358a253 1671 Pcb(1, buffer);
d1b91892
AD
1672 }
1673
1674 static void
1675 fn3(buffer)
4358a253 1676 char * buffer;
d1b91892 1677 {
4358a253 1678 Pcb(2, buffer);
d1b91892
AD
1679 }
1680
1681 void
1682 array_asynch_read(fh, callback)
1683 int fh
1684 SV * callback
1685 CODE:
4358a253
SS
1686 int index;
1687 int null_index = MAX_CB;
d1b91892
AD
1688
1689 /* Find the same handle or an empty entry */
4358a253 1690 for (index = 0; index < MAX_CB; ++index)
d1b91892
AD
1691 {
1692 if (Map[index].Handle == fh)
4358a253 1693 break;
d1b91892
AD
1694
1695 if (Map[index].Handle == NULL_HANDLE)
4358a253 1696 null_index = index;
d1b91892
AD
1697 }
1698
1699 if (index == MAX_CB && null_index == MAX_CB)
4358a253 1700 croak ("Too many callback functions registered\n");
d1b91892
AD
1701
1702 if (index == MAX_CB)
4358a253 1703 index = null_index;
d1b91892
AD
1704
1705 /* Save the file handle */
4358a253 1706 Map[index].Handle = fh;
d1b91892
AD
1707
1708 /* Remember the Perl sub */
1709 if (Map[index].PerlSub == (SV*)NULL)
4358a253 1710 Map[index].PerlSub = newSVsv(callback);
d1b91892 1711 else
4358a253 1712 SvSetSV(Map[index].PerlSub, callback);
d1b91892 1713
4358a253 1714 asynch_read(fh, Map[index].Function);
d1b91892
AD
1715
1716 void
1717 array_asynch_close(fh)
1718 int fh
1719 CODE:
4358a253 1720 int index;
d1b91892
AD
1721
1722 /* Find the file handle */
4358a253 1723 for (index = 0; index < MAX_CB; ++ index)
d1b91892 1724 if (Map[index].Handle == fh)
4358a253 1725 break;
d1b91892
AD
1726
1727 if (index == MAX_CB)
4358a253 1728 croak ("could not close fh %d\n", fh);
d1b91892 1729
4358a253
SS
1730 Map[index].Handle = NULL_HANDLE;
1731 SvREFCNT_dec(Map[index].PerlSub);
1732 Map[index].PerlSub = (SV*)NULL;
d1b91892 1733
4358a253 1734 asynch_close(fh);
d1b91892 1735
5f05dabc 1736In this case the functions C<fn1>, C<fn2>, and C<fn3> are used to
d1b91892 1737remember the Perl subroutine to be called. Each of the functions holds
4a6725af 1738a separate hard-wired index which is used in the function C<Pcb> to
d1b91892
AD
1739access the C<Map> array and actually call the Perl subroutine.
1740
1741There are some obvious disadvantages with this technique.
1742
1743Firstly, the code is considerably more complex than with the previous
1744example.
1745
4a6725af 1746Secondly, there is a hard-wired limit (in this case 3) to the number of
d1b91892
AD
1747callbacks that can exist simultaneously. The only way to increase the
1748limit is by modifying the code to add more functions and then
54310121 1749recompiling. None the less, as long as the number of functions is
d1b91892
AD
1750chosen with some care, it is still a workable solution and in some
1751cases is the only one available.
1752
1753To summarize, here are a number of possible methods for you to consider
1754for storing the mapping between C and the Perl callback
1755
1756=over 5
1757
1758=item 1. Ignore the problem - Allow only 1 callback
1759
1760For a lot of situations, like interfacing to an error handler, this may
1761be a perfectly adequate solution.
1762
1763=item 2. Create a sequence of callbacks - hard wired limit
1764
1765If it is impossible to tell from the parameters passed back from the C
1766callback what the context is, then you may need to create a sequence of C
1767callback interface functions, and store pointers to each in an array.
1768
1769=item 3. Use a parameter to map to the Perl callback
1770
1771A hash is an ideal mechanism to store the mapping between C and Perl.
1772
1773=back
a0d0e21e 1774
a0d0e21e
LW
1775
1776=head2 Alternate Stack Manipulation
1777
a0d0e21e 1778
d1b91892
AD
1779Although I have made use of only the C<POP*> macros to access values
1780returned from Perl subroutines, it is also possible to bypass these
8e07c86e 1781macros and read the stack using the C<ST> macro (See L<perlxs> for a
d1b91892
AD
1782full description of the C<ST> macro).
1783
1d45ec27 1784Most of the time the C<POP*> macros should be adequate; the main
d1b91892
AD
1785problem with them is that they force you to process the returned values
1786in sequence. This may not be the most suitable way to process the
1787values in some cases. What we want is to be able to access the stack in
1788a random order. The C<ST> macro as used when coding an XSUB is ideal
1789for this purpose.
1790
1d45ec27
FC
1791The code below is the example given in the section I<Returning a List
1792of Values> recoded to use C<ST> instead of C<POP*>.
d1b91892
AD
1793
1794 static void
1795 call_AddSubtract2(a, b)
4358a253
SS
1796 int a;
1797 int b;
d1b91892 1798 {
4358a253
SS
1799 dSP;
1800 I32 ax;
1801 int count;
d1b91892 1802
4358a253 1803 ENTER;
d1b91892
AD
1804 SAVETMPS;
1805
4358a253 1806 PUSHMARK(SP);
d1b91892
AD
1807 XPUSHs(sv_2mortal(newSViv(a)));
1808 XPUSHs(sv_2mortal(newSViv(b)));
4358a253 1809 PUTBACK;
d1b91892 1810
4929bf7b 1811 count = call_pv("AddSubtract", G_ARRAY);
d1b91892 1812
4358a253
SS
1813 SPAGAIN;
1814 SP -= count;
1815 ax = (SP - PL_stack_base) + 1;
d1b91892
AD
1816
1817 if (count != 2)
4358a253 1818 croak("Big trouble\n");
a0d0e21e 1819
4358a253
SS
1820 printf ("%d + %d = %d\n", a, b, SvIV(ST(0)));
1821 printf ("%d - %d = %d\n", a, b, SvIV(ST(1)));
d1b91892 1822
4358a253
SS
1823 PUTBACK;
1824 FREETMPS;
1825 LEAVE;
d1b91892
AD
1826 }
1827
1828Notes
1829
1830=over 5
1831
1832=item 1.
1833
1834Notice that it was necessary to define the variable C<ax>. This is
1835because the C<ST> macro expects it to exist. If we were in an XSUB it
1836would not be necessary to define C<ax> as it is already defined for
1d45ec27 1837us.
d1b91892
AD
1838
1839=item 2.
1840
1841The code
1842
4358a253
SS
1843 SPAGAIN;
1844 SP -= count;
1845 ax = (SP - PL_stack_base) + 1;
d1b91892
AD
1846
1847sets the stack up so that we can use the C<ST> macro.
1848
1849=item 3.
1850
1851Unlike the original coding of this example, the returned
1852values are not accessed in reverse order. So C<ST(0)> refers to the
54310121 1853first value returned by the Perl subroutine and C<ST(count-1)>
d1b91892
AD
1854refers to the last.
1855
1856=back
a0d0e21e 1857
02f6dca1 1858=head2 Creating and Calling an Anonymous Subroutine in C
8f183262 1859
4929bf7b 1860As we've already shown, C<call_sv> can be used to invoke an
c2611fb3
GS
1861anonymous subroutine. However, our example showed a Perl script
1862invoking an XSUB to perform this operation. Let's see how it can be
8f183262
DM
1863done inside our C code:
1864
8f183262
DM
1865 ...
1866
4929bf7b 1867 SV *cvrv = eval_pv("sub { print 'You will not find me cluttering any namespace!' }", TRUE);
8f183262
DM
1868
1869 ...
1870
4929bf7b 1871 call_sv(cvrv, G_VOID|G_NOARGS);
8f183262 1872
4929bf7b
GS
1873C<eval_pv> is used to compile the anonymous subroutine, which
1874will be the return value as well (read more about C<eval_pv> in
4a4eefd0 1875L<perlapi/eval_pv>). Once this code reference is in hand, it
8f183262
DM
1876can be mixed in with all the previous examples we've shown.
1877
9850bf21
RH
1878=head1 LIGHTWEIGHT CALLBACKS
1879
1880Sometimes you need to invoke the same subroutine repeatedly.
1881This usually happens with a function that acts on a list of
1882values, such as Perl's built-in sort(). You can pass a
1883comparison function to sort(), which will then be invoked
1884for every pair of values that needs to be compared. The first()
1885and reduce() functions from L<List::Util> follow a similar
1886pattern.
1887
1888In this case it is possible to speed up the routine (often
1889quite substantially) by using the lightweight callback API.
1890The idea is that the calling context only needs to be
1891created and destroyed once, and the sub can be called
1892arbitrarily many times in between.
1893
ac036724 1894It is usual to pass parameters using global variables (typically
1895$_ for one parameter, or $a and $b for two parameters) rather
9850bf21
RH
1896than via @_. (It is possible to use the @_ mechanism if you know
1897what you're doing, though there is as yet no supported API for
1898it. It's also inherently slower.)
1899
1900The pattern of macro calls is like this:
1901
82f35e8b 1902 dMULTICALL; /* Declare local variables */
9850bf21
RH
1903 I32 gimme = G_SCALAR; /* context of the call: G_SCALAR,
1904 * G_LIST, or G_VOID */
1905
82f35e8b
RH
1906 PUSH_MULTICALL(cv); /* Set up the context for calling cv,
1907 and set local vars appropriately */
9850bf21
RH
1908
1909 /* loop */ {
1910 /* set the value(s) af your parameter variables */
1911 MULTICALL; /* Make the actual call */
1912 } /* end of loop */
1913
1914 POP_MULTICALL; /* Tear down the calling context */
1915
1916For some concrete examples, see the implementation of the
1917first() and reduce() functions of List::Util 1.18. There you
1918will also find a header file that emulates the multicall API
1919on older versions of perl.
1920
a0d0e21e
LW
1921=head1 SEE ALSO
1922
8e07c86e 1923L<perlxs>, L<perlguts>, L<perlembed>
a0d0e21e
LW
1924
1925=head1 AUTHOR
1926
0536e0eb 1927Paul Marquess
a0d0e21e 1928
d1b91892
AD
1929Special thanks to the following people who assisted in the creation of
1930the document.
a0d0e21e 1931
c07a80fd 1932Jeff Okamoto, Tim Bunce, Nick Gianniotis, Steve Kelem, Gurusamy Sarathy
1933and Larry Wall.
a0d0e21e
LW
1934
1935=head1 DATE
1936
137443ea 1937Version 1.3, 14th Apr 1997