This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
perlexperiment: document the private_use experiment
[perl5.git] / pod / perlcall.pod
CommitLineData
a0d0e21e
LW
1=head1 NAME
2
3perlcall - Perl calling conventions from C
4
5=head1 DESCRIPTION
6
d1b91892 7The purpose of this document is to show you how to call Perl subroutines
5f05dabc 8directly from C, i.e., how to write I<callbacks>.
a0d0e21e 9
d1b91892
AD
10Apart from discussing the C interface provided by Perl for writing
11callbacks the document uses a series of examples to show how the
12interface actually works in practice. In addition some techniques for
13coding callbacks are covered.
a0d0e21e 14
d1b91892 15Examples where callbacks are necessary include
a0d0e21e
LW
16
17=over 5
18
d1b91892 19=item * An Error Handler
a0d0e21e
LW
20
21You have created an XSUB interface to an application's C API.
22
23A fairly common feature in applications is to allow you to define a C
d1b91892
AD
24function that will be called whenever something nasty occurs. What we
25would like is to be able to specify a Perl subroutine that will be
26called instead.
a0d0e21e 27
95e84303 28=item * An Event-Driven Program
a0d0e21e 29
d1b91892 30The classic example of where callbacks are used is when writing an
b0b54b5e 31event driven program, such as for an X11 application. In this case
184e9718 32you register functions to be called whenever specific events occur,
5f05dabc 33e.g., a mouse button is pressed, the cursor moves into a window or a
d1b91892 34menu item is selected.
a0d0e21e
LW
35
36=back
37
d1b91892
AD
38Although the techniques described here are applicable when embedding
39Perl in a C program, this is not the primary goal of this document.
40There are other details that must be considered and are specific to
41embedding Perl. For details on embedding Perl in C refer to
42L<perlembed>.
a0d0e21e 43
d1b91892 44Before you launch yourself head first into the rest of this document,
02f6dca1
FC
45it would be a good idea to have read the following two documents--L<perlxs>
46and L<perlguts>.
a0d0e21e 47
4929bf7b 48=head1 THE CALL_ FUNCTIONS
a0d0e21e 49
d1b91892
AD
50Although this stuff is easier to explain using examples, you first need
51be aware of a few important definitions.
a0d0e21e 52
d1b91892
AD
53Perl has a number of C functions that allow you to call Perl
54subroutines. They are
a0d0e21e 55
4358a253
SS
56 I32 call_sv(SV* sv, I32 flags);
57 I32 call_pv(char *subname, I32 flags);
58 I32 call_method(char *methname, I32 flags);
5aaab254 59 I32 call_argv(char *subname, I32 flags, char **argv);
a0d0e21e 60
4929bf7b 61The key function is I<call_sv>. All the other functions are
d1b91892 62fairly simple wrappers which make it easier to call Perl subroutines in
4929bf7b 63special cases. At the end of the day they will all call I<call_sv>
5f05dabc 64to invoke the Perl subroutine.
d1b91892 65
4929bf7b 66All the I<call_*> functions have a C<flags> parameter which is
d1b91892
AD
67used to pass a bit mask of options to Perl. This bit mask operates
68identically for each of the functions. The settings available in the
d0554719 69bit mask are discussed in L</FLAG VALUES>.
d1b91892
AD
70
71Each of the functions will now be discussed in turn.
72
73=over 5
74
4929bf7b 75=item call_sv
d1b91892 76
02f6dca1 77I<call_sv> takes two parameters. The first, C<sv>, is an SV*.
d1b91892
AD
78This allows you to specify the Perl subroutine to be called either as a
79C string (which has first been converted to an SV) or a reference to a
d0554719 80subroutine. The section, L</Using call_sv>, shows how you can make
4929bf7b 81use of I<call_sv>.
d1b91892 82
4929bf7b 83=item call_pv
d1b91892 84
4929bf7b 85The function, I<call_pv>, is similar to I<call_sv> except it
d1b91892 86expects its first parameter to be a C char* which identifies the Perl
4929bf7b 87subroutine you want to call, e.g., C<call_pv("fred", 0)>. If the
d1b91892 88subroutine you want to call is in another package, just include the
5f05dabc 89package name in the string, e.g., C<"pkg::fred">.
d1b91892 90
4929bf7b 91=item call_method
d1b91892 92
4929bf7b 93The function I<call_method> is used to call a method from a Perl
d1b91892
AD
94class. The parameter C<methname> corresponds to the name of the method
95to be called. Note that the class that the method belongs to is passed
96on the Perl stack rather than in the parameter list. This class can be
97either the name of the class (for a static method) or a reference to an
98object (for a virtual method). See L<perlobj> for more information on
d0554719 99static and virtual methods and L</Using call_method> for an example
4929bf7b 100of using I<call_method>.
d1b91892 101
4929bf7b 102=item call_argv
d1b91892 103
4929bf7b 104I<call_argv> calls the Perl subroutine specified by the C string
d1b91892 105stored in the C<subname> parameter. It also takes the usual C<flags>
02f6dca1 106parameter. The final parameter, C<argv>, consists of a NULL-terminated
d1b91892 107list of C strings to be passed as parameters to the Perl subroutine.
d0554719 108See L</Using call_argv>.
d1b91892
AD
109
110=back
111
112All the functions return an integer. This is a count of the number of
113items returned by the Perl subroutine. The actual items returned by the
114subroutine are stored on the Perl stack.
115
116As a general rule you should I<always> check the return value from
117these functions. Even if you are expecting only a particular number of
118values to be returned from the Perl subroutine, there is nothing to
19799a22 119stop someone from doing something unexpected--don't say you haven't
d1b91892
AD
120been warned.
121
122=head1 FLAG VALUES
123
87b26de2
KW
124The C<flags> parameter in all the I<call_*> functions is one of C<G_VOID>,
125C<G_SCALAR>, or C<G_ARRAY>, which indicate the call context, OR'ed together
0b06a753 126with a bit mask of any combination of the other G_* symbols defined below.
d1b91892 127
54310121 128=head2 G_VOID
129
52ae2233
KW
130=for apidoc AmnUh||G_VOID
131
54310121 132Calls the Perl subroutine in a void context.
133
134This flag has 2 effects:
135
136=over 5
137
138=item 1.
139
140It indicates to the subroutine being called that it is executing in
141a void context (if it executes I<wantarray> the result will be the
142undefined value).
143
144=item 2.
145
146It ensures that nothing is actually returned from the subroutine.
147
148=back
149
4929bf7b 150The value returned by the I<call_*> function indicates how many
02f6dca1 151items have been returned by the Perl subroutine--in this case it will
54310121 152be 0.
153
154
d1b91892
AD
155=head2 G_SCALAR
156
52ae2233
KW
157=for apidoc AmnUh||G_SCALAR
158
d1b91892 159Calls the Perl subroutine in a scalar context. This is the default
4929bf7b 160context flag setting for all the I<call_*> functions.
d1b91892 161
184e9718 162This flag has 2 effects:
d1b91892
AD
163
164=over 5
165
166=item 1.
167
184e9718 168It indicates to the subroutine being called that it is executing in a
d1b91892 169scalar context (if it executes I<wantarray> the result will be false).
a0d0e21e 170
d1b91892
AD
171=item 2.
172
184e9718 173It ensures that only a scalar is actually returned from the subroutine.
d1b91892
AD
174The subroutine can, of course, ignore the I<wantarray> and return a
175list anyway. If so, then only the last element of the list will be
176returned.
177
178=back
179
4929bf7b 180The value returned by the I<call_*> function indicates how many
d1b91892
AD
181items have been returned by the Perl subroutine - in this case it will
182be either 0 or 1.
a0d0e21e 183
d1b91892 184If 0, then you have specified the G_DISCARD flag.
a0d0e21e 185
d1b91892 186If 1, then the item actually returned by the Perl subroutine will be
d0554719 187stored on the Perl stack - the section L</Returning a Scalar> shows how
d1b91892
AD
188to access this value on the stack. Remember that regardless of how
189many items the Perl subroutine returns, only the last one will be
190accessible from the stack - think of the case where only one value is
191returned as being a list with only one element. Any other items that
192were returned will not exist by the time control returns from the
d0554719
TC
193I<call_*> function. The section L</Returning a List in Scalar
194Context> shows an example of this behavior.
a0d0e21e 195
a0d0e21e 196
d1b91892 197=head2 G_ARRAY
a0d0e21e 198
52ae2233
KW
199=for apidoc AmnUh||G_ARRAY
200
d1b91892 201Calls the Perl subroutine in a list context.
a0d0e21e 202
184e9718 203As with G_SCALAR, this flag has 2 effects:
a0d0e21e
LW
204
205=over 5
206
d1b91892
AD
207=item 1.
208
90fdbbb7
DC
209It indicates to the subroutine being called that it is executing in a
210list context (if it executes I<wantarray> the result will be true).
a0d0e21e 211
d1b91892 212=item 2.
a0d0e21e 213
184e9718 214It ensures that all items returned from the subroutine will be
4929bf7b 215accessible when control returns from the I<call_*> function.
a0d0e21e 216
d1b91892 217=back
a0d0e21e 218
4929bf7b 219The value returned by the I<call_*> function indicates how many
d1b91892 220items have been returned by the Perl subroutine.
a0d0e21e 221
184e9718 222If 0, then you have specified the G_DISCARD flag.
a0d0e21e 223
d1b91892
AD
224If not 0, then it will be a count of the number of items returned by
225the subroutine. These items will be stored on the Perl stack. The
d0554719 226section L</Returning a List of Values> gives an example of using the
d1b91892
AD
227G_ARRAY flag and the mechanics of accessing the returned items from the
228Perl stack.
a0d0e21e 229
d1b91892 230=head2 G_DISCARD
a0d0e21e 231
52ae2233
KW
232=for apidoc AmnUh||G_DISCARD
233
4929bf7b 234By default, the I<call_*> functions place the items returned from
d1b91892
AD
235by the Perl subroutine on the stack. If you are not interested in
236these items, then setting this flag will make Perl get rid of them
237automatically for you. Note that it is still possible to indicate a
238context to the Perl subroutine by using either G_SCALAR or G_ARRAY.
a0d0e21e 239
d1b91892 240If you do not set this flag then it is I<very> important that you make
5f05dabc 241sure that any temporaries (i.e., parameters passed to the Perl
d1b91892 242subroutine and values returned from the subroutine) are disposed of
d0554719
TC
243yourself. The section L</Returning a Scalar> gives details of how to
244dispose of these temporaries explicitly and the section L</Using Perl to
245Dispose of Temporaries> discusses the specific circumstances where you
d1b91892 246can ignore the problem and let Perl deal with it for you.
a0d0e21e 247
d1b91892 248=head2 G_NOARGS
a0d0e21e 249
52ae2233
KW
250=for apidoc AmnUh||G_NOARGS
251
4929bf7b 252Whenever a Perl subroutine is called using one of the I<call_*>
d1b91892
AD
253functions, it is assumed by default that parameters are to be passed to
254the subroutine. If you are not passing any parameters to the Perl
255subroutine, you can save a bit of time by setting this flag. It has
256the effect of not creating the C<@_> array for the Perl subroutine.
a0d0e21e 257
d1b91892
AD
258Although the functionality provided by this flag may seem
259straightforward, it should be used only if there is a good reason to do
02f6dca1 260so. The reason for being cautious is that, even if you have specified
d1b91892
AD
261the G_NOARGS flag, it is still possible for the Perl subroutine that
262has been called to think that you have passed it parameters.
a0d0e21e 263
d1b91892
AD
264In fact, what can happen is that the Perl subroutine you have called
265can access the C<@_> array from a previous Perl subroutine. This will
4929bf7b 266occur when the code that is executing the I<call_*> function has
d1b91892
AD
267itself been called from another Perl subroutine. The code below
268illustrates this
a0d0e21e 269
84f709e7
JH
270 sub fred
271 { print "@_\n" }
a0d0e21e 272
84f709e7
JH
273 sub joe
274 { &fred }
a0d0e21e 275
4358a253 276 &joe(1,2,3);
a0d0e21e
LW
277
278This will print
279
d1b91892
AD
280 1 2 3
281
282What has happened is that C<fred> accesses the C<@_> array which
283belongs to C<joe>.
a0d0e21e 284
a0d0e21e 285
54310121 286=head2 G_EVAL
a0d0e21e 287
52ae2233
KW
288=for apidoc AmnUh||G_EVAL
289
d1b91892 290It is possible for the Perl subroutine you are calling to terminate
5f05dabc 291abnormally, e.g., by calling I<die> explicitly or by not actually
268118b2
HS
292existing. By default, when either of these events occurs, the
293process will terminate immediately. If you want to trap this
d1b91892
AD
294type of event, specify the G_EVAL flag. It will put an I<eval { }>
295around the subroutine call.
a0d0e21e 296
4929bf7b 297Whenever control returns from the I<call_*> function you need to
d1b91892
AD
298check the C<$@> variable as you would in a normal Perl script.
299
4929bf7b 300The value returned from the I<call_*> function is dependent on
d1b91892 301what other flags have been specified and whether an error has
184e9718 302occurred. Here are all the different cases that can occur:
d1b91892
AD
303
304=over 5
305
306=item *
307
4929bf7b 308If the I<call_*> function returns normally, then the value
d1b91892
AD
309returned is as specified in the previous sections.
310
311=item *
312
313If G_DISCARD is specified, the return value will always be 0.
314
315=item *
316
317If G_ARRAY is specified I<and> an error has occurred, the return value
318will always be 0.
319
320=item *
a0d0e21e 321
d1b91892
AD
322If G_SCALAR is specified I<and> an error has occurred, the return value
323will be 1 and the value on the top of the stack will be I<undef>. This
324means that if you have already detected the error by checking C<$@> and
325you want the program to continue, you must remember to pop the I<undef>
326from the stack.
a0d0e21e
LW
327
328=back
329
d0554719 330See L</Using G_EVAL> for details on using G_EVAL.
d1b91892 331
c07a80fd 332=head2 G_KEEPERR
333
52ae2233
KW
334=for apidoc AmnUh||G_KEEPERR
335
7ce09284
Z
336Using the G_EVAL flag described above will always set C<$@>: clearing
337it if there was no error, and setting it to describe the error if there
338was an error in the called code. This is what you want if your intention
339is to handle possible errors, but sometimes you just want to trap errors
340and stop them interfering with the rest of the program.
341
342This scenario will mostly be applicable to code that is meant to be called
343from within destructors, asynchronous callbacks, and signal handlers.
344In such situations, where the code being called has little relation to the
345surrounding dynamic context, the main program needs to be insulated from
346errors in the called code, even if they can't be handled intelligently.
347It may also be useful to do this with code for C<__DIE__> or C<__WARN__>
348hooks, and C<tie> functions.
c07a80fd 349
350The G_KEEPERR flag is meant to be used in conjunction with G_EVAL in
be064c4a
DM
351I<call_*> functions that are used to implement such code, or with
352C<eval_sv>. This flag has no effect on the C<call_*> functions when
353G_EVAL is not used.
c07a80fd 354
7ce09284
Z
355When G_KEEPERR is used, any error in the called code will terminate the
356call as usual, and the error will not propagate beyond the call (as usual
357for G_EVAL), but it will not go into C<$@>. Instead the error will be
358converted into a warning, prefixed with the string "\t(in cleanup)".
359This can be disabled using C<no warnings 'misc'>. If there is no error,
360C<$@> will not be cleared.
c07a80fd 361
be064c4a
DM
362Note that the G_KEEPERR flag does not propagate into inner evals; these
363may still set C<$@>.
364
c07a80fd 365The G_KEEPERR flag was introduced in Perl version 5.002.
366
d0554719 367See L</Using G_KEEPERR> for an example of a situation that warrants the
c07a80fd 368use of this flag.
369
54310121 370=head2 Determining the Context
d1b91892
AD
371
372As mentioned above, you can determine the context of the currently
54310121 373executing subroutine in Perl with I<wantarray>. The equivalent test
374can be made in C by using the C<GIMME_V> macro, which returns
90fdbbb7 375C<G_ARRAY> if you have been called in a list context, C<G_SCALAR> if
02f6dca1 376in a scalar context, or C<G_VOID> if in a void context (i.e., the
54310121 377return value will not be used). An older version of this macro is
378called C<GIMME>; in a void context it returns C<G_SCALAR> instead of
379C<G_VOID>. An example of using the C<GIMME_V> macro is shown in
d0554719 380section L</Using GIMME_V>.
d1b91892 381
a0d0e21e
LW
382=head1 EXAMPLES
383
02f6dca1 384Enough of the definition talk! Let's have a few examples.
a0d0e21e 385
d1b91892
AD
386Perl provides many macros to assist in accessing the Perl stack.
387Wherever possible, these macros should always be used when interfacing
5f05dabc 388to Perl internals. We hope this should make the code less vulnerable
d1b91892 389to any changes made to Perl in the future.
a0d0e21e 390
d1b91892 391Another point worth noting is that in the first series of examples I
4929bf7b 392have made use of only the I<call_pv> function. This has been done
d1b91892 393to keep the code simpler and ease you into the topic. Wherever
4929bf7b
GS
394possible, if the choice is between using I<call_pv> and
395I<call_sv>, you should always try to use I<call_sv>. See
d0554719 396L</Using call_sv> for details.
a0d0e21e 397
02f6dca1 398=head2 No Parameters, Nothing Returned
a0d0e21e 399
d1b91892
AD
400This first trivial example will call a Perl subroutine, I<PrintUID>, to
401print out the UID of the process.
a0d0e21e 402
84f709e7
JH
403 sub PrintUID
404 {
4358a253 405 print "UID is $<\n";
a0d0e21e
LW
406 }
407
d1b91892 408and here is a C function to call it
a0d0e21e 409
d1b91892 410 static void
a0d0e21e
LW
411 call_PrintUID()
412 {
4358a253 413 dSP;
a0d0e21e 414
4358a253
SS
415 PUSHMARK(SP);
416 call_pv("PrintUID", G_DISCARD|G_NOARGS);
a0d0e21e
LW
417 }
418
02f6dca1 419Simple, eh?
a0d0e21e 420
02f6dca1 421A few points to note about this example:
a0d0e21e
LW
422
423=over 5
424
d1b91892 425=item 1.
a0d0e21e 426
924508f0 427Ignore C<dSP> and C<PUSHMARK(SP)> for now. They will be discussed in
d1b91892 428the next example.
a0d0e21e
LW
429
430=item 2.
431
d1b91892
AD
432We aren't passing any parameters to I<PrintUID> so G_NOARGS can be
433specified.
a0d0e21e 434
d1b91892 435=item 3.
a0d0e21e
LW
436
437We aren't interested in anything returned from I<PrintUID>, so
5f05dabc 438G_DISCARD is specified. Even if I<PrintUID> was changed to
a0d0e21e 439return some value(s), having specified G_DISCARD will mean that they
4929bf7b 440will be wiped by the time control returns from I<call_pv>.
a0d0e21e 441
d1b91892 442=item 4.
a0d0e21e 443
4929bf7b 444As I<call_pv> is being used, the Perl subroutine is specified as a
d1b91892
AD
445C string. In this case the subroutine name has been 'hard-wired' into the
446code.
a0d0e21e
LW
447
448=item 5.
449
d1b91892 450Because we specified G_DISCARD, it is not necessary to check the value
4929bf7b 451returned from I<call_pv>. It will always be 0.
a0d0e21e
LW
452
453=back
454
d1b91892 455=head2 Passing Parameters
a0d0e21e 456
d1b91892 457Now let's make a slightly more complex example. This time we want to
19799a22
GS
458call a Perl subroutine, C<LeftString>, which will take 2 parameters--a
459string ($s) and an integer ($n). The subroutine will simply
460print the first $n characters of the string.
a0d0e21e 461
02f6dca1 462So the Perl subroutine would look like this:
a0d0e21e 463
84f709e7
JH
464 sub LeftString
465 {
4358a253
SS
466 my($s, $n) = @_;
467 print substr($s, 0, $n), "\n";
a0d0e21e
LW
468 }
469
02f6dca1 470The C function required to call I<LeftString> would look like this:
a0d0e21e
LW
471
472 static void
473 call_LeftString(a, b)
4358a253
SS
474 char * a;
475 int b;
a0d0e21e 476 {
4358a253 477 dSP;
a0d0e21e 478
4358a253
SS
479 ENTER;
480 SAVETMPS;
9b6570b4 481
4358a253 482 PUSHMARK(SP);
d0554719
TC
483 EXTEND(SP, 2);
484 PUSHs(sv_2mortal(newSVpv(a, 0)));
485 PUSHs(sv_2mortal(newSViv(b)));
4358a253 486 PUTBACK;
a0d0e21e 487
4929bf7b 488 call_pv("LeftString", G_DISCARD);
9b6570b4 489
4358a253
SS
490 FREETMPS;
491 LEAVE;
a0d0e21e
LW
492 }
493
a0d0e21e
LW
494Here are a few notes on the C function I<call_LeftString>.
495
496=over 5
497
d1b91892 498=item 1.
a0d0e21e 499
d1b91892
AD
500Parameters are passed to the Perl subroutine using the Perl stack.
501This is the purpose of the code beginning with the line C<dSP> and
1e62ac33 502ending with the line C<PUTBACK>. The C<dSP> declares a local copy
924508f0
GS
503of the stack pointer. This local copy should B<always> be accessed
504as C<SP>.
a0d0e21e 505
d1b91892 506=item 2.
a0d0e21e
LW
507
508If you are going to put something onto the Perl stack, you need to know
19799a22 509where to put it. This is the purpose of the macro C<dSP>--it declares
d1b91892 510and initializes a I<local> copy of the Perl stack pointer.
a0d0e21e
LW
511
512All the other macros which will be used in this example require you to
d1b91892 513have used this macro.
a0d0e21e 514
d1b91892
AD
515The exception to this rule is if you are calling a Perl subroutine
516directly from an XSUB function. In this case it is not necessary to
19799a22 517use the C<dSP> macro explicitly--it will be declared for you
d1b91892 518automatically.
a0d0e21e 519
d1b91892 520=item 3.
a0d0e21e
LW
521
522Any parameters to be pushed onto the stack should be bracketed by the
d1b91892 523C<PUSHMARK> and C<PUTBACK> macros. The purpose of these two macros, in
5f05dabc 524this context, is to count the number of parameters you are
525pushing automatically. Then whenever Perl is creating the C<@_> array for the
d1b91892
AD
526subroutine, it knows how big to make it.
527
528The C<PUSHMARK> macro tells Perl to make a mental note of the current
529stack pointer. Even if you aren't passing any parameters (like the
d0554719 530example shown in the section L</No Parameters, Nothing Returned>) you
d1b91892 531must still call the C<PUSHMARK> macro before you can call any of the
4929bf7b 532I<call_*> functions--Perl still needs to know that there are no
d1b91892
AD
533parameters.
534
535The C<PUTBACK> macro sets the global copy of the stack pointer to be
02f6dca1 536the same as our local copy. If we didn't do this, I<call_pv>
19799a22 537wouldn't know where the two parameters we pushed were--remember that
d1b91892
AD
538up to now all the stack pointer manipulation we have done is with our
539local copy, I<not> the global copy.
540
541=item 4.
542
d0554719
TC
543Next, we come to EXTEND and PUSHs. This is where the parameters
544actually get pushed onto the stack. In this case we are pushing a
545string and an integer.
546
547Alternatively you can use the XPUSHs() macro, which combines a
548C<EXTEND(SP, 1)> and C<PUSHs()>. This is less efficient if you're
549pushing multiple values.
a0d0e21e 550
54310121 551See L<perlguts/"XSUBs and the Argument Stack"> for details
d0554719 552on how the PUSH macros work.
a0d0e21e 553
087fe227 554=item 5.
a0d0e21e 555
9b6570b4
AB
556Because we created temporary values (by means of sv_2mortal() calls)
557we will have to tidy up the Perl stack and dispose of mortal SVs.
558
559This is the purpose of
560
4358a253
SS
561 ENTER;
562 SAVETMPS;
9b6570b4
AB
563
564at the start of the function, and
565
4358a253
SS
566 FREETMPS;
567 LEAVE;
9b6570b4
AB
568
569at the end. The C<ENTER>/C<SAVETMPS> pair creates a boundary for any
570temporaries we create. This means that the temporaries we get rid of
571will be limited to those which were created after these calls.
572
573The C<FREETMPS>/C<LEAVE> pair will get rid of any values returned by
574the Perl subroutine (see next example), plus it will also dump the
575mortal SVs we have created. Having C<ENTER>/C<SAVETMPS> at the
576beginning of the code makes sure that no other mortals are destroyed.
577
02f6dca1 578Think of these macros as working a bit like C<{> and C<}> in Perl
9b6570b4
AB
579to limit the scope of local variables.
580
d0554719 581See the section L</Using Perl to Dispose of Temporaries> for details of
9b6570b4
AB
582an alternative to using these macros.
583
087fe227 584=item 6.
9b6570b4 585
087fe227
JA
586Finally, I<LeftString> can now be called via the I<call_pv> function.
587The only flag specified this time is G_DISCARD. Because we are passing
5882 parameters to the Perl subroutine this time, we have not specified
589G_NOARGS.
a0d0e21e
LW
590
591=back
592
d1b91892 593=head2 Returning a Scalar
a0d0e21e 594
d1b91892
AD
595Now for an example of dealing with the items returned from a Perl
596subroutine.
a0d0e21e 597
5f05dabc 598Here is a Perl subroutine, I<Adder>, that takes 2 integer parameters
d1b91892 599and simply returns their sum.
a0d0e21e 600
84f709e7
JH
601 sub Adder
602 {
4358a253
SS
603 my($a, $b) = @_;
604 $a + $b;
a0d0e21e
LW
605 }
606
5f05dabc 607Because we are now concerned with the return value from I<Adder>, the C
d1b91892 608function required to call it is now a bit more complex.
a0d0e21e
LW
609
610 static void
611 call_Adder(a, b)
4358a253
SS
612 int a;
613 int b;
a0d0e21e 614 {
4358a253
SS
615 dSP;
616 int count;
a0d0e21e 617
4358a253 618 ENTER;
a0d0e21e
LW
619 SAVETMPS;
620
4358a253 621 PUSHMARK(SP);
d0554719
TC
622 EXTEND(SP, 2);
623 PUSHs(sv_2mortal(newSViv(a)));
624 PUSHs(sv_2mortal(newSViv(b)));
4358a253 625 PUTBACK;
a0d0e21e 626
4929bf7b 627 count = call_pv("Adder", G_SCALAR);
a0d0e21e 628
4358a253 629 SPAGAIN;
a0d0e21e 630
d1b91892 631 if (count != 1)
4358a253 632 croak("Big trouble\n");
a0d0e21e 633
4358a253 634 printf ("The sum of %d and %d is %d\n", a, b, POPi);
a0d0e21e 635
4358a253
SS
636 PUTBACK;
637 FREETMPS;
638 LEAVE;
a0d0e21e
LW
639 }
640
a0d0e21e
LW
641Points to note this time are
642
643=over 5
644
54310121 645=item 1.
a0d0e21e 646
02f6dca1 647The only flag specified this time was G_SCALAR. That means that the C<@_>
d1b91892 648array will be created and that the value returned by I<Adder> will
4929bf7b 649still exist after the call to I<call_pv>.
a0d0e21e 650
a0d0e21e
LW
651=item 2.
652
a0d0e21e
LW
653The purpose of the macro C<SPAGAIN> is to refresh the local copy of the
654stack pointer. This is necessary because it is possible that the memory
ed874981 655allocated to the Perl stack has been reallocated during the
4929bf7b 656I<call_pv> call.
a0d0e21e 657
d1b91892 658If you are making use of the Perl stack pointer in your code you must
54310121 659always refresh the local copy using SPAGAIN whenever you make use
4929bf7b 660of the I<call_*> functions or any other Perl internal function.
a0d0e21e 661
9b6570b4 662=item 3.
a0d0e21e 663
d1b91892 664Although only a single value was expected to be returned from I<Adder>,
4929bf7b 665it is still good practice to check the return code from I<call_pv>
d1b91892 666anyway.
a0d0e21e 667
d1b91892
AD
668Expecting a single value is not quite the same as knowing that there
669will be one. If someone modified I<Adder> to return a list and we
670didn't check for that possibility and take appropriate action the Perl
671stack would end up in an inconsistent state. That is something you
5f05dabc 672I<really> don't want to happen ever.
a0d0e21e 673
9b6570b4 674=item 4.
a0d0e21e 675
d1b91892
AD
676The C<POPi> macro is used here to pop the return value from the stack.
677In this case we wanted an integer, so C<POPi> was used.
a0d0e21e
LW
678
679
d1b91892
AD
680Here is the complete list of POP macros available, along with the types
681they return.
a0d0e21e 682
d1b91892 683 POPs SV
d0554719
TC
684 POPp pointer (PV)
685 POPpbytex pointer to bytes (PV)
686 POPn double (NV)
687 POPi integer (IV)
688 POPu unsigned integer (UV)
d1b91892 689 POPl long
d0554719
TC
690 POPul unsigned long
691
692Since these macros have side-effects don't use them as arguments to
693macros that may evaluate their argument several times, for example:
694
695 /* Bad idea, don't do this */
696 STRLEN len;
697 const char *s = SvPV(POPs, len);
698
699Instead, use a temporary:
700
701 STRLEN len;
702 SV *sv = POPs;
703 const char *s = SvPV(sv, len);
704
705or a macro that guarantees it will evaluate its arguments only once:
706
707 STRLEN len;
708 const char *s = SvPVx(POPs, len);
a0d0e21e 709
9b6570b4 710=item 5.
a0d0e21e 711
d1b91892
AD
712The final C<PUTBACK> is used to leave the Perl stack in a consistent
713state before exiting the function. This is necessary because when we
714popped the return value from the stack with C<POPi> it updated only our
715local copy of the stack pointer. Remember, C<PUTBACK> sets the global
716stack pointer to be the same as our local copy.
a0d0e21e
LW
717
718=back
719
720
02f6dca1 721=head2 Returning a List of Values
a0d0e21e 722
d1b91892
AD
723Now, let's extend the previous example to return both the sum of the
724parameters and the difference.
a0d0e21e 725
d1b91892 726Here is the Perl subroutine
a0d0e21e 727
84f709e7
JH
728 sub AddSubtract
729 {
4358a253
SS
730 my($a, $b) = @_;
731 ($a+$b, $a-$b);
a0d0e21e
LW
732 }
733
a0d0e21e
LW
734and this is the C function
735
736 static void
737 call_AddSubtract(a, b)
4358a253
SS
738 int a;
739 int b;
a0d0e21e 740 {
4358a253
SS
741 dSP;
742 int count;
a0d0e21e 743
4358a253 744 ENTER;
a0d0e21e
LW
745 SAVETMPS;
746
4358a253 747 PUSHMARK(SP);
d0554719
TC
748 EXTEND(SP, 2);
749 PUSHs(sv_2mortal(newSViv(a)));
750 PUSHs(sv_2mortal(newSViv(b)));
4358a253 751 PUTBACK;
a0d0e21e 752
4929bf7b 753 count = call_pv("AddSubtract", G_ARRAY);
a0d0e21e 754
4358a253 755 SPAGAIN;
a0d0e21e 756
d1b91892 757 if (count != 2)
4358a253 758 croak("Big trouble\n");
a0d0e21e 759
4358a253
SS
760 printf ("%d - %d = %d\n", a, b, POPi);
761 printf ("%d + %d = %d\n", a, b, POPi);
a0d0e21e 762
4358a253
SS
763 PUTBACK;
764 FREETMPS;
765 LEAVE;
a0d0e21e
LW
766 }
767
d1b91892
AD
768If I<call_AddSubtract> is called like this
769
4358a253 770 call_AddSubtract(7, 4);
d1b91892
AD
771
772then here is the output
773
774 7 - 4 = 3
775 7 + 4 = 11
a0d0e21e
LW
776
777Notes
778
779=over 5
780
781=item 1.
782
90fdbbb7 783We wanted list context, so G_ARRAY was used.
a0d0e21e
LW
784
785=item 2.
786
d1b91892
AD
787Not surprisingly C<POPi> is used twice this time because we were
788retrieving 2 values from the stack. The important thing to note is that
789when using the C<POP*> macros they come off the stack in I<reverse>
790order.
a0d0e21e
LW
791
792=back
793
d0554719 794=head2 Returning a List in Scalar Context
d1b91892
AD
795
796Say the Perl subroutine in the previous section was called in a scalar
797context, like this
798
799 static void
800 call_AddSubScalar(a, b)
4358a253
SS
801 int a;
802 int b;
d1b91892 803 {
4358a253
SS
804 dSP;
805 int count;
806 int i;
d1b91892 807
4358a253 808 ENTER;
d1b91892
AD
809 SAVETMPS;
810
4358a253 811 PUSHMARK(SP);
d0554719
TC
812 EXTEND(SP, 2);
813 PUSHs(sv_2mortal(newSViv(a)));
814 PUSHs(sv_2mortal(newSViv(b)));
4358a253 815 PUTBACK;
d1b91892 816
4929bf7b 817 count = call_pv("AddSubtract", G_SCALAR);
d1b91892 818
4358a253 819 SPAGAIN;
d1b91892 820
4358a253 821 printf ("Items Returned = %d\n", count);
d1b91892 822
4358a253
SS
823 for (i = 1; i <= count; ++i)
824 printf ("Value %d = %d\n", i, POPi);
d1b91892 825
4358a253
SS
826 PUTBACK;
827 FREETMPS;
828 LEAVE;
d1b91892
AD
829 }
830
831The other modification made is that I<call_AddSubScalar> will print the
832number of items returned from the Perl subroutine and their value (for
833simplicity it assumes that they are integer). So if
834I<call_AddSubScalar> is called
835
4358a253 836 call_AddSubScalar(7, 4);
d1b91892
AD
837
838then the output will be
839
840 Items Returned = 1
841 Value 1 = 3
842
843In this case the main point to note is that only the last item in the
48052fe5 844list is returned from the subroutine. I<AddSubtract> actually made it back to
d1b91892
AD
845I<call_AddSubScalar>.
846
847
02f6dca1 848=head2 Returning Data from Perl via the Parameter List
a0d0e21e 849
48052fe5
FC
850It is also possible to return values directly via the parameter
851list--whether it is actually desirable to do it is another matter entirely.
a0d0e21e 852
d1b91892
AD
853The Perl subroutine, I<Inc>, below takes 2 parameters and increments
854each directly.
a0d0e21e 855
84f709e7
JH
856 sub Inc
857 {
4358a253
SS
858 ++ $_[0];
859 ++ $_[1];
a0d0e21e
LW
860 }
861
862and here is a C function to call it.
863
864 static void
865 call_Inc(a, b)
4358a253
SS
866 int a;
867 int b;
a0d0e21e 868 {
4358a253
SS
869 dSP;
870 int count;
871 SV * sva;
872 SV * svb;
a0d0e21e 873
4358a253 874 ENTER;
a0d0e21e
LW
875 SAVETMPS;
876
4358a253
SS
877 sva = sv_2mortal(newSViv(a));
878 svb = sv_2mortal(newSViv(b));
a0d0e21e 879
4358a253 880 PUSHMARK(SP);
d0554719
TC
881 EXTEND(SP, 2);
882 PUSHs(sva);
883 PUSHs(svb);
4358a253 884 PUTBACK;
a0d0e21e 885
4929bf7b 886 count = call_pv("Inc", G_DISCARD);
a0d0e21e
LW
887
888 if (count != 0)
d1b91892 889 croak ("call_Inc: expected 0 values from 'Inc', got %d\n",
4358a253 890 count);
a0d0e21e 891
4358a253
SS
892 printf ("%d + 1 = %d\n", a, SvIV(sva));
893 printf ("%d + 1 = %d\n", b, SvIV(svb));
a0d0e21e 894
4358a253
SS
895 FREETMPS;
896 LEAVE;
a0d0e21e
LW
897 }
898
d1b91892 899To be able to access the two parameters that were pushed onto the stack
4929bf7b 900after they return from I<call_pv> it is necessary to make a note
19799a22 901of their addresses--thus the two variables C<sva> and C<svb>.
a0d0e21e 902
d1b91892
AD
903The reason this is necessary is that the area of the Perl stack which
904held them will very likely have been overwritten by something else by
4929bf7b 905the time control returns from I<call_pv>.
a0d0e21e
LW
906
907
908
909
d1b91892 910=head2 Using G_EVAL
a0d0e21e 911
d1b91892
AD
912Now an example using G_EVAL. Below is a Perl subroutine which computes
913the difference of its 2 parameters. If this would result in a negative
914result, the subroutine calls I<die>.
a0d0e21e 915
84f709e7
JH
916 sub Subtract
917 {
4358a253 918 my ($a, $b) = @_;
a0d0e21e 919
4358a253 920 die "death can be fatal\n" if $a < $b;
a0d0e21e 921
4358a253 922 $a - $b;
a0d0e21e
LW
923 }
924
925and some C to call it
926
e46aa1dd
KW
927 static void
928 call_Subtract(a, b)
929 int a;
930 int b;
931 {
932 dSP;
933 int count;
934 SV *err_tmp;
935
936 ENTER;
937 SAVETMPS;
938
939 PUSHMARK(SP);
940 EXTEND(SP, 2);
941 PUSHs(sv_2mortal(newSViv(a)));
942 PUSHs(sv_2mortal(newSViv(b)));
943 PUTBACK;
944
945 count = call_pv("Subtract", G_EVAL|G_SCALAR);
946
947 SPAGAIN;
948
949 /* Check the eval first */
950 err_tmp = ERRSV;
951 if (SvTRUE(err_tmp))
952 {
953 printf ("Uh oh - %s\n", SvPV_nolen(err_tmp));
954 POPs;
955 }
956 else
957 {
958 if (count != 1)
959 croak("call_Subtract: wanted 1 value from 'Subtract', got %d\n",
960 count);
961
962 printf ("%d - %d = %d\n", a, b, POPi);
963 }
964
965 PUTBACK;
966 FREETMPS;
967 LEAVE;
968 }
a0d0e21e
LW
969
970If I<call_Subtract> is called thus
971
d1b91892 972 call_Subtract(4, 5)
a0d0e21e
LW
973
974the following will be printed
975
d1b91892 976 Uh oh - death can be fatal
a0d0e21e
LW
977
978Notes
979
980=over 5
981
982=item 1.
983
d1b91892
AD
984We want to be able to catch the I<die> so we have used the G_EVAL
985flag. Not specifying this flag would mean that the program would
986terminate immediately at the I<die> statement in the subroutine
987I<Subtract>.
a0d0e21e
LW
988
989=item 2.
990
54310121 991The code
a0d0e21e 992
d0554719
TC
993 err_tmp = ERRSV;
994 if (SvTRUE(err_tmp))
d1b91892 995 {
d0554719 996 printf ("Uh oh - %s\n", SvPV_nolen(err_tmp));
4358a253 997 POPs;
d1b91892 998 }
a0d0e21e 999
d1b91892 1000is the direct equivalent of this bit of Perl
a0d0e21e 1001
4358a253 1002 print "Uh oh - $@\n" if $@;
a0d0e21e 1003
d0554719
TC
1004C<PL_errgv> is a perl global of type C<GV *> that points to the symbol
1005table entry containing the error. C<ERRSV> therefore refers to the C
3da3c74d 1006equivalent of C<$@>. We use a local temporary, C<err_tmp>, since
d0554719
TC
1007C<ERRSV> is a macro that calls a function, and C<SvTRUE(ERRSV)> would
1008end up calling that function multiple times.
c07a80fd 1009
cd66fec1 1010=for apidoc AmnUh|GV *|PL_errgv
31b83e34 1011
d1b91892 1012=item 3.
a0d0e21e 1013
d1b91892 1014Note that the stack is popped using C<POPs> in the block where
d0554719 1015C<SvTRUE(err_tmp)> is true. This is necessary because whenever a
4929bf7b 1016I<call_*> function invoked with G_EVAL|G_SCALAR returns an error,
5f05dabc 1017the top of the stack holds the value I<undef>. Because we want the
d1b91892 1018program to continue after detecting this error, it is essential that
6c818a50 1019the stack be tidied up by removing the I<undef>.
a0d0e21e
LW
1020
1021=back
1022
1023
c07a80fd 1024=head2 Using G_KEEPERR
1025
1026Consider this rather facetious example, where we have used an XS
1027version of the call_Subtract example above inside a destructor:
1028
1029 package Foo;
84f709e7 1030 sub new { bless {}, $_[0] }
54310121 1031 sub Subtract {
84f709e7 1032 my($a,$b) = @_;
4358a253 1033 die "death can be fatal" if $a < $b;
84f709e7 1034 $a - $b;
c07a80fd 1035 }
84f709e7
JH
1036 sub DESTROY { call_Subtract(5, 4); }
1037 sub foo { die "foo dies"; }
c07a80fd 1038
1039 package main;
7ce09284
Z
1040 {
1041 my $foo = Foo->new;
1042 eval { $foo->foo };
1043 }
c07a80fd 1044 print "Saw: $@" if $@; # should be, but isn't
1045
1046This example will fail to recognize that an error occurred inside the
1047C<eval {}>. Here's why: the call_Subtract code got executed while perl
7ce09284 1048was cleaning up temporaries when exiting the outer braced block, and because
4929bf7b 1049call_Subtract is implemented with I<call_pv> using the G_EVAL
c07a80fd 1050flag, it promptly reset C<$@>. This results in the failure of the
1051outermost test for C<$@>, and thereby the failure of the error trap.
1052
4929bf7b 1053Appending the G_KEEPERR flag, so that the I<call_pv> call in
c07a80fd 1054call_Subtract reads:
1055
4929bf7b 1056 count = call_pv("Subtract", G_EVAL|G_SCALAR|G_KEEPERR);
c07a80fd 1057
1058will preserve the error and restore reliable error handling.
1059
4929bf7b 1060=head2 Using call_sv
a0d0e21e 1061
d1b91892
AD
1062In all the previous examples I have 'hard-wired' the name of the Perl
1063subroutine to be called from C. Most of the time though, it is more
1064convenient to be able to specify the name of the Perl subroutine from
d0554719
TC
1065within the Perl script, and you'll want to use
1066L<call_sv|perlapi/call_sv>.
a0d0e21e
LW
1067
1068Consider the Perl code below
1069
84f709e7
JH
1070 sub fred
1071 {
4358a253 1072 print "Hello there\n";
d1b91892
AD
1073 }
1074
4358a253 1075 CallSubPV("fred");
d1b91892
AD
1076
1077Here is a snippet of XSUB which defines I<CallSubPV>.
1078
1079 void
1080 CallSubPV(name)
1081 char * name
1082 CODE:
4358a253
SS
1083 PUSHMARK(SP);
1084 call_pv(name, G_DISCARD|G_NOARGS);
a0d0e21e 1085
54310121 1086That is fine as far as it goes. The thing is, the Perl subroutine
94a37a2f
BF
1087can be specified as only a string, however, Perl allows references
1088to subroutines and anonymous subroutines.
4929bf7b 1089This is where I<call_sv> is useful.
d1b91892
AD
1090
1091The code below for I<CallSubSV> is identical to I<CallSubPV> except
1092that the C<name> parameter is now defined as an SV* and we use
4929bf7b 1093I<call_sv> instead of I<call_pv>.
d1b91892
AD
1094
1095 void
1096 CallSubSV(name)
1097 SV * name
1098 CODE:
4358a253
SS
1099 PUSHMARK(SP);
1100 call_sv(name, G_DISCARD|G_NOARGS);
a0d0e21e 1101
1d45ec27 1102Because we are using an SV to call I<fred> the following can all be used:
a0d0e21e 1103
4358a253
SS
1104 CallSubSV("fred");
1105 CallSubSV(\&fred);
1106 $ref = \&fred;
1107 CallSubSV($ref);
1108 CallSubSV( sub { print "Hello there\n" } );
a0d0e21e 1109
4929bf7b 1110As you can see, I<call_sv> gives you much greater flexibility in
d1b91892
AD
1111how you can specify the Perl subroutine.
1112
1d45ec27 1113You should note that, if it is necessary to store the SV (C<name> in the
d1b91892 1114example above) which corresponds to the Perl subroutine so that it can
5f05dabc 1115be used later in the program, it not enough just to store a copy of the
1d45ec27 1116pointer to the SV. Say the code above had been like this:
d1b91892 1117
4358a253 1118 static SV * rememberSub;
d1b91892
AD
1119
1120 void
1121 SaveSub1(name)
1122 SV * name
1123 CODE:
4358a253 1124 rememberSub = name;
d1b91892
AD
1125
1126 void
1127 CallSavedSub1()
1128 CODE:
4358a253
SS
1129 PUSHMARK(SP);
1130 call_sv(rememberSub, G_DISCARD|G_NOARGS);
a0d0e21e 1131
1d45ec27 1132The reason this is wrong is that, by the time you come to use the
d1b91892
AD
1133pointer C<rememberSub> in C<CallSavedSub1>, it may or may not still refer
1134to the Perl subroutine that was recorded in C<SaveSub1>. This is
1d45ec27 1135particularly true for these cases:
a0d0e21e 1136
4358a253
SS
1137 SaveSub1(\&fred);
1138 CallSavedSub1();
a0d0e21e 1139
4358a253
SS
1140 SaveSub1( sub { print "Hello there\n" } );
1141 CallSavedSub1();
a0d0e21e 1142
1d45ec27 1143By the time each of the C<SaveSub1> statements above has been executed,
54310121 1144the SV*s which corresponded to the parameters will no longer exist.
d1b91892 1145Expect an error message from Perl of the form
a0d0e21e 1146
d1b91892 1147 Can't use an undefined value as a subroutine reference at ...
a0d0e21e 1148
d1b91892 1149for each of the C<CallSavedSub1> lines.
a0d0e21e 1150
54310121 1151Similarly, with this code
a0d0e21e 1152
4358a253
SS
1153 $ref = \&fred;
1154 SaveSub1($ref);
1155 $ref = 47;
1156 CallSavedSub1();
a0d0e21e 1157
54310121 1158you can expect one of these messages (which you actually get is dependent on
1159the version of Perl you are using)
a0d0e21e 1160
d1b91892
AD
1161 Not a CODE reference at ...
1162 Undefined subroutine &main::47 called ...
a0d0e21e 1163
19799a22 1164The variable $ref may have referred to the subroutine C<fred>
d1b91892 1165whenever the call to C<SaveSub1> was made but by the time
5f05dabc 1166C<CallSavedSub1> gets called it now holds the number C<47>. Because we
d1b91892 1167saved only a pointer to the original SV in C<SaveSub1>, any changes to
19799a22 1168$ref will be tracked by the pointer C<rememberSub>. This means that
d1b91892
AD
1169whenever C<CallSavedSub1> gets called, it will attempt to execute the
1170code which is referenced by the SV* C<rememberSub>. In this case
1171though, it now refers to the integer C<47>, so expect Perl to complain
1172loudly.
a0d0e21e 1173
1d45ec27 1174A similar but more subtle problem is illustrated with this code:
a0d0e21e 1175
4358a253
SS
1176 $ref = \&fred;
1177 SaveSub1($ref);
1178 $ref = \&joe;
1179 CallSavedSub1();
a0d0e21e 1180
1d45ec27 1181This time whenever C<CallSavedSub1> gets called it will execute the Perl
54310121 1182subroutine C<joe> (assuming it exists) rather than C<fred> as was
d1b91892 1183originally requested in the call to C<SaveSub1>.
a0d0e21e 1184
d1b91892 1185To get around these problems it is necessary to take a full copy of the
1d45ec27 1186SV. The code below shows C<SaveSub2> modified to do that.
a0d0e21e 1187
d0554719 1188 /* this isn't thread-safe */
4358a253 1189 static SV * keepSub = (SV*)NULL;
d1b91892
AD
1190
1191 void
1192 SaveSub2(name)
1193 SV * name
1194 CODE:
1195 /* Take a copy of the callback */
1196 if (keepSub == (SV*)NULL)
1197 /* First time, so create a new SV */
4358a253 1198 keepSub = newSVsv(name);
d1b91892
AD
1199 else
1200 /* Been here before, so overwrite */
4358a253 1201 SvSetSV(keepSub, name);
d1b91892
AD
1202
1203 void
1204 CallSavedSub2()
1205 CODE:
4358a253
SS
1206 PUSHMARK(SP);
1207 call_sv(keepSub, G_DISCARD|G_NOARGS);
d1b91892 1208
5f05dabc 1209To avoid creating a new SV every time C<SaveSub2> is called,
d1b91892
AD
1210the function first checks to see if it has been called before. If not,
1211then space for a new SV is allocated and the reference to the Perl
1d45ec27
FC
1212subroutine C<name> is copied to the variable C<keepSub> in one
1213operation using C<newSVsv>. Thereafter, whenever C<SaveSub2> is called,
d1b91892
AD
1214the existing SV, C<keepSub>, is overwritten with the new value using
1215C<SvSetSV>.
1216
d0554719
TC
1217Note: using a static or global variable to store the SV isn't
1218thread-safe. You can either use the C<MY_CXT> mechanism documented in
1219L<perlxs/Safely Storing Static Data in XS> which is fast, or store the
1220values in perl global variables, using get_sv(), which is much slower.
1221
4929bf7b 1222=head2 Using call_argv
d1b91892
AD
1223
1224Here is a Perl subroutine which prints whatever parameters are passed
1225to it.
1226
84f709e7
JH
1227 sub PrintList
1228 {
4358a253 1229 my(@list) = @_;
d1b91892 1230
84f709e7 1231 foreach (@list) { print "$_\n" }
d1b91892
AD
1232 }
1233
1d45ec27 1234And here is an example of I<call_argv> which will call
d1b91892
AD
1235I<PrintList>.
1236
4358a253 1237 static char * words[] = {"alpha", "beta", "gamma", "delta", NULL};
d1b91892
AD
1238
1239 static void
1240 call_PrintList()
1241 {
4358a253 1242 call_argv("PrintList", G_DISCARD, words);
d1b91892
AD
1243 }
1244
1245Note that it is not necessary to call C<PUSHMARK> in this instance.
4929bf7b 1246This is because I<call_argv> will do it for you.
d1b91892 1247
4929bf7b 1248=head2 Using call_method
a0d0e21e 1249
1d45ec27 1250Consider the following Perl code:
a0d0e21e 1251
d1b91892 1252 {
4358a253 1253 package Mine;
84f709e7
JH
1254
1255 sub new
1256 {
4358a253 1257 my($type) = shift;
84f709e7
JH
1258 bless [@_]
1259 }
1260
1261 sub Display
1262 {
4358a253
SS
1263 my ($self, $index) = @_;
1264 print "$index: $$self[$index]\n";
84f709e7
JH
1265 }
1266
1267 sub PrintID
1268 {
4358a253
SS
1269 my($class) = @_;
1270 print "This is Class $class version 1.0\n";
84f709e7 1271 }
d1b91892
AD
1272 }
1273
5f05dabc 1274It implements just a very simple class to manage an array. Apart from
d1b91892 1275the constructor, C<new>, it declares methods, one static and one
5f05dabc 1276virtual. The static method, C<PrintID>, prints out simply the class
d1b91892 1277name and a version number. The virtual method, C<Display>, prints out a
1d45ec27 1278single element of the array. Here is an all-Perl example of using it.
d1b91892 1279
797f796a 1280 $a = Mine->new('red', 'green', 'blue');
4358a253 1281 $a->Display(1);
797f796a 1282 Mine->PrintID;
a0d0e21e 1283
d1b91892 1284will print
a0d0e21e 1285
d1b91892 1286 1: green
54310121 1287 This is Class Mine version 1.0
a0d0e21e 1288
d1b91892 1289Calling a Perl method from C is fairly straightforward. The following
1d45ec27 1290things are required:
a0d0e21e 1291
d1b91892
AD
1292=over 5
1293
1294=item *
1295
1d45ec27
FC
1296A reference to the object for a virtual method or the name of the class
1297for a static method
d1b91892
AD
1298
1299=item *
1300
1d45ec27 1301The name of the method
d1b91892
AD
1302
1303=item *
1304
1d45ec27 1305Any other parameters specific to the method
d1b91892
AD
1306
1307=back
1308
1309Here is a simple XSUB which illustrates the mechanics of calling both
1310the C<PrintID> and C<Display> methods from C.
1311
1312 void
1313 call_Method(ref, method, index)
1314 SV * ref
1315 char * method
1316 int index
1317 CODE:
924508f0 1318 PUSHMARK(SP);
d0554719
TC
1319 EXTEND(SP, 2);
1320 PUSHs(ref);
1321 PUSHs(sv_2mortal(newSViv(index)));
d1b91892
AD
1322 PUTBACK;
1323
4358a253 1324 call_method(method, G_DISCARD);
d1b91892
AD
1325
1326 void
1327 call_PrintID(class, method)
1328 char * class
1329 char * method
1330 CODE:
924508f0 1331 PUSHMARK(SP);
4358a253 1332 XPUSHs(sv_2mortal(newSVpv(class, 0)));
d1b91892
AD
1333 PUTBACK;
1334
4358a253 1335 call_method(method, G_DISCARD);
d1b91892
AD
1336
1337
1d45ec27 1338So the methods C<PrintID> and C<Display> can be invoked like this:
d1b91892 1339
797f796a 1340 $a = Mine->new('red', 'green', 'blue');
4358a253
SS
1341 call_Method($a, 'Display', 1);
1342 call_PrintID('Mine', 'PrintID');
d1b91892 1343
1d45ec27 1344The only thing to note is that, in both the static and virtual methods,
19799a22 1345the method name is not passed via the stack--it is used as the first
4929bf7b 1346parameter to I<call_method>.
d1b91892 1347
54310121 1348=head2 Using GIMME_V
d1b91892 1349
54310121 1350Here is a trivial XSUB which prints the context in which it is
d1b91892
AD
1351currently executing.
1352
1353 void
1354 PrintContext()
1355 CODE:
1c23e2bd 1356 U8 gimme = GIMME_V;
54310121 1357 if (gimme == G_VOID)
4358a253 1358 printf ("Context is Void\n");
54310121 1359 else if (gimme == G_SCALAR)
4358a253 1360 printf ("Context is Scalar\n");
d1b91892 1361 else
4358a253 1362 printf ("Context is Array\n");
d1b91892 1363
1d45ec27 1364And here is some Perl to test it.
d1b91892 1365
4358a253
SS
1366 PrintContext;
1367 $a = PrintContext;
1368 @a = PrintContext;
d1b91892
AD
1369
1370The output from that will be
1371
54310121 1372 Context is Void
d1b91892
AD
1373 Context is Scalar
1374 Context is Array
1375
02f6dca1 1376=head2 Using Perl to Dispose of Temporaries
d1b91892
AD
1377
1378In the examples given to date, any temporaries created in the callback
4929bf7b 1379(i.e., parameters passed on the stack to the I<call_*> function or
1d45ec27 1380values returned via the stack) have been freed by one of these methods:
d1b91892
AD
1381
1382=over 5
1383
1384=item *
1385
1d45ec27 1386Specifying the G_DISCARD flag with I<call_*>
d1b91892
AD
1387
1388=item *
1389
1d45ec27 1390Explicitly using the C<ENTER>/C<SAVETMPS>--C<FREETMPS>/C<LEAVE> pairing
d1b91892
AD
1391
1392=back
1393
1394There is another method which can be used, namely letting Perl do it
1395for you automatically whenever it regains control after the callback
1396has terminated. This is done by simply not using the
1397
4358a253
SS
1398 ENTER;
1399 SAVETMPS;
d1b91892 1400 ...
4358a253
SS
1401 FREETMPS;
1402 LEAVE;
d1b91892
AD
1403
1404sequence in the callback (and not, of course, specifying the G_DISCARD
1405flag).
1406
1407If you are going to use this method you have to be aware of a possible
1408memory leak which can arise under very specific circumstances. To
1409explain these circumstances you need to know a bit about the flow of
1410control between Perl and the callback routine.
1411
1412The examples given at the start of the document (an error handler and
1413an event driven program) are typical of the two main sorts of flow
1414control that you are likely to encounter with callbacks. There is a
1415very important distinction between them, so pay attention.
1416
1417In the first example, an error handler, the flow of control could be as
1418follows. You have created an interface to an external library.
1419Control can reach the external library like this
1420
1421 perl --> XSUB --> external library
1422
1423Whilst control is in the library, an error condition occurs. You have
1424previously set up a Perl callback to handle this situation, so it will
1425get executed. Once the callback has finished, control will drop back to
1426Perl again. Here is what the flow of control will be like in that
1427situation
1428
1429 perl --> XSUB --> external library
1430 ...
1431 error occurs
1432 ...
4929bf7b 1433 external library --> call_* --> perl
d1b91892 1434 |
4929bf7b 1435 perl <-- XSUB <-- external library <-- call_* <----+
d1b91892 1436
4929bf7b 1437After processing of the error using I<call_*> is completed,
d1b91892
AD
1438control reverts back to Perl more or less immediately.
1439
1440In the diagram, the further right you go the more deeply nested the
1441scope is. It is only when control is back with perl on the extreme
1442left of the diagram that you will have dropped back to the enclosing
1443scope and any temporaries you have left hanging around will be freed.
1444
1445In the second example, an event driven program, the flow of control
1446will be more like this
1447
1448 perl --> XSUB --> event handler
1449 ...
4929bf7b 1450 event handler --> call_* --> perl
d1b91892 1451 |
4929bf7b 1452 event handler <-- call_* <----+
d1b91892 1453 ...
4929bf7b 1454 event handler --> call_* --> perl
d1b91892 1455 |
4929bf7b 1456 event handler <-- call_* <----+
d1b91892 1457 ...
4929bf7b 1458 event handler --> call_* --> perl
d1b91892 1459 |
4929bf7b 1460 event handler <-- call_* <----+
d1b91892
AD
1461
1462In this case the flow of control can consist of only the repeated
1463sequence
1464
4929bf7b 1465 event handler --> call_* --> perl
d1b91892 1466
54310121 1467for practically the complete duration of the program. This means that
1468control may I<never> drop back to the surrounding scope in Perl at the
1469extreme left.
d1b91892
AD
1470
1471So what is the big problem? Well, if you are expecting Perl to tidy up
1472those temporaries for you, you might be in for a long wait. For Perl
5f05dabc 1473to dispose of your temporaries, control must drop back to the
d1b91892 1474enclosing scope at some stage. In the event driven scenario that may
1d45ec27 1475never happen. This means that, as time goes on, your program will
d1b91892
AD
1476create more and more temporaries, none of which will ever be freed. As
1477each of these temporaries consumes some memory your program will
19799a22 1478eventually consume all the available memory in your system--kapow!
d1b91892 1479
19799a22 1480So here is the bottom line--if you are sure that control will revert
d1b91892 1481back to the enclosing Perl scope fairly quickly after the end of your
5f05dabc 1482callback, then it isn't absolutely necessary to dispose explicitly of
d1b91892
AD
1483any temporaries you may have created. Mind you, if you are at all
1484uncertain about what to do, it doesn't do any harm to tidy up anyway.
1485
1486
02f6dca1 1487=head2 Strategies for Storing Callback Context Information
d1b91892
AD
1488
1489
1490Potentially one of the trickiest problems to overcome when designing a
1491callback interface can be figuring out how to store the mapping between
1492the C callback function and the Perl equivalent.
1493
1494To help understand why this can be a real problem first consider how a
1495callback is set up in an all C environment. Typically a C API will
1496provide a function to register a callback. This will expect a pointer
1497to a function as one of its parameters. Below is a call to a
1498hypothetical function C<register_fatal> which registers the C function
1499to get called when a fatal error occurs.
1500
4358a253 1501 register_fatal(cb1);
d1b91892
AD
1502
1503The single parameter C<cb1> is a pointer to a function, so you must
1504have defined C<cb1> in your code, say something like this
1505
1506 static void
1507 cb1()
1508 {
4358a253
SS
1509 printf ("Fatal Error\n");
1510 exit(1);
d1b91892
AD
1511 }
1512
1513Now change that to call a Perl subroutine instead
1514
1515 static SV * callback = (SV*)NULL;
1516
1517 static void
1518 cb1()
1519 {
4358a253 1520 dSP;
d1b91892 1521
4358a253 1522 PUSHMARK(SP);
d1b91892
AD
1523
1524 /* Call the Perl sub to process the callback */
4358a253 1525 call_sv(callback, G_DISCARD);
d1b91892
AD
1526 }
1527
1528
1529 void
1530 register_fatal(fn)
1531 SV * fn
1532 CODE:
1533 /* Remember the Perl sub */
1534 if (callback == (SV*)NULL)
4358a253 1535 callback = newSVsv(fn);
d1b91892 1536 else
4358a253 1537 SvSetSV(callback, fn);
d1b91892
AD
1538
1539 /* register the callback with the external library */
4358a253 1540 register_fatal(cb1);
d1b91892
AD
1541
1542where the Perl equivalent of C<register_fatal> and the callback it
1543registers, C<pcb1>, might look like this
1544
1545 # Register the sub pcb1
4358a253 1546 register_fatal(\&pcb1);
d1b91892 1547
84f709e7
JH
1548 sub pcb1
1549 {
4358a253 1550 die "I'm dying...\n";
d1b91892
AD
1551 }
1552
1553The mapping between the C callback and the Perl equivalent is stored in
1554the global variable C<callback>.
1555
5f05dabc 1556This will be adequate if you ever need to have only one callback
d1b91892
AD
1557registered at any time. An example could be an error handler like the
1558code sketched out above. Remember though, repeated calls to
1559C<register_fatal> will replace the previously registered callback
1560function with the new one.
1561
1562Say for example you want to interface to a library which allows asynchronous
1563file i/o. In this case you may be able to register a callback whenever
1564a read operation has completed. To be of any use we want to be able to
1565call separate Perl subroutines for each file that is opened. As it
1566stands, the error handler example above would not be adequate as it
1567allows only a single callback to be defined at any time. What we
1568require is a means of storing the mapping between the opened file and
1569the Perl subroutine we want to be called for that file.
1570
1571Say the i/o library has a function C<asynch_read> which associates a C
19799a22 1572function C<ProcessRead> with a file handle C<fh>--this assumes that it
d1b91892
AD
1573has also provided some routine to open the file and so obtain the file
1574handle.
1575
1576 asynch_read(fh, ProcessRead)
1577
1578This may expect the C I<ProcessRead> function of this form
1579
1580 void
1581 ProcessRead(fh, buffer)
4358a253
SS
1582 int fh;
1583 char * buffer;
d1b91892 1584 {
54310121 1585 ...
d1b91892
AD
1586 }
1587
1588To provide a Perl interface to this library we need to be able to map
1589between the C<fh> parameter and the Perl subroutine we want called. A
1590hash is a convenient mechanism for storing this mapping. The code
1591below shows a possible implementation
1592
4358a253 1593 static HV * Mapping = (HV*)NULL;
a0d0e21e 1594
d1b91892
AD
1595 void
1596 asynch_read(fh, callback)
1597 int fh
1598 SV * callback
1599 CODE:
1600 /* If the hash doesn't already exist, create it */
1601 if (Mapping == (HV*)NULL)
4358a253 1602 Mapping = newHV();
d1b91892
AD
1603
1604 /* Save the fh -> callback mapping */
4358a253 1605 hv_store(Mapping, (char*)&fh, sizeof(fh), newSVsv(callback), 0);
d1b91892
AD
1606
1607 /* Register with the C Library */
4358a253 1608 asynch_read(fh, asynch_read_if);
d1b91892
AD
1609
1610and C<asynch_read_if> could look like this
1611
1612 static void
1613 asynch_read_if(fh, buffer)
4358a253
SS
1614 int fh;
1615 char * buffer;
d1b91892 1616 {
4358a253
SS
1617 dSP;
1618 SV ** sv;
d1b91892
AD
1619
1620 /* Get the callback associated with fh */
4358a253 1621 sv = hv_fetch(Mapping, (char*)&fh , sizeof(fh), FALSE);
d1b91892 1622 if (sv == (SV**)NULL)
4358a253 1623 croak("Internal error...\n");
d1b91892 1624
4358a253 1625 PUSHMARK(SP);
d0554719
TC
1626 EXTEND(SP, 2);
1627 PUSHs(sv_2mortal(newSViv(fh)));
1628 PUSHs(sv_2mortal(newSVpv(buffer, 0)));
4358a253 1629 PUTBACK;
d1b91892
AD
1630
1631 /* Call the Perl sub */
4358a253 1632 call_sv(*sv, G_DISCARD);
d1b91892
AD
1633 }
1634
1635For completeness, here is C<asynch_close>. This shows how to remove
1636the entry from the hash C<Mapping>.
1637
1638 void
1639 asynch_close(fh)
1640 int fh
1641 CODE:
1642 /* Remove the entry from the hash */
4358a253 1643 (void) hv_delete(Mapping, (char*)&fh, sizeof(fh), G_DISCARD);
a0d0e21e 1644
d1b91892 1645 /* Now call the real asynch_close */
4358a253 1646 asynch_close(fh);
a0d0e21e 1647
d1b91892
AD
1648So the Perl interface would look like this
1649
84f709e7
JH
1650 sub callback1
1651 {
4358a253 1652 my($handle, $buffer) = @_;
d1b91892 1653 }
a0d0e21e 1654
d1b91892 1655 # Register the Perl callback
4358a253 1656 asynch_read($fh, \&callback1);
a0d0e21e 1657
4358a253 1658 asynch_close($fh);
d1b91892
AD
1659
1660The mapping between the C callback and Perl is stored in the global
1661hash C<Mapping> this time. Using a hash has the distinct advantage that
1662it allows an unlimited number of callbacks to be registered.
1663
1664What if the interface provided by the C callback doesn't contain a
1665parameter which allows the file handle to Perl subroutine mapping? Say
1666in the asynchronous i/o package, the callback function gets passed only
1667the C<buffer> parameter like this
1668
1669 void
1670 ProcessRead(buffer)
4358a253 1671 char * buffer;
d1b91892
AD
1672 {
1673 ...
1674 }
a0d0e21e 1675
d1b91892
AD
1676Without the file handle there is no straightforward way to map from the
1677C callback to the Perl subroutine.
a0d0e21e 1678
54310121 1679In this case a possible way around this problem is to predefine a
d1b91892
AD
1680series of C functions to act as the interface to Perl, thus
1681
1682 #define MAX_CB 3
1683 #define NULL_HANDLE -1
4358a253 1684 typedef void (*FnMap)();
d1b91892
AD
1685
1686 struct MapStruct {
4358a253
SS
1687 FnMap Function;
1688 SV * PerlSub;
1689 int Handle;
1690 };
d1b91892 1691
4358a253
SS
1692 static void fn1();
1693 static void fn2();
1694 static void fn3();
d1b91892
AD
1695
1696 static struct MapStruct Map [MAX_CB] =
1697 {
1698 { fn1, NULL, NULL_HANDLE },
1699 { fn2, NULL, NULL_HANDLE },
1700 { fn3, NULL, NULL_HANDLE }
4358a253 1701 };
d1b91892
AD
1702
1703 static void
1704 Pcb(index, buffer)
4358a253
SS
1705 int index;
1706 char * buffer;
d1b91892 1707 {
4358a253 1708 dSP;
d1b91892 1709
4358a253
SS
1710 PUSHMARK(SP);
1711 XPUSHs(sv_2mortal(newSVpv(buffer, 0)));
1712 PUTBACK;
d1b91892
AD
1713
1714 /* Call the Perl sub */
4358a253 1715 call_sv(Map[index].PerlSub, G_DISCARD);
d1b91892
AD
1716 }
1717
1718 static void
1719 fn1(buffer)
4358a253 1720 char * buffer;
d1b91892 1721 {
4358a253 1722 Pcb(0, buffer);
d1b91892
AD
1723 }
1724
1725 static void
1726 fn2(buffer)
4358a253 1727 char * buffer;
d1b91892 1728 {
4358a253 1729 Pcb(1, buffer);
d1b91892
AD
1730 }
1731
1732 static void
1733 fn3(buffer)
4358a253 1734 char * buffer;
d1b91892 1735 {
4358a253 1736 Pcb(2, buffer);
d1b91892
AD
1737 }
1738
1739 void
1740 array_asynch_read(fh, callback)
1741 int fh
1742 SV * callback
1743 CODE:
4358a253
SS
1744 int index;
1745 int null_index = MAX_CB;
d1b91892
AD
1746
1747 /* Find the same handle or an empty entry */
4358a253 1748 for (index = 0; index < MAX_CB; ++index)
d1b91892
AD
1749 {
1750 if (Map[index].Handle == fh)
4358a253 1751 break;
d1b91892
AD
1752
1753 if (Map[index].Handle == NULL_HANDLE)
4358a253 1754 null_index = index;
d1b91892
AD
1755 }
1756
1757 if (index == MAX_CB && null_index == MAX_CB)
4358a253 1758 croak ("Too many callback functions registered\n");
d1b91892
AD
1759
1760 if (index == MAX_CB)
4358a253 1761 index = null_index;
d1b91892
AD
1762
1763 /* Save the file handle */
4358a253 1764 Map[index].Handle = fh;
d1b91892
AD
1765
1766 /* Remember the Perl sub */
1767 if (Map[index].PerlSub == (SV*)NULL)
4358a253 1768 Map[index].PerlSub = newSVsv(callback);
d1b91892 1769 else
4358a253 1770 SvSetSV(Map[index].PerlSub, callback);
d1b91892 1771
4358a253 1772 asynch_read(fh, Map[index].Function);
d1b91892
AD
1773
1774 void
1775 array_asynch_close(fh)
1776 int fh
1777 CODE:
4358a253 1778 int index;
d1b91892
AD
1779
1780 /* Find the file handle */
4358a253 1781 for (index = 0; index < MAX_CB; ++ index)
d1b91892 1782 if (Map[index].Handle == fh)
4358a253 1783 break;
d1b91892
AD
1784
1785 if (index == MAX_CB)
4358a253 1786 croak ("could not close fh %d\n", fh);
d1b91892 1787
4358a253
SS
1788 Map[index].Handle = NULL_HANDLE;
1789 SvREFCNT_dec(Map[index].PerlSub);
1790 Map[index].PerlSub = (SV*)NULL;
d1b91892 1791
4358a253 1792 asynch_close(fh);
d1b91892 1793
5f05dabc 1794In this case the functions C<fn1>, C<fn2>, and C<fn3> are used to
d1b91892 1795remember the Perl subroutine to be called. Each of the functions holds
4a6725af 1796a separate hard-wired index which is used in the function C<Pcb> to
d1b91892
AD
1797access the C<Map> array and actually call the Perl subroutine.
1798
1799There are some obvious disadvantages with this technique.
1800
1801Firstly, the code is considerably more complex than with the previous
1802example.
1803
4a6725af 1804Secondly, there is a hard-wired limit (in this case 3) to the number of
d1b91892
AD
1805callbacks that can exist simultaneously. The only way to increase the
1806limit is by modifying the code to add more functions and then
54310121 1807recompiling. None the less, as long as the number of functions is
d1b91892
AD
1808chosen with some care, it is still a workable solution and in some
1809cases is the only one available.
1810
1811To summarize, here are a number of possible methods for you to consider
1812for storing the mapping between C and the Perl callback
1813
1814=over 5
1815
1816=item 1. Ignore the problem - Allow only 1 callback
1817
1818For a lot of situations, like interfacing to an error handler, this may
1819be a perfectly adequate solution.
1820
1821=item 2. Create a sequence of callbacks - hard wired limit
1822
1823If it is impossible to tell from the parameters passed back from the C
1824callback what the context is, then you may need to create a sequence of C
1825callback interface functions, and store pointers to each in an array.
1826
1827=item 3. Use a parameter to map to the Perl callback
1828
1829A hash is an ideal mechanism to store the mapping between C and Perl.
1830
1831=back
a0d0e21e 1832
a0d0e21e
LW
1833
1834=head2 Alternate Stack Manipulation
1835
a0d0e21e 1836
d1b91892
AD
1837Although I have made use of only the C<POP*> macros to access values
1838returned from Perl subroutines, it is also possible to bypass these
8e07c86e 1839macros and read the stack using the C<ST> macro (See L<perlxs> for a
d1b91892
AD
1840full description of the C<ST> macro).
1841
1d45ec27 1842Most of the time the C<POP*> macros should be adequate; the main
d1b91892
AD
1843problem with them is that they force you to process the returned values
1844in sequence. This may not be the most suitable way to process the
1845values in some cases. What we want is to be able to access the stack in
1846a random order. The C<ST> macro as used when coding an XSUB is ideal
1847for this purpose.
1848
d0554719 1849The code below is the example given in the section L</Returning a List
1d45ec27 1850of Values> recoded to use C<ST> instead of C<POP*>.
d1b91892
AD
1851
1852 static void
1853 call_AddSubtract2(a, b)
4358a253
SS
1854 int a;
1855 int b;
d1b91892 1856 {
4358a253
SS
1857 dSP;
1858 I32 ax;
1859 int count;
d1b91892 1860
4358a253 1861 ENTER;
d1b91892
AD
1862 SAVETMPS;
1863
4358a253 1864 PUSHMARK(SP);
d0554719
TC
1865 EXTEND(SP, 2);
1866 PUSHs(sv_2mortal(newSViv(a)));
1867 PUSHs(sv_2mortal(newSViv(b)));
4358a253 1868 PUTBACK;
d1b91892 1869
4929bf7b 1870 count = call_pv("AddSubtract", G_ARRAY);
d1b91892 1871
4358a253
SS
1872 SPAGAIN;
1873 SP -= count;
1874 ax = (SP - PL_stack_base) + 1;
d1b91892
AD
1875
1876 if (count != 2)
4358a253 1877 croak("Big trouble\n");
a0d0e21e 1878
4358a253
SS
1879 printf ("%d + %d = %d\n", a, b, SvIV(ST(0)));
1880 printf ("%d - %d = %d\n", a, b, SvIV(ST(1)));
d1b91892 1881
4358a253
SS
1882 PUTBACK;
1883 FREETMPS;
1884 LEAVE;
d1b91892
AD
1885 }
1886
1887Notes
1888
1889=over 5
1890
1891=item 1.
1892
1893Notice that it was necessary to define the variable C<ax>. This is
1894because the C<ST> macro expects it to exist. If we were in an XSUB it
1895would not be necessary to define C<ax> as it is already defined for
1d45ec27 1896us.
d1b91892
AD
1897
1898=item 2.
1899
1900The code
1901
4358a253
SS
1902 SPAGAIN;
1903 SP -= count;
1904 ax = (SP - PL_stack_base) + 1;
d1b91892
AD
1905
1906sets the stack up so that we can use the C<ST> macro.
1907
1908=item 3.
1909
1910Unlike the original coding of this example, the returned
1911values are not accessed in reverse order. So C<ST(0)> refers to the
54310121 1912first value returned by the Perl subroutine and C<ST(count-1)>
d1b91892
AD
1913refers to the last.
1914
1915=back
a0d0e21e 1916
02f6dca1 1917=head2 Creating and Calling an Anonymous Subroutine in C
8f183262 1918
4929bf7b 1919As we've already shown, C<call_sv> can be used to invoke an
c2611fb3
GS
1920anonymous subroutine. However, our example showed a Perl script
1921invoking an XSUB to perform this operation. Let's see how it can be
8f183262
DM
1922done inside our C code:
1923
8f183262
DM
1924 ...
1925
e46aa1dd
KW
1926 SV *cvrv
1927 = eval_pv("sub {
1928 print 'You will not find me cluttering any namespace!'
1929 }", TRUE);
8f183262
DM
1930
1931 ...
1932
4929bf7b 1933 call_sv(cvrv, G_VOID|G_NOARGS);
8f183262 1934
4929bf7b
GS
1935C<eval_pv> is used to compile the anonymous subroutine, which
1936will be the return value as well (read more about C<eval_pv> in
4a4eefd0 1937L<perlapi/eval_pv>). Once this code reference is in hand, it
8f183262
DM
1938can be mixed in with all the previous examples we've shown.
1939
9850bf21
RH
1940=head1 LIGHTWEIGHT CALLBACKS
1941
1942Sometimes you need to invoke the same subroutine repeatedly.
1943This usually happens with a function that acts on a list of
1944values, such as Perl's built-in sort(). You can pass a
1945comparison function to sort(), which will then be invoked
1946for every pair of values that needs to be compared. The first()
1947and reduce() functions from L<List::Util> follow a similar
1948pattern.
1949
1950In this case it is possible to speed up the routine (often
1951quite substantially) by using the lightweight callback API.
1952The idea is that the calling context only needs to be
1953created and destroyed once, and the sub can be called
1954arbitrarily many times in between.
1955
ac036724 1956It is usual to pass parameters using global variables (typically
1957$_ for one parameter, or $a and $b for two parameters) rather
9850bf21
RH
1958than via @_. (It is possible to use the @_ mechanism if you know
1959what you're doing, though there is as yet no supported API for
1960it. It's also inherently slower.)
1961
1962The pattern of macro calls is like this:
1963
82f35e8b 1964 dMULTICALL; /* Declare local variables */
1c23e2bd 1965 U8 gimme = G_SCALAR; /* context of the call: G_SCALAR,
782a81f5 1966 * G_ARRAY, or G_VOID */
9850bf21 1967
82f35e8b
RH
1968 PUSH_MULTICALL(cv); /* Set up the context for calling cv,
1969 and set local vars appropriately */
9850bf21
RH
1970
1971 /* loop */ {
1972 /* set the value(s) af your parameter variables */
1973 MULTICALL; /* Make the actual call */
1974 } /* end of loop */
1975
1976 POP_MULTICALL; /* Tear down the calling context */
1977
1978For some concrete examples, see the implementation of the
1979first() and reduce() functions of List::Util 1.18. There you
1980will also find a header file that emulates the multicall API
1981on older versions of perl.
1982
a0d0e21e
LW
1983=head1 SEE ALSO
1984
8e07c86e 1985L<perlxs>, L<perlguts>, L<perlembed>
a0d0e21e
LW
1986
1987=head1 AUTHOR
1988
0536e0eb 1989Paul Marquess
a0d0e21e 1990
d1b91892
AD
1991Special thanks to the following people who assisted in the creation of
1992the document.
a0d0e21e 1993
c07a80fd 1994Jeff Okamoto, Tim Bunce, Nick Gianniotis, Steve Kelem, Gurusamy Sarathy
1995and Larry Wall.
a0d0e21e
LW
1996
1997=head1 DATE
1998
d0554719 1999Last updated for perl 5.23.1.