This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Change docs display for PERL_UNUSED_foo
[perl5.git] / regen / regcharclass.pl
CommitLineData
1f00b0d6 1#!perl
e64b1bd1 2package CharClass::Matcher;
12b72891 3use strict;
8770da0e 4use 5.008;
12b72891 5use warnings;
e64b1bd1 6use warnings FATAL => 'all';
12b72891 7use Data::Dumper;
e64b1bd1
YO
8$Data::Dumper::Useqq= 1;
9our $hex_fmt= "0x%02X";
12b72891 10
75929b4b
KW
11sub DEBUG () { 0 }
12$|=1 if DEBUG;
13
3d7c117d
MB
14require './regen/regen_lib.pl';
15require './regen/charset_translations.pl';
4c9bc717 16require "./regen/regcharclass_multi_char_folds.pl";
8770da0e 17
ab84f958 18=head1 NAME
0ccab2bc 19
e64b1bd1 20CharClass::Matcher -- Generate C macros that match character classes efficiently
12b72891 21
e64b1bd1
YO
22=head1 SYNOPSIS
23
944ff787 24 perl regen/regcharclass.pl
e64b1bd1
YO
25
26=head1 DESCRIPTION
12b72891
RGS
27
28Dynamically generates macros for detecting special charclasses
e64b1bd1 29in latin-1, utf8, and codepoint forms. Macros can be set to return
cc08b31c 30the length (in bytes) of the matched codepoint, and/or the codepoint itself.
12b72891 31
cc08b31c 32To regenerate F<regcharclass.h>, run this script from perl-root. No arguments
12b72891
RGS
33are necessary.
34
cc08b31c
KW
35Using WHATEVER as an example the following macros can be produced, depending
36on the input parameters (how to get each is described by internal comments at
37the C<__DATA__> line):
12b72891
RGS
38
39=over 4
40
cc08b31c 41=item C<is_WHATEVER(s,is_utf8)>
12b72891 42
cc08b31c 43=item C<is_WHATEVER_safe(s,e,is_utf8)>
12b72891 44
cc08b31c 45Do a lookup as appropriate based on the C<is_utf8> flag. When possible
ab473f03 46comparisons involving octet<128 are done before checking the C<is_utf8>
12b72891
RGS
47flag, hopefully saving time.
48
cc08b31c
KW
49The version without the C<_safe> suffix should be used only when the input is
50known to be well-formed.
12b72891 51
cc08b31c
KW
52=item C<is_WHATEVER_utf8(s)>
53
54=item C<is_WHATEVER_utf8_safe(s,e)>
12b72891
RGS
55
56Do a lookup assuming the string is encoded in (normalized) UTF8.
57
cc08b31c
KW
58The version without the C<_safe> suffix should be used only when the input is
59known to be well-formed.
60
61=item C<is_WHATEVER_latin1(s)>
12b72891 62
cc08b31c 63=item C<is_WHATEVER_latin1_safe(s,e)>
12b72891
RGS
64
65Do a lookup assuming the string is encoded in latin-1 (aka plan octets).
66
cc08b31c
KW
67The version without the C<_safe> suffix should be used only when it is known
68that C<s> contains at least one character.
69
70=item C<is_WHATEVER_cp(cp)>
12b72891 71
47e01c32 72Check to see if the string matches a given codepoint (hypothetically a
b6a6e956 73U32). The condition is constructed as to "break out" as early as
12b72891
RGS
74possible if the codepoint is out of range of the condition.
75
76IOW:
77
78 (cp==X || (cp>X && (cp==Y || (cp>Y && ...))))
79
80Thus if the character is X+1 only two comparisons will be done. Making
81matching lookups slower, but non-matching faster.
82
cc08b31c
KW
83=item C<what_len_WHATEVER_FOO(arg1, ..., len)>
84
85A variant form of each of the macro types described above can be generated, in
86which the code point is returned by the macro, and an extra parameter (in the
87final position) is added, which is a pointer for the macro to set the byte
88length of the returned code point.
89
90These forms all have a C<what_len> prefix instead of the C<is_>, for example
91C<what_len_WHATEVER_safe(s,e,is_utf8,len)> and
92C<what_len_WHATEVER_utf8(s,len)>.
93
94These forms should not be used I<except> on small sets of mostly widely
95separated code points; otherwise the code generated is inefficient. For these
96cases, it is best to use the C<is_> forms, and then find the code point with
97C<utf8_to_uvchr_buf>(). This program can fail with a "deep recursion"
98message on the worst of the inappropriate sets. Examine the generated macro
99to see if it is acceptable.
12b72891 100
cc08b31c
KW
101=item C<what_WHATEVER_FOO(arg1, ...)>
102
103A variant form of each of the C<is_> macro types described above can be generated, in
104which the code point and not the length is returned by the macro. These have
105the same caveat as L</what_len_WHATEVER_FOO(arg1, ..., len)>, plus they should
106not be used where the set contains a NULL, as 0 is returned for two different
107cases: a) the set doesn't include the input code point; b) the set does
108include it, and it is a NULL.
109
110=back
e64b1bd1 111
40f914fd
KW
112The above isn't quite complete, as for specialized purposes one can get a
113macro like C<is_WHATEVER_utf8_no_length_checks(s)>, which assumes that it is
114already known that there is enough space to hold the character starting at
115C<s>, but otherwise checks that it is well-formed. In other words, this is
116intermediary in checking between C<is_WHATEVER_utf8(s)> and
117C<is_WHATEVER_utf8_safe(s,e)>.
118
e64b1bd1
YO
119=head2 CODE FORMAT
120
121perltidy -st -bt=1 -bbt=0 -pt=0 -sbt=1 -ce -nwls== "%f"
122
123
124=head1 AUTHOR
125
cc08b31c 126Author: Yves Orton (demerphq) 2007. Maintained by Perl5 Porters.
e64b1bd1
YO
127
128=head1 BUGS
129
130No tests directly here (although the regex engine will fail tests
131if this code is broken). Insufficient documentation and no Getopts
132handler for using the module as a script.
133
134=head1 LICENSE
135
136You may distribute under the terms of either the GNU General Public
137License or the Artistic License, as specified in the README file.
138
12b72891
RGS
139=cut
140
e64b1bd1
YO
141# Sub naming convention:
142# __func : private subroutine, can not be called as a method
143# _func : private method, not meant for external use
144# func : public method.
145
146# private subs
147#-------------------------------------------------------------------------------
148#
149# ($cp,$n,$l,$u)=__uni_latin($str);
150#
47e01c32 151# Return a list of arrays, each of which when interpreted correctly
e64b1bd1
YO
152# represent the string in some given encoding with specific conditions.
153#
154# $cp - list of codepoints that make up the string.
295bcca9
KW
155# $n - list of octets that make up the string if all codepoints are invariant
156# regardless of if the string is in UTF-8 or not.
e64b1bd1 157# $l - list of octets that make up the string in latin1 encoding if all
295bcca9
KW
158# codepoints < 256, and at least one codepoint is UTF-8 variant.
159# $u - list of octets that make up the string in utf8 if any codepoint is
160# UTF-8 variant
e64b1bd1
YO
161#
162# High CP | Defined
163#-----------+----------
295bcca9 164# 0 - 127 : $n (127/128 are the values for ASCII platforms)
e64b1bd1
YO
165# 128 - 255 : $l, $u
166# 256 - ... : $u
167#
168
169sub __uni_latin1 {
a1b2a50f 170 my $charset= shift;
e64b1bd1
YO
171 my $str= shift;
172 my $max= 0;
173 my @cp;
900c17f9 174 my @cp_high;
295bcca9 175 my $only_has_invariants = 1;
c30a0cf2 176 my $a2n = get_a2n($charset);
e64b1bd1
YO
177 for my $ch ( split //, $str ) {
178 my $cp= ord $ch;
e64b1bd1 179 $max= $cp if $max < $cp;
a1b2a50f
KW
180 if ($cp > 255) {
181 push @cp, $cp;
182 push @cp_high, $cp;
183 }
184 else {
c30a0cf2 185 push @cp, $a2n->[$cp];
295bcca9 186 }
e64b1bd1
YO
187 }
188 my ( $n, $l, $u );
a1b2a50f 189 $only_has_invariants = ($charset =~ /ascii/i) ? $max < 128 : $max < 160;
295bcca9 190 if ($only_has_invariants) {
e64b1bd1
YO
191 $n= [@cp];
192 } else {
193 $l= [@cp] if $max && $max < 256;
194
a1b2a50f
KW
195 my @u;
196 for my $ch ( split //, $str ) {
197 push @u, map { ord } split //, cp_2_utfbytes(ord $ch, $charset);
198 }
199 $u = \@u;
12b72891 200 }
900c17f9 201 return ( \@cp, \@cp_high, $n, $l, $u );
12b72891
RGS
202}
203
12b72891 204#
e64b1bd1
YO
205# $clean= __clean($expr);
206#
207# Cleanup a ternary expression, removing unnecessary parens and apply some
208# simplifications using regexes.
209#
210
211sub __clean {
212 my ( $expr )= @_;
8fdb8a9d 213
9a3182e9
YO
214 #return $expr;
215
e64b1bd1
YO
216 our $parens;
217 $parens= qr/ (?> \( (?> (?: (?> [^()]+ ) | (??{ $parens }) )* ) \) ) /x;
218
8fdb8a9d 219 ## remove redundant parens
e64b1bd1 220 1 while $expr =~ s/ \( \s* ( $parens ) \s* \) /$1/gx;
8fdb8a9d
YO
221
222
223 # repeatedly simplify conditions like
224 # ( (cond1) ? ( (cond2) ? X : Y ) : Y )
225 # into
226 # ( ( (cond1) && (cond2) ) ? X : Y )
6c4f0678
YO
227 # Also similarly handles expressions like:
228 # : (cond1) ? ( (cond2) ? X : Y ) : Y )
229 # Note the inclusion of the close paren in ([:()]) and the open paren in ([()]) is
230 # purely to ensure we have a balanced set of parens in the expression which makes
231 # it easier to understand the pattern in an editor that understands paren's, we do
232 # not expect either of these cases to actually fire. - Yves
8fdb8a9d 233 1 while $expr =~ s/
6c4f0678 234 ([:()]) \s*
8fdb8a9d
YO
235 ($parens) \s*
236 \? \s*
237 \( \s* ($parens) \s*
6c4f0678
YO
238 \? \s* ($parens|[^()?:\s]+?) \s*
239 : \s* ($parens|[^()?:\s]+?) \s*
8fdb8a9d 240 \) \s*
6c4f0678
YO
241 : \s* \5 \s*
242 ([()])
243 /$1 ( $2 && $3 ) ? $4 : $5 $6/gx;
39a0f513
YO
244 #$expr=~s/\(\(U8\*\)s\)\[(\d+)\]/S$1/g if length $expr > 8000;
245 #$expr=~s/\s+//g if length $expr > 8000;
246
247 die "Expression too long" if length $expr > 8000;
8fdb8a9d 248
e64b1bd1 249 return $expr;
12b72891
RGS
250}
251
e64b1bd1
YO
252#
253# $text= __macro(@args);
254# Join args together by newlines, and then neatly add backslashes to the end
255# of every line as expected by the C pre-processor for #define's.
256#
257
258sub __macro {
259 my $str= join "\n", @_;
260 $str =~ s/\s*$//;
261 my @lines= map { s/\s+$//; s/\t/ /g; $_ } split /\n/, $str;
262 my $last= pop @lines;
263 $str= join "\n", ( map { sprintf "%-76s\\", $_ } @lines ), $last;
264 1 while $str =~ s/^(\t*) {8}/$1\t/gm;
265 return $str . "\n";
12b72891
RGS
266}
267
e64b1bd1
YO
268#
269# my $op=__incrdepth($op);
270#
271# take an 'op' hashref and add one to it and all its childrens depths.
272#
273
274sub __incrdepth {
275 my $op= shift;
276 return unless ref $op;
277 $op->{depth} += 1;
278 __incrdepth( $op->{yes} );
279 __incrdepth( $op->{no} );
280 return $op;
281}
282
283# join two branches of an opcode together with a condition, incrementing
284# the depth on the yes branch when we do so.
285# returns the new root opcode of the tree.
286sub __cond_join {
287 my ( $cond, $yes, $no )= @_;
5ab0c3af 288 if (ref $yes) {
3ff97bcf
KW
289 return {
290 test => $cond,
291 yes => __incrdepth( $yes ),
292 no => $no,
293 depth => 0,
294 };
5ab0c3af
KW
295 }
296 else {
297 return {
298 test => $cond,
299 yes => $yes,
300 no => __incrdepth($no),
301 depth => 0,
302 };
303 }
e64b1bd1
YO
304}
305
306# Methods
307
308# constructor
309#
310# my $obj=CLASS->new(op=>'SOMENAME',title=>'blah',txt=>[..]);
311#
312# Create a new CharClass::Matcher object by parsing the text in
313# the txt array. Currently applies the following rules:
314#
315# Element starts with C<0x>, line is evaled the result treated as
316# a number which is passed to chr().
317#
318# Element starts with C<">, line is evaled and the result treated
319# as a string.
320#
321# Each string is then stored in the 'strs' subhash as a hash record
322# made up of the results of __uni_latin1, using the keynames
b1af8fef 323# 'low','latin1','utf8', as well as the synthesized 'LATIN1', 'high', and
b6a6e956 324# 'UTF8' which hold a merge of 'low' and their lowercase equivalents.
e64b1bd1
YO
325#
326# Size data is tracked per type in the 'size' subhash.
327#
328# Return an object
329#
12b72891
RGS
330sub new {
331 my $class= shift;
e64b1bd1
YO
332 my %opt= @_;
333 for ( qw(op txt) ) {
334 die "in " . __PACKAGE__ . " constructor '$_;' is a mandatory field"
335 if !exists $opt{$_};
336 }
337
338 my $self= bless {
339 op => $opt{op},
340 title => $opt{title} || '',
341 }, $class;
342 foreach my $txt ( @{ $opt{txt} } ) {
343 my $str= $txt;
344 if ( $str =~ /^[""]/ ) {
345 $str= eval $str;
05b688d9
KW
346 } elsif ($str =~ / - /x ) { # A range: Replace this element on the
347 # list with its expansion
348 my ($lower, $upper) = $str =~ / 0x (.+?) \s* - \s* 0x (.+) /x;
349 die "Format must be like '0xDEAD - 0xBEAF'; instead was '$str'" if ! defined $lower || ! defined $upper;
350 foreach my $cp (hex $lower .. hex $upper) {
351 push @{$opt{txt}}, sprintf "0x%X", $cp;
352 }
353 next;
295bcca9
KW
354 } elsif ($str =~ s/ ^ N (?= 0x ) //x ) {
355 # Otherwise undocumented, a leading N means is already in the
356 # native character set; don't convert.
e64b1bd1 357 $str= chr eval $str;
295bcca9
KW
358 } elsif ( $str =~ /^0x/ ) {
359 $str= eval $str;
295bcca9 360 $str = chr $str;
05b688d9
KW
361 } elsif ( $str =~ / \s* \\p \{ ( .*? ) \} /x) {
362 my $property = $1;
363 use Unicode::UCD qw(prop_invlist);
364
365 my @invlist = prop_invlist($property, '_perl_core_internal_ok');
366 if (! @invlist) {
367
368 # An empty return could mean an unknown property, or merely
369 # that it is empty. Call in scalar context to differentiate
370 my $count = prop_invlist($property, '_perl_core_internal_ok');
371 die "$property not found" unless defined $count;
372 }
373
374 # Replace this element on the list with the property's expansion
375 for (my $i = 0; $i < @invlist; $i += 2) {
376 foreach my $cp ($invlist[$i] .. $invlist[$i+1] - 1) {
295bcca9
KW
377
378 # prop_invlist() returns native values; add leading 'N'
379 # to indicate that.
380 push @{$opt{txt}}, sprintf "N0x%X", $cp;
05b688d9
KW
381 }
382 }
383 next;
60910c93
KW
384 } elsif ($str =~ / ^ do \s+ ( .* ) /x) {
385 die "do '$1' failed: $!$@" if ! do $1 or $@;
386 next;
387 } elsif ($str =~ / ^ & \s* ( .* ) /x) { # user-furnished sub() call
388 my @results = eval "$1";
389 die "eval '$1' failed: $@" if $@;
390 push @{$opt{txt}}, @results;
391 next;
12b72891 392 } else {
5e6c6c1e 393 die "Unparsable line: $txt\n";
12b72891 394 }
a1b2a50f 395 my ( $cp, $cp_high, $low, $latin1, $utf8 )= __uni_latin1( $opt{charset}, $str );
e64b1bd1
YO
396 my $UTF8= $low || $utf8;
397 my $LATIN1= $low || $latin1;
b1af8fef 398 my $high = (scalar grep { $_ < 256 } @$cp) ? 0 : $utf8;
dda856b2
YO
399 #die Dumper($txt,$cp,$low,$latin1,$utf8)
400 # if $txt=~/NEL/ or $utf8 and @$utf8>3;
e64b1bd1 401
900c17f9
KW
402 @{ $self->{strs}{$str} }{qw( str txt low utf8 latin1 high cp cp_high UTF8 LATIN1 )}=
403 ( $str, $txt, $low, $utf8, $latin1, $high, $cp, $cp_high, $UTF8, $LATIN1 );
e64b1bd1 404 my $rec= $self->{strs}{$str};
900c17f9 405 foreach my $key ( qw(low utf8 latin1 high cp cp_high UTF8 LATIN1) ) {
e64b1bd1
YO
406 $self->{size}{$key}{ 0 + @{ $self->{strs}{$str}{$key} } }++
407 if $self->{strs}{$str}{$key};
12b72891 408 }
e64b1bd1
YO
409 $self->{has_multi} ||= @$cp > 1;
410 $self->{has_ascii} ||= $latin1 && @$latin1;
411 $self->{has_low} ||= $low && @$low;
412 $self->{has_high} ||= !$low && !$latin1;
12b72891 413 }
e64b1bd1
YO
414 $self->{val_fmt}= $hex_fmt;
415 $self->{count}= 0 + keys %{ $self->{strs} };
12b72891
RGS
416 return $self;
417}
418
e64b1bd1 419# my $trie = make_trie($type,$maxlen);
12b72891 420#
47e01c32 421# using the data stored in the object build a trie of a specific type,
e64b1bd1
YO
422# and with specific maximum depth. The trie is made up the elements of
423# the given types array for each string in the object (assuming it is
424# not too long.)
425#
47e01c32 426# returns the trie, or undef if there was no relevant data in the object.
e64b1bd1
YO
427#
428
429sub make_trie {
430 my ( $self, $type, $maxlen )= @_;
431
432 my $strs= $self->{strs};
433 my %trie;
434 foreach my $rec ( values %$strs ) {
435 die "panic: unknown type '$type'"
436 if !exists $rec->{$type};
437 my $dat= $rec->{$type};
438 next unless $dat;
439 next if $maxlen && @$dat > $maxlen;
440 my $node= \%trie;
441 foreach my $elem ( @$dat ) {
442 $node->{$elem} ||= {};
443 $node= $node->{$elem};
12b72891 444 }
e64b1bd1 445 $node->{''}= $rec->{str};
12b72891 446 }
e64b1bd1 447 return 0 + keys( %trie ) ? \%trie : undef;
12b72891
RGS
448}
449
2efb8143
KW
450sub pop_count ($) {
451 my $word = shift;
452
453 # This returns a list of the positions of the bits in the input word that
454 # are 1.
455
456 my @positions;
457 my $position = 0;
458 while ($word) {
459 push @positions, $position if $word & 1;
460 $position++;
461 $word >>= 1;
462 }
463 return @positions;
464}
465
e64b1bd1
YO
466# my $optree= _optree()
467#
468# recursively convert a trie to an optree where every node represents
469# an if else branch.
12b72891 470#
12b72891 471#
12b72891 472
e64b1bd1
YO
473sub _optree {
474 my ( $self, $trie, $test_type, $ret_type, $else, $depth )= @_;
475 return unless defined $trie;
476 if ( $self->{has_multi} and $ret_type =~ /cp|both/ ) {
477 die "Can't do 'cp' optree from multi-codepoint strings";
12b72891 478 }
e64b1bd1
YO
479 $ret_type ||= 'len';
480 $else= 0 unless defined $else;
481 $depth= 0 unless defined $depth;
482
b6a6e956 483 # if we have an empty string as a key it means we are in an
e405c23a
YO
484 # accepting state and unless we can match further on should
485 # return the value of the '' key.
895e25a5 486 if (exists $trie->{''} ) {
e405c23a
YO
487 # we can now update the "else" value, anything failing to match
488 # after this point should return the value from this.
e64b1bd1
YO
489 if ( $ret_type eq 'cp' ) {
490 $else= $self->{strs}{ $trie->{''} }{cp}[0];
491 $else= sprintf "$self->{val_fmt}", $else if $else > 9;
492 } elsif ( $ret_type eq 'len' ) {
493 $else= $depth;
494 } elsif ( $ret_type eq 'both') {
495 $else= $self->{strs}{ $trie->{''} }{cp}[0];
496 $else= sprintf "$self->{val_fmt}", $else if $else > 9;
497 $else= "len=$depth, $else";
12b72891 498 }
e64b1bd1 499 }
e405c23a
YO
500 # extract the meaningful keys from the trie, filter out '' as
501 # it means we are an accepting state (end of sequence).
502 my @conds= sort { $a <=> $b } grep { length $_ } keys %$trie;
503
b6a6e956 504 # if we haven't any keys there is no further we can match and we
e405c23a 505 # can return the "else" value.
e64b1bd1 506 return $else if !@conds;
e405c23a 507
29f3ce8f 508 my $test = $test_type =~ /^cp/ ? "cp" : "((const U8*)s)[$depth]";
e405c23a 509
c7c8bf55 510 # First we loop over the possible keys/conditions and find out what they
3ff97bcf 511 # look like; we group conditions with the same optree together.
9a3182e9
YO
512 my %dmp_res;
513 my @res_order;
e405c23a
YO
514 local $Data::Dumper::Sortkeys=1;
515 foreach my $cond ( @conds ) {
516
517 # get the optree for this child/condition
518 my $res= $self->_optree( $trie->{$cond}, $test_type, $ret_type, $else, $depth + 1 );
519 # convert it to a string with Dumper
e64b1bd1 520 my $res_code= Dumper( $res );
e405c23a 521
9a3182e9
YO
522 push @{$dmp_res{$res_code}{vals}}, $cond;
523 if (!$dmp_res{$res_code}{optree}) {
524 $dmp_res{$res_code}{optree}= $res;
525 push @res_order, $res_code;
526 }
527 }
528
529 # now that we have deduped the optrees we construct a new optree containing the merged
530 # results.
531 my %root;
532 my $node= \%root;
533 foreach my $res_code_idx (0 .. $#res_order) {
534 my $res_code= $res_order[$res_code_idx];
535 $node->{vals}= $dmp_res{$res_code}{vals};
536 $node->{test}= $test;
537 $node->{yes}= $dmp_res{$res_code}{optree};
538 $node->{depth}= $depth;
539 if ($res_code_idx < $#res_order) {
540 $node= $node->{no}= {};
12b72891 541 } else {
9a3182e9 542 $node->{no}= $else;
12b72891
RGS
543 }
544 }
e405c23a
YO
545
546 # return the optree.
547 return \%root;
12b72891
RGS
548}
549
e64b1bd1
YO
550# my $optree= optree(%opts);
551#
552# Convert a trie to an optree, wrapper for _optree
553
554sub optree {
555 my $self= shift;
556 my %opt= @_;
557 my $trie= $self->make_trie( $opt{type}, $opt{max_depth} );
558 $opt{ret_type} ||= 'len';
900c17f9 559 my $test_type= $opt{type} =~ /^cp/ ? 'cp' : 'depth';
e64b1bd1 560 return $self->_optree( $trie, $test_type, $opt{ret_type}, $opt{else}, 0 );
12b72891
RGS
561}
562
e64b1bd1
YO
563# my $optree= generic_optree(%opts);
564#
565# build a "generic" optree out of the three 'low', 'latin1', 'utf8'
566# sets of strings, including a branch for handling the string type check.
567#
568
569sub generic_optree {
570 my $self= shift;
571 my %opt= @_;
572
573 $opt{ret_type} ||= 'len';
574 my $test_type= 'depth';
575 my $else= $opt{else} || 0;
576
577 my $latin1= $self->make_trie( 'latin1', $opt{max_depth} );
578 my $utf8= $self->make_trie( 'utf8', $opt{max_depth} );
579
580 $_= $self->_optree( $_, $test_type, $opt{ret_type}, $else, 0 )
581 for $latin1, $utf8;
582
583 if ( $utf8 ) {
584 $else= __cond_join( "( is_utf8 )", $utf8, $latin1 || $else );
585 } elsif ( $latin1 ) {
586 $else= __cond_join( "!( is_utf8 )", $latin1, $else );
587 }
87894a24 588 if ($opt{type} eq 'generic') {
61de6bbc
KW
589 my $low= $self->make_trie( 'low', $opt{max_depth} );
590 if ( $low ) {
591 $else= $self->_optree( $low, $test_type, $opt{ret_type}, $else, 0 );
592 }
87894a24 593 }
e64b1bd1
YO
594
595 return $else;
12b72891
RGS
596}
597
e64b1bd1 598# length_optree()
12b72891 599#
e64b1bd1 600# create a string length guarded optree.
12b72891 601#
e64b1bd1
YO
602
603sub length_optree {
604 my $self= shift;
605 my %opt= @_;
606 my $type= $opt{type};
607
608 die "Can't do a length_optree on type 'cp', makes no sense."
900c17f9 609 if $type =~ /^cp/;
e64b1bd1 610
5ab0c3af
KW
611 my $else= ( $opt{else} ||= 0 );
612
c03e41dd
KW
613 return $else if $self->{count} == 0;
614
5ab0c3af
KW
615 my $method = $type =~ /generic/ ? 'generic_optree' : 'optree';
616 if ($method eq 'optree' && scalar keys %{$self->{size}{$type}} == 1) {
617
618 # Here is non-generic output (meaning that we are only generating one
619 # type), and all things that match have the same number ('size') of
620 # bytes. The length guard is simply that we have that number of
621 # bytes.
622 my @size = keys %{$self->{size}{$type}};
623 my $cond= "((e) - (s)) >= $size[0]";
624 my $optree = $self->$method(%opt);
625 $else= __cond_join( $cond, $optree, $else );
626 }
627 elsif ($self->{has_multi}) {
628 my @size;
e64b1bd1 629
5ab0c3af
KW
630 # Here, there can be a match of a multiple character string. We use
631 # the traditional method which is to have a branch for each possible
632 # size (longest first) and test for the legal values for that size.
e64b1bd1
YO
633 my %sizes= (
634 %{ $self->{size}{low} || {} },
635 %{ $self->{size}{latin1} || {} },
636 %{ $self->{size}{utf8} || {} }
637 );
5ab0c3af
KW
638 if ($method eq 'generic_optree') {
639 @size= sort { $a <=> $b } keys %sizes;
640 } else {
641 @size= sort { $a <=> $b } keys %{ $self->{size}{$type} };
642 }
643 for my $size ( @size ) {
644 my $optree= $self->$method( %opt, type => $type, max_depth => $size );
645 my $cond= "((e)-(s) > " . ( $size - 1 ).")";
646 $else= __cond_join( $cond, $optree, $else );
647 }
12b72891 648 }
5ab0c3af
KW
649 else {
650 my $utf8;
651
652 # Here, has more than one possible size, and only matches a single
653 # character. For non-utf8, the needed length is 1; for utf8, it is
654 # found by array lookup 'UTF8SKIP'.
655
656 # If want just the code points above 255, set up to look for those;
657 # otherwise assume will be looking for all non-UTF-8-invariant code
658 # poiints.
659 my $trie_type = ($type eq 'high') ? 'high' : 'utf8';
660
661 # If we do want more than the 0-255 range, find those, and if they
662 # exist...
663 if ($opt{type} !~ /latin1/i && ($utf8 = $self->make_trie($trie_type, 0))) {
664
665 # ... get them into an optree, and set them up as the 'else' clause
666 $utf8 = $self->_optree( $utf8, 'depth', $opt{ret_type}, 0, 0 );
667
668 # We could make this
669 # UTF8_IS_START(*s) && ((e) - (s)) >= UTF8SKIP(s))";
670 # to avoid doing the UTF8SKIP and subsequent branches for invariants
671 # that don't match. But the current macros that get generated
672 # have only a few things that can match past this, so I (khw)
673 # don't think it is worth it. (Even better would be to use
674 # calculate_mask(keys %$utf8) instead of UTF8_IS_START, and use it
dd9bc2b0
KW
675 # if it saves a bunch. We assume that input text likely to be
676 # well-formed .
677 my $cond = "LIKELY(((e) - (s)) >= UTF8SKIP(s))";
5ab0c3af
KW
678 $else = __cond_join($cond, $utf8, $else);
679
680 # For 'generic', we also will want the latin1 UTF-8 variants for
681 # the case where the input isn't UTF-8.
682 my $latin1;
683 if ($method eq 'generic_optree') {
684 $latin1 = $self->make_trie( 'latin1', 1);
685 $latin1= $self->_optree( $latin1, 'depth', $opt{ret_type}, 0, 0 );
686 }
e64b1bd1 687
5ab0c3af
KW
688 # If we want the UTF-8 invariants, get those.
689 my $low;
690 if ($opt{type} !~ /non_low|high/
691 && ($low= $self->make_trie( 'low', 1)))
692 {
693 $low= $self->_optree( $low, 'depth', $opt{ret_type}, 0, 0 );
694
695 # Expand out the UTF-8 invariants as a string so that we
696 # can use them as the conditional
697 $low = $self->_cond_as_str( $low, 0, \%opt);
698
699 # If there are Latin1 variants, add a test for them.
700 if ($latin1) {
701 $else = __cond_join("(! is_utf8 )", $latin1, $else);
702 }
703 elsif ($method eq 'generic_optree') {
704
705 # Otherwise for 'generic' only we know that what
706 # follows must be valid for just UTF-8 strings,
707 $else->{test} = "( is_utf8 && $else->{test} )";
708 }
709
710 # If the invariants match, we are done; otherwise we have
711 # to go to the 'else' clause.
712 $else = __cond_join($low, 1, $else);
713 }
714 elsif ($latin1) { # Here, didn't want or didn't have invariants,
715 # but we do have latin variants
716 $else = __cond_join("(! is_utf8)", $latin1, $else);
717 }
718
719 # We need at least one byte available to start off the tests
dd9bc2b0 720 $else = __cond_join("LIKELY((e) > (s))", $else, 0);
5ab0c3af
KW
721 }
722 else { # Here, we don't want or there aren't any variants. A single
723 # byte available is enough.
724 my $cond= "((e) > (s))";
725 my $optree = $self->$method(%opt);
726 $else= __cond_join( $cond, $optree, $else );
727 }
e64b1bd1 728 }
5ab0c3af 729
e64b1bd1 730 return $else;
12b72891
RGS
731}
732
2efb8143 733sub calculate_mask(@) {
75929b4b
KW
734 # Look at the input list of byte values. This routine returns an array of
735 # mask/base pairs to generate that list.
736
2efb8143
KW
737 my @list = @_;
738 my $list_count = @list;
739
75929b4b
KW
740 # Consider a set of byte values, A, B, C .... If we want to determine if
741 # <c> is one of them, we can write c==A || c==B || c==C .... If the
e42cde6b
KW
742 # values are consecutive, we can shorten that to inRANGE(c, 'A', 'Z'),
743 # which uses far fewer branches. If only some of them are consecutive we
744 # can still save some branches by creating range tests for just those that
745 # are consecutive. _cond_as_str() does this work for looking for ranges.
75929b4b
KW
746 #
747 # Another approach is to look at the bit patterns for A, B, C .... and see
748 # if they have some commonalities. That's what this function does. For
749 # example, consider a set consisting of the bytes
e42cde6b
KW
750 # 0x42, 0x43, 0x62, and 0x63. We could write:
751 # inRANGE(c, 0x42, 0x43) || inRANGE(c, 0x62, 0x63)
752 # which through the magic of casting has not 4, but 2 tests. But the
753 # following mask/compare also works, and has just one test:
754 # (c & 0xDE) == 0x42
755 # The reason it works is that the set consists of exactly the 4 bit
756 # patterns which have either 0 or 1 in the two bit positions that are 0 in
757 # the mask. They have the same value in each bit position where the mask
758 # is 1. The comparison makes sure that the result matches all bytes which
759 # match those six 1 bits exactly. This can be applied to bytes that
760 # differ in 1 through all 8 bit positions. In order to be a candidate for
761 # this optimization, the number of bytes in the set must be a power of 2.
75929b4b 762 #
e42cde6b
KW
763 # It may be that the bytes needing to be matched can't be done with a
764 # single mask. But it may be possible to have two (or more) sets, each
765 # with a separate mask. This function attempts to find some way to save
766 # some branches using the mask technique. If not, it returns an empty
767 # list; if so, it returns a list consisting of
75929b4b
KW
768 # [ [compare1, mask1], [compare2, mask2], ...
769 # [compare_n, undef], [compare_m, undef], ...
770 # ]
771 # The <mask> is undef in the above for those bytes that must be tested
772 # for individually.
773 #
774 # This function does not attempt to find the optimal set. To do so would
775 # probably require testing all possible combinations, and keeping track of
776 # the current best one.
777 #
778 # There are probably much better algorithms, but this is the one I (khw)
779 # came up with. We start with doing a bit-wise compare of every byte in
780 # the set with every other byte. The results are sorted into arrays of
781 # all those that differ by the same bit positions. These are stored in a
782 # hash with the each key being the bits they differ in. Here is the hash
783 # for the 0x53, 0x54, 0x73, 0x74 set:
784 # {
785 # 4 => {
786 # "0,1,2,5" => [
787 # 83,
788 # 116,
789 # 84,
790 # 115
791 # ]
792 # },
793 # 3 => {
794 # "0,1,2" => [
795 # 83,
796 # 84,
797 # 115,
798 # 116
799 # ]
800 # }
801 # 1 => {
802 # 5 => [
803 # 83,
804 # 115,
805 # 84,
806 # 116
807 # ]
808 # },
809 # }
810 #
811 # The set consisting of values which differ in the 4 bit positions 0, 1,
812 # 2, and 5 from some other value in the set consists of all 4 values.
813 # Likewise all 4 values differ from some other value in the 3 bit
814 # positions 0, 1, and 2; and all 4 values differ from some other value in
815 # the single bit position 5. The keys at the uppermost level in the above
816 # hash, 1, 3, and 4, give the number of bit positions that each sub-key
817 # below it has. For example, the 4 key could have as its value an array
818 # consisting of "0,1,2,5", "0,1,2,6", and "3,4,6,7", if the inputs were
819 # such. The best optimization will group the most values into a single
820 # mask. The most values will be the ones that differ in the most
821 # positions, the ones with the largest value for the topmost key. These
822 # keys, are thus just for convenience of sorting by that number, and do
823 # not have any bearing on the core of the algorithm.
824 #
825 # We start with an element from largest number of differing bits. The
826 # largest in this case is 4 bits, and there is only one situation in this
827 # set which has 4 differing bits, "0,1,2,5". We look for any subset of
828 # this set which has 16 values that differ in these 4 bits. There aren't
829 # any, because there are only 4 values in the entire set. We then look at
830 # the next possible thing, which is 3 bits differing in positions "0,1,2".
831 # We look for a subset that has 8 values that differ in these 3 bits.
832 # Again there are none. So we go to look for the next possible thing,
833 # which is a subset of 2**1 values that differ only in bit position 5. 83
834 # and 115 do, so we calculate a mask and base for those and remove them
835 # from every set. Since there is only the one set remaining, we remove
836 # them from just this one. We then look to see if there is another set of
837 # 2 values that differ in bit position 5. 84 and 116 do, so we calculate
838 # a mask and base for those and remove them from every set (again only
839 # this set remains in this example). The set is now empty, and there are
840 # no more sets to look at, so we are done.
841
842 if ($list_count == 256) { # All 256 is trivially masked
2efb8143
KW
843 return (0, 0);
844 }
845
75929b4b
KW
846 my %hash;
847
848 # Generate bits-differing lists for each element compared against each
849 # other element
850 for my $i (0 .. $list_count - 2) {
851 for my $j ($i + 1 .. $list_count - 1) {
852 my @bits_that_differ = pop_count($list[$i] ^ $list[$j]);
853 my $differ_count = @bits_that_differ;
854 my $key = join ",", @bits_that_differ;
855 push @{$hash{$differ_count}{$key}}, $list[$i] unless grep { $_ == $list[$i] } @{$hash{$differ_count}{$key}};
856 push @{$hash{$differ_count}{$key}}, $list[$j];
857 }
858 }
2efb8143 859
75929b4b 860 print STDERR __LINE__, ": calculate_mask() called: List of values grouped by differing bits: ", Dumper \%hash if DEBUG;
2efb8143 861
75929b4b
KW
862 my @final_results;
863 foreach my $count (reverse sort { $a <=> $b } keys %hash) {
864 my $need = 2 ** $count; # Need 8 values for 3 differing bits, etc
de6cb0ab 865 foreach my $bits (sort keys $hash{$count}->%*) {
2efb8143 866
75929b4b 867 print STDERR __LINE__, ": For $count bit(s) difference ($bits), need $need; have ", scalar @{$hash{$count}{$bits}}, "\n" if DEBUG;
2efb8143 868
75929b4b
KW
869 # Look only as long as there are at least as many elements in the
870 # subset as are needed
871 while ((my $cur_count = @{$hash{$count}{$bits}}) >= $need) {
2efb8143 872
75929b4b 873 print STDERR __LINE__, ": Looking at bit positions ($bits): ", Dumper $hash{$count}{$bits} if DEBUG;
2efb8143 874
75929b4b
KW
875 # Start with the first element in it
876 my $try_base = $hash{$count}{$bits}[0];
877 my @subset = $try_base;
878
879 # If it succeeds, we return a mask and a base to compare
880 # against the masked value. That base will be the AND of
881 # every element in the subset. Initialize to the one element
882 # we have so far.
883 my $compare = $try_base;
884
885 # We are trying to find a subset of this that has <need>
886 # elements that differ in the bit positions given by the
887 # string $bits, which is comma separated.
888 my @bits = split ",", $bits;
889
890 TRY: # Look through the remainder of the list for other
891 # elements that differ only by these bit positions.
892
893 for (my $i = 1; $i < $cur_count; $i++) {
894 my $try_this = $hash{$count}{$bits}[$i];
895 my @positions = pop_count($try_base ^ $try_this);
896
897 print STDERR __LINE__, ": $try_base vs $try_this: is (", join(',', @positions), ") a subset of ($bits)?" if DEBUG;;
898
899 foreach my $pos (@positions) {
900 unless (grep { $pos == $_ } @bits) {
901 print STDERR " No\n" if DEBUG;
902 my $remaining = $cur_count - $i - 1;
903 if ($remaining && @subset + $remaining < $need) {
904 print STDERR __LINE__, ": Can stop trying $try_base, because even if all the remaining $remaining values work, they wouldn't add up to the needed $need when combined with the existing ", scalar @subset, " ones\n" if DEBUG;
905 last TRY;
906 }
907 next TRY;
908 }
909 }
910
911 print STDERR " Yes\n" if DEBUG;
912 push @subset, $try_this;
913
914 # Add this to the mask base, in case it ultimately
915 # succeeds,
916 $compare &= $try_this;
917 }
918
919 print STDERR __LINE__, ": subset (", join(", ", @subset), ") has ", scalar @subset, " elements; needs $need\n" if DEBUG;
920
921 if (@subset < $need) {
922 shift @{$hash{$count}{$bits}};
923 next; # Try with next value
924 }
2efb8143 925
75929b4b
KW
926 # Create the mask
927 my $mask = 0;
928 foreach my $position (@bits) {
929 $mask |= 1 << $position;
930 }
931 $mask = ~$mask & 0xFF;
932 push @final_results, [$compare, $mask];
933
934 printf STDERR "%d: Got it: compare=%d=0x%X; mask=%X\n", __LINE__, $compare, $compare, $mask if DEBUG;
935
936 # These values are now spoken for. Remove them from future
937 # consideration
122a2d8f
YO
938 foreach my $remove_count (sort keys %hash) {
939 foreach my $bits (sort keys %{$hash{$remove_count}}) {
75929b4b
KW
940 foreach my $to_remove (@subset) {
941 @{$hash{$remove_count}{$bits}} = grep { $_ != $to_remove } @{$hash{$remove_count}{$bits}};
942 }
943 }
944 }
945 }
946 }
2efb8143
KW
947 }
948
75929b4b
KW
949 # Any values that remain in the list are ones that have to be tested for
950 # individually.
951 my @individuals;
952 foreach my $count (reverse sort { $a <=> $b } keys %hash) {
de6cb0ab 953 foreach my $bits (sort keys $hash{$count}->%*) {
75929b4b
KW
954 foreach my $remaining (@{$hash{$count}{$bits}}) {
955
956 # If we already know about this value, just ignore it.
957 next if grep { $remaining == $_ } @individuals;
958
959 # Otherwise it needs to be returned as something to match
960 # individually
961 push @final_results, [$remaining, undef];
962 push @individuals, $remaining;
963 }
964 }
2efb8143 965 }
2efb8143 966
75929b4b
KW
967 # Sort by increasing numeric value
968 @final_results = sort { $a->[0] <=> $b->[0] } @final_results;
969
970 print STDERR __LINE__, ": Final return: ", Dumper \@final_results if DEBUG;
971
972 return @final_results;
2efb8143
KW
973}
974
e64b1bd1
YO
975# _cond_as_str
976# turn a list of conditions into a text expression
977# - merges ranges of conditions, and joins the result with ||
978sub _cond_as_str {
ba073cf2 979 my ( $self, $op, $combine, $opts_ref )= @_;
e64b1bd1
YO
980 my $cond= $op->{vals};
981 my $test= $op->{test};
2efb8143 982 my $is_cp_ret = $opts_ref->{ret_type} eq "cp";
e64b1bd1
YO
983 return "( $test )" if !defined $cond;
984
f5772832 985 # rangify the list.
e64b1bd1
YO
986 my @ranges;
987 my $Update= sub {
f5772832
KW
988 # We skip this if there are optimizations that
989 # we can apply (below) to the individual ranges
990 if ( ($is_cp_ret || $combine) && @ranges && ref $ranges[-1]) {
e64b1bd1
YO
991 if ( $ranges[-1][0] == $ranges[-1][1] ) {
992 $ranges[-1]= $ranges[-1][0];
993 } elsif ( $ranges[-1][0] + 1 == $ranges[-1][1] ) {
994 $ranges[-1]= $ranges[-1][0];
995 push @ranges, $ranges[-1] + 1;
996 }
997 }
998 };
4a8ca70e
KW
999 for my $condition ( @$cond ) {
1000 if ( !@ranges || $condition != $ranges[-1][1] + 1 ) {
e64b1bd1 1001 $Update->();
4a8ca70e 1002 push @ranges, [ $condition, $condition ];
e64b1bd1
YO
1003 } else {
1004 $ranges[-1][1]++;
1005 }
1006 }
1007 $Update->();
f5772832 1008
e64b1bd1
YO
1009 return $self->_combine( $test, @ranges )
1010 if $combine;
f5772832
KW
1011
1012 if ($is_cp_ret) {
1f063c57
KW
1013 @ranges= map {
1014 ref $_
1015 ? sprintf(
e42cde6b 1016 "isRANGE( $test, $self->{val_fmt}, $self->{val_fmt} )",
1f063c57
KW
1017 @$_ )
1018 : sprintf( "$self->{val_fmt} == $test", $_ );
1019 } @ranges;
6a52943c
KW
1020
1021 return "( " . join( " || ", @ranges ) . " )";
f5772832 1022 }
75929b4b 1023
2358c533
KW
1024 # If the input set has certain characteristics, we can optimize tests
1025 # for it. This doesn't apply if returning the code point, as we want
1026 # each element of the set individually. The code above is for this
1027 # simpler case.
1028
1029 return 1 if @$cond == 256; # If all bytes match, is trivially true
1030
75929b4b 1031 my @masks;
2358c533 1032 if (@ranges > 1) {
75929b4b 1033
b6a6e956 1034 # See if the entire set shares optimizable characteristics, and if so,
e42cde6b
KW
1035 # return the optimization. There is no need to do this on sets with
1036 # just a single range, as that can be expressed with a single
1037 # conditional.
75929b4b
KW
1038 @masks = calculate_mask(@$cond);
1039
1040 # Stringify the output of calculate_mask()
1041 if (@masks) {
1042 my @return;
1043 foreach my $mask_ref (@masks) {
1044 if (defined $mask_ref->[1]) {
1045 push @return, sprintf "( ( $test & $self->{val_fmt} ) == $self->{val_fmt} )", $mask_ref->[1], $mask_ref->[0];
1046 }
1047 else { # An undefined mask means to use the value as-is
1048 push @return, sprintf "$test == $self->{val_fmt}", $mask_ref->[0];
1049 }
1050 }
1051
1052 # The best possible case below for specifying this set of values via
1053 # ranges is 1 branch per range. If our mask method yielded better
1054 # results, there is no sense trying something that is bound to be
1055 # worse.
1056 if (@return < @ranges) {
1057 return "( " . join( " || ", @return ) . " )";
1058 }
1059
1060 @masks = @return;
6e130234 1061 }
2358c533 1062 }
f5772832 1063
75929b4b
KW
1064 # Here, there was no entire-class optimization that was clearly better
1065 # than doing things by ranges. Look at each range.
1066 my $range_count_extra = 0;
2358c533
KW
1067 for (my $i = 0; $i < @ranges; $i++) {
1068 if (! ref $ranges[$i]) { # Trivial case: no range
1069 $ranges[$i] = sprintf "$self->{val_fmt} == $test", $ranges[$i];
1070 }
1071 elsif ($ranges[$i]->[0] == $ranges[$i]->[1]) {
1072 $ranges[$i] = # Trivial case: single element range
1073 sprintf "$self->{val_fmt} == $test", $ranges[$i]->[0];
1074 }
726137b5
KW
1075 elsif ($ranges[$i]->[0] == 0) {
1076 # If the range matches all 256 possible bytes, it is trivially
1077 # true.
1078 return 1 if $ranges[0]->[1] == 0xFF; # @ranges must be 1 in
1079 # this case
1080 $ranges[$i] = sprintf "( $test <= $self->{val_fmt} )",
1081 $ranges[$i]->[1];
1082 }
1083 elsif ($ranges[$i]->[1] == 255) {
1084
1085 # Similarly the max possible is 255, so can omit an upper bound
1086 # test if the calculated max is the max possible one.
1087 $ranges[$i] = sprintf "( $test >= $self->{val_fmt} )",
1088 $ranges[0]->[0];
1089 }
2358c533
KW
1090 else {
1091 my $output = "";
1092
1093 # Well-formed UTF-8 continuation bytes on ascii platforms must be
1094 # in the range 0x80 .. 0xBF. If we know that the input is
1095 # well-formed (indicated by not trying to be 'safe'), we can omit
1096 # tests that verify that the input is within either of these
1097 # bounds. (No legal UTF-8 character can begin with anything in
1098 # this range, so we don't have to worry about this being a
1099 # continuation byte or not.)
a1b2a50f
KW
1100 if ($opts_ref->{charset} =~ /ascii/i
1101 && (! $opts_ref->{safe} && ! $opts_ref->{no_length_checks})
2358c533
KW
1102 && $opts_ref->{type} =~ / ^ (?: utf8 | high ) $ /xi)
1103 {
2358c533
KW
1104 # If the range is the entire legal range, it matches any legal
1105 # byte, so we can omit both tests. (This should happen only
1106 # if the number of ranges is 1.)
e42cde6b 1107 if ($ranges[$i]->[0] == 0x80 && $ranges[$i]->[1] == 0xBF) {
2358c533 1108 return 1;
6e130234 1109 }
f5772832 1110 }
2358c533 1111
e42cde6b
KW
1112 # Here, it isn't the full range of legal continuation bytes. We
1113 # could just assume that there's nothing outside of the legal
1114 # bounds. But inRANGE() allows us to have a single conditional,
1115 # so the only cost of making sure it's a legal UTF-8 continuation
1116 # byte is an extra subtraction instruction, a trivial expense.
1117 $ranges[$i] = sprintf("inRANGE($test, $self->{val_fmt},"
1118 . " $self->{val_fmt} )",
1119 $ranges[$i]->[0], $ranges[$i]->[1]);
f5772832 1120 }
2358c533 1121 }
f5772832 1122
75929b4b
KW
1123 # We have generated the list of bytes in two ways; one trying to use masks
1124 # to cut the number of branches down, and the other to look at individual
1125 # ranges (some of which could be cut down by using a mask for just it).
1126 # We return whichever method uses the fewest branches.
1127 return "( "
1128 . join( " || ", (@masks && @masks < @ranges + $range_count_extra)
1129 ? @masks
1130 : @ranges)
1131 . " )";
12b72891
RGS
1132}
1133
e64b1bd1
YO
1134# _combine
1135# recursively turn a list of conditions into a fast break-out condition
1136# used by _cond_as_str() for 'cp' type macros.
1137sub _combine {
1138 my ( $self, $test, @cond )= @_;
1139 return if !@cond;
1140 my $item= shift @cond;
1141 my ( $cstr, $gtv );
6c62bf0f
KW
1142 if ( ref $item ) { # @item should be a 2-element array giving range start
1143 # and end
1144 if ($item->[0] == 0) { # UV's are never negative, so skip "0 <= "
1145 # test which could generate a compiler warning
1146 # that test is always true
1147 $cstr= sprintf( "$test <= $self->{val_fmt}", $item->[1] );
1148 }
1149 else {
1150 $cstr=
e42cde6b 1151 sprintf( "inRANGE($test, $self->{val_fmt}, $self->{val_fmt})",
6c62bf0f
KW
1152 @$item );
1153 }
e64b1bd1 1154 $gtv= sprintf "$self->{val_fmt}", $item->[1];
12b72891 1155 } else {
e64b1bd1
YO
1156 $cstr= sprintf( "$self->{val_fmt} == $test", $item );
1157 $gtv= sprintf "$self->{val_fmt}", $item;
12b72891 1158 }
e64b1bd1 1159 if ( @cond ) {
ee98d22d
YO
1160 my $combine= $self->_combine( $test, @cond );
1161 if (@cond >1) {
1162 return "( $cstr || ( $gtv < $test &&\n"
1163 . $combine . " ) )";
1164 } else {
1165 return "( $cstr || $combine )";
1166 }
12b72891 1167 } else {
e64b1bd1 1168 return $cstr;
12b72891 1169 }
e64b1bd1 1170}
12b72891 1171
e64b1bd1
YO
1172# _render()
1173# recursively convert an optree to text with reasonably neat formatting
1174sub _render {
39a0f513 1175 my ( $self, $op, $combine, $brace, $opts_ref, $def, $submacros )= @_;
2e39f0c2 1176 return 0 if ! defined $op; # The set is empty
e64b1bd1
YO
1177 if ( !ref $op ) {
1178 return $op;
12b72891 1179 }
ba073cf2 1180 my $cond= $self->_cond_as_str( $op, $combine, $opts_ref );
cc08b31c
KW
1181 #no warnings 'recursion'; # This would allow really really inefficient
1182 # code to be generated. See pod
39a0f513 1183 my $yes= $self->_render( $op->{yes}, $combine, 1, $opts_ref, $def, $submacros );
30188af7
KW
1184 return $yes if $cond eq '1';
1185
39a0f513 1186 my $no= $self->_render( $op->{no}, $combine, 0, $opts_ref, $def, $submacros );
e64b1bd1
YO
1187 return "( $cond )" if $yes eq '1' and $no eq '0';
1188 my ( $lb, $rb )= $brace ? ( "( ", " )" ) : ( "", "" );
1189 return "$lb$cond ? $yes : $no$rb"
1190 if !ref( $op->{yes} ) && !ref( $op->{no} );
1191 my $ind1= " " x 4;
1192 my $ind= "\n" . ( $ind1 x $op->{depth} );
1193
1194 if ( ref $op->{yes} ) {
1195 $yes= $ind . $ind1 . $yes;
1196 } else {
1197 $yes= " " . $yes;
1198 }
1199
39a0f513
YO
1200 my $str= "$lb$cond ?$yes$ind: $no$rb";
1201 if (length $str > 6000) {
1202 push @$submacros, sprintf "#define $def\n( %s )", "_part" . (my $yes_idx= 0+@$submacros), $yes;
1203 push @$submacros, sprintf "#define $def\n( %s )", "_part" . (my $no_idx= 0+@$submacros), $no;
1204 return sprintf "%s%s ? $def : $def%s", $lb, $cond, "_part$yes_idx", "_part$no_idx", $rb;
1205 }
1206 return $str;
12b72891 1207}
32e6a07c 1208
e64b1bd1
YO
1209# $expr=render($op,$combine)
1210#
1211# convert an optree to text with reasonably neat formatting. If $combine
1212# is true then the condition is created using "fast breakouts" which
1213# produce uglier expressions that are more efficient for common case,
1214# longer lists such as that resulting from type 'cp' output.
1215# Currently only used for type 'cp' macros.
1216sub render {
39a0f513
YO
1217 my ( $self, $op, $combine, $opts_ref, $def_fmt )= @_;
1218
1219 my @submacros;
1220 my $macro= sprintf "#define $def_fmt\n( %s )", "", $self->_render( $op, $combine, 0, $opts_ref, $def_fmt, \@submacros );
1221
1222 return join "\n\n", map { "/*** GENERATED CODE ***/\n" . __macro( __clean( $_ ) ) } @submacros, $macro;
12b72891 1223}
e64b1bd1
YO
1224
1225# make_macro
1226# make a macro of a given type.
1227# calls into make_trie and (generic_|length_)optree as needed
1228# Opts are:
40f914fd
KW
1229# type : 'cp','cp_high', 'generic','high','low','latin1','utf8','LATIN1','UTF8'
1230# ret_type : 'cp' or 'len'
1231# safe : don't assume is well-formed UTF-8, so don't skip any range
1232# checks, and add length guards to macro
1233# no_length_checks : like safe, but don't add length guards.
e64b1bd1
YO
1234#
1235# type defaults to 'generic', and ret_type to 'len' unless type is 'cp'
1236# in which case it defaults to 'cp' as well.
1237#
3ff97bcf 1238# It is illegal to do a type 'cp' macro on a pattern with multi-codepoint
e64b1bd1
YO
1239# sequences in it, as the generated macro will accept only a single codepoint
1240# as an argument.
1241#
6b94381d
KW
1242# It is also illegal to do a non-safe macro on a pattern with multi-codepoint
1243# sequences in it, as even if it is known to be well-formed, we need to not
91e83b73 1244# run off the end of the buffer when, say, the buffer ends with the first two
6b94381d
KW
1245# characters, but three are looked at by the macro.
1246#
e64b1bd1
YO
1247# returns the macro.
1248
1249
1250sub make_macro {
1251 my $self= shift;
1252 my %opts= @_;
1253 my $type= $opts{type} || 'generic';
6b94381d
KW
1254 if ($self->{has_multi}) {
1255 if ($type =~ /^cp/) {
1256 die "Can't do a 'cp' on multi-codepoint character class '$self->{op}'"
1257 }
1258 elsif (! $opts{safe}) {
1259 die "'safe' is required on multi-codepoint character class '$self->{op}'"
1260 }
1261 }
900c17f9 1262 my $ret_type= $opts{ret_type} || ( $opts{type} =~ /^cp/ ? 'cp' : 'len' );
e64b1bd1
YO
1263 my $method;
1264 if ( $opts{safe} ) {
1265 $method= 'length_optree';
87894a24 1266 } elsif ( $type =~ /generic/ ) {
e64b1bd1
YO
1267 $method= 'generic_optree';
1268 } else {
1269 $method= 'optree';
1270 }
900c17f9 1271 my @args= $type =~ /^cp/ ? 'cp' : 's';
e64b1bd1 1272 push @args, "e" if $opts{safe};
87894a24 1273 push @args, "is_utf8" if $type =~ /generic/;
e64b1bd1
YO
1274 push @args, "len" if $ret_type eq 'both';
1275 my $pfx= $ret_type eq 'both' ? 'what_len_' :
1276 $ret_type eq 'cp' ? 'what_' : 'is_';
87894a24
KW
1277 my $ext= $type =~ /generic/ ? '' : '_' . lc( $type );
1278 $ext .= '_non_low' if $type eq 'generic_non_low';
e64b1bd1 1279 $ext .= "_safe" if $opts{safe};
40f914fd 1280 $ext .= "_no_length_checks" if $opts{no_length_checks};
e64b1bd1 1281 my $argstr= join ",", @args;
39a0f513
YO
1282 my $def_fmt="$pfx$self->{op}$ext%s($argstr)";
1283 my $optree= $self->$method( %opts, type => $type, ret_type => $ret_type );
1284 return $self->render( $optree, ($type =~ /^cp/) ? 1 : 0, \%opts, $def_fmt );
32e6a07c 1285}
e64b1bd1 1286
b6a6e956 1287# if we aren't being used as a module (highly likely) then process
e64b1bd1
YO
1288# the __DATA__ below and produce macros in regcharclass.h
1289# if an argument is provided to the script then it is assumed to
1290# be the path of the file to output to, if the arg is '-' outputs
1291# to STDOUT.
1292if ( !caller ) {
e64b1bd1 1293 $|++;
8770da0e 1294 my $path= shift @ARGV || "regcharclass.h";
e64b1bd1
YO
1295 my $out_fh;
1296 if ( $path eq '-' ) {
1297 $out_fh= \*STDOUT;
1298 } else {
29c22b52 1299 $out_fh = open_new( $path );
e64b1bd1 1300 }
8770da0e
NC
1301 print $out_fh read_only_top( lang => 'C', by => $0,
1302 file => 'regcharclass.h', style => '*',
212b6c86
KW
1303 copyright => [2007, 2011],
1304 final => <<EOF,
1305WARNING: These macros are for internal Perl core use only, and may be
1306changed or removed without notice.
1307EOF
1308 );
6a5bc5ac 1309 print $out_fh "\n#ifndef PERL_REGCHARCLASS_H_ /* Guard against nested #includes */\n#define PERL_REGCHARCLASS_H_\n";
12b72891 1310
bb949220 1311 my ( $op, $title, @txt, @types, %mods );
a1b2a50f 1312 my $doit= sub ($) {
e64b1bd1 1313 return unless $op;
ae1d4929 1314
a1b2a50f
KW
1315 my $charset = shift;
1316
ae1d4929 1317 # Skip if to compile on a different platform.
a1b2a50f
KW
1318 return if delete $mods{only_ascii_platform} && $charset !~ /ascii/i;
1319 return if delete $mods{only_ebcdic_platform} && $charset !~ /ebcdic/i;
ae1d4929 1320
e64b1bd1
YO
1321 print $out_fh "/*\n\t$op: $title\n\n";
1322 print $out_fh join "\n", ( map { "\t$_" } @txt ), "*/", "";
a1b2a50f 1323 my $obj= __PACKAGE__->new( op => $op, title => $title, txt => \@txt, charset => $charset);
e64b1bd1 1324
bb949220
KW
1325 #die Dumper(\@types,\%mods);
1326
1327 my @mods;
1328 push @mods, 'safe' if delete $mods{safe};
40f914fd 1329 push @mods, 'no_length_checks' if delete $mods{no_length_checks};
bb949220
KW
1330 unshift @mods, 'fast' if delete $mods{fast} || ! @mods; # Default to 'fast'
1331 # do this one
1332 # first, as
1333 # traditional
1334 if (%mods) {
122a2d8f 1335 die "Unknown modifiers: ", join ", ", map { "'$_'" } sort keys %mods;
bb949220 1336 }
e64b1bd1
YO
1337
1338 foreach my $type_spec ( @types ) {
1339 my ( $type, $ret )= split /-/, $type_spec;
1340 $ret ||= 'len';
1341 foreach my $mod ( @mods ) {
f71bd789
KW
1342
1343 # 'safe' is irrelevant with code point macros, so skip if
1344 # there is also a 'fast', but don't skip if this is the only
1345 # way a cp macro will get generated. Below we convert 'safe'
1346 # to 'fast' in this instance
1347 next if $type =~ /^cp/
40f914fd
KW
1348 && ($mod eq 'safe' || $mod eq 'no_length_checks')
1349 && grep { 'fast' =~ $_ } @mods;
bb949220 1350 delete $mods{$mod};
e64b1bd1
YO
1351 my $macro= $obj->make_macro(
1352 type => $type,
1353 ret_type => $ret,
81200454 1354 safe => $mod eq 'safe' && $type !~ /^cp/,
a1b2a50f 1355 charset => $charset,
40f914fd 1356 no_length_checks => $mod eq 'no_length_checks' && $type !~ /^cp/,
e64b1bd1
YO
1357 );
1358 print $out_fh $macro, "\n";
1359 }
32e6a07c 1360 }
e64b1bd1
YO
1361 };
1362
a1b2a50f
KW
1363 my @data = <DATA>;
1364 foreach my $charset (get_supported_code_pages()) {
1365 my $first_time = 1;
1366 undef $op;
1367 undef $title;
1368 undef @txt;
1369 undef @types;
1370 undef %mods;
1371 print $out_fh "\n", get_conditional_compile_line_start($charset);
1372 my @data_copy = @data;
1373 for (@data_copy) {
91e83b73
KW
1374 s/^ \s* (?: \# .* ) ? $ //x; # squeeze out comment and blanks
1375 next unless /\S/;
1376 chomp;
1377 if ( /^[A-Z]/ ) {
1378 $doit->($charset) unless $first_time; # This starts a new
1379 # definition; do the
1380 # previous one
1381 $first_time = 0;
1382 ( $op, $title )= split /\s*:\s*/, $_, 2;
1383 @txt= ();
1384 } elsif ( s/^=>// ) {
1385 my ( $type, $modifier )= split /:/, $_;
1386 @types= split ' ', $type;
1387 undef %mods;
1388 map { $mods{$_} = 1 } split ' ', $modifier;
1389 } else {
1390 push @txt, "$_";
1391 }
12b72891 1392 }
91e83b73 1393 $doit->($charset);
a1b2a50f
KW
1394 print $out_fh get_conditional_compile_line_end();
1395 }
d10c72f2 1396
6a5bc5ac 1397 print $out_fh "\n#endif /* PERL_REGCHARCLASS_H_ */\n";
d10c72f2 1398
8770da0e
NC
1399 if($path eq '-') {
1400 print $out_fh "/* ex: set ro: */\n";
1401 } else {
0c36c41b
KW
1402 # Some of the sources for these macros come from Unicode tables
1403 my $sources_list = "lib/unicore/mktables.lst";
b60dc4b9
KW
1404 my @sources = ($0, qw(lib/unicore/mktables
1405 lib/Unicode/UCD.pm
1406 regen/regcharclass_multi_char_folds.pl
1407 regen/charset_translations.pl
1408 ));
0c36c41b
KW
1409 {
1410 # Depend on mktables’ own sources. It’s a shorter list of files than
1411 # those that Unicode::UCD uses.
1ae6ead9 1412 if (! open my $mktables_list, '<', $sources_list) {
0c36c41b
KW
1413
1414 # This should force a rebuild once $sources_list exists
1415 push @sources, $sources_list;
1416 }
1417 else {
1418 while(<$mktables_list>) {
1419 last if /===/;
1420 chomp;
1421 push @sources, "lib/unicore/$_" if /^[^#]/;
1422 }
1423 }
1424 }
1425 read_only_bottom_close_and_rename($out_fh, \@sources)
8770da0e 1426 }
12b72891 1427}
e64b1bd1 1428
cc08b31c
KW
1429# The form of the input is a series of definitions to make macros for.
1430# The first line gives the base name of the macro, followed by a colon, and
1431# then text to be used in comments associated with the macro that are its
1432# title or description. In all cases the first (perhaps only) parameter to
1433# the macro is a pointer to the first byte of the code point it is to test to
1434# see if it is in the class determined by the macro. In the case of non-UTF8,
1435# the code point consists only of a single byte.
1436#
1437# The second line must begin with a '=>' and be followed by the types of
1438# macro(s) to be generated; these are specified below. A colon follows the
1439# types, followed by the modifiers, also specified below. At least one
1440# modifier is required.
1441#
1442# The subsequent lines give what code points go into the class defined by the
1443# macro. Multiple characters may be specified via a string like "\x0D\x0A",
60910c93
KW
1444# enclosed in quotes. Otherwise the lines consist of one of:
1445# 1) a single Unicode code point, prefaced by 0x
1446# 2) a single range of Unicode code points separated by a minus (and
1447# optional space)
1448# 3) a single Unicode property specified in the standard Perl form
1449# "\p{...}"
1450# 4) a line like 'do path'. This will do a 'do' on the file given by
1451# 'path'. It is assumed that this does nothing but load subroutines
1452# (See item 5 below). The reason 'require path' is not used instead is
1453# because 'do' doesn't assume that path is in @INC.
1454# 5) a subroutine call
1455# &pkg::foo(arg1, ...)
1456# where pkg::foo was loaded by a 'do' line (item 4). The subroutine
1457# returns an array of entries of forms like items 1-3 above. This
1458# allows more complex inputs than achievable from the other input types.
cc08b31c
KW
1459#
1460# A blank line or one whose first non-blank character is '#' is a comment.
1461# The definition of the macro is terminated by a line unlike those described.
1462#
1463# Valid types:
1464# low generate a macro whose name is 'is_BASE_low' and defines a
1465# class that includes only ASCII-range chars. (BASE is the
1466# input macro base name.)
1467# latin1 generate a macro whose name is 'is_BASE_latin1' and defines a
1468# class that includes only upper-Latin1-range chars. It is not
1469# designed to take a UTF-8 input parameter.
b1af8fef
KW
1470# high generate a macro whose name is 'is_BASE_high' and defines a
1471# class that includes all relevant code points that are above
1472# the Latin1 range. This is for very specialized uses only.
1473# It is designed to take only an input UTF-8 parameter.
cc08b31c
KW
1474# utf8 generate a macro whose name is 'is_BASE_utf8' and defines a
1475# class that includes all relevant characters that aren't ASCII.
1476# It is designed to take only an input UTF-8 parameter.
1477# LATIN1 generate a macro whose name is 'is_BASE_latin1' and defines a
1478# class that includes both ASCII and upper-Latin1-range chars.
1479# It is not designed to take a UTF-8 input parameter.
1480# UTF8 generate a macro whose name is 'is_BASE_utf8' and defines a
1481# class that can include any code point, adding the 'low' ones
1482# to what 'utf8' works on. It is designed to take only an input
1483# UTF-8 parameter.
1484# generic generate a macro whose name is 'is_BASE". It has a 2nd,
1485# boolean, parameter which indicates if the first one points to
1486# a UTF-8 string or not. Thus it works in all circumstances.
87894a24
KW
1487# generic_non_low generate a macro whose name is 'is_BASE_non_low". It has
1488# a 2nd, boolean, parameter which indicates if the first one
1489# points to a UTF-8 string or not. It excludes any ASCII-range
1490# matches, but otherwise it works in all circumstances.
cc08b31c
KW
1491# cp generate a macro whose name is 'is_BASE_cp' and defines a
1492# class that returns true if the UV parameter is a member of the
1493# class; false if not.
900c17f9
KW
1494# cp_high like cp, but it is assumed that it is known that the UV
1495# parameter is above Latin1. The name of the generated macro is
1496# 'is_BASE_cp_high'. This is different from high-cp, derived
1497# below.
cc08b31c
KW
1498# A macro of the given type is generated for each type listed in the input.
1499# The default return value is the number of octets read to generate the match.
1500# Append "-cp" to the type to have it instead return the matched codepoint.
1501# The macro name is changed to 'what_BASE...'. See pod for
1502# caveats
1503# Appending '-both" instead adds an extra parameter to the end of the argument
1504# list, which is a pointer as to where to store the number of
1505# bytes matched, while also returning the code point. The macro
1506# name is changed to 'what_len_BASE...'. See pod for caveats
1507#
1508# Valid modifiers:
1509# safe The input string is not necessarily valid UTF-8. In
1510# particular an extra parameter (always the 2nd) to the macro is
1511# required, which points to one beyond the end of the string.
1512# The macro will make sure not to read off the end of the
1513# string. In the case of non-UTF8, it makes sure that the
1514# string has at least one byte in it. The macro name has
1515# '_safe' appended to it.
40f914fd
KW
1516# no_length_checks The input string is not necessarily valid UTF-8, but it
1517# is to be assumed that the length has already been checked and
1518# found to be valid
cc08b31c
KW
1519# fast The input string is valid UTF-8. No bounds checking is done,
1520# and the macro can make assumptions that lead to faster
1521# execution.
a1b2a50f 1522# only_ascii_platform Skip this definition if the character set is for
ae1d4929 1523# a non-ASCII platform.
a1b2a50f 1524# only_ebcdic_platform Skip this definition if the character set is for
ae1d4929 1525# a non-EBCDIC platform.
cc08b31c
KW
1526# No modifier need be specified; fast is assumed for this case. If both
1527# 'fast', and 'safe' are specified, two macros will be created for each
1528# 'type'.
e90ac8de 1529#
295bcca9 1530# If run on a non-ASCII platform will automatically convert the Unicode input
cc08b31c
KW
1531# to native. The documentation above is slightly wrong in this case. 'low'
1532# actually refers to code points whose UTF-8 representation is the same as the
1533# non-UTF-8 version (invariants); and 'latin1' refers to all the rest of the
1534# code points less than 256.
5e6c6c1e
KW
1535
15361; # in the unlikely case we are being used as a module
1537
1538__DATA__
1539# This is no longer used, but retained in case it is needed some day.
e90ac8de
KW
1540# TRICKYFOLD: Problematic fold case letters. When adding to this list, also should add them to regcomp.c and fold_grind.t
1541# => generic cp generic-cp generic-both :fast safe
1542# 0x00DF # LATIN SMALL LETTER SHARP S
1543# 0x0390 # GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
1544# 0x03B0 # GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
1545# 0x1E9E # LATIN CAPITAL LETTER SHARP S, because maps to same as 00DF
1546# 0x1FD3 # GREEK SMALL LETTER IOTA WITH DIALYTIKA AND OXIA; maps same as 0390
1547# 0x1FE3 # GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND OXIA; maps same as 03B0
1548
12b72891 1549LNBREAK: Line Break: \R
5c025f03 1550=> generic UTF8 LATIN1 : safe
12b72891 1551"\x0D\x0A" # CRLF - Network (Windows) line ending
05b688d9 1552\p{VertSpace}
12b72891
RGS
1553
1554HORIZWS: Horizontal Whitespace: \h \H
507ce328 1555=> high cp_high : fast
05b688d9 1556\p{HorizSpace}
12b72891
RGS
1557
1558VERTWS: Vertical Whitespace: \v \V
507ce328 1559=> high cp_high : fast
05b688d9 1560\p{VertSpace}
612ead59 1561
4ac6419d 1562XDIGIT: Hexadecimal digits
507ce328 1563=> high cp_high : fast
4ac6419d
KW
1564\p{XDigit}
1565
bedac28b 1566XPERLSPACE: \p{XPerlSpace}
507ce328 1567=> high cp_high : fast
bedac28b
KW
1568\p{XPerlSpace}
1569
b96a92fb 1570NONCHAR: Non character code points
89d986df 1571=> UTF8 :safe
099323b4 1572\p{_Perl_Nchar}
b96a92fb 1573
21cb232c 1574SURROGATE: Surrogate code points
89d986df 1575=> UTF8 :safe
099323b4 1576\p{_Perl_Surrogate}
b96a92fb 1577
685289b5
KW
1578QUOTEMETA: Meta-characters that \Q should quote
1579=> high :fast
1580\p{_Perl_Quotemeta}
8769f413
KW
1581
1582MULTI_CHAR_FOLD: multi-char strings that are folded to by a single character
251b239f 1583=> UTF8 :safe
42d7c910 1584&regcharclass_multi_char_folds::multi_char_folds('u', 'a')
8769f413 1585
40b1ba4f 1586MULTI_CHAR_FOLD: multi-char strings that are folded to by a single character
251b239f 1587=> LATIN1 : safe
42d7c910
KW
1588&regcharclass_multi_char_folds::multi_char_folds('l', 'a')
1589
1590THREE_CHAR_FOLD: A three-character multi-char fold
1591=> UTF8 :safe
1592&regcharclass_multi_char_folds::multi_char_folds('u', '3')
1593
1594THREE_CHAR_FOLD: A three-character multi-char fold
1595=> LATIN1 :safe
1596&regcharclass_multi_char_folds::multi_char_folds('l', '3')
8769f413 1597
42d7c910
KW
1598THREE_CHAR_FOLD_HEAD: The first two of three-character multi-char folds
1599=> UTF8 :safe
1600&regcharclass_multi_char_folds::multi_char_folds('u', 'h')
1601
1602THREE_CHAR_FOLD_HEAD: The first two of three-character multi-char folds
1603=> LATIN1 :safe
1604&regcharclass_multi_char_folds::multi_char_folds('l', 'h')
1605#
1606#THREE_CHAR_FOLD_NON_FINAL: The first or middle character of multi-char folds
1607#=> UTF8 :safe
1608#&regcharclass_multi_char_folds::multi_char_folds('u', 'fm')
1609#
1610#THREE_CHAR_FOLD_NON_FINAL: The first or middle character of multi-char folds
1611#=> LATIN1 :safe
1612#&regcharclass_multi_char_folds::multi_char_folds('l', 'fm')
0b50d62a 1613
1a27eb96
KW
1614FOLDS_TO_MULTI: characters that fold to multi-char strings
1615=> UTF8 :fast
1616\p{_Perl_Folds_To_Multi_Char}
1617
31f05a37
KW
1618PROBLEMATIC_LOCALE_FOLD : characters whose fold is problematic under locale
1619=> UTF8 cp :fast
1620\p{_Perl_Problematic_Locale_Folds}
1621
1622PROBLEMATIC_LOCALE_FOLDEDS_START : The first folded character of folds which are problematic under locale
1623=> UTF8 cp :fast
1624\p{_Perl_Problematic_Locale_Foldeds_Start}
1625
0b50d62a 1626PATWS: pattern white space
8373491a 1627=> generic cp : safe
099323b4 1628\p{_Perl_PatWS}
6c12993c
KW
1629
1630HANGUL_ED: Hangul syllables whose first character is \xED
1631=> UTF8 :only_ascii_platform safe
16320xD000 - 0xD7FF