This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
regexec.c: Replace infamous if-else-if sequence by loop
[perl5.git] / regen / regcharclass.pl
CommitLineData
1f00b0d6 1#!perl
e64b1bd1 2package CharClass::Matcher;
12b72891 3use strict;
8770da0e 4use 5.008;
12b72891 5use warnings;
e64b1bd1 6use warnings FATAL => 'all';
12b72891 7use Text::Wrap qw(wrap);
12b72891 8use Data::Dumper;
e64b1bd1
YO
9$Data::Dumper::Useqq= 1;
10our $hex_fmt= "0x%02X";
12b72891 11
75929b4b
KW
12sub DEBUG () { 0 }
13$|=1 if DEBUG;
14
295bcca9
KW
15sub ASCII_PLATFORM { (ord('A') == 65) }
16
8770da0e
NC
17require 'regen/regen_lib.pl';
18
ab84f958 19=head1 NAME
0ccab2bc 20
e64b1bd1 21CharClass::Matcher -- Generate C macros that match character classes efficiently
12b72891 22
e64b1bd1
YO
23=head1 SYNOPSIS
24
ab84f958 25 perl Porting/regcharclass.pl
e64b1bd1
YO
26
27=head1 DESCRIPTION
12b72891
RGS
28
29Dynamically generates macros for detecting special charclasses
e64b1bd1 30in latin-1, utf8, and codepoint forms. Macros can be set to return
cc08b31c 31the length (in bytes) of the matched codepoint, and/or the codepoint itself.
12b72891 32
cc08b31c 33To regenerate F<regcharclass.h>, run this script from perl-root. No arguments
12b72891
RGS
34are necessary.
35
cc08b31c
KW
36Using WHATEVER as an example the following macros can be produced, depending
37on the input parameters (how to get each is described by internal comments at
38the C<__DATA__> line):
12b72891
RGS
39
40=over 4
41
cc08b31c 42=item C<is_WHATEVER(s,is_utf8)>
12b72891 43
cc08b31c 44=item C<is_WHATEVER_safe(s,e,is_utf8)>
12b72891 45
cc08b31c
KW
46Do a lookup as appropriate based on the C<is_utf8> flag. When possible
47comparisons involving octect<128 are done before checking the C<is_utf8>
12b72891
RGS
48flag, hopefully saving time.
49
cc08b31c
KW
50The version without the C<_safe> suffix should be used only when the input is
51known to be well-formed.
12b72891 52
cc08b31c
KW
53=item C<is_WHATEVER_utf8(s)>
54
55=item C<is_WHATEVER_utf8_safe(s,e)>
12b72891
RGS
56
57Do a lookup assuming the string is encoded in (normalized) UTF8.
58
cc08b31c
KW
59The version without the C<_safe> suffix should be used only when the input is
60known to be well-formed.
61
62=item C<is_WHATEVER_latin1(s)>
12b72891 63
cc08b31c 64=item C<is_WHATEVER_latin1_safe(s,e)>
12b72891
RGS
65
66Do a lookup assuming the string is encoded in latin-1 (aka plan octets).
67
cc08b31c
KW
68The version without the C<_safe> suffix should be used only when it is known
69that C<s> contains at least one character.
70
71=item C<is_WHATEVER_cp(cp)>
12b72891 72
47e01c32 73Check to see if the string matches a given codepoint (hypothetically a
12b72891
RGS
74U32). The condition is constructed as as to "break out" as early as
75possible if the codepoint is out of range of the condition.
76
77IOW:
78
79 (cp==X || (cp>X && (cp==Y || (cp>Y && ...))))
80
81Thus if the character is X+1 only two comparisons will be done. Making
82matching lookups slower, but non-matching faster.
83
cc08b31c
KW
84=item C<what_len_WHATEVER_FOO(arg1, ..., len)>
85
86A variant form of each of the macro types described above can be generated, in
87which the code point is returned by the macro, and an extra parameter (in the
88final position) is added, which is a pointer for the macro to set the byte
89length of the returned code point.
90
91These forms all have a C<what_len> prefix instead of the C<is_>, for example
92C<what_len_WHATEVER_safe(s,e,is_utf8,len)> and
93C<what_len_WHATEVER_utf8(s,len)>.
94
95These forms should not be used I<except> on small sets of mostly widely
96separated code points; otherwise the code generated is inefficient. For these
97cases, it is best to use the C<is_> forms, and then find the code point with
98C<utf8_to_uvchr_buf>(). This program can fail with a "deep recursion"
99message on the worst of the inappropriate sets. Examine the generated macro
100to see if it is acceptable.
12b72891 101
cc08b31c
KW
102=item C<what_WHATEVER_FOO(arg1, ...)>
103
104A variant form of each of the C<is_> macro types described above can be generated, in
105which the code point and not the length is returned by the macro. These have
106the same caveat as L</what_len_WHATEVER_FOO(arg1, ..., len)>, plus they should
107not be used where the set contains a NULL, as 0 is returned for two different
108cases: a) the set doesn't include the input code point; b) the set does
109include it, and it is a NULL.
110
111=back
e64b1bd1
YO
112
113=head2 CODE FORMAT
114
115perltidy -st -bt=1 -bbt=0 -pt=0 -sbt=1 -ce -nwls== "%f"
116
117
118=head1 AUTHOR
119
cc08b31c 120Author: Yves Orton (demerphq) 2007. Maintained by Perl5 Porters.
e64b1bd1
YO
121
122=head1 BUGS
123
124No tests directly here (although the regex engine will fail tests
125if this code is broken). Insufficient documentation and no Getopts
126handler for using the module as a script.
127
128=head1 LICENSE
129
130You may distribute under the terms of either the GNU General Public
131License or the Artistic License, as specified in the README file.
132
12b72891
RGS
133=cut
134
e64b1bd1
YO
135# Sub naming convention:
136# __func : private subroutine, can not be called as a method
137# _func : private method, not meant for external use
138# func : public method.
139
140# private subs
141#-------------------------------------------------------------------------------
142#
143# ($cp,$n,$l,$u)=__uni_latin($str);
144#
47e01c32 145# Return a list of arrays, each of which when interpreted correctly
e64b1bd1
YO
146# represent the string in some given encoding with specific conditions.
147#
148# $cp - list of codepoints that make up the string.
295bcca9
KW
149# $n - list of octets that make up the string if all codepoints are invariant
150# regardless of if the string is in UTF-8 or not.
e64b1bd1 151# $l - list of octets that make up the string in latin1 encoding if all
295bcca9
KW
152# codepoints < 256, and at least one codepoint is UTF-8 variant.
153# $u - list of octets that make up the string in utf8 if any codepoint is
154# UTF-8 variant
e64b1bd1
YO
155#
156# High CP | Defined
157#-----------+----------
295bcca9 158# 0 - 127 : $n (127/128 are the values for ASCII platforms)
e64b1bd1
YO
159# 128 - 255 : $l, $u
160# 256 - ... : $u
161#
162
163sub __uni_latin1 {
164 my $str= shift;
165 my $max= 0;
166 my @cp;
900c17f9 167 my @cp_high;
295bcca9 168 my $only_has_invariants = 1;
e64b1bd1
YO
169 for my $ch ( split //, $str ) {
170 my $cp= ord $ch;
171 push @cp, $cp;
900c17f9 172 push @cp_high, $cp if $cp > 255;
e64b1bd1 173 $max= $cp if $max < $cp;
295bcca9
KW
174 if (! ASCII_PLATFORM && $only_has_invariants) {
175 if ($cp > 255) {
176 $only_has_invariants = 0;
177 }
178 else {
179 my $temp = chr($cp);
180 utf8::upgrade($temp);
181 my @utf8 = unpack "U0C*", $temp;
182 $only_has_invariants = (@utf8 == 1 && $utf8[0] == $cp);
183 }
184 }
e64b1bd1
YO
185 }
186 my ( $n, $l, $u );
295bcca9
KW
187 $only_has_invariants = $max < 128 if ASCII_PLATFORM;
188 if ($only_has_invariants) {
e64b1bd1
YO
189 $n= [@cp];
190 } else {
191 $l= [@cp] if $max && $max < 256;
192
ca51670f
KW
193 $u= $str;
194 utf8::upgrade($u);
195 $u= [ unpack "U0C*", $u ] if defined $u;
12b72891 196 }
900c17f9 197 return ( \@cp, \@cp_high, $n, $l, $u );
12b72891
RGS
198}
199
12b72891 200#
e64b1bd1
YO
201# $clean= __clean($expr);
202#
203# Cleanup a ternary expression, removing unnecessary parens and apply some
204# simplifications using regexes.
205#
206
207sub __clean {
208 my ( $expr )= @_;
8fdb8a9d 209
9a3182e9
YO
210 #return $expr;
211
e64b1bd1
YO
212 our $parens;
213 $parens= qr/ (?> \( (?> (?: (?> [^()]+ ) | (??{ $parens }) )* ) \) ) /x;
214
8fdb8a9d 215 ## remove redundant parens
e64b1bd1 216 1 while $expr =~ s/ \( \s* ( $parens ) \s* \) /$1/gx;
8fdb8a9d
YO
217
218
219 # repeatedly simplify conditions like
220 # ( (cond1) ? ( (cond2) ? X : Y ) : Y )
221 # into
222 # ( ( (cond1) && (cond2) ) ? X : Y )
6c4f0678
YO
223 # Also similarly handles expressions like:
224 # : (cond1) ? ( (cond2) ? X : Y ) : Y )
225 # Note the inclusion of the close paren in ([:()]) and the open paren in ([()]) is
226 # purely to ensure we have a balanced set of parens in the expression which makes
227 # it easier to understand the pattern in an editor that understands paren's, we do
228 # not expect either of these cases to actually fire. - Yves
8fdb8a9d 229 1 while $expr =~ s/
6c4f0678 230 ([:()]) \s*
8fdb8a9d
YO
231 ($parens) \s*
232 \? \s*
233 \( \s* ($parens) \s*
6c4f0678
YO
234 \? \s* ($parens|[^()?:\s]+?) \s*
235 : \s* ($parens|[^()?:\s]+?) \s*
8fdb8a9d 236 \) \s*
6c4f0678
YO
237 : \s* \5 \s*
238 ([()])
239 /$1 ( $2 && $3 ) ? $4 : $5 $6/gx;
39a0f513
YO
240 #$expr=~s/\(\(U8\*\)s\)\[(\d+)\]/S$1/g if length $expr > 8000;
241 #$expr=~s/\s+//g if length $expr > 8000;
242
243 die "Expression too long" if length $expr > 8000;
8fdb8a9d 244
e64b1bd1 245 return $expr;
12b72891
RGS
246}
247
e64b1bd1
YO
248#
249# $text= __macro(@args);
250# Join args together by newlines, and then neatly add backslashes to the end
251# of every line as expected by the C pre-processor for #define's.
252#
253
254sub __macro {
255 my $str= join "\n", @_;
256 $str =~ s/\s*$//;
257 my @lines= map { s/\s+$//; s/\t/ /g; $_ } split /\n/, $str;
258 my $last= pop @lines;
259 $str= join "\n", ( map { sprintf "%-76s\\", $_ } @lines ), $last;
260 1 while $str =~ s/^(\t*) {8}/$1\t/gm;
261 return $str . "\n";
12b72891
RGS
262}
263
e64b1bd1
YO
264#
265# my $op=__incrdepth($op);
266#
267# take an 'op' hashref and add one to it and all its childrens depths.
268#
269
270sub __incrdepth {
271 my $op= shift;
272 return unless ref $op;
273 $op->{depth} += 1;
274 __incrdepth( $op->{yes} );
275 __incrdepth( $op->{no} );
276 return $op;
277}
278
279# join two branches of an opcode together with a condition, incrementing
280# the depth on the yes branch when we do so.
281# returns the new root opcode of the tree.
282sub __cond_join {
283 my ( $cond, $yes, $no )= @_;
284 return {
285 test => $cond,
286 yes => __incrdepth( $yes ),
287 no => $no,
288 depth => 0,
289 };
290}
291
292# Methods
293
294# constructor
295#
296# my $obj=CLASS->new(op=>'SOMENAME',title=>'blah',txt=>[..]);
297#
298# Create a new CharClass::Matcher object by parsing the text in
299# the txt array. Currently applies the following rules:
300#
301# Element starts with C<0x>, line is evaled the result treated as
302# a number which is passed to chr().
303#
304# Element starts with C<">, line is evaled and the result treated
305# as a string.
306#
307# Each string is then stored in the 'strs' subhash as a hash record
308# made up of the results of __uni_latin1, using the keynames
b1af8fef 309# 'low','latin1','utf8', as well as the synthesized 'LATIN1', 'high', and
e64b1bd1
YO
310# 'UTF8' which hold a merge of 'low' and their lowercase equivelents.
311#
312# Size data is tracked per type in the 'size' subhash.
313#
314# Return an object
315#
12b72891
RGS
316sub new {
317 my $class= shift;
e64b1bd1
YO
318 my %opt= @_;
319 for ( qw(op txt) ) {
320 die "in " . __PACKAGE__ . " constructor '$_;' is a mandatory field"
321 if !exists $opt{$_};
322 }
323
324 my $self= bless {
325 op => $opt{op},
326 title => $opt{title} || '',
327 }, $class;
328 foreach my $txt ( @{ $opt{txt} } ) {
329 my $str= $txt;
330 if ( $str =~ /^[""]/ ) {
331 $str= eval $str;
05b688d9
KW
332 } elsif ($str =~ / - /x ) { # A range: Replace this element on the
333 # list with its expansion
334 my ($lower, $upper) = $str =~ / 0x (.+?) \s* - \s* 0x (.+) /x;
335 die "Format must be like '0xDEAD - 0xBEAF'; instead was '$str'" if ! defined $lower || ! defined $upper;
336 foreach my $cp (hex $lower .. hex $upper) {
337 push @{$opt{txt}}, sprintf "0x%X", $cp;
338 }
339 next;
295bcca9
KW
340 } elsif ($str =~ s/ ^ N (?= 0x ) //x ) {
341 # Otherwise undocumented, a leading N means is already in the
342 # native character set; don't convert.
e64b1bd1 343 $str= chr eval $str;
295bcca9
KW
344 } elsif ( $str =~ /^0x/ ) {
345 $str= eval $str;
346
347 # Convert from Unicode/ASCII to native, if necessary
348 $str = utf8::unicode_to_native($str) if ! ASCII_PLATFORM
349 && $str <= 0xFF;
350 $str = chr $str;
05b688d9
KW
351 } elsif ( $str =~ / \s* \\p \{ ( .*? ) \} /x) {
352 my $property = $1;
353 use Unicode::UCD qw(prop_invlist);
354
355 my @invlist = prop_invlist($property, '_perl_core_internal_ok');
356 if (! @invlist) {
357
358 # An empty return could mean an unknown property, or merely
359 # that it is empty. Call in scalar context to differentiate
360 my $count = prop_invlist($property, '_perl_core_internal_ok');
361 die "$property not found" unless defined $count;
362 }
363
364 # Replace this element on the list with the property's expansion
365 for (my $i = 0; $i < @invlist; $i += 2) {
366 foreach my $cp ($invlist[$i] .. $invlist[$i+1] - 1) {
295bcca9
KW
367
368 # prop_invlist() returns native values; add leading 'N'
369 # to indicate that.
370 push @{$opt{txt}}, sprintf "N0x%X", $cp;
05b688d9
KW
371 }
372 }
373 next;
60910c93
KW
374 } elsif ($str =~ / ^ do \s+ ( .* ) /x) {
375 die "do '$1' failed: $!$@" if ! do $1 or $@;
376 next;
377 } elsif ($str =~ / ^ & \s* ( .* ) /x) { # user-furnished sub() call
378 my @results = eval "$1";
379 die "eval '$1' failed: $@" if $@;
380 push @{$opt{txt}}, @results;
381 next;
12b72891 382 } else {
5e6c6c1e 383 die "Unparsable line: $txt\n";
12b72891 384 }
900c17f9 385 my ( $cp, $cp_high, $low, $latin1, $utf8 )= __uni_latin1( $str );
e64b1bd1
YO
386 my $UTF8= $low || $utf8;
387 my $LATIN1= $low || $latin1;
b1af8fef 388 my $high = (scalar grep { $_ < 256 } @$cp) ? 0 : $utf8;
dda856b2
YO
389 #die Dumper($txt,$cp,$low,$latin1,$utf8)
390 # if $txt=~/NEL/ or $utf8 and @$utf8>3;
e64b1bd1 391
900c17f9
KW
392 @{ $self->{strs}{$str} }{qw( str txt low utf8 latin1 high cp cp_high UTF8 LATIN1 )}=
393 ( $str, $txt, $low, $utf8, $latin1, $high, $cp, $cp_high, $UTF8, $LATIN1 );
e64b1bd1 394 my $rec= $self->{strs}{$str};
900c17f9 395 foreach my $key ( qw(low utf8 latin1 high cp cp_high UTF8 LATIN1) ) {
e64b1bd1
YO
396 $self->{size}{$key}{ 0 + @{ $self->{strs}{$str}{$key} } }++
397 if $self->{strs}{$str}{$key};
12b72891 398 }
e64b1bd1
YO
399 $self->{has_multi} ||= @$cp > 1;
400 $self->{has_ascii} ||= $latin1 && @$latin1;
401 $self->{has_low} ||= $low && @$low;
402 $self->{has_high} ||= !$low && !$latin1;
12b72891 403 }
e64b1bd1
YO
404 $self->{val_fmt}= $hex_fmt;
405 $self->{count}= 0 + keys %{ $self->{strs} };
12b72891
RGS
406 return $self;
407}
408
e64b1bd1 409# my $trie = make_trie($type,$maxlen);
12b72891 410#
47e01c32 411# using the data stored in the object build a trie of a specific type,
e64b1bd1
YO
412# and with specific maximum depth. The trie is made up the elements of
413# the given types array for each string in the object (assuming it is
414# not too long.)
415#
47e01c32 416# returns the trie, or undef if there was no relevant data in the object.
e64b1bd1
YO
417#
418
419sub make_trie {
420 my ( $self, $type, $maxlen )= @_;
421
422 my $strs= $self->{strs};
423 my %trie;
424 foreach my $rec ( values %$strs ) {
425 die "panic: unknown type '$type'"
426 if !exists $rec->{$type};
427 my $dat= $rec->{$type};
428 next unless $dat;
429 next if $maxlen && @$dat > $maxlen;
430 my $node= \%trie;
431 foreach my $elem ( @$dat ) {
432 $node->{$elem} ||= {};
433 $node= $node->{$elem};
12b72891 434 }
e64b1bd1 435 $node->{''}= $rec->{str};
12b72891 436 }
e64b1bd1 437 return 0 + keys( %trie ) ? \%trie : undef;
12b72891
RGS
438}
439
2efb8143
KW
440sub pop_count ($) {
441 my $word = shift;
442
443 # This returns a list of the positions of the bits in the input word that
444 # are 1.
445
446 my @positions;
447 my $position = 0;
448 while ($word) {
449 push @positions, $position if $word & 1;
450 $position++;
451 $word >>= 1;
452 }
453 return @positions;
454}
455
e64b1bd1
YO
456# my $optree= _optree()
457#
458# recursively convert a trie to an optree where every node represents
459# an if else branch.
12b72891 460#
12b72891 461#
12b72891 462
e64b1bd1
YO
463sub _optree {
464 my ( $self, $trie, $test_type, $ret_type, $else, $depth )= @_;
465 return unless defined $trie;
466 if ( $self->{has_multi} and $ret_type =~ /cp|both/ ) {
467 die "Can't do 'cp' optree from multi-codepoint strings";
12b72891 468 }
e64b1bd1
YO
469 $ret_type ||= 'len';
470 $else= 0 unless defined $else;
471 $depth= 0 unless defined $depth;
472
e405c23a
YO
473 # if we have an emptry string as a key it means we are in an
474 # accepting state and unless we can match further on should
475 # return the value of the '' key.
895e25a5 476 if (exists $trie->{''} ) {
e405c23a
YO
477 # we can now update the "else" value, anything failing to match
478 # after this point should return the value from this.
e64b1bd1
YO
479 if ( $ret_type eq 'cp' ) {
480 $else= $self->{strs}{ $trie->{''} }{cp}[0];
481 $else= sprintf "$self->{val_fmt}", $else if $else > 9;
482 } elsif ( $ret_type eq 'len' ) {
483 $else= $depth;
484 } elsif ( $ret_type eq 'both') {
485 $else= $self->{strs}{ $trie->{''} }{cp}[0];
486 $else= sprintf "$self->{val_fmt}", $else if $else > 9;
487 $else= "len=$depth, $else";
12b72891 488 }
e64b1bd1 489 }
e405c23a
YO
490 # extract the meaningful keys from the trie, filter out '' as
491 # it means we are an accepting state (end of sequence).
492 my @conds= sort { $a <=> $b } grep { length $_ } keys %$trie;
493
494 # if we havent any keys there is no further we can match and we
495 # can return the "else" value.
e64b1bd1 496 return $else if !@conds;
e405c23a
YO
497
498
900c17f9 499 my $test= $test_type =~ /^cp/ ? "cp" : "((U8*)s)[$depth]";
9a3182e9
YO
500 # first we loop over the possible keys/conditions and find out what they look like
501 # we group conditions with the same optree together.
502 my %dmp_res;
503 my @res_order;
e405c23a
YO
504 local $Data::Dumper::Sortkeys=1;
505 foreach my $cond ( @conds ) {
506
507 # get the optree for this child/condition
508 my $res= $self->_optree( $trie->{$cond}, $test_type, $ret_type, $else, $depth + 1 );
509 # convert it to a string with Dumper
e64b1bd1 510 my $res_code= Dumper( $res );
e405c23a 511
9a3182e9
YO
512 push @{$dmp_res{$res_code}{vals}}, $cond;
513 if (!$dmp_res{$res_code}{optree}) {
514 $dmp_res{$res_code}{optree}= $res;
515 push @res_order, $res_code;
516 }
517 }
518
519 # now that we have deduped the optrees we construct a new optree containing the merged
520 # results.
521 my %root;
522 my $node= \%root;
523 foreach my $res_code_idx (0 .. $#res_order) {
524 my $res_code= $res_order[$res_code_idx];
525 $node->{vals}= $dmp_res{$res_code}{vals};
526 $node->{test}= $test;
527 $node->{yes}= $dmp_res{$res_code}{optree};
528 $node->{depth}= $depth;
529 if ($res_code_idx < $#res_order) {
530 $node= $node->{no}= {};
12b72891 531 } else {
9a3182e9 532 $node->{no}= $else;
12b72891
RGS
533 }
534 }
e405c23a
YO
535
536 # return the optree.
537 return \%root;
12b72891
RGS
538}
539
e64b1bd1
YO
540# my $optree= optree(%opts);
541#
542# Convert a trie to an optree, wrapper for _optree
543
544sub optree {
545 my $self= shift;
546 my %opt= @_;
547 my $trie= $self->make_trie( $opt{type}, $opt{max_depth} );
548 $opt{ret_type} ||= 'len';
900c17f9 549 my $test_type= $opt{type} =~ /^cp/ ? 'cp' : 'depth';
e64b1bd1 550 return $self->_optree( $trie, $test_type, $opt{ret_type}, $opt{else}, 0 );
12b72891
RGS
551}
552
e64b1bd1
YO
553# my $optree= generic_optree(%opts);
554#
555# build a "generic" optree out of the three 'low', 'latin1', 'utf8'
556# sets of strings, including a branch for handling the string type check.
557#
558
559sub generic_optree {
560 my $self= shift;
561 my %opt= @_;
562
563 $opt{ret_type} ||= 'len';
564 my $test_type= 'depth';
565 my $else= $opt{else} || 0;
566
567 my $latin1= $self->make_trie( 'latin1', $opt{max_depth} );
568 my $utf8= $self->make_trie( 'utf8', $opt{max_depth} );
569
570 $_= $self->_optree( $_, $test_type, $opt{ret_type}, $else, 0 )
571 for $latin1, $utf8;
572
573 if ( $utf8 ) {
574 $else= __cond_join( "( is_utf8 )", $utf8, $latin1 || $else );
575 } elsif ( $latin1 ) {
576 $else= __cond_join( "!( is_utf8 )", $latin1, $else );
577 }
578 my $low= $self->make_trie( 'low', $opt{max_depth} );
579 if ( $low ) {
580 $else= $self->_optree( $low, $test_type, $opt{ret_type}, $else, 0 );
12b72891 581 }
e64b1bd1
YO
582
583 return $else;
12b72891
RGS
584}
585
e64b1bd1 586# length_optree()
12b72891 587#
e64b1bd1 588# create a string length guarded optree.
12b72891 589#
e64b1bd1
YO
590
591sub length_optree {
592 my $self= shift;
593 my %opt= @_;
594 my $type= $opt{type};
595
596 die "Can't do a length_optree on type 'cp', makes no sense."
900c17f9 597 if $type =~ /^cp/;
e64b1bd1
YO
598
599 my ( @size, $method );
600
601 if ( $type eq 'generic' ) {
602 $method= 'generic_optree';
603 my %sizes= (
604 %{ $self->{size}{low} || {} },
605 %{ $self->{size}{latin1} || {} },
606 %{ $self->{size}{utf8} || {} }
607 );
608 @size= sort { $a <=> $b } keys %sizes;
609 } else {
610 $method= 'optree';
611 @size= sort { $a <=> $b } keys %{ $self->{size}{$type} };
12b72891 612 }
e64b1bd1
YO
613
614 my $else= ( $opt{else} ||= 0 );
615 for my $size ( @size ) {
616 my $optree= $self->$method( %opt, type => $type, max_depth => $size );
617 my $cond= "((e)-(s) > " . ( $size - 1 ).")";
618 $else= __cond_join( $cond, $optree, $else );
619 }
620 return $else;
12b72891
RGS
621}
622
2efb8143 623sub calculate_mask(@) {
75929b4b
KW
624 # Look at the input list of byte values. This routine returns an array of
625 # mask/base pairs to generate that list.
626
2efb8143
KW
627 my @list = @_;
628 my $list_count = @list;
629
75929b4b
KW
630 # Consider a set of byte values, A, B, C .... If we want to determine if
631 # <c> is one of them, we can write c==A || c==B || c==C .... If the
632 # values are consecutive, we can shorten that to A<=c && c<=Z, which uses
633 # far fewer branches. If only some of them are consecutive we can still
634 # save some branches by creating range tests for just those that are
635 # consecutive. _cond_as_str() does this work for looking for ranges.
636 #
637 # Another approach is to look at the bit patterns for A, B, C .... and see
638 # if they have some commonalities. That's what this function does. For
639 # example, consider a set consisting of the bytes
640 # 0xF0, 0xF1, 0xF2, and 0xF3. We could write:
2efb8143
KW
641 # 0xF0 <= c && c <= 0xF4
642 # But the following mask/compare also works, and has just one test:
75929b4b
KW
643 # (c & 0xFC) == 0xF0
644 # The reason it works is that the set consists of exactly those bytes
2efb8143 645 # whose first 4 bits are 1, and the next two are 0. (The value of the
75929b4b 646 # other 2 bits is immaterial in determining if a byte is in the set or
2efb8143 647 # not.) The mask masks out those 2 irrelevant bits, and the comparison
75929b4b
KW
648 # makes sure that the result matches all bytes which match those 6
649 # material bits exactly. In other words, the set of bytes contains
2efb8143
KW
650 # exactly those whose bottom two bit positions are either 0 or 1. The
651 # same principle applies to bit positions that are not necessarily
652 # adjacent. And it can be applied to bytes that differ in 1 through all 8
653 # bit positions. In order to be a candidate for this optimization, the
75929b4b
KW
654 # number of bytes in the set must be a power of 2.
655 #
656 # Consider a different example, the set 0x53, 0x54, 0x73, and 0x74. That
657 # requires 4 tests using either ranges or individual values, and even
658 # though the number in the set is a power of 2, it doesn't qualify for the
659 # mask optimization described above because the number of bits that are
660 # different is too large for that. However, the set can be expressed as
661 # two branches with masks thusly:
662 # (c & 0xDF) == 0x53 || (c & 0xDF) == 0x54
663 # a branch savings of 50%. This is done by splitting the set into two
664 # subsets each of which has 2 elements, and within each set the values
665 # differ by 1 byte.
666 #
667 # This function attempts to find some way to save some branches using the
668 # mask technique. If not, it returns an empty list; if so, it
669 # returns a list consisting of
670 # [ [compare1, mask1], [compare2, mask2], ...
671 # [compare_n, undef], [compare_m, undef], ...
672 # ]
673 # The <mask> is undef in the above for those bytes that must be tested
674 # for individually.
675 #
676 # This function does not attempt to find the optimal set. To do so would
677 # probably require testing all possible combinations, and keeping track of
678 # the current best one.
679 #
680 # There are probably much better algorithms, but this is the one I (khw)
681 # came up with. We start with doing a bit-wise compare of every byte in
682 # the set with every other byte. The results are sorted into arrays of
683 # all those that differ by the same bit positions. These are stored in a
684 # hash with the each key being the bits they differ in. Here is the hash
685 # for the 0x53, 0x54, 0x73, 0x74 set:
686 # {
687 # 4 => {
688 # "0,1,2,5" => [
689 # 83,
690 # 116,
691 # 84,
692 # 115
693 # ]
694 # },
695 # 3 => {
696 # "0,1,2" => [
697 # 83,
698 # 84,
699 # 115,
700 # 116
701 # ]
702 # }
703 # 1 => {
704 # 5 => [
705 # 83,
706 # 115,
707 # 84,
708 # 116
709 # ]
710 # },
711 # }
712 #
713 # The set consisting of values which differ in the 4 bit positions 0, 1,
714 # 2, and 5 from some other value in the set consists of all 4 values.
715 # Likewise all 4 values differ from some other value in the 3 bit
716 # positions 0, 1, and 2; and all 4 values differ from some other value in
717 # the single bit position 5. The keys at the uppermost level in the above
718 # hash, 1, 3, and 4, give the number of bit positions that each sub-key
719 # below it has. For example, the 4 key could have as its value an array
720 # consisting of "0,1,2,5", "0,1,2,6", and "3,4,6,7", if the inputs were
721 # such. The best optimization will group the most values into a single
722 # mask. The most values will be the ones that differ in the most
723 # positions, the ones with the largest value for the topmost key. These
724 # keys, are thus just for convenience of sorting by that number, and do
725 # not have any bearing on the core of the algorithm.
726 #
727 # We start with an element from largest number of differing bits. The
728 # largest in this case is 4 bits, and there is only one situation in this
729 # set which has 4 differing bits, "0,1,2,5". We look for any subset of
730 # this set which has 16 values that differ in these 4 bits. There aren't
731 # any, because there are only 4 values in the entire set. We then look at
732 # the next possible thing, which is 3 bits differing in positions "0,1,2".
733 # We look for a subset that has 8 values that differ in these 3 bits.
734 # Again there are none. So we go to look for the next possible thing,
735 # which is a subset of 2**1 values that differ only in bit position 5. 83
736 # and 115 do, so we calculate a mask and base for those and remove them
737 # from every set. Since there is only the one set remaining, we remove
738 # them from just this one. We then look to see if there is another set of
739 # 2 values that differ in bit position 5. 84 and 116 do, so we calculate
740 # a mask and base for those and remove them from every set (again only
741 # this set remains in this example). The set is now empty, and there are
742 # no more sets to look at, so we are done.
743
744 if ($list_count == 256) { # All 256 is trivially masked
2efb8143
KW
745 return (0, 0);
746 }
747
75929b4b
KW
748 my %hash;
749
750 # Generate bits-differing lists for each element compared against each
751 # other element
752 for my $i (0 .. $list_count - 2) {
753 for my $j ($i + 1 .. $list_count - 1) {
754 my @bits_that_differ = pop_count($list[$i] ^ $list[$j]);
755 my $differ_count = @bits_that_differ;
756 my $key = join ",", @bits_that_differ;
757 push @{$hash{$differ_count}{$key}}, $list[$i] unless grep { $_ == $list[$i] } @{$hash{$differ_count}{$key}};
758 push @{$hash{$differ_count}{$key}}, $list[$j];
759 }
760 }
2efb8143 761
75929b4b 762 print STDERR __LINE__, ": calculate_mask() called: List of values grouped by differing bits: ", Dumper \%hash if DEBUG;
2efb8143 763
75929b4b
KW
764 my @final_results;
765 foreach my $count (reverse sort { $a <=> $b } keys %hash) {
766 my $need = 2 ** $count; # Need 8 values for 3 differing bits, etc
122a2d8f 767 foreach my $bits (sort keys $hash{$count}) {
2efb8143 768
75929b4b 769 print STDERR __LINE__, ": For $count bit(s) difference ($bits), need $need; have ", scalar @{$hash{$count}{$bits}}, "\n" if DEBUG;
2efb8143 770
75929b4b
KW
771 # Look only as long as there are at least as many elements in the
772 # subset as are needed
773 while ((my $cur_count = @{$hash{$count}{$bits}}) >= $need) {
2efb8143 774
75929b4b 775 print STDERR __LINE__, ": Looking at bit positions ($bits): ", Dumper $hash{$count}{$bits} if DEBUG;
2efb8143 776
75929b4b
KW
777 # Start with the first element in it
778 my $try_base = $hash{$count}{$bits}[0];
779 my @subset = $try_base;
780
781 # If it succeeds, we return a mask and a base to compare
782 # against the masked value. That base will be the AND of
783 # every element in the subset. Initialize to the one element
784 # we have so far.
785 my $compare = $try_base;
786
787 # We are trying to find a subset of this that has <need>
788 # elements that differ in the bit positions given by the
789 # string $bits, which is comma separated.
790 my @bits = split ",", $bits;
791
792 TRY: # Look through the remainder of the list for other
793 # elements that differ only by these bit positions.
794
795 for (my $i = 1; $i < $cur_count; $i++) {
796 my $try_this = $hash{$count}{$bits}[$i];
797 my @positions = pop_count($try_base ^ $try_this);
798
799 print STDERR __LINE__, ": $try_base vs $try_this: is (", join(',', @positions), ") a subset of ($bits)?" if DEBUG;;
800
801 foreach my $pos (@positions) {
802 unless (grep { $pos == $_ } @bits) {
803 print STDERR " No\n" if DEBUG;
804 my $remaining = $cur_count - $i - 1;
805 if ($remaining && @subset + $remaining < $need) {
806 print STDERR __LINE__, ": Can stop trying $try_base, because even if all the remaining $remaining values work, they wouldn't add up to the needed $need when combined with the existing ", scalar @subset, " ones\n" if DEBUG;
807 last TRY;
808 }
809 next TRY;
810 }
811 }
812
813 print STDERR " Yes\n" if DEBUG;
814 push @subset, $try_this;
815
816 # Add this to the mask base, in case it ultimately
817 # succeeds,
818 $compare &= $try_this;
819 }
820
821 print STDERR __LINE__, ": subset (", join(", ", @subset), ") has ", scalar @subset, " elements; needs $need\n" if DEBUG;
822
823 if (@subset < $need) {
824 shift @{$hash{$count}{$bits}};
825 next; # Try with next value
826 }
2efb8143 827
75929b4b
KW
828 # Create the mask
829 my $mask = 0;
830 foreach my $position (@bits) {
831 $mask |= 1 << $position;
832 }
833 $mask = ~$mask & 0xFF;
834 push @final_results, [$compare, $mask];
835
836 printf STDERR "%d: Got it: compare=%d=0x%X; mask=%X\n", __LINE__, $compare, $compare, $mask if DEBUG;
837
838 # These values are now spoken for. Remove them from future
839 # consideration
122a2d8f
YO
840 foreach my $remove_count (sort keys %hash) {
841 foreach my $bits (sort keys %{$hash{$remove_count}}) {
75929b4b
KW
842 foreach my $to_remove (@subset) {
843 @{$hash{$remove_count}{$bits}} = grep { $_ != $to_remove } @{$hash{$remove_count}{$bits}};
844 }
845 }
846 }
847 }
848 }
2efb8143
KW
849 }
850
75929b4b
KW
851 # Any values that remain in the list are ones that have to be tested for
852 # individually.
853 my @individuals;
854 foreach my $count (reverse sort { $a <=> $b } keys %hash) {
122a2d8f 855 foreach my $bits (sort keys $hash{$count}) {
75929b4b
KW
856 foreach my $remaining (@{$hash{$count}{$bits}}) {
857
858 # If we already know about this value, just ignore it.
859 next if grep { $remaining == $_ } @individuals;
860
861 # Otherwise it needs to be returned as something to match
862 # individually
863 push @final_results, [$remaining, undef];
864 push @individuals, $remaining;
865 }
866 }
2efb8143 867 }
2efb8143 868
75929b4b
KW
869 # Sort by increasing numeric value
870 @final_results = sort { $a->[0] <=> $b->[0] } @final_results;
871
872 print STDERR __LINE__, ": Final return: ", Dumper \@final_results if DEBUG;
873
874 return @final_results;
2efb8143
KW
875}
876
e64b1bd1
YO
877# _cond_as_str
878# turn a list of conditions into a text expression
879# - merges ranges of conditions, and joins the result with ||
880sub _cond_as_str {
ba073cf2 881 my ( $self, $op, $combine, $opts_ref )= @_;
e64b1bd1
YO
882 my $cond= $op->{vals};
883 my $test= $op->{test};
2efb8143 884 my $is_cp_ret = $opts_ref->{ret_type} eq "cp";
e64b1bd1
YO
885 return "( $test )" if !defined $cond;
886
f5772832 887 # rangify the list.
e64b1bd1
YO
888 my @ranges;
889 my $Update= sub {
f5772832
KW
890 # We skip this if there are optimizations that
891 # we can apply (below) to the individual ranges
892 if ( ($is_cp_ret || $combine) && @ranges && ref $ranges[-1]) {
e64b1bd1
YO
893 if ( $ranges[-1][0] == $ranges[-1][1] ) {
894 $ranges[-1]= $ranges[-1][0];
895 } elsif ( $ranges[-1][0] + 1 == $ranges[-1][1] ) {
896 $ranges[-1]= $ranges[-1][0];
897 push @ranges, $ranges[-1] + 1;
898 }
899 }
900 };
4a8ca70e
KW
901 for my $condition ( @$cond ) {
902 if ( !@ranges || $condition != $ranges[-1][1] + 1 ) {
e64b1bd1 903 $Update->();
4a8ca70e 904 push @ranges, [ $condition, $condition ];
e64b1bd1
YO
905 } else {
906 $ranges[-1][1]++;
907 }
908 }
909 $Update->();
f5772832 910
e64b1bd1
YO
911 return $self->_combine( $test, @ranges )
912 if $combine;
f5772832
KW
913
914 if ($is_cp_ret) {
1f063c57
KW
915 @ranges= map {
916 ref $_
917 ? sprintf(
918 "( $self->{val_fmt} <= $test && $test <= $self->{val_fmt} )",
919 @$_ )
920 : sprintf( "$self->{val_fmt} == $test", $_ );
921 } @ranges;
6a52943c
KW
922
923 return "( " . join( " || ", @ranges ) . " )";
f5772832 924 }
75929b4b 925
2358c533
KW
926 # If the input set has certain characteristics, we can optimize tests
927 # for it. This doesn't apply if returning the code point, as we want
928 # each element of the set individually. The code above is for this
929 # simpler case.
930
931 return 1 if @$cond == 256; # If all bytes match, is trivially true
932
75929b4b 933 my @masks;
2358c533 934 if (@ranges > 1) {
75929b4b 935
2358c533
KW
936 # See if the entire set shares optimizable characterstics, and if so,
937 # return the optimization. We delay checking for this on sets with
938 # just a single range, as there may be better optimizations available
939 # in that case.
75929b4b
KW
940 @masks = calculate_mask(@$cond);
941
942 # Stringify the output of calculate_mask()
943 if (@masks) {
944 my @return;
945 foreach my $mask_ref (@masks) {
946 if (defined $mask_ref->[1]) {
947 push @return, sprintf "( ( $test & $self->{val_fmt} ) == $self->{val_fmt} )", $mask_ref->[1], $mask_ref->[0];
948 }
949 else { # An undefined mask means to use the value as-is
950 push @return, sprintf "$test == $self->{val_fmt}", $mask_ref->[0];
951 }
952 }
953
954 # The best possible case below for specifying this set of values via
955 # ranges is 1 branch per range. If our mask method yielded better
956 # results, there is no sense trying something that is bound to be
957 # worse.
958 if (@return < @ranges) {
959 return "( " . join( " || ", @return ) . " )";
960 }
961
962 @masks = @return;
6e130234 963 }
2358c533 964 }
f5772832 965
75929b4b
KW
966 # Here, there was no entire-class optimization that was clearly better
967 # than doing things by ranges. Look at each range.
968 my $range_count_extra = 0;
2358c533
KW
969 for (my $i = 0; $i < @ranges; $i++) {
970 if (! ref $ranges[$i]) { # Trivial case: no range
971 $ranges[$i] = sprintf "$self->{val_fmt} == $test", $ranges[$i];
972 }
973 elsif ($ranges[$i]->[0] == $ranges[$i]->[1]) {
974 $ranges[$i] = # Trivial case: single element range
975 sprintf "$self->{val_fmt} == $test", $ranges[$i]->[0];
976 }
977 else {
978 my $output = "";
979
980 # Well-formed UTF-8 continuation bytes on ascii platforms must be
981 # in the range 0x80 .. 0xBF. If we know that the input is
982 # well-formed (indicated by not trying to be 'safe'), we can omit
983 # tests that verify that the input is within either of these
984 # bounds. (No legal UTF-8 character can begin with anything in
985 # this range, so we don't have to worry about this being a
986 # continuation byte or not.)
987 if (ASCII_PLATFORM
988 && ! $opts_ref->{safe}
989 && $opts_ref->{type} =~ / ^ (?: utf8 | high ) $ /xi)
990 {
991 my $lower_limit_is_80 = ($ranges[$i]->[0] == 0x80);
992 my $upper_limit_is_BF = ($ranges[$i]->[1] == 0xBF);
993
994 # If the range is the entire legal range, it matches any legal
995 # byte, so we can omit both tests. (This should happen only
996 # if the number of ranges is 1.)
997 if ($lower_limit_is_80 && $upper_limit_is_BF) {
998 return 1;
6e130234 999 }
2358c533
KW
1000 elsif ($lower_limit_is_80) { # Just use the upper limit test
1001 $output = sprintf("( $test <= $self->{val_fmt} )",
1002 $ranges[$i]->[1]);
f5772832 1003 }
2358c533
KW
1004 elsif ($upper_limit_is_BF) { # Just use the lower limit test
1005 $output = sprintf("( $test >= $self->{val_fmt} )",
1006 $ranges[$i]->[0]);
f5772832 1007 }
2358c533
KW
1008 }
1009
1010 # If we didn't change to omit a test above, see if the number of
1011 # elements is a power of 2 (only a single bit in the
1012 # representation of its count will be set) and if so, it may be
1013 # that a mask/compare optimization is possible.
1014 if ($output eq ""
1015 && pop_count($ranges[$i]->[1] - $ranges[$i]->[0] + 1) == 1)
1016 {
1017 my @list;
1018 push @list, $_ for ($ranges[$i]->[0] .. $ranges[$i]->[1]);
75929b4b
KW
1019 my @this_masks = calculate_mask(@list);
1020
1021 # Use the mask if there is just one for the whole range.
1022 # Otherwise there is no savings over the two branches that can
1023 # define the range.
1024 if (@this_masks == 1 && defined $this_masks[0][1]) {
1025 $output = sprintf "( $test & $self->{val_fmt} ) == $self->{val_fmt}", $this_masks[0][1], $this_masks[0][0];
f5772832
KW
1026 }
1027 }
2358c533
KW
1028
1029 if ($output ne "") { # Prefer any optimization
1030 $ranges[$i] = $output;
1031 }
75929b4b 1032 else {
2358c533
KW
1033 # No optimization happened. We need a test that the code
1034 # point is within both bounds. But, if the bounds are
1035 # adjacent code points, it is cleaner to say
1036 # 'first == test || second == test'
1037 # than it is to say
1038 # 'first <= test && test <= second'
75929b4b
KW
1039
1040 $range_count_extra++; # This range requires 2 branches to
1041 # represent
e2a80cb5
KW
1042 if ($ranges[$i]->[0] + 1 == $ranges[$i]->[1]) {
1043 $ranges[$i] = "( "
1044 . join( " || ", ( map
1045 { sprintf "$self->{val_fmt} == $test", $_ }
1046 @{$ranges[$i]} ) )
1047 . " )";
1048 }
1049 else { # Full bounds checking
1050 $ranges[$i] = sprintf("( $self->{val_fmt} <= $test && $test <= $self->{val_fmt} )", $ranges[$i]->[0], $ranges[$i]->[1]);
1051 }
75929b4b 1052 }
f5772832 1053 }
2358c533 1054 }
f5772832 1055
75929b4b
KW
1056 # We have generated the list of bytes in two ways; one trying to use masks
1057 # to cut the number of branches down, and the other to look at individual
1058 # ranges (some of which could be cut down by using a mask for just it).
1059 # We return whichever method uses the fewest branches.
1060 return "( "
1061 . join( " || ", (@masks && @masks < @ranges + $range_count_extra)
1062 ? @masks
1063 : @ranges)
1064 . " )";
12b72891
RGS
1065}
1066
e64b1bd1
YO
1067# _combine
1068# recursively turn a list of conditions into a fast break-out condition
1069# used by _cond_as_str() for 'cp' type macros.
1070sub _combine {
1071 my ( $self, $test, @cond )= @_;
1072 return if !@cond;
1073 my $item= shift @cond;
1074 my ( $cstr, $gtv );
1075 if ( ref $item ) {
1076 $cstr=
1077 sprintf( "( $self->{val_fmt} <= $test && $test <= $self->{val_fmt} )",
1078 @$item );
1079 $gtv= sprintf "$self->{val_fmt}", $item->[1];
12b72891 1080 } else {
e64b1bd1
YO
1081 $cstr= sprintf( "$self->{val_fmt} == $test", $item );
1082 $gtv= sprintf "$self->{val_fmt}", $item;
12b72891 1083 }
e64b1bd1 1084 if ( @cond ) {
ee98d22d
YO
1085 my $combine= $self->_combine( $test, @cond );
1086 if (@cond >1) {
1087 return "( $cstr || ( $gtv < $test &&\n"
1088 . $combine . " ) )";
1089 } else {
1090 return "( $cstr || $combine )";
1091 }
12b72891 1092 } else {
e64b1bd1 1093 return $cstr;
12b72891 1094 }
e64b1bd1 1095}
12b72891 1096
e64b1bd1
YO
1097# _render()
1098# recursively convert an optree to text with reasonably neat formatting
1099sub _render {
39a0f513 1100 my ( $self, $op, $combine, $brace, $opts_ref, $def, $submacros )= @_;
2e39f0c2 1101 return 0 if ! defined $op; # The set is empty
e64b1bd1
YO
1102 if ( !ref $op ) {
1103 return $op;
12b72891 1104 }
ba073cf2 1105 my $cond= $self->_cond_as_str( $op, $combine, $opts_ref );
cc08b31c
KW
1106 #no warnings 'recursion'; # This would allow really really inefficient
1107 # code to be generated. See pod
39a0f513 1108 my $yes= $self->_render( $op->{yes}, $combine, 1, $opts_ref, $def, $submacros );
30188af7
KW
1109 return $yes if $cond eq '1';
1110
39a0f513 1111 my $no= $self->_render( $op->{no}, $combine, 0, $opts_ref, $def, $submacros );
e64b1bd1
YO
1112 return "( $cond )" if $yes eq '1' and $no eq '0';
1113 my ( $lb, $rb )= $brace ? ( "( ", " )" ) : ( "", "" );
1114 return "$lb$cond ? $yes : $no$rb"
1115 if !ref( $op->{yes} ) && !ref( $op->{no} );
1116 my $ind1= " " x 4;
1117 my $ind= "\n" . ( $ind1 x $op->{depth} );
1118
1119 if ( ref $op->{yes} ) {
1120 $yes= $ind . $ind1 . $yes;
1121 } else {
1122 $yes= " " . $yes;
1123 }
1124
39a0f513
YO
1125 my $str= "$lb$cond ?$yes$ind: $no$rb";
1126 if (length $str > 6000) {
1127 push @$submacros, sprintf "#define $def\n( %s )", "_part" . (my $yes_idx= 0+@$submacros), $yes;
1128 push @$submacros, sprintf "#define $def\n( %s )", "_part" . (my $no_idx= 0+@$submacros), $no;
1129 return sprintf "%s%s ? $def : $def%s", $lb, $cond, "_part$yes_idx", "_part$no_idx", $rb;
1130 }
1131 return $str;
12b72891 1132}
32e6a07c 1133
e64b1bd1
YO
1134# $expr=render($op,$combine)
1135#
1136# convert an optree to text with reasonably neat formatting. If $combine
1137# is true then the condition is created using "fast breakouts" which
1138# produce uglier expressions that are more efficient for common case,
1139# longer lists such as that resulting from type 'cp' output.
1140# Currently only used for type 'cp' macros.
1141sub render {
39a0f513
YO
1142 my ( $self, $op, $combine, $opts_ref, $def_fmt )= @_;
1143
1144 my @submacros;
1145 my $macro= sprintf "#define $def_fmt\n( %s )", "", $self->_render( $op, $combine, 0, $opts_ref, $def_fmt, \@submacros );
1146
1147 return join "\n\n", map { "/*** GENERATED CODE ***/\n" . __macro( __clean( $_ ) ) } @submacros, $macro;
12b72891 1148}
e64b1bd1
YO
1149
1150# make_macro
1151# make a macro of a given type.
1152# calls into make_trie and (generic_|length_)optree as needed
1153# Opts are:
900c17f9 1154# type : 'cp','cp_high', 'generic','high','low','latin1','utf8','LATIN1','UTF8'
e64b1bd1
YO
1155# ret_type : 'cp' or 'len'
1156# safe : add length guards to macro
1157#
1158# type defaults to 'generic', and ret_type to 'len' unless type is 'cp'
1159# in which case it defaults to 'cp' as well.
1160#
1161# it is illegal to do a type 'cp' macro on a pattern with multi-codepoint
1162# sequences in it, as the generated macro will accept only a single codepoint
1163# as an argument.
1164#
1165# returns the macro.
1166
1167
1168sub make_macro {
1169 my $self= shift;
1170 my %opts= @_;
1171 my $type= $opts{type} || 'generic';
1172 die "Can't do a 'cp' on multi-codepoint character class '$self->{op}'"
900c17f9 1173 if $type =~ /^cp/
e64b1bd1 1174 and $self->{has_multi};
900c17f9 1175 my $ret_type= $opts{ret_type} || ( $opts{type} =~ /^cp/ ? 'cp' : 'len' );
e64b1bd1
YO
1176 my $method;
1177 if ( $opts{safe} ) {
1178 $method= 'length_optree';
1179 } elsif ( $type eq 'generic' ) {
1180 $method= 'generic_optree';
1181 } else {
1182 $method= 'optree';
1183 }
900c17f9 1184 my @args= $type =~ /^cp/ ? 'cp' : 's';
e64b1bd1
YO
1185 push @args, "e" if $opts{safe};
1186 push @args, "is_utf8" if $type eq 'generic';
1187 push @args, "len" if $ret_type eq 'both';
1188 my $pfx= $ret_type eq 'both' ? 'what_len_' :
1189 $ret_type eq 'cp' ? 'what_' : 'is_';
1190 my $ext= $type eq 'generic' ? '' : '_' . lc( $type );
1191 $ext .= "_safe" if $opts{safe};
1192 my $argstr= join ",", @args;
39a0f513
YO
1193 my $def_fmt="$pfx$self->{op}$ext%s($argstr)";
1194 my $optree= $self->$method( %opts, type => $type, ret_type => $ret_type );
1195 return $self->render( $optree, ($type =~ /^cp/) ? 1 : 0, \%opts, $def_fmt );
32e6a07c 1196}
e64b1bd1
YO
1197
1198# if we arent being used as a module (highly likely) then process
1199# the __DATA__ below and produce macros in regcharclass.h
1200# if an argument is provided to the script then it is assumed to
1201# be the path of the file to output to, if the arg is '-' outputs
1202# to STDOUT.
1203if ( !caller ) {
e64b1bd1 1204 $|++;
8770da0e 1205 my $path= shift @ARGV || "regcharclass.h";
e64b1bd1
YO
1206 my $out_fh;
1207 if ( $path eq '-' ) {
1208 $out_fh= \*STDOUT;
1209 } else {
29c22b52 1210 $out_fh = open_new( $path );
e64b1bd1 1211 }
8770da0e
NC
1212 print $out_fh read_only_top( lang => 'C', by => $0,
1213 file => 'regcharclass.h', style => '*',
2eee27d7 1214 copyright => [2007, 2011] );
d10c72f2 1215 print $out_fh "\n#ifndef H_REGCHARCLASS /* Guard against nested #includes */\n#define H_REGCHARCLASS 1\n\n";
12b72891 1216
bb949220 1217 my ( $op, $title, @txt, @types, %mods );
e64b1bd1
YO
1218 my $doit= sub {
1219 return unless $op;
ae1d4929
KW
1220
1221 # Skip if to compile on a different platform.
1222 return if delete $mods{only_ascii_platform} && ! ASCII_PLATFORM;
1223 return if delete $mods{only_ebcdic_platform} && ord 'A' != 193;
1224
e64b1bd1
YO
1225 print $out_fh "/*\n\t$op: $title\n\n";
1226 print $out_fh join "\n", ( map { "\t$_" } @txt ), "*/", "";
1227 my $obj= __PACKAGE__->new( op => $op, title => $title, txt => \@txt );
1228
bb949220
KW
1229 #die Dumper(\@types,\%mods);
1230
1231 my @mods;
1232 push @mods, 'safe' if delete $mods{safe};
1233 unshift @mods, 'fast' if delete $mods{fast} || ! @mods; # Default to 'fast'
1234 # do this one
1235 # first, as
1236 # traditional
1237 if (%mods) {
122a2d8f 1238 die "Unknown modifiers: ", join ", ", map { "'$_'" } sort keys %mods;
bb949220 1239 }
e64b1bd1
YO
1240
1241 foreach my $type_spec ( @types ) {
1242 my ( $type, $ret )= split /-/, $type_spec;
1243 $ret ||= 'len';
1244 foreach my $mod ( @mods ) {
900c17f9 1245 next if $mod eq 'safe' and $type =~ /^cp/;
bb949220 1246 delete $mods{$mod};
e64b1bd1
YO
1247 my $macro= $obj->make_macro(
1248 type => $type,
1249 ret_type => $ret,
1250 safe => $mod eq 'safe'
1251 );
1252 print $out_fh $macro, "\n";
1253 }
32e6a07c 1254 }
e64b1bd1
YO
1255 };
1256
1257 while ( <DATA> ) {
5e6c6c1e 1258 s/^ \s* (?: \# .* ) ? $ //x; # squeeze out comment and blanks
e64b1bd1
YO
1259 next unless /\S/;
1260 chomp;
fbd1cbdd 1261 if ( /^[A-Z]/ ) {
cc08b31c 1262 $doit->(); # This starts a new definition; do the previous one
e64b1bd1
YO
1263 ( $op, $title )= split /\s*:\s*/, $_, 2;
1264 @txt= ();
1265 } elsif ( s/^=>// ) {
1266 my ( $type, $modifier )= split /:/, $_;
1267 @types= split ' ', $type;
bb949220
KW
1268 undef %mods;
1269 map { $mods{$_} = 1 } split ' ', $modifier;
e64b1bd1
YO
1270 } else {
1271 push @txt, "$_";
12b72891
RGS
1272 }
1273 }
e64b1bd1 1274 $doit->();
d10c72f2
KW
1275
1276 print $out_fh "\n#endif /* H_REGCHARCLASS */\n";
1277
8770da0e
NC
1278 if($path eq '-') {
1279 print $out_fh "/* ex: set ro: */\n";
1280 } else {
1281 read_only_bottom_close_and_rename($out_fh)
1282 }
12b72891 1283}
e64b1bd1 1284
cc08b31c
KW
1285# The form of the input is a series of definitions to make macros for.
1286# The first line gives the base name of the macro, followed by a colon, and
1287# then text to be used in comments associated with the macro that are its
1288# title or description. In all cases the first (perhaps only) parameter to
1289# the macro is a pointer to the first byte of the code point it is to test to
1290# see if it is in the class determined by the macro. In the case of non-UTF8,
1291# the code point consists only of a single byte.
1292#
1293# The second line must begin with a '=>' and be followed by the types of
1294# macro(s) to be generated; these are specified below. A colon follows the
1295# types, followed by the modifiers, also specified below. At least one
1296# modifier is required.
1297#
1298# The subsequent lines give what code points go into the class defined by the
1299# macro. Multiple characters may be specified via a string like "\x0D\x0A",
60910c93
KW
1300# enclosed in quotes. Otherwise the lines consist of one of:
1301# 1) a single Unicode code point, prefaced by 0x
1302# 2) a single range of Unicode code points separated by a minus (and
1303# optional space)
1304# 3) a single Unicode property specified in the standard Perl form
1305# "\p{...}"
1306# 4) a line like 'do path'. This will do a 'do' on the file given by
1307# 'path'. It is assumed that this does nothing but load subroutines
1308# (See item 5 below). The reason 'require path' is not used instead is
1309# because 'do' doesn't assume that path is in @INC.
1310# 5) a subroutine call
1311# &pkg::foo(arg1, ...)
1312# where pkg::foo was loaded by a 'do' line (item 4). The subroutine
1313# returns an array of entries of forms like items 1-3 above. This
1314# allows more complex inputs than achievable from the other input types.
cc08b31c
KW
1315#
1316# A blank line or one whose first non-blank character is '#' is a comment.
1317# The definition of the macro is terminated by a line unlike those described.
1318#
1319# Valid types:
1320# low generate a macro whose name is 'is_BASE_low' and defines a
1321# class that includes only ASCII-range chars. (BASE is the
1322# input macro base name.)
1323# latin1 generate a macro whose name is 'is_BASE_latin1' and defines a
1324# class that includes only upper-Latin1-range chars. It is not
1325# designed to take a UTF-8 input parameter.
b1af8fef
KW
1326# high generate a macro whose name is 'is_BASE_high' and defines a
1327# class that includes all relevant code points that are above
1328# the Latin1 range. This is for very specialized uses only.
1329# It is designed to take only an input UTF-8 parameter.
cc08b31c
KW
1330# utf8 generate a macro whose name is 'is_BASE_utf8' and defines a
1331# class that includes all relevant characters that aren't ASCII.
1332# It is designed to take only an input UTF-8 parameter.
1333# LATIN1 generate a macro whose name is 'is_BASE_latin1' and defines a
1334# class that includes both ASCII and upper-Latin1-range chars.
1335# It is not designed to take a UTF-8 input parameter.
1336# UTF8 generate a macro whose name is 'is_BASE_utf8' and defines a
1337# class that can include any code point, adding the 'low' ones
1338# to what 'utf8' works on. It is designed to take only an input
1339# UTF-8 parameter.
1340# generic generate a macro whose name is 'is_BASE". It has a 2nd,
1341# boolean, parameter which indicates if the first one points to
1342# a UTF-8 string or not. Thus it works in all circumstances.
1343# cp generate a macro whose name is 'is_BASE_cp' and defines a
1344# class that returns true if the UV parameter is a member of the
1345# class; false if not.
900c17f9
KW
1346# cp_high like cp, but it is assumed that it is known that the UV
1347# parameter is above Latin1. The name of the generated macro is
1348# 'is_BASE_cp_high'. This is different from high-cp, derived
1349# below.
cc08b31c
KW
1350# A macro of the given type is generated for each type listed in the input.
1351# The default return value is the number of octets read to generate the match.
1352# Append "-cp" to the type to have it instead return the matched codepoint.
1353# The macro name is changed to 'what_BASE...'. See pod for
1354# caveats
1355# Appending '-both" instead adds an extra parameter to the end of the argument
1356# list, which is a pointer as to where to store the number of
1357# bytes matched, while also returning the code point. The macro
1358# name is changed to 'what_len_BASE...'. See pod for caveats
1359#
1360# Valid modifiers:
1361# safe The input string is not necessarily valid UTF-8. In
1362# particular an extra parameter (always the 2nd) to the macro is
1363# required, which points to one beyond the end of the string.
1364# The macro will make sure not to read off the end of the
1365# string. In the case of non-UTF8, it makes sure that the
1366# string has at least one byte in it. The macro name has
1367# '_safe' appended to it.
1368# fast The input string is valid UTF-8. No bounds checking is done,
1369# and the macro can make assumptions that lead to faster
1370# execution.
ae1d4929
KW
1371# only_ascii_platform Skip this definition if this program is being run on
1372# a non-ASCII platform.
1373# only_ebcdic_platform Skip this definition if this program is being run on
1374# a non-EBCDIC platform.
cc08b31c
KW
1375# No modifier need be specified; fast is assumed for this case. If both
1376# 'fast', and 'safe' are specified, two macros will be created for each
1377# 'type'.
e90ac8de 1378#
295bcca9 1379# If run on a non-ASCII platform will automatically convert the Unicode input
cc08b31c
KW
1380# to native. The documentation above is slightly wrong in this case. 'low'
1381# actually refers to code points whose UTF-8 representation is the same as the
1382# non-UTF-8 version (invariants); and 'latin1' refers to all the rest of the
1383# code points less than 256.
5e6c6c1e
KW
1384
13851; # in the unlikely case we are being used as a module
1386
1387__DATA__
1388# This is no longer used, but retained in case it is needed some day.
e90ac8de
KW
1389# TRICKYFOLD: Problematic fold case letters. When adding to this list, also should add them to regcomp.c and fold_grind.t
1390# => generic cp generic-cp generic-both :fast safe
1391# 0x00DF # LATIN SMALL LETTER SHARP S
1392# 0x0390 # GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
1393# 0x03B0 # GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
1394# 0x1E9E # LATIN CAPITAL LETTER SHARP S, because maps to same as 00DF
1395# 0x1FD3 # GREEK SMALL LETTER IOTA WITH DIALYTIKA AND OXIA; maps same as 0390
1396# 0x1FE3 # GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND OXIA; maps same as 03B0
1397
12b72891 1398LNBREAK: Line Break: \R
e64b1bd1 1399=> generic UTF8 LATIN1 :fast safe
12b72891 1400"\x0D\x0A" # CRLF - Network (Windows) line ending
05b688d9 1401\p{VertSpace}
12b72891
RGS
1402
1403HORIZWS: Horizontal Whitespace: \h \H
2cafb56b 1404=> generic UTF8 LATIN1 high cp cp_high :fast safe
05b688d9 1405\p{HorizSpace}
12b72891
RGS
1406
1407VERTWS: Vertical Whitespace: \v \V
840f8e92 1408=> generic UTF8 high LATIN1 cp cp_high :fast safe
05b688d9 1409\p{VertSpace}
612ead59 1410
4ac6419d
KW
1411XDIGIT: Hexadecimal digits
1412=> UTF8 high cp_high :fast
1413\p{XDigit}
1414
bedac28b
KW
1415XPERLSPACE: \p{XPerlSpace}
1416=> generic UTF8 high cp_high :fast
1417\p{XPerlSpace}
1418
b96a92fb
KW
1419REPLACEMENT: Unicode REPLACEMENT CHARACTER
1420=> UTF8 :safe
14210xFFFD
1422
1423NONCHAR: Non character code points
1424=> UTF8 :fast
1425\p{Nchar}
1426
1427SURROGATE: Surrogate characters
1428=> UTF8 :fast
1429\p{Gc=Cs}
1430
612ead59
KW
1431GCB_L: Grapheme_Cluster_Break=L
1432=> UTF8 :fast
1433\p{_X_GCB_L}
1434
1435GCB_LV_LVT_V: Grapheme_Cluster_Break=(LV or LVT or V)
1436=> UTF8 :fast
1437\p{_X_LV_LVT_V}
1438
1439GCB_Prepend: Grapheme_Cluster_Break=Prepend
1440=> UTF8 :fast
1441\p{_X_GCB_Prepend}
1442
1443GCB_RI: Grapheme_Cluster_Break=RI
1444=> UTF8 :fast
1445\p{_X_RI}
1446
1447GCB_SPECIAL_BEGIN: Grapheme_Cluster_Break=special_begins
1448=> UTF8 :fast
1449\p{_X_Special_Begin}
1450
1451GCB_T: Grapheme_Cluster_Break=T
1452=> UTF8 :fast
1453\p{_X_GCB_T}
1454
1455GCB_V: Grapheme_Cluster_Break=V
1456=> UTF8 :fast
1457\p{_X_GCB_V}
685289b5 1458
4d646140
KW
1459# This program was run with this enabled, and the results copied to utf8.h;
1460# then this was commented out because it takes so long to figure out these 2
1461# million code points. The results would not change unless utf8.h decides it
1462# wants a maximum other than 4 bytes, or this program creates better
1463# optimizations
1464#UTF8_CHAR: Matches utf8 from 1 to 4 bytes
1465#=> UTF8 :safe only_ascii_platform
1466#0x0 - 0x1FFFFF
1467
1468# This hasn't been commented out, because we haven't an EBCDIC platform to run
1469# it on, and the 3 types of EBCDIC allegedly supported by Perl would have
1470# different results
1471UTF8_CHAR: Matches utf8 from 1 to 5 bytes
1472=> UTF8 :safe only_ebcdic_platform
14730x0 - 0x3FFFFF:
1474
685289b5
KW
1475QUOTEMETA: Meta-characters that \Q should quote
1476=> high :fast
1477\p{_Perl_Quotemeta}
8769f413
KW
1478
1479MULTI_CHAR_FOLD: multi-char strings that are folded to by a single character
1480=> UTF8 :safe
1481do regen/regcharclass_multi_char_folds.pl
1482
1483# 1 => All folds
1484&regcharclass_multi_char_folds::multi_char_folds(1)
1485
40b1ba4f
KW
1486MULTI_CHAR_FOLD: multi-char strings that are folded to by a single character
1487=> LATIN1 :safe
8769f413 1488
8769f413 1489&regcharclass_multi_char_folds::multi_char_folds(0)
40b1ba4f 1490# 0 => Latin1-only