

A178204


Smith numbers of order 6; composite numbers n such that sum of digits^6 equal sum of digits^6 of its prime factors without the numbers in A176670 that have the same digits as its prime factors (without the zero digits).


5



40844882, 113986781, 130852098, 141176320, 168137185, 170774472, 178180163, 181681157, 181693781, 183161897, 187117638, 215149451, 261666000, 284804842, 294557945, 307711074, 335524949, 337194240, 344552927, 347391040, 355318188, 358831104, 368657536
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Donovan Johnson, Table of n, a(n) for n = 1..1000
Eric W. Weisstein, Smith Number


EXAMPLE

a(4) = 141176320 = 2^9*5*55147;
3*1^6+2^6+3^6+4^6+6^6+7^6 = 1^6+9*2^6+4^6+3*5^6+7^6 = 169197


MATHEMATICA

fQ[n_] := Block[{id = Sort@ IntegerDigits@ n, fid = Sort@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@ n]}, While[ id[[1]] == 0, id = Drop[id, 1]]; While[ fid[[1]] == 0, fid = Drop[fid, 1]]; id != fid && Plus @@ (id^6) == Plus @@ (fid^6)]; k = 2; lst = {}; While[k < 50000001, If[fQ@ k, AppendTo[ lst, k]; Print@ k]; k++]; lst


CROSSREFS

Cf. A006753 (Smith numbers), A176670, A174460, A178213, A178193, A178203.
Sequence in context: A017481 A017613 A015409 * A334583 A130681 A261658
Adjacent sequences: A178201 A178202 A178203 * A178205 A178206 A178207


KEYWORD

nonn,base


AUTHOR

Paul Weisenhorn, Dec 19 2010


EXTENSIONS

Example corrected by Donovan Johnson, Jan 02 2013


STATUS

approved



