# $RCSFile$ # # Complex numbers and associated mathematical functions # -- Raphael Manfredi, September 1996 # -- Jarkko Hietaniemi, March 1997 require Exporter; package Math::Complex; @ISA = qw(Exporter); use strict; use vars qw(@EXPORT $package $display $pi $i $ilog10 $logn %logn); @EXPORT = qw( pi i Re Im arg sqrt exp log ln log10 logn cbrt root tan cosec csc sec cotan cot asin acos atan acosec acsc asec acotan acot sinh cosh tanh cosech csch sech cotanh coth asinh acosh atanh acosech acsch asech acotanh acoth cplx cplxe ); use overload '+' => \&plus, '-' => \&minus, '*' => \&multiply, '/' => \÷, '**' => \&power, '<=>' => \&spaceship, 'neg' => \&negate, '~' => \&conjugate, 'abs' => \&abs, 'sqrt' => \&sqrt, 'exp' => \&exp, 'log' => \&log, 'sin' => \&sin, 'cos' => \&cos, 'tan' => \&tan, 'atan2' => \&atan2, qw("" stringify); # # Package globals # $package = 'Math::Complex'; # Package name $display = 'cartesian'; # Default display format # # Object attributes (internal): # cartesian [real, imaginary] -- cartesian form # polar [rho, theta] -- polar form # c_dirty cartesian form not up-to-date # p_dirty polar form not up-to-date # display display format (package's global when not set) # # # ->make # # Create a new complex number (cartesian form) # sub make { my $self = bless {}, shift; my ($re, $im) = @_; $self->{'cartesian'} = [$re, $im]; $self->{c_dirty} = 0; $self->{p_dirty} = 1; return $self; } # # ->emake # # Create a new complex number (exponential form) # sub emake { my $self = bless {}, shift; my ($rho, $theta) = @_; $theta += pi() if $rho < 0; $self->{'polar'} = [abs($rho), $theta]; $self->{p_dirty} = 0; $self->{c_dirty} = 1; return $self; } sub new { &make } # For backward compatibility only. # # cplx # # Creates a complex number from a (re, im) tuple. # This avoids the burden of writing Math::Complex->make(re, im). # sub cplx { my ($re, $im) = @_; return $package->make($re, defined $im ? $im : 0); } # # cplxe # # Creates a complex number from a (rho, theta) tuple. # This avoids the burden of writing Math::Complex->emake(rho, theta). # sub cplxe { my ($rho, $theta) = @_; return $package->emake($rho, defined $theta ? $theta : 0); } # # pi # # The number defined as 2 * pi = 360 degrees # sub pi () { $pi = 4 * atan2(1, 1) unless $pi; return $pi; } # # i # # The number defined as i*i = -1; # sub i () { $i = bless {} unless $i; # There can be only one i $i->{'cartesian'} = [0, 1]; $i->{'polar'} = [1, pi/2]; $i->{c_dirty} = 0; $i->{p_dirty} = 0; return $i; } # # Attribute access/set routines # sub cartesian {$_[0]->{c_dirty} ? $_[0]->update_cartesian : $_[0]->{'cartesian'}} sub polar {$_[0]->{p_dirty} ? $_[0]->update_polar : $_[0]->{'polar'}} sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{'cartesian'} = $_[1] } sub set_polar { $_[0]->{c_dirty}++; $_[0]->{'polar'} = $_[1] } # # ->update_cartesian # # Recompute and return the cartesian form, given accurate polar form. # sub update_cartesian { my $self = shift; my ($r, $t) = @{$self->{'polar'}}; $self->{c_dirty} = 0; return $self->{'cartesian'} = [$r * cos $t, $r * sin $t]; } # # # ->update_polar # # Recompute and return the polar form, given accurate cartesian form. # sub update_polar { my $self = shift; my ($x, $y) = @{$self->{'cartesian'}}; $self->{p_dirty} = 0; return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; return $self->{'polar'} = [sqrt($x*$x + $y*$y), atan2($y, $x)]; } # # (plus) # # Computes z1+z2. # sub plus { my ($z1, $z2, $regular) = @_; $z2 = cplx($z2, 0) unless ref $z2; my ($re1, $im1) = @{$z1->cartesian}; my ($re2, $im2) = @{$z2->cartesian}; unless (defined $regular) { $z1->set_cartesian([$re1 + $re2, $im1 + $im2]); return $z1; } return (ref $z1)->make($re1 + $re2, $im1 + $im2); } # # (minus) # # Computes z1-z2. # sub minus { my ($z1, $z2, $inverted) = @_; $z2 = cplx($z2, 0) unless ref $z2; my ($re1, $im1) = @{$z1->cartesian}; my ($re2, $im2) = @{$z2->cartesian}; unless (defined $inverted) { $z1->set_cartesian([$re1 - $re2, $im1 - $im2]); return $z1; } return $inverted ? (ref $z1)->make($re2 - $re1, $im2 - $im1) : (ref $z1)->make($re1 - $re2, $im1 - $im2); } # # (multiply) # # Computes z1*z2. # sub multiply { my ($z1, $z2, $regular) = @_; my ($r1, $t1) = @{$z1->polar}; my ($r2, $t2) = ref $z2 ? @{$z2->polar} : (abs($z2), $z2 >= 0 ? 0 : pi); unless (defined $regular) { $z1->set_polar([$r1 * $r2, $t1 + $t2]); return $z1; } return (ref $z1)->emake($r1 * $r2, $t1 + $t2); } # # divbyzero # # Die on division by zero. # sub divbyzero { warn $package . '::' . "$_[0]: Division by zero.\n"; warn "(Because in the definition of $_[0], $_[1] is 0)\n" if (defined $_[1]); my @up = caller(1); my $dmess = "Died at $up[1] line $up[2].\n"; die $dmess; } # # (divide) # # Computes z1/z2. # sub divide { my ($z1, $z2, $inverted) = @_; my ($r1, $t1) = @{$z1->polar}; my ($r2, $t2) = ref $z2 ? @{$z2->polar} : (abs($z2), $z2 >= 0 ? 0 : pi); unless (defined $inverted) { divbyzero "$z1/0" if ($r2 == 0); $z1->set_polar([$r1 / $r2, $t1 - $t2]); return $z1; } if ($inverted) { divbyzero "$z2/0" if ($r1 == 0); return (ref $z1)->emake($r2 / $r1, $t2 - $t1); } else { divbyzero "$z1/0" if ($r2 == 0); return (ref $z1)->emake($r1 / $r2, $t1 - $t2); } } # # (power) # # Computes z1**z2 = exp(z2 * log z1)). # sub power { my ($z1, $z2, $inverted) = @_; return exp($z1 * log $z2) if defined $inverted && $inverted; return exp($z2 * log $z1); } # # (spaceship) # # Computes z1 <=> z2. # Sorts on the real part first, then on the imaginary part. Thus 2-4i > 3+8i. # sub spaceship { my ($z1, $z2, $inverted) = @_; $z2 = cplx($z2, 0) unless ref $z2; my ($re1, $im1) = @{$z1->cartesian}; my ($re2, $im2) = @{$z2->cartesian}; my $sgn = $inverted ? -1 : 1; return $sgn * ($re1 <=> $re2) if $re1 != $re2; return $sgn * ($im1 <=> $im2); } # # (negate) # # Computes -z. # sub negate { my ($z) = @_; if ($z->{c_dirty}) { my ($r, $t) = @{$z->polar}; return (ref $z)->emake($r, pi + $t); } my ($re, $im) = @{$z->cartesian}; return (ref $z)->make(-$re, -$im); } # # (conjugate) # # Compute complex's conjugate. # sub conjugate { my ($z) = @_; if ($z->{c_dirty}) { my ($r, $t) = @{$z->polar}; return (ref $z)->emake($r, -$t); } my ($re, $im) = @{$z->cartesian}; return (ref $z)->make($re, -$im); } # # (abs) # # Compute complex's norm (rho). # sub abs { my ($z) = @_; return abs($z) unless ref $z; my ($r, $t) = @{$z->polar}; return abs($r); } # # arg # # Compute complex's argument (theta). # sub arg { my ($z) = @_; return ($z < 0 ? pi : 0) unless ref $z; my ($r, $t) = @{$z->polar}; return $t; } # # (sqrt) # # Compute sqrt(z). # sub sqrt { my ($z) = @_; $z = cplx($z, 0) unless ref $z; my ($r, $t) = @{$z->polar}; return (ref $z)->emake(sqrt($r), $t/2); } # # cbrt # # Compute cbrt(z) (cubic root). # sub cbrt { my ($z) = @_; return cplx($z, 0) ** (1/3) unless ref $z; my ($r, $t) = @{$z->polar}; return (ref $z)->emake($r**(1/3), $t/3); } # # root # # Computes all nth root for z, returning an array whose size is n. # `n' must be a positive integer. # # The roots are given by (for k = 0..n-1): # # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) # sub root { my ($z, $n) = @_; $n = int($n + 0.5); return undef unless $n > 0; my ($r, $t) = ref $z ? @{$z->polar} : (abs($z), $z >= 0 ? 0 : pi); my @root; my $k; my $theta_inc = 2 * pi / $n; my $rho = $r ** (1/$n); my $theta; my $complex = ref($z) || $package; for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) { push(@root, $complex->emake($rho, $theta)); } return @root; } # # Re # # Return Re(z). # sub Re { my ($z) = @_; return $z unless ref $z; my ($re, $im) = @{$z->cartesian}; return $re; } # # Im # # Return Im(z). # sub Im { my ($z) = @_; return 0 unless ref $z; my ($re, $im) = @{$z->cartesian}; return $im; } # # (exp) # # Computes exp(z). # sub exp { my ($z) = @_; $z = cplx($z, 0) unless ref $z; my ($x, $y) = @{$z->cartesian}; return (ref $z)->emake(exp($x), $y); } # # (log) # # Compute log(z). # sub log { my ($z) = @_; $z = cplx($z, 0) unless ref $z; my ($r, $t) = @{$z->polar}; my ($x, $y) = @{$z->cartesian}; $t -= 2 * pi if ($t > pi() and $x < 0); $t += 2 * pi if ($t < -pi() and $x < 0); return (ref $z)->make(log($r), $t); } # # ln # # Alias for log(). # sub ln { Math::Complex::log(@_) } # # log10 # # Compute log10(z). # sub log10 { my ($z) = @_; my $ilog10 = 1 / log(10) unless defined $ilog10; return log(cplx($z, 0)) * $ilog10 unless ref $z; my ($r, $t) = @{$z->polar}; return (ref $z)->make(log($r) * $ilog10, $t * $ilog10); } # # logn # # Compute logn(z,n) = log(z) / log(n) # sub logn { my ($z, $n) = @_; $z = cplx($z, 0) unless ref $z; my $logn = $logn{$n}; $logn = $logn{$n} = log($n) unless defined $logn; # Cache log(n) return log($z) / $logn; } # # (cos) # # Compute cos(z) = (exp(iz) + exp(-iz))/2. # sub cos { my ($z) = @_; my ($x, $y) = @{$z->cartesian}; my $ey = exp($y); my $ey_1 = 1 / $ey; return (ref $z)->make(cos($x) * ($ey + $ey_1)/2, sin($x) * ($ey_1 - $ey)/2); } # # (sin) # # Compute sin(z) = (exp(iz) - exp(-iz))/2. # sub sin { my ($z) = @_; my ($x, $y) = @{$z->cartesian}; my $ey = exp($y); my $ey_1 = 1 / $ey; return (ref $z)->make(sin($x) * ($ey + $ey_1)/2, cos($x) * ($ey - $ey_1)/2); } # # tan # # Compute tan(z) = sin(z) / cos(z). # sub tan { my ($z) = @_; my $cz = cos($z); divbyzero "tan($z)", "cos($z)" if ($cz == 0); return sin($z) / $cz; } # # sec # # Computes the secant sec(z) = 1 / cos(z). # sub sec { my ($z) = @_; my $cz = cos($z); divbyzero "sec($z)", "cos($z)" if ($cz == 0); return 1 / $cz; } # # csc # # Computes the cosecant csc(z) = 1 / sin(z). # sub csc { my ($z) = @_; my $sz = sin($z); divbyzero "csc($z)", "sin($z)" if ($sz == 0); return 1 / $sz; } # # cosec # # Alias for csc(). # sub cosec { Math::Complex::csc(@_) } # # cot # # Computes cot(z) = 1 / tan(z). # sub cot { my ($z) = @_; my $sz = sin($z); divbyzero "cot($z)", "sin($z)" if ($sz == 0); return cos($z) / $sz; } # # cotan # # Alias for cot(). # sub cotan { Math::Complex::cot(@_) } # # acos # # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). # sub acos { my ($z) = @_; $z = cplx($z, 0) unless ref $z; return ~i * log($z + (Re($z) * Im($z) > 0 ? 1 : -1) * sqrt($z*$z - 1)); } # # asin # # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). # sub asin { my ($z) = @_; $z = cplx($z, 0) unless ref $z; return ~i * log(i * $z + sqrt(1 - $z*$z)); } # # atan # # Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). # sub atan { my ($z) = @_; divbyzero "atan($z)", "i - $z" if ($z == i); return i/2*log((i + $z) / (i - $z)); } # # asec # # Computes the arc secant asec(z) = acos(1 / z). # sub asec { my ($z) = @_; return acos(1 / $z); } # # acosec # # Computes the arc cosecant sec(z) = asin(1 / z). # sub acosec { my ($z) = @_; return asin(1 / $z); } # # acsc # # Alias for acosec(). # sub acsc { Math::Complex::acosec(@_) } # # acot # # Computes the arc cotangent acot(z) = -i/2 log((i+z) / (z-i)) # sub acot { my ($z) = @_; divbyzero "acot($z)", "$z - i" if ($z == i); return i/-2 * log((i + $z) / ($z - i)); } # # acotan # # Alias for acot(). # sub acotan { Math::Complex::acot(@_) } # # cosh # # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. # sub cosh { my ($z) = @_; $z = cplx($z, 0) unless ref $z; my ($x, $y) = @{$z->cartesian}; my $ex = exp($x); my $ex_1 = 1 / $ex; return ($ex + $ex_1)/2 unless ref $z; return (ref $z)->make(cos($y) * ($ex + $ex_1)/2, sin($y) * ($ex - $ex_1)/2); } # # sinh # # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. # sub sinh { my ($z) = @_; $z = cplx($z, 0) unless ref $z; my ($x, $y) = @{$z->cartesian}; my $ex = exp($x); my $ex_1 = 1 / $ex; return ($ex - $ex_1)/2 unless ref $z; return (ref $z)->make(cos($y) * ($ex - $ex_1)/2, sin($y) * ($ex + $ex_1)/2); } # # tanh # # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). # sub tanh { my ($z) = @_; my $cz = cosh($z); divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); return sinh($z) / $cz; } # # sech # # Computes the hyperbolic secant sech(z) = 1 / cosh(z). # sub sech { my ($z) = @_; my $cz = cosh($z); divbyzero "sech($z)", "cosh($z)" if ($cz == 0); return 1 / $cz; } # # csch # # Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). # sub csch { my ($z) = @_; my $sz = sinh($z); divbyzero "csch($z)", "sinh($z)" if ($sz == 0); return 1 / $sz; } # # cosech # # Alias for csch(). # sub cosech { Math::Complex::csch(@_) } # # coth # # Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). # sub coth { my ($z) = @_; my $sz = sinh($z); divbyzero "coth($z)", "sinh($z)" if ($sz == 0); return cosh($z) / $sz; } # # cotanh # # Alias for coth(). # sub cotanh { Math::Complex::coth(@_) } # # acosh # # Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). # sub acosh { my ($z) = @_; $z = cplx($z, 0) unless ref $z; # asinh(-2) return log($z + sqrt($z*$z - 1)); } # # asinh # # Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z-1)) # sub asinh { my ($z) = @_; $z = cplx($z, 0) unless ref $z; # asinh(-2) return log($z + sqrt($z*$z + 1)); } # # atanh # # Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). # sub atanh { my ($z) = @_; $z = cplx($z, 0) unless ref $z; # atanh(-2) divbyzero 'atanh(1)', "1 - $z" if ($z == 1); my $cz = (1 + $z) / (1 - $z); return log($cz) / 2; } # # asech # # Computes the hyperbolic arc secant asech(z) = acosh(1 / z). # sub asech { my ($z) = @_; divbyzero 'asech(0)', $z if ($z == 0); return acosh(1 / $z); } # # acsch # # Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z). # sub acsch { my ($z) = @_; divbyzero 'acsch(0)', $z if ($z == 0); return asinh(1 / $z); } # # acosech # # Alias for acosh(). # sub acosech { Math::Complex::acsch(@_) } # # acoth # # Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). # sub acoth { my ($z) = @_; $z = cplx($z, 0) unless ref $z; # acoth(-2) divbyzero 'acoth(1)', "$z - 1" if ($z == 1); my $cz = (1 + $z) / ($z - 1); return log($cz) / 2; } # # acotanh # # Alias for acot(). # sub acotanh { Math::Complex::acoth(@_) } # # (atan2) # # Compute atan(z1/z2). # sub atan2 { my ($z1, $z2, $inverted) = @_; my ($re1, $im1) = @{$z1->cartesian}; my ($re2, $im2) = @{$z2->cartesian}; my $tan; if (defined $inverted && $inverted) { # atan(z2/z1) return pi * ($re2 > 0 ? 1 : -1) if $re1 == 0 && $im1 == 0; $tan = $z2 / $z1; } else { return pi * ($re1 > 0 ? 1 : -1) if $re2 == 0 && $im2 == 0; $tan = $z1 / $z2; } return atan($tan); } # # display_format # ->display_format # # Set (fetch if no argument) display format for all complex numbers that # don't happen to have overrriden it via ->display_format # # When called as a method, this actually sets the display format for # the current object. # # Valid object formats are 'c' and 'p' for cartesian and polar. The first # letter is used actually, so the type can be fully spelled out for clarity. # sub display_format { my $self = shift; my $format = undef; if (ref $self) { # Called as a method $format = shift; } else { # Regular procedure call $format = $self; undef $self; } if (defined $self) { return defined $self->{display} ? $self->{display} : $display unless defined $format; return $self->{display} = $format; } return $display unless defined $format; return $display = $format; } # # (stringify) # # Show nicely formatted complex number under its cartesian or polar form, # depending on the current display format: # # . If a specific display format has been recorded for this object, use it. # . Otherwise, use the generic current default for all complex numbers, # which is a package global variable. # sub stringify { my ($z) = shift; my $format; $format = $display; $format = $z->{display} if defined $z->{display}; return $z->stringify_polar if $format =~ /^p/i; return $z->stringify_cartesian; } # # ->stringify_cartesian # # Stringify as a cartesian representation 'a+bi'. # sub stringify_cartesian { my $z = shift; my ($x, $y) = @{$z->cartesian}; my ($re, $im); $x = int($x + ($x < 0 ? -1 : 1) * 1e-14) if int(abs($x)) != int(abs($x) + 1e-14); $y = int($y + ($y < 0 ? -1 : 1) * 1e-14) if int(abs($y)) != int(abs($y) + 1e-14); $re = "$x" if abs($x) >= 1e-14; if ($y == 1) { $im = 'i' } elsif ($y == -1) { $im = '-i' } elsif (abs($y) >= 1e-14) { $im = $y . "i" } my $str = ''; $str = $re if defined $re; $str .= "+$im" if defined $im; $str =~ s/\+-/-/; $str =~ s/^\+//; $str = '0' unless $str; return $str; } # # ->stringify_polar # # Stringify as a polar representation '[r,t]'. # sub stringify_polar { my $z = shift; my ($r, $t) = @{$z->polar}; my $theta; my $eps = 1e-14; return '[0,0]' if $r <= $eps; my $tpi = 2 * pi; my $nt = $t / $tpi; $nt = ($nt - int($nt)) * $tpi; $nt += $tpi if $nt < 0; # Range [0, 2pi] if (abs($nt) <= $eps) { $theta = 0 } elsif (abs(pi-$nt) <= $eps) { $theta = 'pi' } if (defined $theta) { $r = int($r + ($r < 0 ? -1 : 1) * $eps) if int(abs($r)) != int(abs($r) + $eps); $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps) if ($theta ne 'pi' and int(abs($theta)) != int(abs($theta) + $eps)); return "\[$r,$theta\]"; } # # Okay, number is not a real. Try to identify pi/n and friends... # $nt -= $tpi if $nt > pi; my ($n, $k, $kpi); for ($k = 1, $kpi = pi; $k < 10; $k++, $kpi += pi) { $n = int($kpi / $nt + ($nt > 0 ? 1 : -1) * 0.5); if (abs($kpi/$n - $nt) <= $eps) { $theta = ($nt < 0 ? '-':''). ($k == 1 ? 'pi':"${k}pi").'/'.abs($n); last; } } $theta = $nt unless defined $theta; $r = int($r + ($r < 0 ? -1 : 1) * $eps) if int(abs($r)) != int(abs($r) + $eps); $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps) if ($theta !~ m(^-?\d*pi/\d+$) and int(abs($theta)) != int(abs($theta) + $eps)); return "\[$r,$theta\]"; } 1; __END__ =head1 NAME Math::Complex - complex numbers and associated mathematical functions =head1 SYNOPSIS use Math::Complex; $z = Math::Complex->make(5, 6); $t = 4 - 3*i + $z; $j = cplxe(1, 2*pi/3); =head1 DESCRIPTION This package lets you create and manipulate complex numbers. By default, I limits itself to real numbers, but an extra C statement brings full complex support, along with a full set of mathematical functions typically associated with and/or extended to complex numbers. If you wonder what complex numbers are, they were invented to be able to solve the following equation: x*x = -1 and by definition, the solution is noted I (engineers use I instead since I usually denotes an intensity, but the name does not matter). The number I is a pure I number. The arithmetics with pure imaginary numbers works just like you would expect it with real numbers... you just have to remember that i*i = -1 so you have: 5i + 7i = i * (5 + 7) = 12i 4i - 3i = i * (4 - 3) = i 4i * 2i = -8 6i / 2i = 3 1 / i = -i Complex numbers are numbers that have both a real part and an imaginary part, and are usually noted: a + bi where C is the I part and C is the I part. The arithmetic with complex numbers is straightforward. You have to keep track of the real and the imaginary parts, but otherwise the rules used for real numbers just apply: (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i A graphical representation of complex numbers is possible in a plane (also called the I, but it's really a 2D plane). The number z = a + bi is the point whose coordinates are (a, b). Actually, it would be the vector originating from (0, 0) to (a, b). It follows that the addition of two complex numbers is a vectorial addition. Since there is a bijection between a point in the 2D plane and a complex number (i.e. the mapping is unique and reciprocal), a complex number can also be uniquely identified with polar coordinates: [rho, theta] where C is the distance to the origin, and C the angle between the vector and the I axis. There is a notation for this using the exponential form, which is: rho * exp(i * theta) where I is the famous imaginary number introduced above. Conversion between this form and the cartesian form C is immediate: a = rho * cos(theta) b = rho * sin(theta) which is also expressed by this formula: z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) In other words, it's the projection of the vector onto the I and I axes. Mathematicians call I the I or I and I the I of the complex number. The I of C will be noted C. The polar notation (also known as the trigonometric representation) is much more handy for performing multiplications and divisions of complex numbers, whilst the cartesian notation is better suited for additions and substractions. Real numbers are on the I axis, and therefore I is zero. All the common operations that can be performed on a real number have been defined to work on complex numbers as well, and are merely I of the operations defined on real numbers. This means they keep their natural meaning when there is no imaginary part, provided the number is within their definition set. For instance, the C routine which computes the square root of its argument is only defined for positive real numbers and yields a positive real number (it is an application from B to B). If we allow it to return a complex number, then it can be extended to negative real numbers to become an application from B to B (the set of complex numbers): sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i It can also be extended to be an application from B to B, whilst its restriction to B behaves as defined above by using the following definition: sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) Indeed, a negative real number can be noted C<[x,pi]> (the modulus I is always positive, so C<[x,pi]> is really C<-x>, a negative number) and the above definition states that sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i which is exactly what we had defined for negative real numbers above. All the common mathematical functions defined on real numbers that are extended to complex numbers share that same property of working I when the imaginary part is zero (otherwise, it would not be called an extension, would it?). A I operation possible on a complex number that is the identity for real numbers is called the I, and is noted with an horizontal bar above the number, or C<~z> here. z = a + bi ~z = a - bi Simple... Now look: z * ~z = (a + bi) * (a - bi) = a*a + b*b We saw that the norm of C was noted C and was defined as the distance to the origin, also known as: rho = abs(z) = sqrt(a*a + b*b) so z * ~z = abs(z) ** 2 If z is a pure real number (i.e. C), then the above yields: a * a = abs(a) ** 2 which is true (C has the regular meaning for real number, i.e. stands for the absolute value). This example explains why the norm of C is noted C: it extends the C function to complex numbers, yet is the regular C we know when the complex number actually has no imaginary part... This justifies I our use of the C notation for the norm. =head1 OPERATIONS Given the following notations: z1 = a + bi = r1 * exp(i * t1) z2 = c + di = r2 * exp(i * t2) z = the following (overloaded) operations are supported on complex numbers: z1 + z2 = (a + c) + i(b + d) z1 - z2 = (a - c) + i(b - d) z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) z1 ** z2 = exp(z2 * log z1) ~z1 = a - bi abs(z1) = r1 = sqrt(a*a + b*b) sqrt(z1) = sqrt(r1) * exp(i * t1/2) exp(z1) = exp(a) * exp(i * b) log(z1) = log(r1) + i*t1 sin(z1) = 1/2i (exp(i * z1) - exp(-i * z1)) cos(z1) = 1/2 (exp(i * z1) + exp(-i * z1)) abs(z1) = r1 atan2(z1, z2) = atan(z1/z2) The following extra operations are supported on both real and complex numbers: Re(z) = a Im(z) = b arg(z) = t cbrt(z) = z ** (1/3) log10(z) = log(z) / log(10) logn(z, n) = log(z) / log(n) tan(z) = sin(z) / cos(z) csc(z) = 1 / sin(z) sec(z) = 1 / cos(z) cot(z) = 1 / tan(z) asin(z) = -i * log(i*z + sqrt(1-z*z)) acos(z) = -i * log(z + sqrt(z*z-1)) atan(z) = i/2 * log((i+z) / (i-z)) acsc(z) = asin(1 / z) asec(z) = acos(1 / z) acot(z) = -i/2 * log((i+z) / (z-i)) sinh(z) = 1/2 (exp(z) - exp(-z)) cosh(z) = 1/2 (exp(z) + exp(-z)) tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) csch(z) = 1 / sinh(z) sech(z) = 1 / cosh(z) coth(z) = 1 / tanh(z) asinh(z) = log(z + sqrt(z*z+1)) acosh(z) = log(z + sqrt(z*z-1)) atanh(z) = 1/2 * log((1+z) / (1-z)) acsch(z) = asinh(1 / z) asech(z) = acosh(1 / z) acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1)) I, I, I, I, I, I, I, I, I, have aliases I, I, I, I, I, I, I, I, I, respectively. The I function is available to compute all the I roots of some complex, where I is a strictly positive integer. There are exactly I such roots, returned as a list. Getting the number mathematicians call C such that: 1 + j + j*j = 0; is a simple matter of writing: $j = ((root(1, 3))[1]; The Ith root for C is given by: (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) The I comparison operator is also defined. In order to ensure its restriction to real numbers is conform to what you would expect, the comparison is run on the real part of the complex number first, and imaginary parts are compared only when the real parts match. =head1 CREATION To create a complex number, use either: $z = Math::Complex->make(3, 4); $z = cplx(3, 4); if you know the cartesian form of the number, or $z = 3 + 4*i; if you like. To create a number using the trigonometric form, use either: $z = Math::Complex->emake(5, pi/3); $x = cplxe(5, pi/3); instead. The first argument is the modulus, the second is the angle (in radians, the full circle is 2*pi). (Mnmemonic: C is used as a notation for complex numbers in the trigonometric form). It is possible to write: $x = cplxe(-3, pi/4); but that will be silently converted into C<[3,-3pi/4]>, since the modulus must be positive (it represents the distance to the origin in the complex plane). =head1 STRINGIFICATION When printed, a complex number is usually shown under its cartesian form I, but there are legitimate cases where the polar format I<[r,t]> is more appropriate. By calling the routine C and supplying either C<"polar"> or C<"cartesian">, you override the default display format, which is C<"cartesian">. Not supplying any argument returns the current setting. This default can be overridden on a per-number basis by calling the C method instead. As before, not supplying any argument returns the current display format for this number. Otherwise whatever you specify will be the new display format for I particular number. For instance: use Math::Complex; Math::Complex::display_format('polar'); $j = ((root(1, 3))[1]; print "j = $j\n"; # Prints "j = [1,2pi/3] $j->display_format('cartesian'); print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" The polar format attempts to emphasize arguments like I (where I is a positive integer and I an integer within [-9,+9]). =head1 USAGE Thanks to overloading, the handling of arithmetics with complex numbers is simple and almost transparent. Here are some examples: use Math::Complex; $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 print "j = $j, j**3 = ", $j ** 3, "\n"; print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; $z = -16 + 0*i; # Force it to be a complex print "sqrt($z) = ", sqrt($z), "\n"; $k = exp(i * 2*pi/3); print "$j - $k = ", $j - $k, "\n"; =head1 BUGS Saying C exports many mathematical routines in the caller environment. This is construed as a feature by the Author, actually... ;-) The code is not optimized for speed, although we try to use the cartesian form for addition-like operators and the trigonometric form for all multiplication-like operators. The arg() routine does not ensure the angle is within the range [-pi,+pi] (a side effect caused by multiplication and division using the trigonometric representation). All routines expect to be given real or complex numbers. Don't attempt to use BigFloat, since Perl has currently no rule to disambiguate a '+' operation (for instance) between two overloaded entities. =head1 AUTHORS Raphael Manfredi > Jarkko Hietaniemi >