/* av.c * * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others * * You may distribute under the terms of either the GNU General Public * License or the Artistic License, as specified in the README file. * */ /* * '...for the Entwives desired order, and plenty, and peace (by which they * meant that things should remain where they had set them).' --Treebeard * * [p.476 of _The Lord of the Rings_, III/iv: "Treebeard"] */ /* =head1 Array Manipulation Functions */ #include "EXTERN.h" #define PERL_IN_AV_C #include "perl.h" void Perl_av_reify(pTHX_ AV *av) { dVAR; SSize_t key; PERL_ARGS_ASSERT_AV_REIFY; assert(SvTYPE(av) == SVt_PVAV); if (AvREAL(av)) return; #ifdef DEBUGGING if (SvTIED_mg((const SV *)av, PERL_MAGIC_tied)) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEBUGGING), "av_reify called on tied array"); #endif key = AvMAX(av) + 1; while (key > AvFILLp(av) + 1) AvARRAY(av)[--key] = NULL; while (key) { SV * const sv = AvARRAY(av)[--key]; if (sv != &PL_sv_undef) SvREFCNT_inc_simple_void(sv); } key = AvARRAY(av) - AvALLOC(av); while (key) AvALLOC(av)[--key] = NULL; AvREIFY_off(av); AvREAL_on(av); } /* =for apidoc av_extend Pre-extend an array. The C is the index to which the array should be extended. =cut */ void Perl_av_extend(pTHX_ AV *av, SSize_t key) { dVAR; MAGIC *mg; PERL_ARGS_ASSERT_AV_EXTEND; assert(SvTYPE(av) == SVt_PVAV); mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied); if (mg) { SV *arg1 = sv_newmortal(); sv_setiv(arg1, (IV)(key + 1)); Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(EXTEND), G_DISCARD, 1, arg1); return; } av_extend_guts(av,key,&AvMAX(av),&AvALLOC(av),&AvARRAY(av)); } /* The guts of av_extend. *Not* for general use! */ void Perl_av_extend_guts(pTHX_ AV *av, SSize_t key, SSize_t *maxp, SV ***allocp, SV ***arrayp) { dVAR; PERL_ARGS_ASSERT_AV_EXTEND_GUTS; if (key > *maxp) { SV** ary; SSize_t tmp; SSize_t newmax; if (av && *allocp != *arrayp) { ary = *allocp + AvFILLp(av) + 1; tmp = *arrayp - *allocp; Move(*arrayp, *allocp, AvFILLp(av)+1, SV*); *maxp += tmp; *arrayp = *allocp; if (AvREAL(av)) { while (tmp) ary[--tmp] = NULL; } if (key > *maxp - 10) { newmax = key + *maxp; goto resize; } } else { if (*allocp) { #ifdef Perl_safesysmalloc_size /* Whilst it would be quite possible to move this logic around (as I did in the SV code), so as to set AvMAX(av) early, based on calling Perl_safesysmalloc_size() immediately after allocation, I'm not convinced that it is a great idea here. In an array we have to loop round setting everything to NULL, which means writing to memory, potentially lots of it, whereas for the SV buffer case we don't touch the "bonus" memory. So there there is no cost in telling the world about it, whereas here we have to do work before we can tell the world about it, and that work involves writing to memory that might never be read. So, I feel, better to keep the current lazy system of only writing to it if our caller has a need for more space. NWC */ newmax = Perl_safesysmalloc_size((void*)*allocp) / sizeof(const SV *) - 1; if (key <= newmax) goto resized; #endif newmax = key + *maxp / 5; resize: { #ifdef PERL_MALLOC_WRAP /* Duplicated in pp_hot.c */ static const char oom_array_extend[] = "Out of memory during array extend"; #endif MEM_WRAP_CHECK_1(newmax+1, SV*, oom_array_extend); } Renew(*allocp,newmax+1, SV*); #ifdef Perl_safesysmalloc_size resized: #endif ary = *allocp + *maxp + 1; tmp = newmax - *maxp; if (av == PL_curstack) { /* Oops, grew stack (via av_store()?) */ PL_stack_sp = *allocp + (PL_stack_sp - PL_stack_base); PL_stack_base = *allocp; PL_stack_max = PL_stack_base + newmax; } } else { newmax = key < 3 ? 3 : key; { #ifdef PERL_MALLOC_WRAP /* Duplicated in pp_hot.c */ static const char oom_array_extend[] = "Out of memory during array extend"; #endif MEM_WRAP_CHECK_1(newmax+1, SV*, oom_array_extend); } Newx(*allocp, newmax+1, SV*); ary = *allocp + 1; tmp = newmax; *allocp[0] = NULL; /* For the stacks */ } if (av && AvREAL(av)) { while (tmp) ary[--tmp] = NULL; } *arrayp = *allocp; *maxp = newmax; } } } /* =for apidoc av_fetch Returns the SV at the specified index in the array. The C is the index. If lval is true, you are guaranteed to get a real SV back (in case it wasn't real before), which you can then modify. Check that the return value is non-null before dereferencing it to a C. See L for more information on how to use this function on tied arrays. The rough perl equivalent is C<$myarray[$idx]>. =cut */ static bool S_adjust_index(pTHX_ AV *av, const MAGIC *mg, SSize_t *keyp) { bool adjust_index = 1; if (mg) { /* Handle negative array indices 20020222 MJD */ SV * const ref = SvTIED_obj(MUTABLE_SV(av), mg); SvGETMAGIC(ref); if (SvROK(ref) && SvOBJECT(SvRV(ref))) { SV * const * const negative_indices_glob = hv_fetchs(SvSTASH(SvRV(ref)), NEGATIVE_INDICES_VAR, 0); if (negative_indices_glob && isGV(*negative_indices_glob) && SvTRUE(GvSV(*negative_indices_glob))) adjust_index = 0; } } if (adjust_index) { *keyp += AvFILL(av) + 1; if (*keyp < 0) return FALSE; } return TRUE; } SV** Perl_av_fetch(pTHX_ AV *av, SSize_t key, I32 lval) { dVAR; PERL_ARGS_ASSERT_AV_FETCH; assert(SvTYPE(av) == SVt_PVAV); if (SvRMAGICAL(av)) { const MAGIC * const tied_magic = mg_find((const SV *)av, PERL_MAGIC_tied); if (tied_magic || mg_find((const SV *)av, PERL_MAGIC_regdata)) { SV *sv; if (key < 0) { if (!S_adjust_index(aTHX_ av, tied_magic, &key)) return NULL; } sv = sv_newmortal(); sv_upgrade(sv, SVt_PVLV); mg_copy(MUTABLE_SV(av), sv, 0, key); if (!tied_magic) /* for regdata, force leavesub to make copies */ SvTEMP_off(sv); LvTYPE(sv) = 't'; LvTARG(sv) = sv; /* fake (SV**) */ return &(LvTARG(sv)); } } if (key < 0) { key += AvFILL(av) + 1; if (key < 0) return NULL; } if (key > AvFILLp(av) || !AvARRAY(av)[key]) { emptyness: return lval ? av_store(av,key,newSV(0)) : NULL; } if (AvREIFY(av) && (!AvARRAY(av)[key] /* eg. @_ could have freed elts */ || SvIS_FREED(AvARRAY(av)[key]))) { AvARRAY(av)[key] = NULL; /* 1/2 reify */ goto emptyness; } return &AvARRAY(av)[key]; } /* =for apidoc av_store Stores an SV in an array. The array index is specified as C. The return value will be NULL if the operation failed or if the value did not need to be actually stored within the array (as in the case of tied arrays). Otherwise, it can be dereferenced to get the C that was stored there (= C)). Note that the caller is responsible for suitably incrementing the reference count of C before the call, and decrementing it if the function returned NULL. Approximate Perl equivalent: C<$myarray[$key] = $val;>. See L for more information on how to use this function on tied arrays. =cut */ SV** Perl_av_store(pTHX_ AV *av, SSize_t key, SV *val) { dVAR; SV** ary; PERL_ARGS_ASSERT_AV_STORE; assert(SvTYPE(av) == SVt_PVAV); /* S_regclass relies on being able to pass in a NULL sv (unicode_alternate may be NULL). */ if (SvRMAGICAL(av)) { const MAGIC * const tied_magic = mg_find((const SV *)av, PERL_MAGIC_tied); if (tied_magic) { if (key < 0) { if (!S_adjust_index(aTHX_ av, tied_magic, &key)) return 0; } if (val) { mg_copy(MUTABLE_SV(av), val, 0, key); } return NULL; } } if (key < 0) { key += AvFILL(av) + 1; if (key < 0) return NULL; } if (SvREADONLY(av) && key >= AvFILL(av)) Perl_croak_no_modify(); if (!AvREAL(av) && AvREIFY(av)) av_reify(av); if (key > AvMAX(av)) av_extend(av,key); ary = AvARRAY(av); if (AvFILLp(av) < key) { if (!AvREAL(av)) { if (av == PL_curstack && key > PL_stack_sp - PL_stack_base) PL_stack_sp = PL_stack_base + key; /* XPUSH in disguise */ do { ary[++AvFILLp(av)] = NULL; } while (AvFILLp(av) < key); } AvFILLp(av) = key; } else if (AvREAL(av)) SvREFCNT_dec(ary[key]); ary[key] = val; if (SvSMAGICAL(av)) { const MAGIC *mg = SvMAGIC(av); bool set = TRUE; for (; mg; mg = mg->mg_moremagic) { if (!isUPPER(mg->mg_type)) continue; if (val) { sv_magic(val, MUTABLE_SV(av), toLOWER(mg->mg_type), 0, key); } if (PL_delaymagic && mg->mg_type == PERL_MAGIC_isa) { PL_delaymagic |= DM_ARRAY_ISA; set = FALSE; } } if (set) mg_set(MUTABLE_SV(av)); } return &ary[key]; } /* =for apidoc av_make Creates a new AV and populates it with a list of SVs. The SVs are copied into the array, so they may be freed after the call to av_make. The new AV will have a reference count of 1. Perl equivalent: C =cut */ AV * Perl_av_make(pTHX_ SSize_t size, SV **strp) { AV * const av = MUTABLE_AV(newSV_type(SVt_PVAV)); /* sv_upgrade does AvREAL_only() */ PERL_ARGS_ASSERT_AV_MAKE; assert(SvTYPE(av) == SVt_PVAV); if (size) { /* "defined" was returning undef for size==0 anyway. */ SV** ary; SSize_t i; Newx(ary,size,SV*); AvALLOC(av) = ary; AvARRAY(av) = ary; AvMAX(av) = size - 1; AvFILLp(av) = -1; ENTER; SAVEFREESV(av); for (i = 0; i < size; i++) { assert (*strp); /* Don't let sv_setsv swipe, since our source array might have multiple references to the same temp scalar (e.g. from a list slice) */ SvGETMAGIC(*strp); /* before newSV, in case it dies */ AvFILLp(av)++; ary[i] = newSV(0); sv_setsv_flags(ary[i], *strp, SV_DO_COW_SVSETSV|SV_NOSTEAL); strp++; } SvREFCNT_inc_simple_void_NN(av); LEAVE; } return av; } /* =for apidoc av_clear Clears an array, making it empty. Does not free the memory the av uses to store its list of scalars. If any destructors are triggered as a result, the av itself may be freed when this function returns. Perl equivalent: C<@myarray = ();>. =cut */ void Perl_av_clear(pTHX_ AV *av) { dVAR; SSize_t extra; bool real; PERL_ARGS_ASSERT_AV_CLEAR; assert(SvTYPE(av) == SVt_PVAV); #ifdef DEBUGGING if (SvREFCNT(av) == 0) { Perl_ck_warner_d(aTHX_ packWARN(WARN_DEBUGGING), "Attempt to clear deleted array"); } #endif if (SvREADONLY(av)) Perl_croak_no_modify(); /* Give any tie a chance to cleanup first */ if (SvRMAGICAL(av)) { const MAGIC* const mg = SvMAGIC(av); if (PL_delaymagic && mg && mg->mg_type == PERL_MAGIC_isa) PL_delaymagic |= DM_ARRAY_ISA; else mg_clear(MUTABLE_SV(av)); } if (AvMAX(av) < 0) return; if ((real = !!AvREAL(av))) { SV** const ary = AvARRAY(av); SSize_t index = AvFILLp(av) + 1; ENTER; SAVEFREESV(SvREFCNT_inc_simple_NN(av)); while (index) { SV * const sv = ary[--index]; /* undef the slot before freeing the value, because a * destructor might try to modify this array */ ary[index] = NULL; SvREFCNT_dec(sv); } } extra = AvARRAY(av) - AvALLOC(av); if (extra) { AvMAX(av) += extra; AvARRAY(av) = AvALLOC(av); } AvFILLp(av) = -1; if (real) LEAVE; } /* =for apidoc av_undef Undefines the array. Frees the memory used by the av to store its list of scalars. If any destructors are triggered as a result, the av itself may be freed. =cut */ void Perl_av_undef(pTHX_ AV *av) { bool real; PERL_ARGS_ASSERT_AV_UNDEF; assert(SvTYPE(av) == SVt_PVAV); /* Give any tie a chance to cleanup first */ if (SvTIED_mg((const SV *)av, PERL_MAGIC_tied)) av_fill(av, -1); if ((real = !!AvREAL(av))) { SSize_t key = AvFILLp(av) + 1; ENTER; SAVEFREESV(SvREFCNT_inc_simple_NN(av)); while (key) SvREFCNT_dec(AvARRAY(av)[--key]); } Safefree(AvALLOC(av)); AvALLOC(av) = NULL; AvARRAY(av) = NULL; AvMAX(av) = AvFILLp(av) = -1; if(SvRMAGICAL(av)) mg_clear(MUTABLE_SV(av)); if(real) LEAVE; } /* =for apidoc av_create_and_push Push an SV onto the end of the array, creating the array if necessary. A small internal helper function to remove a commonly duplicated idiom. =cut */ void Perl_av_create_and_push(pTHX_ AV **const avp, SV *const val) { PERL_ARGS_ASSERT_AV_CREATE_AND_PUSH; if (!*avp) *avp = newAV(); av_push(*avp, val); } /* =for apidoc av_push Pushes an SV onto the end of the array. The array will grow automatically to accommodate the addition. This takes ownership of one reference count. Perl equivalent: C. =cut */ void Perl_av_push(pTHX_ AV *av, SV *val) { dVAR; MAGIC *mg; PERL_ARGS_ASSERT_AV_PUSH; assert(SvTYPE(av) == SVt_PVAV); if (SvREADONLY(av)) Perl_croak_no_modify(); if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) { Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(PUSH), G_DISCARD, 1, val); return; } av_store(av,AvFILLp(av)+1,val); } /* =for apidoc av_pop Removes one SV from the end of the array, reducing its size by one and returning the SV (transferring control of one reference count) to the caller. Returns C<&PL_sv_undef> if the array is empty. Perl equivalent: C =cut */ SV * Perl_av_pop(pTHX_ AV *av) { dVAR; SV *retval; MAGIC* mg; PERL_ARGS_ASSERT_AV_POP; assert(SvTYPE(av) == SVt_PVAV); if (SvREADONLY(av)) Perl_croak_no_modify(); if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) { retval = Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(POP), 0, 0); if (retval) retval = newSVsv(retval); return retval; } if (AvFILL(av) < 0) return &PL_sv_undef; retval = AvARRAY(av)[AvFILLp(av)]; AvARRAY(av)[AvFILLp(av)--] = NULL; if (SvSMAGICAL(av)) mg_set(MUTABLE_SV(av)); return retval ? retval : &PL_sv_undef; } /* =for apidoc av_create_and_unshift_one Unshifts an SV onto the beginning of the array, creating the array if necessary. A small internal helper function to remove a commonly duplicated idiom. =cut */ SV ** Perl_av_create_and_unshift_one(pTHX_ AV **const avp, SV *const val) { PERL_ARGS_ASSERT_AV_CREATE_AND_UNSHIFT_ONE; if (!*avp) *avp = newAV(); av_unshift(*avp, 1); return av_store(*avp, 0, val); } /* =for apidoc av_unshift Unshift the given number of C values onto the beginning of the array. The array will grow automatically to accommodate the addition. You must then use C to assign values to these new elements. Perl equivalent: C =cut */ void Perl_av_unshift(pTHX_ AV *av, SSize_t num) { dVAR; SSize_t i; MAGIC* mg; PERL_ARGS_ASSERT_AV_UNSHIFT; assert(SvTYPE(av) == SVt_PVAV); if (SvREADONLY(av)) Perl_croak_no_modify(); if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) { Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(UNSHIFT), G_DISCARD | G_UNDEF_FILL, num); return; } if (num <= 0) return; if (!AvREAL(av) && AvREIFY(av)) av_reify(av); i = AvARRAY(av) - AvALLOC(av); if (i) { if (i > num) i = num; num -= i; AvMAX(av) += i; AvFILLp(av) += i; AvARRAY(av) = AvARRAY(av) - i; } if (num) { SV **ary; const SSize_t i = AvFILLp(av); /* Create extra elements */ const SSize_t slide = i > 0 ? i : 0; num += slide; av_extend(av, i + num); AvFILLp(av) += num; ary = AvARRAY(av); Move(ary, ary + num, i + 1, SV*); do { ary[--num] = NULL; } while (num); /* Make extra elements into a buffer */ AvMAX(av) -= slide; AvFILLp(av) -= slide; AvARRAY(av) = AvARRAY(av) + slide; } } /* =for apidoc av_shift Removes one SV from the start of the array, reducing its size by one and returning the SV (transferring control of one reference count) to the caller. Returns C<&PL_sv_undef> if the array is empty. Perl equivalent: C =cut */ SV * Perl_av_shift(pTHX_ AV *av) { dVAR; SV *retval; MAGIC* mg; PERL_ARGS_ASSERT_AV_SHIFT; assert(SvTYPE(av) == SVt_PVAV); if (SvREADONLY(av)) Perl_croak_no_modify(); if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) { retval = Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(SHIFT), 0, 0); if (retval) retval = newSVsv(retval); return retval; } if (AvFILL(av) < 0) return &PL_sv_undef; retval = *AvARRAY(av); if (AvREAL(av)) *AvARRAY(av) = NULL; AvARRAY(av) = AvARRAY(av) + 1; AvMAX(av)--; AvFILLp(av)--; if (SvSMAGICAL(av)) mg_set(MUTABLE_SV(av)); return retval ? retval : &PL_sv_undef; } /* =for apidoc av_top_index Returns the highest index in the array. The number of elements in the array is C. Returns -1 if the array is empty. The Perl equivalent for this is C<$#myarray>. (A slightly shorter form is C.) =for apidoc av_len Same as L. Returns the highest index in the array. Note that the return value is +1 what its name implies it returns; and hence differs in meaning from what the similarly named L returns. =cut */ SSize_t Perl_av_len(pTHX_ AV *av) { PERL_ARGS_ASSERT_AV_LEN; return av_top_index(av); } /* =for apidoc av_fill Set the highest index in the array to the given number, equivalent to Perl's C<$#array = $fill;>. The number of elements in the an array will be C after av_fill() returns. If the array was previously shorter, then the additional elements appended are set to NULL. If the array was longer, then the excess elements are freed. C is the same as C. =cut */ void Perl_av_fill(pTHX_ AV *av, SSize_t fill) { dVAR; MAGIC *mg; PERL_ARGS_ASSERT_AV_FILL; assert(SvTYPE(av) == SVt_PVAV); if (fill < 0) fill = -1; if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) { SV *arg1 = sv_newmortal(); sv_setiv(arg1, (IV)(fill + 1)); Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(STORESIZE), G_DISCARD, 1, arg1); return; } if (fill <= AvMAX(av)) { SSize_t key = AvFILLp(av); SV** const ary = AvARRAY(av); if (AvREAL(av)) { while (key > fill) { SvREFCNT_dec(ary[key]); ary[key--] = NULL; } } else { while (key < fill) ary[++key] = NULL; } AvFILLp(av) = fill; if (SvSMAGICAL(av)) mg_set(MUTABLE_SV(av)); } else (void)av_store(av,fill,NULL); } /* =for apidoc av_delete Deletes the element indexed by C from the array, makes the element mortal, and returns it. If C equals C, the element is freed and null is returned. Perl equivalent: C for the non-C version and a void-context C for the C version. =cut */ SV * Perl_av_delete(pTHX_ AV *av, SSize_t key, I32 flags) { dVAR; SV *sv; PERL_ARGS_ASSERT_AV_DELETE; assert(SvTYPE(av) == SVt_PVAV); if (SvREADONLY(av)) Perl_croak_no_modify(); if (SvRMAGICAL(av)) { const MAGIC * const tied_magic = mg_find((const SV *)av, PERL_MAGIC_tied); if ((tied_magic || mg_find((const SV *)av, PERL_MAGIC_regdata))) { SV **svp; if (key < 0) { if (!S_adjust_index(aTHX_ av, tied_magic, &key)) return NULL; } svp = av_fetch(av, key, TRUE); if (svp) { sv = *svp; mg_clear(sv); if (mg_find(sv, PERL_MAGIC_tiedelem)) { sv_unmagic(sv, PERL_MAGIC_tiedelem); /* No longer an element */ return sv; } return NULL; } } } if (key < 0) { key += AvFILL(av) + 1; if (key < 0) return NULL; } if (key > AvFILLp(av)) return NULL; else { if (!AvREAL(av) && AvREIFY(av)) av_reify(av); sv = AvARRAY(av)[key]; if (key == AvFILLp(av)) { AvARRAY(av)[key] = NULL; do { AvFILLp(av)--; } while (--key >= 0 && !AvARRAY(av)[key]); } else AvARRAY(av)[key] = NULL; if (SvSMAGICAL(av)) mg_set(MUTABLE_SV(av)); } if (flags & G_DISCARD) { SvREFCNT_dec(sv); sv = NULL; } else if (AvREAL(av)) sv = sv_2mortal(sv); return sv; } /* =for apidoc av_exists Returns true if the element indexed by C has been initialized. This relies on the fact that uninitialized array elements are set to NULL. Perl equivalent: C. =cut */ bool Perl_av_exists(pTHX_ AV *av, SSize_t key) { dVAR; PERL_ARGS_ASSERT_AV_EXISTS; assert(SvTYPE(av) == SVt_PVAV); if (SvRMAGICAL(av)) { const MAGIC * const tied_magic = mg_find((const SV *)av, PERL_MAGIC_tied); const MAGIC * const regdata_magic = mg_find((const SV *)av, PERL_MAGIC_regdata); if (tied_magic || regdata_magic) { MAGIC *mg; /* Handle negative array indices 20020222 MJD */ if (key < 0) { if (!S_adjust_index(aTHX_ av, tied_magic, &key)) return FALSE; } if(key >= 0 && regdata_magic) { if (key <= AvFILL(av)) return TRUE; else return FALSE; } { SV * const sv = sv_newmortal(); mg_copy(MUTABLE_SV(av), sv, 0, key); mg = mg_find(sv, PERL_MAGIC_tiedelem); if (mg) { magic_existspack(sv, mg); { I32 retbool = SvTRUE_nomg_NN(sv); return cBOOL(retbool); } } } } } if (key < 0) { key += AvFILL(av) + 1; if (key < 0) return FALSE; } if (key <= AvFILLp(av) && AvARRAY(av)[key]) { return TRUE; } else return FALSE; } static MAGIC * S_get_aux_mg(pTHX_ AV *av) { dVAR; MAGIC *mg; PERL_ARGS_ASSERT_GET_AUX_MG; assert(SvTYPE(av) == SVt_PVAV); mg = mg_find((const SV *)av, PERL_MAGIC_arylen_p); if (!mg) { mg = sv_magicext(MUTABLE_SV(av), 0, PERL_MAGIC_arylen_p, &PL_vtbl_arylen_p, 0, 0); assert(mg); /* sv_magicext won't set this for us because we pass in a NULL obj */ mg->mg_flags |= MGf_REFCOUNTED; } return mg; } SV ** Perl_av_arylen_p(pTHX_ AV *av) { MAGIC *const mg = get_aux_mg(av); PERL_ARGS_ASSERT_AV_ARYLEN_P; assert(SvTYPE(av) == SVt_PVAV); return &(mg->mg_obj); } IV * Perl_av_iter_p(pTHX_ AV *av) { MAGIC *const mg = get_aux_mg(av); PERL_ARGS_ASSERT_AV_ITER_P; assert(SvTYPE(av) == SVt_PVAV); #if IVSIZE == I32SIZE return (IV *)&(mg->mg_len); #else if (!mg->mg_ptr) { IV *temp; mg->mg_len = IVSIZE; Newxz(temp, 1, IV); mg->mg_ptr = (char *) temp; } return (IV *)mg->mg_ptr; #endif } /* * Local variables: * c-indentation-style: bsd * c-basic-offset: 4 * indent-tabs-mode: nil * End: * * ex: set ts=8 sts=4 sw=4 et: */