=head1 NAME perlport - Writing portable Perl =head1 DESCRIPTION Perl runs on numerous operating systems. While most of them share much in common, they also have their own unique features. This document is meant to help you to find out what constitutes portable Perl code. That way once you make a decision to write portably, you know where the lines are drawn, and you can stay within them. There is a tradeoff between taking full advantage of one particular type of computer and taking advantage of a full range of them. Naturally, as you broaden your range and become more diverse, the common factors drop, and you are left with an increasingly smaller area of common ground in which you can operate to accomplish a particular task. Thus, when you begin attacking a problem, it is important to consider under which part of the tradeoff curve you want to operate. Specifically, you must decide whether it is important that the task that you are coding have the full generality of being portable, or whether to just get the job done right now. This is the hardest choice to be made. The rest is easy, because Perl provides many choices, whichever way you want to approach your problem. Looking at it another way, writing portable code is usually about willfully limiting your available choices. Naturally, it takes discipline and sacrifice to do that. The product of portability and convenience may be a constant. You have been warned. Be aware of two important points: =over 4 =item Not all Perl programs have to be portable There is no reason you should not use Perl as a language to glue Unix tools together, or to prototype a Macintosh application, or to manage the Windows registry. If it makes no sense to aim for portability for one reason or another in a given program, then don't bother. =item Nearly all of Perl already I portable Don't be fooled into thinking that it is hard to create portable Perl code. It isn't. Perl tries its level-best to bridge the gaps between what's available on different platforms, and all the means available to use those features. Thus almost all Perl code runs on any machine without modification. But there are some significant issues in writing portable code, and this document is entirely about those issues. =back Here's the general rule: When you approach a task commonly done using a whole range of platforms, think about writing portable code. That way, you don't sacrifice much by way of the implementation choices you can avail yourself of, and at the same time you can give your users lots of platform choices. On the other hand, when you have to take advantage of some unique feature of a particular platform, as is often the case with systems programming (whether for Unix, Windows, S, VMS, etc.), consider writing platform-specific code. When the code will run on only two or three operating systems, you may need to consider only the differences of those particular systems. The important thing is to decide where the code will run and to be deliberate in your decision. The material below is separated into three main sections: main issues of portability (L<"ISSUES">, platform-specific issues (L<"PLATFORMS">, and built-in perl functions that behave differently on various ports (L<"FUNCTION IMPLEMENTATIONS">. This information should not be considered complete; it includes possibly transient information about idiosyncrasies of some of the ports, almost all of which are in a state of constant evolution. Thus, this material should be considered a perpetual work in progress (EIMG SRC="yellow_sign.gif" ALT="Under Construction"E). =head1 ISSUES =head2 Newlines In most operating systems, lines in files are terminated by newlines. Just what is used as a newline may vary from OS to OS. Unix traditionally uses C<\012>, one type of DOSish I/O uses C<\015\012>, and S uses C<\015>. Perl uses C<\n> to represent the "logical" newline, where what is logical may depend on the platform in use. In MacPerl, C<\n> always means C<\015>. In DOSish perls, C<\n> usually means C<\012>, but when accessing a file in "text" mode, STDIO translates it to (or from) C<\015\012>, depending on whether your reading or writing. Unix does the same thing on ttys in canonical mode. C<\015\012> is commonly referred to as CRLF. Because of the "text" mode translation, DOSish perls have limitations in using C and C on a file accessed in "text" mode. Stick to C-ing to locations you got from C (and no others), and you are usually free to use C and C even in "text" mode. Using C or C or other file operations may be non-portable. If you use C on a file, however, you can usually C and C with arbitrary values in safety. A common misconception in socket programming is that C<\n> eq C<\012> everywhere. When using protocols such as common Internet protocols, C<\012> and C<\015> are called for specifically, and the values of the logical C<\n> and C<\r> (carriage return) are not reliable. print SOCKET "Hi there, client!\r\n"; # WRONG print SOCKET "Hi there, client!\015\012"; # RIGHT However, using C<\015\012> (or C<\cM\cJ>, or C<\x0D\x0A>) can be tedious and unsightly, as well as confusing to those maintaining the code. As such, the Socket module supplies the Right Thing for those who want it. use Socket qw(:DEFAULT :crlf); print SOCKET "Hi there, client!$CRLF" # RIGHT When reading from a socket, remember that the default input record separator C<$/> is C<\n>, but robust socket code will recognize as either C<\012> or C<\015\012> as end of line: while () { # ... } Because both CRLF and LF end in LF, the input record separator can be set to LF and any CR stripped later. Better to write: use Socket qw(:DEFAULT :crlf); local($/) = LF; # not needed if $/ is already \012 while () { s/$CR?$LF/\n/; # not sure if socket uses LF or CRLF, OK # s/\015?\012/\n/; # same thing } This example is preferred over the previous one--even for Unix platforms--because now any C<\015>'s (C<\cM>'s) are stripped out (and there was much rejoicing). Similarly, functions that return text data--such as a function that fetches a web page--should sometimes translate newlines before returning the data, if they've not yet been translated to the local newline representation. A single line of code will often suffice: $data =~ s/\015?\012/\n/g; return $data; Some of this may be confusing. Here's a handy reference to the ASCII CR and LF characters. You can print it out and stick it in your wallet. LF == \012 == \x0A == \cJ == ASCII 10 CR == \015 == \x0D == \cM == ASCII 13 | Unix | DOS | Mac | --------------------------- \n | LF | LF | CR | \r | CR | CR | LF | \n * | LF | CRLF | CR | \r * | CR | CR | LF | --------------------------- * text-mode STDIO The Unix column assumes that you are not accessing a serial line (like a tty) in canonical mode. If you are, then CR on input becomes "\n", and "\n" on output becomes CRLF. These are just the most common definitions of C<\n> and C<\r> in Perl. There may well be others. =head2 Numbers endianness and Width Different CPUs store integers and floating point numbers in different orders (called I) and widths (32-bit and 64-bit being the most common today). This affects your programs when they attempt to transfer numbers in binary format from one CPU architecture to another, usually either "live" via network connection, or by storing the numbers to secondary storage such as a disk file or tape. Conflicting storage orders make utter mess out of the numbers. If a little-endian host (Intel, VAX) stores 0x12345678 (305419896 in decimal), a big-endian host (Motorola, MIPS, Sparc, PA) reads it as 0x78563412 (2018915346 in decimal). To avoid this problem in network (socket) connections use the C and C formats C and C, the "network" orders. These are guaranteed to be portable. You can explore the endianness of your platform by unpacking a data structure packed in native format such as: print unpack("h*", pack("s2", 1, 2)), "\n"; # '10002000' on e.g. Intel x86 or Alpha 21064 in little-endian mode # '00100020' on e.g. Motorola 68040 If you need to distinguish between endian architectures you could use either of the variables set like so: $is_big_endian = unpack("h*", pack("s", 1)) =~ /01/; $is_litte_endian = unpack("h*", pack("s", 1)) =~ /^1/; Differing widths can cause truncation even between platforms of equal endianness. The platform of shorter width loses the upper parts of the number. There is no good solution for this problem except to avoid transferring or storing raw binary numbers. One can circumnavigate both these problems in two ways. Either transfer and store numbers always in text format, instead of raw binary, or else consider using modules like Data::Dumper (included in the standard distribution as of Perl 5.005) and Storable. Keeping all data as text significantly simplifies matters. =head2 Files and Filesystems Most platforms these days structure files in a hierarchical fashion. So, it is reasonably safe to assume that all platforms support the notion of a "path" to uniquely identify a file on the system. How that path is really written, though, differs considerably. Atlhough similar, file path specifications differ between Unix, Windows, S, OS/2, VMS, VOS, S, and probably others. Unix, for example, is one of the few OSes that has the elegant idea of a single root directory. DOS, OS/2, VMS, VOS, and Windows can work similarly to Unix with C as path separator, or in their own idiosyncratic ways (such as having several root directories and various "unrooted" device files such NIL: and LPT:). S uses C<:> as a path separator instead of C. The filesystem may support neither hard links (C) nor symbolic links (C, C, C). The filesystem may support neither access timestamp nor change timestamp (meaning that about the only portable timestamp is the modification timestamp), or one second granularity of any timestamps (e.g. the FAT filesystem limits the time granularity to two seconds). VOS perl can emulate Unix filenames with C as path separator. The native pathname characters greater-than, less-than, number-sign, and percent-sign are always accepted. S perl can emulate Unix filenames with C as path separator, or go native and use C<.> for path separator and C<:> to signal filesystems and disk names. If all this is intimidating, have no (well, maybe only a little) fear. There are modules that can help. The File::Spec modules provide methods to do the Right Thing on whatever platform happens to be running the program. use File::Spec::Functions; chdir(updir()); # go up one directory $file = catfile(curdir(), 'temp', 'file.txt'); # on Unix and Win32, './temp/file.txt' # on Mac OS, ':temp:file.txt' # on VMS, '[.temp]file.txt' File::Spec is available in the standard distribution as of version 5.004_05. File::Spec::Functions is only in File::Spec 0.7 and later, and some versions of perl come with version 0.6. If File::Spec is not updated to 0.7 or later, you must use the object-oriented interface from File::Spec (or upgrade File::Spec). In general, production code should not have file paths hardcoded. Making them user-supplied or read from a configuration file is better, keeping in mind that file path syntax varies on different machines. This is especially noticeable in scripts like Makefiles and test suites, which often assume C as a path separator for subdirectories. Also of use is File::Basename from the standard distribution, which splits a pathname into pieces (base filename, full path to directory, and file suffix). Even when on a single platform (if you can call Unix a single platform), remember not to count on the existence or the contents of particular system-specific files or directories, like F, F, F, or even F. For example, F may exist but not contain the encrypted passwords, because the system is using some form of enhanced security. Or it may not contain all the accounts, because the system is using NIS. If code does need to rely on such a file, include a description of the file and its format in the code's documentation, then make it easy for the user to override the default location of the file. Don't assume a text file will end with a newline. They should, but people forget. Do not have two files of the same name with different case, like F and F, as many platforms have case-insensitive filenames. Also, try not to have non-word characters (except for C<.>) in the names, and keep them to the 8.3 convention, for maximum portability, onerous a burden though this may appear. Likewise, when using the AutoSplit module, try to keep your functions to 8.3 naming and case-insensitive conventions; or, at the least, make it so the resulting files have a unique (case-insensitively) first 8 characters. Whitespace in filenames is tolerated on most systems, but not all. Many systems (DOS, VMS) cannot have more than one C<.> in their filenames. Don't assume C> won't be the first character of a filename. Always use C> explicitly to open a file for reading, unless you want the user to be able to specify a pipe open. open(FILE, "< $existing_file") or die $!; If filenames might use strange characters, it is safest to open it with C instead of C. C is magic and can translate characters like C>, C>, and C<|>, which may be the wrong thing to do. (Sometimes, though, it's the right thing.) =head2 System Interaction Not all platforms provide a command line. These are usually platforms that rely primarily on a Graphical User Interface (GUI) for user interaction. A program requiring a command line interface might not work everywhere. This is probably for the user of the program to deal with, so don't stay up late worrying about it. Some platforms can't delete or rename files held open by the system. Remember to C files when you are done with them. Don't C or C an open file. Don't C or C a file already tied or opened; C or C it first. Don't open the same file more than once at a time for writing, as some operating systems put mandatory locks on such files. Don't count on a specific environment variable existing in C<%ENV>. Don't count on C<%ENV> entries being case-sensitive, or even case-preserving. Don't count on signals or C<%SIG> for anything. Don't count on filename globbing. Use C, C, and C instead. Don't count on per-program environment variables, or per-program current directories. Don't count on specific values of C<$!>. =head2 Interprocess Communication (IPC) In general, don't directly access the system in code meant to be portable. That means, no C, C, C, C, C<``>, C, C with a C<|>, nor any of the other things that makes being a perl hacker worth being. Commands that launch external processes are generally supported on most platforms (though many of them do not support any type of forking). The problem with using them arises from what you invoke them on. External tools are often named differently on different platforms, may not be available in the same location, migth accept different arguments, can behave differently, and often present their results in a platform-dependent way. Thus, you should seldom depend on them to produce consistent results. (Then again, if you're calling I, you probably don't expect it to run on both Unix and CP/M.) One especially common bit of Perl code is opening a pipe to B: open(MAIL, '|/usr/lib/sendmail -t') or die "cannot fork sendmail: $!"; This is fine for systems programming when sendmail is known to be available. But it is not fine for many non-Unix systems, and even some Unix systems that may not have sendmail installed. If a portable solution is needed, see the various distributions on CPAN that deal with it. Mail::Mailer and Mail::Send in the MailTools distribution are commonly used, and provide several mailing methods, including mail, sendmail, and direct SMTP (via Net::SMTP) if a mail transfer agent is not available. Mail::Sendmail is a standalone module that provides simple, platform-independent mailing. The Unix System V IPC (C) is not available even on all Unix platforms. The rule of thumb for portable code is: Do it all in portable Perl, or use a module (that may internally implement it with platform-specific code, but expose a common interface). =head2 External Subroutines (XS) XS code can usually be made to work with any platform, but dependent libraries, header files, etc., might not be readily available or portable, or the XS code itself might be platform-specific, just as Perl code might be. If the libraries and headers are portable, then it is normally reasonable to make sure the XS code is portable, too. A different type of portability issue arises when writing XS code: availability of a C compiler on the end-user's system. C brings with it its own portability issues, and writing XS code will expose you to some of those. Writing purely in Perl is an easier way to achieve portability. =head2 Standard Modules In general, the standard modules work across platforms. Notable exceptions are the CPAN module (which currently makes connections to external programs that may not be available), platform-specific modules (like ExtUtils::MM_VMS), and DBM modules. There is no one DBM module available on all platforms. SDBM_File and the others are generally available on all Unix and DOSish ports, but not in MacPerl, where only NBDM_File and DB_File are available. The good news is that at least some DBM module should be available, and AnyDBM_File will use whichever module it can find. Of course, then the code needs to be fairly strict, dropping to the greatest common factor (e.g., not exceeding 1K for each record), so that it will work with any DBM module. See L for more details. =head2 Time and Date The system's notion of time of day and calendar date is controlled in widely different ways. Don't assume the timezone is stored in C<$ENV{TZ}>, and even if it is, don't assume that you can control the timezone through that variable. Don't assume that the epoch starts at 00:00:00, January 1, 1970, because that is OS- and implementation-specific. It is better to store a date in an unambiguous representation. The ISO-8601 standard defines "YYYY-MM-DD" as the date format. A text representation (like "1987-12-18") can be easily converted into an OS-specific value using a module like Date::Parse. An array of values, such as those returned by C, can be converted to an OS-specific representation using Time::Local. When calculating specific times, such as for tests in time or date modules, it may be appropriate to calculate an offset for the epoch. require Time::Local; $offset = Time::Local::timegm(0, 0, 0, 1, 0, 70); The value for C<$offset> in Unix will be C<0>, but in Mac OS will be some large number. C<$offset> can then be added to a Unix time value to get what should be the proper value on any system. =head2 Character sets and character encoding Assume little about character sets. Assume nothing about numerical values (C, C) of characters. Do not assume that the alphabetic characters are encoded contiguously (in the numeric sense). Do not assume anything about the ordering of the characters. The lowercase letters may come before or after the uppercase letters; the lowercase and uppercase may be interlaced so that both `a' and `A' come before `b'; the accented and other international characters may be interlaced so that E comes before `b'. =head2 Internationalisation If you may assume POSIX (a rather large assumption), you may read more about the POSIX locale system from L. The locale system at least attempts to make things a little bit more portable, or at least more convenient and native-friendly for non-English users. The system affects character sets and encoding, and date and time formatting--amongst other things. =head2 System Resources If your code is destined for systems with severely constrained (or missing!) virtual memory systems then you want to be I mindful of avoiding wasteful constructs such as: # NOTE: this is no longer "bad" in perl5.005 for (0..10000000) {} # bad for (my $x = 0; $x <= 10000000; ++$x) {} # good @lines = ; # bad while () {$file .= $_} # sometimes bad $file = join('', ); # better The last two constructs may appear unintuitive to most people. The first repeatedly grows a string, whereas the second allocates a large chunk of memory in one go. On some systems, the second is more efficient that the first. =head2 Security Most multi-user platforms provide basic levels of security, usually implemented at the filesystem level. Some, however, do not--unfortunately. Thus the notion of user id, or "home" directory, or even the state of being logged-in, may be unrecognizable on many platforms. If you write programs that are security-conscious, it is usually best to know what type of system you will be running under so that you can write code explicitly for that platform (or class of platforms). =head2 Style For those times when it is necessary to have platform-specific code, consider keeping the platform-specific code in one place, making porting to other platforms easier. Use the Config module and the special variable C<$^O> to differentiate platforms, as described in L<"PLATFORMS">. Be careful in the tests you supply with your module or programs. Module code may be fully portable, but its tests might not be. This often happens when tests spawn off other processes or call external programs to aid in the testing, or when (as noted above) the tests assume certain things about the filesystem and paths. Be careful not to depend on a specific output style for errors, such as when checking C<$!> after an system call. Some platforms expect a certain output format, and perl on those platforms may have been adjusted accordingly. Most specifically, don't anchor a regex when testing an error value. =head1 CPAN Testers Modules uploaded to CPAN are tested by a variety of volunteers on different platforms. These CPAN testers are notified by mail of each new upload, and reply to the list with PASS, FAIL, NA (not applicable to this platform), or UNKNOWN (unknown), along with any relevant notations. The purpose of the testing is twofold: one, to help developers fix any problems in their code that crop up because of lack of testing on other platforms; two, to provide users with information about whether a given module works on a given platform. =over 4 =item Mailing list: cpan-testers@perl.org =item Testing results: C =back =head1 PLATFORMS As of version 5.002, Perl is built with a C<$^O> variable that indicates the operating system it was built on. This was implemented to help speed up code that would otherwise have to C and use the value of C<$Config{osname}>. Of course, to get more detailed information about the system, looking into C<%Config> is certainly recommended. C<%Config> cannot always be trusted, however, because it was built at compile time. If perl was built in one place, then transferred elsewhere, some values may be wrong. The values may even have been edited after the fact. =head2 Unix Perl works on a bewildering variety of Unix and Unix-like platforms (see e.g. most of the files in the F directory in the source code kit). On most of these systems, the value of C<$^O> (hence C<$Config{'osname'}>, too) is determined either by lowercasing and stripping punctuation from the first field of the string returned by typing C (or a similar command) at the shell prompt or by testing the file system for the presence of uniquely named files such as a kernel or header file. Here, for example, are a few of the more popular Unix flavors: uname $^O $Config{'archname'} -------------------------------------------- AIX aix aix BSD/OS bsdos i386-bsdos dgux dgux AViiON-dgux DYNIX/ptx dynixptx i386-dynixptx FreeBSD freebsd freebsd-i386 Linux linux arm-linux Linux linux i386-linux Linux linux i586-linux Linux linux ppc-linux HP-UX hpux PA-RISC1.1 IRIX irix irix Mac OS X rhapsody rhapsody MachTen PPC machten powerpc-machten NeXT 3 next next-fat NeXT 4 next OPENSTEP-Mach openbsd openbsd i386-openbsd OSF1 dec_osf alpha-dec_osf reliantunix-n svr4 RM400-svr4 SCO_SV sco_sv i386-sco_sv SINIX-N svr4 RM400-svr4 sn4609 unicos CRAY_C90-unicos sn6521 unicosmk t3e-unicosmk sn9617 unicos CRAY_J90-unicos SunOS solaris sun4-solaris SunOS solaris i86pc-solaris SunOS4 sunos sun4-sunos Because the value of C<$Config{archname}> may depend on the hardware architecture, it can vary more than the value of C<$^O>. =head2 DOS and Derivatives Perl has long been ported to Intel-style microcomputers running under systems like PC-DOS, MS-DOS, OS/2, and most Windows platforms you can bring yourself to mention (except for Windows CE, if you count that). Users familiar with I or I style shells should be aware that each of these file specifications may have subtle differences: $filespec0 = "c:/foo/bar/file.txt"; $filespec1 = "c:\\foo\\bar\\file.txt"; $filespec2 = 'c:\foo\bar\file.txt'; $filespec3 = 'c:\\foo\\bar\\file.txt'; System calls accept either C or C<\> as the path separator. However, many command-line utilities of DOS vintage treat C as the option prefix, so may get confused by filenames containing C. Aside from calling any external programs, C will work just fine, and probably better, as it is more consistent with popular usage, and avoids the problem of remembering what to backwhack and what not to. The DOS FAT filesystem can accommodate only "8.3" style filenames. Under the "case-insensitive, but case-preserving" HPFS (OS/2) and NTFS (NT) filesystems you may have to be careful about case returned with functions like C or used with functions like C or C. DOS also treats several filenames as special, such as AUX, PRN, NUL, CON, COM1, LPT1, LPT2, etc. Unfortunately, sometimes these filenames won't even work if you include an explicit directory prefix. It is best to avoid such filenames, if you want your code to be portable to DOS and its derivatives. It's hard to know what these all are, unfortunately. Users of these operating systems may also wish to make use of scripts such as I or I to put wrappers around your scripts. Newline (C<\n>) is translated as C<\015\012> by STDIO when reading from and writing to files (see L<"Newlines">). C will keep C<\n> translated as C<\012> for that filehandle. Since it is a no-op on other systems, C should be used for cross-platform code that deals with binary data. That's assuming you realize in advance that your data is in binary. General-purpose programs should often assume nothing about their data. The C<$^O> variable and the C<$Config{archname}> values for various DOSish perls are as follows: OS $^O $Config{'archname'} -------------------------------------------- MS-DOS dos PC-DOS dos OS/2 os2 Windows 95 MSWin32 MSWin32-x86 Windows 98 MSWin32 MSWin32-x86 Windows NT MSWin32 MSWin32-x86 Windows NT MSWin32 MSWin32-ALPHA Windows NT MSWin32 MSWin32-ppc Also see: =over 4 =item The djgpp environment for DOS, C =item The EMX environment for DOS, OS/2, etc. C, C or C =item Build instructions for Win32, L. =item The ActiveState Pages, C =item The Cygwin environment for Win32; L, C =item The U/WIN environment for Win32, C =back =head2 S Any module requiring XS compilation is right out for most people, because MacPerl is built using non-free (and non-cheap!) compilers. Some XS modules that can work with MacPerl are built and distributed in binary form on CPAN. Directories are specified as: volume:folder:file for absolute pathnames volume:folder: for absolute pathnames :folder:file for relative pathnames :folder: for relative pathnames :file for relative pathnames file for relative pathnames Files are stored in the directory in alphabetical order. Filenames are limited to 31 characters, and may include any character except for null and C<:>, which is reserved as the path separator. Instead of C, see C and C in the Mac::Files module, or C and C. In the MacPerl application, you can't run a program from the command line; programs that expect C<@ARGV> to be populated can be edited with something like the following, which brings up a dialog box asking for the command line arguments. if (!@ARGV) { @ARGV = split /\s+/, MacPerl::Ask('Arguments?'); } A MacPerl script saved as a "droplet" will populate C<@ARGV> with the full pathnames of the files dropped onto the script. Mac users can run programs under a type of command line interface under MPW (Macintosh Programmer's Workshop, a free development environment from Apple). MacPerl was first introduced as an MPW tool, and MPW can be used like a shell: perl myscript.plx some arguments ToolServer is another app from Apple that provides access to MPW tools from MPW and the MacPerl app, which allows MacPerl programs to use C, backticks, and piped C. "S" is the proper name for the operating system, but the value in C<$^O> is "MacOS". To determine architecture, version, or whether the application or MPW tool version is running, check: $is_app = $MacPerl::Version =~ /App/; $is_tool = $MacPerl::Version =~ /MPW/; ($version) = $MacPerl::Version =~ /^(\S+)/; $is_ppc = $MacPerl::Architecture eq 'MacPPC'; $is_68k = $MacPerl::Architecture eq 'Mac68K'; S and S, based on NeXT's OpenStep OS, will (in theory) be able to run MacPerl natively, under the "Classic" environment. The new "Cocoa" environment (formerly called the "Yellow Box") may run a slightly modified version of MacPerl, using the Carbon interfaces. S and its Open Source version, Darwin, both run Unix perl natively (with a few patches). Full support for these is slated for perl 5.6. Also see: =over 4 =item The MacPerl Pages, C. =item The MacPerl mailing lists, C. =item MacPerl Module Porters, C. =back =head2 VMS Perl on VMS is discussed in F in the perl distribution. Perl on VMS can accept either VMS- or Unix-style file specifications as in either of the following: $ perl -ne "print if /perl_setup/i" SYS$LOGIN:LOGIN.COM $ perl -ne "print if /perl_setup/i" /sys$login/login.com but not a mixture of both as in: $ perl -ne "print if /perl_setup/i" sys$login:/login.com Can't open sys$login:/login.com: file specification syntax error Interacting with Perl from the Digital Command Language (DCL) shell often requires a different set of quotation marks than Unix shells do. For example: $ perl -e "print ""Hello, world.\n""" Hello, world. There are several ways to wrap your perl scripts in DCL F<.COM> files, if you are so inclined. For example: $ write sys$output "Hello from DCL!" $ if p1 .eqs. "" $ then perl -x 'f$environment("PROCEDURE") $ else perl -x - 'p1 'p2 'p3 'p4 'p5 'p6 'p7 'p8 $ deck/dollars="__END__" #!/usr/bin/perl print "Hello from Perl!\n"; __END__ $ endif Do take care with C<$ ASSIGN/nolog/user SYS$COMMAND: SYS$INPUT> if your perl-in-DCL script expects to do things like C<$read = ESTDINE;>. Filenames are in the format "name.extension;version". The maximum length for filenames is 39 characters, and the maximum length for extensions is also 39 characters. Version is a number from 1 to 32767. Valid characters are C. VMS's RMS filesystem is case-insensitive and does not preserve case. C returns lowercased filenames, but specifying a file for opening remains case-insensitive. Files without extensions have a trailing period on them, so doing a C with a file named F will return F (though that file could be opened with C). RMS had an eight level limit on directory depths from any rooted logical (allowing 16 levels overall) prior to VMS 7.2. Hence C is a valid directory specification but C is not. F authors might have to take this into account, but at least they can refer to the former as C. The VMS::Filespec module, which gets installed as part of the build process on VMS, is a pure Perl module that can easily be installed on non-VMS platforms and can be helpful for conversions to and from RMS native formats. What C<\n> represents depends on the type of file opened. It could be C<\015>, C<\012>, C<\015\012>, or nothing. The VMS::Stdio module provides access to the special fopen() requirements of files with unusual attributes on VMS. TCP/IP stacks are optional on VMS, so socket routines might not be implemented. UDP sockets may not be supported. The value of C<$^O> on OpenVMS is "VMS". To determine the architecture that you are running on without resorting to loading all of C<%Config> you can examine the content of the C<@INC> array like so: if (grep(/VMS_AXP/, @INC)) { print "I'm on Alpha!\n"; } elsif (grep(/VMS_VAX/, @INC)) { print "I'm on VAX!\n"; } else { print "I'm not so sure about where $^O is...\n"; } On VMS, perl determines the UTC offset from the C logical name. Although the VMS epoch began at 17-NOV-1858 00:00:00.00, calls to C are adjusted to count offsets from 01-JAN-1970 00:00:00.00, just like Unix. Also see: =over 4 =item L, L =item vmsperl list, C Put the words C in message body. =item vmsperl on the web, C =back =head2 VOS Perl on VOS is discussed in F in the perl distribution. Perl on VOS can accept either VOS- or Unix-style file specifications as in either of the following: $ perl -ne "print if /perl_setup/i" >system>notices $ perl -ne "print if /perl_setup/i" /system/notices or even a mixture of both as in: $ perl -ne "print if /perl_setup/i" >system/notices Even though VOS allows the slash character to appear in object names, because the VOS port of Perl interprets it as a pathname delimiting character, VOS files, directories, or links whose names contain a slash character cannot be processed. Such files must be renamed before they can be processed by Perl. The following C functions are unimplemented on VOS, and any attempt by Perl to use them will result in a fatal error message and an immediate exit from Perl: dup, do_aspawn, do_spawn, fork, waitpid. Once these functions become available in the VOS POSIX.1 implementation, you can either recompile and rebind Perl, or you can download a newer port from ftp.stratus.com. The value of C<$^O> on VOS is "VOS". To determine the architecture that you are running on without resorting to loading all of C<%Config> you can examine the content of the C<@INC> array like so: if (grep(/VOS/, @INC)) { print "I'm on a Stratus box!\n"; } else { print "I'm not on a Stratus box!\n"; die; } if (grep(/860/, @INC)) { print "This box is a Stratus XA/R!\n"; } elsif (grep(/7100/, @INC)) { print "This box is a Stratus HP 7100 or 8000!\n"; } elsif (grep(/8000/, @INC)) { print "This box is a Stratus HP 8000!\n"; } else { print "This box is a Stratus 68K...\n"; } Also see: =over 4 =item L =item VOS mailing list There is no specific mailing list for Perl on VOS. You can post comments to the comp.sys.stratus newsgroup, or subscribe to the general Stratus mailing list. Send a letter with "Subscribe Info-Stratus" in the message body to majordomo@list.stratagy.com. =item VOS Perl on the web at C =back =head2 EBCDIC Platforms Recent versions of Perl have been ported to platforms such as OS/400 on AS/400 minicomputers as well as OS/390, VM/ESA, and BS2000 for S/390 Mainframes. Such computers use EBCDIC character sets internally (usually Character Code Set ID 00819 for OS/400 and 1047 for S/390 systems). On the mainframe perl currently works under the "Unix system services for OS/390" (formerly known as OpenEdition), VM/ESA OpenEdition, or the BS200 POSIX system (BS2000 is supported in perl 5.006 and greater). As of R2.5 of USS for OS/390 and Version 2.3 of VM/ESA these Unix sub-systems do not support the C<#!> shebang trick for script invocation. Hence, on OS/390 and VM/ESA perl scripts can be executed with a header similar to the following simple script: : # use perl eval 'exec /usr/local/bin/perl -S $0 ${1+"$@"}' if 0; #!/usr/local/bin/perl # just a comment really print "Hello from perl!\n"; OS/390 will support the C<#!> shebang trick in release 2.8 and beyond. Calls to C and backticks can use POSIX shell syntax on all S/390 systems. On the AS/400, if PERL5 is in your library list, you may need to wrap your perl scripts in a CL procedure to invoke them like so: BEGIN CALL PGM(PERL5/PERL) PARM('/QOpenSys/hello.pl') ENDPGM This will invoke the perl script F in the root of the QOpenSys file system. On the AS/400 calls to C or backticks must use CL syntax. On these platforms, bear in mind that the EBCDIC character set may have an effect on what happens with some perl functions (such as C, C, C, C, C, C, C, C), as well as bit-fiddling with ASCII constants using operators like C<^>, C<&> and C<|>, not to mention dealing with socket interfaces to ASCII computers (see L<"Newlines">). Fortunately, most web servers for the mainframe will correctly translate the C<\n> in the following statement to its ASCII equivalent (C<\r> is the same under both Unix and OS/390 & VM/ESA): print "Content-type: text/html\r\n\r\n"; The values of C<$^O> on some of these platforms includes: uname $^O $Config{'archname'} -------------------------------------------- OS/390 os390 os390 OS400 os400 os400 POSIX-BC posix-bc BS2000-posix-bc VM/ESA vmesa vmesa Some simple tricks for determining if you are running on an EBCDIC platform could include any of the following (perhaps all): if ("\t" eq "\05") { print "EBCDIC may be spoken here!\n"; } if (ord('A') == 193) { print "EBCDIC may be spoken here!\n"; } if (chr(169) eq 'z') { print "EBCDIC may be spoken here!\n"; } One thing you may not want to rely on is the EBCDIC encoding of punctuation characters since these may differ from code page to code page (and once your module or script is rumoured to work with EBCDIC, folks will want it to work with all EBCDIC character sets). Also see: =over 4 =item L, L, L =item perl-mvs list The perl-mvs@perl.org list is for discussion of porting issues as well as general usage issues for all EBCDIC Perls. Send a message body of "subscribe perl-mvs" to majordomo@perl.org. =item AS/400 Perl information at C as well as on CPAN in the F directory. =back =head2 Acorn RISC OS Because Acorns use ASCII with newlines (C<\n>) in text files as C<\012> like Unix, and because Unix filename emulation is turned on by default, most simple scripts will probably work "out of the box". The native filesystem is modular, and individual filesystems are free to be case-sensitive or insensitive, and are usually case-preserving. Some native filesystems have name length limits, which file and directory names are silently truncated to fit. Scripts should be aware that the standard filesystem currently has a name length limit of B<10> characters, with up to 77 items in a directory, but other filesystems may not impose such limitations. Native filenames are of the form Filesystem#Special_Field::DiskName.$.Directory.Directory.File where Special_Field is not usually present, but may contain . and $ . Filesystem =~ m|[A-Za-z0-9_]| DsicName =~ m|[A-Za-z0-9_/]| $ represents the root directory . is the path separator @ is the current directory (per filesystem but machine global) ^ is the parent directory Directory and File =~ m|[^\0- "\.\$\%\&:\@\\^\|\177]+| The default filename translation is roughly C Note that C<"ADFS::HardDisk.$.File" ne 'ADFS::HardDisk.$.File'> and that the second stage of C<$> interpolation in regular expressions will fall foul of the C<$.> if scripts are not careful. Logical paths specified by system variables containing comma-separated search lists are also allowed; hence C is a valid filename, and the filesystem will prefix C with each section of C until a name is made that points to an object on disk. Writing to a new file C would be allowed only if C contains a single item list. The filesystem will also expand system variables in filenames if enclosed in angle brackets, so CSystem$DirE.Modules> would look for the file S>. The obvious implication of this is that BE>> and should be protected when C is used for input. Because C<.> was in use as a directory separator and filenames could not be assumed to be unique after 10 characters, Acorn implemented the C compiler to strip the trailing C<.c> C<.h> C<.s> and C<.o> suffix from filenames specified in source code and store the respective files in subdirectories named after the suffix. Hence files are translated: foo.h h.foo C:foo.h C:h.foo (logical path variable) sys/os.h sys.h.os (C compiler groks Unix-speak) 10charname.c c.10charname 10charname.o o.10charname 11charname_.c c.11charname (assuming filesystem truncates at 10) The Unix emulation library's translation of filenames to native assumes that this sort of translation is required, and it allows a user-defined list of known suffixes that it will transpose in this fashion. This may seem transparent, but consider that with these rules C and C both map to C, and that C and C cannot and do not attempt to emulate the reverse mapping. Other C<.>'s in filenames are translated to C. As implied above, the environment accessed through C<%ENV> is global, and the convention is that program specific environment variables are of the form C. Each filesystem maintains a current directory, and the current filesystem's current directory is the B current directory. Consequently, sociable programs don't change the current directory but rely on full pathnames, and programs (and Makefiles) cannot assume that they can spawn a child process which can change the current directory without affecting its parent (and everyone else for that matter). Because native operating system filehandles are global and are currently allocated down from 255, with 0 being a reserved value, the Unix emulation library emulates Unix filehandles. Consequently, you can't rely on passing C, C, or C to your children. The desire of users to express filenames of the form CFoo$DirE.Bar> on the command line unquoted causes problems, too: C<``> command output capture has to perform a guessing game. It assumes that a string C[^EE]+\$[^EE]E> is a reference to an environment variable, whereas anything else involving C> or C> is redirection, and generally manages to be 99% right. Of course, the problem remains that scripts cannot rely on any Unix tools being available, or that any tools found have Unix-like command line arguments. Extensions and XS are, in theory, buildable by anyone using free tools. In practice, many don't, as users of the Acorn platform are used to binary distributions. MakeMaker does run, but no available make currently copes with MakeMaker's makefiles; even if and when this should be fixed, the lack of a Unix-like shell will cause problems with makefile rules, especially lines of the form C, and anything using quoting. "S" is the proper name for the operating system, but the value in C<$^O> is "riscos" (because we don't like shouting). =head2 Other perls Perl has been ported to many platforms that do not fit into any of the categories listed above. Some, such as AmigaOS, Atari MiNT, BeOS, HP MPE/iX, QNX, Plan 9, and VOS, have been well-integrated into the standard Perl source code kit. You may need to see the F directory on CPAN for information, and possibly binaries, for the likes of: aos, Atari ST, lynxos, riscos, Novell Netware, Tandem Guardian, I (Yes, we know that some of these OSes may fall under the Unix category, but we are not a standards body.) Some approximate operating system names and their C<$^O> values in the "OTHER" category include: OS $^O $Config{'archname'} ------------------------------------------ Amiga DOS amigaos m68k-amigos MPE/iX mpeix PA-RISC1.1 See also: =over 4 =item Amiga, L =item Atari, L and Guido Flohr's web page C =item Be OS, L =item HP 300 MPE/iX, L and Mark Bixby's web page C =item Novell Netware A free perl5-based PERL.NLM for Novell Netware is available in precompiled binary and source code form from C as well as from CPAN. =item Plan 9, L =back =head1 FUNCTION IMPLEMENTATIONS Listed below are functions that are either completely unimplemented or else have been implemented differently on various platforms. Following each description will be, in parentheses, a list of platforms that the description applies to. The list may well be incomplete, or even wrong in some places. When in doubt, consult the platform-specific README files in the Perl source distribution, and any other documentation resources accompanying a given port. Be aware, moreover, that even among Unix-ish systems there are variations. For many functions, you can also query C<%Config>, exported by default from the Config module. For example, to check whether the platform has the C call, check C<$Config{d_lstat}>. See L for a full description of available variables. =head2 Alphabetical Listing of Perl Functions =over 8 =item -X FILEHANDLE =item -X EXPR =item -X C<-r>, C<-w>, and C<-x> have a limited meaning only; directories and applications are executable, and there are no uid/gid considerations. C<-o> is not supported. (S) C<-r>, C<-w>, C<-x>, and C<-o> tell whether the file is accessible, which may not reflect UIC-based file protections. (VMS) C<-s> returns the size of the data fork, not the total size of data fork plus resource fork. (S). C<-s> by name on an open file will return the space reserved on disk, rather than the current extent. C<-s> on an open filehandle returns the current size. (S) C<-R>, C<-W>, C<-X>, C<-O> are indistinguishable from C<-r>, C<-w>, C<-x>, C<-o>. (S, Win32, VMS, S) C<-b>, C<-c>, C<-k>, C<-g>, C<-p>, C<-u>, C<-A> are not implemented. (S) C<-g>, C<-k>, C<-l>, C<-p>, C<-u>, C<-A> are not particularly meaningful. (Win32, VMS, S) C<-d> is true if passed a device spec without an explicit directory. (VMS) C<-T> and C<-B> are implemented, but might misclassify Mac text files with foreign characters; this is the case will all platforms, but may affect S often. (S) C<-x> (or C<-X>) determine if a file ends in one of the executable suffixes. C<-S> is meaningless. (Win32) C<-x> (or C<-X>) determine if a file has an executable file type. (S) =item binmode FILEHANDLE Meaningless. (S, S) Reopens file and restores pointer; if function fails, underlying filehandle may be closed, or pointer may be in a different position. (VMS) The value returned by C may be affected after the call, and the filehandle may be flushed. (Win32) =item chmod LIST Only limited meaning. Disabling/enabling write permission is mapped to locking/unlocking the file. (S) Only good for changing "owner" read-write access, "group", and "other" bits are meaningless. (Win32) Only good for changing "owner" and "other" read-write access. (S) Access permissions are mapped onto VOS access-control list changes. (VOS) =item chown LIST Not implemented. (S, Win32, Plan9, S, VOS) Does nothing, but won't fail. (Win32) =item chroot FILENAME =item chroot Not implemented. (S, Win32, VMS, Plan9, S, VOS, VM/ESA) =item crypt PLAINTEXT,SALT May not be available if library or source was not provided when building perl. (Win32) Not implemented. (VOS) =item dbmclose HASH Not implemented. (VMS, Plan9, VOS) =item dbmopen HASH,DBNAME,MODE Not implemented. (VMS, Plan9, VOS) =item dump LABEL Not useful. (S, S) Not implemented. (Win32) Invokes VMS debugger. (VMS) =item exec LIST Not implemented. (S) Implemented via Spawn. (VM/ESA) =item fcntl FILEHANDLE,FUNCTION,SCALAR Not implemented. (Win32, VMS) =item flock FILEHANDLE,OPERATION Not implemented (S, VMS, S, VOS). Available only on Windows NT (not on Windows 95). (Win32) =item fork Not implemented. (S, Win32, AmigaOS, S, VOS, VM/ESA) =item getlogin Not implemented. (S, S) =item getpgrp PID Not implemented. (S, Win32, VMS, S, VOS) =item getppid Not implemented. (S, Win32, VMS, S) =item getpriority WHICH,WHO Not implemented. (S, Win32, VMS, S, VOS, VM/ESA) =item getpwnam NAME Not implemented. (S, Win32) Not useful. (S) =item getgrnam NAME Not implemented. (S, Win32, VMS, S) =item getnetbyname NAME Not implemented. (S, Win32, Plan9) =item getpwuid UID Not implemented. (S, Win32) Not useful. (S) =item getgrgid GID Not implemented. (S, Win32, VMS, S) =item getnetbyaddr ADDR,ADDRTYPE Not implemented. (S, Win32, Plan9) =item getprotobynumber NUMBER Not implemented. (S) =item getservbyport PORT,PROTO Not implemented. (S) =item getpwent Not implemented. (S, Win32, VM/ESA) =item getgrent Not implemented. (S, Win32, VMS, VM/ESA) =item gethostent Not implemented. (S, Win32) =item getnetent Not implemented. (S, Win32, Plan9) =item getprotoent Not implemented. (S, Win32, Plan9) =item getservent Not implemented. (Win32, Plan9) =item setpwent Not implemented. (S, Win32, S) =item setgrent Not implemented. (S, Win32, VMS, S) =item sethostent STAYOPEN Not implemented. (S, Win32, Plan9, S) =item setnetent STAYOPEN Not implemented. (S, Win32, Plan9, S) =item setprotoent STAYOPEN Not implemented. (S, Win32, Plan9, S) =item setservent STAYOPEN Not implemented. (Plan9, Win32, S) =item endpwent Not implemented. (S, Win32, VM/ESA) =item endgrent Not implemented. (S, Win32, VMS, S, VM/ESA) =item endhostent Not implemented. (S, Win32) =item endnetent Not implemented. (S, Win32, Plan9) =item endprotoent Not implemented. (S, Win32, Plan9) =item endservent Not implemented. (Plan9, Win32) =item getsockopt SOCKET,LEVEL,OPTNAME Not implemented. (S, Plan9) =item glob EXPR =item glob Globbing built-in, but only C<*> and C metacharacters are supported. (S) Features depend on external perlglob.exe or perlglob.bat. May be overridden with something like File::DosGlob, which is recommended. (Win32) Globbing built-in, but only C<*> and C metacharacters are supported. Globbing relies on operating system calls, which may return filenames in any order. As most filesystems are case-insensitive, even "sorted" filenames will not be in case-sensitive order. (S) =item ioctl FILEHANDLE,FUNCTION,SCALAR Not implemented. (VMS) Available only for socket handles, and it does what the ioctlsocket() call in the Winsock API does. (Win32) Available only for socket handles. (S) =item kill SIGNAL, LIST Not implemented, hence not useful for taint checking. (S, S) Unlike Unix platforms, C will actually terminate the process. (Win32) =item link OLDFILE,NEWFILE Not implemented. (S, Win32, VMS, S) Link count not updated because hard links are not quite that hard (They are sort of half-way between hard and soft links). (AmigaOS) =item lstat FILEHANDLE =item lstat EXPR =item lstat Not implemented. (VMS, S) Return values may be bogus. (Win32) =item msgctl ID,CMD,ARG =item msgget KEY,FLAGS =item msgsnd ID,MSG,FLAGS =item msgrcv ID,VAR,SIZE,TYPE,FLAGS Not implemented. (S, Win32, VMS, Plan9, S, VOS) =item open FILEHANDLE,EXPR =item open FILEHANDLE The C<|> variants are supported only if ToolServer is installed. (S) open to C<|-> and C<-|> are unsupported. (S, Win32, S) =item pipe READHANDLE,WRITEHANDLE Not implemented. (S) Very limited functionality. (MiNT) =item readlink EXPR =item readlink Not implemented. (Win32, VMS, S) =item select RBITS,WBITS,EBITS,TIMEOUT Only implemented on sockets. (Win32) Only reliable on sockets. (S) =item semctl ID,SEMNUM,CMD,ARG =item semget KEY,NSEMS,FLAGS =item semop KEY,OPSTRING Not implemented. (S, Win32, VMS, S, VOS) =item setpgrp PID,PGRP Not implemented. (S, Win32, VMS, S, VOS) =item setpriority WHICH,WHO,PRIORITY Not implemented. (S, Win32, VMS, S, VOS) =item setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL Not implemented. (S, Plan9) =item shmctl ID,CMD,ARG =item shmget KEY,SIZE,FLAGS =item shmread ID,VAR,POS,SIZE =item shmwrite ID,STRING,POS,SIZE Not implemented. (S, Win32, VMS, S, VOS) =item socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL Not implemented. (S, Win32, VMS, S, VOS, VM/ESA) =item stat FILEHANDLE =item stat EXPR =item stat mtime and atime are the same thing, and ctime is creation time instead of inode change time. (S) device and inode are not meaningful. (Win32) device and inode are not necessarily reliable. (VMS) mtime, atime and ctime all return the last modification time. Device and inode are not necessarily reliable. (S) =item symlink OLDFILE,NEWFILE Not implemented. (Win32, VMS, S) =item syscall LIST Not implemented. (S, Win32, VMS, S, VOS, VM/ESA) =item sysopen FILEHANDLE,FILENAME,MODE,PERMS The traditional "0", "1", and "2" MODEs are implemented with different numeric values on some systems. The flags exported by C (O_RDONLY, O_WRONLY, O_RDWR) should work everywhere though. (S, OS/390, VM/ESA) =item system LIST Only implemented if ToolServer is installed. (S) As an optimization, may not call the command shell specified in C<$ENV{PERL5SHELL}>. C spawns an external process and immediately returns its process designator, without waiting for it to terminate. Return value may be used subsequently in C or C. (Win32) There is no shell to process metacharacters, and the native standard is to pass a command line terminated by "\n" "\r" or "\0" to the spawned program. Redirection such as C foo> is performed (if at all) by the run time library of the spawned program. C I will call the Unix emulation library's C emulation, which attempts to provide emulation of the stdin, stdout, stderr in force in the parent, providing the child program uses a compatible version of the emulation library. I will call the native command line direct and no such emulation of a child Unix program will exists. Mileage B vary. (S) Far from being POSIX compliant. Because there may be no underlying /bin/sh tries to work around the problem by forking and execing the first token in its argument string. Handles basic redirection ("E" or "E") on its own behalf. (MiNT) =item times Only the first entry returned is nonzero. (S) "cumulative" times will be bogus. On anything other than Windows NT, "system" time will be bogus, and "user" time is actually the time returned by the clock() function in the C runtime library. (Win32) Not useful. (S) =item truncate FILEHANDLE,LENGTH =item truncate EXPR,LENGTH Not implemented. (VMS) Truncation to zero-length only. (VOS) If a FILEHANDLE is supplied, it must be writable and opened in append mode (i.e., use C>filename')> or C. If a filename is supplied, it should not be held open elsewhere. (Win32) =item umask EXPR =item umask Returns undef where unavailable, as of version 5.005. C works but the correct permissions are set only when the file is finally closed. (AmigaOS) =item utime LIST Only the modification time is updated. (S, VMS, S) May not behave as expected. Behavior depends on the C runtime library's implementation of utime(), and the filesystem being used. The FAT filesystem typically does not support an "access time" field, and it may limit timestamps to a granularity of two seconds. (Win32) =item wait =item waitpid PID,FLAGS Not implemented. (S, VOS) Can only be applied to process handles returned for processes spawned using C. (Win32) Not useful. (S) =back =head1 CHANGES =over 4 =item v1.44, 19 July 1999 A bunch of updates from Peter Prymmer for C<$^O> values, endianness, File::Spec, VMS, BS2000, OS/400. =item v1.43, 24 May 1999 Added a lot of cleaning up from Tom Christiansen. =item v1.42, 22 May 1999 Added notes about tests, sprintf/printf, and epoch offsets. =item v1.41, 19 May 1999 Lots more little changes to formatting and content. Added a bunch of C<$^O> and related values for various platforms; fixed mail and web addresses, and added and changed miscellaneous notes. (Peter Prymmer) =item v1.40, 11 April 1999 Miscellaneous changes. =item v1.39, 11 February 1999 Changes from Jarkko and EMX URL fixes Michael Schwern. Additional note about newlines added. =item v1.38, 31 December 1998 More changes from Jarkko. =item v1.37, 19 December 1998 More minor changes. Merge two separate version 1.35 documents. =item v1.36, 9 September 1998 Updated for Stratus VOS. Also known as version 1.35. =item v1.35, 13 August 1998 Integrate more minor changes, plus addition of new sections under L<"ISSUES">: L<"Numbers endianness and Width">, L<"Character sets and character encoding">, L<"Internationalisation">. =item v1.33, 06 August 1998 Integrate more minor changes. =item v1.32, 05 August 1998 Integrate more minor changes. =item v1.30, 03 August 1998 Major update for RISC OS, other minor changes. =item v1.23, 10 July 1998 First public release with perl5.005. =back =head1 AUTHORS / CONTRIBUTORS Abigail Eabigail@fnx.comE, Charles Bailey Ebailey@newman.upenn.eduE, Graham Barr Egbarr@pobox.comE, Tom Christiansen Etchrist@perl.comE, Nicholas Clark ENicholas.Clark@liverpool.ac.ukE, Thomas Dorner EThomas.Dorner@start.deE, Andy Dougherty Edoughera@lafcol.lafayette.eduE, Dominic Dunlop Edomo@vo.luE, Neale Ferguson Eneale@mailbox.tabnsw.com.auE, David J. Fiander Edavidf@mks.comE, Paul Green EPaul_Green@stratus.comE, M.J.T. Guy Emjtg@cus.cam.ac.ukE, Jarkko Hietaniemi Ejhi@iki.fi, Luther Huffman Elutherh@stratcom.comE, Nick Ing-Simmons Enick@ni-s.u-net.comE, Andreas J. KEnig Ekoenig@kulturbox.deE, Markus Laker Emlaker@contax.co.ukE, Andrew M. Langmead Eaml@world.std.comE, Larry Moore Eljmoore@freespace.netE, Paul Moore EPaul.Moore@uk.origin-it.comE, Chris Nandor Epudge@pobox.comE, Matthias Neeracher Eneeri@iis.ee.ethz.chE, Gary Ng E71564.1743@CompuServe.COME, Tom Phoenix Erootbeer@teleport.comE, Peter Prymmer Epvhp@forte.comE, Hugo van der Sanden Ehv@crypt0.demon.co.ukE, Gurusamy Sarathy Egsar@umich.eduE, Paul J. Schinder Eschinder@pobox.comE, Michael G Schwern Eschwern@pobox.comE, Dan Sugalski Esugalskd@ous.eduE, Nathan Torkington Egnat@frii.comE. This document is maintained by Chris Nandor Epudge@pobox.comE. =head1 VERSION Version 1.44, last modified 22 July 1999