/* hv.h * * Copyright (C) 1991, 1992, 1993, 1996, 1997, 1998, 1999, * 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008, by Larry Wall and others * * You may distribute under the terms of either the GNU General Public * License or the Artistic License, as specified in the README file. * */ /* entry in hash value chain */ struct he { /* Keep hent_next first in this structure, because sv_free_arenas take advantage of this to share code between the he arenas and the SV body arenas */ HE *hent_next; /* next entry in chain */ HEK *hent_hek; /* hash key */ union { SV *hent_val; /* scalar value that was hashed */ Size_t hent_refcount; /* references for this shared hash key */ } he_valu; }; /* hash key -- defined separately for use as shared pointer */ struct hek { U32 hek_hash; /* hash of key */ I32 hek_len; /* length of hash key */ char hek_key[1]; /* variable-length hash key */ /* the hash-key is \0-terminated */ /* after the \0 there is a byte for flags, such as whether the key is UTF-8 */ }; struct shared_he { struct he shared_he_he; struct hek shared_he_hek; }; /* Subject to change. Don't access this directly. Use the funcs in mro.c */ struct mro_alg { AV *(*resolve)(pTHX_ HV* stash, U32 level); const char *name; U16 length; U16 kflags; /* For the hash API - set HVhek_UTF8 if name is UTF-8 */ U32 hash; /* or 0 */ }; struct mro_meta { /* a hash holding the different MROs private data. */ HV *mro_linear_all; /* a pointer directly to the current MROs private data. If mro_linear_all is NULL, this owns the SV reference, else it is just a pointer to a value stored in and owned by mro_linear_all. */ SV *mro_linear_current; HV *mro_nextmethod; /* next::method caching */ U32 cache_gen; /* Bumping this invalidates our method cache */ U32 pkg_gen; /* Bumps when local methods/@ISA change */ const struct mro_alg *mro_which; /* which mro alg is in use? */ HV *isa; /* Everything this class @ISA */ }; #define MRO_GET_PRIVATE_DATA(smeta, which) \ (((smeta)->mro_which && (which) == (smeta)->mro_which) \ ? (smeta)->mro_linear_current \ : Perl_mro_get_private_data(aTHX_ (smeta), (which))) /* Subject to change. Don't access this directly. */ union _xhvnameu { HEK *xhvnameu_name; /* When xhv_name_count is 0 */ HEK **xhvnameu_names; /* When xhv_name_count is non-0 */ }; struct xpvhv_aux { union _xhvnameu xhv_name_u; /* name, if a symbol table */ AV *xhv_backreferences; /* back references for weak references */ HE *xhv_eiter; /* current entry of iterator */ I32 xhv_riter; /* current root of iterator */ /* Concerning xhv_name_count: When non-zero, xhv_name_u contains a pointer * to an array of HEK pointers, this being the length. The first element is * the name of the stash, which may be NULL. If xhv_name_count is positive, * then *xhv_name is one of the effective names. If xhv_name_count is nega- * tive, then xhv_name_u.xhvnameu_names[1] is the first effective name. */ I32 xhv_name_count; struct mro_meta *xhv_mro_meta; HV * xhv_super; /* SUPER method cache */ }; /* hash structure: */ /* This structure must match the beginning of struct xpvmg in sv.h. */ struct xpvhv { HV* xmg_stash; /* class package */ union _xmgu xmg_u; STRLEN xhv_keys; /* total keys, including placeholders */ STRLEN xhv_max; /* subscript of last element of xhv_array */ }; /* hash a key */ /* The use of a temporary pointer and the casting games * is needed to serve the dual purposes of * (a) the hashed data being interpreted as "unsigned char" (new since 5.8, * a "char" can be either signed or unsigned, depending on the compiler) * (b) catering for old code that uses a "char" * * The "hash seed" feature was added in Perl 5.8.1 to perturb the results * to avoid "algorithmic complexity attacks". * * If USE_HASH_SEED is defined, hash randomisation is done by default * If USE_HASH_SEED_EXPLICIT is defined, hash randomisation is done * only if the environment variable PERL_HASH_SEED is set. * (see also perl.c:perl_parse() and S_init_tls_and_interp() and util.c:get_hash_seed()) */ #ifndef PERL_HASH_SEED # if defined(USE_HASH_SEED) || defined(USE_HASH_SEED_EXPLICIT) # define PERL_HASH_SEED PL_hash_seed # else # define PERL_HASH_SEED "PeRlHaShhAcKpErl" # endif #endif #define PERL_HASH_SEED_U32 *((U32*)PERL_HASH_SEED) #define PERL_HASH_SEED_U64_1 (((U64*)PERL_HASH_SEED)[0]) #define PERL_HASH_SEED_U64_2 (((U64*)PERL_HASH_SEED)[1]) #define PERL_HASH_SEED_U16_x(idx) (((U16*)PERL_HASH_SEED)[idx]) /* legacy - only mod_perl should be doing this. */ #ifdef PERL_HASH_INTERNAL_ACCESS #define PERL_HASH_INTERNAL(hash,str,len) PERL_HASH(hash,str,len) #endif /* Uncomment one of the following lines to use an alternative hash algorithm. #define PERL_HASH_FUNC_SDBM #define PERL_HASH_FUNC_DJB2 #define PERL_HASH_FUNC_SUPERFAST #define PERL_HASH_FUNC_MURMUR3 #define PERL_HASH_FUNC_SIPHASH #define PERL_HASH_FUNC_ONE_AT_A_TIME #define PERL_HASH_FUNC_ONE_AT_A_TIME_OLD #define PERL_HASH_FUNC_BUZZHASH16 */ #if !( 0 \ || defined(PERL_HASH_FUNC_SDBM) \ || defined(PERL_HASH_FUNC_DJB2) \ || defined(PERL_HASH_FUNC_SUPERFAST) \ || defined(PERL_HASH_FUNC_MURMUR3) \ || defined(PERL_HASH_FUNC_ONE_AT_A_TIME) \ || defined(PERL_HASH_FUNC_ONE_AT_A_TIME_OLD) \ || defined(PERL_HASH_FUNC_BUZZHASH16) \ ) #ifdef U64 #define PERL_HASH_FUNC_SIPHASH #else #define PERL_HASH_FUNC_ONE_AT_A_TIME #endif #endif #if defined(PERL_HASH_FUNC_BUZZHASH16) /* "BUZZHASH16" * * I whacked this together while just playing around. * * The idea is that instead of hashing the actual string input we use the * bytes of the string as an index into a table of randomly generated * 16 bit values. * * A left rotate is used to "mix" in previous bits as we go, and I borrowed * the avalanche function from one-at-a-time for the final step. A lookup * into the table based on the lower 8 bits of the length combined with * the length itself is used as an itializer. * * The resulting hash value has no actual bits fed in from the string so * I would guess it is pretty secure, although I am not a cryptographer * and have no idea for sure. Nor has it been rigorously tested. On the * other hand it is reasonably fast, and seems to produce reasonable * distributions. * * Yves Orton */ #define PERL_HASH_FUNC "BUZZHASH16" #define PERL_HASH_SEED_BYTES 512 /* 2 bytes per octet value, 2 * 256 */ /* Find best way to ROTL32 */ #if defined(_MSC_VER) #include /* Microsoft put _rotl declaration in here */ #define BUZZHASH_ROTL32(x,r) _rotl(x,r) #else /* gcc recognises this code and generates a rotate instruction for CPUs with one */ #define BUZZHASH_ROTL32(x,r) (((U32)x << r) | ((U32)x >> (32 - r))) #endif #define PERL_HASH(hash,str,len) \ STMT_START { \ const char * const s_PeRlHaSh_tmp = (str); \ const unsigned char *s_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp; \ const unsigned char *end_PeRlHaSh = (const unsigned char *)s_PeRlHaSh + len; \ U32 hash_PeRlHaSh = (PERL_HASH_SEED_U16_x(len & 0xff) << 16) + len; \ while (s_PeRlHaSh < end_PeRlHaSh) { \ hash_PeRlHaSh ^= PERL_HASH_SEED_U16_x((U8)*s_PeRlHaSh++); \ hash_PeRlHaSh += BUZZHASH_ROTL32(hash_PeRlHaSh,11); \ } \ hash_PeRlHaSh += (hash_PeRlHaSh << 3); \ hash_PeRlHaSh ^= (hash_PeRlHaSh >> 11); \ (hash) = (hash_PeRlHaSh + (hash_PeRlHaSh << 15)); \ } STMT_END #elif defined(PERL_HASH_FUNC_SIPHASH) #define PERL_HASH_FUNC "SIPHASH" #define PERL_HASH_SEED_BYTES 16 /* This is SipHash by Jean-Philippe Aumasson and Daniel J. Bernstein. * The authors claim it is relatively secure compared to the alternatives * and that performance wise it is a suitable hash for languages like Perl. * See: * * https://www.131002.net/siphash/ * * This implementation seems to perform slightly slower than one-at-a-time for * short keys, but degrades slower for longer keys. Murmur Hash outperforms it * regardless of keys size. * * It is 64 bit only. */ #define PERL_HASH_NEEDS_TWO_SEEDS #ifndef U64 #define U64 uint64_t #endif #define ROTL(x,b) (U64)( ((x) << (b)) | ( (x) >> (64 - (b))) ) #define U32TO8_LE(p, v) \ (p)[0] = (U8)((v) ); (p)[1] = (U8)((v) >> 8); \ (p)[2] = (U8)((v) >> 16); (p)[3] = (U8)((v) >> 24); #define U64TO8_LE(p, v) \ U32TO8_LE((p), (U32)((v) )); \ U32TO8_LE((p) + 4, (U32)((v) >> 32)); #define U8TO64_LE(p) \ (((U64)((p)[0]) ) | \ ((U64)((p)[1]) << 8) | \ ((U64)((p)[2]) << 16) | \ ((U64)((p)[3]) << 24) | \ ((U64)((p)[4]) << 32) | \ ((U64)((p)[5]) << 40) | \ ((U64)((p)[6]) << 48) | \ ((U64)((p)[7]) << 56)) #define SIPROUND \ do { \ v0_PeRlHaSh += v1_PeRlHaSh; v1_PeRlHaSh=ROTL(v1_PeRlHaSh,13); v1_PeRlHaSh ^= v0_PeRlHaSh; v0_PeRlHaSh=ROTL(v0_PeRlHaSh,32); \ v2_PeRlHaSh += v3_PeRlHaSh; v3_PeRlHaSh=ROTL(v3_PeRlHaSh,16); v3_PeRlHaSh ^= v2_PeRlHaSh; \ v0_PeRlHaSh += v3_PeRlHaSh; v3_PeRlHaSh=ROTL(v3_PeRlHaSh,21); v3_PeRlHaSh ^= v0_PeRlHaSh; \ v2_PeRlHaSh += v1_PeRlHaSh; v1_PeRlHaSh=ROTL(v1_PeRlHaSh,17); v1_PeRlHaSh ^= v2_PeRlHaSh; v2_PeRlHaSh=ROTL(v2_PeRlHaSh,32); \ } while(0) /* SipHash-2-4 */ #define PERL_HASH(hash,str,len) STMT_START { \ const char * const strtmp_PeRlHaSh = (str); \ const unsigned char *in_PeRlHaSh = (const unsigned char *)strtmp_PeRlHaSh; \ const U32 inlen_PeRlHaSh = (len); \ /* "somepseudorandomlygeneratedbytes" */ \ U64 v0_PeRlHaSh = 0x736f6d6570736575ULL; \ U64 v1_PeRlHaSh = 0x646f72616e646f6dULL; \ U64 v2_PeRlHaSh = 0x6c7967656e657261ULL; \ U64 v3_PeRlHaSh = 0x7465646279746573ULL; \ \ U64 b_PeRlHaSh; \ U64 k0_PeRlHaSh = PERL_HASH_SEED_U64_1; \ U64 k1_PeRlHaSh = PERL_HASH_SEED_U64_2; \ U64 m_PeRlHaSh; \ const int left_PeRlHaSh = inlen_PeRlHaSh & 7; \ const U8 *end_PeRlHaSh = in_PeRlHaSh + inlen_PeRlHaSh - left_PeRlHaSh; \ \ b_PeRlHaSh = ( ( U64 )(len) ) << 56; \ v3_PeRlHaSh ^= k1_PeRlHaSh; \ v2_PeRlHaSh ^= k0_PeRlHaSh; \ v1_PeRlHaSh ^= k1_PeRlHaSh; \ v0_PeRlHaSh ^= k0_PeRlHaSh; \ \ for ( ; in_PeRlHaSh != end_PeRlHaSh; in_PeRlHaSh += 8 ) \ { \ m_PeRlHaSh = U8TO64_LE( in_PeRlHaSh ); \ v3_PeRlHaSh ^= m_PeRlHaSh; \ SIPROUND; \ SIPROUND; \ v0_PeRlHaSh ^= m_PeRlHaSh; \ } \ \ switch( left_PeRlHaSh ) \ { \ case 7: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 6] ) << 48; \ case 6: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 5] ) << 40; \ case 5: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 4] ) << 32; \ case 4: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 3] ) << 24; \ case 3: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 2] ) << 16; \ case 2: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 1] ) << 8; \ case 1: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 0] ); break; \ case 0: break; \ } \ \ v3_PeRlHaSh ^= b_PeRlHaSh; \ SIPROUND; \ SIPROUND; \ v0_PeRlHaSh ^= b_PeRlHaSh; \ \ v2_PeRlHaSh ^= 0xff; \ SIPROUND; \ SIPROUND; \ SIPROUND; \ SIPROUND; \ b_PeRlHaSh = v0_PeRlHaSh ^ v1_PeRlHaSh ^ v2_PeRlHaSh ^ v3_PeRlHaSh; \ (hash)= (U32)(b_PeRlHaSh & U32_MAX); \ } STMT_END #elif defined(PERL_HASH_FUNC_SUPERFAST) #define PERL_HASH_FUNC "SUPERFAST" #define PERL_HASH_SEED_BYTES 4 /* FYI: This is the "Super-Fast" algorithm mentioned by Bob Jenkins in * (http://burtleburtle.net/bob/hash/doobs.html) * It is by Paul Hsieh (c) 2004 and is analysed here * http://www.azillionmonkeys.com/qed/hash.html * license terms are here: * http://www.azillionmonkeys.com/qed/weblicense.html */ #undef get16bits #if (defined(__GNUC__) && defined(__i386__)) || defined(__WATCOMC__) \ || defined(_MSC_VER) || defined (__BORLANDC__) || defined (__TURBOC__) #define get16bits(d) (*((const U16 *) (d))) #endif #if !defined (get16bits) #define get16bits(d) ((((const U8 *)(d))[1] << UINT32_C(8))\ +((const U8 *)(d))[0]) #endif #define PERL_HASH(hash,str,len) \ STMT_START { \ const char * const strtmp_PeRlHaSh = (str); \ const unsigned char *str_PeRlHaSh = (const unsigned char *)strtmp_PeRlHaSh; \ U32 len_PeRlHaSh = (len); \ U32 hash_PeRlHaSh = PERL_HASH_SEED_U32 ^ len; \ U32 tmp_PeRlHaSh; \ int rem_PeRlHaSh= len_PeRlHaSh & 3; \ len_PeRlHaSh >>= 2; \ \ for (;len_PeRlHaSh > 0; len_PeRlHaSh--) { \ hash_PeRlHaSh += get16bits (str_PeRlHaSh); \ tmp_PeRlHaSh = (get16bits (str_PeRlHaSh+2) << 11) ^ hash_PeRlHaSh; \ hash_PeRlHaSh = (hash_PeRlHaSh << 16) ^ tmp_PeRlHaSh; \ str_PeRlHaSh += 2 * sizeof (U16); \ hash_PeRlHaSh += hash_PeRlHaSh >> 11; \ } \ \ /* Handle end cases */ \ switch (rem_PeRlHaSh) { \ case 3: hash_PeRlHaSh += get16bits (str_PeRlHaSh); \ hash_PeRlHaSh ^= hash_PeRlHaSh << 16; \ hash_PeRlHaSh ^= str_PeRlHaSh[sizeof (U16)] << 18; \ hash_PeRlHaSh += hash_PeRlHaSh >> 11; \ break; \ case 2: hash_PeRlHaSh += get16bits (str_PeRlHaSh); \ hash_PeRlHaSh ^= hash_PeRlHaSh << 11; \ hash_PeRlHaSh += hash_PeRlHaSh >> 17; \ break; \ case 1: hash_PeRlHaSh += *str_PeRlHaSh; \ hash_PeRlHaSh ^= hash_PeRlHaSh << 10; \ hash_PeRlHaSh += hash_PeRlHaSh >> 1; \ } \ \ /* Force "avalanching" of final 127 bits */ \ hash_PeRlHaSh ^= hash_PeRlHaSh << 3; \ hash_PeRlHaSh += hash_PeRlHaSh >> 5; \ hash_PeRlHaSh ^= hash_PeRlHaSh << 4; \ hash_PeRlHaSh += hash_PeRlHaSh >> 17; \ hash_PeRlHaSh ^= hash_PeRlHaSh << 25; \ (hash) = (hash_PeRlHaSh + (hash_PeRlHaSh >> 6)); \ } STMT_END #elif defined(PERL_HASH_FUNC_MURMUR3) #define PERL_HASH_FUNC "MURMUR3" #define PERL_HASH_SEED_BYTES 4 /*----------------------------------------------------------------------------- * MurmurHash3 was written by Austin Appleby, and is placed in the public * domain. * * This implementation was originally written by Shane Day, and is also public domain, * and was modified to function as a macro similar to other perl hash functions by * Yves Orton. * * This is a portable ANSI C implementation of MurmurHash3_x86_32 (Murmur3A) * with support for progressive processing. * * If you want to understand the MurmurHash algorithm you would be much better * off reading the original source. Just point your browser at: * http://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp * * How does it work? * * We can only process entire 32 bit chunks of input, except for the very end * that may be shorter. * * To handle endianess I simply use a macro that reads a U32 and define * that macro to be a direct read on little endian machines, a read and swap * on big endian machines, or a byte-by-byte read if the endianess is unknown. */ /*----------------------------------------------------------------------------- * Endianess, misalignment capabilities and util macros * * The following 3 macros are defined in this section. The other macros defined * are only needed to help derive these 3. * * MURMUR_READ_UINT32(x) Read a little endian unsigned 32-bit int * MURMUR_UNALIGNED_SAFE Defined if READ_UINT32 works on non-word boundaries * MURMUR_ROTL32(x,r) Rotate x left by r bits */ /* Now find best way we can to READ_UINT32 */ #if (BYTEORDER == 0x1234 || BYTEORDER == 0x12345678) && U32SIZE == 4 /* CPU endian matches murmurhash algorithm, so read 32-bit word directly */ #define MURMUR_READ_UINT32(ptr) (*((U32*)(ptr))) #elif BYTEORDER == 0x4321 || BYTEORDER == 0x87654321 /* TODO: Add additional cases below where a compiler provided bswap32 is available */ #if defined(__GNUC__) && (__GNUC__>4 || (__GNUC__==4 && __GNUC_MINOR__>=3)) #define MURMUR_READ_UINT32(ptr) (__builtin_bswap32(*((U32*)(ptr)))) #else /* Without a known fast bswap32 we're just as well off doing this */ #define MURMUR_READ_UINT32(ptr) (ptr[0]|ptr[1]<<8|ptr[2]<<16|ptr[3]<<24) #define MURMUR_UNALIGNED_SAFE #endif #else /* Unknown endianess so last resort is to read individual bytes */ #define MURMUR_READ_UINT32(ptr) (ptr[0]|ptr[1]<<8|ptr[2]<<16|ptr[3]<<24) /* Since we're not doing word-reads we can skip the messing about with realignment */ #define MURMUR_UNALIGNED_SAFE #endif /* Find best way to ROTL32 */ #if defined(_MSC_VER) #include /* Microsoft put _rotl declaration in here */ #define MURMUR_ROTL32(x,r) _rotl(x,r) #else /* gcc recognises this code and generates a rotate instruction for CPUs with one */ #define MURMUR_ROTL32(x,r) (((U32)x << r) | ((U32)x >> (32 - r))) #endif /*----------------------------------------------------------------------------- * Core murmurhash algorithm macros */ #define MURMUR_C1 (0xcc9e2d51) #define MURMUR_C2 (0x1b873593) #define MURMUR_C3 (0xe6546b64) #define MURMUR_C4 (0x85ebca6b) #define MURMUR_C5 (0xc2b2ae35) /* This is the main processing body of the algorithm. It operates * on each full 32-bits of input. */ #define MURMUR_DOBLOCK(h1, k1) STMT_START { \ k1 *= MURMUR_C1; \ k1 = MURMUR_ROTL32(k1,15); \ k1 *= MURMUR_C2; \ \ h1 ^= k1; \ h1 = MURMUR_ROTL32(h1,13); \ h1 = h1 * 5 + MURMUR_C3; \ } STMT_END /* Append unaligned bytes to carry, forcing hash churn if we have 4 bytes */ /* cnt=bytes to process, h1=name of h1 var, c=carry, n=bytes in c, ptr/len=payload */ #define MURMUR_DOBYTES(cnt, h1, c, n, ptr, len) STMT_START { \ int MURMUR_DOBYTES_i = cnt; \ while(MURMUR_DOBYTES_i--) { \ c = c>>8 | *ptr++<<24; \ n++; len--; \ if(n==4) { \ MURMUR_DOBLOCK(h1, c); \ n = 0; \ } \ } \ } STMT_END /* process the last 1..3 bytes and finalize */ #define MURMUR_FINALIZE(hash, PeRlHaSh_len, PeRlHaSh_k1, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_total_length) STMT_START { \ /* Advance over whole 32-bit chunks, possibly leaving 1..3 bytes */\ PeRlHaSh_len -= PeRlHaSh_len/4*4; \ \ /* Append any remaining bytes into carry */ \ MURMUR_DOBYTES(PeRlHaSh_len, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_len); \ \ if (PeRlHaSh_bytes_in_carry) { \ PeRlHaSh_k1 = PeRlHaSh_carry >> ( 4 - PeRlHaSh_bytes_in_carry ) * 8; \ PeRlHaSh_k1 *= MURMUR_C1; \ PeRlHaSh_k1 = MURMUR_ROTL32(PeRlHaSh_k1,15); \ PeRlHaSh_k1 *= MURMUR_C2; \ PeRlHaSh_h1 ^= PeRlHaSh_k1; \ } \ PeRlHaSh_h1 ^= PeRlHaSh_total_length; \ \ /* fmix */ \ PeRlHaSh_h1 ^= PeRlHaSh_h1 >> 16; \ PeRlHaSh_h1 *= MURMUR_C4; \ PeRlHaSh_h1 ^= PeRlHaSh_h1 >> 13; \ PeRlHaSh_h1 *= MURMUR_C5; \ PeRlHaSh_h1 ^= PeRlHaSh_h1 >> 16; \ (hash)= PeRlHaSh_h1; \ } STMT_END /* now we create the hash function */ #if defined(UNALIGNED_SAFE) #define PERL_HASH(hash,str,len) STMT_START { \ const char * const s_PeRlHaSh_tmp = (str); \ const unsigned char *PeRlHaSh_ptr = (const unsigned char *)s_PeRlHaSh_tmp; \ I32 PeRlHaSh_len = len; \ \ U32 PeRlHaSh_h1 = PERL_HASH_SEED_U32; \ U32 PeRlHaSh_k1; \ U32 PeRlHaSh_carry = 0; \ \ const unsigned char *PeRlHaSh_end; \ \ int PeRlHaSh_bytes_in_carry = 0; /* bytes in carry */ \ I32 PeRlHaSh_total_length= PeRlHaSh_len; \ \ /* This CPU handles unaligned word access */ \ /* Process 32-bit chunks */ \ PeRlHaSh_end = PeRlHaSh_ptr + PeRlHaSh_len/4*4; \ for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \ PeRlHaSh_k1 = MURMUR_READ_UINT32(PeRlHaSh_ptr); \ MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \ } \ \ MURMUR_FINALIZE(hash, PeRlHaSh_len, PeRlHaSh_k1, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_total_length);\ } STMT_END #else #define PERL_HASH(hash,str,len) STMT_START { \ const char * const s_PeRlHaSh_tmp = (str); \ const unsigned char *PeRlHaSh_ptr = (const unsigned char *)s_PeRlHaSh_tmp; \ I32 PeRlHaSh_len = len; \ \ U32 PeRlHaSh_h1 = PERL_HASH_SEED_U32; \ U32 PeRlHaSh_k1; \ U32 PeRlHaSh_carry = 0; \ \ const unsigned char *PeRlHaSh_end; \ \ int PeRlHaSh_bytes_in_carry = 0; /* bytes in carry */ \ I32 PeRlHaSh_total_length= PeRlHaSh_len; \ \ /* This CPU does not handle unaligned word access */ \ \ /* Consume enough so that the next data byte is word aligned */ \ int PeRlHaSh_i = -(long)PeRlHaSh_ptr & 3; \ if(PeRlHaSh_i && PeRlHaSh_i <= PeRlHaSh_len) { \ MURMUR_DOBYTES(PeRlHaSh_i, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_len);\ } \ \ /* We're now aligned. Process in aligned blocks. Specialise for each possible carry count */ \ PeRlHaSh_end = PeRlHaSh_ptr + PeRlHaSh_len/4*4; \ switch(PeRlHaSh_bytes_in_carry) { /* how many bytes in carry */ \ case 0: /* c=[----] w=[3210] b=[3210]=w c'=[----] */ \ for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \ PeRlHaSh_k1 = MURMUR_READ_UINT32(PeRlHaSh_ptr); \ MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \ } \ break; \ case 1: /* c=[0---] w=[4321] b=[3210]=c>>24|w<<8 c'=[4---] */ \ for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \ PeRlHaSh_k1 = PeRlHaSh_carry>>24; \ PeRlHaSh_carry = MURMUR_READ_UINT32(PeRlHaSh_ptr); \ PeRlHaSh_k1 |= PeRlHaSh_carry<<8; \ MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \ } \ break; \ case 2: /* c=[10--] w=[5432] b=[3210]=c>>16|w<<16 c'=[54--] */ \ for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \ PeRlHaSh_k1 = PeRlHaSh_carry>>16; \ PeRlHaSh_carry = MURMUR_READ_UINT32(PeRlHaSh_ptr); \ PeRlHaSh_k1 |= PeRlHaSh_carry<<16; \ MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \ } \ break; \ case 3: /* c=[210-] w=[6543] b=[3210]=c>>8|w<<24 c'=[654-] */ \ for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \ PeRlHaSh_k1 = PeRlHaSh_carry>>8; \ PeRlHaSh_carry = MURMUR_READ_UINT32(PeRlHaSh_ptr); \ PeRlHaSh_k1 |= PeRlHaSh_carry<<24; \ MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \ } \ } \ \ MURMUR_FINALIZE(hash, PeRlHaSh_len, PeRlHaSh_k1, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_total_length);\ } STMT_END #endif #elif defined(PERL_HASH_FUNC_DJB2) #define PERL_HASH_FUNC "DJB2" #define PERL_HASH_SEED_BYTES 4 #define PERL_HASH(hash,str,len) \ STMT_START { \ const char * const s_PeRlHaSh_tmp = (str); \ const unsigned char *s_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp; \ I32 i_PeRlHaSh = len; \ U32 hash_PeRlHaSh = PERL_HASH_SEED_U32 ^ len; \ while (i_PeRlHaSh--) { \ hash_PeRlHaSh = ((hash_PeRlHaSh << 5) + hash_PeRlHaSh) + *s_PeRlHaSh++; \ } \ (hash) = hash_PeRlHaSh;\ } STMT_END #elif defined(PERL_HASH_FUNC_SDBM) #define PERL_HASH_FUNC "SDBM" #define PERL_HASH_SEED_BYTES 4 #define PERL_HASH(hash,str,len) \ STMT_START { \ const char * const s_PeRlHaSh_tmp = (str); \ const unsigned char *s_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp; \ I32 i_PeRlHaSh = len; \ U32 hash_PeRlHaSh = PERL_HASH_SEED_U32 ^ len; \ while (i_PeRlHaSh--) { \ hash_PeRlHaSh = (hash_PeRlHaSh << 6) + (hash_PeRlHaSh << 16) - hash_PeRlHaSh + *s_PeRlHaSh++; \ } \ (hash) = hash_PeRlHaSh;\ } STMT_END #elif defined(PERL_HASH_FUNC_ONE_AT_A_TIME) || defined(PERL_HASH_FUNC_ONE_AT_A_TIME_OLD) #define PERL_HASH_SEED_BYTES 4 #ifdef PERL_HASH_FUNC_ONE_AT_A_TIME /* new version, add the length to the seed so that adding characters changes the "seed" being used. */ #define PERL_HASH_FUNC "ONE_AT_A_TIME" #define MIX_SEED_AND_LEN(seed,len) (seed + len) #else /* old version, just use the seed. - not recommended */ #define PERL_HASH_FUNC "ONE_AT_A_TIME_OLD" #define MIX_SEED_AND_LEN(seed,len) (seed) #endif /* FYI: This is the "One-at-a-Time" algorithm by Bob Jenkins * from requirements by Colin Plumb. * (http://burtleburtle.net/bob/hash/doobs.html) */ #define PERL_HASH(hash,str,len) \ STMT_START { \ const char * const s_PeRlHaSh_tmp = (str); \ const unsigned char *s_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp; \ const unsigned char *end_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp + (len); \ U32 hash_PeRlHaSh = MIX_SEED_AND_LEN(PERL_HASH_SEED_U32, len); \ while (s_PeRlHaSh < end_PeRlHaSh) { \ hash_PeRlHaSh += (U8)*s_PeRlHaSh++; \ hash_PeRlHaSh += (hash_PeRlHaSh << 10); \ hash_PeRlHaSh ^= (hash_PeRlHaSh >> 6); \ } \ hash_PeRlHaSh += (hash_PeRlHaSh << 3); \ hash_PeRlHaSh ^= (hash_PeRlHaSh >> 11); \ (hash) = (hash_PeRlHaSh + (hash_PeRlHaSh << 15)); \ } STMT_END #endif #ifndef PERL_HASH #error "No hash function defined!" #endif /* =head1 Hash Manipulation Functions =for apidoc AmU||HEf_SVKEY This flag, used in the length slot of hash entries and magic structures, specifies the structure contains an C pointer where a C pointer is to be expected. (For information only--not to be used). =head1 Handy Values =for apidoc AmU||Nullhv Null HV pointer. (deprecated - use C<(HV *)NULL> instead) =head1 Hash Manipulation Functions =for apidoc Am|char*|HvNAME|HV* stash Returns the package name of a stash, or NULL if C isn't a stash. See C, C. =for apidoc Am|STRLEN|HvNAMELEN|HV *stash Returns the length of the stash's name. =for apidoc Am|unsigned char|HvNAMEUTF8|HV *stash Returns true if the name is in UTF8 encoding. =for apidoc Am|char*|HvENAME|HV* stash Returns the effective name of a stash, or NULL if there is none. The effective name represents a location in the symbol table where this stash resides. It is updated automatically when packages are aliased or deleted. A stash that is no longer in the symbol table has no effective name. This name is preferable to C for use in MRO linearisations and isa caches. =for apidoc Am|STRLEN|HvENAMELEN|HV *stash Returns the length of the stash's effective name. =for apidoc Am|unsigned char|HvENAMEUTF8|HV *stash Returns true if the effective name is in UTF8 encoding. =for apidoc Am|void*|HeKEY|HE* he Returns the actual pointer stored in the key slot of the hash entry. The pointer may be either C or C, depending on the value of C. Can be assigned to. The C or C macros are usually preferable for finding the value of a key. =for apidoc Am|STRLEN|HeKLEN|HE* he If this is negative, and amounts to C, it indicates the entry holds an C key. Otherwise, holds the actual length of the key. Can be assigned to. The C macro is usually preferable for finding key lengths. =for apidoc Am|SV*|HeVAL|HE* he Returns the value slot (type C) stored in the hash entry. Can be assigned to. SV *foo= HeVAL(hv); HeVAL(hv)= sv; =for apidoc Am|U32|HeHASH|HE* he Returns the computed hash stored in the hash entry. =for apidoc Am|char*|HePV|HE* he|STRLEN len Returns the key slot of the hash entry as a C value, doing any necessary dereferencing of possibly C keys. The length of the string is placed in C (this is a macro, so do I use C<&len>). If you do not care about what the length of the key is, you may use the global variable C, though this is rather less efficient than using a local variable. Remember though, that hash keys in perl are free to contain embedded nulls, so using C or similar is not a good way to find the length of hash keys. This is very similar to the C macro described elsewhere in this document. See also C. If you are using C to get values to pass to C to create a new SV, you should consider using C as it is more efficient. =for apidoc Am|char*|HeUTF8|HE* he Returns whether the C value returned by C is encoded in UTF-8, doing any necessary dereferencing of possibly C keys. The value returned will be 0 or non-0, not necessarily 1 (or even a value with any low bits set), so B blindly assign this to a C variable, as C may be a typedef for C. =for apidoc Am|SV*|HeSVKEY|HE* he Returns the key as an C, or C if the hash entry does not contain an C key. =for apidoc Am|SV*|HeSVKEY_force|HE* he Returns the key as an C. Will create and return a temporary mortal C if the hash entry contains only a C key. =for apidoc Am|SV*|HeSVKEY_set|HE* he|SV* sv Sets the key to a given C, taking care to set the appropriate flags to indicate the presence of an C key, and returns the same C. =cut */ /* these hash entry flags ride on hent_klen (for use only in magic/tied HVs) */ #define HEf_SVKEY -2 /* hent_key is an SV* */ #ifndef PERL_CORE # define Nullhv Null(HV*) #endif #define HvARRAY(hv) ((hv)->sv_u.svu_hash) #define HvFILL(hv) Perl_hv_fill(aTHX_ (const HV *)(hv)) #define HvMAX(hv) ((XPVHV*) SvANY(hv))->xhv_max /* This quite intentionally does no flag checking first. That's your responsibility. */ #define HvAUX(hv) ((struct xpvhv_aux*)&(HvARRAY(hv)[HvMAX(hv)+1])) #define HvRITER(hv) (*Perl_hv_riter_p(aTHX_ MUTABLE_HV(hv))) #define HvEITER(hv) (*Perl_hv_eiter_p(aTHX_ MUTABLE_HV(hv))) #define HvRITER_set(hv,r) Perl_hv_riter_set(aTHX_ MUTABLE_HV(hv), r) #define HvEITER_set(hv,e) Perl_hv_eiter_set(aTHX_ MUTABLE_HV(hv), e) #define HvRITER_get(hv) (SvOOK(hv) ? HvAUX(hv)->xhv_riter : -1) #define HvEITER_get(hv) (SvOOK(hv) ? HvAUX(hv)->xhv_eiter : NULL) #define HvNAME(hv) HvNAME_get(hv) #define HvNAMELEN(hv) HvNAMELEN_get(hv) #define HvENAME(hv) HvENAME_get(hv) #define HvENAMELEN(hv) HvENAMELEN_get(hv) /* Checking that hv is a valid package stash is the caller's responsibility */ #define HvMROMETA(hv) (HvAUX(hv)->xhv_mro_meta \ ? HvAUX(hv)->xhv_mro_meta \ : Perl_mro_meta_init(aTHX_ hv)) #define HvNAME_HEK_NN(hv) \ ( \ HvAUX(hv)->xhv_name_count \ ? *HvAUX(hv)->xhv_name_u.xhvnameu_names \ : HvAUX(hv)->xhv_name_u.xhvnameu_name \ ) /* This macro may go away without notice. */ #define HvNAME_HEK(hv) \ (SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name ? HvNAME_HEK_NN(hv) : NULL) #define HvNAME_get(hv) \ ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvNAME_HEK_NN(hv)) \ ? HEK_KEY(HvNAME_HEK_NN(hv)) : NULL) #define HvNAMELEN_get(hv) \ ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvNAME_HEK_NN(hv)) \ ? HEK_LEN(HvNAME_HEK_NN(hv)) : 0) #define HvNAMEUTF8(hv) \ ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvNAME_HEK_NN(hv)) \ ? HEK_UTF8(HvNAME_HEK_NN(hv)) : 0) #define HvENAME_HEK_NN(hv) \ ( \ HvAUX(hv)->xhv_name_count > 0 ? HvAUX(hv)->xhv_name_u.xhvnameu_names[0] : \ HvAUX(hv)->xhv_name_count < -1 ? HvAUX(hv)->xhv_name_u.xhvnameu_names[1] : \ HvAUX(hv)->xhv_name_count == -1 ? NULL : \ HvAUX(hv)->xhv_name_u.xhvnameu_name \ ) #define HvENAME_HEK(hv) \ (SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name ? HvENAME_HEK_NN(hv) : NULL) #define HvENAME_get(hv) \ ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvAUX(hv)->xhv_name_count != -1) \ ? HEK_KEY(HvENAME_HEK_NN(hv)) : NULL) #define HvENAMELEN_get(hv) \ ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvAUX(hv)->xhv_name_count != -1) \ ? HEK_LEN(HvENAME_HEK_NN(hv)) : 0) #define HvENAMEUTF8(hv) \ ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvAUX(hv)->xhv_name_count != -1) \ ? HEK_UTF8(HvENAME_HEK_NN(hv)) : 0) /* the number of keys (including any placeholders) */ #define XHvTOTALKEYS(xhv) ((xhv)->xhv_keys) /* * HvKEYS gets the number of keys that actually exist(), and is provided * for backwards compatibility with old XS code. The core uses HvUSEDKEYS * (keys, excluding placeholders) and HvTOTALKEYS (including placeholders) */ #define HvKEYS(hv) HvUSEDKEYS(hv) #define HvUSEDKEYS(hv) (HvTOTALKEYS(hv) - HvPLACEHOLDERS_get(hv)) #define HvTOTALKEYS(hv) XHvTOTALKEYS((XPVHV*) SvANY(hv)) #define HvPLACEHOLDERS(hv) (*Perl_hv_placeholders_p(aTHX_ MUTABLE_HV(hv))) #define HvPLACEHOLDERS_get(hv) (SvMAGIC(hv) ? Perl_hv_placeholders_get(aTHX_ (const HV *)hv) : 0) #define HvPLACEHOLDERS_set(hv,p) Perl_hv_placeholders_set(aTHX_ MUTABLE_HV(hv), p) #define HvSHAREKEYS(hv) (SvFLAGS(hv) & SVphv_SHAREKEYS) #define HvSHAREKEYS_on(hv) (SvFLAGS(hv) |= SVphv_SHAREKEYS) #define HvSHAREKEYS_off(hv) (SvFLAGS(hv) &= ~SVphv_SHAREKEYS) /* This is an optimisation flag. It won't be set if all hash keys have a 0 * flag. Currently the only flags relate to utf8. * Hence it won't be set if all keys are 8 bit only. It will be set if any key * is utf8 (including 8 bit keys that were entered as utf8, and need upgrading * when retrieved during iteration. It may still be set when there are no longer * any utf8 keys. * See HVhek_ENABLEHVKFLAGS for the trigger. */ #define HvHASKFLAGS(hv) (SvFLAGS(hv) & SVphv_HASKFLAGS) #define HvHASKFLAGS_on(hv) (SvFLAGS(hv) |= SVphv_HASKFLAGS) #define HvHASKFLAGS_off(hv) (SvFLAGS(hv) &= ~SVphv_HASKFLAGS) #define HvLAZYDEL(hv) (SvFLAGS(hv) & SVphv_LAZYDEL) #define HvLAZYDEL_on(hv) (SvFLAGS(hv) |= SVphv_LAZYDEL) #define HvLAZYDEL_off(hv) (SvFLAGS(hv) &= ~SVphv_LAZYDEL) #ifndef PERL_CORE # define Nullhe Null(HE*) #endif #define HeNEXT(he) (he)->hent_next #define HeKEY_hek(he) (he)->hent_hek #define HeKEY(he) HEK_KEY(HeKEY_hek(he)) #define HeKEY_sv(he) (*(SV**)HeKEY(he)) #define HeKLEN(he) HEK_LEN(HeKEY_hek(he)) #define HeKUTF8(he) HEK_UTF8(HeKEY_hek(he)) #define HeKWASUTF8(he) HEK_WASUTF8(HeKEY_hek(he)) #define HeKLEN_UTF8(he) (HeKUTF8(he) ? -HeKLEN(he) : HeKLEN(he)) #define HeKFLAGS(he) HEK_FLAGS(HeKEY_hek(he)) #define HeVAL(he) (he)->he_valu.hent_val #define HeHASH(he) HEK_HASH(HeKEY_hek(he)) #define HePV(he,lp) ((HeKLEN(he) == HEf_SVKEY) ? \ SvPV(HeKEY_sv(he),lp) : \ ((lp = HeKLEN(he)), HeKEY(he))) #define HeUTF8(he) ((HeKLEN(he) == HEf_SVKEY) ? \ SvUTF8(HeKEY_sv(he)) : \ (U32)HeKUTF8(he)) #define HeSVKEY(he) ((HeKEY(he) && \ HeKLEN(he) == HEf_SVKEY) ? \ HeKEY_sv(he) : NULL) #define HeSVKEY_force(he) (HeKEY(he) ? \ ((HeKLEN(he) == HEf_SVKEY) ? \ HeKEY_sv(he) : \ newSVpvn_flags(HeKEY(he), \ HeKLEN(he), SVs_TEMP)) : \ &PL_sv_undef) #define HeSVKEY_set(he,sv) ((HeKLEN(he) = HEf_SVKEY), (HeKEY_sv(he) = sv)) #ifndef PERL_CORE # define Nullhek Null(HEK*) #endif #define HEK_BASESIZE STRUCT_OFFSET(HEK, hek_key[0]) #define HEK_HASH(hek) (hek)->hek_hash #define HEK_LEN(hek) (hek)->hek_len #define HEK_KEY(hek) (hek)->hek_key #define HEK_FLAGS(hek) (*((unsigned char *)(HEK_KEY(hek))+HEK_LEN(hek)+1)) #define HVhek_UTF8 0x01 /* Key is utf8 encoded. */ #define HVhek_WASUTF8 0x02 /* Key is bytes here, but was supplied as utf8. */ #define HVhek_UNSHARED 0x08 /* This key isn't a shared hash key. */ #define HVhek_FREEKEY 0x100 /* Internal flag to say key is malloc()ed. */ #define HVhek_PLACEHOLD 0x200 /* Internal flag to create placeholder. * (may change, but Storable is a core module) */ #define HVhek_KEYCANONICAL 0x400 /* Internal flag - key is in canonical form. If the string is UTF-8, it cannot be converted to bytes. */ #define HVhek_MASK 0xFF #define HVhek_ENABLEHVKFLAGS (HVhek_MASK & ~(HVhek_UNSHARED)) #define HEK_UTF8(hek) (HEK_FLAGS(hek) & HVhek_UTF8) #define HEK_UTF8_on(hek) (HEK_FLAGS(hek) |= HVhek_UTF8) #define HEK_UTF8_off(hek) (HEK_FLAGS(hek) &= ~HVhek_UTF8) #define HEK_WASUTF8(hek) (HEK_FLAGS(hek) & HVhek_WASUTF8) #define HEK_WASUTF8_on(hek) (HEK_FLAGS(hek) |= HVhek_WASUTF8) #define HEK_WASUTF8_off(hek) (HEK_FLAGS(hek) &= ~HVhek_WASUTF8) /* calculate HV array allocation */ #ifndef PERL_USE_LARGE_HV_ALLOC /* Default to allocating the correct size - default to assuming that malloc() is not broken and is efficient at allocating blocks sized at powers-of-two. */ # define PERL_HV_ARRAY_ALLOC_BYTES(size) ((size) * sizeof(HE*)) #else # define MALLOC_OVERHEAD 16 # define PERL_HV_ARRAY_ALLOC_BYTES(size) \ (((size) < 64) \ ? (size) * sizeof(HE*) \ : (size) * sizeof(HE*) * 2 - MALLOC_OVERHEAD) #endif /* Flags for hv_iternext_flags. */ #define HV_ITERNEXT_WANTPLACEHOLDERS 0x01 /* Don't skip placeholders. */ #define hv_iternext(hv) hv_iternext_flags(hv, 0) #define hv_magic(hv, gv, how) sv_magic(MUTABLE_SV(hv), MUTABLE_SV(gv), how, NULL, 0) #define hv_undef(hv) Perl_hv_undef_flags(aTHX_ hv, 0) #define Perl_sharepvn(pv, len, hash) HEK_KEY(share_hek(pv, len, hash)) #define sharepvn(pv, len, hash) Perl_sharepvn(pv, len, hash) #define share_hek_hek(hek) \ (++(((struct shared_he *)(((char *)hek) \ - STRUCT_OFFSET(struct shared_he, \ shared_he_hek))) \ ->shared_he_he.he_valu.hent_refcount), \ hek) #define hv_store_ent(hv, keysv, val, hash) \ ((HE *) hv_common((hv), (keysv), NULL, 0, 0, HV_FETCH_ISSTORE, \ (val), (hash))) #define hv_exists_ent(hv, keysv, hash) \ (hv_common((hv), (keysv), NULL, 0, 0, HV_FETCH_ISEXISTS, 0, (hash)) \ ? TRUE : FALSE) #define hv_fetch_ent(hv, keysv, lval, hash) \ ((HE *) hv_common((hv), (keysv), NULL, 0, 0, \ ((lval) ? HV_FETCH_LVALUE : 0), NULL, (hash))) #define hv_delete_ent(hv, key, flags, hash) \ (MUTABLE_SV(hv_common((hv), (key), NULL, 0, 0, (flags) | HV_DELETE, \ NULL, (hash)))) #define hv_store_flags(hv, key, klen, val, hash, flags) \ ((SV**) hv_common((hv), NULL, (key), (klen), (flags), \ (HV_FETCH_ISSTORE|HV_FETCH_JUST_SV), (val), \ (hash))) #define hv_store(hv, key, klen, val, hash) \ ((SV**) hv_common_key_len((hv), (key), (klen), \ (HV_FETCH_ISSTORE|HV_FETCH_JUST_SV), \ (val), (hash))) #define hv_exists(hv, key, klen) \ (hv_common_key_len((hv), (key), (klen), HV_FETCH_ISEXISTS, NULL, 0) \ ? TRUE : FALSE) #define hv_fetch(hv, key, klen, lval) \ ((SV**) hv_common_key_len((hv), (key), (klen), (lval) \ ? (HV_FETCH_JUST_SV | HV_FETCH_LVALUE) \ : HV_FETCH_JUST_SV, NULL, 0)) #define hv_delete(hv, key, klen, flags) \ (MUTABLE_SV(hv_common_key_len((hv), (key), (klen), \ (flags) | HV_DELETE, NULL, 0))) /* This refcounted he structure is used for storing the hints used for lexical pragmas. Without threads, it's basically struct he + refcount. With threads, life gets more complex as the structure needs to be shared between threads (because it hangs from OPs, which are shared), hence the alternate definition and mutex. */ struct refcounted_he; /* flags for the refcounted_he API */ #define REFCOUNTED_HE_KEY_UTF8 0x00000001 #ifdef PERL_CORE # define REFCOUNTED_HE_EXISTS 0x00000002 #endif #ifdef PERL_CORE /* Gosh. This really isn't a good name any longer. */ struct refcounted_he { struct refcounted_he *refcounted_he_next; /* next entry in chain */ #ifdef USE_ITHREADS U32 refcounted_he_hash; U32 refcounted_he_keylen; #else HEK *refcounted_he_hek; /* hint key */ #endif union { IV refcounted_he_u_iv; UV refcounted_he_u_uv; STRLEN refcounted_he_u_len; void *refcounted_he_u_ptr; /* Might be useful in future */ } refcounted_he_val; U32 refcounted_he_refcnt; /* reference count */ /* First byte is flags. Then NUL-terminated value. Then for ithreads, non-NUL terminated key. */ char refcounted_he_data[1]; }; /* =for apidoc m|SV *|refcounted_he_fetch_pvs|const struct refcounted_he *chain|const char *key|U32 flags Like L, but takes a literal string instead of a string/length pair, and no precomputed hash. =cut */ #define refcounted_he_fetch_pvs(chain, key, flags) \ Perl_refcounted_he_fetch_pvn(aTHX_ chain, STR_WITH_LEN(key), 0, flags) /* =for apidoc m|struct refcounted_he *|refcounted_he_new_pvs|struct refcounted_he *parent|const char *key|SV *value|U32 flags Like L, but takes a literal string instead of a string/length pair, and no precomputed hash. =cut */ #define refcounted_he_new_pvs(parent, key, value, flags) \ Perl_refcounted_he_new_pvn(aTHX_ parent, STR_WITH_LEN(key), 0, value, flags) /* Flag bits are HVhek_UTF8, HVhek_WASUTF8, then */ #define HVrhek_undef 0x00 /* Value is undef. */ #define HVrhek_delete 0x10 /* Value is placeholder - signifies delete. */ #define HVrhek_IV 0x20 /* Value is IV. */ #define HVrhek_UV 0x30 /* Value is UV. */ #define HVrhek_PV 0x40 /* Value is a (byte) string. */ #define HVrhek_PV_UTF8 0x50 /* Value is a (utf8) string. */ /* Two spare. As these have to live in the optree, you can't store anything interpreter specific, such as SVs. :-( */ #define HVrhek_typemask 0x70 #ifdef USE_ITHREADS /* A big expression to find the key offset */ #define REF_HE_KEY(chain) \ ((((chain->refcounted_he_data[0] & 0x60) == 0x40) \ ? chain->refcounted_he_val.refcounted_he_u_len + 1 : 0) \ + 1 + chain->refcounted_he_data) #endif # ifdef USE_ITHREADS # define HINTS_REFCNT_LOCK MUTEX_LOCK(&PL_hints_mutex) # define HINTS_REFCNT_UNLOCK MUTEX_UNLOCK(&PL_hints_mutex) # else # define HINTS_REFCNT_LOCK NOOP # define HINTS_REFCNT_UNLOCK NOOP # endif #endif #ifdef USE_ITHREADS # define HINTS_REFCNT_INIT MUTEX_INIT(&PL_hints_mutex) # define HINTS_REFCNT_TERM MUTEX_DESTROY(&PL_hints_mutex) #else # define HINTS_REFCNT_INIT NOOP # define HINTS_REFCNT_TERM NOOP #endif /* Hash actions * Passed in PERL_MAGIC_uvar calls */ #define HV_DISABLE_UVAR_XKEY 0x01 /* We need to ensure that these don't clash with G_DISCARD, which is 2, as it is documented as being passed to hv_delete(). */ #define HV_FETCH_ISSTORE 0x04 #define HV_FETCH_ISEXISTS 0x08 #define HV_FETCH_LVALUE 0x10 #define HV_FETCH_JUST_SV 0x20 #define HV_DELETE 0x40 #define HV_FETCH_EMPTY_HE 0x80 /* Leave HeVAL null. */ /* Must not conflict with HVhek_UTF8 */ #define HV_NAME_SETALL 0x02 /* =for apidoc newHV Creates a new HV. The reference count is set to 1. =cut */ #define newHV() MUTABLE_HV(newSV_type(SVt_PVHV)) /* * Local variables: * c-indentation-style: bsd * c-basic-offset: 4 * indent-tabs-mode: nil * End: * * ex: set ts=8 sts=4 sw=4 et: */