/* vmem.h * * (c) 1999 Microsoft Corporation. All rights reserved. * Portions (c) 1999 ActiveState Tool Corp, http://www.ActiveState.com/ * * You may distribute under the terms of either the GNU General Public * License or the Artistic License, as specified in the README file. * * Options: * * Defining _USE_MSVCRT_MEM_ALLOC will cause all memory allocations * to be forwarded to MSVCRT.DLL. Defining _USE_LINKED_LIST as well will * track all allocations in a doubly linked list, so that the host can * free all memory allocated when it goes away. * If _USE_MSVCRT_MEM_ALLOC is not defined then Knuth's boundary tag algorithm * is used; defining _USE_BUDDY_BLOCKS will use Knuth's algorithm R * (Buddy system reservation) * */ #ifndef ___VMEM_H_INC___ #define ___VMEM_H_INC___ #ifndef UNDER_CE #define _USE_MSVCRT_MEM_ALLOC #endif #define _USE_LINKED_LIST // #define _USE_BUDDY_BLOCKS // #define _DEBUG_MEM #ifdef _DEBUG_MEM #define ASSERT(f) if(!(f)) DebugBreak(); inline void MEMODS(char *str) { OutputDebugString(str); OutputDebugString("\n"); } inline void MEMODSlx(char *str, long x) { char szBuffer[512]; sprintf(szBuffer, "%s %lx\n", str, x); OutputDebugString(szBuffer); } #define WALKHEAP() WalkHeap(0) #define WALKHEAPTRACE() WalkHeap(1) #else #define ASSERT(f) #define MEMODS(x) #define MEMODSlx(x, y) #define WALKHEAP() #define WALKHEAPTRACE() #endif #ifdef _USE_MSVCRT_MEM_ALLOC #ifndef _USE_LINKED_LIST // #define _USE_LINKED_LIST #endif /* * Pass all memory requests throught to msvcrt.dll * optionaly track by using a doubly linked header */ typedef void (*LPFREE)(void *block); typedef void* (*LPMALLOC)(size_t size); typedef void* (*LPREALLOC)(void *block, size_t size); #ifdef _USE_LINKED_LIST class VMem; typedef struct _MemoryBlockHeader* PMEMORY_BLOCK_HEADER; typedef struct _MemoryBlockHeader { PMEMORY_BLOCK_HEADER pNext; PMEMORY_BLOCK_HEADER pPrev; VMem *owner; } MEMORY_BLOCK_HEADER, *PMEMORY_BLOCK_HEADER; #endif class VMem { public: VMem(); ~VMem(); virtual void* Malloc(size_t size); virtual void* Realloc(void* pMem, size_t size); virtual void Free(void* pMem); virtual void GetLock(void); virtual void FreeLock(void); virtual int IsLocked(void); virtual long Release(void); virtual long AddRef(void); inline BOOL CreateOk(void) { return TRUE; }; protected: #ifdef _USE_LINKED_LIST void LinkBlock(PMEMORY_BLOCK_HEADER ptr) { PMEMORY_BLOCK_HEADER next = m_Dummy.pNext; m_Dummy.pNext = ptr; ptr->pPrev = &m_Dummy; ptr->pNext = next; ptr->owner = this; next->pPrev = ptr; } void UnlinkBlock(PMEMORY_BLOCK_HEADER ptr) { PMEMORY_BLOCK_HEADER next = ptr->pNext; PMEMORY_BLOCK_HEADER prev = ptr->pPrev; prev->pNext = next; next->pPrev = prev; } MEMORY_BLOCK_HEADER m_Dummy; #endif long m_lRefCount; // number of current users CRITICAL_SECTION m_cs; // access lock HINSTANCE m_hLib; LPFREE m_pfree; LPMALLOC m_pmalloc; LPREALLOC m_prealloc; }; VMem::VMem() { m_lRefCount = 1; InitializeCriticalSection(&m_cs); #ifdef _USE_LINKED_LIST m_Dummy.pNext = m_Dummy.pPrev = &m_Dummy; m_Dummy.owner = this; #endif m_hLib = LoadLibrary("msvcrt.dll"); if (m_hLib) { m_pfree = (LPFREE)GetProcAddress(m_hLib, "free"); m_pmalloc = (LPMALLOC)GetProcAddress(m_hLib, "malloc"); m_prealloc = (LPREALLOC)GetProcAddress(m_hLib, "realloc"); } } VMem::~VMem(void) { #ifdef _USE_LINKED_LIST while (m_Dummy.pNext != &m_Dummy) { Free(m_Dummy.pNext+1); } #endif if (m_hLib) FreeLibrary(m_hLib); DeleteCriticalSection(&m_cs); } void* VMem::Malloc(size_t size) { #ifdef _USE_LINKED_LIST GetLock(); PMEMORY_BLOCK_HEADER ptr = (PMEMORY_BLOCK_HEADER)m_pmalloc(size+sizeof(MEMORY_BLOCK_HEADER)); if (!ptr) { FreeLock(); return NULL; } LinkBlock(ptr); FreeLock(); return (ptr+1); #else return m_pmalloc(size); #endif } void* VMem::Realloc(void* pMem, size_t size) { #ifdef _USE_LINKED_LIST if (!pMem) return Malloc(size); if (!size) { Free(pMem); return NULL; } GetLock(); PMEMORY_BLOCK_HEADER ptr = (PMEMORY_BLOCK_HEADER)(((char*)pMem)-sizeof(MEMORY_BLOCK_HEADER)); UnlinkBlock(ptr); ptr = (PMEMORY_BLOCK_HEADER)m_prealloc(ptr, size+sizeof(MEMORY_BLOCK_HEADER)); if (!ptr) { FreeLock(); return NULL; } LinkBlock(ptr); FreeLock(); return (ptr+1); #else return m_prealloc(pMem, size); #endif } void VMem::Free(void* pMem) { #ifdef _USE_LINKED_LIST if (pMem) { PMEMORY_BLOCK_HEADER ptr = (PMEMORY_BLOCK_HEADER)(((char*)pMem)-sizeof(MEMORY_BLOCK_HEADER)); if (ptr->owner != this) { if (ptr->owner) { #if 1 dTHX; int *nowhere = NULL; Perl_warn(aTHX_ "Free to wrong pool %p not %p",this,ptr->owner); *nowhere = 0; /* this segfault is deliberate, so you can see the stack trace */ #else ptr->owner->Free(pMem); #endif } return; } GetLock(); UnlinkBlock(ptr); ptr->owner = NULL; m_pfree(ptr); FreeLock(); } #else m_pfree(pMem); #endif } void VMem::GetLock(void) { EnterCriticalSection(&m_cs); } void VMem::FreeLock(void) { LeaveCriticalSection(&m_cs); } int VMem::IsLocked(void) { #if 0 /* XXX TryEnterCriticalSection() is not available in some versions * of Windows 95. Since this code is not used anywhere yet, we * skirt the issue for now. */ BOOL bAccessed = TryEnterCriticalSection(&m_cs); if(bAccessed) { LeaveCriticalSection(&m_cs); } return !bAccessed; #else ASSERT(0); /* alarm bells for when somebody calls this */ return 0; #endif } long VMem::Release(void) { long lCount = InterlockedDecrement(&m_lRefCount); if(!lCount) delete this; return lCount; } long VMem::AddRef(void) { long lCount = InterlockedIncrement(&m_lRefCount); return lCount; } #else /* _USE_MSVCRT_MEM_ALLOC */ /* * Knuth's boundary tag algorithm Vol #1, Page 440. * * Each block in the heap has tag words before and after it, * TAG * block * TAG * The size is stored in these tags as a long word, and includes the 8 bytes * of overhead that the boundary tags consume. Blocks are allocated on long * word boundaries, so the size is always multiples of long words. When the * block is allocated, bit 0, (the tag bit), of the size is set to 1. When * a block is freed, it is merged with adjacent free blocks, and the tag bit * is set to 0. * * A linked list is used to manage the free list. The first two long words of * the block contain double links. These links are only valid when the block * is freed, therefore space needs to be reserved for them. Thus, the minimum * block size (not counting the tags) is 8 bytes. * * Since memory allocation may occur on a single threaded, explict locks are not * provided. * */ const long lAllocStart = 0x00020000; /* start at 128K */ const long minBlockSize = sizeof(void*)*2; const long sizeofTag = sizeof(long); const long blockOverhead = sizeofTag*2; const long minAllocSize = minBlockSize+blockOverhead; #ifdef _USE_BUDDY_BLOCKS const long lSmallBlockSize = 1024; const size_t nListEntries = ((lSmallBlockSize-minAllocSize)/sizeof(long)); inline size_t CalcEntry(size_t size) { ASSERT((size&(sizeof(long)-1)) == 0); return ((size - minAllocSize) / sizeof(long)); } #endif typedef BYTE* PBLOCK; /* pointer to a memory block */ /* * Macros for accessing hidden fields in a memory block: * * SIZE size of this block (tag bit 0 is 1 if block is allocated) * PSIZE size of previous physical block */ #define SIZE(block) (*(ULONG*)(((PBLOCK)(block))-sizeofTag)) #define PSIZE(block) (*(ULONG*)(((PBLOCK)(block))-(blockOverhead))) inline void SetTags(PBLOCK block, long size) { SIZE(block) = size; PSIZE(block+(size&~1)) = size; } /* * Free list pointers * PREV pointer to previous block * NEXT pointer to next block */ #define PREV(block) (*(PBLOCK*)(block)) #define NEXT(block) (*(PBLOCK*)((block)+sizeof(PBLOCK))) inline void SetLink(PBLOCK block, PBLOCK prev, PBLOCK next) { PREV(block) = prev; NEXT(block) = next; } inline void Unlink(PBLOCK p) { PBLOCK next = NEXT(p); PBLOCK prev = PREV(p); NEXT(prev) = next; PREV(next) = prev; } #ifndef _USE_BUDDY_BLOCKS inline void AddToFreeList(PBLOCK block, PBLOCK pInList) { PBLOCK next = NEXT(pInList); NEXT(pInList) = block; SetLink(block, pInList, next); PREV(next) = block; } #endif /* Macro for rounding up to the next sizeof(long) */ #define ROUND_UP(n) (((ULONG)(n)+sizeof(long)-1)&~(sizeof(long)-1)) #define ROUND_UP64K(n) (((ULONG)(n)+0x10000-1)&~(0x10000-1)) #define ROUND_DOWN(n) ((ULONG)(n)&~(sizeof(long)-1)) /* * HeapRec - a list of all non-contiguous heap areas * * Each record in this array contains information about a non-contiguous heap area. */ const int maxHeaps = 32; /* 64 was overkill */ const long lAllocMax = 0x80000000; /* max size of allocation */ #ifdef _USE_BUDDY_BLOCKS typedef struct _FreeListEntry { BYTE Dummy[minAllocSize]; // dummy free block } FREE_LIST_ENTRY, *PFREE_LIST_ENTRY; #endif #ifndef _USE_BUDDY_BLOCKS #define USE_BIGBLOCK_ALLOC #endif /* * performance tuning * Use VirtualAlloc() for blocks bigger than nMaxHeapAllocSize since * Windows 95/98/Me have heap managers that are designed for memory * blocks smaller than four megabytes. */ #ifdef USE_BIGBLOCK_ALLOC const int nMaxHeapAllocSize = (1024*512); /* don't allocate anything larger than this from the heap */ #endif typedef struct _HeapRec { PBLOCK base; /* base of heap area */ ULONG len; /* size of heap area */ #ifdef USE_BIGBLOCK_ALLOC BOOL bBigBlock; /* was allocate using VirtualAlloc */ #endif } HeapRec; class VMem { public: VMem(); ~VMem(); virtual void* Malloc(size_t size); virtual void* Realloc(void* pMem, size_t size); virtual void Free(void* pMem); virtual void GetLock(void); virtual void FreeLock(void); virtual int IsLocked(void); virtual long Release(void); virtual long AddRef(void); inline BOOL CreateOk(void) { #ifdef _USE_BUDDY_BLOCKS return TRUE; #else return m_hHeap != NULL; #endif }; void ReInit(void); protected: void Init(void); int Getmem(size_t size); int HeapAdd(void* ptr, size_t size #ifdef USE_BIGBLOCK_ALLOC , BOOL bBigBlock #endif ); void* Expand(void* block, size_t size); #ifdef _USE_BUDDY_BLOCKS inline PBLOCK GetFreeListLink(int index) { if (index >= nListEntries) index = nListEntries-1; return &m_FreeList[index].Dummy[sizeofTag]; } inline PBLOCK GetOverSizeFreeList(void) { return &m_FreeList[nListEntries-1].Dummy[sizeofTag]; } inline PBLOCK GetEOLFreeList(void) { return &m_FreeList[nListEntries].Dummy[sizeofTag]; } void AddToFreeList(PBLOCK block, size_t size) { PBLOCK pFreeList = GetFreeListLink(CalcEntry(size)); PBLOCK next = NEXT(pFreeList); NEXT(pFreeList) = block; SetLink(block, pFreeList, next); PREV(next) = block; } #endif inline size_t CalcAllocSize(size_t size) { /* * Adjust the real size of the block to be a multiple of sizeof(long), and add * the overhead for the boundary tags. Disallow negative or zero sizes. */ return (size < minBlockSize) ? minAllocSize : (size_t)ROUND_UP(size) + blockOverhead; } #ifdef _USE_BUDDY_BLOCKS FREE_LIST_ENTRY m_FreeList[nListEntries+1]; // free list with dummy end of list entry as well #else HANDLE m_hHeap; // memory heap for this script char m_FreeDummy[minAllocSize]; // dummy free block PBLOCK m_pFreeList; // pointer to first block on free list #endif PBLOCK m_pRover; // roving pointer into the free list HeapRec m_heaps[maxHeaps]; // list of all non-contiguous heap areas int m_nHeaps; // no. of heaps in m_heaps long m_lAllocSize; // current alloc size long m_lRefCount; // number of current users CRITICAL_SECTION m_cs; // access lock #ifdef _DEBUG_MEM void WalkHeap(int complete); void MemoryUsageMessage(char *str, long x, long y, int c); FILE* m_pLog; #endif }; VMem::VMem() { m_lRefCount = 1; #ifndef _USE_BUDDY_BLOCKS BOOL bRet = (NULL != (m_hHeap = HeapCreate(HEAP_NO_SERIALIZE, lAllocStart, /* initial size of heap */ 0))); /* no upper limit on size of heap */ ASSERT(bRet); #endif InitializeCriticalSection(&m_cs); #ifdef _DEBUG_MEM m_pLog = 0; #endif Init(); } VMem::~VMem(void) { #ifndef _USE_BUDDY_BLOCKS ASSERT(HeapValidate(m_hHeap, HEAP_NO_SERIALIZE, NULL)); #endif WALKHEAPTRACE(); DeleteCriticalSection(&m_cs); #ifdef _USE_BUDDY_BLOCKS for(int index = 0; index < m_nHeaps; ++index) { VirtualFree(m_heaps[index].base, 0, MEM_RELEASE); } #else /* !_USE_BUDDY_BLOCKS */ #ifdef USE_BIGBLOCK_ALLOC for(int index = 0; index < m_nHeaps; ++index) { if (m_heaps[index].bBigBlock) { VirtualFree(m_heaps[index].base, 0, MEM_RELEASE); } } #endif BOOL bRet = HeapDestroy(m_hHeap); ASSERT(bRet); #endif /* _USE_BUDDY_BLOCKS */ } void VMem::ReInit(void) { for(int index = 0; index < m_nHeaps; ++index) { #ifdef _USE_BUDDY_BLOCKS VirtualFree(m_heaps[index].base, 0, MEM_RELEASE); #else #ifdef USE_BIGBLOCK_ALLOC if (m_heaps[index].bBigBlock) { VirtualFree(m_heaps[index].base, 0, MEM_RELEASE); } else #endif HeapFree(m_hHeap, HEAP_NO_SERIALIZE, m_heaps[index].base); #endif /* _USE_BUDDY_BLOCKS */ } Init(); } void VMem::Init(void) { #ifdef _USE_BUDDY_BLOCKS PBLOCK pFreeList; /* * Initialize the free list by placing a dummy zero-length block on it. * Set the end of list marker. * Set the number of non-contiguous heaps to zero. * Set the next allocation size. */ for (int index = 0; index < nListEntries; ++index) { pFreeList = GetFreeListLink(index); SIZE(pFreeList) = PSIZE(pFreeList+minAllocSize) = 0; PREV(pFreeList) = NEXT(pFreeList) = pFreeList; } pFreeList = GetEOLFreeList(); SIZE(pFreeList) = PSIZE(pFreeList+minAllocSize) = 0; PREV(pFreeList) = NEXT(pFreeList) = NULL; m_pRover = GetOverSizeFreeList(); #else /* * Initialize the free list by placing a dummy zero-length block on it. * Set the number of non-contiguous heaps to zero. */ m_pFreeList = m_pRover = (PBLOCK)(&m_FreeDummy[sizeofTag]); PSIZE(m_pFreeList+minAllocSize) = SIZE(m_pFreeList) = 0; PREV(m_pFreeList) = NEXT(m_pFreeList) = m_pFreeList; #endif m_nHeaps = 0; m_lAllocSize = lAllocStart; } void* VMem::Malloc(size_t size) { WALKHEAP(); PBLOCK ptr; size_t lsize, rem; /* * Disallow negative or zero sizes. */ size_t realsize = CalcAllocSize(size); if((int)realsize < minAllocSize || size == 0) return NULL; #ifdef _USE_BUDDY_BLOCKS /* * Check the free list of small blocks if this is free use it * Otherwise check the rover if it has no blocks then * Scan the free list entries use the first free block * split the block if needed, stop at end of list marker */ { int index = CalcEntry(realsize); if (index < nListEntries-1) { ptr = GetFreeListLink(index); lsize = SIZE(ptr); if (lsize >= realsize) { rem = lsize - realsize; if(rem < minAllocSize) { /* Unlink the block from the free list. */ Unlink(ptr); } else { /* * split the block * The remainder is big enough to split off into a new block. * Use the end of the block, resize the beginning of the block * no need to change the free list. */ SetTags(ptr, rem); ptr += SIZE(ptr); lsize = realsize; } SetTags(ptr, lsize | 1); return ptr; } ptr = m_pRover; lsize = SIZE(ptr); if (lsize >= realsize) { rem = lsize - realsize; if(rem < minAllocSize) { /* Unlink the block from the free list. */ Unlink(ptr); } else { /* * split the block * The remainder is big enough to split off into a new block. * Use the end of the block, resize the beginning of the block * no need to change the free list. */ SetTags(ptr, rem); ptr += SIZE(ptr); lsize = realsize; } SetTags(ptr, lsize | 1); return ptr; } ptr = GetFreeListLink(index+1); while (NEXT(ptr)) { lsize = SIZE(ptr); if (lsize >= realsize) { size_t rem = lsize - realsize; if(rem < minAllocSize) { /* Unlink the block from the free list. */ Unlink(ptr); } else { /* * split the block * The remainder is big enough to split off into a new block. * Use the end of the block, resize the beginning of the block * no need to change the free list. */ SetTags(ptr, rem); ptr += SIZE(ptr); lsize = realsize; } SetTags(ptr, lsize | 1); return ptr; } ptr += sizeof(FREE_LIST_ENTRY); } } } #endif /* * Start searching the free list at the rover. If we arrive back at rover without * finding anything, allocate some memory from the heap and try again. */ ptr = m_pRover; /* start searching at rover */ int loops = 2; /* allow two times through the loop */ for(;;) { lsize = SIZE(ptr); ASSERT((lsize&1)==0); /* is block big enough? */ if(lsize >= realsize) { /* if the remainder is too small, don't bother splitting the block. */ rem = lsize - realsize; if(rem < minAllocSize) { if(m_pRover == ptr) m_pRover = NEXT(ptr); /* Unlink the block from the free list. */ Unlink(ptr); } else { /* * split the block * The remainder is big enough to split off into a new block. * Use the end of the block, resize the beginning of the block * no need to change the free list. */ SetTags(ptr, rem); ptr += SIZE(ptr); lsize = realsize; } /* Set the boundary tags to mark it as allocated. */ SetTags(ptr, lsize | 1); return ((void *)ptr); } /* * This block was unsuitable. If we've gone through this list once already without * finding anything, allocate some new memory from the heap and try again. */ ptr = NEXT(ptr); if(ptr == m_pRover) { if(!(loops-- && Getmem(realsize))) { return NULL; } ptr = m_pRover; } } } void* VMem::Realloc(void* block, size_t size) { WALKHEAP(); /* if size is zero, free the block. */ if(size == 0) { Free(block); return (NULL); } /* if block pointer is NULL, do a Malloc(). */ if(block == NULL) return Malloc(size); /* * Grow or shrink the block in place. * if the block grows then the next block will be used if free */ if(Expand(block, size) != NULL) return block; size_t realsize = CalcAllocSize(size); if((int)realsize < minAllocSize) return NULL; /* * see if the previous block is free, and is it big enough to cover the new size * if merged with the current block. */ PBLOCK ptr = (PBLOCK)block; size_t cursize = SIZE(ptr) & ~1; size_t psize = PSIZE(ptr); if((psize&1) == 0 && (psize + cursize) >= realsize) { PBLOCK prev = ptr - psize; if(m_pRover == prev) m_pRover = NEXT(prev); /* Unlink the next block from the free list. */ Unlink(prev); /* Copy contents of old block to new location, make it the current block. */ memmove(prev, ptr, cursize); cursize += psize; /* combine sizes */ ptr = prev; size_t rem = cursize - realsize; if(rem >= minAllocSize) { /* * The remainder is big enough to be a new block. Set boundary * tags for the resized block and the new block. */ prev = ptr + realsize; /* * add the new block to the free list. * next block cannot be free */ SetTags(prev, rem); #ifdef _USE_BUDDY_BLOCKS AddToFreeList(prev, rem); #else AddToFreeList(prev, m_pFreeList); #endif cursize = realsize; } /* Set the boundary tags to mark it as allocated. */ SetTags(ptr, cursize | 1); return ((void *)ptr); } /* Allocate a new block, copy the old to the new, and free the old. */ if((ptr = (PBLOCK)Malloc(size)) != NULL) { memmove(ptr, block, cursize-blockOverhead); Free(block); } return ((void *)ptr); } void VMem::Free(void* p) { WALKHEAP(); /* Ignore null pointer. */ if(p == NULL) return; PBLOCK ptr = (PBLOCK)p; /* Check for attempt to free a block that's already free. */ size_t size = SIZE(ptr); if((size&1) == 0) { MEMODSlx("Attempt to free previously freed block", (long)p); return; } size &= ~1; /* remove allocated tag */ /* if previous block is free, add this block to it. */ #ifndef _USE_BUDDY_BLOCKS int linked = FALSE; #endif size_t psize = PSIZE(ptr); if((psize&1) == 0) { ptr -= psize; /* point to previous block */ size += psize; /* merge the sizes of the two blocks */ #ifdef _USE_BUDDY_BLOCKS Unlink(ptr); #else linked = TRUE; /* it's already on the free list */ #endif } /* if the next physical block is free, merge it with this block. */ PBLOCK next = ptr + size; /* point to next physical block */ size_t nsize = SIZE(next); if((nsize&1) == 0) { /* block is free move rover if needed */ if(m_pRover == next) m_pRover = NEXT(next); /* unlink the next block from the free list. */ Unlink(next); /* merge the sizes of this block and the next block. */ size += nsize; } /* Set the boundary tags for the block; */ SetTags(ptr, size); /* Link the block to the head of the free list. */ #ifdef _USE_BUDDY_BLOCKS AddToFreeList(ptr, size); #else if(!linked) { AddToFreeList(ptr, m_pFreeList); } #endif } void VMem::GetLock(void) { EnterCriticalSection(&m_cs); } void VMem::FreeLock(void) { LeaveCriticalSection(&m_cs); } int VMem::IsLocked(void) { #if 0 /* XXX TryEnterCriticalSection() is not available in some versions * of Windows 95. Since this code is not used anywhere yet, we * skirt the issue for now. */ BOOL bAccessed = TryEnterCriticalSection(&m_cs); if(bAccessed) { LeaveCriticalSection(&m_cs); } return !bAccessed; #else ASSERT(0); /* alarm bells for when somebody calls this */ return 0; #endif } long VMem::Release(void) { long lCount = InterlockedDecrement(&m_lRefCount); if(!lCount) delete this; return lCount; } long VMem::AddRef(void) { long lCount = InterlockedIncrement(&m_lRefCount); return lCount; } int VMem::Getmem(size_t requestSize) { /* returns -1 is successful 0 if not */ #ifdef USE_BIGBLOCK_ALLOC BOOL bBigBlock; #endif void *ptr; /* Round up size to next multiple of 64K. */ size_t size = (size_t)ROUND_UP64K(requestSize); /* * if the size requested is smaller than our current allocation size * adjust up */ if(size < (unsigned long)m_lAllocSize) size = m_lAllocSize; /* Update the size to allocate on the next request */ if(m_lAllocSize != lAllocMax) m_lAllocSize <<= 2; #ifndef _USE_BUDDY_BLOCKS if(m_nHeaps != 0 #ifdef USE_BIGBLOCK_ALLOC && !m_heaps[m_nHeaps-1].bBigBlock #endif ) { /* Expand the last allocated heap */ ptr = HeapReAlloc(m_hHeap, HEAP_REALLOC_IN_PLACE_ONLY|HEAP_NO_SERIALIZE, m_heaps[m_nHeaps-1].base, m_heaps[m_nHeaps-1].len + size); if(ptr != 0) { HeapAdd(((char*)ptr) + m_heaps[m_nHeaps-1].len, size #ifdef USE_BIGBLOCK_ALLOC , FALSE #endif ); return -1; } } #endif /* _USE_BUDDY_BLOCKS */ /* * if we didn't expand a block to cover the requested size * allocate a new Heap * the size of this block must include the additional dummy tags at either end * the above ROUND_UP64K may not have added any memory to include this. */ if(size == requestSize) size = (size_t)ROUND_UP64K(requestSize+(blockOverhead)); Restart: #ifdef _USE_BUDDY_BLOCKS ptr = VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE); #else #ifdef USE_BIGBLOCK_ALLOC bBigBlock = FALSE; if (size >= nMaxHeapAllocSize) { bBigBlock = TRUE; ptr = VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE); } else #endif ptr = HeapAlloc(m_hHeap, HEAP_NO_SERIALIZE, size); #endif /* _USE_BUDDY_BLOCKS */ if (!ptr) { /* try to allocate a smaller chunk */ size >>= 1; if(size > requestSize) goto Restart; } if(ptr == 0) { MEMODSlx("HeapAlloc failed on size!!!", size); return 0; } #ifdef _USE_BUDDY_BLOCKS if (HeapAdd(ptr, size)) { VirtualFree(ptr, 0, MEM_RELEASE); return 0; } #else #ifdef USE_BIGBLOCK_ALLOC if (HeapAdd(ptr, size, bBigBlock)) { if (bBigBlock) { VirtualFree(ptr, 0, MEM_RELEASE); } } #else HeapAdd(ptr, size); #endif #endif /* _USE_BUDDY_BLOCKS */ return -1; } int VMem::HeapAdd(void* p, size_t size #ifdef USE_BIGBLOCK_ALLOC , BOOL bBigBlock #endif ) { /* if the block can be succesfully added to the heap, returns 0; otherwise -1. */ int index; /* Check size, then round size down to next long word boundary. */ if(size < minAllocSize) return -1; size = (size_t)ROUND_DOWN(size); PBLOCK ptr = (PBLOCK)p; #ifdef USE_BIGBLOCK_ALLOC if (!bBigBlock) { #endif /* * Search for another heap area that's contiguous with the bottom of this new area. * (It should be extremely unusual to find one that's contiguous with the top). */ for(index = 0; index < m_nHeaps; ++index) { if(ptr == m_heaps[index].base + (int)m_heaps[index].len) { /* * The new block is contiguous with a previously allocated heap area. Add its * length to that of the previous heap. Merge it with the dummy end-of-heap * area marker of the previous heap. */ m_heaps[index].len += size; break; } } #ifdef USE_BIGBLOCK_ALLOC } else { index = m_nHeaps; } #endif if(index == m_nHeaps) { /* The new block is not contiguous, or is BigBlock. Add it to the heap list. */ if(m_nHeaps == maxHeaps) { return -1; /* too many non-contiguous heaps */ } m_heaps[m_nHeaps].base = ptr; m_heaps[m_nHeaps].len = size; #ifdef USE_BIGBLOCK_ALLOC m_heaps[m_nHeaps].bBigBlock = bBigBlock; #endif m_nHeaps++; /* * Reserve the first LONG in the block for the ending boundary tag of a dummy * block at the start of the heap area. */ size -= blockOverhead; ptr += blockOverhead; PSIZE(ptr) = 1; /* mark the dummy previous block as allocated */ } /* * Convert the heap to one large block. Set up its boundary tags, and those of * marker block after it. The marker block before the heap will already have * been set up if this heap is not contiguous with the end of another heap. */ SetTags(ptr, size | 1); PBLOCK next = ptr + size; /* point to dummy end block */ SIZE(next) = 1; /* mark the dummy end block as allocated */ /* * Link the block to the start of the free list by calling free(). * This will merge the block with any adjacent free blocks. */ Free(ptr); return 0; } void* VMem::Expand(void* block, size_t size) { /* * Disallow negative or zero sizes. */ size_t realsize = CalcAllocSize(size); if((int)realsize < minAllocSize || size == 0) return NULL; PBLOCK ptr = (PBLOCK)block; /* if the current size is the same as requested, do nothing. */ size_t cursize = SIZE(ptr) & ~1; if(cursize == realsize) { return block; } /* if the block is being shrunk, convert the remainder of the block into a new free block. */ if(realsize <= cursize) { size_t nextsize = cursize - realsize; /* size of new remainder block */ if(nextsize >= minAllocSize) { /* * Split the block * Set boundary tags for the resized block and the new block. */ SetTags(ptr, realsize | 1); ptr += realsize; /* * add the new block to the free list. * call Free to merge this block with next block if free */ SetTags(ptr, nextsize | 1); Free(ptr); } return block; } PBLOCK next = ptr + cursize; size_t nextsize = SIZE(next); /* Check the next block for consistency.*/ if((nextsize&1) == 0 && (nextsize + cursize) >= realsize) { /* * The next block is free and big enough. Add the part that's needed * to our block, and split the remainder off into a new block. */ if(m_pRover == next) m_pRover = NEXT(next); /* Unlink the next block from the free list. */ Unlink(next); cursize += nextsize; /* combine sizes */ size_t rem = cursize - realsize; /* size of remainder */ if(rem >= minAllocSize) { /* * The remainder is big enough to be a new block. * Set boundary tags for the resized block and the new block. */ next = ptr + realsize; /* * add the new block to the free list. * next block cannot be free */ SetTags(next, rem); #ifdef _USE_BUDDY_BLOCKS AddToFreeList(next, rem); #else AddToFreeList(next, m_pFreeList); #endif cursize = realsize; } /* Set the boundary tags to mark it as allocated. */ SetTags(ptr, cursize | 1); return ((void *)ptr); } return NULL; } #ifdef _DEBUG_MEM #define LOG_FILENAME ".\\MemLog.txt" void VMem::MemoryUsageMessage(char *str, long x, long y, int c) { char szBuffer[512]; if(str) { if(!m_pLog) m_pLog = fopen(LOG_FILENAME, "w"); sprintf(szBuffer, str, x, y, c); fputs(szBuffer, m_pLog); } else { if(m_pLog) { fflush(m_pLog); fclose(m_pLog); m_pLog = 0; } } } void VMem::WalkHeap(int complete) { if(complete) { MemoryUsageMessage(NULL, 0, 0, 0); size_t total = 0; for(int i = 0; i < m_nHeaps; ++i) { total += m_heaps[i].len; } MemoryUsageMessage("VMem heaps used %d. Total memory %08x\n", m_nHeaps, total, 0); /* Walk all the heaps - verify structures */ for(int index = 0; index < m_nHeaps; ++index) { PBLOCK ptr = m_heaps[index].base; size_t size = m_heaps[index].len; #ifndef _USE_BUDDY_BLOCKS #ifdef USE_BIGBLOCK_ALLOC if (!m_heaps[m_nHeaps].bBigBlock) #endif ASSERT(HeapValidate(m_hHeap, HEAP_NO_SERIALIZE, ptr)); #endif /* set over reserved header block */ size -= blockOverhead; ptr += blockOverhead; PBLOCK pLast = ptr + size; ASSERT(PSIZE(ptr) == 1); /* dummy previous block is allocated */ ASSERT(SIZE(pLast) == 1); /* dummy next block is allocated */ while(ptr < pLast) { ASSERT(ptr > m_heaps[index].base); size_t cursize = SIZE(ptr) & ~1; ASSERT((PSIZE(ptr+cursize) & ~1) == cursize); MemoryUsageMessage("Memory Block %08x: Size %08x %c\n", (long)ptr, cursize, (SIZE(ptr)&1) ? 'x' : ' '); if(!(SIZE(ptr)&1)) { /* this block is on the free list */ PBLOCK tmp = NEXT(ptr); while(tmp != ptr) { ASSERT((SIZE(tmp)&1)==0); if(tmp == m_pFreeList) break; ASSERT(NEXT(tmp)); tmp = NEXT(tmp); } if(tmp == ptr) { MemoryUsageMessage("Memory Block %08x: Size %08x free but not in free list\n", (long)ptr, cursize, 0); } } ptr += cursize; } } MemoryUsageMessage(NULL, 0, 0, 0); } } #endif /* _DEBUG_MEM */ #endif /* _USE_MSVCRT_MEM_ALLOC */ #endif /* ___VMEM_H_INC___ */