/* hv.c * * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others * * You may distribute under the terms of either the GNU General Public * License or the Artistic License, as specified in the README file. * */ /* * I sit beside the fire and think * of all that I have seen. * --Bilbo * * [p.278 of _The Lord of the Rings_, II/iii: "The Ring Goes South"] */ /* =head1 Hash Manipulation Functions A HV structure represents a Perl hash. It consists mainly of an array of pointers, each of which points to a linked list of HE structures. The array is indexed by the hash function of the key, so each linked list represents all the hash entries with the same hash value. Each HE contains a pointer to the actual value, plus a pointer to a HEK structure which holds the key and hash value. =cut */ #include "EXTERN.h" #define PERL_IN_HV_C #define PERL_HASH_INTERNAL_ACCESS #include "perl.h" #define DO_HSPLIT(xhv) ((xhv)->xhv_keys > (xhv)->xhv_max) /* HvTOTALKEYS(hv) > HvMAX(hv) */ #define HV_FILL_THRESHOLD 31 static const char S_strtab_error[] = "Cannot modify shared string table in hv_%s"; #ifdef PURIFY #define new_HE() (HE*)safemalloc(sizeof(HE)) #define del_HE(p) safefree((char*)p) #else STATIC HE* S_new_he(pTHX) { HE* he; void ** const root = &PL_body_roots[HE_SVSLOT]; if (!*root) Perl_more_bodies(aTHX_ HE_SVSLOT, sizeof(HE), PERL_ARENA_SIZE); he = (HE*) *root; assert(he); *root = HeNEXT(he); return he; } #define new_HE() new_he() #define del_HE(p) \ STMT_START { \ HeNEXT(p) = (HE*)(PL_body_roots[HE_SVSLOT]); \ PL_body_roots[HE_SVSLOT] = p; \ } STMT_END #endif STATIC HEK * S_save_hek_flags(const char *str, I32 len, U32 hash, int flags) { const int flags_masked = flags & HVhek_MASK; char *k; HEK *hek; PERL_ARGS_ASSERT_SAVE_HEK_FLAGS; Newx(k, HEK_BASESIZE + len + 2, char); hek = (HEK*)k; Copy(str, HEK_KEY(hek), len, char); HEK_KEY(hek)[len] = 0; HEK_LEN(hek) = len; HEK_HASH(hek) = hash; HEK_FLAGS(hek) = (unsigned char)flags_masked | HVhek_UNSHARED; if (flags & HVhek_FREEKEY) Safefree(str); return hek; } /* free the pool of temporary HE/HEK pairs returned by hv_fetch_ent * for tied hashes */ void Perl_free_tied_hv_pool(pTHX) { HE *he = PL_hv_fetch_ent_mh; while (he) { HE * const ohe = he; Safefree(HeKEY_hek(he)); he = HeNEXT(he); del_HE(ohe); } PL_hv_fetch_ent_mh = NULL; } #if defined(USE_ITHREADS) HEK * Perl_hek_dup(pTHX_ HEK *source, CLONE_PARAMS* param) { HEK *shared; PERL_ARGS_ASSERT_HEK_DUP; PERL_UNUSED_ARG(param); if (!source) return NULL; shared = (HEK*)ptr_table_fetch(PL_ptr_table, source); if (shared) { /* We already shared this hash key. */ (void)share_hek_hek(shared); } else { shared = share_hek_flags(HEK_KEY(source), HEK_LEN(source), HEK_HASH(source), HEK_FLAGS(source)); ptr_table_store(PL_ptr_table, source, shared); } return shared; } HE * Perl_he_dup(pTHX_ const HE *e, bool shared, CLONE_PARAMS* param) { HE *ret; PERL_ARGS_ASSERT_HE_DUP; if (!e) return NULL; /* look for it in the table first */ ret = (HE*)ptr_table_fetch(PL_ptr_table, e); if (ret) return ret; /* create anew and remember what it is */ ret = new_HE(); ptr_table_store(PL_ptr_table, e, ret); HeNEXT(ret) = he_dup(HeNEXT(e),shared, param); if (HeKLEN(e) == HEf_SVKEY) { char *k; Newx(k, HEK_BASESIZE + sizeof(const SV *), char); HeKEY_hek(ret) = (HEK*)k; HeKEY_sv(ret) = sv_dup_inc(HeKEY_sv(e), param); } else if (shared) { /* This is hek_dup inlined, which seems to be important for speed reasons. */ HEK * const source = HeKEY_hek(e); HEK *shared = (HEK*)ptr_table_fetch(PL_ptr_table, source); if (shared) { /* We already shared this hash key. */ (void)share_hek_hek(shared); } else { shared = share_hek_flags(HEK_KEY(source), HEK_LEN(source), HEK_HASH(source), HEK_FLAGS(source)); ptr_table_store(PL_ptr_table, source, shared); } HeKEY_hek(ret) = shared; } else HeKEY_hek(ret) = save_hek_flags(HeKEY(e), HeKLEN(e), HeHASH(e), HeKFLAGS(e)); HeVAL(ret) = sv_dup_inc(HeVAL(e), param); return ret; } #endif /* USE_ITHREADS */ static void S_hv_notallowed(pTHX_ int flags, const char *key, I32 klen, const char *msg) { SV * const sv = sv_newmortal(); PERL_ARGS_ASSERT_HV_NOTALLOWED; if (!(flags & HVhek_FREEKEY)) { sv_setpvn(sv, key, klen); } else { /* Need to free saved eventually assign to mortal SV */ /* XXX is this line an error ???: SV *sv = sv_newmortal(); */ sv_usepvn(sv, (char *) key, klen); } if (flags & HVhek_UTF8) { SvUTF8_on(sv); } Perl_croak(aTHX_ msg, SVfARG(sv)); } /* (klen == HEf_SVKEY) is special for MAGICAL hv entries, meaning key slot * contains an SV* */ /* =for apidoc hv_store Stores an SV in a hash. The hash key is specified as C and the absolute value of C is the length of the key. If C is negative the key is assumed to be in UTF-8-encoded Unicode. The C parameter is the precomputed hash value; if it is zero then Perl will compute it. The return value will be NULL if the operation failed or if the value did not need to be actually stored within the hash (as in the case of tied hashes). Otherwise it can be dereferenced to get the original C. Note that the caller is responsible for suitably incrementing the reference count of C before the call, and decrementing it if the function returned NULL. Effectively a successful hv_store takes ownership of one reference to C. This is usually what you want; a newly created SV has a reference count of one, so if all your code does is create SVs then store them in a hash, hv_store will own the only reference to the new SV, and your code doesn't need to do anything further to tidy up. hv_store is not implemented as a call to hv_store_ent, and does not create a temporary SV for the key, so if your key data is not already in SV form then use hv_store in preference to hv_store_ent. See L for more information on how to use this function on tied hashes. =for apidoc hv_store_ent Stores C in a hash. The hash key is specified as C. The C parameter is the precomputed hash value; if it is zero then Perl will compute it. The return value is the new hash entry so created. It will be NULL if the operation failed or if the value did not need to be actually stored within the hash (as in the case of tied hashes). Otherwise the contents of the return value can be accessed using the C macros described here. Note that the caller is responsible for suitably incrementing the reference count of C before the call, and decrementing it if the function returned NULL. Effectively a successful hv_store_ent takes ownership of one reference to C. This is usually what you want; a newly created SV has a reference count of one, so if all your code does is create SVs then store them in a hash, hv_store will own the only reference to the new SV, and your code doesn't need to do anything further to tidy up. Note that hv_store_ent only reads the C; unlike C it does not take ownership of it, so maintaining the correct reference count on C is entirely the caller's responsibility. hv_store is not implemented as a call to hv_store_ent, and does not create a temporary SV for the key, so if your key data is not already in SV form then use hv_store in preference to hv_store_ent. See L for more information on how to use this function on tied hashes. =for apidoc hv_exists Returns a boolean indicating whether the specified hash key exists. The absolute value of C is the length of the key. If C is negative the key is assumed to be in UTF-8-encoded Unicode. =for apidoc hv_fetch Returns the SV which corresponds to the specified key in the hash. The absolute value of C is the length of the key. If C is negative the key is assumed to be in UTF-8-encoded Unicode. If C is set then the fetch will be part of a store. This means that if there is no value in the hash associated with the given key, then one is created and a pointer to it is returned. The C it points to can be assigned to. But always check that the return value is non-null before dereferencing it to an C. See L for more information on how to use this function on tied hashes. =for apidoc hv_exists_ent Returns a boolean indicating whether the specified hash key exists. C can be a valid precomputed hash value, or 0 to ask for it to be computed. =cut */ /* returns an HE * structure with the all fields set */ /* note that hent_val will be a mortal sv for MAGICAL hashes */ /* =for apidoc hv_fetch_ent Returns the hash entry which corresponds to the specified key in the hash. C must be a valid precomputed hash number for the given C, or 0 if you want the function to compute it. IF C is set then the fetch will be part of a store. Make sure the return value is non-null before accessing it. The return value when C is a tied hash is a pointer to a static location, so be sure to make a copy of the structure if you need to store it somewhere. See L for more information on how to use this function on tied hashes. =cut */ /* Common code for hv_delete()/hv_exists()/hv_fetch()/hv_store() */ void * Perl_hv_common_key_len(pTHX_ HV *hv, const char *key, I32 klen_i32, const int action, SV *val, const U32 hash) { STRLEN klen; int flags; PERL_ARGS_ASSERT_HV_COMMON_KEY_LEN; if (klen_i32 < 0) { klen = -klen_i32; flags = HVhek_UTF8; } else { klen = klen_i32; flags = 0; } return hv_common(hv, NULL, key, klen, flags, action, val, hash); } void * Perl_hv_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen, int flags, int action, SV *val, U32 hash) { dVAR; XPVHV* xhv; HE *entry; HE **oentry; SV *sv; bool is_utf8; int masked_flags; const int return_svp = action & HV_FETCH_JUST_SV; HEK *keysv_hek = NULL; if (!hv) return NULL; if (SvTYPE(hv) == (svtype)SVTYPEMASK) return NULL; assert(SvTYPE(hv) == SVt_PVHV); if (SvSMAGICAL(hv) && SvGMAGICAL(hv) && !(action & HV_DISABLE_UVAR_XKEY)) { MAGIC* mg; if ((mg = mg_find((const SV *)hv, PERL_MAGIC_uvar))) { struct ufuncs * const uf = (struct ufuncs *)mg->mg_ptr; if (uf->uf_set == NULL) { SV* obj = mg->mg_obj; if (!keysv) { keysv = newSVpvn_flags(key, klen, SVs_TEMP | ((flags & HVhek_UTF8) ? SVf_UTF8 : 0)); } mg->mg_obj = keysv; /* pass key */ uf->uf_index = action; /* pass action */ magic_getuvar(MUTABLE_SV(hv), mg); keysv = mg->mg_obj; /* may have changed */ mg->mg_obj = obj; /* If the key may have changed, then we need to invalidate any passed-in computed hash value. */ hash = 0; } } } if (keysv) { if (flags & HVhek_FREEKEY) Safefree(key); key = SvPV_const(keysv, klen); is_utf8 = (SvUTF8(keysv) != 0); if (SvIsCOW_shared_hash(keysv)) { flags = HVhek_KEYCANONICAL | (is_utf8 ? HVhek_UTF8 : 0); } else { flags = is_utf8 ? HVhek_UTF8 : 0; } } else { is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE); } if (action & HV_DELETE) { return (void *) hv_delete_common(hv, keysv, key, klen, flags, action, hash); } xhv = (XPVHV*)SvANY(hv); if (SvMAGICAL(hv)) { if (SvRMAGICAL(hv) && !(action & (HV_FETCH_ISSTORE|HV_FETCH_ISEXISTS))) { if (mg_find((const SV *)hv, PERL_MAGIC_tied) || SvGMAGICAL((const SV *)hv)) { /* FIXME should be able to skimp on the HE/HEK here when HV_FETCH_JUST_SV is true. */ if (!keysv) { keysv = newSVpvn_utf8(key, klen, is_utf8); } else { keysv = newSVsv(keysv); } sv = sv_newmortal(); mg_copy(MUTABLE_SV(hv), sv, (char *)keysv, HEf_SVKEY); /* grab a fake HE/HEK pair from the pool or make a new one */ entry = PL_hv_fetch_ent_mh; if (entry) PL_hv_fetch_ent_mh = HeNEXT(entry); else { char *k; entry = new_HE(); Newx(k, HEK_BASESIZE + sizeof(const SV *), char); HeKEY_hek(entry) = (HEK*)k; } HeNEXT(entry) = NULL; HeSVKEY_set(entry, keysv); HeVAL(entry) = sv; sv_upgrade(sv, SVt_PVLV); LvTYPE(sv) = 'T'; /* so we can free entry when freeing sv */ LvTARG(sv) = MUTABLE_SV(entry); /* XXX remove at some point? */ if (flags & HVhek_FREEKEY) Safefree(key); if (return_svp) { return entry ? (void *) &HeVAL(entry) : NULL; } return (void *) entry; } #ifdef ENV_IS_CASELESS else if (mg_find((const SV *)hv, PERL_MAGIC_env)) { U32 i; for (i = 0; i < klen; ++i) if (isLOWER(key[i])) { /* Would be nice if we had a routine to do the copy and upercase in a single pass through. */ const char * const nkey = strupr(savepvn(key,klen)); /* Note that this fetch is for nkey (the uppercased key) whereas the store is for key (the original) */ void *result = hv_common(hv, NULL, nkey, klen, HVhek_FREEKEY, /* free nkey */ 0 /* non-LVAL fetch */ | HV_DISABLE_UVAR_XKEY | return_svp, NULL /* no value */, 0 /* compute hash */); if (!result && (action & HV_FETCH_LVALUE)) { /* This call will free key if necessary. Do it this way to encourage compiler to tail call optimise. */ result = hv_common(hv, keysv, key, klen, flags, HV_FETCH_ISSTORE | HV_DISABLE_UVAR_XKEY | return_svp, newSV(0), hash); } else { if (flags & HVhek_FREEKEY) Safefree(key); } return result; } } #endif } /* ISFETCH */ else if (SvRMAGICAL(hv) && (action & HV_FETCH_ISEXISTS)) { if (mg_find((const SV *)hv, PERL_MAGIC_tied) || SvGMAGICAL((const SV *)hv)) { /* I don't understand why hv_exists_ent has svret and sv, whereas hv_exists only had one. */ SV * const svret = sv_newmortal(); sv = sv_newmortal(); if (keysv || is_utf8) { if (!keysv) { keysv = newSVpvn_utf8(key, klen, TRUE); } else { keysv = newSVsv(keysv); } mg_copy(MUTABLE_SV(hv), sv, (char *)sv_2mortal(keysv), HEf_SVKEY); } else { mg_copy(MUTABLE_SV(hv), sv, key, klen); } if (flags & HVhek_FREEKEY) Safefree(key); { MAGIC * const mg = mg_find(sv, PERL_MAGIC_tiedelem); if (mg) magic_existspack(svret, mg); } /* This cast somewhat evil, but I'm merely using NULL/ not NULL to return the boolean exists. And I know hv is not NULL. */ return SvTRUE(svret) ? (void *)hv : NULL; } #ifdef ENV_IS_CASELESS else if (mg_find((const SV *)hv, PERL_MAGIC_env)) { /* XXX This code isn't UTF8 clean. */ char * const keysave = (char * const)key; /* Will need to free this, so set FREEKEY flag. */ key = savepvn(key,klen); key = (const char*)strupr((char*)key); is_utf8 = FALSE; hash = 0; keysv = 0; if (flags & HVhek_FREEKEY) { Safefree(keysave); } flags |= HVhek_FREEKEY; } #endif } /* ISEXISTS */ else if (action & HV_FETCH_ISSTORE) { bool needs_copy; bool needs_store; hv_magic_check (hv, &needs_copy, &needs_store); if (needs_copy) { const bool save_taint = TAINT_get; if (keysv || is_utf8) { if (!keysv) { keysv = newSVpvn_utf8(key, klen, TRUE); } if (TAINTING_get) TAINT_set(SvTAINTED(keysv)); keysv = sv_2mortal(newSVsv(keysv)); mg_copy(MUTABLE_SV(hv), val, (char*)keysv, HEf_SVKEY); } else { mg_copy(MUTABLE_SV(hv), val, key, klen); } TAINT_IF(save_taint); #ifdef NO_TAINT_SUPPORT PERL_UNUSED_VAR(save_taint); #endif if (!needs_store) { if (flags & HVhek_FREEKEY) Safefree(key); return NULL; } #ifdef ENV_IS_CASELESS else if (mg_find((const SV *)hv, PERL_MAGIC_env)) { /* XXX This code isn't UTF8 clean. */ const char *keysave = key; /* Will need to free this, so set FREEKEY flag. */ key = savepvn(key,klen); key = (const char*)strupr((char*)key); is_utf8 = FALSE; hash = 0; keysv = 0; if (flags & HVhek_FREEKEY) { Safefree(keysave); } flags |= HVhek_FREEKEY; } #endif } } /* ISSTORE */ } /* SvMAGICAL */ if (!HvARRAY(hv)) { if ((action & (HV_FETCH_LVALUE | HV_FETCH_ISSTORE)) #ifdef DYNAMIC_ENV_FETCH /* if it's an %ENV lookup, we may get it on the fly */ || (SvRMAGICAL((const SV *)hv) && mg_find((const SV *)hv, PERL_MAGIC_env)) #endif ) { char *array; Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */), char); HvARRAY(hv) = (HE**)array; } #ifdef DYNAMIC_ENV_FETCH else if (action & HV_FETCH_ISEXISTS) { /* for an %ENV exists, if we do an insert it's by a recursive store call, so avoid creating HvARRAY(hv) right now. */ } #endif else { /* XXX remove at some point? */ if (flags & HVhek_FREEKEY) Safefree(key); return NULL; } } if (is_utf8 && !(flags & HVhek_KEYCANONICAL)) { char * const keysave = (char *)key; key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8); if (is_utf8) flags |= HVhek_UTF8; else flags &= ~HVhek_UTF8; if (key != keysave) { if (flags & HVhek_FREEKEY) Safefree(keysave); flags |= HVhek_WASUTF8 | HVhek_FREEKEY; /* If the caller calculated a hash, it was on the sequence of octets that are the UTF-8 form. We've now changed the sequence of octets stored to that of the equivalent byte representation, so the hash we need is different. */ hash = 0; } } if (keysv && (SvIsCOW_shared_hash(keysv))) { if (HvSHAREKEYS(hv)) keysv_hek = SvSHARED_HEK_FROM_PV(SvPVX_const(keysv)); hash = SvSHARED_HASH(keysv); } else if (!hash) PERL_HASH(hash, key, klen); masked_flags = (flags & HVhek_MASK); #ifdef DYNAMIC_ENV_FETCH if (!HvARRAY(hv)) entry = NULL; else #endif { entry = (HvARRAY(hv))[hash & (I32) HvMAX(hv)]; } if (!entry) goto not_found; if (keysv_hek) { /* keysv is actually a HEK in disguise, so we can match just by * comparing the HEK pointers in the HE chain. There is a slight * caveat: on something like "\x80", which has both plain and utf8 * representations, perl's hashes do encoding-insensitive lookups, * but preserve the encoding of the stored key. Thus a particular * key could map to two different HEKs in PL_strtab. We only * conclude 'not found' if all the flags are the same; otherwise * we fall back to a full search (this should only happen in rare * cases). */ int keysv_flags = HEK_FLAGS(keysv_hek); HE *orig_entry = entry; for (; entry; entry = HeNEXT(entry)) { HEK *hek = HeKEY_hek(entry); if (hek == keysv_hek) goto found; if (HEK_FLAGS(hek) != keysv_flags) break; /* need to do full match */ } if (!entry) goto not_found; /* failed on shortcut - do full search loop */ entry = orig_entry; } for (; entry; entry = HeNEXT(entry)) { if (HeHASH(entry) != hash) /* strings can't be equal */ continue; if (HeKLEN(entry) != (I32)klen) continue; if (memNE(HeKEY(entry),key,klen)) /* is this it? */ continue; if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8) continue; found: if (action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE)) { if (HeKFLAGS(entry) != masked_flags) { /* We match if HVhek_UTF8 bit in our flags and hash key's match. But if entry was set previously with HVhek_WASUTF8 and key now doesn't (or vice versa) then we should change the key's flag, as this is assignment. */ if (HvSHAREKEYS(hv)) { /* Need to swap the key we have for a key with the flags we need. As keys are shared we can't just write to the flag, so we share the new one, unshare the old one. */ HEK * const new_hek = share_hek_flags(key, klen, hash, masked_flags); unshare_hek (HeKEY_hek(entry)); HeKEY_hek(entry) = new_hek; } else if (hv == PL_strtab) { /* PL_strtab is usually the only hash without HvSHAREKEYS, so putting this test here is cheap */ if (flags & HVhek_FREEKEY) Safefree(key); Perl_croak(aTHX_ S_strtab_error, action & HV_FETCH_LVALUE ? "fetch" : "store"); } else HeKFLAGS(entry) = masked_flags; if (masked_flags & HVhek_ENABLEHVKFLAGS) HvHASKFLAGS_on(hv); } if (HeVAL(entry) == &PL_sv_placeholder) { /* yes, can store into placeholder slot */ if (action & HV_FETCH_LVALUE) { if (SvMAGICAL(hv)) { /* This preserves behaviour with the old hv_fetch implementation which at this point would bail out with a break; (at "if we find a placeholder, we pretend we haven't found anything") That break mean that if a placeholder were found, it caused a call into hv_store, which in turn would check magic, and if there is no magic end up pretty much back at this point (in hv_store's code). */ break; } /* LVAL fetch which actually needs a store. */ val = newSV(0); HvPLACEHOLDERS(hv)--; } else { /* store */ if (val != &PL_sv_placeholder) HvPLACEHOLDERS(hv)--; } HeVAL(entry) = val; } else if (action & HV_FETCH_ISSTORE) { SvREFCNT_dec(HeVAL(entry)); HeVAL(entry) = val; } } else if (HeVAL(entry) == &PL_sv_placeholder) { /* if we find a placeholder, we pretend we haven't found anything */ break; } if (flags & HVhek_FREEKEY) Safefree(key); if (return_svp) { return (void *) &HeVAL(entry); } return entry; } not_found: #ifdef DYNAMIC_ENV_FETCH /* %ENV lookup? If so, try to fetch the value now */ if (!(action & HV_FETCH_ISSTORE) && SvRMAGICAL((const SV *)hv) && mg_find((const SV *)hv, PERL_MAGIC_env)) { unsigned long len; const char * const env = PerlEnv_ENVgetenv_len(key,&len); if (env) { sv = newSVpvn(env,len); SvTAINTED_on(sv); return hv_common(hv, keysv, key, klen, flags, HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp, sv, hash); } } #endif if (!entry && SvREADONLY(hv) && !(action & HV_FETCH_ISEXISTS)) { hv_notallowed(flags, key, klen, "Attempt to access disallowed key '%"SVf"' in" " a restricted hash"); } if (!(action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE))) { /* Not doing some form of store, so return failure. */ if (flags & HVhek_FREEKEY) Safefree(key); return NULL; } if (action & HV_FETCH_LVALUE) { val = action & HV_FETCH_EMPTY_HE ? NULL : newSV(0); if (SvMAGICAL(hv)) { /* At this point the old hv_fetch code would call to hv_store, which in turn might do some tied magic. So we need to make that magic check happen. */ /* gonna assign to this, so it better be there */ /* If a fetch-as-store fails on the fetch, then the action is to recurse once into "hv_store". If we didn't do this, then that recursive call would call the key conversion routine again. However, as we replace the original key with the converted key, this would result in a double conversion, which would show up as a bug if the conversion routine is not idempotent. Hence the use of HV_DISABLE_UVAR_XKEY. */ return hv_common(hv, keysv, key, klen, flags, HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp, val, hash); /* XXX Surely that could leak if the fetch-was-store fails? Just like the hv_fetch. */ } } /* Welcome to hv_store... */ if (!HvARRAY(hv)) { /* Not sure if we can get here. I think the only case of oentry being NULL is for %ENV with dynamic env fetch. But that should disappear with magic in the previous code. */ char *array; Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */), char); HvARRAY(hv) = (HE**)array; } oentry = &(HvARRAY(hv))[hash & (I32) xhv->xhv_max]; entry = new_HE(); /* share_hek_flags will do the free for us. This might be considered bad API design. */ if (HvSHAREKEYS(hv)) HeKEY_hek(entry) = share_hek_flags(key, klen, hash, flags); else if (hv == PL_strtab) { /* PL_strtab is usually the only hash without HvSHAREKEYS, so putting this test here is cheap */ if (flags & HVhek_FREEKEY) Safefree(key); Perl_croak(aTHX_ S_strtab_error, action & HV_FETCH_LVALUE ? "fetch" : "store"); } else /* gotta do the real thing */ HeKEY_hek(entry) = save_hek_flags(key, klen, hash, flags); HeVAL(entry) = val; if (!*oentry && SvOOK(hv)) { /* initial entry, and aux struct present. */ struct xpvhv_aux *const aux = HvAUX(hv); if (aux->xhv_fill_lazy) ++aux->xhv_fill_lazy; } #ifdef PERL_HASH_RANDOMIZE_KEYS /* This logic semi-randomizes the insert order in a bucket. * Either we insert into the top, or the slot below the top, * making it harder to see if there is a collision. We also * reset the iterator randomizer if there is one. */ if ( *oentry && PL_HASH_RAND_BITS_ENABLED) { PL_hash_rand_bits++; PL_hash_rand_bits= ROTL_UV(PL_hash_rand_bits,1); if ( PL_hash_rand_bits & 1 ) { HeNEXT(entry) = HeNEXT(*oentry); HeNEXT(*oentry) = entry; } else { HeNEXT(entry) = *oentry; *oentry = entry; } } else #endif { HeNEXT(entry) = *oentry; *oentry = entry; } #ifdef PERL_HASH_RANDOMIZE_KEYS if (SvOOK(hv)) { /* Currently this makes various tests warn in annoying ways. * So Silenced for now. - Yves | bogus end of comment =>* / if (HvAUX(hv)->xhv_riter != -1) { Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL), "[TESTING] Inserting into a hash during each() traversal results in undefined behavior" pTHX__FORMAT pTHX__VALUE); } */ if (PL_HASH_RAND_BITS_ENABLED) { if (PL_HASH_RAND_BITS_ENABLED == 1) PL_hash_rand_bits += (PTRV)entry + 1; /* we don't bother to use ptr_hash here */ PL_hash_rand_bits= ROTL_UV(PL_hash_rand_bits,1); } HvAUX(hv)->xhv_rand= (U32)PL_hash_rand_bits; } #endif if (val == &PL_sv_placeholder) HvPLACEHOLDERS(hv)++; if (masked_flags & HVhek_ENABLEHVKFLAGS) HvHASKFLAGS_on(hv); xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */ if ( DO_HSPLIT(xhv) ) { const STRLEN oldsize = xhv->xhv_max + 1; const U32 items = (U32)HvPLACEHOLDERS_get(hv); if (items /* hash has placeholders */ && !SvREADONLY(hv) /* but is not a restricted hash */) { /* If this hash previously was a "restricted hash" and had placeholders, but the "restricted" flag has been turned off, then the placeholders no longer serve any useful purpose. However, they have the downsides of taking up RAM, and adding extra steps when finding used values. It's safe to clear them at this point, even though Storable rebuilds restricted hashes by putting in all the placeholders (first) before turning on the readonly flag, because Storable always pre-splits the hash. If we're lucky, then we may clear sufficient placeholders to avoid needing to split the hash at all. */ clear_placeholders(hv, items); if (DO_HSPLIT(xhv)) hsplit(hv, oldsize, oldsize * 2); } else hsplit(hv, oldsize, oldsize * 2); } if (return_svp) { return entry ? (void *) &HeVAL(entry) : NULL; } return (void *) entry; } STATIC void S_hv_magic_check(HV *hv, bool *needs_copy, bool *needs_store) { const MAGIC *mg = SvMAGIC(hv); PERL_ARGS_ASSERT_HV_MAGIC_CHECK; *needs_copy = FALSE; *needs_store = TRUE; while (mg) { if (isUPPER(mg->mg_type)) { *needs_copy = TRUE; if (mg->mg_type == PERL_MAGIC_tied) { *needs_store = FALSE; return; /* We've set all there is to set. */ } } mg = mg->mg_moremagic; } } /* =for apidoc hv_scalar Evaluates the hash in scalar context and returns the result. Handles magic when the hash is tied. =cut */ SV * Perl_hv_scalar(pTHX_ HV *hv) { SV *sv; PERL_ARGS_ASSERT_HV_SCALAR; if (SvRMAGICAL(hv)) { MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_tied); if (mg) return magic_scalarpack(hv, mg); } sv = sv_newmortal(); if (HvTOTALKEYS((const HV *)hv)) Perl_sv_setpvf(aTHX_ sv, "%ld/%ld", (long)HvFILL(hv), (long)HvMAX(hv) + 1); else sv_setiv(sv, 0); return sv; } /* =for apidoc hv_delete Deletes a key/value pair in the hash. The value's SV is removed from the hash, made mortal, and returned to the caller. The absolute value of C is the length of the key. If C is negative the key is assumed to be in UTF-8-encoded Unicode. The C value will normally be zero; if set to G_DISCARD then NULL will be returned. NULL will also be returned if the key is not found. =for apidoc hv_delete_ent Deletes a key/value pair in the hash. The value SV is removed from the hash, made mortal, and returned to the caller. The C value will normally be zero; if set to G_DISCARD then NULL will be returned. NULL will also be returned if the key is not found. C can be a valid precomputed hash value, or 0 to ask for it to be computed. =cut */ STATIC SV * S_hv_delete_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen, int k_flags, I32 d_flags, U32 hash) { dVAR; XPVHV* xhv; HE *entry; HE **oentry; HE **first_entry; bool is_utf8 = (k_flags & HVhek_UTF8) ? TRUE : FALSE; int masked_flags; HEK *keysv_hek = NULL; U8 mro_changes = 0; /* 1 = isa; 2 = package moved */ SV *sv; GV *gv = NULL; HV *stash = NULL; if (SvRMAGICAL(hv)) { bool needs_copy; bool needs_store; hv_magic_check (hv, &needs_copy, &needs_store); if (needs_copy) { SV *sv; entry = (HE *) hv_common(hv, keysv, key, klen, k_flags & ~HVhek_FREEKEY, HV_FETCH_LVALUE|HV_DISABLE_UVAR_XKEY, NULL, hash); sv = entry ? HeVAL(entry) : NULL; if (sv) { if (SvMAGICAL(sv)) { mg_clear(sv); } if (!needs_store) { if (mg_find(sv, PERL_MAGIC_tiedelem)) { /* No longer an element */ sv_unmagic(sv, PERL_MAGIC_tiedelem); return sv; } return NULL; /* element cannot be deleted */ } #ifdef ENV_IS_CASELESS else if (mg_find((const SV *)hv, PERL_MAGIC_env)) { /* XXX This code isn't UTF8 clean. */ keysv = newSVpvn_flags(key, klen, SVs_TEMP); if (k_flags & HVhek_FREEKEY) { Safefree(key); } key = strupr(SvPVX(keysv)); is_utf8 = 0; k_flags = 0; hash = 0; } #endif } } } xhv = (XPVHV*)SvANY(hv); if (!HvARRAY(hv)) return NULL; if (is_utf8 && !(k_flags & HVhek_KEYCANONICAL)) { const char * const keysave = key; key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8); if (is_utf8) k_flags |= HVhek_UTF8; else k_flags &= ~HVhek_UTF8; if (key != keysave) { if (k_flags & HVhek_FREEKEY) { /* This shouldn't happen if our caller does what we expect, but strictly the API allows it. */ Safefree(keysave); } k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY; } HvHASKFLAGS_on(MUTABLE_SV(hv)); } if (keysv && (SvIsCOW_shared_hash(keysv))) { if (HvSHAREKEYS(hv)) keysv_hek = SvSHARED_HEK_FROM_PV(SvPVX_const(keysv)); hash = SvSHARED_HASH(keysv); } else if (!hash) PERL_HASH(hash, key, klen); masked_flags = (k_flags & HVhek_MASK); first_entry = oentry = &(HvARRAY(hv))[hash & (I32) HvMAX(hv)]; entry = *oentry; if (!entry) goto not_found; if (keysv_hek) { /* keysv is actually a HEK in disguise, so we can match just by * comparing the HEK pointers in the HE chain. There is a slight * caveat: on something like "\x80", which has both plain and utf8 * representations, perl's hashes do encoding-insensitive lookups, * but preserve the encoding of the stored key. Thus a particular * key could map to two different HEKs in PL_strtab. We only * conclude 'not found' if all the flags are the same; otherwise * we fall back to a full search (this should only happen in rare * cases). */ int keysv_flags = HEK_FLAGS(keysv_hek); for (; entry; oentry = &HeNEXT(entry), entry = *oentry) { HEK *hek = HeKEY_hek(entry); if (hek == keysv_hek) goto found; if (HEK_FLAGS(hek) != keysv_flags) break; /* need to do full match */ } if (!entry) goto not_found; /* failed on shortcut - do full search loop */ oentry = first_entry; entry = *oentry; } for (; entry; oentry = &HeNEXT(entry), entry = *oentry) { if (HeHASH(entry) != hash) /* strings can't be equal */ continue; if (HeKLEN(entry) != (I32)klen) continue; if (memNE(HeKEY(entry),key,klen)) /* is this it? */ continue; if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8) continue; found: if (hv == PL_strtab) { if (k_flags & HVhek_FREEKEY) Safefree(key); Perl_croak(aTHX_ S_strtab_error, "delete"); } /* if placeholder is here, it's already been deleted.... */ if (HeVAL(entry) == &PL_sv_placeholder) { if (k_flags & HVhek_FREEKEY) Safefree(key); return NULL; } if (SvREADONLY(hv) && HeVAL(entry) && SvREADONLY(HeVAL(entry))) { hv_notallowed(k_flags, key, klen, "Attempt to delete readonly key '%"SVf"' from" " a restricted hash"); } if (k_flags & HVhek_FREEKEY) Safefree(key); /* If this is a stash and the key ends with ::, then someone is * deleting a package. */ if (HeVAL(entry) && HvENAME_get(hv)) { gv = (GV *)HeVAL(entry); if (keysv) key = SvPV(keysv, klen); if (( (klen > 1 && key[klen-2] == ':' && key[klen-1] == ':') || (klen == 1 && key[0] == ':') ) && (klen != 6 || hv!=PL_defstash || memNE(key,"main::",6)) && SvTYPE(gv) == SVt_PVGV && (stash = GvHV((GV *)gv)) && HvENAME_get(stash)) { /* A previous version of this code checked that the * GV was still in the symbol table by fetching the * GV with its name. That is not necessary (and * sometimes incorrect), as HvENAME cannot be set * on hv if it is not in the symtab. */ mro_changes = 2; /* Hang on to it for a bit. */ SvREFCNT_inc_simple_void_NN( sv_2mortal((SV *)gv) ); } else if (klen == 3 && strnEQ(key, "ISA", 3)) mro_changes = 1; } sv = d_flags & G_DISCARD ? HeVAL(entry) : sv_2mortal(HeVAL(entry)); HeVAL(entry) = &PL_sv_placeholder; if (sv) { /* deletion of method from stash */ if (isGV(sv) && isGV_with_GP(sv) && GvCVu(sv) && HvENAME_get(hv)) mro_method_changed_in(hv); } /* * If a restricted hash, rather than really deleting the entry, put * a placeholder there. This marks the key as being "approved", so * we can still access via not-really-existing key without raising * an error. */ if (SvREADONLY(hv)) /* We'll be saving this slot, so the number of allocated keys * doesn't go down, but the number placeholders goes up */ HvPLACEHOLDERS(hv)++; else { *oentry = HeNEXT(entry); if(!*first_entry && SvOOK(hv)) { /* removed last entry, and aux struct present. */ struct xpvhv_aux *const aux = HvAUX(hv); if (aux->xhv_fill_lazy) --aux->xhv_fill_lazy; } if (SvOOK(hv) && entry == HvAUX(hv)->xhv_eiter /* HvEITER(hv) */) HvLAZYDEL_on(hv); else { if (SvOOK(hv) && HvLAZYDEL(hv) && entry == HeNEXT(HvAUX(hv)->xhv_eiter)) HeNEXT(HvAUX(hv)->xhv_eiter) = HeNEXT(entry); hv_free_ent(hv, entry); } xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */ if (xhv->xhv_keys == 0) HvHASKFLAGS_off(hv); } if (d_flags & G_DISCARD) { SvREFCNT_dec(sv); sv = NULL; } if (mro_changes == 1) mro_isa_changed_in(hv); else if (mro_changes == 2) mro_package_moved(NULL, stash, gv, 1); return sv; } not_found: if (SvREADONLY(hv)) { hv_notallowed(k_flags, key, klen, "Attempt to delete disallowed key '%"SVf"' from" " a restricted hash"); } if (k_flags & HVhek_FREEKEY) Safefree(key); return NULL; } STATIC void S_hsplit(pTHX_ HV *hv, STRLEN const oldsize, STRLEN newsize) { STRLEN i = 0; char *a = (char*) HvARRAY(hv); HE **aep; bool do_aux= ( /* already have an HvAUX(hv) so we have to move it */ SvOOK(hv) || /* no HvAUX() but array we are going to allocate is large enough * there is no point in saving the space for the iterator, and * speeds up later traversals. */ ( ( hv != PL_strtab ) && ( newsize >= PERL_HV_ALLOC_AUX_SIZE ) ) ); PERL_ARGS_ASSERT_HSPLIT; PL_nomemok = TRUE; Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize) + (do_aux ? sizeof(struct xpvhv_aux) : 0), char); PL_nomemok = FALSE; if (!a) { return; } #ifdef PERL_HASH_RANDOMIZE_KEYS /* the idea of this is that we create a "random" value by hashing the address of * the array, we then use the low bit to decide if we insert at the top, or insert * second from top. After each such insert we rotate the hashed value. So we can * use the same hashed value over and over, and in normal build environments use * very few ops to do so. ROTL32() should produce a single machine operation. */ if (PL_HASH_RAND_BITS_ENABLED) { if (PL_HASH_RAND_BITS_ENABLED == 1) PL_hash_rand_bits += ptr_hash((PTRV)a); PL_hash_rand_bits = ROTL_UV(PL_hash_rand_bits,1); } #endif HvARRAY(hv) = (HE**) a; HvMAX(hv) = newsize - 1; /* before we zero the newly added memory, we * need to deal with the aux struct that may be there * or have been allocated by us*/ if (do_aux) { struct xpvhv_aux *const dest = (struct xpvhv_aux*) &a[newsize * sizeof(HE*)]; if (SvOOK(hv)) { /* alread have an aux, copy the old one in place. */ Move(&a[oldsize * sizeof(HE*)], dest, 1, struct xpvhv_aux); /* we reset the iterator's xhv_rand as well, so they get a totally new ordering */ #ifdef PERL_HASH_RANDOMIZE_KEYS dest->xhv_rand = (U32)PL_hash_rand_bits; #endif /* For now, just reset the lazy fill counter. It would be possible to update the counter in the code below instead. */ dest->xhv_fill_lazy = 0; } else { /* no existing aux structure, but we allocated space for one * so initialize it properly. This unrolls hv_auxinit() a bit, * since we have to do the realloc anyway. */ /* first we set the iterator's xhv_rand so it can be copied into lastrand below */ #ifdef PERL_HASH_RANDOMIZE_KEYS dest->xhv_rand = (U32)PL_hash_rand_bits; #endif /* this is the "non realloc" part of the hv_auxinit() */ (void)hv_auxinit_internal(dest); /* Turn on the OOK flag */ SvOOK_on(hv); } } /* now we can safely clear the second half */ Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/ if (!HvTOTALKEYS(hv)) /* skip rest if no entries */ return; newsize--; aep = (HE**)a; do { HE **oentry = aep + i; HE *entry = aep[i]; if (!entry) /* non-existent */ continue; do { U32 j = (HeHASH(entry) & newsize); if (j != (U32)i) { *oentry = HeNEXT(entry); #ifdef PERL_HASH_RANDOMIZE_KEYS /* if the target cell is empty or PL_HASH_RAND_BITS_ENABLED is false * insert to top, otherwise rotate the bucket rand 1 bit, * and use the new low bit to decide if we insert at top, * or next from top. IOW, we only rotate on a collision.*/ if (aep[j] && PL_HASH_RAND_BITS_ENABLED) { PL_hash_rand_bits+= ROTL32(HeHASH(entry), 17); PL_hash_rand_bits= ROTL_UV(PL_hash_rand_bits,1); if (PL_hash_rand_bits & 1) { HeNEXT(entry)= HeNEXT(aep[j]); HeNEXT(aep[j])= entry; } else { /* Note, this is structured in such a way as the optimizer * should eliminate the duplicated code here and below without * us needing to explicitly use a goto. */ HeNEXT(entry) = aep[j]; aep[j] = entry; } } else #endif { /* see comment above about duplicated code */ HeNEXT(entry) = aep[j]; aep[j] = entry; } } else { oentry = &HeNEXT(entry); } entry = *oentry; } while (entry); } while (i++ < oldsize); } void Perl_hv_ksplit(pTHX_ HV *hv, IV newmax) { XPVHV* xhv = (XPVHV*)SvANY(hv); const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */ I32 newsize; char *a; PERL_ARGS_ASSERT_HV_KSPLIT; newsize = (I32) newmax; /* possible truncation here */ if (newsize != newmax || newmax <= oldsize) return; while ((newsize & (1 + ~newsize)) != newsize) { newsize &= ~(newsize & (1 + ~newsize)); /* get proper power of 2 */ } if (newsize < newmax) newsize *= 2; if (newsize < newmax) return; /* overflow detection */ a = (char *) HvARRAY(hv); if (a) { hsplit(hv, oldsize, newsize); } else { Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char); xhv->xhv_max = --newsize; HvARRAY(hv) = (HE **) a; } } /* IMO this should also handle cases where hv_max is smaller than hv_keys * as tied hashes could play silly buggers and mess us around. We will * do the right thing during hv_store() afterwards, but still - Yves */ #define HV_SET_MAX_ADJUSTED_FOR_KEYS(hv,hv_max,hv_keys) STMT_START {\ /* Can we use fewer buckets? (hv_max is always 2^n-1) */ \ if (hv_max < PERL_HASH_DEFAULT_HvMAX) { \ hv_max = PERL_HASH_DEFAULT_HvMAX; \ } else { \ while (hv_max > PERL_HASH_DEFAULT_HvMAX && hv_max + 1 >= hv_keys * 2) \ hv_max = hv_max / 2; \ } \ HvMAX(hv) = hv_max; \ } STMT_END HV * Perl_newHVhv(pTHX_ HV *ohv) { dVAR; HV * const hv = newHV(); STRLEN hv_max; if (!ohv || (!HvTOTALKEYS(ohv) && !SvMAGICAL((const SV *)ohv))) return hv; hv_max = HvMAX(ohv); if (!SvMAGICAL((const SV *)ohv)) { /* It's an ordinary hash, so copy it fast. AMS 20010804 */ STRLEN i; const bool shared = !!HvSHAREKEYS(ohv); HE **ents, ** const oents = (HE **)HvARRAY(ohv); char *a; Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(hv_max+1), char); ents = (HE**)a; /* In each bucket... */ for (i = 0; i <= hv_max; i++) { HE *prev = NULL; HE *oent = oents[i]; if (!oent) { ents[i] = NULL; continue; } /* Copy the linked list of entries. */ for (; oent; oent = HeNEXT(oent)) { const U32 hash = HeHASH(oent); const char * const key = HeKEY(oent); const STRLEN len = HeKLEN(oent); const int flags = HeKFLAGS(oent); HE * const ent = new_HE(); SV *const val = HeVAL(oent); HeVAL(ent) = SvIMMORTAL(val) ? val : newSVsv(val); HeKEY_hek(ent) = shared ? share_hek_flags(key, len, hash, flags) : save_hek_flags(key, len, hash, flags); if (prev) HeNEXT(prev) = ent; else ents[i] = ent; prev = ent; HeNEXT(ent) = NULL; } } HvMAX(hv) = hv_max; HvTOTALKEYS(hv) = HvTOTALKEYS(ohv); HvARRAY(hv) = ents; } /* not magical */ else { /* Iterate over ohv, copying keys and values one at a time. */ HE *entry; const I32 riter = HvRITER_get(ohv); HE * const eiter = HvEITER_get(ohv); STRLEN hv_keys = HvTOTALKEYS(ohv); HV_SET_MAX_ADJUSTED_FOR_KEYS(hv,hv_max,hv_keys); hv_iterinit(ohv); while ((entry = hv_iternext_flags(ohv, 0))) { SV *val = hv_iterval(ohv,entry); SV * const keysv = HeSVKEY(entry); val = SvIMMORTAL(val) ? val : newSVsv(val); if (keysv) (void)hv_store_ent(hv, keysv, val, 0); else (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry), val, HeHASH(entry), HeKFLAGS(entry)); } HvRITER_set(ohv, riter); HvEITER_set(ohv, eiter); } return hv; } /* =for apidoc Am|HV *|hv_copy_hints_hv|HV *ohv A specialised version of L for copying C<%^H>. I must be a pointer to a hash (which may have C<%^H> magic, but should be generally non-magical), or C (interpreted as an empty hash). The content of I is copied to a new hash, which has the C<%^H>-specific magic added to it. A pointer to the new hash is returned. =cut */ HV * Perl_hv_copy_hints_hv(pTHX_ HV *const ohv) { HV * const hv = newHV(); if (ohv) { STRLEN hv_max = HvMAX(ohv); STRLEN hv_keys = HvTOTALKEYS(ohv); HE *entry; const I32 riter = HvRITER_get(ohv); HE * const eiter = HvEITER_get(ohv); ENTER; SAVEFREESV(hv); HV_SET_MAX_ADJUSTED_FOR_KEYS(hv,hv_max,hv_keys); hv_iterinit(ohv); while ((entry = hv_iternext_flags(ohv, 0))) { SV *const sv = newSVsv(hv_iterval(ohv,entry)); SV *heksv = HeSVKEY(entry); if (!heksv && sv) heksv = newSVhek(HeKEY_hek(entry)); if (sv) sv_magic(sv, NULL, PERL_MAGIC_hintselem, (char *)heksv, HEf_SVKEY); if (heksv == HeSVKEY(entry)) (void)hv_store_ent(hv, heksv, sv, 0); else { (void)hv_common(hv, heksv, HeKEY(entry), HeKLEN(entry), HeKFLAGS(entry), HV_FETCH_ISSTORE|HV_FETCH_JUST_SV, sv, HeHASH(entry)); SvREFCNT_dec_NN(heksv); } } HvRITER_set(ohv, riter); HvEITER_set(ohv, eiter); SvREFCNT_inc_simple_void_NN(hv); LEAVE; } hv_magic(hv, NULL, PERL_MAGIC_hints); return hv; } #undef HV_SET_MAX_ADJUSTED_FOR_KEYS /* like hv_free_ent, but returns the SV rather than freeing it */ STATIC SV* S_hv_free_ent_ret(pTHX_ HV *hv, HE *entry) { SV *val; PERL_ARGS_ASSERT_HV_FREE_ENT_RET; val = HeVAL(entry); if (HeKLEN(entry) == HEf_SVKEY) { SvREFCNT_dec(HeKEY_sv(entry)); Safefree(HeKEY_hek(entry)); } else if (HvSHAREKEYS(hv)) unshare_hek(HeKEY_hek(entry)); else Safefree(HeKEY_hek(entry)); del_HE(entry); return val; } void Perl_hv_free_ent(pTHX_ HV *hv, HE *entry) { SV *val; PERL_ARGS_ASSERT_HV_FREE_ENT; if (!entry) return; val = hv_free_ent_ret(hv, entry); SvREFCNT_dec(val); } void Perl_hv_delayfree_ent(pTHX_ HV *hv, HE *entry) { PERL_ARGS_ASSERT_HV_DELAYFREE_ENT; if (!entry) return; /* SvREFCNT_inc to counter the SvREFCNT_dec in hv_free_ent */ sv_2mortal(SvREFCNT_inc(HeVAL(entry))); /* free between statements */ if (HeKLEN(entry) == HEf_SVKEY) { sv_2mortal(SvREFCNT_inc(HeKEY_sv(entry))); } hv_free_ent(hv, entry); } /* =for apidoc hv_clear Frees the all the elements of a hash, leaving it empty. The XS equivalent of C<%hash = ()>. See also L. If any destructors are triggered as a result, the hv itself may be freed. =cut */ void Perl_hv_clear(pTHX_ HV *hv) { dVAR; XPVHV* xhv; if (!hv) return; DEBUG_A(Perl_hv_assert(aTHX_ hv)); xhv = (XPVHV*)SvANY(hv); ENTER; SAVEFREESV(SvREFCNT_inc_simple_NN(hv)); if (SvREADONLY(hv) && HvARRAY(hv) != NULL) { /* restricted hash: convert all keys to placeholders */ STRLEN i; for (i = 0; i <= xhv->xhv_max; i++) { HE *entry = (HvARRAY(hv))[i]; for (; entry; entry = HeNEXT(entry)) { /* not already placeholder */ if (HeVAL(entry) != &PL_sv_placeholder) { if (HeVAL(entry)) { if (SvREADONLY(HeVAL(entry))) { SV* const keysv = hv_iterkeysv(entry); Perl_croak_nocontext( "Attempt to delete readonly key '%"SVf"' from a restricted hash", (void*)keysv); } SvREFCNT_dec_NN(HeVAL(entry)); } HeVAL(entry) = &PL_sv_placeholder; HvPLACEHOLDERS(hv)++; } } } } else { hfreeentries(hv); HvPLACEHOLDERS_set(hv, 0); if (SvRMAGICAL(hv)) mg_clear(MUTABLE_SV(hv)); HvHASKFLAGS_off(hv); } if (SvOOK(hv)) { if(HvENAME_get(hv)) mro_isa_changed_in(hv); HvEITER_set(hv, NULL); } LEAVE; } /* =for apidoc hv_clear_placeholders Clears any placeholders from a hash. If a restricted hash has any of its keys marked as readonly and the key is subsequently deleted, the key is not actually deleted but is marked by assigning it a value of &PL_sv_placeholder. This tags it so it will be ignored by future operations such as iterating over the hash, but will still allow the hash to have a value reassigned to the key at some future point. This function clears any such placeholder keys from the hash. See Hash::Util::lock_keys() for an example of its use. =cut */ void Perl_hv_clear_placeholders(pTHX_ HV *hv) { const U32 items = (U32)HvPLACEHOLDERS_get(hv); PERL_ARGS_ASSERT_HV_CLEAR_PLACEHOLDERS; if (items) clear_placeholders(hv, items); } static void S_clear_placeholders(pTHX_ HV *hv, U32 items) { dVAR; I32 i; PERL_ARGS_ASSERT_CLEAR_PLACEHOLDERS; if (items == 0) return; i = HvMAX(hv); do { /* Loop down the linked list heads */ HE **oentry = &(HvARRAY(hv))[i]; HE *entry; while ((entry = *oentry)) { if (HeVAL(entry) == &PL_sv_placeholder) { *oentry = HeNEXT(entry); if (entry == HvEITER_get(hv)) HvLAZYDEL_on(hv); else { if (SvOOK(hv) && HvLAZYDEL(hv) && entry == HeNEXT(HvAUX(hv)->xhv_eiter)) HeNEXT(HvAUX(hv)->xhv_eiter) = HeNEXT(entry); hv_free_ent(hv, entry); } if (--items == 0) { /* Finished. */ I32 placeholders = HvPLACEHOLDERS_get(hv); HvTOTALKEYS(hv) -= (IV)placeholders; /* HvUSEDKEYS expanded */ if ((HvTOTALKEYS(hv) - placeholders) == 0) HvHASKFLAGS_off(hv); HvPLACEHOLDERS_set(hv, 0); return; } } else { oentry = &HeNEXT(entry); } } } while (--i >= 0); /* You can't get here, hence assertion should always fail. */ assert (items == 0); NOT_REACHED; /* NOTREACHED */ } STATIC void S_hfreeentries(pTHX_ HV *hv) { STRLEN index = 0; XPVHV * const xhv = (XPVHV*)SvANY(hv); SV *sv; PERL_ARGS_ASSERT_HFREEENTRIES; while ((sv = Perl_hfree_next_entry(aTHX_ hv, &index))||xhv->xhv_keys) { SvREFCNT_dec(sv); } } /* hfree_next_entry() * For use only by S_hfreeentries() and sv_clear(). * Delete the next available HE from hv and return the associated SV. * Returns null on empty hash. Nevertheless null is not a reliable * indicator that the hash is empty, as the deleted entry may have a * null value. * indexp is a pointer to the current index into HvARRAY. The index should * initially be set to 0. hfree_next_entry() may update it. */ SV* Perl_hfree_next_entry(pTHX_ HV *hv, STRLEN *indexp) { struct xpvhv_aux *iter; HE *entry; HE ** array; #ifdef DEBUGGING STRLEN orig_index = *indexp; #endif PERL_ARGS_ASSERT_HFREE_NEXT_ENTRY; if (SvOOK(hv) && ((iter = HvAUX(hv)))) { if ((entry = iter->xhv_eiter)) { /* the iterator may get resurrected after each * destructor call, so check each time */ if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */ HvLAZYDEL_off(hv); hv_free_ent(hv, entry); /* warning: at this point HvARRAY may have been * re-allocated, HvMAX changed etc */ } iter = HvAUX(hv); /* may have been realloced */ iter->xhv_riter = -1; /* HvRITER(hv) = -1 */ iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */ #ifdef PERL_HASH_RANDOMIZE_KEYS iter->xhv_last_rand = iter->xhv_rand; #endif } /* Reset any cached HvFILL() to "unknown". It's unlikely that anyone will actually call HvFILL() on a hash under destruction, so it seems pointless attempting to track the number of keys remaining. But if they do, we want to reset it again. */ if (iter->xhv_fill_lazy) iter->xhv_fill_lazy = 0; } if (!((XPVHV*)SvANY(hv))->xhv_keys) return NULL; array = HvARRAY(hv); assert(array); while ( ! ((entry = array[*indexp])) ) { if ((*indexp)++ >= HvMAX(hv)) *indexp = 0; assert(*indexp != orig_index); } array[*indexp] = HeNEXT(entry); ((XPVHV*) SvANY(hv))->xhv_keys--; if ( PL_phase != PERL_PHASE_DESTRUCT && HvENAME(hv) && HeVAL(entry) && isGV(HeVAL(entry)) && GvHV(HeVAL(entry)) && HvENAME(GvHV(HeVAL(entry))) ) { STRLEN klen; const char * const key = HePV(entry,klen); if ((klen > 1 && key[klen-1]==':' && key[klen-2]==':') || (klen == 1 && key[0] == ':')) { mro_package_moved( NULL, GvHV(HeVAL(entry)), (GV *)HeVAL(entry), 0 ); } } return hv_free_ent_ret(hv, entry); } /* =for apidoc hv_undef Undefines the hash. The XS equivalent of C. As well as freeing all the elements of the hash (like hv_clear()), this also frees any auxiliary data and storage associated with the hash. If any destructors are triggered as a result, the hv itself may be freed. See also L. =cut */ void Perl_hv_undef_flags(pTHX_ HV *hv, U32 flags) { XPVHV* xhv; bool save; if (!hv) return; save = !!SvREFCNT(hv); DEBUG_A(Perl_hv_assert(aTHX_ hv)); xhv = (XPVHV*)SvANY(hv); /* The name must be deleted before the call to hfreeeeentries so that CVs are anonymised properly. But the effective name must be pre- served until after that call (and only deleted afterwards if the call originated from sv_clear). For stashes with one name that is both the canonical name and the effective name, hv_name_set has to allocate an array for storing the effective name. We can skip that during global destruction, as it does not matter where the CVs point if they will be freed anyway. */ /* note that the code following prior to hfreeentries is duplicated * in sv_clear(), and changes here should be done there too */ if (PL_phase != PERL_PHASE_DESTRUCT && HvNAME(hv)) { if (PL_stashcache) { DEBUG_o(Perl_deb(aTHX_ "hv_undef_flags clearing PL_stashcache for '%" HEKf"'\n", HEKfARG(HvNAME_HEK(hv)))); (void)hv_deletehek(PL_stashcache, HvNAME_HEK(hv), G_DISCARD); } hv_name_set(hv, NULL, 0, 0); } if (save) { ENTER; SAVEFREESV(SvREFCNT_inc_simple_NN(hv)); } hfreeentries(hv); if (SvOOK(hv)) { struct mro_meta *meta; const char *name; if (HvENAME_get(hv)) { if (PL_phase != PERL_PHASE_DESTRUCT) mro_isa_changed_in(hv); if (PL_stashcache) { DEBUG_o(Perl_deb(aTHX_ "hv_undef_flags clearing PL_stashcache for effective name '%" HEKf"'\n", HEKfARG(HvENAME_HEK(hv)))); (void)hv_deletehek(PL_stashcache, HvENAME_HEK(hv), G_DISCARD); } } /* If this call originated from sv_clear, then we must check for * effective names that need freeing, as well as the usual name. */ name = HvNAME(hv); if (flags & HV_NAME_SETALL ? !!HvAUX(hv)->xhv_name_u.xhvnameu_name : !!name) { if (name && PL_stashcache) { DEBUG_o(Perl_deb(aTHX_ "hv_undef_flags clearing PL_stashcache for name '%" HEKf"'\n", HEKfARG(HvNAME_HEK(hv)))); (void)hv_deletehek(PL_stashcache, HvNAME_HEK(hv), G_DISCARD); } hv_name_set(hv, NULL, 0, flags); } if((meta = HvAUX(hv)->xhv_mro_meta)) { if (meta->mro_linear_all) { SvREFCNT_dec_NN(meta->mro_linear_all); /* mro_linear_current is just acting as a shortcut pointer, hence the else. */ } else /* Only the current MRO is stored, so this owns the data. */ SvREFCNT_dec(meta->mro_linear_current); SvREFCNT_dec(meta->mro_nextmethod); SvREFCNT_dec(meta->isa); SvREFCNT_dec(meta->super); Safefree(meta); HvAUX(hv)->xhv_mro_meta = NULL; } if (!HvAUX(hv)->xhv_name_u.xhvnameu_name && ! HvAUX(hv)->xhv_backreferences) SvFLAGS(hv) &= ~SVf_OOK; } if (!SvOOK(hv)) { Safefree(HvARRAY(hv)); xhv->xhv_max = PERL_HASH_DEFAULT_HvMAX; /* HvMAX(hv) = 7 (it's a normal hash) */ HvARRAY(hv) = 0; } /* if we're freeing the HV, the SvMAGIC field has been reused for * other purposes, and so there can't be any placeholder magic */ if (SvREFCNT(hv)) HvPLACEHOLDERS_set(hv, 0); if (SvRMAGICAL(hv)) mg_clear(MUTABLE_SV(hv)); if (save) LEAVE; } /* =for apidoc hv_fill Returns the number of hash buckets that happen to be in use. This function is wrapped by the macro C. Previously this value was always stored in the HV structure, which created an overhead on every hash (and pretty much every object) for something that was rarely used. Now we calculate it on demand the first time that it is needed, and cache it if that calculation is going to be costly to repeat. The cached value is updated by insertions and deletions, but (currently) discarded if the hash is split. =cut */ STRLEN Perl_hv_fill(pTHX_ HV *const hv) { STRLEN count = 0; HE **ents = HvARRAY(hv); struct xpvhv_aux *aux = SvOOK(hv) ? HvAUX(hv) : NULL; PERL_ARGS_ASSERT_HV_FILL; /* No keys implies no buckets used. One key can only possibly mean one bucket used. */ if (HvTOTALKEYS(hv) < 2) return HvTOTALKEYS(hv); #ifndef DEBUGGING if (aux && aux->xhv_fill_lazy) return aux->xhv_fill_lazy; #endif if (ents) { HE *const *const last = ents + HvMAX(hv); count = last + 1 - ents; do { if (!*ents) --count; } while (++ents <= last); } if (aux) { #ifdef DEBUGGING if (aux->xhv_fill_lazy) assert(aux->xhv_fill_lazy == count); #endif aux->xhv_fill_lazy = count; } else if (HvMAX(hv) >= HV_FILL_THRESHOLD) { aux = hv_auxinit(hv); aux->xhv_fill_lazy = count; } return count; } /* hash a pointer to a U32 - Used in the hash traversal randomization * and bucket order randomization code * * this code was derived from Sereal, which was derived from autobox. */ PERL_STATIC_INLINE U32 S_ptr_hash(PTRV u) { #if PTRSIZE == 8 /* * This is one of Thomas Wang's hash functions for 64-bit integers from: * http://www.concentric.net/~Ttwang/tech/inthash.htm */ u = (~u) + (u << 18); u = u ^ (u >> 31); u = u * 21; u = u ^ (u >> 11); u = u + (u << 6); u = u ^ (u >> 22); #else /* * This is one of Bob Jenkins' hash functions for 32-bit integers * from: http://burtleburtle.net/bob/hash/integer.html */ u = (u + 0x7ed55d16) + (u << 12); u = (u ^ 0xc761c23c) ^ (u >> 19); u = (u + 0x165667b1) + (u << 5); u = (u + 0xd3a2646c) ^ (u << 9); u = (u + 0xfd7046c5) + (u << 3); u = (u ^ 0xb55a4f09) ^ (u >> 16); #endif return (U32)u; } static struct xpvhv_aux* S_hv_auxinit_internal(struct xpvhv_aux *iter) { PERL_ARGS_ASSERT_HV_AUXINIT_INTERNAL; iter->xhv_riter = -1; /* HvRITER(hv) = -1 */ iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */ #ifdef PERL_HASH_RANDOMIZE_KEYS iter->xhv_last_rand = iter->xhv_rand; #endif iter->xhv_fill_lazy = 0; iter->xhv_name_u.xhvnameu_name = 0; iter->xhv_name_count = 0; iter->xhv_backreferences = 0; iter->xhv_mro_meta = NULL; iter->xhv_aux_flags = 0; return iter; } static struct xpvhv_aux* S_hv_auxinit(pTHX_ HV *hv) { struct xpvhv_aux *iter; char *array; PERL_ARGS_ASSERT_HV_AUXINIT; if (!SvOOK(hv)) { if (!HvARRAY(hv)) { Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1) + sizeof(struct xpvhv_aux), char); } else { array = (char *) HvARRAY(hv); Renew(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1) + sizeof(struct xpvhv_aux), char); } HvARRAY(hv) = (HE**)array; SvOOK_on(hv); iter = HvAUX(hv); #ifdef PERL_HASH_RANDOMIZE_KEYS if (PL_HASH_RAND_BITS_ENABLED) { /* mix in some new state to PL_hash_rand_bits to "randomize" the traversal order*/ if (PL_HASH_RAND_BITS_ENABLED == 1) PL_hash_rand_bits += ptr_hash((PTRV)array); PL_hash_rand_bits = ROTL_UV(PL_hash_rand_bits,1); } iter->xhv_rand = (U32)PL_hash_rand_bits; #endif } else { iter = HvAUX(hv); } return hv_auxinit_internal(iter); } /* =for apidoc hv_iterinit Prepares a starting point to traverse a hash table. Returns the number of keys in the hash (i.e. the same as C). The return value is currently only meaningful for hashes without tie magic. NOTE: Before version 5.004_65, C used to return the number of hash buckets that happen to be in use. If you still need that esoteric value, you can get it through the macro C. =cut */ I32 Perl_hv_iterinit(pTHX_ HV *hv) { PERL_ARGS_ASSERT_HV_ITERINIT; if (SvOOK(hv)) { struct xpvhv_aux * iter = HvAUX(hv); HE * const entry = iter->xhv_eiter; /* HvEITER(hv) */ if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */ HvLAZYDEL_off(hv); hv_free_ent(hv, entry); } iter = HvAUX(hv); /* may have been reallocated */ iter->xhv_riter = -1; /* HvRITER(hv) = -1 */ iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */ #ifdef PERL_HASH_RANDOMIZE_KEYS iter->xhv_last_rand = iter->xhv_rand; #endif } else { hv_auxinit(hv); } /* used to be xhv->xhv_fill before 5.004_65 */ return HvTOTALKEYS(hv); } I32 * Perl_hv_riter_p(pTHX_ HV *hv) { struct xpvhv_aux *iter; PERL_ARGS_ASSERT_HV_RITER_P; iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv); return &(iter->xhv_riter); } HE ** Perl_hv_eiter_p(pTHX_ HV *hv) { struct xpvhv_aux *iter; PERL_ARGS_ASSERT_HV_EITER_P; iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv); return &(iter->xhv_eiter); } void Perl_hv_riter_set(pTHX_ HV *hv, I32 riter) { struct xpvhv_aux *iter; PERL_ARGS_ASSERT_HV_RITER_SET; if (SvOOK(hv)) { iter = HvAUX(hv); } else { if (riter == -1) return; iter = hv_auxinit(hv); } iter->xhv_riter = riter; } void Perl_hv_rand_set(pTHX_ HV *hv, U32 new_xhv_rand) { struct xpvhv_aux *iter; PERL_ARGS_ASSERT_HV_RAND_SET; #ifdef PERL_HASH_RANDOMIZE_KEYS if (SvOOK(hv)) { iter = HvAUX(hv); } else { iter = hv_auxinit(hv); } iter->xhv_rand = new_xhv_rand; #else Perl_croak(aTHX_ "This Perl has not been built with support for randomized hash key traversal but something called Perl_hv_rand_set()."); #endif } void Perl_hv_eiter_set(pTHX_ HV *hv, HE *eiter) { struct xpvhv_aux *iter; PERL_ARGS_ASSERT_HV_EITER_SET; if (SvOOK(hv)) { iter = HvAUX(hv); } else { /* 0 is the default so don't go malloc()ing a new structure just to hold 0. */ if (!eiter) return; iter = hv_auxinit(hv); } iter->xhv_eiter = eiter; } void Perl_hv_name_set(pTHX_ HV *hv, const char *name, U32 len, U32 flags) { dVAR; struct xpvhv_aux *iter; U32 hash; HEK **spot; PERL_ARGS_ASSERT_HV_NAME_SET; if (len > I32_MAX) Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len); if (SvOOK(hv)) { iter = HvAUX(hv); if (iter->xhv_name_u.xhvnameu_name) { if(iter->xhv_name_count) { if(flags & HV_NAME_SETALL) { HEK ** const name = HvAUX(hv)->xhv_name_u.xhvnameu_names; HEK **hekp = name + ( iter->xhv_name_count < 0 ? -iter->xhv_name_count : iter->xhv_name_count ); while(hekp-- > name+1) unshare_hek_or_pvn(*hekp, 0, 0, 0); /* The first elem may be null. */ if(*name) unshare_hek_or_pvn(*name, 0, 0, 0); Safefree(name); iter = HvAUX(hv); /* may been realloced */ spot = &iter->xhv_name_u.xhvnameu_name; iter->xhv_name_count = 0; } else { if(iter->xhv_name_count > 0) { /* shift some things over */ Renew( iter->xhv_name_u.xhvnameu_names, iter->xhv_name_count + 1, HEK * ); spot = iter->xhv_name_u.xhvnameu_names; spot[iter->xhv_name_count] = spot[1]; spot[1] = spot[0]; iter->xhv_name_count = -(iter->xhv_name_count + 1); } else if(*(spot = iter->xhv_name_u.xhvnameu_names)) { unshare_hek_or_pvn(*spot, 0, 0, 0); } } } else if (flags & HV_NAME_SETALL) { unshare_hek_or_pvn(iter->xhv_name_u.xhvnameu_name, 0, 0, 0); iter = HvAUX(hv); /* may been realloced */ spot = &iter->xhv_name_u.xhvnameu_name; } else { HEK * const existing_name = iter->xhv_name_u.xhvnameu_name; Newx(iter->xhv_name_u.xhvnameu_names, 2, HEK *); iter->xhv_name_count = -2; spot = iter->xhv_name_u.xhvnameu_names; spot[1] = existing_name; } } else { spot = &iter->xhv_name_u.xhvnameu_name; iter->xhv_name_count = 0; } } else { if (name == 0) return; iter = hv_auxinit(hv); spot = &iter->xhv_name_u.xhvnameu_name; } PERL_HASH(hash, name, len); *spot = name ? share_hek(name, flags & SVf_UTF8 ? -(I32)len : (I32)len, hash) : NULL; } /* This is basically sv_eq_flags() in sv.c, but we avoid the magic and bytes checking. */ STATIC I32 hek_eq_pvn_flags(pTHX_ const HEK *hek, const char* pv, const I32 pvlen, const U32 flags) { if ( (HEK_UTF8(hek) ? 1 : 0) != (flags & SVf_UTF8 ? 1 : 0) ) { if (flags & SVf_UTF8) return (bytes_cmp_utf8( (const U8*)HEK_KEY(hek), HEK_LEN(hek), (const U8*)pv, pvlen) == 0); else return (bytes_cmp_utf8( (const U8*)pv, pvlen, (const U8*)HEK_KEY(hek), HEK_LEN(hek)) == 0); } else return HEK_LEN(hek) == pvlen && ((HEK_KEY(hek) == pv) || memEQ(HEK_KEY(hek), pv, pvlen)); } /* =for apidoc hv_ename_add Adds a name to a stash's internal list of effective names. See C. This is called when a stash is assigned to a new location in the symbol table. =cut */ void Perl_hv_ename_add(pTHX_ HV *hv, const char *name, U32 len, U32 flags) { dVAR; struct xpvhv_aux *aux = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv); U32 hash; PERL_ARGS_ASSERT_HV_ENAME_ADD; if (len > I32_MAX) Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len); PERL_HASH(hash, name, len); if (aux->xhv_name_count) { I32 count = aux->xhv_name_count; HEK ** const xhv_name = aux->xhv_name_u.xhvnameu_names + (count<0); HEK **hekp = xhv_name + (count < 0 ? -count - 1 : count); while (hekp-- > xhv_name) { assert(*hekp); if ( (HEK_UTF8(*hekp) || (flags & SVf_UTF8)) ? hek_eq_pvn_flags(aTHX_ *hekp, name, (I32)len, flags) : (HEK_LEN(*hekp) == (I32)len && memEQ(HEK_KEY(*hekp), name, len)) ) { if (hekp == xhv_name && count < 0) aux->xhv_name_count = -count; return; } } if (count < 0) aux->xhv_name_count--, count = -count; else aux->xhv_name_count++; Renew(aux->xhv_name_u.xhvnameu_names, count + 1, HEK *); (aux->xhv_name_u.xhvnameu_names)[count] = share_hek(name, (flags & SVf_UTF8 ? -(I32)len : (I32)len), hash); } else { HEK *existing_name = aux->xhv_name_u.xhvnameu_name; if ( existing_name && ( (HEK_UTF8(existing_name) || (flags & SVf_UTF8)) ? hek_eq_pvn_flags(aTHX_ existing_name, name, (I32)len, flags) : (HEK_LEN(existing_name) == (I32)len && memEQ(HEK_KEY(existing_name), name, len)) ) ) return; Newx(aux->xhv_name_u.xhvnameu_names, 2, HEK *); aux->xhv_name_count = existing_name ? 2 : -2; *aux->xhv_name_u.xhvnameu_names = existing_name; (aux->xhv_name_u.xhvnameu_names)[1] = share_hek(name, (flags & SVf_UTF8 ? -(I32)len : (I32)len), hash); } } /* =for apidoc hv_ename_delete Removes a name from a stash's internal list of effective names. If this is the name returned by C, then another name in the list will take its place (C will use it). This is called when a stash is deleted from the symbol table. =cut */ void Perl_hv_ename_delete(pTHX_ HV *hv, const char *name, U32 len, U32 flags) { struct xpvhv_aux *aux; PERL_ARGS_ASSERT_HV_ENAME_DELETE; if (len > I32_MAX) Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len); if (!SvOOK(hv)) return; aux = HvAUX(hv); if (!aux->xhv_name_u.xhvnameu_name) return; if (aux->xhv_name_count) { HEK ** const namep = aux->xhv_name_u.xhvnameu_names; I32 const count = aux->xhv_name_count; HEK **victim = namep + (count < 0 ? -count : count); while (victim-- > namep + 1) if ( (HEK_UTF8(*victim) || (flags & SVf_UTF8)) ? hek_eq_pvn_flags(aTHX_ *victim, name, (I32)len, flags) : (HEK_LEN(*victim) == (I32)len && memEQ(HEK_KEY(*victim), name, len)) ) { unshare_hek_or_pvn(*victim, 0, 0, 0); aux = HvAUX(hv); /* may been realloced */ if (count < 0) ++aux->xhv_name_count; else --aux->xhv_name_count; if ( (aux->xhv_name_count == 1 || aux->xhv_name_count == -1) && !*namep ) { /* if there are none left */ Safefree(namep); aux->xhv_name_u.xhvnameu_names = NULL; aux->xhv_name_count = 0; } else { /* Move the last one back to fill the empty slot. It does not matter what order they are in. */ *victim = *(namep + (count < 0 ? -count : count) - 1); } return; } if ( count > 0 && (HEK_UTF8(*namep) || (flags & SVf_UTF8)) ? hek_eq_pvn_flags(aTHX_ *namep, name, (I32)len, flags) : (HEK_LEN(*namep) == (I32)len && memEQ(HEK_KEY(*namep), name, len)) ) { aux->xhv_name_count = -count; } } else if( (HEK_UTF8(aux->xhv_name_u.xhvnameu_name) || (flags & SVf_UTF8)) ? hek_eq_pvn_flags(aTHX_ aux->xhv_name_u.xhvnameu_name, name, (I32)len, flags) : (HEK_LEN(aux->xhv_name_u.xhvnameu_name) == (I32)len && memEQ(HEK_KEY(aux->xhv_name_u.xhvnameu_name), name, len)) ) { HEK * const namehek = aux->xhv_name_u.xhvnameu_name; Newx(aux->xhv_name_u.xhvnameu_names, 1, HEK *); *aux->xhv_name_u.xhvnameu_names = namehek; aux->xhv_name_count = -1; } } AV ** Perl_hv_backreferences_p(pTHX_ HV *hv) { PERL_ARGS_ASSERT_HV_BACKREFERENCES_P; /* See also Perl_sv_get_backrefs in sv.c where this logic is unrolled */ { struct xpvhv_aux * const iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv); return &(iter->xhv_backreferences); } } void Perl_hv_kill_backrefs(pTHX_ HV *hv) { AV *av; PERL_ARGS_ASSERT_HV_KILL_BACKREFS; if (!SvOOK(hv)) return; av = HvAUX(hv)->xhv_backreferences; if (av) { HvAUX(hv)->xhv_backreferences = 0; Perl_sv_kill_backrefs(aTHX_ MUTABLE_SV(hv), av); if (SvTYPE(av) == SVt_PVAV) SvREFCNT_dec_NN(av); } } /* hv_iternext is implemented as a macro in hv.h =for apidoc hv_iternext Returns entries from a hash iterator. See C. You may call C or C on the hash entry that the iterator currently points to, without losing your place or invalidating your iterator. Note that in this case the current entry is deleted from the hash with your iterator holding the last reference to it. Your iterator is flagged to free the entry on the next call to C, so you must not discard your iterator immediately else the entry will leak - call C to trigger the resource deallocation. =for apidoc hv_iternext_flags Returns entries from a hash iterator. See C and C. The C value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is set the placeholders keys (for restricted hashes) will be returned in addition to normal keys. By default placeholders are automatically skipped over. Currently a placeholder is implemented with a value that is C<&PL_sv_placeholder>. Note that the implementation of placeholders and restricted hashes may change, and the implementation currently is insufficiently abstracted for any change to be tidy. =cut */ HE * Perl_hv_iternext_flags(pTHX_ HV *hv, I32 flags) { dVAR; XPVHV* xhv; HE *entry; HE *oldentry; MAGIC* mg; struct xpvhv_aux *iter; PERL_ARGS_ASSERT_HV_ITERNEXT_FLAGS; xhv = (XPVHV*)SvANY(hv); if (!SvOOK(hv)) { /* Too many things (well, pp_each at least) merrily assume that you can call hv_iternext without calling hv_iterinit, so we'll have to deal with it. */ hv_iterinit(hv); } iter = HvAUX(hv); oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */ if (SvMAGICAL(hv) && SvRMAGICAL(hv)) { if ( ( mg = mg_find((const SV *)hv, PERL_MAGIC_tied) ) ) { SV * const key = sv_newmortal(); if (entry) { sv_setsv(key, HeSVKEY_force(entry)); SvREFCNT_dec(HeSVKEY(entry)); /* get rid of previous key */ HeSVKEY_set(entry, NULL); } else { char *k; HEK *hek; /* one HE per MAGICAL hash */ iter->xhv_eiter = entry = new_HE(); /* HvEITER(hv) = new_HE() */ HvLAZYDEL_on(hv); /* make sure entry gets freed */ Zero(entry, 1, HE); Newxz(k, HEK_BASESIZE + sizeof(const SV *), char); hek = (HEK*)k; HeKEY_hek(entry) = hek; HeKLEN(entry) = HEf_SVKEY; } magic_nextpack(MUTABLE_SV(hv),mg,key); if (SvOK(key)) { /* force key to stay around until next time */ HeSVKEY_set(entry, SvREFCNT_inc_simple_NN(key)); return entry; /* beware, hent_val is not set */ } SvREFCNT_dec(HeVAL(entry)); Safefree(HeKEY_hek(entry)); del_HE(entry); iter = HvAUX(hv); /* may been realloced */ iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */ HvLAZYDEL_off(hv); return NULL; } } #if defined(DYNAMIC_ENV_FETCH) && !defined(__riscos__) /* set up %ENV for iteration */ if (!entry && SvRMAGICAL((const SV *)hv) && mg_find((const SV *)hv, PERL_MAGIC_env)) { prime_env_iter(); #ifdef VMS /* The prime_env_iter() on VMS just loaded up new hash values * so the iteration count needs to be reset back to the beginning */ hv_iterinit(hv); iter = HvAUX(hv); oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */ #endif } #endif /* hv_iterinit now ensures this. */ assert (HvARRAY(hv)); /* At start of hash, entry is NULL. */ if (entry) { entry = HeNEXT(entry); if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) { /* * Skip past any placeholders -- don't want to include them in * any iteration. */ while (entry && HeVAL(entry) == &PL_sv_placeholder) { entry = HeNEXT(entry); } } } #ifdef PERL_HASH_RANDOMIZE_KEYS if (iter->xhv_last_rand != iter->xhv_rand) { if (iter->xhv_riter != -1) { Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL), "Use of each() on hash after insertion without resetting hash iterator results in undefined behavior" pTHX__FORMAT pTHX__VALUE); } iter = HvAUX(hv); /* may been realloced */ iter->xhv_last_rand = iter->xhv_rand; } #endif /* Skip the entire loop if the hash is empty. */ if ((flags & HV_ITERNEXT_WANTPLACEHOLDERS) ? HvTOTALKEYS(hv) : HvUSEDKEYS(hv)) { while (!entry) { /* OK. Come to the end of the current list. Grab the next one. */ iter->xhv_riter++; /* HvRITER(hv)++ */ if (iter->xhv_riter > (I32)xhv->xhv_max /* HvRITER(hv) > HvMAX(hv) */) { /* There is no next one. End of the hash. */ iter->xhv_riter = -1; /* HvRITER(hv) = -1 */ #ifdef PERL_HASH_RANDOMIZE_KEYS iter->xhv_last_rand = iter->xhv_rand; /* reset xhv_last_rand so we can detect inserts during traversal */ #endif break; } entry = (HvARRAY(hv))[ PERL_HASH_ITER_BUCKET(iter) & xhv->xhv_max ]; if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) { /* If we have an entry, but it's a placeholder, don't count it. Try the next. */ while (entry && HeVAL(entry) == &PL_sv_placeholder) entry = HeNEXT(entry); } /* Will loop again if this linked list starts NULL (for HV_ITERNEXT_WANTPLACEHOLDERS) or if we run through it and find only placeholders. */ } } else { iter->xhv_riter = -1; #ifdef PERL_HASH_RANDOMIZE_KEYS iter->xhv_last_rand = iter->xhv_rand; #endif } if (oldentry && HvLAZYDEL(hv)) { /* was deleted earlier? */ HvLAZYDEL_off(hv); hv_free_ent(hv, oldentry); } iter = HvAUX(hv); /* may been realloced */ iter->xhv_eiter = entry; /* HvEITER(hv) = entry */ return entry; } /* =for apidoc hv_iterkey Returns the key from the current position of the hash iterator. See C. =cut */ char * Perl_hv_iterkey(pTHX_ HE *entry, I32 *retlen) { PERL_ARGS_ASSERT_HV_ITERKEY; if (HeKLEN(entry) == HEf_SVKEY) { STRLEN len; char * const p = SvPV(HeKEY_sv(entry), len); *retlen = len; return p; } else { *retlen = HeKLEN(entry); return HeKEY(entry); } } /* unlike hv_iterval(), this always returns a mortal copy of the key */ /* =for apidoc hv_iterkeysv Returns the key as an C from the current position of the hash iterator. The return value will always be a mortal copy of the key. Also see C. =cut */ SV * Perl_hv_iterkeysv(pTHX_ HE *entry) { PERL_ARGS_ASSERT_HV_ITERKEYSV; return sv_2mortal(newSVhek(HeKEY_hek(entry))); } /* =for apidoc hv_iterval Returns the value from the current position of the hash iterator. See C. =cut */ SV * Perl_hv_iterval(pTHX_ HV *hv, HE *entry) { PERL_ARGS_ASSERT_HV_ITERVAL; if (SvRMAGICAL(hv)) { if (mg_find((const SV *)hv, PERL_MAGIC_tied)) { SV* const sv = sv_newmortal(); if (HeKLEN(entry) == HEf_SVKEY) mg_copy(MUTABLE_SV(hv), sv, (char*)HeKEY_sv(entry), HEf_SVKEY); else mg_copy(MUTABLE_SV(hv), sv, HeKEY(entry), HeKLEN(entry)); return sv; } } return HeVAL(entry); } /* =for apidoc hv_iternextsv Performs an C, C, and C in one operation. =cut */ SV * Perl_hv_iternextsv(pTHX_ HV *hv, char **key, I32 *retlen) { HE * const he = hv_iternext_flags(hv, 0); PERL_ARGS_ASSERT_HV_ITERNEXTSV; if (!he) return NULL; *key = hv_iterkey(he, retlen); return hv_iterval(hv, he); } /* Now a macro in hv.h =for apidoc hv_magic Adds magic to a hash. See C. =cut */ /* possibly free a shared string if no one has access to it * len and hash must both be valid for str. */ void Perl_unsharepvn(pTHX_ const char *str, I32 len, U32 hash) { unshare_hek_or_pvn (NULL, str, len, hash); } void Perl_unshare_hek(pTHX_ HEK *hek) { assert(hek); unshare_hek_or_pvn(hek, NULL, 0, 0); } /* possibly free a shared string if no one has access to it hek if non-NULL takes priority over the other 3, else str, len and hash are used. If so, len and hash must both be valid for str. */ STATIC void S_unshare_hek_or_pvn(pTHX_ const HEK *hek, const char *str, I32 len, U32 hash) { XPVHV* xhv; HE *entry; HE **oentry; bool is_utf8 = FALSE; int k_flags = 0; const char * const save = str; struct shared_he *he = NULL; if (hek) { /* Find the shared he which is just before us in memory. */ he = (struct shared_he *)(((char *)hek) - STRUCT_OFFSET(struct shared_he, shared_he_hek)); /* Assert that the caller passed us a genuine (or at least consistent) shared hek */ assert (he->shared_he_he.hent_hek == hek); if (he->shared_he_he.he_valu.hent_refcount - 1) { --he->shared_he_he.he_valu.hent_refcount; return; } hash = HEK_HASH(hek); } else if (len < 0) { STRLEN tmplen = -len; is_utf8 = TRUE; /* See the note in hv_fetch(). --jhi */ str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8); len = tmplen; if (is_utf8) k_flags = HVhek_UTF8; if (str != save) k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY; } /* what follows was the moral equivalent of: if ((Svp = hv_fetch(PL_strtab, tmpsv, FALSE, hash))) { if (--*Svp == NULL) hv_delete(PL_strtab, str, len, G_DISCARD, hash); } */ xhv = (XPVHV*)SvANY(PL_strtab); /* assert(xhv_array != 0) */ oentry = &(HvARRAY(PL_strtab))[hash & (I32) HvMAX(PL_strtab)]; if (he) { const HE *const he_he = &(he->shared_he_he); for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) { if (entry == he_he) break; } } else { const int flags_masked = k_flags & HVhek_MASK; for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) { if (HeHASH(entry) != hash) /* strings can't be equal */ continue; if (HeKLEN(entry) != len) continue; if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */ continue; if (HeKFLAGS(entry) != flags_masked) continue; break; } } if (entry) { if (--entry->he_valu.hent_refcount == 0) { *oentry = HeNEXT(entry); Safefree(entry); xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */ } } if (!entry) Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL), "Attempt to free nonexistent shared string '%s'%s" pTHX__FORMAT, hek ? HEK_KEY(hek) : str, ((k_flags & HVhek_UTF8) ? " (utf8)" : "") pTHX__VALUE); if (k_flags & HVhek_FREEKEY) Safefree(str); } /* get a (constant) string ptr from the global string table * string will get added if it is not already there. * len and hash must both be valid for str. */ HEK * Perl_share_hek(pTHX_ const char *str, I32 len, U32 hash) { bool is_utf8 = FALSE; int flags = 0; const char * const save = str; PERL_ARGS_ASSERT_SHARE_HEK; if (len < 0) { STRLEN tmplen = -len; is_utf8 = TRUE; /* See the note in hv_fetch(). --jhi */ str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8); len = tmplen; /* If we were able to downgrade here, then than means that we were passed in a key which only had chars 0-255, but was utf8 encoded. */ if (is_utf8) flags = HVhek_UTF8; /* If we found we were able to downgrade the string to bytes, then we should flag that it needs upgrading on keys or each. Also flag that we need share_hek_flags to free the string. */ if (str != save) { dVAR; PERL_HASH(hash, str, len); flags |= HVhek_WASUTF8 | HVhek_FREEKEY; } } return share_hek_flags (str, len, hash, flags); } STATIC HEK * S_share_hek_flags(pTHX_ const char *str, I32 len, U32 hash, int flags) { HE *entry; const int flags_masked = flags & HVhek_MASK; const U32 hindex = hash & (I32) HvMAX(PL_strtab); XPVHV * const xhv = (XPVHV*)SvANY(PL_strtab); PERL_ARGS_ASSERT_SHARE_HEK_FLAGS; /* what follows is the moral equivalent of: if (!(Svp = hv_fetch(PL_strtab, str, len, FALSE))) hv_store(PL_strtab, str, len, NULL, hash); Can't rehash the shared string table, so not sure if it's worth counting the number of entries in the linked list */ /* assert(xhv_array != 0) */ entry = (HvARRAY(PL_strtab))[hindex]; for (;entry; entry = HeNEXT(entry)) { if (HeHASH(entry) != hash) /* strings can't be equal */ continue; if (HeKLEN(entry) != len) continue; if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */ continue; if (HeKFLAGS(entry) != flags_masked) continue; break; } if (!entry) { /* What used to be head of the list. If this is NULL, then we're the first entry for this slot, which means we need to increate fill. */ struct shared_he *new_entry; HEK *hek; char *k; HE **const head = &HvARRAY(PL_strtab)[hindex]; HE *const next = *head; /* We don't actually store a HE from the arena and a regular HEK. Instead we allocate one chunk of memory big enough for both, and put the HEK straight after the HE. This way we can find the HE directly from the HEK. */ Newx(k, STRUCT_OFFSET(struct shared_he, shared_he_hek.hek_key[0]) + len + 2, char); new_entry = (struct shared_he *)k; entry = &(new_entry->shared_he_he); hek = &(new_entry->shared_he_hek); Copy(str, HEK_KEY(hek), len, char); HEK_KEY(hek)[len] = 0; HEK_LEN(hek) = len; HEK_HASH(hek) = hash; HEK_FLAGS(hek) = (unsigned char)flags_masked; /* Still "point" to the HEK, so that other code need not know what we're up to. */ HeKEY_hek(entry) = hek; entry->he_valu.hent_refcount = 0; HeNEXT(entry) = next; *head = entry; xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */ if (!next) { /* initial entry? */ } else if ( DO_HSPLIT(xhv) ) { const STRLEN oldsize = xhv->xhv_max + 1; hsplit(PL_strtab, oldsize, oldsize * 2); } } ++entry->he_valu.hent_refcount; if (flags & HVhek_FREEKEY) Safefree(str); return HeKEY_hek(entry); } SSize_t * Perl_hv_placeholders_p(pTHX_ HV *hv) { MAGIC *mg = mg_find((const SV *)hv, PERL_MAGIC_rhash); PERL_ARGS_ASSERT_HV_PLACEHOLDERS_P; if (!mg) { mg = sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, 0); if (!mg) { Perl_die(aTHX_ "panic: hv_placeholders_p"); } } return &(mg->mg_len); } I32 Perl_hv_placeholders_get(pTHX_ const HV *hv) { MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash); PERL_ARGS_ASSERT_HV_PLACEHOLDERS_GET; PERL_UNUSED_CONTEXT; return mg ? mg->mg_len : 0; } void Perl_hv_placeholders_set(pTHX_ HV *hv, I32 ph) { MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash); PERL_ARGS_ASSERT_HV_PLACEHOLDERS_SET; if (mg) { mg->mg_len = ph; } else if (ph) { if (!sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, ph)) Perl_die(aTHX_ "panic: hv_placeholders_set"); } /* else we don't need to add magic to record 0 placeholders. */ } STATIC SV * S_refcounted_he_value(pTHX_ const struct refcounted_he *he) { dVAR; SV *value; PERL_ARGS_ASSERT_REFCOUNTED_HE_VALUE; switch(he->refcounted_he_data[0] & HVrhek_typemask) { case HVrhek_undef: value = newSV(0); break; case HVrhek_delete: value = &PL_sv_placeholder; break; case HVrhek_IV: value = newSViv(he->refcounted_he_val.refcounted_he_u_iv); break; case HVrhek_UV: value = newSVuv(he->refcounted_he_val.refcounted_he_u_uv); break; case HVrhek_PV: case HVrhek_PV_UTF8: /* Create a string SV that directly points to the bytes in our structure. */ value = newSV_type(SVt_PV); SvPV_set(value, (char *) he->refcounted_he_data + 1); SvCUR_set(value, he->refcounted_he_val.refcounted_he_u_len); /* This stops anything trying to free it */ SvLEN_set(value, 0); SvPOK_on(value); SvREADONLY_on(value); if ((he->refcounted_he_data[0] & HVrhek_typemask) == HVrhek_PV_UTF8) SvUTF8_on(value); break; default: Perl_croak(aTHX_ "panic: refcounted_he_value bad flags %"UVxf, (UV)he->refcounted_he_data[0]); } return value; } /* =for apidoc m|HV *|refcounted_he_chain_2hv|const struct refcounted_he *c|U32 flags Generates and returns a C representing the content of a C chain. I is currently unused and must be zero. =cut */ HV * Perl_refcounted_he_chain_2hv(pTHX_ const struct refcounted_he *chain, U32 flags) { dVAR; HV *hv; U32 placeholders, max; if (flags) Perl_croak(aTHX_ "panic: refcounted_he_chain_2hv bad flags %"UVxf, (UV)flags); /* We could chase the chain once to get an idea of the number of keys, and call ksplit. But for now we'll make a potentially inefficient hash with only 8 entries in its array. */ hv = newHV(); max = HvMAX(hv); if (!HvARRAY(hv)) { char *array; Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(max + 1), char); HvARRAY(hv) = (HE**)array; } placeholders = 0; while (chain) { #ifdef USE_ITHREADS U32 hash = chain->refcounted_he_hash; #else U32 hash = HEK_HASH(chain->refcounted_he_hek); #endif HE **oentry = &((HvARRAY(hv))[hash & max]); HE *entry = *oentry; SV *value; for (; entry; entry = HeNEXT(entry)) { if (HeHASH(entry) == hash) { /* We might have a duplicate key here. If so, entry is older than the key we've already put in the hash, so if they are the same, skip adding entry. */ #ifdef USE_ITHREADS const STRLEN klen = HeKLEN(entry); const char *const key = HeKEY(entry); if (klen == chain->refcounted_he_keylen && (!!HeKUTF8(entry) == !!(chain->refcounted_he_data[0] & HVhek_UTF8)) && memEQ(key, REF_HE_KEY(chain), klen)) goto next_please; #else if (HeKEY_hek(entry) == chain->refcounted_he_hek) goto next_please; if (HeKLEN(entry) == HEK_LEN(chain->refcounted_he_hek) && HeKUTF8(entry) == HEK_UTF8(chain->refcounted_he_hek) && memEQ(HeKEY(entry), HEK_KEY(chain->refcounted_he_hek), HeKLEN(entry))) goto next_please; #endif } } assert (!entry); entry = new_HE(); #ifdef USE_ITHREADS HeKEY_hek(entry) = share_hek_flags(REF_HE_KEY(chain), chain->refcounted_he_keylen, chain->refcounted_he_hash, (chain->refcounted_he_data[0] & (HVhek_UTF8|HVhek_WASUTF8))); #else HeKEY_hek(entry) = share_hek_hek(chain->refcounted_he_hek); #endif value = refcounted_he_value(chain); if (value == &PL_sv_placeholder) placeholders++; HeVAL(entry) = value; /* Link it into the chain. */ HeNEXT(entry) = *oentry; *oentry = entry; HvTOTALKEYS(hv)++; next_please: chain = chain->refcounted_he_next; } if (placeholders) { clear_placeholders(hv, placeholders); HvTOTALKEYS(hv) -= placeholders; } /* We could check in the loop to see if we encounter any keys with key flags, but it's probably not worth it, as this per-hash flag is only really meant as an optimisation for things like Storable. */ HvHASKFLAGS_on(hv); DEBUG_A(Perl_hv_assert(aTHX_ hv)); return hv; } /* =for apidoc m|SV *|refcounted_he_fetch_pvn|const struct refcounted_he *chain|const char *keypv|STRLEN keylen|U32 hash|U32 flags Search along a C chain for an entry with the key specified by I and I. If I has the C bit set, the key octets are interpreted as UTF-8, otherwise they are interpreted as Latin-1. I is a precomputed hash of the key string, or zero if it has not been precomputed. Returns a mortal scalar representing the value associated with the key, or C<&PL_sv_placeholder> if there is no value associated with the key. =cut */ SV * Perl_refcounted_he_fetch_pvn(pTHX_ const struct refcounted_he *chain, const char *keypv, STRLEN keylen, U32 hash, U32 flags) { dVAR; U8 utf8_flag; PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PVN; if (flags & ~(REFCOUNTED_HE_KEY_UTF8|REFCOUNTED_HE_EXISTS)) Perl_croak(aTHX_ "panic: refcounted_he_fetch_pvn bad flags %"UVxf, (UV)flags); if (!chain) goto ret; if (flags & REFCOUNTED_HE_KEY_UTF8) { /* For searching purposes, canonicalise to Latin-1 where possible. */ const char *keyend = keypv + keylen, *p; STRLEN nonascii_count = 0; for (p = keypv; p != keyend; p++) { if (! UTF8_IS_INVARIANT(*p)) { if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, keyend)) { goto canonicalised_key; } nonascii_count++; p++; } } if (nonascii_count) { char *q; const char *p = keypv, *keyend = keypv + keylen; keylen -= nonascii_count; Newx(q, keylen, char); SAVEFREEPV(q); keypv = q; for (; p != keyend; p++, q++) { U8 c = (U8)*p; if (UTF8_IS_INVARIANT(c)) { *q = (char) c; } else { p++; *q = (char) TWO_BYTE_UTF8_TO_NATIVE(c, *p); } } } flags &= ~REFCOUNTED_HE_KEY_UTF8; canonicalised_key: ; } utf8_flag = (flags & REFCOUNTED_HE_KEY_UTF8) ? HVhek_UTF8 : 0; if (!hash) PERL_HASH(hash, keypv, keylen); for (; chain; chain = chain->refcounted_he_next) { if ( #ifdef USE_ITHREADS hash == chain->refcounted_he_hash && keylen == chain->refcounted_he_keylen && memEQ(REF_HE_KEY(chain), keypv, keylen) && utf8_flag == (chain->refcounted_he_data[0] & HVhek_UTF8) #else hash == HEK_HASH(chain->refcounted_he_hek) && keylen == (STRLEN)HEK_LEN(chain->refcounted_he_hek) && memEQ(HEK_KEY(chain->refcounted_he_hek), keypv, keylen) && utf8_flag == (HEK_FLAGS(chain->refcounted_he_hek) & HVhek_UTF8) #endif ) { if (flags & REFCOUNTED_HE_EXISTS) return (chain->refcounted_he_data[0] & HVrhek_typemask) == HVrhek_delete ? NULL : &PL_sv_yes; return sv_2mortal(refcounted_he_value(chain)); } } ret: return flags & REFCOUNTED_HE_EXISTS ? NULL : &PL_sv_placeholder; } /* =for apidoc m|SV *|refcounted_he_fetch_pv|const struct refcounted_he *chain|const char *key|U32 hash|U32 flags Like L, but takes a nul-terminated string instead of a string/length pair. =cut */ SV * Perl_refcounted_he_fetch_pv(pTHX_ const struct refcounted_he *chain, const char *key, U32 hash, U32 flags) { PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PV; return refcounted_he_fetch_pvn(chain, key, strlen(key), hash, flags); } /* =for apidoc m|SV *|refcounted_he_fetch_sv|const struct refcounted_he *chain|SV *key|U32 hash|U32 flags Like L, but takes a Perl scalar instead of a string/length pair. =cut */ SV * Perl_refcounted_he_fetch_sv(pTHX_ const struct refcounted_he *chain, SV *key, U32 hash, U32 flags) { const char *keypv; STRLEN keylen; PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_SV; if (flags & REFCOUNTED_HE_KEY_UTF8) Perl_croak(aTHX_ "panic: refcounted_he_fetch_sv bad flags %"UVxf, (UV)flags); keypv = SvPV_const(key, keylen); if (SvUTF8(key)) flags |= REFCOUNTED_HE_KEY_UTF8; if (!hash && SvIsCOW_shared_hash(key)) hash = SvSHARED_HASH(key); return refcounted_he_fetch_pvn(chain, keypv, keylen, hash, flags); } /* =for apidoc m|struct refcounted_he *|refcounted_he_new_pvn|struct refcounted_he *parent|const char *keypv|STRLEN keylen|U32 hash|SV *value|U32 flags Creates a new C. This consists of a single key/value pair and a reference to an existing C chain (which may be empty), and thus forms a longer chain. When using the longer chain, the new key/value pair takes precedence over any entry for the same key further along the chain. The new key is specified by I and I. If I has the C bit set, the key octets are interpreted as UTF-8, otherwise they are interpreted as Latin-1. I is a precomputed hash of the key string, or zero if it has not been precomputed. I is the scalar value to store for this key. I is copied by this function, which thus does not take ownership of any reference to it, and later changes to the scalar will not be reflected in the value visible in the C. Complex types of scalar will not be stored with referential integrity, but will be coerced to strings. I may be either null or C<&PL_sv_placeholder> to indicate that no value is to be associated with the key; this, as with any non-null value, takes precedence over the existence of a value for the key further along the chain. I points to the rest of the C chain to be attached to the new C. This function takes ownership of one reference to I, and returns one reference to the new C. =cut */ struct refcounted_he * Perl_refcounted_he_new_pvn(pTHX_ struct refcounted_he *parent, const char *keypv, STRLEN keylen, U32 hash, SV *value, U32 flags) { dVAR; STRLEN value_len = 0; const char *value_p = NULL; bool is_pv; char value_type; char hekflags; STRLEN key_offset = 1; struct refcounted_he *he; PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PVN; if (!value || value == &PL_sv_placeholder) { value_type = HVrhek_delete; } else if (SvPOK(value)) { value_type = HVrhek_PV; } else if (SvIOK(value)) { value_type = SvUOK((const SV *)value) ? HVrhek_UV : HVrhek_IV; } else if (!SvOK(value)) { value_type = HVrhek_undef; } else { value_type = HVrhek_PV; } is_pv = value_type == HVrhek_PV; if (is_pv) { /* Do it this way so that the SvUTF8() test is after the SvPV, in case the value is overloaded, and doesn't yet have the UTF-8flag set. */ value_p = SvPV_const(value, value_len); if (SvUTF8(value)) value_type = HVrhek_PV_UTF8; key_offset = value_len + 2; } hekflags = value_type; if (flags & REFCOUNTED_HE_KEY_UTF8) { /* Canonicalise to Latin-1 where possible. */ const char *keyend = keypv + keylen, *p; STRLEN nonascii_count = 0; for (p = keypv; p != keyend; p++) { if (! UTF8_IS_INVARIANT(*p)) { if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, keyend)) { goto canonicalised_key; } nonascii_count++; p++; } } if (nonascii_count) { char *q; const char *p = keypv, *keyend = keypv + keylen; keylen -= nonascii_count; Newx(q, keylen, char); SAVEFREEPV(q); keypv = q; for (; p != keyend; p++, q++) { U8 c = (U8)*p; if (UTF8_IS_INVARIANT(c)) { *q = (char) c; } else { p++; *q = (char) TWO_BYTE_UTF8_TO_NATIVE(c, *p); } } } flags &= ~REFCOUNTED_HE_KEY_UTF8; canonicalised_key: ; } if (flags & REFCOUNTED_HE_KEY_UTF8) hekflags |= HVhek_UTF8; if (!hash) PERL_HASH(hash, keypv, keylen); #ifdef USE_ITHREADS he = (struct refcounted_he*) PerlMemShared_malloc(sizeof(struct refcounted_he) - 1 + keylen + key_offset); #else he = (struct refcounted_he*) PerlMemShared_malloc(sizeof(struct refcounted_he) - 1 + key_offset); #endif he->refcounted_he_next = parent; if (is_pv) { Copy(value_p, he->refcounted_he_data + 1, value_len + 1, char); he->refcounted_he_val.refcounted_he_u_len = value_len; } else if (value_type == HVrhek_IV) { he->refcounted_he_val.refcounted_he_u_iv = SvIVX(value); } else if (value_type == HVrhek_UV) { he->refcounted_he_val.refcounted_he_u_uv = SvUVX(value); } #ifdef USE_ITHREADS he->refcounted_he_hash = hash; he->refcounted_he_keylen = keylen; Copy(keypv, he->refcounted_he_data + key_offset, keylen, char); #else he->refcounted_he_hek = share_hek_flags(keypv, keylen, hash, hekflags); #endif he->refcounted_he_data[0] = hekflags; he->refcounted_he_refcnt = 1; return he; } /* =for apidoc m|struct refcounted_he *|refcounted_he_new_pv|struct refcounted_he *parent|const char *key|U32 hash|SV *value|U32 flags Like L, but takes a nul-terminated string instead of a string/length pair. =cut */ struct refcounted_he * Perl_refcounted_he_new_pv(pTHX_ struct refcounted_he *parent, const char *key, U32 hash, SV *value, U32 flags) { PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PV; return refcounted_he_new_pvn(parent, key, strlen(key), hash, value, flags); } /* =for apidoc m|struct refcounted_he *|refcounted_he_new_sv|struct refcounted_he *parent|SV *key|U32 hash|SV *value|U32 flags Like L, but takes a Perl scalar instead of a string/length pair. =cut */ struct refcounted_he * Perl_refcounted_he_new_sv(pTHX_ struct refcounted_he *parent, SV *key, U32 hash, SV *value, U32 flags) { const char *keypv; STRLEN keylen; PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_SV; if (flags & REFCOUNTED_HE_KEY_UTF8) Perl_croak(aTHX_ "panic: refcounted_he_new_sv bad flags %"UVxf, (UV)flags); keypv = SvPV_const(key, keylen); if (SvUTF8(key)) flags |= REFCOUNTED_HE_KEY_UTF8; if (!hash && SvIsCOW_shared_hash(key)) hash = SvSHARED_HASH(key); return refcounted_he_new_pvn(parent, keypv, keylen, hash, value, flags); } /* =for apidoc m|void|refcounted_he_free|struct refcounted_he *he Decrements the reference count of a C by one. If the reference count reaches zero the structure's memory is freed, which (recursively) causes a reduction of its parent C's reference count. It is safe to pass a null pointer to this function: no action occurs in this case. =cut */ void Perl_refcounted_he_free(pTHX_ struct refcounted_he *he) { #ifdef USE_ITHREADS dVAR; #endif PERL_UNUSED_CONTEXT; while (he) { struct refcounted_he *copy; U32 new_count; HINTS_REFCNT_LOCK; new_count = --he->refcounted_he_refcnt; HINTS_REFCNT_UNLOCK; if (new_count) { return; } #ifndef USE_ITHREADS unshare_hek_or_pvn (he->refcounted_he_hek, 0, 0, 0); #endif copy = he; he = he->refcounted_he_next; PerlMemShared_free(copy); } } /* =for apidoc m|struct refcounted_he *|refcounted_he_inc|struct refcounted_he *he Increment the reference count of a C. The pointer to the C is also returned. It is safe to pass a null pointer to this function: no action occurs and a null pointer is returned. =cut */ struct refcounted_he * Perl_refcounted_he_inc(pTHX_ struct refcounted_he *he) { #ifdef USE_ITHREADS dVAR; #endif PERL_UNUSED_CONTEXT; if (he) { HINTS_REFCNT_LOCK; he->refcounted_he_refcnt++; HINTS_REFCNT_UNLOCK; } return he; } /* =for apidoc cop_fetch_label Returns the label attached to a cop. The flags pointer may be set to C or 0. =cut */ /* pp_entereval is aware that labels are stored with a key ':' at the top of the linked list. */ const char * Perl_cop_fetch_label(pTHX_ COP *const cop, STRLEN *len, U32 *flags) { struct refcounted_he *const chain = cop->cop_hints_hash; PERL_ARGS_ASSERT_COP_FETCH_LABEL; PERL_UNUSED_CONTEXT; if (!chain) return NULL; #ifdef USE_ITHREADS if (chain->refcounted_he_keylen != 1) return NULL; if (*REF_HE_KEY(chain) != ':') return NULL; #else if ((STRLEN)HEK_LEN(chain->refcounted_he_hek) != 1) return NULL; if (*HEK_KEY(chain->refcounted_he_hek) != ':') return NULL; #endif /* Stop anyone trying to really mess us up by adding their own value for ':' into %^H */ if ((chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV && (chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV_UTF8) return NULL; if (len) *len = chain->refcounted_he_val.refcounted_he_u_len; if (flags) { *flags = ((chain->refcounted_he_data[0] & HVrhek_typemask) == HVrhek_PV_UTF8) ? SVf_UTF8 : 0; } return chain->refcounted_he_data + 1; } /* =for apidoc cop_store_label Save a label into a C. You need to set flags to C for a utf-8 label. =cut */ void Perl_cop_store_label(pTHX_ COP *const cop, const char *label, STRLEN len, U32 flags) { SV *labelsv; PERL_ARGS_ASSERT_COP_STORE_LABEL; if (flags & ~(SVf_UTF8)) Perl_croak(aTHX_ "panic: cop_store_label illegal flag bits 0x%" UVxf, (UV)flags); labelsv = newSVpvn_flags(label, len, SVs_TEMP); if (flags & SVf_UTF8) SvUTF8_on(labelsv); cop->cop_hints_hash = refcounted_he_new_pvs(cop->cop_hints_hash, ":", labelsv, 0); } /* =for apidoc hv_assert Check that a hash is in an internally consistent state. =cut */ #ifdef DEBUGGING void Perl_hv_assert(pTHX_ HV *hv) { dVAR; HE* entry; int withflags = 0; int placeholders = 0; int real = 0; int bad = 0; const I32 riter = HvRITER_get(hv); HE *eiter = HvEITER_get(hv); PERL_ARGS_ASSERT_HV_ASSERT; (void)hv_iterinit(hv); while ((entry = hv_iternext_flags(hv, HV_ITERNEXT_WANTPLACEHOLDERS))) { /* sanity check the values */ if (HeVAL(entry) == &PL_sv_placeholder) placeholders++; else real++; /* sanity check the keys */ if (HeSVKEY(entry)) { NOOP; /* Don't know what to check on SV keys. */ } else if (HeKUTF8(entry)) { withflags++; if (HeKWASUTF8(entry)) { PerlIO_printf(Perl_debug_log, "hash key has both WASUTF8 and UTF8: '%.*s'\n", (int) HeKLEN(entry), HeKEY(entry)); bad = 1; } } else if (HeKWASUTF8(entry)) withflags++; } if (!SvTIED_mg((const SV *)hv, PERL_MAGIC_tied)) { static const char bad_count[] = "Count %d %s(s), but hash reports %d\n"; const int nhashkeys = HvUSEDKEYS(hv); const int nhashplaceholders = HvPLACEHOLDERS_get(hv); if (nhashkeys != real) { PerlIO_printf(Perl_debug_log, bad_count, real, "keys", nhashkeys ); bad = 1; } if (nhashplaceholders != placeholders) { PerlIO_printf(Perl_debug_log, bad_count, placeholders, "placeholder", nhashplaceholders ); bad = 1; } } if (withflags && ! HvHASKFLAGS(hv)) { PerlIO_printf(Perl_debug_log, "Hash has HASKFLAGS off but I count %d key(s) with flags\n", withflags); bad = 1; } if (bad) { sv_dump(MUTABLE_SV(hv)); } HvRITER_set(hv, riter); /* Restore hash iterator state */ HvEITER_set(hv, eiter); } #endif /* * ex: set ts=8 sts=4 sw=4 et: */