/* hash a key *-------------------------------------------------------------------------------------- * The "hash seed" feature was added in Perl 5.8.1 to perturb the results * to avoid "algorithmic complexity attacks". * * If USE_HASH_SEED is defined, hash randomisation is done by default * If USE_HASH_SEED_EXPLICIT is defined, hash randomisation is done * only if the environment variable PERL_HASH_SEED is set. * (see also perl.c:perl_parse() and S_init_tls_and_interp() and util.c:get_hash_seed()) */ #ifndef PERL_SEEN_HV_FUNC_H /* compile once */ #define PERL_SEEN_HV_FUNC_H #if !( 0 \ || defined(PERL_HASH_FUNC_SIPHASH) \ || defined(PERL_HASH_FUNC_SDBM) \ || defined(PERL_HASH_FUNC_DJB2) \ || defined(PERL_HASH_FUNC_SUPERFAST) \ || defined(PERL_HASH_FUNC_MURMUR3) \ || defined(PERL_HASH_FUNC_ONE_AT_A_TIME) \ || defined(PERL_HASH_FUNC_ONE_AT_A_TIME_HARD) \ || defined(PERL_HASH_FUNC_ONE_AT_A_TIME_OLD) \ || defined(PERL_HASH_FUNC_MURMUR_HASH_64A) \ || defined(PERL_HASH_FUNC_MURMUR_HASH_64B) \ ) #define PERL_HASH_FUNC_ONE_AT_A_TIME_HARD #endif #if defined(PERL_HASH_FUNC_SIPHASH) # define PERL_HASH_FUNC "SIPHASH_2_4" # define PERL_HASH_SEED_BYTES 16 # define PERL_HASH_WITH_SEED(seed,hash,str,len) (hash)= S_perl_hash_siphash_2_4((seed),(U8*)(str),(len)) #elif defined(PERL_HASH_FUNC_SUPERFAST) # define PERL_HASH_FUNC "SUPERFAST" # define PERL_HASH_SEED_BYTES 4 # define PERL_HASH_WITH_SEED(seed,hash,str,len) (hash)= S_perl_hash_superfast((seed),(U8*)(str),(len)) #elif defined(PERL_HASH_FUNC_MURMUR3) # define PERL_HASH_FUNC "MURMUR3" # define PERL_HASH_SEED_BYTES 4 # define PERL_HASH_WITH_SEED(seed,hash,str,len) (hash)= S_perl_hash_murmur3((seed),(U8*)(str),(len)) #elif defined(PERL_HASH_FUNC_DJB2) # define PERL_HASH_FUNC "DJB2" # define PERL_HASH_SEED_BYTES 4 # define PERL_HASH_WITH_SEED(seed,hash,str,len) (hash)= S_perl_hash_djb2((seed),(U8*)(str),(len)) #elif defined(PERL_HASH_FUNC_SDBM) # define PERL_HASH_FUNC "SDBM" # define PERL_HASH_SEED_BYTES 4 # define PERL_HASH_WITH_SEED(seed,hash,str,len) (hash)= S_perl_hash_sdbm((seed),(U8*)(str),(len)) #elif defined(PERL_HASH_FUNC_ONE_AT_A_TIME_HARD) # define PERL_HASH_FUNC "ONE_AT_A_TIME_HARD" # define PERL_HASH_SEED_BYTES 8 # define PERL_HASH_WITH_SEED(seed,hash,str,len) (hash)= S_perl_hash_one_at_a_time_hard((seed),(U8*)(str),(len)) #elif defined(PERL_HASH_FUNC_ONE_AT_A_TIME) # define PERL_HASH_FUNC "ONE_AT_A_TIME" # define PERL_HASH_SEED_BYTES 4 # define PERL_HASH_WITH_SEED(seed,hash,str,len) (hash)= S_perl_hash_one_at_a_time((seed),(U8*)(str),(len)) #elif defined(PERL_HASH_FUNC_ONE_AT_A_TIME_OLD) # define PERL_HASH_FUNC "ONE_AT_A_TIME_OLD" # define PERL_HASH_SEED_BYTES 4 # define PERL_HASH_WITH_SEED(seed,hash,str,len) (hash)= S_perl_hash_old_one_at_a_time((seed),(U8*)(str),(len)) #elif defined(PERL_HASH_FUNC_MURMUR_HASH_64A) # define PERL_HASH_FUNC "MURMUR_HASH_64A" # define PERL_HASH_SEED_BYTES 8 # define PERL_HASH_WITH_SEED(seed,hash,str,len) (hash)= S_perl_hash_murmur_hash_64a((seed),(U8*)(str),(len)) #elif defined(PERL_HASH_FUNC_MURMUR_HASH_64B) # define PERL_HASH_FUNC "MURMUR_HASH_64B" # define PERL_HASH_SEED_BYTES 8 # define PERL_HASH_WITH_SEED(seed,hash,str,len) (hash)= S_perl_hash_murmur_hash_64b((seed),(U8*)(str),(len)) #endif #ifndef PERL_HASH_WITH_SEED #error "No hash function defined!" #endif #ifndef PERL_HASH_SEED_BYTES #error "PERL_HASH_SEED_BYTES not defined" #endif #ifndef PERL_HASH_FUNC #error "PERL_HASH_FUNC not defined" #endif #ifndef PERL_HASH_SEED # if defined(USE_HASH_SEED) || defined(USE_HASH_SEED_EXPLICIT) # define PERL_HASH_SEED PL_hash_seed # elif PERL_HASH_SEED_BYTES == 4 # define PERL_HASH_SEED ((const U8 *)"PeRl") # elif PERL_HASH_SEED_BYTES == 8 # define PERL_HASH_SEED ((const U8 *)"PeRlHaSh") # elif PERL_HASH_SEED_BYTES == 16 # define PERL_HASH_SEED ((const U8 *)"PeRlHaShhAcKpErl") # else # error "No PERL_HASH_SEED definition for " PERL_HASH_FUNC # endif #endif #define PERL_HASH(hash,str,len) PERL_HASH_WITH_SEED(PERL_HASH_SEED,hash,str,len) /*----------------------------------------------------------------------------- * Endianess, misalignment capabilities and util macros * * The following 3 macros are defined in this section. The other macros defined * are only needed to help derive these 3. * * U8TO32_LE(x) Read a little endian unsigned 32-bit int * UNALIGNED_SAFE Defined if unaligned access is safe * ROTL32(x,r) Rotate x left by r bits */ #if (defined(__GNUC__) && defined(__i386__)) || defined(__WATCOMC__) \ || defined(_MSC_VER) || defined (__TURBOC__) #define U8TO16_LE(d) (*((const U16 *) (d))) #endif #if !defined (U8TO16_LE) #define U8TO16_LE(d) ((((const U8 *)(d))[1] << 8)\ +((const U8 *)(d))[0]) #endif #if (BYTEORDER == 0x1234 || BYTEORDER == 0x12345678) && U32SIZE == 4 /* CPU endian matches murmurhash algorithm, so read 32-bit word directly */ #define U8TO32_LE(ptr) (*((U32*)(ptr))) #elif BYTEORDER == 0x4321 || BYTEORDER == 0x87654321 /* TODO: Add additional cases below where a compiler provided bswap32 is available */ #if defined(__GNUC__) && (__GNUC__>4 || (__GNUC__==4 && __GNUC_MINOR__>=3)) #define U8TO32_LE(ptr) (__builtin_bswap32(*((U32*)(ptr)))) #else /* Without a known fast bswap32 we're just as well off doing this */ #define U8TO32_LE(ptr) (ptr[0]|ptr[1]<<8|ptr[2]<<16|ptr[3]<<24) #define UNALIGNED_SAFE #endif #else /* Unknown endianess so last resort is to read individual bytes */ #define U8TO32_LE(ptr) (ptr[0]|ptr[1]<<8|ptr[2]<<16|ptr[3]<<24) /* Since we're not doing word-reads we can skip the messing about with realignment */ #define UNALIGNED_SAFE #endif #ifdef HAS_QUAD #ifndef U64TYPE /* This probably isn't going to work, but failing with a compiler error due to lack of uint64_t is no worse than failing right now with an #error. */ #define U64 uint64_t #endif #endif /* Find best way to ROTL32/ROTL64 */ #if defined(_MSC_VER) #include /* Microsoft put _rotl declaration in here */ #define ROTL32(x,r) _rotl(x,r) #ifdef HAS_QUAD #define ROTL64(x,r) _rotl64(x,r) #endif #else /* gcc recognises this code and generates a rotate instruction for CPUs with one */ #define ROTL32(x,r) (((U32)x << r) | ((U32)x >> (32 - r))) #ifdef HAS_QUAD #define ROTL64(x,r) (((U64)x << r) | ((U64)x >> (64 - r))) #endif #endif #ifdef UV_IS_QUAD #define ROTL_UV(x,r) ROTL64(x,r) #else #define ROTL_UV(x,r) ROTL32(x,r) #endif /* This is SipHash by Jean-Philippe Aumasson and Daniel J. Bernstein. * The authors claim it is relatively secure compared to the alternatives * and that performance wise it is a suitable hash for languages like Perl. * See: * * https://www.131002.net/siphash/ * * This implementation seems to perform slightly slower than one-at-a-time for * short keys, but degrades slower for longer keys. Murmur Hash outperforms it * regardless of keys size. * * It is 64 bit only. */ #ifdef HAS_QUAD #define U8TO64_LE(p) \ (((U64)((p)[0]) ) | \ ((U64)((p)[1]) << 8) | \ ((U64)((p)[2]) << 16) | \ ((U64)((p)[3]) << 24) | \ ((U64)((p)[4]) << 32) | \ ((U64)((p)[5]) << 40) | \ ((U64)((p)[6]) << 48) | \ ((U64)((p)[7]) << 56)) #define SIPROUND \ do { \ v0 += v1; v1=ROTL64(v1,13); v1 ^= v0; v0=ROTL64(v0,32); \ v2 += v3; v3=ROTL64(v3,16); v3 ^= v2; \ v0 += v3; v3=ROTL64(v3,21); v3 ^= v0; \ v2 += v1; v1=ROTL64(v1,17); v1 ^= v2; v2=ROTL64(v2,32); \ } while(0) /* SipHash-2-4 */ PERL_STATIC_INLINE U32 S_perl_hash_siphash_2_4(const unsigned char * const seed, const unsigned char *in, const STRLEN inlen) { /* "somepseudorandomlygeneratedbytes" */ U64 v0 = UINT64_C(0x736f6d6570736575); U64 v1 = UINT64_C(0x646f72616e646f6d); U64 v2 = UINT64_C(0x6c7967656e657261); U64 v3 = UINT64_C(0x7465646279746573); U64 b; U64 k0 = ((U64*)seed)[0]; U64 k1 = ((U64*)seed)[1]; U64 m; const int left = inlen & 7; const U8 *end = in + inlen - left; b = ( ( U64 )(inlen) ) << 56; v3 ^= k1; v2 ^= k0; v1 ^= k1; v0 ^= k0; for ( ; in != end; in += 8 ) { m = U8TO64_LE( in ); v3 ^= m; SIPROUND; SIPROUND; v0 ^= m; } switch( left ) { case 7: b |= ( ( U64 )in[ 6] ) << 48; case 6: b |= ( ( U64 )in[ 5] ) << 40; case 5: b |= ( ( U64 )in[ 4] ) << 32; case 4: b |= ( ( U64 )in[ 3] ) << 24; case 3: b |= ( ( U64 )in[ 2] ) << 16; case 2: b |= ( ( U64 )in[ 1] ) << 8; case 1: b |= ( ( U64 )in[ 0] ); break; case 0: break; } v3 ^= b; SIPROUND; SIPROUND; v0 ^= b; v2 ^= 0xff; SIPROUND; SIPROUND; SIPROUND; SIPROUND; b = v0 ^ v1 ^ v2 ^ v3; return (U32)(b & U32_MAX); } #endif /* defined(HAS_QUAD) */ /* FYI: This is the "Super-Fast" algorithm mentioned by Bob Jenkins in * (http://burtleburtle.net/bob/hash/doobs.html) * It is by Paul Hsieh (c) 2004 and is analysed here * http://www.azillionmonkeys.com/qed/hash.html * license terms are here: * http://www.azillionmonkeys.com/qed/weblicense.html */ PERL_STATIC_INLINE U32 S_perl_hash_superfast(const unsigned char * const seed, const unsigned char *str, STRLEN len) { U32 hash = *((U32*)seed) + (U32)len; U32 tmp; int rem= len & 3; len >>= 2; for (;len > 0; len--) { hash += U8TO16_LE (str); tmp = (U8TO16_LE (str+2) << 11) ^ hash; hash = (hash << 16) ^ tmp; str += 2 * sizeof (U16); hash += hash >> 11; } /* Handle end cases */ switch (rem) { \ case 3: hash += U8TO16_LE (str); hash ^= hash << 16; hash ^= str[sizeof (U16)] << 18; hash += hash >> 11; break; case 2: hash += U8TO16_LE (str); hash ^= hash << 11; hash += hash >> 17; break; case 1: hash += *str; hash ^= hash << 10; hash += hash >> 1; } /* Force "avalanching" of final 127 bits */ hash ^= hash << 3; hash += hash >> 5; hash ^= hash << 4; hash += hash >> 17; hash ^= hash << 25; return (hash + (hash >> 6)); } /*----------------------------------------------------------------------------- * MurmurHash3 was written by Austin Appleby, and is placed in the public * domain. * * This implementation was originally written by Shane Day, and is also public domain, * and was modified to function as a macro similar to other perl hash functions by * Yves Orton. * * This is a portable ANSI C implementation of MurmurHash3_x86_32 (Murmur3A) * with support for progressive processing. * * If you want to understand the MurmurHash algorithm you would be much better * off reading the original source. Just point your browser at: * http://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp * * How does it work? * * We can only process entire 32 bit chunks of input, except for the very end * that may be shorter. * * To handle endianess I simply use a macro that reads a U32 and define * that macro to be a direct read on little endian machines, a read and swap * on big endian machines, or a byte-by-byte read if the endianess is unknown. */ /*----------------------------------------------------------------------------- * Core murmurhash algorithm macros */ #define MURMUR_C1 (0xcc9e2d51) #define MURMUR_C2 (0x1b873593) #define MURMUR_C3 (0xe6546b64) #define MURMUR_C4 (0x85ebca6b) #define MURMUR_C5 (0xc2b2ae35) /* This is the main processing body of the algorithm. It operates * on each full 32-bits of input. */ #define MURMUR_DOBLOCK(h1, k1) STMT_START { \ k1 *= MURMUR_C1; \ k1 = ROTL32(k1,15); \ k1 *= MURMUR_C2; \ \ h1 ^= k1; \ h1 = ROTL32(h1,13); \ h1 = h1 * 5 + MURMUR_C3; \ } STMT_END /* Append unaligned bytes to carry, forcing hash churn if we have 4 bytes */ /* cnt=bytes to process, h1=name of h1 var, c=carry, n=bytes in c, ptr/len=payload */ #define MURMUR_DOBYTES(cnt, h1, c, n, ptr, len) STMT_START { \ int MURMUR_DOBYTES_i = cnt; \ while(MURMUR_DOBYTES_i--) { \ c = c>>8 | *ptr++<<24; \ n++; len--; \ if(n==4) { \ MURMUR_DOBLOCK(h1, c); \ n = 0; \ } \ } \ } STMT_END /* now we create the hash function */ PERL_STATIC_INLINE U32 S_perl_hash_murmur3(const unsigned char * const seed, const unsigned char *ptr, STRLEN len) { U32 h1 = *((U32*)seed); U32 k1; U32 carry = 0; const unsigned char *end; int bytes_in_carry = 0; /* bytes in carry */ I32 total_length= (I32)len; #if defined(UNALIGNED_SAFE) /* Handle carry: commented out as its only used in incremental mode - it never fires for us int i = (4-n) & 3; if(i && i <= len) { MURMUR_DOBYTES(i, h1, carry, bytes_in_carry, ptr, len); } */ /* This CPU handles unaligned word access */ /* Process 32-bit chunks */ end = ptr + len/4*4; for( ; ptr < end ; ptr+=4) { k1 = U8TO32_LE(ptr); MURMUR_DOBLOCK(h1, k1); } #else /* This CPU does not handle unaligned word access */ /* Consume enough so that the next data byte is word aligned */ STRLEN i = -PTR2IV(ptr) & 3; if(i && i <= len) { MURMUR_DOBYTES((int)i, h1, carry, bytes_in_carry, ptr, len); } /* We're now aligned. Process in aligned blocks. Specialise for each possible carry count */ end = ptr + len/4*4; switch(bytes_in_carry) { /* how many bytes in carry */ case 0: /* c=[----] w=[3210] b=[3210]=w c'=[----] */ for( ; ptr < end ; ptr+=4) { k1 = U8TO32_LE(ptr); MURMUR_DOBLOCK(h1, k1); } break; case 1: /* c=[0---] w=[4321] b=[3210]=c>>24|w<<8 c'=[4---] */ for( ; ptr < end ; ptr+=4) { k1 = carry>>24; carry = U8TO32_LE(ptr); k1 |= carry<<8; MURMUR_DOBLOCK(h1, k1); } break; case 2: /* c=[10--] w=[5432] b=[3210]=c>>16|w<<16 c'=[54--] */ for( ; ptr < end ; ptr+=4) { k1 = carry>>16; carry = U8TO32_LE(ptr); k1 |= carry<<16; MURMUR_DOBLOCK(h1, k1); } break; case 3: /* c=[210-] w=[6543] b=[3210]=c>>8|w<<24 c'=[654-] */ for( ; ptr < end ; ptr+=4) { k1 = carry>>8; carry = U8TO32_LE(ptr); k1 |= carry<<24; MURMUR_DOBLOCK(h1, k1); } } #endif /* Advance over whole 32-bit chunks, possibly leaving 1..3 bytes */ len -= len/4*4; /* Append any remaining bytes into carry */ MURMUR_DOBYTES((int)len, h1, carry, bytes_in_carry, ptr, len); if (bytes_in_carry) { k1 = carry >> ( 4 - bytes_in_carry ) * 8; k1 *= MURMUR_C1; k1 = ROTL32(k1,15); k1 *= MURMUR_C2; h1 ^= k1; } h1 ^= total_length; /* fmix */ h1 ^= h1 >> 16; h1 *= MURMUR_C4; h1 ^= h1 >> 13; h1 *= MURMUR_C5; h1 ^= h1 >> 16; return h1; } PERL_STATIC_INLINE U32 S_perl_hash_djb2(const unsigned char * const seed, const unsigned char *str, const STRLEN len) { const unsigned char * const end = (const unsigned char *)str + len; U32 hash = *((U32*)seed) + (U32)len; while (str < end) { hash = ((hash << 5) + hash) + *str++; } return hash; } PERL_STATIC_INLINE U32 S_perl_hash_sdbm(const unsigned char * const seed, const unsigned char *str, const STRLEN len) { const unsigned char * const end = (const unsigned char *)str + len; U32 hash = *((U32*)seed) + (U32)len; while (str < end) { hash = (hash << 6) + (hash << 16) - hash + *str++; } return hash; } /* - ONE_AT_A_TIME_HARD is the 5.17+ recommend ONE_AT_A_TIME algorithm * - ONE_AT_A_TIME_OLD is the unmodified 5.16 and older algorithm * - ONE_AT_A_TIME is a 5.17+ tweak of ONE_AT_A_TIME_OLD to * prevent strings of only \0 but different lengths from colliding * * Security-wise, from best to worst, * ONE_AT_A_TIME_HARD > ONE_AT_A_TIME > ONE_AT_A_TIME_OLD * There is a big drop-off in security between ONE_AT_A_TIME_HARD and * ONE_AT_A_TIME * */ /* This is the "One-at-a-Time" algorithm by Bob Jenkins * from requirements by Colin Plumb. * (http://burtleburtle.net/bob/hash/doobs.html) * With seed/len tweak. * */ PERL_STATIC_INLINE U32 S_perl_hash_one_at_a_time(const unsigned char * const seed, const unsigned char *str, const STRLEN len) { const unsigned char * const end = (const unsigned char *)str + len; U32 hash = *((U32*)seed) + (U32)len; while (str < end) { hash += *str++; hash += (hash << 10); hash ^= (hash >> 6); } hash += (hash << 3); hash ^= (hash >> 11); return (hash + (hash << 15)); } /* Derived from "One-at-a-Time" algorithm by Bob Jenkins */ PERL_STATIC_INLINE U32 S_perl_hash_one_at_a_time_hard(const unsigned char * const seed, const unsigned char *str, const STRLEN len) { const unsigned char * const end = (const unsigned char *)str + len; U32 hash = *((U32*)seed) + (U32)len; while (str < end) { hash += (hash << 10); hash ^= (hash >> 6); hash += *str++; } hash += (hash << 10); hash ^= (hash >> 6); hash += seed[4]; hash += (hash << 10); hash ^= (hash >> 6); hash += seed[5]; hash += (hash << 10); hash ^= (hash >> 6); hash += seed[6]; hash += (hash << 10); hash ^= (hash >> 6); hash += seed[7]; hash += (hash << 10); hash ^= (hash >> 6); hash += (hash << 3); hash ^= (hash >> 11); return (hash + (hash << 15)); } PERL_STATIC_INLINE U32 S_perl_hash_old_one_at_a_time(const unsigned char * const seed, const unsigned char *str, const STRLEN len) { const unsigned char * const end = (const unsigned char *)str + len; U32 hash = *((U32*)seed); while (str < end) { hash += *str++; hash += (hash << 10); hash ^= (hash >> 6); } hash += (hash << 3); hash ^= (hash >> 11); return (hash + (hash << 15)); } #ifdef PERL_HASH_FUNC_MURMUR_HASH_64A /* This code is from Austin Appleby and is in the public domain. Altered by Yves Orton to match Perl's hash interface, and to return a 32 bit hash. Note uses unaligned 64 bit loads - will NOT work on machines with strict alignment requirements. Also this code may not be suitable for big-endian machines. */ /* a 64 bit hash where we only use the low 32 bits */ PERL_STATIC_INLINE U32 S_perl_hash_murmur_hash_64a (const unsigned char * const seed, const unsigned char *str, const STRLEN len) { const U64 m = UINT64_C(0xc6a4a7935bd1e995); const int r = 47; U64 h = *((U64*)seed) ^ len; const U64 * data = (const U64 *)str; const U64 * end = data + (len/8); const unsigned char * data2; while(data != end) { U64 k = *data++; k *= m; k ^= k >> r; k *= m; h ^= k; h *= m; } data2 = (const unsigned char *)data; switch(len & 7) { case 7: h ^= (U64)(data2[6]) << 48; /* fallthrough */ case 6: h ^= (U64)(data2[5]) << 40; /* fallthrough */ case 5: h ^= (U64)(data2[4]) << 32; /* fallthrough */ case 4: h ^= (U64)(data2[3]) << 24; /* fallthrough */ case 3: h ^= (U64)(data2[2]) << 16; /* fallthrough */ case 2: h ^= (U64)(data2[1]) << 8; /* fallthrough */ case 1: h ^= (U64)(data2[0]); /* fallthrough */ h *= m; }; h ^= h >> r; h *= m; h ^= h >> r; /* was: return h; */ return h & 0xFFFFFFFF; } #endif #ifdef PERL_HASH_FUNC_MURMUR_HASH_64B /* This code is from Austin Appleby and is in the public domain. Altered by Yves Orton to match Perl's hash interface and return a 32 bit value Note uses unaligned 32 bit loads - will NOT work on machines with strict alignment requirements. Also this code may not be suitable for big-endian machines. */ /* a 64-bit hash for 32-bit platforms where we only use the low 32 bits */ PERL_STATIC_INLINE U32 S_perl_hash_murmur_hash_64b (const unsigned char * const seed, const unsigned char *str, STRLEN len) { const U32 m = 0x5bd1e995; const int r = 24; U32 h1 = ((U32 *)seed)[0] ^ len; U32 h2 = ((U32 *)seed)[1]; const U32 * data = (const U32 *)str; while(len >= 8) { U32 k1, k2; k1 = *data++; k1 *= m; k1 ^= k1 >> r; k1 *= m; h1 *= m; h1 ^= k1; len -= 4; k2 = *data++; k2 *= m; k2 ^= k2 >> r; k2 *= m; h2 *= m; h2 ^= k2; len -= 4; } if(len >= 4) { U32 k1 = *data++; k1 *= m; k1 ^= k1 >> r; k1 *= m; h1 *= m; h1 ^= k1; len -= 4; } switch(len) { case 3: h2 ^= ((unsigned char*)data)[2] << 16; /* fallthrough */ case 2: h2 ^= ((unsigned char*)data)[1] << 8; /* fallthrough */ case 1: h2 ^= ((unsigned char*)data)[0]; /* fallthrough */ h2 *= m; }; h1 ^= h2 >> 18; h1 *= m; h2 ^= h1 >> 22; h2 *= m; /* The following code has been removed as it is unused when only the low 32 bits are used. -- Yves h1 ^= h2 >> 17; h1 *= m; U64 h = h1; h = (h << 32) | h2; */ return h2; } #endif /* legacy - only mod_perl should be doing this. */ #ifdef PERL_HASH_INTERNAL_ACCESS #define PERL_HASH_INTERNAL(hash,str,len) PERL_HASH(hash,str,len) #endif #endif /*compile once*/ /* * ex: set ts=8 sts=4 sw=4 et: */