5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 EXTERN_C const struct regexp_engine my_reg_engine;
89 #include "dquote_inline.h"
90 #include "invlist_inline.h"
91 #include "unicode_constants.h"
93 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
94 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
96 _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
97 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
98 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
101 #define STATIC static
105 #define MIN(a,b) ((a) < (b) ? (a) : (b))
108 /* this is a chain of data about sub patterns we are processing that
109 need to be handled separately/specially in study_chunk. Its so
110 we can simulate recursion without losing state. */
112 typedef struct scan_frame {
113 regnode *last_regnode; /* last node to process in this frame */
114 regnode *next_regnode; /* next node to process when last is reached */
115 U32 prev_recursed_depth;
116 I32 stopparen; /* what stopparen do we use */
117 U32 is_top_frame; /* what flags do we use? */
119 struct scan_frame *this_prev_frame; /* this previous frame */
120 struct scan_frame *prev_frame; /* previous frame */
121 struct scan_frame *next_frame; /* next frame */
124 /* Certain characters are output as a sequence with the first being a
126 #define isBACKSLASHED_PUNCT(c) \
127 ((c) == '-' || (c) == ']' || (c) == '\\' || (c) == '^')
130 struct RExC_state_t {
131 U32 flags; /* RXf_* are we folding, multilining? */
132 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
133 char *precomp; /* uncompiled string. */
134 REGEXP *rx_sv; /* The SV that is the regexp. */
135 regexp *rx; /* perl core regexp structure */
136 regexp_internal *rxi; /* internal data for regexp object
138 char *start; /* Start of input for compile */
139 char *end; /* End of input for compile */
140 char *parse; /* Input-scan pointer. */
141 SSize_t whilem_seen; /* number of WHILEM in this expr */
142 regnode *emit_start; /* Start of emitted-code area */
143 regnode *emit_bound; /* First regnode outside of the
145 regnode *emit; /* Code-emit pointer; if = &emit_dummy,
146 implies compiling, so don't emit */
147 regnode_ssc emit_dummy; /* placeholder for emit to point to;
148 large enough for the largest
149 non-EXACTish node, so can use it as
151 I32 naughty; /* How bad is this pattern? */
152 I32 sawback; /* Did we see \1, ...? */
154 SSize_t size; /* Code size. */
155 I32 npar; /* Capture buffer count, (OPEN) plus
156 one. ("par" 0 is the whole
158 I32 nestroot; /* root parens we are in - used by
162 regnode **open_parens; /* pointers to open parens */
163 regnode **close_parens; /* pointers to close parens */
164 regnode *opend; /* END node in program */
165 I32 utf8; /* whether the pattern is utf8 or not */
166 I32 orig_utf8; /* whether the pattern was originally in utf8 */
167 /* XXX use this for future optimisation of case
168 * where pattern must be upgraded to utf8. */
169 I32 uni_semantics; /* If a d charset modifier should use unicode
170 rules, even if the pattern is not in
172 HV *paren_names; /* Paren names */
174 regnode **recurse; /* Recurse regops */
175 I32 recurse_count; /* Number of recurse regops */
176 U8 *study_chunk_recursed; /* bitmap of which subs we have moved
178 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
182 I32 override_recoding;
184 I32 recode_x_to_native;
186 I32 in_multi_char_class;
187 struct reg_code_block *code_blocks; /* positions of literal (?{})
189 int num_code_blocks; /* size of code_blocks[] */
190 int code_index; /* next code_blocks[] slot */
191 SSize_t maxlen; /* mininum possible number of chars in string to match */
192 scan_frame *frame_head;
193 scan_frame *frame_last;
196 #ifdef ADD_TO_REGEXEC
197 char *starttry; /* -Dr: where regtry was called. */
198 #define RExC_starttry (pRExC_state->starttry)
200 SV *runtime_code_qr; /* qr with the runtime code blocks */
202 const char *lastparse;
204 AV *paren_name_list; /* idx -> name */
205 U32 study_chunk_recursed_count;
208 #define RExC_lastparse (pRExC_state->lastparse)
209 #define RExC_lastnum (pRExC_state->lastnum)
210 #define RExC_paren_name_list (pRExC_state->paren_name_list)
211 #define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
212 #define RExC_mysv (pRExC_state->mysv1)
213 #define RExC_mysv1 (pRExC_state->mysv1)
214 #define RExC_mysv2 (pRExC_state->mysv2)
217 bool seen_unfolded_sharp_s;
220 #define RExC_flags (pRExC_state->flags)
221 #define RExC_pm_flags (pRExC_state->pm_flags)
222 #define RExC_precomp (pRExC_state->precomp)
223 #define RExC_rx_sv (pRExC_state->rx_sv)
224 #define RExC_rx (pRExC_state->rx)
225 #define RExC_rxi (pRExC_state->rxi)
226 #define RExC_start (pRExC_state->start)
227 #define RExC_end (pRExC_state->end)
228 #define RExC_parse (pRExC_state->parse)
229 #define RExC_whilem_seen (pRExC_state->whilem_seen)
231 /* Set during the sizing pass when there is a LATIN SMALL LETTER SHARP S in any
232 * EXACTF node, hence was parsed under /di rules. If later in the parse,
233 * something forces the pattern into using /ui rules, the sharp s should be
234 * folded into the sequence 'ss', which takes up more space than previously
235 * calculated. This means that the sizing pass needs to be restarted. (The
236 * node also becomes an EXACTFU_SS.) For all other characters, an EXACTF node
237 * that gets converted to /ui (and EXACTFU) occupies the same amount of space,
238 * so there is no need to resize [perl #125990]. */
239 #define RExC_seen_unfolded_sharp_s (pRExC_state->seen_unfolded_sharp_s)
241 #ifdef RE_TRACK_PATTERN_OFFSETS
242 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
245 #define RExC_emit (pRExC_state->emit)
246 #define RExC_emit_dummy (pRExC_state->emit_dummy)
247 #define RExC_emit_start (pRExC_state->emit_start)
248 #define RExC_emit_bound (pRExC_state->emit_bound)
249 #define RExC_sawback (pRExC_state->sawback)
250 #define RExC_seen (pRExC_state->seen)
251 #define RExC_size (pRExC_state->size)
252 #define RExC_maxlen (pRExC_state->maxlen)
253 #define RExC_npar (pRExC_state->npar)
254 #define RExC_nestroot (pRExC_state->nestroot)
255 #define RExC_extralen (pRExC_state->extralen)
256 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
257 #define RExC_utf8 (pRExC_state->utf8)
258 #define RExC_uni_semantics (pRExC_state->uni_semantics)
259 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
260 #define RExC_open_parens (pRExC_state->open_parens)
261 #define RExC_close_parens (pRExC_state->close_parens)
262 #define RExC_opend (pRExC_state->opend)
263 #define RExC_paren_names (pRExC_state->paren_names)
264 #define RExC_recurse (pRExC_state->recurse)
265 #define RExC_recurse_count (pRExC_state->recurse_count)
266 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
267 #define RExC_study_chunk_recursed_bytes \
268 (pRExC_state->study_chunk_recursed_bytes)
269 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
270 #define RExC_contains_locale (pRExC_state->contains_locale)
271 #define RExC_contains_i (pRExC_state->contains_i)
272 #define RExC_override_recoding (pRExC_state->override_recoding)
274 # define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
276 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
277 #define RExC_frame_head (pRExC_state->frame_head)
278 #define RExC_frame_last (pRExC_state->frame_last)
279 #define RExC_frame_count (pRExC_state->frame_count)
280 #define RExC_strict (pRExC_state->strict)
282 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
283 * a flag to disable back-off on the fixed/floating substrings - if it's
284 * a high complexity pattern we assume the benefit of avoiding a full match
285 * is worth the cost of checking for the substrings even if they rarely help.
287 #define RExC_naughty (pRExC_state->naughty)
288 #define TOO_NAUGHTY (10)
289 #define MARK_NAUGHTY(add) \
290 if (RExC_naughty < TOO_NAUGHTY) \
291 RExC_naughty += (add)
292 #define MARK_NAUGHTY_EXP(exp, add) \
293 if (RExC_naughty < TOO_NAUGHTY) \
294 RExC_naughty += RExC_naughty / (exp) + (add)
296 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
297 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
298 ((*s) == '{' && regcurly(s)))
301 * Flags to be passed up and down.
303 #define WORST 0 /* Worst case. */
304 #define HASWIDTH 0x01 /* Known to match non-null strings. */
306 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
307 * character. (There needs to be a case: in the switch statement in regexec.c
308 * for any node marked SIMPLE.) Note that this is not the same thing as
311 #define SPSTART 0x04 /* Starts with * or + */
312 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
313 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
314 #define RESTART_PASS1 0x20 /* Need to restart sizing pass */
315 #define NEED_UTF8 0x40 /* In conjunction with RESTART_PASS1, need to
316 calcuate sizes as UTF-8 */
318 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
320 /* whether trie related optimizations are enabled */
321 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
322 #define TRIE_STUDY_OPT
323 #define FULL_TRIE_STUDY
329 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
330 #define PBITVAL(paren) (1 << ((paren) & 7))
331 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
332 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
333 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
335 #define REQUIRE_UTF8(flagp) STMT_START { \
338 *flagp = RESTART_PASS1|NEED_UTF8; \
343 /* Change from /d into /u rules, and restart the parse if we've already seen
344 * something whose size would increase as a result, by setting *flagp and
345 * returning 'restart_retval'. RExC_uni_semantics is a flag that indicates
346 * we've change to /u during the parse. */
347 #define REQUIRE_UNI_RULES(flagp, restart_retval) \
349 if (DEPENDS_SEMANTICS) { \
351 set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET); \
352 RExC_uni_semantics = 1; \
353 if (RExC_seen_unfolded_sharp_s) { \
354 *flagp |= RESTART_PASS1; \
355 return restart_retval; \
360 /* This converts the named class defined in regcomp.h to its equivalent class
361 * number defined in handy.h. */
362 #define namedclass_to_classnum(class) ((int) ((class) / 2))
363 #define classnum_to_namedclass(classnum) ((classnum) * 2)
365 #define _invlist_union_complement_2nd(a, b, output) \
366 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
367 #define _invlist_intersection_complement_2nd(a, b, output) \
368 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
370 /* About scan_data_t.
372 During optimisation we recurse through the regexp program performing
373 various inplace (keyhole style) optimisations. In addition study_chunk
374 and scan_commit populate this data structure with information about
375 what strings MUST appear in the pattern. We look for the longest
376 string that must appear at a fixed location, and we look for the
377 longest string that may appear at a floating location. So for instance
382 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
383 strings (because they follow a .* construct). study_chunk will identify
384 both FOO and BAR as being the longest fixed and floating strings respectively.
386 The strings can be composites, for instance
390 will result in a composite fixed substring 'foo'.
392 For each string some basic information is maintained:
394 - offset or min_offset
395 This is the position the string must appear at, or not before.
396 It also implicitly (when combined with minlenp) tells us how many
397 characters must match before the string we are searching for.
398 Likewise when combined with minlenp and the length of the string it
399 tells us how many characters must appear after the string we have
403 Only used for floating strings. This is the rightmost point that
404 the string can appear at. If set to SSize_t_MAX it indicates that the
405 string can occur infinitely far to the right.
408 A pointer to the minimum number of characters of the pattern that the
409 string was found inside. This is important as in the case of positive
410 lookahead or positive lookbehind we can have multiple patterns
415 The minimum length of the pattern overall is 3, the minimum length
416 of the lookahead part is 3, but the minimum length of the part that
417 will actually match is 1. So 'FOO's minimum length is 3, but the
418 minimum length for the F is 1. This is important as the minimum length
419 is used to determine offsets in front of and behind the string being
420 looked for. Since strings can be composites this is the length of the
421 pattern at the time it was committed with a scan_commit. Note that
422 the length is calculated by study_chunk, so that the minimum lengths
423 are not known until the full pattern has been compiled, thus the
424 pointer to the value.
428 In the case of lookbehind the string being searched for can be
429 offset past the start point of the final matching string.
430 If this value was just blithely removed from the min_offset it would
431 invalidate some of the calculations for how many chars must match
432 before or after (as they are derived from min_offset and minlen and
433 the length of the string being searched for).
434 When the final pattern is compiled and the data is moved from the
435 scan_data_t structure into the regexp structure the information
436 about lookbehind is factored in, with the information that would
437 have been lost precalculated in the end_shift field for the
440 The fields pos_min and pos_delta are used to store the minimum offset
441 and the delta to the maximum offset at the current point in the pattern.
445 typedef struct scan_data_t {
446 /*I32 len_min; unused */
447 /*I32 len_delta; unused */
451 SSize_t last_end; /* min value, <0 unless valid. */
452 SSize_t last_start_min;
453 SSize_t last_start_max;
454 SV **longest; /* Either &l_fixed, or &l_float. */
455 SV *longest_fixed; /* longest fixed string found in pattern */
456 SSize_t offset_fixed; /* offset where it starts */
457 SSize_t *minlen_fixed; /* pointer to the minlen relevant to the string */
458 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
459 SV *longest_float; /* longest floating string found in pattern */
460 SSize_t offset_float_min; /* earliest point in string it can appear */
461 SSize_t offset_float_max; /* latest point in string it can appear */
462 SSize_t *minlen_float; /* pointer to the minlen relevant to the string */
463 SSize_t lookbehind_float; /* is the pos of the string modified by LB */
466 SSize_t *last_closep;
467 regnode_ssc *start_class;
471 * Forward declarations for pregcomp()'s friends.
474 static const scan_data_t zero_scan_data =
475 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
477 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
478 #define SF_BEFORE_SEOL 0x0001
479 #define SF_BEFORE_MEOL 0x0002
480 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
481 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
483 #define SF_FIX_SHIFT_EOL (+2)
484 #define SF_FL_SHIFT_EOL (+4)
486 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
487 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
489 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
490 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
491 #define SF_IS_INF 0x0040
492 #define SF_HAS_PAR 0x0080
493 #define SF_IN_PAR 0x0100
494 #define SF_HAS_EVAL 0x0200
495 #define SCF_DO_SUBSTR 0x0400
496 #define SCF_DO_STCLASS_AND 0x0800
497 #define SCF_DO_STCLASS_OR 0x1000
498 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
499 #define SCF_WHILEM_VISITED_POS 0x2000
501 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
502 #define SCF_SEEN_ACCEPT 0x8000
503 #define SCF_TRIE_DOING_RESTUDY 0x10000
504 #define SCF_IN_DEFINE 0x20000
509 #define UTF cBOOL(RExC_utf8)
511 /* The enums for all these are ordered so things work out correctly */
512 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
513 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
514 == REGEX_DEPENDS_CHARSET)
515 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
516 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
517 >= REGEX_UNICODE_CHARSET)
518 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
519 == REGEX_ASCII_RESTRICTED_CHARSET)
520 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
521 >= REGEX_ASCII_RESTRICTED_CHARSET)
522 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
523 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
525 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
527 /* For programs that want to be strictly Unicode compatible by dying if any
528 * attempt is made to match a non-Unicode code point against a Unicode
530 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
532 #define OOB_NAMEDCLASS -1
534 /* There is no code point that is out-of-bounds, so this is problematic. But
535 * its only current use is to initialize a variable that is always set before
537 #define OOB_UNICODE 0xDEADBEEF
539 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
540 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
543 /* length of regex to show in messages that don't mark a position within */
544 #define RegexLengthToShowInErrorMessages 127
547 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
548 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
549 * op/pragma/warn/regcomp.
551 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
552 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
554 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
555 " in m/%"UTF8f MARKER2 "%"UTF8f"/"
557 #define REPORT_LOCATION_ARGS(offset) \
558 UTF8fARG(UTF, offset, RExC_precomp), \
559 UTF8fARG(UTF, RExC_end - RExC_precomp - offset, RExC_precomp + offset)
561 /* Used to point after bad bytes for an error message, but avoid skipping
562 * past a nul byte. */
563 #define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
566 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
567 * arg. Show regex, up to a maximum length. If it's too long, chop and add
570 #define _FAIL(code) STMT_START { \
571 const char *ellipses = ""; \
572 IV len = RExC_end - RExC_precomp; \
575 SAVEFREESV(RExC_rx_sv); \
576 if (len > RegexLengthToShowInErrorMessages) { \
577 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
578 len = RegexLengthToShowInErrorMessages - 10; \
584 #define FAIL(msg) _FAIL( \
585 Perl_croak(aTHX_ "%s in regex m/%"UTF8f"%s/", \
586 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
588 #define FAIL2(msg,arg) _FAIL( \
589 Perl_croak(aTHX_ msg " in regex m/%"UTF8f"%s/", \
590 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
593 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
595 #define Simple_vFAIL(m) STMT_START { \
597 (RExC_parse > RExC_end ? RExC_end : RExC_parse) - RExC_precomp; \
598 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
599 m, REPORT_LOCATION_ARGS(offset)); \
603 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
605 #define vFAIL(m) STMT_START { \
607 SAVEFREESV(RExC_rx_sv); \
612 * Like Simple_vFAIL(), but accepts two arguments.
614 #define Simple_vFAIL2(m,a1) STMT_START { \
615 const IV offset = RExC_parse - RExC_precomp; \
616 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
617 REPORT_LOCATION_ARGS(offset)); \
621 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
623 #define vFAIL2(m,a1) STMT_START { \
625 SAVEFREESV(RExC_rx_sv); \
626 Simple_vFAIL2(m, a1); \
631 * Like Simple_vFAIL(), but accepts three arguments.
633 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
634 const IV offset = RExC_parse - RExC_precomp; \
635 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
636 REPORT_LOCATION_ARGS(offset)); \
640 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
642 #define vFAIL3(m,a1,a2) STMT_START { \
644 SAVEFREESV(RExC_rx_sv); \
645 Simple_vFAIL3(m, a1, a2); \
649 * Like Simple_vFAIL(), but accepts four arguments.
651 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
652 const IV offset = RExC_parse - RExC_precomp; \
653 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
654 REPORT_LOCATION_ARGS(offset)); \
657 #define vFAIL4(m,a1,a2,a3) STMT_START { \
659 SAVEFREESV(RExC_rx_sv); \
660 Simple_vFAIL4(m, a1, a2, a3); \
663 /* A specialized version of vFAIL2 that works with UTF8f */
664 #define vFAIL2utf8f(m, a1) STMT_START { \
665 const IV offset = RExC_parse - RExC_precomp; \
667 SAVEFREESV(RExC_rx_sv); \
668 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
669 REPORT_LOCATION_ARGS(offset)); \
672 /* These have asserts in them because of [perl #122671] Many warnings in
673 * regcomp.c can occur twice. If they get output in pass1 and later in that
674 * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
675 * would get output again. So they should be output in pass2, and these
676 * asserts make sure new warnings follow that paradigm. */
678 /* m is not necessarily a "literal string", in this macro */
679 #define reg_warn_non_literal_string(loc, m) STMT_START { \
680 const IV offset = loc - RExC_precomp; \
681 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \
682 m, REPORT_LOCATION_ARGS(offset)); \
685 #define ckWARNreg(loc,m) STMT_START { \
686 const IV offset = loc - RExC_precomp; \
687 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
688 REPORT_LOCATION_ARGS(offset)); \
691 #define vWARN(loc, m) STMT_START { \
692 const IV offset = loc - RExC_precomp; \
693 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
694 REPORT_LOCATION_ARGS(offset)); \
697 #define vWARN_dep(loc, m) STMT_START { \
698 const IV offset = loc - RExC_precomp; \
699 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION, \
700 REPORT_LOCATION_ARGS(offset)); \
703 #define ckWARNdep(loc,m) STMT_START { \
704 const IV offset = loc - RExC_precomp; \
705 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
707 REPORT_LOCATION_ARGS(offset)); \
710 #define ckWARNregdep(loc,m) STMT_START { \
711 const IV offset = loc - RExC_precomp; \
712 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
714 REPORT_LOCATION_ARGS(offset)); \
717 #define ckWARN2reg_d(loc,m, a1) STMT_START { \
718 const IV offset = loc - RExC_precomp; \
719 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
721 a1, REPORT_LOCATION_ARGS(offset)); \
724 #define ckWARN2reg(loc, m, a1) STMT_START { \
725 const IV offset = loc - RExC_precomp; \
726 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
727 a1, REPORT_LOCATION_ARGS(offset)); \
730 #define vWARN3(loc, m, a1, a2) STMT_START { \
731 const IV offset = loc - RExC_precomp; \
732 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
733 a1, a2, REPORT_LOCATION_ARGS(offset)); \
736 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
737 const IV offset = loc - RExC_precomp; \
738 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
739 a1, a2, REPORT_LOCATION_ARGS(offset)); \
742 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
743 const IV offset = loc - RExC_precomp; \
744 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
745 a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
748 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
749 const IV offset = loc - RExC_precomp; \
750 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
751 a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
754 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
755 const IV offset = loc - RExC_precomp; \
756 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
757 a1, a2, a3, a4, REPORT_LOCATION_ARGS(offset)); \
760 /* Macros for recording node offsets. 20001227 mjd@plover.com
761 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
762 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
763 * Element 0 holds the number n.
764 * Position is 1 indexed.
766 #ifndef RE_TRACK_PATTERN_OFFSETS
767 #define Set_Node_Offset_To_R(node,byte)
768 #define Set_Node_Offset(node,byte)
769 #define Set_Cur_Node_Offset
770 #define Set_Node_Length_To_R(node,len)
771 #define Set_Node_Length(node,len)
772 #define Set_Node_Cur_Length(node,start)
773 #define Node_Offset(n)
774 #define Node_Length(n)
775 #define Set_Node_Offset_Length(node,offset,len)
776 #define ProgLen(ri) ri->u.proglen
777 #define SetProgLen(ri,x) ri->u.proglen = x
779 #define ProgLen(ri) ri->u.offsets[0]
780 #define SetProgLen(ri,x) ri->u.offsets[0] = x
781 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
783 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
784 __LINE__, (int)(node), (int)(byte))); \
786 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
789 RExC_offsets[2*(node)-1] = (byte); \
794 #define Set_Node_Offset(node,byte) \
795 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
796 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
798 #define Set_Node_Length_To_R(node,len) STMT_START { \
800 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
801 __LINE__, (int)(node), (int)(len))); \
803 Perl_croak(aTHX_ "value of node is %d in Length macro", \
806 RExC_offsets[2*(node)] = (len); \
811 #define Set_Node_Length(node,len) \
812 Set_Node_Length_To_R((node)-RExC_emit_start, len)
813 #define Set_Node_Cur_Length(node, start) \
814 Set_Node_Length(node, RExC_parse - start)
816 /* Get offsets and lengths */
817 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
818 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
820 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
821 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
822 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
826 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
827 #define EXPERIMENTAL_INPLACESCAN
828 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
830 #define DEBUG_RExC_seen() \
831 DEBUG_OPTIMISE_MORE_r({ \
832 PerlIO_printf(Perl_debug_log,"RExC_seen: "); \
834 if (RExC_seen & REG_ZERO_LEN_SEEN) \
835 PerlIO_printf(Perl_debug_log,"REG_ZERO_LEN_SEEN "); \
837 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
838 PerlIO_printf(Perl_debug_log,"REG_LOOKBEHIND_SEEN "); \
840 if (RExC_seen & REG_GPOS_SEEN) \
841 PerlIO_printf(Perl_debug_log,"REG_GPOS_SEEN "); \
843 if (RExC_seen & REG_RECURSE_SEEN) \
844 PerlIO_printf(Perl_debug_log,"REG_RECURSE_SEEN "); \
846 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
847 PerlIO_printf(Perl_debug_log,"REG_TOP_LEVEL_BRANCHES_SEEN "); \
849 if (RExC_seen & REG_VERBARG_SEEN) \
850 PerlIO_printf(Perl_debug_log,"REG_VERBARG_SEEN "); \
852 if (RExC_seen & REG_CUTGROUP_SEEN) \
853 PerlIO_printf(Perl_debug_log,"REG_CUTGROUP_SEEN "); \
855 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
856 PerlIO_printf(Perl_debug_log,"REG_RUN_ON_COMMENT_SEEN "); \
858 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
859 PerlIO_printf(Perl_debug_log,"REG_UNFOLDED_MULTI_SEEN "); \
861 if (RExC_seen & REG_GOSTART_SEEN) \
862 PerlIO_printf(Perl_debug_log,"REG_GOSTART_SEEN "); \
864 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
865 PerlIO_printf(Perl_debug_log,"REG_UNBOUNDED_QUANTIFIER_SEEN "); \
867 PerlIO_printf(Perl_debug_log,"\n"); \
870 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
871 if ((flags) & flag) PerlIO_printf(Perl_debug_log, "%s ", #flag)
873 #define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str) \
875 PerlIO_printf(Perl_debug_log, "%s", open_str); \
876 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL); \
877 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL); \
878 DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF); \
879 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR); \
880 DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR); \
881 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL); \
882 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR); \
883 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND); \
884 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR); \
885 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS); \
886 DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS); \
887 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY); \
888 DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT); \
889 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY); \
890 DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE); \
891 PerlIO_printf(Perl_debug_log, "%s", close_str); \
895 #define DEBUG_STUDYDATA(str,data,depth) \
896 DEBUG_OPTIMISE_MORE_r(if(data){ \
897 PerlIO_printf(Perl_debug_log, \
898 "%*s" str "Pos:%"IVdf"/%"IVdf \
900 (int)(depth)*2, "", \
901 (IV)((data)->pos_min), \
902 (IV)((data)->pos_delta), \
903 (UV)((data)->flags) \
905 DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]"); \
906 PerlIO_printf(Perl_debug_log, \
907 " Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
908 (IV)((data)->whilem_c), \
909 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
910 is_inf ? "INF " : "" \
912 if ((data)->last_found) \
913 PerlIO_printf(Perl_debug_log, \
914 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
915 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
916 SvPVX_const((data)->last_found), \
917 (IV)((data)->last_end), \
918 (IV)((data)->last_start_min), \
919 (IV)((data)->last_start_max), \
920 ((data)->longest && \
921 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
922 SvPVX_const((data)->longest_fixed), \
923 (IV)((data)->offset_fixed), \
924 ((data)->longest && \
925 (data)->longest==&((data)->longest_float)) ? "*" : "", \
926 SvPVX_const((data)->longest_float), \
927 (IV)((data)->offset_float_min), \
928 (IV)((data)->offset_float_max) \
930 PerlIO_printf(Perl_debug_log,"\n"); \
933 /* is c a control character for which we have a mnemonic? */
934 #define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
937 S_cntrl_to_mnemonic(const U8 c)
939 /* Returns the mnemonic string that represents character 'c', if one
940 * exists; NULL otherwise. The only ones that exist for the purposes of
941 * this routine are a few control characters */
944 case '\a': return "\\a";
945 case '\b': return "\\b";
946 case ESC_NATIVE: return "\\e";
947 case '\f': return "\\f";
948 case '\n': return "\\n";
949 case '\r': return "\\r";
950 case '\t': return "\\t";
956 /* Mark that we cannot extend a found fixed substring at this point.
957 Update the longest found anchored substring and the longest found
958 floating substrings if needed. */
961 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
962 SSize_t *minlenp, int is_inf)
964 const STRLEN l = CHR_SVLEN(data->last_found);
965 const STRLEN old_l = CHR_SVLEN(*data->longest);
966 GET_RE_DEBUG_FLAGS_DECL;
968 PERL_ARGS_ASSERT_SCAN_COMMIT;
970 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
971 SvSetMagicSV(*data->longest, data->last_found);
972 if (*data->longest == data->longest_fixed) {
973 data->offset_fixed = l ? data->last_start_min : data->pos_min;
974 if (data->flags & SF_BEFORE_EOL)
976 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
978 data->flags &= ~SF_FIX_BEFORE_EOL;
979 data->minlen_fixed=minlenp;
980 data->lookbehind_fixed=0;
982 else { /* *data->longest == data->longest_float */
983 data->offset_float_min = l ? data->last_start_min : data->pos_min;
984 data->offset_float_max = (l
985 ? data->last_start_max
986 : (data->pos_delta > SSize_t_MAX - data->pos_min
988 : data->pos_min + data->pos_delta));
990 || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
991 data->offset_float_max = SSize_t_MAX;
992 if (data->flags & SF_BEFORE_EOL)
994 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
996 data->flags &= ~SF_FL_BEFORE_EOL;
997 data->minlen_float=minlenp;
998 data->lookbehind_float=0;
1001 SvCUR_set(data->last_found, 0);
1003 SV * const sv = data->last_found;
1004 if (SvUTF8(sv) && SvMAGICAL(sv)) {
1005 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
1010 data->last_end = -1;
1011 data->flags &= ~SF_BEFORE_EOL;
1012 DEBUG_STUDYDATA("commit: ",data,0);
1015 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
1016 * list that describes which code points it matches */
1019 S_ssc_anything(pTHX_ regnode_ssc *ssc)
1021 /* Set the SSC 'ssc' to match an empty string or any code point */
1023 PERL_ARGS_ASSERT_SSC_ANYTHING;
1025 assert(is_ANYOF_SYNTHETIC(ssc));
1027 ssc->invlist = sv_2mortal(_new_invlist(2)); /* mortalize so won't leak */
1028 _append_range_to_invlist(ssc->invlist, 0, UV_MAX);
1029 ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
1033 S_ssc_is_anything(const regnode_ssc *ssc)
1035 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1036 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
1037 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1038 * in any way, so there's no point in using it */
1043 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1045 assert(is_ANYOF_SYNTHETIC(ssc));
1047 if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1051 /* See if the list consists solely of the range 0 - Infinity */
1052 invlist_iterinit(ssc->invlist);
1053 ret = invlist_iternext(ssc->invlist, &start, &end)
1057 invlist_iterfinish(ssc->invlist);
1063 /* If e.g., both \w and \W are set, matches everything */
1064 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1066 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1067 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1077 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1079 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
1080 * string, any code point, or any posix class under locale */
1082 PERL_ARGS_ASSERT_SSC_INIT;
1084 Zero(ssc, 1, regnode_ssc);
1085 set_ANYOF_SYNTHETIC(ssc);
1086 ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1089 /* If any portion of the regex is to operate under locale rules that aren't
1090 * fully known at compile time, initialization includes it. The reason
1091 * this isn't done for all regexes is that the optimizer was written under
1092 * the assumption that locale was all-or-nothing. Given the complexity and
1093 * lack of documentation in the optimizer, and that there are inadequate
1094 * test cases for locale, many parts of it may not work properly, it is
1095 * safest to avoid locale unless necessary. */
1096 if (RExC_contains_locale) {
1097 ANYOF_POSIXL_SETALL(ssc);
1100 ANYOF_POSIXL_ZERO(ssc);
1105 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1106 const regnode_ssc *ssc)
1108 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1109 * to the list of code points matched, and locale posix classes; hence does
1110 * not check its flags) */
1115 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1117 assert(is_ANYOF_SYNTHETIC(ssc));
1119 invlist_iterinit(ssc->invlist);
1120 ret = invlist_iternext(ssc->invlist, &start, &end)
1124 invlist_iterfinish(ssc->invlist);
1130 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1138 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1139 const regnode_charclass* const node)
1141 /* Returns a mortal inversion list defining which code points are matched
1142 * by 'node', which is of type ANYOF. Handles complementing the result if
1143 * appropriate. If some code points aren't knowable at this time, the
1144 * returned list must, and will, contain every code point that is a
1147 SV* invlist = sv_2mortal(_new_invlist(0));
1148 SV* only_utf8_locale_invlist = NULL;
1150 const U32 n = ARG(node);
1151 bool new_node_has_latin1 = FALSE;
1153 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1155 /* Look at the data structure created by S_set_ANYOF_arg() */
1156 if (n != ANYOF_ONLY_HAS_BITMAP) {
1157 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1158 AV * const av = MUTABLE_AV(SvRV(rv));
1159 SV **const ary = AvARRAY(av);
1160 assert(RExC_rxi->data->what[n] == 's');
1162 if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
1163 invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
1165 else if (ary[0] && ary[0] != &PL_sv_undef) {
1167 /* Here, no compile-time swash, and there are things that won't be
1168 * known until runtime -- we have to assume it could be anything */
1169 return _add_range_to_invlist(invlist, 0, UV_MAX);
1171 else if (ary[3] && ary[3] != &PL_sv_undef) {
1173 /* Here no compile-time swash, and no run-time only data. Use the
1174 * node's inversion list */
1175 invlist = sv_2mortal(invlist_clone(ary[3]));
1178 /* Get the code points valid only under UTF-8 locales */
1179 if ((ANYOF_FLAGS(node) & ANYOF_LOC_FOLD)
1180 && ary[2] && ary[2] != &PL_sv_undef)
1182 only_utf8_locale_invlist = ary[2];
1186 /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1187 * code points, and an inversion list for the others, but if there are code
1188 * points that should match only conditionally on the target string being
1189 * UTF-8, those are placed in the inversion list, and not the bitmap.
1190 * Since there are circumstances under which they could match, they are
1191 * included in the SSC. But if the ANYOF node is to be inverted, we have
1192 * to exclude them here, so that when we invert below, the end result
1193 * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
1194 * have to do this here before we add the unconditionally matched code
1196 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1197 _invlist_intersection_complement_2nd(invlist,
1202 /* Add in the points from the bit map */
1203 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1204 if (ANYOF_BITMAP_TEST(node, i)) {
1205 invlist = add_cp_to_invlist(invlist, i);
1206 new_node_has_latin1 = TRUE;
1210 /* If this can match all upper Latin1 code points, have to add them
1212 if (OP(node) == ANYOFD
1213 && (ANYOF_FLAGS(node) & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
1215 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1218 /* Similarly for these */
1219 if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1220 _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1223 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1224 _invlist_invert(invlist);
1226 else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOF_LOC_FOLD) {
1228 /* Under /li, any 0-255 could fold to any other 0-255, depending on the
1229 * locale. We can skip this if there are no 0-255 at all. */
1230 _invlist_union(invlist, PL_Latin1, &invlist);
1233 /* Similarly add the UTF-8 locale possible matches. These have to be
1234 * deferred until after the non-UTF-8 locale ones are taken care of just
1235 * above, or it leads to wrong results under ANYOF_INVERT */
1236 if (only_utf8_locale_invlist) {
1237 _invlist_union_maybe_complement_2nd(invlist,
1238 only_utf8_locale_invlist,
1239 ANYOF_FLAGS(node) & ANYOF_INVERT,
1246 /* These two functions currently do the exact same thing */
1247 #define ssc_init_zero ssc_init
1249 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1250 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1252 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1253 * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1254 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1257 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1258 const regnode_charclass *and_with)
1260 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1261 * another SSC or a regular ANYOF class. Can create false positives. */
1266 PERL_ARGS_ASSERT_SSC_AND;
1268 assert(is_ANYOF_SYNTHETIC(ssc));
1270 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1271 * the code point inversion list and just the relevant flags */
1272 if (is_ANYOF_SYNTHETIC(and_with)) {
1273 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1274 anded_flags = ANYOF_FLAGS(and_with);
1276 /* XXX This is a kludge around what appears to be deficiencies in the
1277 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1278 * there are paths through the optimizer where it doesn't get weeded
1279 * out when it should. And if we don't make some extra provision for
1280 * it like the code just below, it doesn't get added when it should.
1281 * This solution is to add it only when AND'ing, which is here, and
1282 * only when what is being AND'ed is the pristine, original node
1283 * matching anything. Thus it is like adding it to ssc_anything() but
1284 * only when the result is to be AND'ed. Probably the same solution
1285 * could be adopted for the same problem we have with /l matching,
1286 * which is solved differently in S_ssc_init(), and that would lead to
1287 * fewer false positives than that solution has. But if this solution
1288 * creates bugs, the consequences are only that a warning isn't raised
1289 * that should be; while the consequences for having /l bugs is
1290 * incorrect matches */
1291 if (ssc_is_anything((regnode_ssc *)and_with)) {
1292 anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1296 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1297 if (OP(and_with) == ANYOFD) {
1298 anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
1301 anded_flags = ANYOF_FLAGS(and_with)
1302 &( ANYOF_COMMON_FLAGS
1303 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER);
1307 ANYOF_FLAGS(ssc) &= anded_flags;
1309 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1310 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1311 * 'and_with' may be inverted. When not inverted, we have the situation of
1313 * (C1 | P1) & (C2 | P2)
1314 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1315 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1316 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1317 * <= ((C1 & C2) | P1 | P2)
1318 * Alternatively, the last few steps could be:
1319 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1320 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1321 * <= (C1 | C2 | (P1 & P2))
1322 * We favor the second approach if either P1 or P2 is non-empty. This is
1323 * because these components are a barrier to doing optimizations, as what
1324 * they match cannot be known until the moment of matching as they are
1325 * dependent on the current locale, 'AND"ing them likely will reduce or
1327 * But we can do better if we know that C1,P1 are in their initial state (a
1328 * frequent occurrence), each matching everything:
1329 * (<everything>) & (C2 | P2) = C2 | P2
1330 * Similarly, if C2,P2 are in their initial state (again a frequent
1331 * occurrence), the result is a no-op
1332 * (C1 | P1) & (<everything>) = C1 | P1
1335 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1336 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1337 * <= (C1 & ~C2) | (P1 & ~P2)
1340 if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
1341 && ! is_ANYOF_SYNTHETIC(and_with))
1345 ssc_intersection(ssc,
1347 FALSE /* Has already been inverted */
1350 /* If either P1 or P2 is empty, the intersection will be also; can skip
1352 if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
1353 ANYOF_POSIXL_ZERO(ssc);
1355 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1357 /* Note that the Posix class component P from 'and_with' actually
1359 * P = Pa | Pb | ... | Pn
1360 * where each component is one posix class, such as in [\w\s].
1362 * ~P = ~(Pa | Pb | ... | Pn)
1363 * = ~Pa & ~Pb & ... & ~Pn
1364 * <= ~Pa | ~Pb | ... | ~Pn
1365 * The last is something we can easily calculate, but unfortunately
1366 * is likely to have many false positives. We could do better
1367 * in some (but certainly not all) instances if two classes in
1368 * P have known relationships. For example
1369 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1371 * :lower: & :print: = :lower:
1372 * And similarly for classes that must be disjoint. For example,
1373 * since \s and \w can have no elements in common based on rules in
1374 * the POSIX standard,
1375 * \w & ^\S = nothing
1376 * Unfortunately, some vendor locales do not meet the Posix
1377 * standard, in particular almost everything by Microsoft.
1378 * The loop below just changes e.g., \w into \W and vice versa */
1380 regnode_charclass_posixl temp;
1381 int add = 1; /* To calculate the index of the complement */
1383 ANYOF_POSIXL_ZERO(&temp);
1384 for (i = 0; i < ANYOF_MAX; i++) {
1386 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1387 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1389 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1390 ANYOF_POSIXL_SET(&temp, i + add);
1392 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1394 ANYOF_POSIXL_AND(&temp, ssc);
1396 } /* else ssc already has no posixes */
1397 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1398 in its initial state */
1399 else if (! is_ANYOF_SYNTHETIC(and_with)
1400 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1402 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1403 * copy it over 'ssc' */
1404 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1405 if (is_ANYOF_SYNTHETIC(and_with)) {
1406 StructCopy(and_with, ssc, regnode_ssc);
1409 ssc->invlist = anded_cp_list;
1410 ANYOF_POSIXL_ZERO(ssc);
1411 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1412 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1416 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1417 || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
1419 /* One or the other of P1, P2 is non-empty. */
1420 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1421 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1423 ssc_union(ssc, anded_cp_list, FALSE);
1425 else { /* P1 = P2 = empty */
1426 ssc_intersection(ssc, anded_cp_list, FALSE);
1432 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1433 const regnode_charclass *or_with)
1435 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1436 * another SSC or a regular ANYOF class. Can create false positives if
1437 * 'or_with' is to be inverted. */
1442 PERL_ARGS_ASSERT_SSC_OR;
1444 assert(is_ANYOF_SYNTHETIC(ssc));
1446 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1447 * the code point inversion list and just the relevant flags */
1448 if (is_ANYOF_SYNTHETIC(or_with)) {
1449 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1450 ored_flags = ANYOF_FLAGS(or_with);
1453 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1454 ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
1455 if (OP(or_with) != ANYOFD) {
1457 |= ANYOF_FLAGS(or_with)
1458 & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1462 ANYOF_FLAGS(ssc) |= ored_flags;
1464 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1465 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1466 * 'or_with' may be inverted. When not inverted, we have the simple
1467 * situation of computing:
1468 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1469 * If P1|P2 yields a situation with both a class and its complement are
1470 * set, like having both \w and \W, this matches all code points, and we
1471 * can delete these from the P component of the ssc going forward. XXX We
1472 * might be able to delete all the P components, but I (khw) am not certain
1473 * about this, and it is better to be safe.
1476 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1477 * <= (C1 | P1) | ~C2
1478 * <= (C1 | ~C2) | P1
1479 * (which results in actually simpler code than the non-inverted case)
1482 if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
1483 && ! is_ANYOF_SYNTHETIC(or_with))
1485 /* We ignore P2, leaving P1 going forward */
1486 } /* else Not inverted */
1487 else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
1488 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1489 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1491 for (i = 0; i < ANYOF_MAX; i += 2) {
1492 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1494 ssc_match_all_cp(ssc);
1495 ANYOF_POSIXL_CLEAR(ssc, i);
1496 ANYOF_POSIXL_CLEAR(ssc, i+1);
1504 FALSE /* Already has been inverted */
1508 PERL_STATIC_INLINE void
1509 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1511 PERL_ARGS_ASSERT_SSC_UNION;
1513 assert(is_ANYOF_SYNTHETIC(ssc));
1515 _invlist_union_maybe_complement_2nd(ssc->invlist,
1521 PERL_STATIC_INLINE void
1522 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
1524 const bool invert2nd)
1526 PERL_ARGS_ASSERT_SSC_INTERSECTION;
1528 assert(is_ANYOF_SYNTHETIC(ssc));
1530 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
1536 PERL_STATIC_INLINE void
1537 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
1539 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
1541 assert(is_ANYOF_SYNTHETIC(ssc));
1543 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
1546 PERL_STATIC_INLINE void
1547 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
1549 /* AND just the single code point 'cp' into the SSC 'ssc' */
1551 SV* cp_list = _new_invlist(2);
1553 PERL_ARGS_ASSERT_SSC_CP_AND;
1555 assert(is_ANYOF_SYNTHETIC(ssc));
1557 cp_list = add_cp_to_invlist(cp_list, cp);
1558 ssc_intersection(ssc, cp_list,
1559 FALSE /* Not inverted */
1561 SvREFCNT_dec_NN(cp_list);
1564 PERL_STATIC_INLINE void
1565 S_ssc_clear_locale(regnode_ssc *ssc)
1567 /* Set the SSC 'ssc' to not match any locale things */
1568 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
1570 assert(is_ANYOF_SYNTHETIC(ssc));
1572 ANYOF_POSIXL_ZERO(ssc);
1573 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
1576 #define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
1579 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
1581 /* The synthetic start class is used to hopefully quickly winnow down
1582 * places where a pattern could start a match in the target string. If it
1583 * doesn't really narrow things down that much, there isn't much point to
1584 * having the overhead of using it. This function uses some very crude
1585 * heuristics to decide if to use the ssc or not.
1587 * It returns TRUE if 'ssc' rules out more than half what it considers to
1588 * be the "likely" possible matches, but of course it doesn't know what the
1589 * actual things being matched are going to be; these are only guesses
1591 * For /l matches, it assumes that the only likely matches are going to be
1592 * in the 0-255 range, uniformly distributed, so half of that is 127
1593 * For /a and /d matches, it assumes that the likely matches will be just
1594 * the ASCII range, so half of that is 63
1595 * For /u and there isn't anything matching above the Latin1 range, it
1596 * assumes that that is the only range likely to be matched, and uses
1597 * half that as the cut-off: 127. If anything matches above Latin1,
1598 * it assumes that all of Unicode could match (uniformly), except for
1599 * non-Unicode code points and things in the General Category "Other"
1600 * (unassigned, private use, surrogates, controls and formats). This
1601 * is a much large number. */
1603 const U32 max_match = (LOC)
1607 : (invlist_highest(ssc->invlist) < 256)
1609 : ((NON_OTHER_COUNT + 1) / 2) - 1;
1610 U32 count = 0; /* Running total of number of code points matched by
1612 UV start, end; /* Start and end points of current range in inversion
1615 PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
1617 invlist_iterinit(ssc->invlist);
1618 while (invlist_iternext(ssc->invlist, &start, &end)) {
1620 /* /u is the only thing that we expect to match above 255; so if not /u
1621 * and even if there are matches above 255, ignore them. This catches
1622 * things like \d under /d which does match the digits above 255, but
1623 * since the pattern is /d, it is not likely to be expecting them */
1624 if (! UNI_SEMANTICS) {
1628 end = MIN(end, 255);
1630 count += end - start + 1;
1631 if (count > max_match) {
1632 invlist_iterfinish(ssc->invlist);
1642 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
1644 /* The inversion list in the SSC is marked mortal; now we need a more
1645 * permanent copy, which is stored the same way that is done in a regular
1646 * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
1649 SV* invlist = invlist_clone(ssc->invlist);
1651 PERL_ARGS_ASSERT_SSC_FINALIZE;
1653 assert(is_ANYOF_SYNTHETIC(ssc));
1655 /* The code in this file assumes that all but these flags aren't relevant
1656 * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
1657 * by the time we reach here */
1658 assert(! (ANYOF_FLAGS(ssc)
1659 & ~( ANYOF_COMMON_FLAGS
1660 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER)));
1662 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
1664 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
1665 NULL, NULL, NULL, FALSE);
1667 /* Make sure is clone-safe */
1668 ssc->invlist = NULL;
1670 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1671 ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
1674 if (RExC_contains_locale) {
1678 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
1681 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1682 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1683 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1684 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
1685 ? (TRIE_LIST_CUR( idx ) - 1) \
1691 dump_trie(trie,widecharmap,revcharmap)
1692 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1693 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1695 These routines dump out a trie in a somewhat readable format.
1696 The _interim_ variants are used for debugging the interim
1697 tables that are used to generate the final compressed
1698 representation which is what dump_trie expects.
1700 Part of the reason for their existence is to provide a form
1701 of documentation as to how the different representations function.
1706 Dumps the final compressed table form of the trie to Perl_debug_log.
1707 Used for debugging make_trie().
1711 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1712 AV *revcharmap, U32 depth)
1715 SV *sv=sv_newmortal();
1716 int colwidth= widecharmap ? 6 : 4;
1718 GET_RE_DEBUG_FLAGS_DECL;
1720 PERL_ARGS_ASSERT_DUMP_TRIE;
1722 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1723 (int)depth * 2 + 2,"",
1724 "Match","Base","Ofs" );
1726 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1727 SV ** const tmp = av_fetch( revcharmap, state, 0);
1729 PerlIO_printf( Perl_debug_log, "%*s",
1731 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1732 PL_colors[0], PL_colors[1],
1733 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1734 PERL_PV_ESCAPE_FIRSTCHAR
1739 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1740 (int)depth * 2 + 2,"");
1742 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1743 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1744 PerlIO_printf( Perl_debug_log, "\n");
1746 for( state = 1 ; state < trie->statecount ; state++ ) {
1747 const U32 base = trie->states[ state ].trans.base;
1749 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|",
1750 (int)depth * 2 + 2,"", (UV)state);
1752 if ( trie->states[ state ].wordnum ) {
1753 PerlIO_printf( Perl_debug_log, " W%4X",
1754 trie->states[ state ].wordnum );
1756 PerlIO_printf( Perl_debug_log, "%6s", "" );
1759 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1764 while( ( base + ofs < trie->uniquecharcount ) ||
1765 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1766 && trie->trans[ base + ofs - trie->uniquecharcount ].check
1770 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1772 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1773 if ( ( base + ofs >= trie->uniquecharcount )
1774 && ( base + ofs - trie->uniquecharcount
1776 && trie->trans[ base + ofs
1777 - trie->uniquecharcount ].check == state )
1779 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1781 (UV)trie->trans[ base + ofs
1782 - trie->uniquecharcount ].next );
1784 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1788 PerlIO_printf( Perl_debug_log, "]");
1791 PerlIO_printf( Perl_debug_log, "\n" );
1793 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=",
1795 for (word=1; word <= trie->wordcount; word++) {
1796 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1797 (int)word, (int)(trie->wordinfo[word].prev),
1798 (int)(trie->wordinfo[word].len));
1800 PerlIO_printf(Perl_debug_log, "\n" );
1803 Dumps a fully constructed but uncompressed trie in list form.
1804 List tries normally only are used for construction when the number of
1805 possible chars (trie->uniquecharcount) is very high.
1806 Used for debugging make_trie().
1809 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1810 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1814 SV *sv=sv_newmortal();
1815 int colwidth= widecharmap ? 6 : 4;
1816 GET_RE_DEBUG_FLAGS_DECL;
1818 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1820 /* print out the table precompression. */
1821 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1822 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1823 "------:-----+-----------------\n" );
1825 for( state=1 ; state < next_alloc ; state ++ ) {
1828 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1829 (int)depth * 2 + 2,"", (UV)state );
1830 if ( ! trie->states[ state ].wordnum ) {
1831 PerlIO_printf( Perl_debug_log, "%5s| ","");
1833 PerlIO_printf( Perl_debug_log, "W%4x| ",
1834 trie->states[ state ].wordnum
1837 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1838 SV ** const tmp = av_fetch( revcharmap,
1839 TRIE_LIST_ITEM(state,charid).forid, 0);
1841 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1843 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
1845 PL_colors[0], PL_colors[1],
1846 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
1847 | PERL_PV_ESCAPE_FIRSTCHAR
1849 TRIE_LIST_ITEM(state,charid).forid,
1850 (UV)TRIE_LIST_ITEM(state,charid).newstate
1853 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1854 (int)((depth * 2) + 14), "");
1857 PerlIO_printf( Perl_debug_log, "\n");
1862 Dumps a fully constructed but uncompressed trie in table form.
1863 This is the normal DFA style state transition table, with a few
1864 twists to facilitate compression later.
1865 Used for debugging make_trie().
1868 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1869 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1874 SV *sv=sv_newmortal();
1875 int colwidth= widecharmap ? 6 : 4;
1876 GET_RE_DEBUG_FLAGS_DECL;
1878 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1881 print out the table precompression so that we can do a visual check
1882 that they are identical.
1885 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1887 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1888 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1890 PerlIO_printf( Perl_debug_log, "%*s",
1892 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1893 PL_colors[0], PL_colors[1],
1894 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1895 PERL_PV_ESCAPE_FIRSTCHAR
1901 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1903 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1904 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1907 PerlIO_printf( Perl_debug_log, "\n" );
1909 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1911 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1912 (int)depth * 2 + 2,"",
1913 (UV)TRIE_NODENUM( state ) );
1915 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1916 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1918 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1920 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1922 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1923 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n",
1924 (UV)trie->trans[ state ].check );
1926 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n",
1927 (UV)trie->trans[ state ].check,
1928 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1936 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1937 startbranch: the first branch in the whole branch sequence
1938 first : start branch of sequence of branch-exact nodes.
1939 May be the same as startbranch
1940 last : Thing following the last branch.
1941 May be the same as tail.
1942 tail : item following the branch sequence
1943 count : words in the sequence
1944 flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
1945 depth : indent depth
1947 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1949 A trie is an N'ary tree where the branches are determined by digital
1950 decomposition of the key. IE, at the root node you look up the 1st character and
1951 follow that branch repeat until you find the end of the branches. Nodes can be
1952 marked as "accepting" meaning they represent a complete word. Eg:
1956 would convert into the following structure. Numbers represent states, letters
1957 following numbers represent valid transitions on the letter from that state, if
1958 the number is in square brackets it represents an accepting state, otherwise it
1959 will be in parenthesis.
1961 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1965 (1) +-i->(6)-+-s->[7]
1967 +-s->(3)-+-h->(4)-+-e->[5]
1969 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1971 This shows that when matching against the string 'hers' we will begin at state 1
1972 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1973 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1974 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1975 single traverse. We store a mapping from accepting to state to which word was
1976 matched, and then when we have multiple possibilities we try to complete the
1977 rest of the regex in the order in which they occurred in the alternation.
1979 The only prior NFA like behaviour that would be changed by the TRIE support is
1980 the silent ignoring of duplicate alternations which are of the form:
1982 / (DUPE|DUPE) X? (?{ ... }) Y /x
1984 Thus EVAL blocks following a trie may be called a different number of times with
1985 and without the optimisation. With the optimisations dupes will be silently
1986 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1987 the following demonstrates:
1989 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1991 which prints out 'word' three times, but
1993 'words'=~/(word|word|word)(?{ print $1 })S/
1995 which doesnt print it out at all. This is due to other optimisations kicking in.
1997 Example of what happens on a structural level:
1999 The regexp /(ac|ad|ab)+/ will produce the following debug output:
2001 1: CURLYM[1] {1,32767}(18)
2012 This would be optimizable with startbranch=5, first=5, last=16, tail=16
2013 and should turn into:
2015 1: CURLYM[1] {1,32767}(18)
2017 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
2025 Cases where tail != last would be like /(?foo|bar)baz/:
2035 which would be optimizable with startbranch=1, first=1, last=7, tail=8
2036 and would end up looking like:
2039 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
2046 d = uvchr_to_utf8_flags(d, uv, 0);
2048 is the recommended Unicode-aware way of saying
2053 #define TRIE_STORE_REVCHAR(val) \
2056 SV *zlopp = newSV(UTF8_MAXBYTES); \
2057 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
2058 unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
2059 SvCUR_set(zlopp, kapow - flrbbbbb); \
2062 av_push(revcharmap, zlopp); \
2064 char ooooff = (char)val; \
2065 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
2069 /* This gets the next character from the input, folding it if not already
2071 #define TRIE_READ_CHAR STMT_START { \
2074 /* if it is UTF then it is either already folded, or does not need \
2076 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
2078 else if (folder == PL_fold_latin1) { \
2079 /* This folder implies Unicode rules, which in the range expressible \
2080 * by not UTF is the lower case, with the two exceptions, one of \
2081 * which should have been taken care of before calling this */ \
2082 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
2083 uvc = toLOWER_L1(*uc); \
2084 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
2087 /* raw data, will be folded later if needed */ \
2095 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
2096 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
2097 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
2098 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2100 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
2101 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
2102 TRIE_LIST_CUR( state )++; \
2105 #define TRIE_LIST_NEW(state) STMT_START { \
2106 Newxz( trie->states[ state ].trans.list, \
2107 4, reg_trie_trans_le ); \
2108 TRIE_LIST_CUR( state ) = 1; \
2109 TRIE_LIST_LEN( state ) = 4; \
2112 #define TRIE_HANDLE_WORD(state) STMT_START { \
2113 U16 dupe= trie->states[ state ].wordnum; \
2114 regnode * const noper_next = regnext( noper ); \
2117 /* store the word for dumping */ \
2119 if (OP(noper) != NOTHING) \
2120 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
2122 tmp = newSVpvn_utf8( "", 0, UTF ); \
2123 av_push( trie_words, tmp ); \
2127 trie->wordinfo[curword].prev = 0; \
2128 trie->wordinfo[curword].len = wordlen; \
2129 trie->wordinfo[curword].accept = state; \
2131 if ( noper_next < tail ) { \
2133 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2135 trie->jump[curword] = (U16)(noper_next - convert); \
2137 jumper = noper_next; \
2139 nextbranch= regnext(cur); \
2143 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
2144 /* chain, so that when the bits of chain are later */\
2145 /* linked together, the dups appear in the chain */\
2146 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2147 trie->wordinfo[dupe].prev = curword; \
2149 /* we haven't inserted this word yet. */ \
2150 trie->states[ state ].wordnum = curword; \
2155 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
2156 ( ( base + charid >= ucharcount \
2157 && base + charid < ubound \
2158 && state == trie->trans[ base - ucharcount + charid ].check \
2159 && trie->trans[ base - ucharcount + charid ].next ) \
2160 ? trie->trans[ base - ucharcount + charid ].next \
2161 : ( state==1 ? special : 0 ) \
2165 #define MADE_JUMP_TRIE 2
2166 #define MADE_EXACT_TRIE 4
2169 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2170 regnode *first, regnode *last, regnode *tail,
2171 U32 word_count, U32 flags, U32 depth)
2173 /* first pass, loop through and scan words */
2174 reg_trie_data *trie;
2175 HV *widecharmap = NULL;
2176 AV *revcharmap = newAV();
2182 regnode *jumper = NULL;
2183 regnode *nextbranch = NULL;
2184 regnode *convert = NULL;
2185 U32 *prev_states; /* temp array mapping each state to previous one */
2186 /* we just use folder as a flag in utf8 */
2187 const U8 * folder = NULL;
2190 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
2191 AV *trie_words = NULL;
2192 /* along with revcharmap, this only used during construction but both are
2193 * useful during debugging so we store them in the struct when debugging.
2196 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2197 STRLEN trie_charcount=0;
2199 SV *re_trie_maxbuff;
2200 GET_RE_DEBUG_FLAGS_DECL;
2202 PERL_ARGS_ASSERT_MAKE_TRIE;
2204 PERL_UNUSED_ARG(depth);
2208 case EXACT: case EXACTL: break;
2212 case EXACTFLU8: folder = PL_fold_latin1; break;
2213 case EXACTF: folder = PL_fold; break;
2214 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2217 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2219 trie->startstate = 1;
2220 trie->wordcount = word_count;
2221 RExC_rxi->data->data[ data_slot ] = (void*)trie;
2222 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2223 if (flags == EXACT || flags == EXACTL)
2224 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2225 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2226 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2229 trie_words = newAV();
2232 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2233 assert(re_trie_maxbuff);
2234 if (!SvIOK(re_trie_maxbuff)) {
2235 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2237 DEBUG_TRIE_COMPILE_r({
2238 PerlIO_printf( Perl_debug_log,
2239 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2240 (int)depth * 2 + 2, "",
2241 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
2242 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2245 /* Find the node we are going to overwrite */
2246 if ( first == startbranch && OP( last ) != BRANCH ) {
2247 /* whole branch chain */
2250 /* branch sub-chain */
2251 convert = NEXTOPER( first );
2254 /* -- First loop and Setup --
2256 We first traverse the branches and scan each word to determine if it
2257 contains widechars, and how many unique chars there are, this is
2258 important as we have to build a table with at least as many columns as we
2261 We use an array of integers to represent the character codes 0..255
2262 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2263 the native representation of the character value as the key and IV's for
2266 *TODO* If we keep track of how many times each character is used we can
2267 remap the columns so that the table compression later on is more
2268 efficient in terms of memory by ensuring the most common value is in the
2269 middle and the least common are on the outside. IMO this would be better
2270 than a most to least common mapping as theres a decent chance the most
2271 common letter will share a node with the least common, meaning the node
2272 will not be compressible. With a middle is most common approach the worst
2273 case is when we have the least common nodes twice.
2277 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2278 regnode *noper = NEXTOPER( cur );
2279 const U8 *uc = (U8*)STRING( noper );
2280 const U8 *e = uc + STR_LEN( noper );
2282 U32 wordlen = 0; /* required init */
2283 STRLEN minchars = 0;
2284 STRLEN maxchars = 0;
2285 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2288 if (OP(noper) == NOTHING) {
2289 regnode *noper_next= regnext(noper);
2290 if (noper_next != tail && OP(noper_next) == flags) {
2292 uc= (U8*)STRING(noper);
2293 e= uc + STR_LEN(noper);
2294 trie->minlen= STR_LEN(noper);
2301 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2302 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2303 regardless of encoding */
2304 if (OP( noper ) == EXACTFU_SS) {
2305 /* false positives are ok, so just set this */
2306 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2309 for ( ; uc < e ; uc += len ) { /* Look at each char in the current
2311 TRIE_CHARCOUNT(trie)++;
2314 /* TRIE_READ_CHAR returns the current character, or its fold if /i
2315 * is in effect. Under /i, this character can match itself, or
2316 * anything that folds to it. If not under /i, it can match just
2317 * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
2318 * all fold to k, and all are single characters. But some folds
2319 * expand to more than one character, so for example LATIN SMALL
2320 * LIGATURE FFI folds to the three character sequence 'ffi'. If
2321 * the string beginning at 'uc' is 'ffi', it could be matched by
2322 * three characters, or just by the one ligature character. (It
2323 * could also be matched by two characters: LATIN SMALL LIGATURE FF
2324 * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2325 * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2326 * match.) The trie needs to know the minimum and maximum number
2327 * of characters that could match so that it can use size alone to
2328 * quickly reject many match attempts. The max is simple: it is
2329 * the number of folded characters in this branch (since a fold is
2330 * never shorter than what folds to it. */
2334 /* And the min is equal to the max if not under /i (indicated by
2335 * 'folder' being NULL), or there are no multi-character folds. If
2336 * there is a multi-character fold, the min is incremented just
2337 * once, for the character that folds to the sequence. Each
2338 * character in the sequence needs to be added to the list below of
2339 * characters in the trie, but we count only the first towards the
2340 * min number of characters needed. This is done through the
2341 * variable 'foldlen', which is returned by the macros that look
2342 * for these sequences as the number of bytes the sequence
2343 * occupies. Each time through the loop, we decrement 'foldlen' by
2344 * how many bytes the current char occupies. Only when it reaches
2345 * 0 do we increment 'minchars' or look for another multi-character
2347 if (folder == NULL) {
2350 else if (foldlen > 0) {
2351 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2356 /* See if *uc is the beginning of a multi-character fold. If
2357 * so, we decrement the length remaining to look at, to account
2358 * for the current character this iteration. (We can use 'uc'
2359 * instead of the fold returned by TRIE_READ_CHAR because for
2360 * non-UTF, the latin1_safe macro is smart enough to account
2361 * for all the unfolded characters, and because for UTF, the
2362 * string will already have been folded earlier in the
2363 * compilation process */
2365 if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2366 foldlen -= UTF8SKIP(uc);
2369 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2374 /* The current character (and any potential folds) should be added
2375 * to the possible matching characters for this position in this
2379 U8 folded= folder[ (U8) uvc ];
2380 if ( !trie->charmap[ folded ] ) {
2381 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2382 TRIE_STORE_REVCHAR( folded );
2385 if ( !trie->charmap[ uvc ] ) {
2386 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2387 TRIE_STORE_REVCHAR( uvc );
2390 /* store the codepoint in the bitmap, and its folded
2392 TRIE_BITMAP_SET(trie, uvc);
2394 /* store the folded codepoint */
2395 if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
2398 /* store first byte of utf8 representation of
2399 variant codepoints */
2400 if (! UVCHR_IS_INVARIANT(uvc)) {
2401 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
2404 set_bit = 0; /* We've done our bit :-) */
2408 /* XXX We could come up with the list of code points that fold
2409 * to this using PL_utf8_foldclosures, except not for
2410 * multi-char folds, as there may be multiple combinations
2411 * there that could work, which needs to wait until runtime to
2412 * resolve (The comment about LIGATURE FFI above is such an
2417 widecharmap = newHV();
2419 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2422 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
2424 if ( !SvTRUE( *svpp ) ) {
2425 sv_setiv( *svpp, ++trie->uniquecharcount );
2426 TRIE_STORE_REVCHAR(uvc);
2429 } /* end loop through characters in this branch of the trie */
2431 /* We take the min and max for this branch and combine to find the min
2432 * and max for all branches processed so far */
2433 if( cur == first ) {
2434 trie->minlen = minchars;
2435 trie->maxlen = maxchars;
2436 } else if (minchars < trie->minlen) {
2437 trie->minlen = minchars;
2438 } else if (maxchars > trie->maxlen) {
2439 trie->maxlen = maxchars;
2441 } /* end first pass */
2442 DEBUG_TRIE_COMPILE_r(
2443 PerlIO_printf( Perl_debug_log,
2444 "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2445 (int)depth * 2 + 2,"",
2446 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2447 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2448 (int)trie->minlen, (int)trie->maxlen )
2452 We now know what we are dealing with in terms of unique chars and
2453 string sizes so we can calculate how much memory a naive
2454 representation using a flat table will take. If it's over a reasonable
2455 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2456 conservative but potentially much slower representation using an array
2459 At the end we convert both representations into the same compressed
2460 form that will be used in regexec.c for matching with. The latter
2461 is a form that cannot be used to construct with but has memory
2462 properties similar to the list form and access properties similar
2463 to the table form making it both suitable for fast searches and
2464 small enough that its feasable to store for the duration of a program.
2466 See the comment in the code where the compressed table is produced
2467 inplace from the flat tabe representation for an explanation of how
2468 the compression works.
2473 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2476 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2477 > SvIV(re_trie_maxbuff) )
2480 Second Pass -- Array Of Lists Representation
2482 Each state will be represented by a list of charid:state records
2483 (reg_trie_trans_le) the first such element holds the CUR and LEN
2484 points of the allocated array. (See defines above).
2486 We build the initial structure using the lists, and then convert
2487 it into the compressed table form which allows faster lookups
2488 (but cant be modified once converted).
2491 STRLEN transcount = 1;
2493 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
2494 "%*sCompiling trie using list compiler\n",
2495 (int)depth * 2 + 2, ""));
2497 trie->states = (reg_trie_state *)
2498 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2499 sizeof(reg_trie_state) );
2503 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2505 regnode *noper = NEXTOPER( cur );
2506 U8 *uc = (U8*)STRING( noper );
2507 const U8 *e = uc + STR_LEN( noper );
2508 U32 state = 1; /* required init */
2509 U16 charid = 0; /* sanity init */
2510 U32 wordlen = 0; /* required init */
2512 if (OP(noper) == NOTHING) {
2513 regnode *noper_next= regnext(noper);
2514 if (noper_next != tail && OP(noper_next) == flags) {
2516 uc= (U8*)STRING(noper);
2517 e= uc + STR_LEN(noper);
2521 if (OP(noper) != NOTHING) {
2522 for ( ; uc < e ; uc += len ) {
2527 charid = trie->charmap[ uvc ];
2529 SV** const svpp = hv_fetch( widecharmap,
2536 charid=(U16)SvIV( *svpp );
2539 /* charid is now 0 if we dont know the char read, or
2540 * nonzero if we do */
2547 if ( !trie->states[ state ].trans.list ) {
2548 TRIE_LIST_NEW( state );
2551 check <= TRIE_LIST_USED( state );
2554 if ( TRIE_LIST_ITEM( state, check ).forid
2557 newstate = TRIE_LIST_ITEM( state, check ).newstate;
2562 newstate = next_alloc++;
2563 prev_states[newstate] = state;
2564 TRIE_LIST_PUSH( state, charid, newstate );
2569 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2573 TRIE_HANDLE_WORD(state);
2575 } /* end second pass */
2577 /* next alloc is the NEXT state to be allocated */
2578 trie->statecount = next_alloc;
2579 trie->states = (reg_trie_state *)
2580 PerlMemShared_realloc( trie->states,
2582 * sizeof(reg_trie_state) );
2584 /* and now dump it out before we compress it */
2585 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
2586 revcharmap, next_alloc,
2590 trie->trans = (reg_trie_trans *)
2591 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
2598 for( state=1 ; state < next_alloc ; state ++ ) {
2602 DEBUG_TRIE_COMPILE_MORE_r(
2603 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
2607 if (trie->states[state].trans.list) {
2608 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
2612 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2613 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
2614 if ( forid < minid ) {
2616 } else if ( forid > maxid ) {
2620 if ( transcount < tp + maxid - minid + 1) {
2622 trie->trans = (reg_trie_trans *)
2623 PerlMemShared_realloc( trie->trans,
2625 * sizeof(reg_trie_trans) );
2626 Zero( trie->trans + (transcount / 2),
2630 base = trie->uniquecharcount + tp - minid;
2631 if ( maxid == minid ) {
2633 for ( ; zp < tp ; zp++ ) {
2634 if ( ! trie->trans[ zp ].next ) {
2635 base = trie->uniquecharcount + zp - minid;
2636 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
2638 trie->trans[ zp ].check = state;
2644 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
2646 trie->trans[ tp ].check = state;
2651 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2652 const U32 tid = base
2653 - trie->uniquecharcount
2654 + TRIE_LIST_ITEM( state, idx ).forid;
2655 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
2657 trie->trans[ tid ].check = state;
2659 tp += ( maxid - minid + 1 );
2661 Safefree(trie->states[ state ].trans.list);
2664 DEBUG_TRIE_COMPILE_MORE_r(
2665 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
2668 trie->states[ state ].trans.base=base;
2670 trie->lasttrans = tp + 1;
2674 Second Pass -- Flat Table Representation.
2676 we dont use the 0 slot of either trans[] or states[] so we add 1 to
2677 each. We know that we will need Charcount+1 trans at most to store
2678 the data (one row per char at worst case) So we preallocate both
2679 structures assuming worst case.
2681 We then construct the trie using only the .next slots of the entry
2684 We use the .check field of the first entry of the node temporarily
2685 to make compression both faster and easier by keeping track of how
2686 many non zero fields are in the node.
2688 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
2691 There are two terms at use here: state as a TRIE_NODEIDX() which is
2692 a number representing the first entry of the node, and state as a
2693 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
2694 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
2695 if there are 2 entrys per node. eg:
2703 The table is internally in the right hand, idx form. However as we
2704 also have to deal with the states array which is indexed by nodenum
2705 we have to use TRIE_NODENUM() to convert.
2708 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
2709 "%*sCompiling trie using table compiler\n",
2710 (int)depth * 2 + 2, ""));
2712 trie->trans = (reg_trie_trans *)
2713 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
2714 * trie->uniquecharcount + 1,
2715 sizeof(reg_trie_trans) );
2716 trie->states = (reg_trie_state *)
2717 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2718 sizeof(reg_trie_state) );
2719 next_alloc = trie->uniquecharcount + 1;
2722 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2724 regnode *noper = NEXTOPER( cur );
2725 const U8 *uc = (U8*)STRING( noper );
2726 const U8 *e = uc + STR_LEN( noper );
2728 U32 state = 1; /* required init */
2730 U16 charid = 0; /* sanity init */
2731 U32 accept_state = 0; /* sanity init */
2733 U32 wordlen = 0; /* required init */
2735 if (OP(noper) == NOTHING) {
2736 regnode *noper_next= regnext(noper);
2737 if (noper_next != tail && OP(noper_next) == flags) {
2739 uc= (U8*)STRING(noper);
2740 e= uc + STR_LEN(noper);
2744 if ( OP(noper) != NOTHING ) {
2745 for ( ; uc < e ; uc += len ) {
2750 charid = trie->charmap[ uvc ];
2752 SV* const * const svpp = hv_fetch( widecharmap,
2756 charid = svpp ? (U16)SvIV(*svpp) : 0;
2760 if ( !trie->trans[ state + charid ].next ) {
2761 trie->trans[ state + charid ].next = next_alloc;
2762 trie->trans[ state ].check++;
2763 prev_states[TRIE_NODENUM(next_alloc)]
2764 = TRIE_NODENUM(state);
2765 next_alloc += trie->uniquecharcount;
2767 state = trie->trans[ state + charid ].next;
2769 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2771 /* charid is now 0 if we dont know the char read, or
2772 * nonzero if we do */
2775 accept_state = TRIE_NODENUM( state );
2776 TRIE_HANDLE_WORD(accept_state);
2778 } /* end second pass */
2780 /* and now dump it out before we compress it */
2781 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
2783 next_alloc, depth+1));
2787 * Inplace compress the table.*
2789 For sparse data sets the table constructed by the trie algorithm will
2790 be mostly 0/FAIL transitions or to put it another way mostly empty.
2791 (Note that leaf nodes will not contain any transitions.)
2793 This algorithm compresses the tables by eliminating most such
2794 transitions, at the cost of a modest bit of extra work during lookup:
2796 - Each states[] entry contains a .base field which indicates the
2797 index in the state[] array wheres its transition data is stored.
2799 - If .base is 0 there are no valid transitions from that node.
2801 - If .base is nonzero then charid is added to it to find an entry in
2804 -If trans[states[state].base+charid].check!=state then the
2805 transition is taken to be a 0/Fail transition. Thus if there are fail
2806 transitions at the front of the node then the .base offset will point
2807 somewhere inside the previous nodes data (or maybe even into a node
2808 even earlier), but the .check field determines if the transition is
2812 The following process inplace converts the table to the compressed
2813 table: We first do not compress the root node 1,and mark all its
2814 .check pointers as 1 and set its .base pointer as 1 as well. This
2815 allows us to do a DFA construction from the compressed table later,
2816 and ensures that any .base pointers we calculate later are greater
2819 - We set 'pos' to indicate the first entry of the second node.
2821 - We then iterate over the columns of the node, finding the first and
2822 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2823 and set the .check pointers accordingly, and advance pos
2824 appropriately and repreat for the next node. Note that when we copy
2825 the next pointers we have to convert them from the original
2826 NODEIDX form to NODENUM form as the former is not valid post
2829 - If a node has no transitions used we mark its base as 0 and do not
2830 advance the pos pointer.
2832 - If a node only has one transition we use a second pointer into the
2833 structure to fill in allocated fail transitions from other states.
2834 This pointer is independent of the main pointer and scans forward
2835 looking for null transitions that are allocated to a state. When it
2836 finds one it writes the single transition into the "hole". If the
2837 pointer doesnt find one the single transition is appended as normal.
2839 - Once compressed we can Renew/realloc the structures to release the
2842 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2843 specifically Fig 3.47 and the associated pseudocode.
2847 const U32 laststate = TRIE_NODENUM( next_alloc );
2850 trie->statecount = laststate;
2852 for ( state = 1 ; state < laststate ; state++ ) {
2854 const U32 stateidx = TRIE_NODEIDX( state );
2855 const U32 o_used = trie->trans[ stateidx ].check;
2856 U32 used = trie->trans[ stateidx ].check;
2857 trie->trans[ stateidx ].check = 0;
2860 used && charid < trie->uniquecharcount;
2863 if ( flag || trie->trans[ stateidx + charid ].next ) {
2864 if ( trie->trans[ stateidx + charid ].next ) {
2866 for ( ; zp < pos ; zp++ ) {
2867 if ( ! trie->trans[ zp ].next ) {
2871 trie->states[ state ].trans.base
2873 + trie->uniquecharcount
2875 trie->trans[ zp ].next
2876 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
2878 trie->trans[ zp ].check = state;
2879 if ( ++zp > pos ) pos = zp;
2886 trie->states[ state ].trans.base
2887 = pos + trie->uniquecharcount - charid ;
2889 trie->trans[ pos ].next
2890 = SAFE_TRIE_NODENUM(
2891 trie->trans[ stateidx + charid ].next );
2892 trie->trans[ pos ].check = state;
2897 trie->lasttrans = pos + 1;
2898 trie->states = (reg_trie_state *)
2899 PerlMemShared_realloc( trie->states, laststate
2900 * sizeof(reg_trie_state) );
2901 DEBUG_TRIE_COMPILE_MORE_r(
2902 PerlIO_printf( Perl_debug_log,
2903 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2904 (int)depth * 2 + 2,"",
2905 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
2909 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2912 } /* end table compress */
2914 DEBUG_TRIE_COMPILE_MORE_r(
2915 PerlIO_printf(Perl_debug_log,
2916 "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2917 (int)depth * 2 + 2, "",
2918 (UV)trie->statecount,
2919 (UV)trie->lasttrans)
2921 /* resize the trans array to remove unused space */
2922 trie->trans = (reg_trie_trans *)
2923 PerlMemShared_realloc( trie->trans, trie->lasttrans
2924 * sizeof(reg_trie_trans) );
2926 { /* Modify the program and insert the new TRIE node */
2927 U8 nodetype =(U8)(flags & 0xFF);
2931 regnode *optimize = NULL;
2932 #ifdef RE_TRACK_PATTERN_OFFSETS
2935 U32 mjd_nodelen = 0;
2936 #endif /* RE_TRACK_PATTERN_OFFSETS */
2937 #endif /* DEBUGGING */
2939 This means we convert either the first branch or the first Exact,
2940 depending on whether the thing following (in 'last') is a branch
2941 or not and whther first is the startbranch (ie is it a sub part of
2942 the alternation or is it the whole thing.)
2943 Assuming its a sub part we convert the EXACT otherwise we convert
2944 the whole branch sequence, including the first.
2946 /* Find the node we are going to overwrite */
2947 if ( first != startbranch || OP( last ) == BRANCH ) {
2948 /* branch sub-chain */
2949 NEXT_OFF( first ) = (U16)(last - first);
2950 #ifdef RE_TRACK_PATTERN_OFFSETS
2952 mjd_offset= Node_Offset((convert));
2953 mjd_nodelen= Node_Length((convert));
2956 /* whole branch chain */
2958 #ifdef RE_TRACK_PATTERN_OFFSETS
2961 const regnode *nop = NEXTOPER( convert );
2962 mjd_offset= Node_Offset((nop));
2963 mjd_nodelen= Node_Length((nop));
2967 PerlIO_printf(Perl_debug_log,
2968 "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2969 (int)depth * 2 + 2, "",
2970 (UV)mjd_offset, (UV)mjd_nodelen)
2973 /* But first we check to see if there is a common prefix we can
2974 split out as an EXACT and put in front of the TRIE node. */
2975 trie->startstate= 1;
2976 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2978 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2982 const U32 base = trie->states[ state ].trans.base;
2984 if ( trie->states[state].wordnum )
2987 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2988 if ( ( base + ofs >= trie->uniquecharcount ) &&
2989 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2990 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2992 if ( ++count > 1 ) {
2993 SV **tmp = av_fetch( revcharmap, ofs, 0);
2994 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2995 if ( state == 1 ) break;
2997 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2999 PerlIO_printf(Perl_debug_log,
3000 "%*sNew Start State=%"UVuf" Class: [",
3001 (int)depth * 2 + 2, "",
3004 SV ** const tmp = av_fetch( revcharmap, idx, 0);
3005 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
3007 TRIE_BITMAP_SET(trie,*ch);
3009 TRIE_BITMAP_SET(trie, folder[ *ch ]);
3011 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
3015 TRIE_BITMAP_SET(trie,*ch);
3017 TRIE_BITMAP_SET(trie,folder[ *ch ]);
3018 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
3024 SV **tmp = av_fetch( revcharmap, idx, 0);
3026 char *ch = SvPV( *tmp, len );
3028 SV *sv=sv_newmortal();
3029 PerlIO_printf( Perl_debug_log,
3030 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
3031 (int)depth * 2 + 2, "",
3033 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
3034 PL_colors[0], PL_colors[1],
3035 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
3036 PERL_PV_ESCAPE_FIRSTCHAR
3041 OP( convert ) = nodetype;
3042 str=STRING(convert);
3045 STR_LEN(convert) += len;
3051 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
3056 trie->prefixlen = (state-1);
3058 regnode *n = convert+NODE_SZ_STR(convert);
3059 NEXT_OFF(convert) = NODE_SZ_STR(convert);
3060 trie->startstate = state;
3061 trie->minlen -= (state - 1);
3062 trie->maxlen -= (state - 1);
3064 /* At least the UNICOS C compiler choked on this
3065 * being argument to DEBUG_r(), so let's just have
3068 #ifdef PERL_EXT_RE_BUILD
3074 regnode *fix = convert;
3075 U32 word = trie->wordcount;
3077 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3078 while( ++fix < n ) {
3079 Set_Node_Offset_Length(fix, 0, 0);
3082 SV ** const tmp = av_fetch( trie_words, word, 0 );
3084 if ( STR_LEN(convert) <= SvCUR(*tmp) )
3085 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3087 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3095 NEXT_OFF(convert) = (U16)(tail - convert);
3096 DEBUG_r(optimize= n);
3102 if ( trie->maxlen ) {
3103 NEXT_OFF( convert ) = (U16)(tail - convert);
3104 ARG_SET( convert, data_slot );
3105 /* Store the offset to the first unabsorbed branch in
3106 jump[0], which is otherwise unused by the jump logic.
3107 We use this when dumping a trie and during optimisation. */
3109 trie->jump[0] = (U16)(nextbranch - convert);
3111 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3112 * and there is a bitmap
3113 * and the first "jump target" node we found leaves enough room
3114 * then convert the TRIE node into a TRIEC node, with the bitmap
3115 * embedded inline in the opcode - this is hypothetically faster.
3117 if ( !trie->states[trie->startstate].wordnum
3119 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3121 OP( convert ) = TRIEC;
3122 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3123 PerlMemShared_free(trie->bitmap);
3126 OP( convert ) = TRIE;
3128 /* store the type in the flags */
3129 convert->flags = nodetype;
3133 + regarglen[ OP( convert ) ];
3135 /* XXX We really should free up the resource in trie now,
3136 as we won't use them - (which resources?) dmq */
3138 /* needed for dumping*/
3139 DEBUG_r(if (optimize) {
3140 regnode *opt = convert;
3142 while ( ++opt < optimize) {
3143 Set_Node_Offset_Length(opt,0,0);
3146 Try to clean up some of the debris left after the
3149 while( optimize < jumper ) {
3150 mjd_nodelen += Node_Length((optimize));
3151 OP( optimize ) = OPTIMIZED;
3152 Set_Node_Offset_Length(optimize,0,0);
3155 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
3157 } /* end node insert */
3159 /* Finish populating the prev field of the wordinfo array. Walk back
3160 * from each accept state until we find another accept state, and if
3161 * so, point the first word's .prev field at the second word. If the
3162 * second already has a .prev field set, stop now. This will be the
3163 * case either if we've already processed that word's accept state,
3164 * or that state had multiple words, and the overspill words were
3165 * already linked up earlier.
3172 for (word=1; word <= trie->wordcount; word++) {
3174 if (trie->wordinfo[word].prev)
3176 state = trie->wordinfo[word].accept;
3178 state = prev_states[state];
3181 prev = trie->states[state].wordnum;
3185 trie->wordinfo[word].prev = prev;
3187 Safefree(prev_states);
3191 /* and now dump out the compressed format */
3192 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3194 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3196 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3197 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3199 SvREFCNT_dec_NN(revcharmap);
3203 : trie->startstate>1
3209 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3211 /* The Trie is constructed and compressed now so we can build a fail array if
3214 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3216 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3220 We find the fail state for each state in the trie, this state is the longest
3221 proper suffix of the current state's 'word' that is also a proper prefix of
3222 another word in our trie. State 1 represents the word '' and is thus the
3223 default fail state. This allows the DFA not to have to restart after its
3224 tried and failed a word at a given point, it simply continues as though it
3225 had been matching the other word in the first place.
3227 'abcdgu'=~/abcdefg|cdgu/
3228 When we get to 'd' we are still matching the first word, we would encounter
3229 'g' which would fail, which would bring us to the state representing 'd' in
3230 the second word where we would try 'g' and succeed, proceeding to match
3233 /* add a fail transition */
3234 const U32 trie_offset = ARG(source);
3235 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3237 const U32 ucharcount = trie->uniquecharcount;
3238 const U32 numstates = trie->statecount;
3239 const U32 ubound = trie->lasttrans + ucharcount;
3243 U32 base = trie->states[ 1 ].trans.base;
3246 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3248 GET_RE_DEBUG_FLAGS_DECL;
3250 PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3251 PERL_UNUSED_CONTEXT;
3253 PERL_UNUSED_ARG(depth);
3256 if ( OP(source) == TRIE ) {
3257 struct regnode_1 *op = (struct regnode_1 *)
3258 PerlMemShared_calloc(1, sizeof(struct regnode_1));
3259 StructCopy(source,op,struct regnode_1);
3260 stclass = (regnode *)op;
3262 struct regnode_charclass *op = (struct regnode_charclass *)
3263 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3264 StructCopy(source,op,struct regnode_charclass);
3265 stclass = (regnode *)op;
3267 OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3269 ARG_SET( stclass, data_slot );
3270 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3271 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3272 aho->trie=trie_offset;
3273 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3274 Copy( trie->states, aho->states, numstates, reg_trie_state );
3275 Newxz( q, numstates, U32);
3276 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3279 /* initialize fail[0..1] to be 1 so that we always have
3280 a valid final fail state */
3281 fail[ 0 ] = fail[ 1 ] = 1;
3283 for ( charid = 0; charid < ucharcount ; charid++ ) {
3284 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3286 q[ q_write ] = newstate;
3287 /* set to point at the root */
3288 fail[ q[ q_write++ ] ]=1;
3291 while ( q_read < q_write) {
3292 const U32 cur = q[ q_read++ % numstates ];
3293 base = trie->states[ cur ].trans.base;
3295 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3296 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3298 U32 fail_state = cur;
3301 fail_state = fail[ fail_state ];
3302 fail_base = aho->states[ fail_state ].trans.base;
3303 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3305 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3306 fail[ ch_state ] = fail_state;
3307 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3309 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3311 q[ q_write++ % numstates] = ch_state;
3315 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3316 when we fail in state 1, this allows us to use the
3317 charclass scan to find a valid start char. This is based on the principle
3318 that theres a good chance the string being searched contains lots of stuff
3319 that cant be a start char.
3321 fail[ 0 ] = fail[ 1 ] = 0;
3322 DEBUG_TRIE_COMPILE_r({
3323 PerlIO_printf(Perl_debug_log,
3324 "%*sStclass Failtable (%"UVuf" states): 0",
3325 (int)(depth * 2), "", (UV)numstates
3327 for( q_read=1; q_read<numstates; q_read++ ) {
3328 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
3330 PerlIO_printf(Perl_debug_log, "\n");
3333 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3338 #define DEBUG_PEEP(str,scan,depth) \
3339 DEBUG_OPTIMISE_r({if (scan){ \
3340 regnode *Next = regnext(scan); \
3341 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state); \
3342 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)", \
3343 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
3344 Next ? (REG_NODE_NUM(Next)) : 0 ); \
3345 DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
3346 PerlIO_printf(Perl_debug_log, "\n"); \
3349 /* The below joins as many adjacent EXACTish nodes as possible into a single
3350 * one. The regop may be changed if the node(s) contain certain sequences that
3351 * require special handling. The joining is only done if:
3352 * 1) there is room in the current conglomerated node to entirely contain the
3354 * 2) they are the exact same node type
3356 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3357 * these get optimized out
3359 * If a node is to match under /i (folded), the number of characters it matches
3360 * can be different than its character length if it contains a multi-character
3361 * fold. *min_subtract is set to the total delta number of characters of the
3364 * And *unfolded_multi_char is set to indicate whether or not the node contains
3365 * an unfolded multi-char fold. This happens when whether the fold is valid or
3366 * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
3367 * SMALL LETTER SHARP S, as only if the target string being matched against
3368 * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
3369 * folding rules depend on the locale in force at runtime. (Multi-char folds
3370 * whose components are all above the Latin1 range are not run-time locale
3371 * dependent, and have already been folded by the time this function is
3374 * This is as good a place as any to discuss the design of handling these
3375 * multi-character fold sequences. It's been wrong in Perl for a very long
3376 * time. There are three code points in Unicode whose multi-character folds
3377 * were long ago discovered to mess things up. The previous designs for
3378 * dealing with these involved assigning a special node for them. This
3379 * approach doesn't always work, as evidenced by this example:
3380 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3381 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3382 * would match just the \xDF, it won't be able to handle the case where a
3383 * successful match would have to cross the node's boundary. The new approach
3384 * that hopefully generally solves the problem generates an EXACTFU_SS node
3385 * that is "sss" in this case.
3387 * It turns out that there are problems with all multi-character folds, and not
3388 * just these three. Now the code is general, for all such cases. The
3389 * approach taken is:
3390 * 1) This routine examines each EXACTFish node that could contain multi-
3391 * character folded sequences. Since a single character can fold into
3392 * such a sequence, the minimum match length for this node is less than
3393 * the number of characters in the node. This routine returns in
3394 * *min_subtract how many characters to subtract from the the actual
3395 * length of the string to get a real minimum match length; it is 0 if
3396 * there are no multi-char foldeds. This delta is used by the caller to
3397 * adjust the min length of the match, and the delta between min and max,
3398 * so that the optimizer doesn't reject these possibilities based on size
3400 * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
3401 * is used for an EXACTFU node that contains at least one "ss" sequence in
3402 * it. For non-UTF-8 patterns and strings, this is the only case where
3403 * there is a possible fold length change. That means that a regular
3404 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
3405 * with length changes, and so can be processed faster. regexec.c takes
3406 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
3407 * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
3408 * known until runtime). This saves effort in regex matching. However,
3409 * the pre-folding isn't done for non-UTF8 patterns because the fold of
3410 * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
3411 * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
3412 * again, EXACTFL) nodes fold to isn't known until runtime. The fold
3413 * possibilities for the non-UTF8 patterns are quite simple, except for
3414 * the sharp s. All the ones that don't involve a UTF-8 target string are
3415 * members of a fold-pair, and arrays are set up for all of them so that
3416 * the other member of the pair can be found quickly. Code elsewhere in
3417 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
3418 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
3419 * described in the next item.
3420 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3421 * validity of the fold won't be known until runtime, and so must remain
3422 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFA
3423 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3424 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3425 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3426 * The reason this is a problem is that the optimizer part of regexec.c
3427 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3428 * that a character in the pattern corresponds to at most a single
3429 * character in the target string. (And I do mean character, and not byte
3430 * here, unlike other parts of the documentation that have never been
3431 * updated to account for multibyte Unicode.) sharp s in EXACTF and
3432 * EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
3433 * it can match "\x{17F}\x{17F}". These, along with other ones in EXACTFL
3434 * nodes, violate the assumption, and they are the only instances where it
3435 * is violated. I'm reluctant to try to change the assumption, as the
3436 * code involved is impenetrable to me (khw), so instead the code here
3437 * punts. This routine examines EXACTFL nodes, and (when the pattern
3438 * isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
3439 * boolean indicating whether or not the node contains such a fold. When
3440 * it is true, the caller sets a flag that later causes the optimizer in
3441 * this file to not set values for the floating and fixed string lengths,
3442 * and thus avoids the optimizer code in regexec.c that makes the invalid
3443 * assumption. Thus, there is no optimization based on string lengths for
3444 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3445 * EXACTF and EXACTFA nodes that contain the sharp s. (The reason the
3446 * assumption is wrong only in these cases is that all other non-UTF-8
3447 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
3448 * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
3449 * EXACTF nodes because we don't know at compile time if it actually
3450 * matches 'ss' or not. For EXACTF nodes it will match iff the target
3451 * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
3452 * always matches; and EXACTFA where it never does. In an EXACTFA node in
3453 * a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
3454 * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
3455 * string would require the pattern to be forced into UTF-8, the overhead
3456 * of which we want to avoid. Similarly the unfolded multi-char folds in
3457 * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
3460 * Similarly, the code that generates tries doesn't currently handle
3461 * not-already-folded multi-char folds, and it looks like a pain to change
3462 * that. Therefore, trie generation of EXACTFA nodes with the sharp s
3463 * doesn't work. Instead, such an EXACTFA is turned into a new regnode,
3464 * EXACTFA_NO_TRIE, which the trie code knows not to handle. Most people
3465 * using /iaa matching will be doing so almost entirely with ASCII
3466 * strings, so this should rarely be encountered in practice */
3468 #define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
3469 if (PL_regkind[OP(scan)] == EXACT) \
3470 join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
3473 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
3474 UV *min_subtract, bool *unfolded_multi_char,
3475 U32 flags,regnode *val, U32 depth)
3477 /* Merge several consecutive EXACTish nodes into one. */
3478 regnode *n = regnext(scan);
3480 regnode *next = scan + NODE_SZ_STR(scan);
3484 regnode *stop = scan;
3485 GET_RE_DEBUG_FLAGS_DECL;
3487 PERL_UNUSED_ARG(depth);
3490 PERL_ARGS_ASSERT_JOIN_EXACT;
3491 #ifndef EXPERIMENTAL_INPLACESCAN
3492 PERL_UNUSED_ARG(flags);
3493 PERL_UNUSED_ARG(val);
3495 DEBUG_PEEP("join",scan,depth);
3497 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
3498 * EXACT ones that are mergeable to the current one. */
3500 && (PL_regkind[OP(n)] == NOTHING
3501 || (stringok && OP(n) == OP(scan)))
3503 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
3506 if (OP(n) == TAIL || n > next)
3508 if (PL_regkind[OP(n)] == NOTHING) {
3509 DEBUG_PEEP("skip:",n,depth);
3510 NEXT_OFF(scan) += NEXT_OFF(n);
3511 next = n + NODE_STEP_REGNODE;
3518 else if (stringok) {
3519 const unsigned int oldl = STR_LEN(scan);
3520 regnode * const nnext = regnext(n);
3522 /* XXX I (khw) kind of doubt that this works on platforms (should
3523 * Perl ever run on one) where U8_MAX is above 255 because of lots
3524 * of other assumptions */
3525 /* Don't join if the sum can't fit into a single node */
3526 if (oldl + STR_LEN(n) > U8_MAX)
3529 DEBUG_PEEP("merg",n,depth);
3532 NEXT_OFF(scan) += NEXT_OFF(n);
3533 STR_LEN(scan) += STR_LEN(n);
3534 next = n + NODE_SZ_STR(n);
3535 /* Now we can overwrite *n : */
3536 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
3544 #ifdef EXPERIMENTAL_INPLACESCAN
3545 if (flags && !NEXT_OFF(n)) {
3546 DEBUG_PEEP("atch", val, depth);
3547 if (reg_off_by_arg[OP(n)]) {
3548 ARG_SET(n, val - n);
3551 NEXT_OFF(n) = val - n;
3559 *unfolded_multi_char = FALSE;
3561 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
3562 * can now analyze for sequences of problematic code points. (Prior to
3563 * this final joining, sequences could have been split over boundaries, and
3564 * hence missed). The sequences only happen in folding, hence for any
3565 * non-EXACT EXACTish node */
3566 if (OP(scan) != EXACT && OP(scan) != EXACTL) {
3567 U8* s0 = (U8*) STRING(scan);
3569 U8* s_end = s0 + STR_LEN(scan);
3571 int total_count_delta = 0; /* Total delta number of characters that
3572 multi-char folds expand to */
3574 /* One pass is made over the node's string looking for all the
3575 * possibilities. To avoid some tests in the loop, there are two main
3576 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
3581 if (OP(scan) == EXACTFL) {
3584 /* An EXACTFL node would already have been changed to another
3585 * node type unless there is at least one character in it that
3586 * is problematic; likely a character whose fold definition
3587 * won't be known until runtime, and so has yet to be folded.
3588 * For all but the UTF-8 locale, folds are 1-1 in length, but
3589 * to handle the UTF-8 case, we need to create a temporary
3590 * folded copy using UTF-8 locale rules in order to analyze it.
3591 * This is because our macros that look to see if a sequence is
3592 * a multi-char fold assume everything is folded (otherwise the
3593 * tests in those macros would be too complicated and slow).
3594 * Note that here, the non-problematic folds will have already
3595 * been done, so we can just copy such characters. We actually
3596 * don't completely fold the EXACTFL string. We skip the
3597 * unfolded multi-char folds, as that would just create work
3598 * below to figure out the size they already are */
3600 Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
3603 STRLEN s_len = UTF8SKIP(s);
3604 if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
3605 Copy(s, d, s_len, U8);
3608 else if (is_FOLDS_TO_MULTI_utf8(s)) {
3609 *unfolded_multi_char = TRUE;
3610 Copy(s, d, s_len, U8);
3613 else if (isASCII(*s)) {
3614 *(d++) = toFOLD(*s);
3618 _to_utf8_fold_flags(s, d, &len, FOLD_FLAGS_FULL);
3624 /* Point the remainder of the routine to look at our temporary
3628 } /* End of creating folded copy of EXACTFL string */
3630 /* Examine the string for a multi-character fold sequence. UTF-8
3631 * patterns have all characters pre-folded by the time this code is
3633 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
3634 length sequence we are looking for is 2 */
3636 int count = 0; /* How many characters in a multi-char fold */
3637 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
3638 if (! len) { /* Not a multi-char fold: get next char */
3643 /* Nodes with 'ss' require special handling, except for
3644 * EXACTFA-ish for which there is no multi-char fold to this */
3645 if (len == 2 && *s == 's' && *(s+1) == 's'
3646 && OP(scan) != EXACTFA
3647 && OP(scan) != EXACTFA_NO_TRIE)
3650 if (OP(scan) != EXACTFL) {
3651 OP(scan) = EXACTFU_SS;
3655 else { /* Here is a generic multi-char fold. */
3656 U8* multi_end = s + len;
3658 /* Count how many characters are in it. In the case of
3659 * /aa, no folds which contain ASCII code points are
3660 * allowed, so check for those, and skip if found. */
3661 if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
3662 count = utf8_length(s, multi_end);
3666 while (s < multi_end) {
3669 goto next_iteration;
3679 /* The delta is how long the sequence is minus 1 (1 is how long
3680 * the character that folds to the sequence is) */
3681 total_count_delta += count - 1;
3685 /* We created a temporary folded copy of the string in EXACTFL
3686 * nodes. Therefore we need to be sure it doesn't go below zero,
3687 * as the real string could be shorter */
3688 if (OP(scan) == EXACTFL) {
3689 int total_chars = utf8_length((U8*) STRING(scan),
3690 (U8*) STRING(scan) + STR_LEN(scan));
3691 if (total_count_delta > total_chars) {
3692 total_count_delta = total_chars;
3696 *min_subtract += total_count_delta;
3699 else if (OP(scan) == EXACTFA) {
3701 /* Non-UTF-8 pattern, EXACTFA node. There can't be a multi-char
3702 * fold to the ASCII range (and there are no existing ones in the
3703 * upper latin1 range). But, as outlined in the comments preceding
3704 * this function, we need to flag any occurrences of the sharp s.
3705 * This character forbids trie formation (because of added
3707 #if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
3708 || (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
3709 || UNICODE_DOT_DOT_VERSION > 0)
3711 if (*s == LATIN_SMALL_LETTER_SHARP_S) {
3712 OP(scan) = EXACTFA_NO_TRIE;
3713 *unfolded_multi_char = TRUE;
3721 /* Non-UTF-8 pattern, not EXACTFA node. Look for the multi-char
3722 * folds that are all Latin1. As explained in the comments
3723 * preceding this function, we look also for the sharp s in EXACTF
3724 * and EXACTFL nodes; it can be in the final position. Otherwise
3725 * we can stop looking 1 byte earlier because have to find at least
3726 * two characters for a multi-fold */
3727 const U8* upper = (OP(scan) == EXACTF || OP(scan) == EXACTFL)
3732 int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
3733 if (! len) { /* Not a multi-char fold. */
3734 if (*s == LATIN_SMALL_LETTER_SHARP_S
3735 && (OP(scan) == EXACTF || OP(scan) == EXACTFL))
3737 *unfolded_multi_char = TRUE;
3744 && isALPHA_FOLD_EQ(*s, 's')
3745 && isALPHA_FOLD_EQ(*(s+1), 's'))
3748 /* EXACTF nodes need to know that the minimum length
3749 * changed so that a sharp s in the string can match this
3750 * ss in the pattern, but they remain EXACTF nodes, as they
3751 * won't match this unless the target string is is UTF-8,
3752 * which we don't know until runtime. EXACTFL nodes can't
3753 * transform into EXACTFU nodes */
3754 if (OP(scan) != EXACTF && OP(scan) != EXACTFL) {
3755 OP(scan) = EXACTFU_SS;
3759 *min_subtract += len - 1;
3767 /* Allow dumping but overwriting the collection of skipped
3768 * ops and/or strings with fake optimized ops */
3769 n = scan + NODE_SZ_STR(scan);
3777 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
3781 /* REx optimizer. Converts nodes into quicker variants "in place".
3782 Finds fixed substrings. */
3784 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
3785 to the position after last scanned or to NULL. */
3787 #define INIT_AND_WITHP \
3788 assert(!and_withp); \
3789 Newx(and_withp,1, regnode_ssc); \
3790 SAVEFREEPV(and_withp)
3794 S_unwind_scan_frames(pTHX_ const void *p)
3796 scan_frame *f= (scan_frame *)p;
3798 scan_frame *n= f->next_frame;
3806 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
3807 SSize_t *minlenp, SSize_t *deltap,
3812 regnode_ssc *and_withp,
3813 U32 flags, U32 depth)
3814 /* scanp: Start here (read-write). */
3815 /* deltap: Write maxlen-minlen here. */
3816 /* last: Stop before this one. */
3817 /* data: string data about the pattern */
3818 /* stopparen: treat close N as END */
3819 /* recursed: which subroutines have we recursed into */
3820 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
3822 /* There must be at least this number of characters to match */
3825 regnode *scan = *scanp, *next;
3827 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
3828 int is_inf_internal = 0; /* The studied chunk is infinite */
3829 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
3830 scan_data_t data_fake;
3831 SV *re_trie_maxbuff = NULL;
3832 regnode *first_non_open = scan;
3833 SSize_t stopmin = SSize_t_MAX;
3834 scan_frame *frame = NULL;
3835 GET_RE_DEBUG_FLAGS_DECL;
3837 PERL_ARGS_ASSERT_STUDY_CHUNK;
3841 while (first_non_open && OP(first_non_open) == OPEN)
3842 first_non_open=regnext(first_non_open);
3848 RExC_study_chunk_recursed_count++;
3850 DEBUG_OPTIMISE_MORE_r(
3852 PerlIO_printf(Perl_debug_log,
3853 "%*sstudy_chunk stopparen=%ld recursed_count=%lu depth=%lu recursed_depth=%lu scan=%p last=%p",
3854 (int)(depth*2), "", (long)stopparen,
3855 (unsigned long)RExC_study_chunk_recursed_count,
3856 (unsigned long)depth, (unsigned long)recursed_depth,
3859 if (recursed_depth) {
3862 for ( j = 0 ; j < recursed_depth ; j++ ) {
3863 for ( i = 0 ; i < (U32)RExC_npar ; i++ ) {
3865 PAREN_TEST(RExC_study_chunk_recursed +
3866 ( j * RExC_study_chunk_recursed_bytes), i )
3869 !PAREN_TEST(RExC_study_chunk_recursed +
3870 (( j - 1 ) * RExC_study_chunk_recursed_bytes), i)
3873 PerlIO_printf(Perl_debug_log," %d",(int)i);
3877 if ( j + 1 < recursed_depth ) {
3878 PerlIO_printf(Perl_debug_log, ",");
3882 PerlIO_printf(Perl_debug_log,"\n");
3885 while ( scan && OP(scan) != END && scan < last ){
3886 UV min_subtract = 0; /* How mmany chars to subtract from the minimum
3887 node length to get a real minimum (because
3888 the folded version may be shorter) */
3889 bool unfolded_multi_char = FALSE;
3890 /* Peephole optimizer: */
3891 DEBUG_STUDYDATA("Peep:", data, depth);
3892 DEBUG_PEEP("Peep", scan, depth);
3895 /* The reason we do this here we need to deal with things like /(?:f)(?:o)(?:o)/
3896 * which cant be dealt with by the normal EXACT parsing code, as each (?:..) is handled
3897 * by a different invocation of reg() -- Yves
3899 JOIN_EXACT(scan,&min_subtract, &unfolded_multi_char, 0);
3901 /* Follow the next-chain of the current node and optimize
3902 away all the NOTHINGs from it. */
3903 if (OP(scan) != CURLYX) {
3904 const int max = (reg_off_by_arg[OP(scan)]
3906 /* I32 may be smaller than U16 on CRAYs! */
3907 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
3908 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
3912 /* Skip NOTHING and LONGJMP. */
3913 while ((n = regnext(n))
3914 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
3915 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
3916 && off + noff < max)
3918 if (reg_off_by_arg[OP(scan)])
3921 NEXT_OFF(scan) = off;
3924 /* The principal pseudo-switch. Cannot be a switch, since we
3925 look into several different things. */
3926 if ( OP(scan) == DEFINEP ) {
3928 SSize_t deltanext = 0;
3929 SSize_t fake_last_close = 0;
3930 I32 f = SCF_IN_DEFINE;
3932 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
3933 scan = regnext(scan);
3934 assert( OP(scan) == IFTHEN );
3935 DEBUG_PEEP("expect IFTHEN", scan, depth);
3937 data_fake.last_closep= &fake_last_close;
3939 next = regnext(scan);
3940 scan = NEXTOPER(NEXTOPER(scan));
3941 DEBUG_PEEP("scan", scan, depth);
3942 DEBUG_PEEP("next", next, depth);
3944 /* we suppose the run is continuous, last=next...
3945 * NOTE we dont use the return here! */
3946 (void)study_chunk(pRExC_state, &scan, &minlen,
3947 &deltanext, next, &data_fake, stopparen,
3948 recursed_depth, NULL, f, depth+1);
3953 OP(scan) == BRANCH ||
3954 OP(scan) == BRANCHJ ||
3957 next = regnext(scan);