3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
36 # if __STDC_VERSION__ >= 199901L && !defined(VMS)
47 /* Missing proto on LynxOS */
48 char *gconvert(double, int, int, char *);
51 #ifdef PERL_UTF8_CACHE_ASSERT
52 /* if adding more checks watch out for the following tests:
53 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
54 * lib/utf8.t lib/Unicode/Collate/t/index.t
57 # define ASSERT_UTF8_CACHE(cache) \
58 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
59 assert((cache)[2] <= (cache)[3]); \
60 assert((cache)[3] <= (cache)[1]);} \
63 # define ASSERT_UTF8_CACHE(cache) NOOP
66 #ifdef PERL_OLD_COPY_ON_WRITE
67 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
68 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
69 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
73 /* ============================================================================
75 =head1 Allocation and deallocation of SVs.
77 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
78 sv, av, hv...) contains type and reference count information, and for
79 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
80 contains fields specific to each type. Some types store all they need
81 in the head, so don't have a body.
83 In all but the most memory-paranoid configurations (ex: PURIFY), heads
84 and bodies are allocated out of arenas, which by default are
85 approximately 4K chunks of memory parcelled up into N heads or bodies.
86 Sv-bodies are allocated by their sv-type, guaranteeing size
87 consistency needed to allocate safely from arrays.
89 For SV-heads, the first slot in each arena is reserved, and holds a
90 link to the next arena, some flags, and a note of the number of slots.
91 Snaked through each arena chain is a linked list of free items; when
92 this becomes empty, an extra arena is allocated and divided up into N
93 items which are threaded into the free list.
95 SV-bodies are similar, but they use arena-sets by default, which
96 separate the link and info from the arena itself, and reclaim the 1st
97 slot in the arena. SV-bodies are further described later.
99 The following global variables are associated with arenas:
101 PL_sv_arenaroot pointer to list of SV arenas
102 PL_sv_root pointer to list of free SV structures
104 PL_body_arenas head of linked-list of body arenas
105 PL_body_roots[] array of pointers to list of free bodies of svtype
106 arrays are indexed by the svtype needed
108 A few special SV heads are not allocated from an arena, but are
109 instead directly created in the interpreter structure, eg PL_sv_undef.
110 The size of arenas can be changed from the default by setting
111 PERL_ARENA_SIZE appropriately at compile time.
113 The SV arena serves the secondary purpose of allowing still-live SVs
114 to be located and destroyed during final cleanup.
116 At the lowest level, the macros new_SV() and del_SV() grab and free
117 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
118 to return the SV to the free list with error checking.) new_SV() calls
119 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
120 SVs in the free list have their SvTYPE field set to all ones.
122 At the time of very final cleanup, sv_free_arenas() is called from
123 perl_destruct() to physically free all the arenas allocated since the
124 start of the interpreter.
126 The function visit() scans the SV arenas list, and calls a specified
127 function for each SV it finds which is still live - ie which has an SvTYPE
128 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
129 following functions (specified as [function that calls visit()] / [function
130 called by visit() for each SV]):
132 sv_report_used() / do_report_used()
133 dump all remaining SVs (debugging aid)
135 sv_clean_objs() / do_clean_objs(),do_clean_named_objs(),
136 do_clean_named_io_objs()
137 Attempt to free all objects pointed to by RVs,
138 and try to do the same for all objects indirectly
139 referenced by typeglobs too. Called once from
140 perl_destruct(), prior to calling sv_clean_all()
143 sv_clean_all() / do_clean_all()
144 SvREFCNT_dec(sv) each remaining SV, possibly
145 triggering an sv_free(). It also sets the
146 SVf_BREAK flag on the SV to indicate that the
147 refcnt has been artificially lowered, and thus
148 stopping sv_free() from giving spurious warnings
149 about SVs which unexpectedly have a refcnt
150 of zero. called repeatedly from perl_destruct()
151 until there are no SVs left.
153 =head2 Arena allocator API Summary
155 Private API to rest of sv.c
159 new_XPVNV(), del_XPVGV(),
164 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
168 * ========================================================================= */
171 * "A time to plant, and a time to uproot what was planted..."
175 # define MEM_LOG_NEW_SV(sv, file, line, func) \
176 Perl_mem_log_new_sv(sv, file, line, func)
177 # define MEM_LOG_DEL_SV(sv, file, line, func) \
178 Perl_mem_log_del_sv(sv, file, line, func)
180 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
181 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
184 #ifdef DEBUG_LEAKING_SCALARS
185 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
186 # define DEBUG_SV_SERIAL(sv) \
187 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
188 PTR2UV(sv), (long)(sv)->sv_debug_serial))
190 # define FREE_SV_DEBUG_FILE(sv)
191 # define DEBUG_SV_SERIAL(sv) NOOP
195 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
196 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
197 /* Whilst I'd love to do this, it seems that things like to check on
199 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
201 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
202 PoisonNew(&SvREFCNT(sv), 1, U32)
204 # define SvARENA_CHAIN(sv) SvANY(sv)
205 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
206 # define POSION_SV_HEAD(sv)
209 /* Mark an SV head as unused, and add to free list.
211 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
212 * its refcount artificially decremented during global destruction, so
213 * there may be dangling pointers to it. The last thing we want in that
214 * case is for it to be reused. */
216 #define plant_SV(p) \
218 const U32 old_flags = SvFLAGS(p); \
219 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
220 DEBUG_SV_SERIAL(p); \
221 FREE_SV_DEBUG_FILE(p); \
223 SvFLAGS(p) = SVTYPEMASK; \
224 if (!(old_flags & SVf_BREAK)) { \
225 SvARENA_CHAIN_SET(p, PL_sv_root); \
231 #define uproot_SV(p) \
234 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
239 /* make some more SVs by adding another arena */
246 char *chunk; /* must use New here to match call to */
247 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
248 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
253 /* new_SV(): return a new, empty SV head */
255 #ifdef DEBUG_LEAKING_SCALARS
256 /* provide a real function for a debugger to play with */
258 S_new_SV(pTHX_ const char *file, int line, const char *func)
265 sv = S_more_sv(aTHX);
269 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
270 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
276 sv->sv_debug_inpad = 0;
277 sv->sv_debug_parent = NULL;
278 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
280 sv->sv_debug_serial = PL_sv_serial++;
282 MEM_LOG_NEW_SV(sv, file, line, func);
283 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
284 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
288 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
296 (p) = S_more_sv(aTHX); \
300 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
305 /* del_SV(): return an empty SV head to the free list */
318 S_del_sv(pTHX_ SV *p)
322 PERL_ARGS_ASSERT_DEL_SV;
327 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
328 const SV * const sv = sva + 1;
329 const SV * const svend = &sva[SvREFCNT(sva)];
330 if (p >= sv && p < svend) {
336 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
337 "Attempt to free non-arena SV: 0x%"UVxf
338 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
345 #else /* ! DEBUGGING */
347 #define del_SV(p) plant_SV(p)
349 #endif /* DEBUGGING */
353 =head1 SV Manipulation Functions
355 =for apidoc sv_add_arena
357 Given a chunk of memory, link it to the head of the list of arenas,
358 and split it into a list of free SVs.
364 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
367 SV *const sva = MUTABLE_SV(ptr);
371 PERL_ARGS_ASSERT_SV_ADD_ARENA;
373 /* The first SV in an arena isn't an SV. */
374 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
375 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
376 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
378 PL_sv_arenaroot = sva;
379 PL_sv_root = sva + 1;
381 svend = &sva[SvREFCNT(sva) - 1];
384 SvARENA_CHAIN_SET(sv, (sv + 1));
388 /* Must always set typemask because it's always checked in on cleanup
389 when the arenas are walked looking for objects. */
390 SvFLAGS(sv) = SVTYPEMASK;
393 SvARENA_CHAIN_SET(sv, 0);
397 SvFLAGS(sv) = SVTYPEMASK;
400 /* visit(): call the named function for each non-free SV in the arenas
401 * whose flags field matches the flags/mask args. */
404 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
410 PERL_ARGS_ASSERT_VISIT;
412 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
413 register const SV * const svend = &sva[SvREFCNT(sva)];
415 for (sv = sva + 1; sv < svend; ++sv) {
416 if (SvTYPE(sv) != SVTYPEMASK
417 && (sv->sv_flags & mask) == flags
430 /* called by sv_report_used() for each live SV */
433 do_report_used(pTHX_ SV *const sv)
435 if (SvTYPE(sv) != SVTYPEMASK) {
436 PerlIO_printf(Perl_debug_log, "****\n");
443 =for apidoc sv_report_used
445 Dump the contents of all SVs not yet freed. (Debugging aid).
451 Perl_sv_report_used(pTHX)
454 visit(do_report_used, 0, 0);
460 /* called by sv_clean_objs() for each live SV */
463 do_clean_objs(pTHX_ SV *const ref)
468 SV * const target = SvRV(ref);
469 if (SvOBJECT(target)) {
470 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
471 if (SvWEAKREF(ref)) {
472 sv_del_backref(target, ref);
478 SvREFCNT_dec(target);
483 /* XXX Might want to check arrays, etc. */
487 /* clear any slots in a GV which hold objects - except IO;
488 * called by sv_clean_objs() for each live GV */
491 do_clean_named_objs(pTHX_ SV *const sv)
495 assert(SvTYPE(sv) == SVt_PVGV);
496 assert(isGV_with_GP(sv));
500 /* freeing GP entries may indirectly free the current GV;
501 * hold onto it while we mess with the GP slots */
504 if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) {
505 DEBUG_D((PerlIO_printf(Perl_debug_log,
506 "Cleaning named glob SV object:\n "), sv_dump(obj)));
510 if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) {
511 DEBUG_D((PerlIO_printf(Perl_debug_log,
512 "Cleaning named glob AV object:\n "), sv_dump(obj)));
516 if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) {
517 DEBUG_D((PerlIO_printf(Perl_debug_log,
518 "Cleaning named glob HV object:\n "), sv_dump(obj)));
522 if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) {
523 DEBUG_D((PerlIO_printf(Perl_debug_log,
524 "Cleaning named glob CV object:\n "), sv_dump(obj)));
528 SvREFCNT_dec(sv); /* undo the inc above */
531 /* clear any IO slots in a GV which hold objects (except stderr, defout);
532 * called by sv_clean_objs() for each live GV */
535 do_clean_named_io_objs(pTHX_ SV *const sv)
539 assert(SvTYPE(sv) == SVt_PVGV);
540 assert(isGV_with_GP(sv));
541 if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv)
545 if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) {
546 DEBUG_D((PerlIO_printf(Perl_debug_log,
547 "Cleaning named glob IO object:\n "), sv_dump(obj)));
551 SvREFCNT_dec(sv); /* undo the inc above */
554 /* Void wrapper to pass to visit() */
556 do_curse(pTHX_ SV * const sv) {
557 if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv)
558 || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv))
564 =for apidoc sv_clean_objs
566 Attempt to destroy all objects not yet freed
572 Perl_sv_clean_objs(pTHX)
576 PL_in_clean_objs = TRUE;
577 visit(do_clean_objs, SVf_ROK, SVf_ROK);
578 /* Some barnacles may yet remain, clinging to typeglobs.
579 * Run the non-IO destructors first: they may want to output
580 * error messages, close files etc */
581 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
582 visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
583 /* And if there are some very tenacious barnacles clinging to arrays,
584 closures, or what have you.... */
585 /* XXX This line breaks Tk and Gtk2. See [perl #82542].
586 visit(do_curse, SVs_OBJECT, SVs_OBJECT);
588 olddef = PL_defoutgv;
589 PL_defoutgv = NULL; /* disable skip of PL_defoutgv */
590 if (olddef && isGV_with_GP(olddef))
591 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef));
592 olderr = PL_stderrgv;
593 PL_stderrgv = NULL; /* disable skip of PL_stderrgv */
594 if (olderr && isGV_with_GP(olderr))
595 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr));
596 SvREFCNT_dec(olddef);
597 PL_in_clean_objs = FALSE;
600 /* called by sv_clean_all() for each live SV */
603 do_clean_all(pTHX_ SV *const sv)
606 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
607 /* don't clean pid table and strtab */
610 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
611 SvFLAGS(sv) |= SVf_BREAK;
616 =for apidoc sv_clean_all
618 Decrement the refcnt of each remaining SV, possibly triggering a
619 cleanup. This function may have to be called multiple times to free
620 SVs which are in complex self-referential hierarchies.
626 Perl_sv_clean_all(pTHX)
630 PL_in_clean_all = TRUE;
631 cleaned = visit(do_clean_all, 0,0);
636 ARENASETS: a meta-arena implementation which separates arena-info
637 into struct arena_set, which contains an array of struct
638 arena_descs, each holding info for a single arena. By separating
639 the meta-info from the arena, we recover the 1st slot, formerly
640 borrowed for list management. The arena_set is about the size of an
641 arena, avoiding the needless malloc overhead of a naive linked-list.
643 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
644 memory in the last arena-set (1/2 on average). In trade, we get
645 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
646 smaller types). The recovery of the wasted space allows use of
647 small arenas for large, rare body types, by changing array* fields
648 in body_details_by_type[] below.
651 char *arena; /* the raw storage, allocated aligned */
652 size_t size; /* its size ~4k typ */
653 svtype utype; /* bodytype stored in arena */
658 /* Get the maximum number of elements in set[] such that struct arena_set
659 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
660 therefore likely to be 1 aligned memory page. */
662 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
663 - 2 * sizeof(int)) / sizeof (struct arena_desc))
666 struct arena_set* next;
667 unsigned int set_size; /* ie ARENAS_PER_SET */
668 unsigned int curr; /* index of next available arena-desc */
669 struct arena_desc set[ARENAS_PER_SET];
673 =for apidoc sv_free_arenas
675 Deallocate the memory used by all arenas. Note that all the individual SV
676 heads and bodies within the arenas must already have been freed.
681 Perl_sv_free_arenas(pTHX)
688 /* Free arenas here, but be careful about fake ones. (We assume
689 contiguity of the fake ones with the corresponding real ones.) */
691 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
692 svanext = MUTABLE_SV(SvANY(sva));
693 while (svanext && SvFAKE(svanext))
694 svanext = MUTABLE_SV(SvANY(svanext));
701 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
704 struct arena_set *current = aroot;
707 assert(aroot->set[i].arena);
708 Safefree(aroot->set[i].arena);
716 i = PERL_ARENA_ROOTS_SIZE;
718 PL_body_roots[i] = 0;
725 Here are mid-level routines that manage the allocation of bodies out
726 of the various arenas. There are 5 kinds of arenas:
728 1. SV-head arenas, which are discussed and handled above
729 2. regular body arenas
730 3. arenas for reduced-size bodies
733 Arena types 2 & 3 are chained by body-type off an array of
734 arena-root pointers, which is indexed by svtype. Some of the
735 larger/less used body types are malloced singly, since a large
736 unused block of them is wasteful. Also, several svtypes dont have
737 bodies; the data fits into the sv-head itself. The arena-root
738 pointer thus has a few unused root-pointers (which may be hijacked
739 later for arena types 4,5)
741 3 differs from 2 as an optimization; some body types have several
742 unused fields in the front of the structure (which are kept in-place
743 for consistency). These bodies can be allocated in smaller chunks,
744 because the leading fields arent accessed. Pointers to such bodies
745 are decremented to point at the unused 'ghost' memory, knowing that
746 the pointers are used with offsets to the real memory.
749 =head1 SV-Body Allocation
751 Allocation of SV-bodies is similar to SV-heads, differing as follows;
752 the allocation mechanism is used for many body types, so is somewhat
753 more complicated, it uses arena-sets, and has no need for still-live
756 At the outermost level, (new|del)_X*V macros return bodies of the
757 appropriate type. These macros call either (new|del)_body_type or
758 (new|del)_body_allocated macro pairs, depending on specifics of the
759 type. Most body types use the former pair, the latter pair is used to
760 allocate body types with "ghost fields".
762 "ghost fields" are fields that are unused in certain types, and
763 consequently don't need to actually exist. They are declared because
764 they're part of a "base type", which allows use of functions as
765 methods. The simplest examples are AVs and HVs, 2 aggregate types
766 which don't use the fields which support SCALAR semantics.
768 For these types, the arenas are carved up into appropriately sized
769 chunks, we thus avoid wasted memory for those unaccessed members.
770 When bodies are allocated, we adjust the pointer back in memory by the
771 size of the part not allocated, so it's as if we allocated the full
772 structure. (But things will all go boom if you write to the part that
773 is "not there", because you'll be overwriting the last members of the
774 preceding structure in memory.)
776 We calculate the correction using the STRUCT_OFFSET macro on the first
777 member present. If the allocated structure is smaller (no initial NV
778 actually allocated) then the net effect is to subtract the size of the NV
779 from the pointer, to return a new pointer as if an initial NV were actually
780 allocated. (We were using structures named *_allocated for this, but
781 this turned out to be a subtle bug, because a structure without an NV
782 could have a lower alignment constraint, but the compiler is allowed to
783 optimised accesses based on the alignment constraint of the actual pointer
784 to the full structure, for example, using a single 64 bit load instruction
785 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
787 This is the same trick as was used for NV and IV bodies. Ironically it
788 doesn't need to be used for NV bodies any more, because NV is now at
789 the start of the structure. IV bodies don't need it either, because
790 they are no longer allocated.
792 In turn, the new_body_* allocators call S_new_body(), which invokes
793 new_body_inline macro, which takes a lock, and takes a body off the
794 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
795 necessary to refresh an empty list. Then the lock is released, and
796 the body is returned.
798 Perl_more_bodies allocates a new arena, and carves it up into an array of N
799 bodies, which it strings into a linked list. It looks up arena-size
800 and body-size from the body_details table described below, thus
801 supporting the multiple body-types.
803 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
804 the (new|del)_X*V macros are mapped directly to malloc/free.
806 For each sv-type, struct body_details bodies_by_type[] carries
807 parameters which control these aspects of SV handling:
809 Arena_size determines whether arenas are used for this body type, and if
810 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
811 zero, forcing individual mallocs and frees.
813 Body_size determines how big a body is, and therefore how many fit into
814 each arena. Offset carries the body-pointer adjustment needed for
815 "ghost fields", and is used in *_allocated macros.
817 But its main purpose is to parameterize info needed in
818 Perl_sv_upgrade(). The info here dramatically simplifies the function
819 vs the implementation in 5.8.8, making it table-driven. All fields
820 are used for this, except for arena_size.
822 For the sv-types that have no bodies, arenas are not used, so those
823 PL_body_roots[sv_type] are unused, and can be overloaded. In
824 something of a special case, SVt_NULL is borrowed for HE arenas;
825 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
826 bodies_by_type[SVt_NULL] slot is not used, as the table is not
831 struct body_details {
832 U8 body_size; /* Size to allocate */
833 U8 copy; /* Size of structure to copy (may be shorter) */
835 unsigned int type : 4; /* We have space for a sanity check. */
836 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
837 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
838 unsigned int arena : 1; /* Allocated from an arena */
839 size_t arena_size; /* Size of arena to allocate */
847 /* With -DPURFIY we allocate everything directly, and don't use arenas.
848 This seems a rather elegant way to simplify some of the code below. */
849 #define HASARENA FALSE
851 #define HASARENA TRUE
853 #define NOARENA FALSE
855 /* Size the arenas to exactly fit a given number of bodies. A count
856 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
857 simplifying the default. If count > 0, the arena is sized to fit
858 only that many bodies, allowing arenas to be used for large, rare
859 bodies (XPVFM, XPVIO) without undue waste. The arena size is
860 limited by PERL_ARENA_SIZE, so we can safely oversize the
863 #define FIT_ARENA0(body_size) \
864 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
865 #define FIT_ARENAn(count,body_size) \
866 ( count * body_size <= PERL_ARENA_SIZE) \
867 ? count * body_size \
868 : FIT_ARENA0 (body_size)
869 #define FIT_ARENA(count,body_size) \
871 ? FIT_ARENAn (count, body_size) \
872 : FIT_ARENA0 (body_size)
874 /* Calculate the length to copy. Specifically work out the length less any
875 final padding the compiler needed to add. See the comment in sv_upgrade
876 for why copying the padding proved to be a bug. */
878 #define copy_length(type, last_member) \
879 STRUCT_OFFSET(type, last_member) \
880 + sizeof (((type*)SvANY((const SV *)0))->last_member)
882 static const struct body_details bodies_by_type[] = {
883 /* HEs use this offset for their arena. */
884 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
886 /* The bind placeholder pretends to be an RV for now.
887 Also it's marked as "can't upgrade" to stop anyone using it before it's
889 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
891 /* IVs are in the head, so the allocation size is 0. */
893 sizeof(IV), /* This is used to copy out the IV body. */
894 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
895 NOARENA /* IVS don't need an arena */, 0
898 /* 8 bytes on most ILP32 with IEEE doubles */
899 { sizeof(NV), sizeof(NV),
900 STRUCT_OFFSET(XPVNV, xnv_u),
901 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
903 /* 8 bytes on most ILP32 with IEEE doubles */
904 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
905 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
906 + STRUCT_OFFSET(XPV, xpv_cur),
907 SVt_PV, FALSE, NONV, HASARENA,
908 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
911 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
912 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
913 + STRUCT_OFFSET(XPV, xpv_cur),
914 SVt_PVIV, FALSE, NONV, HASARENA,
915 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
918 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
919 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
920 + STRUCT_OFFSET(XPV, xpv_cur),
921 SVt_PVNV, FALSE, HADNV, HASARENA,
922 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
925 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
926 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
932 SVt_REGEXP, FALSE, NONV, HASARENA,
933 FIT_ARENA(0, sizeof(regexp))
937 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
938 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
941 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
942 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
945 copy_length(XPVAV, xav_alloc),
947 SVt_PVAV, TRUE, NONV, HASARENA,
948 FIT_ARENA(0, sizeof(XPVAV)) },
951 copy_length(XPVHV, xhv_max),
953 SVt_PVHV, TRUE, NONV, HASARENA,
954 FIT_ARENA(0, sizeof(XPVHV)) },
960 SVt_PVCV, TRUE, NONV, HASARENA,
961 FIT_ARENA(0, sizeof(XPVCV)) },
966 SVt_PVFM, TRUE, NONV, NOARENA,
967 FIT_ARENA(20, sizeof(XPVFM)) },
969 /* XPVIO is 84 bytes, fits 48x */
973 SVt_PVIO, TRUE, NONV, HASARENA,
974 FIT_ARENA(24, sizeof(XPVIO)) },
977 #define new_body_allocated(sv_type) \
978 (void *)((char *)S_new_body(aTHX_ sv_type) \
979 - bodies_by_type[sv_type].offset)
981 /* return a thing to the free list */
983 #define del_body(thing, root) \
985 void ** const thing_copy = (void **)thing; \
986 *thing_copy = *root; \
987 *root = (void*)thing_copy; \
992 #define new_XNV() safemalloc(sizeof(XPVNV))
993 #define new_XPVNV() safemalloc(sizeof(XPVNV))
994 #define new_XPVMG() safemalloc(sizeof(XPVMG))
996 #define del_XPVGV(p) safefree(p)
1000 #define new_XNV() new_body_allocated(SVt_NV)
1001 #define new_XPVNV() new_body_allocated(SVt_PVNV)
1002 #define new_XPVMG() new_body_allocated(SVt_PVMG)
1004 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
1005 &PL_body_roots[SVt_PVGV])
1009 /* no arena for you! */
1011 #define new_NOARENA(details) \
1012 safemalloc((details)->body_size + (details)->offset)
1013 #define new_NOARENAZ(details) \
1014 safecalloc((details)->body_size + (details)->offset, 1)
1017 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
1018 const size_t arena_size)
1021 void ** const root = &PL_body_roots[sv_type];
1022 struct arena_desc *adesc;
1023 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
1027 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
1028 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1029 static bool done_sanity_check;
1031 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1032 * variables like done_sanity_check. */
1033 if (!done_sanity_check) {
1034 unsigned int i = SVt_LAST;
1036 done_sanity_check = TRUE;
1039 assert (bodies_by_type[i].type == i);
1045 /* may need new arena-set to hold new arena */
1046 if (!aroot || aroot->curr >= aroot->set_size) {
1047 struct arena_set *newroot;
1048 Newxz(newroot, 1, struct arena_set);
1049 newroot->set_size = ARENAS_PER_SET;
1050 newroot->next = aroot;
1052 PL_body_arenas = (void *) newroot;
1053 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
1056 /* ok, now have arena-set with at least 1 empty/available arena-desc */
1057 curr = aroot->curr++;
1058 adesc = &(aroot->set[curr]);
1059 assert(!adesc->arena);
1061 Newx(adesc->arena, good_arena_size, char);
1062 adesc->size = good_arena_size;
1063 adesc->utype = sv_type;
1064 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
1065 curr, (void*)adesc->arena, (UV)good_arena_size));
1067 start = (char *) adesc->arena;
1069 /* Get the address of the byte after the end of the last body we can fit.
1070 Remember, this is integer division: */
1071 end = start + good_arena_size / body_size * body_size;
1073 /* computed count doesn't reflect the 1st slot reservation */
1074 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1075 DEBUG_m(PerlIO_printf(Perl_debug_log,
1076 "arena %p end %p arena-size %d (from %d) type %d "
1078 (void*)start, (void*)end, (int)good_arena_size,
1079 (int)arena_size, sv_type, (int)body_size,
1080 (int)good_arena_size / (int)body_size));
1082 DEBUG_m(PerlIO_printf(Perl_debug_log,
1083 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1084 (void*)start, (void*)end,
1085 (int)arena_size, sv_type, (int)body_size,
1086 (int)good_arena_size / (int)body_size));
1088 *root = (void *)start;
1091 /* Where the next body would start: */
1092 char * const next = start + body_size;
1095 /* This is the last body: */
1096 assert(next == end);
1098 *(void **)start = 0;
1102 *(void**) start = (void *)next;
1107 /* grab a new thing from the free list, allocating more if necessary.
1108 The inline version is used for speed in hot routines, and the
1109 function using it serves the rest (unless PURIFY).
1111 #define new_body_inline(xpv, sv_type) \
1113 void ** const r3wt = &PL_body_roots[sv_type]; \
1114 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1115 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1116 bodies_by_type[sv_type].body_size,\
1117 bodies_by_type[sv_type].arena_size)); \
1118 *(r3wt) = *(void**)(xpv); \
1124 S_new_body(pTHX_ const svtype sv_type)
1128 new_body_inline(xpv, sv_type);
1134 static const struct body_details fake_rv =
1135 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1138 =for apidoc sv_upgrade
1140 Upgrade an SV to a more complex form. Generally adds a new body type to the
1141 SV, then copies across as much information as possible from the old body.
1142 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1148 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1153 const svtype old_type = SvTYPE(sv);
1154 const struct body_details *new_type_details;
1155 const struct body_details *old_type_details
1156 = bodies_by_type + old_type;
1157 SV *referant = NULL;
1159 PERL_ARGS_ASSERT_SV_UPGRADE;
1161 if (old_type == new_type)
1164 /* This clause was purposefully added ahead of the early return above to
1165 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1166 inference by Nick I-S that it would fix other troublesome cases. See
1167 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1169 Given that shared hash key scalars are no longer PVIV, but PV, there is
1170 no longer need to unshare so as to free up the IVX slot for its proper
1171 purpose. So it's safe to move the early return earlier. */
1173 if (new_type != SVt_PV && SvIsCOW(sv)) {
1174 sv_force_normal_flags(sv, 0);
1177 old_body = SvANY(sv);
1179 /* Copying structures onto other structures that have been neatly zeroed
1180 has a subtle gotcha. Consider XPVMG
1182 +------+------+------+------+------+-------+-------+
1183 | NV | CUR | LEN | IV | MAGIC | STASH |
1184 +------+------+------+------+------+-------+-------+
1185 0 4 8 12 16 20 24 28
1187 where NVs are aligned to 8 bytes, so that sizeof that structure is
1188 actually 32 bytes long, with 4 bytes of padding at the end:
1190 +------+------+------+------+------+-------+-------+------+
1191 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1192 +------+------+------+------+------+-------+-------+------+
1193 0 4 8 12 16 20 24 28 32
1195 so what happens if you allocate memory for this structure:
1197 +------+------+------+------+------+-------+-------+------+------+...
1198 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1199 +------+------+------+------+------+-------+-------+------+------+...
1200 0 4 8 12 16 20 24 28 32 36
1202 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1203 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1204 started out as zero once, but it's quite possible that it isn't. So now,
1205 rather than a nicely zeroed GP, you have it pointing somewhere random.
1208 (In fact, GP ends up pointing at a previous GP structure, because the
1209 principle cause of the padding in XPVMG getting garbage is a copy of
1210 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1211 this happens to be moot because XPVGV has been re-ordered, with GP
1212 no longer after STASH)
1214 So we are careful and work out the size of used parts of all the
1222 referant = SvRV(sv);
1223 old_type_details = &fake_rv;
1224 if (new_type == SVt_NV)
1225 new_type = SVt_PVNV;
1227 if (new_type < SVt_PVIV) {
1228 new_type = (new_type == SVt_NV)
1229 ? SVt_PVNV : SVt_PVIV;
1234 if (new_type < SVt_PVNV) {
1235 new_type = SVt_PVNV;
1239 assert(new_type > SVt_PV);
1240 assert(SVt_IV < SVt_PV);
1241 assert(SVt_NV < SVt_PV);
1248 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1249 there's no way that it can be safely upgraded, because perl.c
1250 expects to Safefree(SvANY(PL_mess_sv)) */
1251 assert(sv != PL_mess_sv);
1252 /* This flag bit is used to mean other things in other scalar types.
1253 Given that it only has meaning inside the pad, it shouldn't be set
1254 on anything that can get upgraded. */
1255 assert(!SvPAD_TYPED(sv));
1258 if (old_type_details->cant_upgrade)
1259 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1260 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1263 if (old_type > new_type)
1264 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1265 (int)old_type, (int)new_type);
1267 new_type_details = bodies_by_type + new_type;
1269 SvFLAGS(sv) &= ~SVTYPEMASK;
1270 SvFLAGS(sv) |= new_type;
1272 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1273 the return statements above will have triggered. */
1274 assert (new_type != SVt_NULL);
1277 assert(old_type == SVt_NULL);
1278 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1282 assert(old_type == SVt_NULL);
1283 SvANY(sv) = new_XNV();
1288 assert(new_type_details->body_size);
1291 assert(new_type_details->arena);
1292 assert(new_type_details->arena_size);
1293 /* This points to the start of the allocated area. */
1294 new_body_inline(new_body, new_type);
1295 Zero(new_body, new_type_details->body_size, char);
1296 new_body = ((char *)new_body) - new_type_details->offset;
1298 /* We always allocated the full length item with PURIFY. To do this
1299 we fake things so that arena is false for all 16 types.. */
1300 new_body = new_NOARENAZ(new_type_details);
1302 SvANY(sv) = new_body;
1303 if (new_type == SVt_PVAV) {
1307 if (old_type_details->body_size) {
1310 /* It will have been zeroed when the new body was allocated.
1311 Lets not write to it, in case it confuses a write-back
1317 #ifndef NODEFAULT_SHAREKEYS
1318 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1320 HvMAX(sv) = 7; /* (start with 8 buckets) */
1323 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1324 The target created by newSVrv also is, and it can have magic.
1325 However, it never has SvPVX set.
1327 if (old_type == SVt_IV) {
1329 } else if (old_type >= SVt_PV) {
1330 assert(SvPVX_const(sv) == 0);
1333 if (old_type >= SVt_PVMG) {
1334 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1335 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1337 sv->sv_u.svu_array = NULL; /* or svu_hash */
1343 /* This ensures that SvTHINKFIRST(sv) is true, and hence that
1344 sv_force_normal_flags(sv) is called. */
1347 /* XXX Is this still needed? Was it ever needed? Surely as there is
1348 no route from NV to PVIV, NOK can never be true */
1349 assert(!SvNOKp(sv));
1360 assert(new_type_details->body_size);
1361 /* We always allocated the full length item with PURIFY. To do this
1362 we fake things so that arena is false for all 16 types.. */
1363 if(new_type_details->arena) {
1364 /* This points to the start of the allocated area. */
1365 new_body_inline(new_body, new_type);
1366 Zero(new_body, new_type_details->body_size, char);
1367 new_body = ((char *)new_body) - new_type_details->offset;
1369 new_body = new_NOARENAZ(new_type_details);
1371 SvANY(sv) = new_body;
1373 if (old_type_details->copy) {
1374 /* There is now the potential for an upgrade from something without
1375 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1376 int offset = old_type_details->offset;
1377 int length = old_type_details->copy;
1379 if (new_type_details->offset > old_type_details->offset) {
1380 const int difference
1381 = new_type_details->offset - old_type_details->offset;
1382 offset += difference;
1383 length -= difference;
1385 assert (length >= 0);
1387 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1391 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1392 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1393 * correct 0.0 for us. Otherwise, if the old body didn't have an
1394 * NV slot, but the new one does, then we need to initialise the
1395 * freshly created NV slot with whatever the correct bit pattern is
1397 if (old_type_details->zero_nv && !new_type_details->zero_nv
1398 && !isGV_with_GP(sv))
1402 if (new_type == SVt_PVIO) {
1403 IO * const io = MUTABLE_IO(sv);
1404 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1407 /* Clear the stashcache because a new IO could overrule a package
1409 hv_clear(PL_stashcache);
1411 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1412 IoPAGE_LEN(sv) = 60;
1414 if (old_type < SVt_PV) {
1415 /* referant will be NULL unless the old type was SVt_IV emulating
1417 sv->sv_u.svu_rv = referant;
1421 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1422 (unsigned long)new_type);
1425 if (old_type > SVt_IV) {
1429 /* Note that there is an assumption that all bodies of types that
1430 can be upgraded came from arenas. Only the more complex non-
1431 upgradable types are allowed to be directly malloc()ed. */
1432 assert(old_type_details->arena);
1433 del_body((void*)((char*)old_body + old_type_details->offset),
1434 &PL_body_roots[old_type]);
1440 =for apidoc sv_backoff
1442 Remove any string offset. You should normally use the C<SvOOK_off> macro
1449 Perl_sv_backoff(pTHX_ register SV *const sv)
1452 const char * const s = SvPVX_const(sv);
1454 PERL_ARGS_ASSERT_SV_BACKOFF;
1455 PERL_UNUSED_CONTEXT;
1458 assert(SvTYPE(sv) != SVt_PVHV);
1459 assert(SvTYPE(sv) != SVt_PVAV);
1461 SvOOK_offset(sv, delta);
1463 SvLEN_set(sv, SvLEN(sv) + delta);
1464 SvPV_set(sv, SvPVX(sv) - delta);
1465 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1466 SvFLAGS(sv) &= ~SVf_OOK;
1473 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1474 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1475 Use the C<SvGROW> wrapper instead.
1481 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1485 PERL_ARGS_ASSERT_SV_GROW;
1487 if (PL_madskills && newlen >= 0x100000) {
1488 PerlIO_printf(Perl_debug_log,
1489 "Allocation too large: %"UVxf"\n", (UV)newlen);
1491 #ifdef HAS_64K_LIMIT
1492 if (newlen >= 0x10000) {
1493 PerlIO_printf(Perl_debug_log,
1494 "Allocation too large: %"UVxf"\n", (UV)newlen);
1497 #endif /* HAS_64K_LIMIT */
1500 if (SvTYPE(sv) < SVt_PV) {
1501 sv_upgrade(sv, SVt_PV);
1502 s = SvPVX_mutable(sv);
1504 else if (SvOOK(sv)) { /* pv is offset? */
1506 s = SvPVX_mutable(sv);
1507 if (newlen > SvLEN(sv))
1508 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1509 #ifdef HAS_64K_LIMIT
1510 if (newlen >= 0x10000)
1515 s = SvPVX_mutable(sv);
1517 if (newlen > SvLEN(sv)) { /* need more room? */
1518 STRLEN minlen = SvCUR(sv);
1519 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1520 if (newlen < minlen)
1522 #ifndef Perl_safesysmalloc_size
1523 newlen = PERL_STRLEN_ROUNDUP(newlen);
1525 if (SvLEN(sv) && s) {
1526 s = (char*)saferealloc(s, newlen);
1529 s = (char*)safemalloc(newlen);
1530 if (SvPVX_const(sv) && SvCUR(sv)) {
1531 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1535 #ifdef Perl_safesysmalloc_size
1536 /* Do this here, do it once, do it right, and then we will never get
1537 called back into sv_grow() unless there really is some growing
1539 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1541 SvLEN_set(sv, newlen);
1548 =for apidoc sv_setiv
1550 Copies an integer into the given SV, upgrading first if necessary.
1551 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1557 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1561 PERL_ARGS_ASSERT_SV_SETIV;
1563 SV_CHECK_THINKFIRST_COW_DROP(sv);
1564 switch (SvTYPE(sv)) {
1567 sv_upgrade(sv, SVt_IV);
1570 sv_upgrade(sv, SVt_PVIV);
1574 if (!isGV_with_GP(sv))
1581 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1585 (void)SvIOK_only(sv); /* validate number */
1591 =for apidoc sv_setiv_mg
1593 Like C<sv_setiv>, but also handles 'set' magic.
1599 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1601 PERL_ARGS_ASSERT_SV_SETIV_MG;
1608 =for apidoc sv_setuv
1610 Copies an unsigned integer into the given SV, upgrading first if necessary.
1611 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1617 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1619 PERL_ARGS_ASSERT_SV_SETUV;
1621 /* With these two if statements:
1622 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1625 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1627 If you wish to remove them, please benchmark to see what the effect is
1629 if (u <= (UV)IV_MAX) {
1630 sv_setiv(sv, (IV)u);
1639 =for apidoc sv_setuv_mg
1641 Like C<sv_setuv>, but also handles 'set' magic.
1647 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1649 PERL_ARGS_ASSERT_SV_SETUV_MG;
1656 =for apidoc sv_setnv
1658 Copies a double into the given SV, upgrading first if necessary.
1659 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1665 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1669 PERL_ARGS_ASSERT_SV_SETNV;
1671 SV_CHECK_THINKFIRST_COW_DROP(sv);
1672 switch (SvTYPE(sv)) {
1675 sv_upgrade(sv, SVt_NV);
1679 sv_upgrade(sv, SVt_PVNV);
1683 if (!isGV_with_GP(sv))
1690 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1695 (void)SvNOK_only(sv); /* validate number */
1700 =for apidoc sv_setnv_mg
1702 Like C<sv_setnv>, but also handles 'set' magic.
1708 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1710 PERL_ARGS_ASSERT_SV_SETNV_MG;
1716 /* Print an "isn't numeric" warning, using a cleaned-up,
1717 * printable version of the offending string
1721 S_not_a_number(pTHX_ SV *const sv)
1728 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1731 dsv = newSVpvs_flags("", SVs_TEMP);
1732 pv = sv_uni_display(dsv, sv, 10, 0);
1735 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1736 /* each *s can expand to 4 chars + "...\0",
1737 i.e. need room for 8 chars */
1739 const char *s = SvPVX_const(sv);
1740 const char * const end = s + SvCUR(sv);
1741 for ( ; s < end && d < limit; s++ ) {
1743 if (ch & 128 && !isPRINT_LC(ch)) {
1752 else if (ch == '\r') {
1756 else if (ch == '\f') {
1760 else if (ch == '\\') {
1764 else if (ch == '\0') {
1768 else if (isPRINT_LC(ch))
1785 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1786 "Argument \"%s\" isn't numeric in %s", pv,
1789 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1790 "Argument \"%s\" isn't numeric", pv);
1794 =for apidoc looks_like_number
1796 Test if the content of an SV looks like a number (or is a number).
1797 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1798 non-numeric warning), even if your atof() doesn't grok them.
1804 Perl_looks_like_number(pTHX_ SV *const sv)
1806 register const char *sbegin;
1809 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1812 sbegin = SvPVX_const(sv);
1815 else if (SvPOKp(sv))
1816 sbegin = SvPV_const(sv, len);
1818 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1819 return grok_number(sbegin, len, NULL);
1823 S_glob_2number(pTHX_ GV * const gv)
1825 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1826 SV *const buffer = sv_newmortal();
1828 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1830 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1833 gv_efullname3(buffer, gv, "*");
1834 SvFLAGS(gv) |= wasfake;
1836 /* We know that all GVs stringify to something that is not-a-number,
1837 so no need to test that. */
1838 if (ckWARN(WARN_NUMERIC))
1839 not_a_number(buffer);
1840 /* We just want something true to return, so that S_sv_2iuv_common
1841 can tail call us and return true. */
1845 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1846 until proven guilty, assume that things are not that bad... */
1851 As 64 bit platforms often have an NV that doesn't preserve all bits of
1852 an IV (an assumption perl has been based on to date) it becomes necessary
1853 to remove the assumption that the NV always carries enough precision to
1854 recreate the IV whenever needed, and that the NV is the canonical form.
1855 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1856 precision as a side effect of conversion (which would lead to insanity
1857 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1858 1) to distinguish between IV/UV/NV slots that have cached a valid
1859 conversion where precision was lost and IV/UV/NV slots that have a
1860 valid conversion which has lost no precision
1861 2) to ensure that if a numeric conversion to one form is requested that
1862 would lose precision, the precise conversion (or differently
1863 imprecise conversion) is also performed and cached, to prevent
1864 requests for different numeric formats on the same SV causing
1865 lossy conversion chains. (lossless conversion chains are perfectly
1870 SvIOKp is true if the IV slot contains a valid value
1871 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1872 SvNOKp is true if the NV slot contains a valid value
1873 SvNOK is true only if the NV value is accurate
1876 while converting from PV to NV, check to see if converting that NV to an
1877 IV(or UV) would lose accuracy over a direct conversion from PV to
1878 IV(or UV). If it would, cache both conversions, return NV, but mark
1879 SV as IOK NOKp (ie not NOK).
1881 While converting from PV to IV, check to see if converting that IV to an
1882 NV would lose accuracy over a direct conversion from PV to NV. If it
1883 would, cache both conversions, flag similarly.
1885 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1886 correctly because if IV & NV were set NV *always* overruled.
1887 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1888 changes - now IV and NV together means that the two are interchangeable:
1889 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1891 The benefit of this is that operations such as pp_add know that if
1892 SvIOK is true for both left and right operands, then integer addition
1893 can be used instead of floating point (for cases where the result won't
1894 overflow). Before, floating point was always used, which could lead to
1895 loss of precision compared with integer addition.
1897 * making IV and NV equal status should make maths accurate on 64 bit
1899 * may speed up maths somewhat if pp_add and friends start to use
1900 integers when possible instead of fp. (Hopefully the overhead in
1901 looking for SvIOK and checking for overflow will not outweigh the
1902 fp to integer speedup)
1903 * will slow down integer operations (callers of SvIV) on "inaccurate"
1904 values, as the change from SvIOK to SvIOKp will cause a call into
1905 sv_2iv each time rather than a macro access direct to the IV slot
1906 * should speed up number->string conversion on integers as IV is
1907 favoured when IV and NV are equally accurate
1909 ####################################################################
1910 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1911 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1912 On the other hand, SvUOK is true iff UV.
1913 ####################################################################
1915 Your mileage will vary depending your CPU's relative fp to integer
1919 #ifndef NV_PRESERVES_UV
1920 # define IS_NUMBER_UNDERFLOW_IV 1
1921 # define IS_NUMBER_UNDERFLOW_UV 2
1922 # define IS_NUMBER_IV_AND_UV 2
1923 # define IS_NUMBER_OVERFLOW_IV 4
1924 # define IS_NUMBER_OVERFLOW_UV 5
1926 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1928 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1930 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1938 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1940 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1941 if (SvNVX(sv) < (NV)IV_MIN) {
1942 (void)SvIOKp_on(sv);
1944 SvIV_set(sv, IV_MIN);
1945 return IS_NUMBER_UNDERFLOW_IV;
1947 if (SvNVX(sv) > (NV)UV_MAX) {
1948 (void)SvIOKp_on(sv);
1951 SvUV_set(sv, UV_MAX);
1952 return IS_NUMBER_OVERFLOW_UV;
1954 (void)SvIOKp_on(sv);
1956 /* Can't use strtol etc to convert this string. (See truth table in
1958 if (SvNVX(sv) <= (UV)IV_MAX) {
1959 SvIV_set(sv, I_V(SvNVX(sv)));
1960 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1961 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1963 /* Integer is imprecise. NOK, IOKp */
1965 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1968 SvUV_set(sv, U_V(SvNVX(sv)));
1969 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1970 if (SvUVX(sv) == UV_MAX) {
1971 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1972 possibly be preserved by NV. Hence, it must be overflow.
1974 return IS_NUMBER_OVERFLOW_UV;
1976 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1978 /* Integer is imprecise. NOK, IOKp */
1980 return IS_NUMBER_OVERFLOW_IV;
1982 #endif /* !NV_PRESERVES_UV*/
1985 S_sv_2iuv_common(pTHX_ SV *const sv)
1989 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
1992 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1993 * without also getting a cached IV/UV from it at the same time
1994 * (ie PV->NV conversion should detect loss of accuracy and cache
1995 * IV or UV at same time to avoid this. */
1996 /* IV-over-UV optimisation - choose to cache IV if possible */
1998 if (SvTYPE(sv) == SVt_NV)
1999 sv_upgrade(sv, SVt_PVNV);
2001 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2002 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2003 certainly cast into the IV range at IV_MAX, whereas the correct
2004 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2006 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2007 if (Perl_isnan(SvNVX(sv))) {
2013 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2014 SvIV_set(sv, I_V(SvNVX(sv)));
2015 if (SvNVX(sv) == (NV) SvIVX(sv)
2016 #ifndef NV_PRESERVES_UV
2017 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2018 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2019 /* Don't flag it as "accurately an integer" if the number
2020 came from a (by definition imprecise) NV operation, and
2021 we're outside the range of NV integer precision */
2025 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2027 /* scalar has trailing garbage, eg "42a" */
2029 DEBUG_c(PerlIO_printf(Perl_debug_log,
2030 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2036 /* IV not precise. No need to convert from PV, as NV
2037 conversion would already have cached IV if it detected
2038 that PV->IV would be better than PV->NV->IV
2039 flags already correct - don't set public IOK. */
2040 DEBUG_c(PerlIO_printf(Perl_debug_log,
2041 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2046 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2047 but the cast (NV)IV_MIN rounds to a the value less (more
2048 negative) than IV_MIN which happens to be equal to SvNVX ??
2049 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2050 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2051 (NV)UVX == NVX are both true, but the values differ. :-(
2052 Hopefully for 2s complement IV_MIN is something like
2053 0x8000000000000000 which will be exact. NWC */
2056 SvUV_set(sv, U_V(SvNVX(sv)));
2058 (SvNVX(sv) == (NV) SvUVX(sv))
2059 #ifndef NV_PRESERVES_UV
2060 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2061 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2062 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2063 /* Don't flag it as "accurately an integer" if the number
2064 came from a (by definition imprecise) NV operation, and
2065 we're outside the range of NV integer precision */
2071 DEBUG_c(PerlIO_printf(Perl_debug_log,
2072 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2078 else if (SvPOKp(sv) && SvLEN(sv)) {
2080 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2081 /* We want to avoid a possible problem when we cache an IV/ a UV which
2082 may be later translated to an NV, and the resulting NV is not
2083 the same as the direct translation of the initial string
2084 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2085 be careful to ensure that the value with the .456 is around if the
2086 NV value is requested in the future).
2088 This means that if we cache such an IV/a UV, we need to cache the
2089 NV as well. Moreover, we trade speed for space, and do not
2090 cache the NV if we are sure it's not needed.
2093 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2094 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2095 == IS_NUMBER_IN_UV) {
2096 /* It's definitely an integer, only upgrade to PVIV */
2097 if (SvTYPE(sv) < SVt_PVIV)
2098 sv_upgrade(sv, SVt_PVIV);
2100 } else if (SvTYPE(sv) < SVt_PVNV)
2101 sv_upgrade(sv, SVt_PVNV);
2103 /* If NVs preserve UVs then we only use the UV value if we know that
2104 we aren't going to call atof() below. If NVs don't preserve UVs
2105 then the value returned may have more precision than atof() will
2106 return, even though value isn't perfectly accurate. */
2107 if ((numtype & (IS_NUMBER_IN_UV
2108 #ifdef NV_PRESERVES_UV
2111 )) == IS_NUMBER_IN_UV) {
2112 /* This won't turn off the public IOK flag if it was set above */
2113 (void)SvIOKp_on(sv);
2115 if (!(numtype & IS_NUMBER_NEG)) {
2117 if (value <= (UV)IV_MAX) {
2118 SvIV_set(sv, (IV)value);
2120 /* it didn't overflow, and it was positive. */
2121 SvUV_set(sv, value);
2125 /* 2s complement assumption */
2126 if (value <= (UV)IV_MIN) {
2127 SvIV_set(sv, -(IV)value);
2129 /* Too negative for an IV. This is a double upgrade, but
2130 I'm assuming it will be rare. */
2131 if (SvTYPE(sv) < SVt_PVNV)
2132 sv_upgrade(sv, SVt_PVNV);
2136 SvNV_set(sv, -(NV)value);
2137 SvIV_set(sv, IV_MIN);
2141 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2142 will be in the previous block to set the IV slot, and the next
2143 block to set the NV slot. So no else here. */
2145 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2146 != IS_NUMBER_IN_UV) {
2147 /* It wasn't an (integer that doesn't overflow the UV). */
2148 SvNV_set(sv, Atof(SvPVX_const(sv)));
2150 if (! numtype && ckWARN(WARN_NUMERIC))
2153 #if defined(USE_LONG_DOUBLE)
2154 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2155 PTR2UV(sv), SvNVX(sv)));
2157 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2158 PTR2UV(sv), SvNVX(sv)));
2161 #ifdef NV_PRESERVES_UV
2162 (void)SvIOKp_on(sv);
2164 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2165 SvIV_set(sv, I_V(SvNVX(sv)));
2166 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2169 NOOP; /* Integer is imprecise. NOK, IOKp */
2171 /* UV will not work better than IV */
2173 if (SvNVX(sv) > (NV)UV_MAX) {
2175 /* Integer is inaccurate. NOK, IOKp, is UV */
2176 SvUV_set(sv, UV_MAX);
2178 SvUV_set(sv, U_V(SvNVX(sv)));
2179 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2180 NV preservse UV so can do correct comparison. */
2181 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2184 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2189 #else /* NV_PRESERVES_UV */
2190 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2191 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2192 /* The IV/UV slot will have been set from value returned by
2193 grok_number above. The NV slot has just been set using
2196 assert (SvIOKp(sv));
2198 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2199 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2200 /* Small enough to preserve all bits. */
2201 (void)SvIOKp_on(sv);
2203 SvIV_set(sv, I_V(SvNVX(sv)));
2204 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2206 /* Assumption: first non-preserved integer is < IV_MAX,
2207 this NV is in the preserved range, therefore: */
2208 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2210 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2214 0 0 already failed to read UV.
2215 0 1 already failed to read UV.
2216 1 0 you won't get here in this case. IV/UV
2217 slot set, public IOK, Atof() unneeded.
2218 1 1 already read UV.
2219 so there's no point in sv_2iuv_non_preserve() attempting
2220 to use atol, strtol, strtoul etc. */
2222 sv_2iuv_non_preserve (sv, numtype);
2224 sv_2iuv_non_preserve (sv);
2228 #endif /* NV_PRESERVES_UV */
2229 /* It might be more code efficient to go through the entire logic above
2230 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2231 gets complex and potentially buggy, so more programmer efficient
2232 to do it this way, by turning off the public flags: */
2234 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2238 if (isGV_with_GP(sv))
2239 return glob_2number(MUTABLE_GV(sv));
2241 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2242 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2245 if (SvTYPE(sv) < SVt_IV)
2246 /* Typically the caller expects that sv_any is not NULL now. */
2247 sv_upgrade(sv, SVt_IV);
2248 /* Return 0 from the caller. */
2255 =for apidoc sv_2iv_flags
2257 Return the integer value of an SV, doing any necessary string
2258 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2259 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2265 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2270 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2271 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2272 cache IVs just in case. In practice it seems that they never
2273 actually anywhere accessible by user Perl code, let alone get used
2274 in anything other than a string context. */
2275 if (flags & SV_GMAGIC)
2280 return I_V(SvNVX(sv));
2282 if (SvPOKp(sv) && SvLEN(sv)) {
2285 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2287 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2288 == IS_NUMBER_IN_UV) {
2289 /* It's definitely an integer */
2290 if (numtype & IS_NUMBER_NEG) {
2291 if (value < (UV)IV_MIN)
2294 if (value < (UV)IV_MAX)
2299 if (ckWARN(WARN_NUMERIC))
2302 return I_V(Atof(SvPVX_const(sv)));
2307 assert(SvTYPE(sv) >= SVt_PVMG);
2308 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2309 } else if (SvTHINKFIRST(sv)) {
2314 if (flags & SV_SKIP_OVERLOAD)
2316 tmpstr = AMG_CALLunary(sv, numer_amg);
2317 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2318 return SvIV(tmpstr);
2321 return PTR2IV(SvRV(sv));
2324 sv_force_normal_flags(sv, 0);
2326 if (SvREADONLY(sv) && !SvOK(sv)) {
2327 if (ckWARN(WARN_UNINITIALIZED))
2333 if (S_sv_2iuv_common(aTHX_ sv))
2336 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2337 PTR2UV(sv),SvIVX(sv)));
2338 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2342 =for apidoc sv_2uv_flags
2344 Return the unsigned integer value of an SV, doing any necessary string
2345 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2346 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2352 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2357 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2358 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2359 cache IVs just in case. */
2360 if (flags & SV_GMAGIC)
2365 return U_V(SvNVX(sv));
2366 if (SvPOKp(sv) && SvLEN(sv)) {
2369 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2371 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2372 == IS_NUMBER_IN_UV) {
2373 /* It's definitely an integer */
2374 if (!(numtype & IS_NUMBER_NEG))
2378 if (ckWARN(WARN_NUMERIC))
2381 return U_V(Atof(SvPVX_const(sv)));
2386 assert(SvTYPE(sv) >= SVt_PVMG);
2387 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2388 } else if (SvTHINKFIRST(sv)) {
2393 if (flags & SV_SKIP_OVERLOAD)
2395 tmpstr = AMG_CALLunary(sv, numer_amg);
2396 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2397 return SvUV(tmpstr);
2400 return PTR2UV(SvRV(sv));
2403 sv_force_normal_flags(sv, 0);
2405 if (SvREADONLY(sv) && !SvOK(sv)) {
2406 if (ckWARN(WARN_UNINITIALIZED))
2412 if (S_sv_2iuv_common(aTHX_ sv))
2416 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2417 PTR2UV(sv),SvUVX(sv)));
2418 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2422 =for apidoc sv_2nv_flags
2424 Return the num value of an SV, doing any necessary string or integer
2425 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2426 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2432 Perl_sv_2nv_flags(pTHX_ register SV *const sv, const I32 flags)
2437 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2438 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2439 cache IVs just in case. */
2440 if (flags & SV_GMAGIC)
2444 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2445 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2446 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2448 return Atof(SvPVX_const(sv));
2452 return (NV)SvUVX(sv);
2454 return (NV)SvIVX(sv);
2459 assert(SvTYPE(sv) >= SVt_PVMG);
2460 /* This falls through to the report_uninit near the end of the
2462 } else if (SvTHINKFIRST(sv)) {
2467 if (flags & SV_SKIP_OVERLOAD)
2469 tmpstr = AMG_CALLunary(sv, numer_amg);
2470 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2471 return SvNV(tmpstr);
2474 return PTR2NV(SvRV(sv));
2477 sv_force_normal_flags(sv, 0);
2479 if (SvREADONLY(sv) && !SvOK(sv)) {
2480 if (ckWARN(WARN_UNINITIALIZED))
2485 if (SvTYPE(sv) < SVt_NV) {
2486 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2487 sv_upgrade(sv, SVt_NV);
2488 #ifdef USE_LONG_DOUBLE
2490 STORE_NUMERIC_LOCAL_SET_STANDARD();
2491 PerlIO_printf(Perl_debug_log,
2492 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2493 PTR2UV(sv), SvNVX(sv));
2494 RESTORE_NUMERIC_LOCAL();
2498 STORE_NUMERIC_LOCAL_SET_STANDARD();
2499 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2500 PTR2UV(sv), SvNVX(sv));
2501 RESTORE_NUMERIC_LOCAL();
2505 else if (SvTYPE(sv) < SVt_PVNV)
2506 sv_upgrade(sv, SVt_PVNV);
2511 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2512 #ifdef NV_PRESERVES_UV
2518 /* Only set the public NV OK flag if this NV preserves the IV */
2519 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2521 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2522 : (SvIVX(sv) == I_V(SvNVX(sv))))
2528 else if (SvPOKp(sv) && SvLEN(sv)) {
2530 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2531 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2533 #ifdef NV_PRESERVES_UV
2534 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2535 == IS_NUMBER_IN_UV) {
2536 /* It's definitely an integer */
2537 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2539 SvNV_set(sv, Atof(SvPVX_const(sv)));
2545 SvNV_set(sv, Atof(SvPVX_const(sv)));
2546 /* Only set the public NV OK flag if this NV preserves the value in
2547 the PV at least as well as an IV/UV would.
2548 Not sure how to do this 100% reliably. */
2549 /* if that shift count is out of range then Configure's test is
2550 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2552 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2553 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2554 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2555 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2556 /* Can't use strtol etc to convert this string, so don't try.
2557 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2560 /* value has been set. It may not be precise. */
2561 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2562 /* 2s complement assumption for (UV)IV_MIN */
2563 SvNOK_on(sv); /* Integer is too negative. */
2568 if (numtype & IS_NUMBER_NEG) {
2569 SvIV_set(sv, -(IV)value);
2570 } else if (value <= (UV)IV_MAX) {
2571 SvIV_set(sv, (IV)value);
2573 SvUV_set(sv, value);
2577 if (numtype & IS_NUMBER_NOT_INT) {
2578 /* I believe that even if the original PV had decimals,
2579 they are lost beyond the limit of the FP precision.
2580 However, neither is canonical, so both only get p
2581 flags. NWC, 2000/11/25 */
2582 /* Both already have p flags, so do nothing */
2584 const NV nv = SvNVX(sv);
2585 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2586 if (SvIVX(sv) == I_V(nv)) {
2589 /* It had no "." so it must be integer. */
2593 /* between IV_MAX and NV(UV_MAX).
2594 Could be slightly > UV_MAX */
2596 if (numtype & IS_NUMBER_NOT_INT) {
2597 /* UV and NV both imprecise. */
2599 const UV nv_as_uv = U_V(nv);
2601 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2610 /* It might be more code efficient to go through the entire logic above
2611 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2612 gets complex and potentially buggy, so more programmer efficient
2613 to do it this way, by turning off the public flags: */
2615 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2616 #endif /* NV_PRESERVES_UV */
2619 if (isGV_with_GP(sv)) {
2620 glob_2number(MUTABLE_GV(sv));
2624 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2626 assert (SvTYPE(sv) >= SVt_NV);
2627 /* Typically the caller expects that sv_any is not NULL now. */
2628 /* XXX Ilya implies that this is a bug in callers that assume this
2629 and ideally should be fixed. */
2632 #if defined(USE_LONG_DOUBLE)
2634 STORE_NUMERIC_LOCAL_SET_STANDARD();
2635 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2636 PTR2UV(sv), SvNVX(sv));
2637 RESTORE_NUMERIC_LOCAL();
2641 STORE_NUMERIC_LOCAL_SET_STANDARD();
2642 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2643 PTR2UV(sv), SvNVX(sv));
2644 RESTORE_NUMERIC_LOCAL();
2653 Return an SV with the numeric value of the source SV, doing any necessary
2654 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2655 access this function.
2661 Perl_sv_2num(pTHX_ register SV *const sv)
2663 PERL_ARGS_ASSERT_SV_2NUM;
2668 SV * const tmpsv = AMG_CALLunary(sv, numer_amg);
2669 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2670 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2671 return sv_2num(tmpsv);
2673 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2676 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2677 * UV as a string towards the end of buf, and return pointers to start and
2680 * We assume that buf is at least TYPE_CHARS(UV) long.
2684 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2686 char *ptr = buf + TYPE_CHARS(UV);
2687 char * const ebuf = ptr;
2690 PERL_ARGS_ASSERT_UIV_2BUF;
2702 *--ptr = '0' + (char)(uv % 10);
2711 =for apidoc sv_2pv_flags
2713 Returns a pointer to the string value of an SV, and sets *lp to its length.
2714 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2716 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2717 usually end up here too.
2723 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2733 if (SvGMAGICAL(sv)) {
2734 if (flags & SV_GMAGIC)
2739 if (flags & SV_MUTABLE_RETURN)
2740 return SvPVX_mutable(sv);
2741 if (flags & SV_CONST_RETURN)
2742 return (char *)SvPVX_const(sv);
2745 if (SvIOKp(sv) || SvNOKp(sv)) {
2746 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2751 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2752 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2753 } else if(SvNVX(sv) == 0.0) {
2758 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2765 SvUPGRADE(sv, SVt_PV);
2768 s = SvGROW_mutable(sv, len + 1);
2771 return (char*)memcpy(s, tbuf, len + 1);
2777 assert(SvTYPE(sv) >= SVt_PVMG);
2778 /* This falls through to the report_uninit near the end of the
2780 } else if (SvTHINKFIRST(sv)) {
2785 if (flags & SV_SKIP_OVERLOAD)
2787 tmpstr = AMG_CALLunary(sv, string_amg);
2788 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2789 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2791 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2795 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2796 if (flags & SV_CONST_RETURN) {
2797 pv = (char *) SvPVX_const(tmpstr);
2799 pv = (flags & SV_MUTABLE_RETURN)
2800 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2803 *lp = SvCUR(tmpstr);
2805 pv = sv_2pv_flags(tmpstr, lp, flags);
2818 SV *const referent = SvRV(sv);
2822 retval = buffer = savepvn("NULLREF", len);
2823 } else if (SvTYPE(referent) == SVt_REGEXP) {
2824 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2829 /* If the regex is UTF-8 we want the containing scalar to
2830 have an UTF-8 flag too */
2836 if ((seen_evals = RX_SEEN_EVALS(re)))
2837 PL_reginterp_cnt += seen_evals;
2840 *lp = RX_WRAPLEN(re);
2842 return RX_WRAPPED(re);
2844 const char *const typestr = sv_reftype(referent, 0);
2845 const STRLEN typelen = strlen(typestr);
2846 UV addr = PTR2UV(referent);
2847 const char *stashname = NULL;
2848 STRLEN stashnamelen = 0; /* hush, gcc */
2849 const char *buffer_end;
2851 if (SvOBJECT(referent)) {
2852 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2855 stashname = HEK_KEY(name);
2856 stashnamelen = HEK_LEN(name);
2858 if (HEK_UTF8(name)) {
2864 stashname = "__ANON__";
2867 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2868 + 2 * sizeof(UV) + 2 /* )\0 */;
2870 len = typelen + 3 /* (0x */
2871 + 2 * sizeof(UV) + 2 /* )\0 */;
2874 Newx(buffer, len, char);
2875 buffer_end = retval = buffer + len;
2877 /* Working backwards */
2881 *--retval = PL_hexdigit[addr & 15];
2882 } while (addr >>= 4);
2888 memcpy(retval, typestr, typelen);
2892 retval -= stashnamelen;
2893 memcpy(retval, stashname, stashnamelen);
2895 /* retval may not necessarily have reached the start of the
2897 assert (retval >= buffer);
2899 len = buffer_end - retval - 1; /* -1 for that \0 */
2907 if (SvREADONLY(sv) && !SvOK(sv)) {
2910 if (flags & SV_UNDEF_RETURNS_NULL)
2912 if (ckWARN(WARN_UNINITIALIZED))
2917 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2918 /* I'm assuming that if both IV and NV are equally valid then
2919 converting the IV is going to be more efficient */
2920 const U32 isUIOK = SvIsUV(sv);
2921 char buf[TYPE_CHARS(UV)];
2925 if (SvTYPE(sv) < SVt_PVIV)
2926 sv_upgrade(sv, SVt_PVIV);
2927 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2929 /* inlined from sv_setpvn */
2930 s = SvGROW_mutable(sv, len + 1);
2931 Move(ptr, s, len, char);
2935 else if (SvNOKp(sv)) {
2936 if (SvTYPE(sv) < SVt_PVNV)
2937 sv_upgrade(sv, SVt_PVNV);
2938 if (SvNVX(sv) == 0.0) {
2939 s = SvGROW_mutable(sv, 2);
2944 /* The +20 is pure guesswork. Configure test needed. --jhi */
2945 s = SvGROW_mutable(sv, NV_DIG + 20);
2946 /* some Xenix systems wipe out errno here */
2947 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2957 if (isGV_with_GP(sv)) {
2958 GV *const gv = MUTABLE_GV(sv);
2959 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
2960 SV *const buffer = sv_newmortal();
2962 /* FAKE globs can get coerced, so need to turn this off temporarily
2965 gv_efullname3(buffer, gv, "*");
2966 SvFLAGS(gv) |= wasfake;
2968 if (SvPOK(buffer)) {
2970 *lp = SvCUR(buffer);
2972 return SvPVX(buffer);
2983 if (flags & SV_UNDEF_RETURNS_NULL)
2985 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2987 if (SvTYPE(sv) < SVt_PV)
2988 /* Typically the caller expects that sv_any is not NULL now. */
2989 sv_upgrade(sv, SVt_PV);
2993 const STRLEN len = s - SvPVX_const(sv);
2999 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
3000 PTR2UV(sv),SvPVX_const(sv)));
3001 if (flags & SV_CONST_RETURN)
3002 return (char *)SvPVX_const(sv);
3003 if (flags & SV_MUTABLE_RETURN)
3004 return SvPVX_mutable(sv);
3009 =for apidoc sv_copypv
3011 Copies a stringified representation of the source SV into the
3012 destination SV. Automatically performs any necessary mg_get and
3013 coercion of numeric values into strings. Guaranteed to preserve
3014 UTF8 flag even from overloaded objects. Similar in nature to
3015 sv_2pv[_flags] but operates directly on an SV instead of just the
3016 string. Mostly uses sv_2pv_flags to do its work, except when that
3017 would lose the UTF-8'ness of the PV.
3023 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
3026 const char * const s = SvPV_const(ssv,len);
3028 PERL_ARGS_ASSERT_SV_COPYPV;
3030 sv_setpvn(dsv,s,len);
3038 =for apidoc sv_2pvbyte
3040 Return a pointer to the byte-encoded representation of the SV, and set *lp
3041 to its length. May cause the SV to be downgraded from UTF-8 as a
3044 Usually accessed via the C<SvPVbyte> macro.
3050 Perl_sv_2pvbyte(pTHX_ register SV *const sv, STRLEN *const lp)
3052 PERL_ARGS_ASSERT_SV_2PVBYTE;
3055 sv_utf8_downgrade(sv,0);
3056 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3060 =for apidoc sv_2pvutf8
3062 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3063 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3065 Usually accessed via the C<SvPVutf8> macro.
3071 Perl_sv_2pvutf8(pTHX_ register SV *const sv, STRLEN *const lp)
3073 PERL_ARGS_ASSERT_SV_2PVUTF8;
3075 sv_utf8_upgrade(sv);
3076 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3081 =for apidoc sv_2bool
3083 This macro is only used by sv_true() or its macro equivalent, and only if
3084 the latter's argument is neither SvPOK, SvIOK nor SvNOK.
3085 It calls sv_2bool_flags with the SV_GMAGIC flag.
3087 =for apidoc sv_2bool_flags
3089 This function is only used by sv_true() and friends, and only if
3090 the latter's argument is neither SvPOK, SvIOK nor SvNOK. If the flags
3091 contain SV_GMAGIC, then it does an mg_get() first.
3098 Perl_sv_2bool_flags(pTHX_ register SV *const sv, const I32 flags)
3102 PERL_ARGS_ASSERT_SV_2BOOL_FLAGS;
3104 if(flags & SV_GMAGIC) SvGETMAGIC(sv);
3110 SV * const tmpsv = AMG_CALLunary(sv, bool__amg);
3111 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3112 return cBOOL(SvTRUE(tmpsv));
3114 return SvRV(sv) != 0;
3117 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
3119 (*sv->sv_u.svu_pv > '0' ||
3120 Xpvtmp->xpv_cur > 1 ||
3121 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
3128 return SvIVX(sv) != 0;
3131 return SvNVX(sv) != 0.0;
3133 if (isGV_with_GP(sv))
3143 =for apidoc sv_utf8_upgrade
3145 Converts the PV of an SV to its UTF-8-encoded form.
3146 Forces the SV to string form if it is not already.
3147 Will C<mg_get> on C<sv> if appropriate.
3148 Always sets the SvUTF8 flag to avoid future validity checks even
3149 if the whole string is the same in UTF-8 as not.
3150 Returns the number of bytes in the converted string
3152 This is not as a general purpose byte encoding to Unicode interface:
3153 use the Encode extension for that.
3155 =for apidoc sv_utf8_upgrade_nomg
3157 Like sv_utf8_upgrade, but doesn't do magic on C<sv>
3159 =for apidoc sv_utf8_upgrade_flags
3161 Converts the PV of an SV to its UTF-8-encoded form.
3162 Forces the SV to string form if it is not already.
3163 Always sets the SvUTF8 flag to avoid future validity checks even
3164 if all the bytes are invariant in UTF-8. If C<flags> has C<SV_GMAGIC> bit set,
3165 will C<mg_get> on C<sv> if appropriate, else not.
3166 Returns the number of bytes in the converted string
3167 C<sv_utf8_upgrade> and
3168 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3170 This is not as a general purpose byte encoding to Unicode interface:
3171 use the Encode extension for that.
3175 The grow version is currently not externally documented. It adds a parameter,
3176 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3177 have free after it upon return. This allows the caller to reserve extra space
3178 that it intends to fill, to avoid extra grows.
3180 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3181 which can be used to tell this function to not first check to see if there are
3182 any characters that are different in UTF-8 (variant characters) which would
3183 force it to allocate a new string to sv, but to assume there are. Typically
3184 this flag is used by a routine that has already parsed the string to find that
3185 there are such characters, and passes this information on so that the work
3186 doesn't have to be repeated.
3188 (One might think that the calling routine could pass in the position of the
3189 first such variant, so it wouldn't have to be found again. But that is not the
3190 case, because typically when the caller is likely to use this flag, it won't be
3191 calling this routine unless it finds something that won't fit into a byte.
3192 Otherwise it tries to not upgrade and just use bytes. But some things that
3193 do fit into a byte are variants in utf8, and the caller may not have been
3194 keeping track of these.)
3196 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3197 isn't guaranteed due to having other routines do the work in some input cases,
3198 or if the input is already flagged as being in utf8.
3200 The speed of this could perhaps be improved for many cases if someone wanted to
3201 write a fast function that counts the number of variant characters in a string,
3202 especially if it could return the position of the first one.
3207 Perl_sv_utf8_upgrade_flags_grow(pTHX_ register SV *const sv, const I32 flags, STRLEN extra)
3211 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3213 if (sv == &PL_sv_undef)
3217 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3218 (void) sv_2pv_flags(sv,&len, flags);
3220 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3224 (void) SvPV_force(sv,len);
3229 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3234 sv_force_normal_flags(sv, 0);
3237 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3238 sv_recode_to_utf8(sv, PL_encoding);
3239 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3243 if (SvCUR(sv) == 0) {
3244 if (extra) SvGROW(sv, extra);
3245 } else { /* Assume Latin-1/EBCDIC */
3246 /* This function could be much more efficient if we
3247 * had a FLAG in SVs to signal if there are any variant
3248 * chars in the PV. Given that there isn't such a flag
3249 * make the loop as fast as possible (although there are certainly ways
3250 * to speed this up, eg. through vectorization) */
3251 U8 * s = (U8 *) SvPVX_const(sv);
3252 U8 * e = (U8 *) SvEND(sv);
3254 STRLEN two_byte_count = 0;
3256 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3258 /* See if really will need to convert to utf8. We mustn't rely on our
3259 * incoming SV being well formed and having a trailing '\0', as certain
3260 * code in pp_formline can send us partially built SVs. */
3264 if (NATIVE_IS_INVARIANT(ch)) continue;
3266 t--; /* t already incremented; re-point to first variant */
3271 /* utf8 conversion not needed because all are invariants. Mark as
3272 * UTF-8 even if no variant - saves scanning loop */
3278 /* Here, the string should be converted to utf8, either because of an
3279 * input flag (two_byte_count = 0), or because a character that
3280 * requires 2 bytes was found (two_byte_count = 1). t points either to
3281 * the beginning of the string (if we didn't examine anything), or to
3282 * the first variant. In either case, everything from s to t - 1 will
3283 * occupy only 1 byte each on output.
3285 * There are two main ways to convert. One is to create a new string
3286 * and go through the input starting from the beginning, appending each
3287 * converted value onto the new string as we go along. It's probably
3288 * best to allocate enough space in the string for the worst possible
3289 * case rather than possibly running out of space and having to
3290 * reallocate and then copy what we've done so far. Since everything
3291 * from s to t - 1 is invariant, the destination can be initialized
3292 * with these using a fast memory copy
3294 * The other way is to figure out exactly how big the string should be
3295 * by parsing the entire input. Then you don't have to make it big
3296 * enough to handle the worst possible case, and more importantly, if
3297 * the string you already have is large enough, you don't have to
3298 * allocate a new string, you can copy the last character in the input
3299 * string to the final position(s) that will be occupied by the
3300 * converted string and go backwards, stopping at t, since everything
3301 * before that is invariant.
3303 * There are advantages and disadvantages to each method.
3305 * In the first method, we can allocate a new string, do the memory
3306 * copy from the s to t - 1, and then proceed through the rest of the
3307 * string byte-by-byte.
3309 * In the second method, we proceed through the rest of the input
3310 * string just calculating how big the converted string will be. Then
3311 * there are two cases:
3312 * 1) if the string has enough extra space to handle the converted
3313 * value. We go backwards through the string, converting until we
3314 * get to the position we are at now, and then stop. If this
3315 * position is far enough along in the string, this method is
3316 * faster than the other method. If the memory copy were the same
3317 * speed as the byte-by-byte loop, that position would be about
3318 * half-way, as at the half-way mark, parsing to the end and back
3319 * is one complete string's parse, the same amount as starting
3320 * over and going all the way through. Actually, it would be
3321 * somewhat less than half-way, as it's faster to just count bytes
3322 * than to also copy, and we don't have the overhead of allocating
3323 * a new string, changing the scalar to use it, and freeing the
3324 * existing one. But if the memory copy is fast, the break-even
3325 * point is somewhere after half way. The counting loop could be
3326 * sped up by vectorization, etc, to move the break-even point
3327 * further towards the beginning.
3328 * 2) if the string doesn't have enough space to handle the converted
3329 * value. A new string will have to be allocated, and one might
3330 * as well, given that, start from the beginning doing the first
3331 * method. We've spent extra time parsing the string and in
3332 * exchange all we've gotten is that we know precisely how big to
3333 * make the new one. Perl is more optimized for time than space,
3334 * so this case is a loser.
3335 * So what I've decided to do is not use the 2nd method unless it is
3336 * guaranteed that a new string won't have to be allocated, assuming
3337 * the worst case. I also decided not to put any more conditions on it
3338 * than this, for now. It seems likely that, since the worst case is
3339 * twice as big as the unknown portion of the string (plus 1), we won't
3340 * be guaranteed enough space, causing us to go to the first method,
3341 * unless the string is short, or the first variant character is near
3342 * the end of it. In either of these cases, it seems best to use the
3343 * 2nd method. The only circumstance I can think of where this would
3344 * be really slower is if the string had once had much more data in it
3345 * than it does now, but there is still a substantial amount in it */
3348 STRLEN invariant_head = t - s;
3349 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3350 if (SvLEN(sv) < size) {
3352 /* Here, have decided to allocate a new string */
3357 Newx(dst, size, U8);
3359 /* If no known invariants at the beginning of the input string,
3360 * set so starts from there. Otherwise, can use memory copy to
3361 * get up to where we are now, and then start from here */
3363 if (invariant_head <= 0) {
3366 Copy(s, dst, invariant_head, char);
3367 d = dst + invariant_head;
3371 const UV uv = NATIVE8_TO_UNI(*t++);
3372 if (UNI_IS_INVARIANT(uv))
3373 *d++ = (U8)UNI_TO_NATIVE(uv);
3375 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3376 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3380 SvPV_free(sv); /* No longer using pre-existing string */
3381 SvPV_set(sv, (char*)dst);
3382 SvCUR_set(sv, d - dst);
3383 SvLEN_set(sv, size);
3386 /* Here, have decided to get the exact size of the string.
3387 * Currently this happens only when we know that there is
3388 * guaranteed enough space to fit the converted string, so
3389 * don't have to worry about growing. If two_byte_count is 0,
3390 * then t points to the first byte of the string which hasn't
3391 * been examined yet. Otherwise two_byte_count is 1, and t
3392 * points to the first byte in the string that will expand to
3393 * two. Depending on this, start examining at t or 1 after t.
3396 U8 *d = t + two_byte_count;
3399 /* Count up the remaining bytes that expand to two */
3402 const U8 chr = *d++;
3403 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3406 /* The string will expand by just the number of bytes that
3407 * occupy two positions. But we are one afterwards because of
3408 * the increment just above. This is the place to put the
3409 * trailing NUL, and to set the length before we decrement */
3411 d += two_byte_count;
3412 SvCUR_set(sv, d - s);
3416 /* Having decremented d, it points to the position to put the
3417 * very last byte of the expanded string. Go backwards through
3418 * the string, copying and expanding as we go, stopping when we
3419 * get to the part that is invariant the rest of the way down */
3423 const U8 ch = NATIVE8_TO_UNI(*e--);
3424 if (UNI_IS_INVARIANT(ch)) {
3425 *d-- = UNI_TO_NATIVE(ch);
3427 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3428 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3435 /* Mark as UTF-8 even if no variant - saves scanning loop */
3441 =for apidoc sv_utf8_downgrade
3443 Attempts to convert the PV of an SV from characters to bytes.
3444 If the PV contains a character that cannot fit
3445 in a byte, this conversion will fail;
3446 in this case, either returns false or, if C<fail_ok> is not
3449 This is not as a general purpose Unicode to byte encoding interface:
3450 use the Encode extension for that.
3456 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3460 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3462 if (SvPOKp(sv) && SvUTF8(sv)) {
3468 sv_force_normal_flags(sv, 0);
3470 s = (U8 *) SvPV(sv, len);
3471 if (!utf8_to_bytes(s, &len)) {
3476 Perl_croak(aTHX_ "Wide character in %s",
3479 Perl_croak(aTHX_ "Wide character");
3490 =for apidoc sv_utf8_encode
3492 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3493 flag off so that it looks like octets again.
3499 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3501 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3504 sv_force_normal_flags(sv, 0);
3506 if (SvREADONLY(sv)) {
3507 Perl_croak_no_modify(aTHX);
3509 (void) sv_utf8_upgrade(sv);
3514 =for apidoc sv_utf8_decode
3516 If the PV of the SV is an octet sequence in UTF-8
3517 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3518 so that it looks like a character. If the PV contains only single-byte
3519 characters, the C<SvUTF8> flag stays being off.
3520 Scans PV for validity and returns false if the PV is invalid UTF-8.
3526 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3528 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3534 /* The octets may have got themselves encoded - get them back as
3537 if (!sv_utf8_downgrade(sv, TRUE))
3540 /* it is actually just a matter of turning the utf8 flag on, but
3541 * we want to make sure everything inside is valid utf8 first.
3543 c = (const U8 *) SvPVX_const(sv);
3544 if (!is_utf8_string(c, SvCUR(sv)+1))
3546 e = (const U8 *) SvEND(sv);
3549 if (!UTF8_IS_INVARIANT(ch)) {
3559 =for apidoc sv_setsv
3561 Copies the contents of the source SV C<ssv> into the destination SV
3562 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3563 function if the source SV needs to be reused. Does not handle 'set' magic.
3564 Loosely speaking, it performs a copy-by-value, obliterating any previous
3565 content of the destination.
3567 You probably want to use one of the assortment of wrappers, such as
3568 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3569 C<SvSetMagicSV_nosteal>.
3571 =for apidoc sv_setsv_flags
3573 Copies the contents of the source SV C<ssv> into the destination SV
3574 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3575 function if the source SV needs to be reused. Does not handle 'set' magic.
3576 Loosely speaking, it performs a copy-by-value, obliterating any previous
3577 content of the destination.
3578 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3579 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3580 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3581 and C<sv_setsv_nomg> are implemented in terms of this function.
3583 You probably want to use one of the assortment of wrappers, such as
3584 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3585 C<SvSetMagicSV_nosteal>.
3587 This is the primary function for copying scalars, and most other
3588 copy-ish functions and macros use this underneath.
3594 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3596 I32 mro_changes = 0; /* 1 = method, 2 = isa, 3 = recursive isa */
3597 HV *old_stash = NULL;
3599 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3601 if (dtype != SVt_PVGV && !isGV_with_GP(dstr)) {
3602 const char * const name = GvNAME(sstr);
3603 const STRLEN len = GvNAMELEN(sstr);
3605 if (dtype >= SVt_PV) {
3611 SvUPGRADE(dstr, SVt_PVGV);
3612 (void)SvOK_off(dstr);
3613 /* FIXME - why are we doing this, then turning it off and on again
3615 isGV_with_GP_on(dstr);
3617 GvSTASH(dstr) = GvSTASH(sstr);
3619 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3620 gv_name_set(MUTABLE_GV(dstr), name, len, GV_ADD);
3621 SvFAKE_on(dstr); /* can coerce to non-glob */
3624 if(GvGP(MUTABLE_GV(sstr))) {
3625 /* If source has method cache entry, clear it */
3627 SvREFCNT_dec(GvCV(sstr));
3628 GvCV_set(sstr, NULL);
3631 /* If source has a real method, then a method is
3634 GvCV((const GV *)sstr) && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3640 /* If dest already had a real method, that's a change as well */
3642 !mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)
3643 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3648 /* We don’t need to check the name of the destination if it was not a
3649 glob to begin with. */
3650 if(dtype == SVt_PVGV) {
3651 const char * const name = GvNAME((const GV *)dstr);
3654 /* The stash may have been detached from the symbol table, so
3656 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3657 && GvAV((const GV *)sstr)
3661 const STRLEN len = GvNAMELEN(dstr);
3662 if (len > 1 && name[len-2] == ':' && name[len-1] == ':') {
3665 /* Set aside the old stash, so we can reset isa caches on
3667 if((old_stash = GvHV(dstr)))
3668 /* Make sure we do not lose it early. */
3669 SvREFCNT_inc_simple_void_NN(
3670 sv_2mortal((SV *)old_stash)
3676 gp_free(MUTABLE_GV(dstr));
3677 isGV_with_GP_off(dstr);
3678 (void)SvOK_off(dstr);
3679 isGV_with_GP_on(dstr);
3680 GvINTRO_off(dstr); /* one-shot flag */
3681 GvGP_set(dstr, gp_ref(GvGP(sstr)));
3682 if (SvTAINTED(sstr))
3684 if (GvIMPORTED(dstr) != GVf_IMPORTED
3685 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3687 GvIMPORTED_on(dstr);
3690 if(mro_changes == 2) {
3692 SV * const sref = (SV *)GvAV((const GV *)dstr);
3693 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3694 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3695 AV * const ary = newAV();
3696 av_push(ary, mg->mg_obj); /* takes the refcount */
3697 mg->mg_obj = (SV *)ary;
3699 av_push((AV *)mg->mg_obj, SvREFCNT_inc_simple_NN(dstr));
3701 else sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3702 mro_isa_changed_in(GvSTASH(dstr));
3704 else if(mro_changes == 3) {
3705 HV * const stash = GvHV(dstr);
3706 if(old_stash ? (HV *)HvENAME_get(old_stash) : stash)
3712 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3717 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3719 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3721 const int intro = GvINTRO(dstr);
3724 const U32 stype = SvTYPE(sref);
3726 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3729 GvINTRO_off(dstr); /* one-shot flag */
3730 GvLINE(dstr) = CopLINE(PL_curcop);
3731 GvEGV(dstr) = MUTABLE_GV(dstr);
3736 location = (SV **) &(GvGP(dstr)->gp_cv); /* XXX bypassing GvCV_set */
3737 import_flag = GVf_IMPORTED_CV;
3740 location = (SV **) &GvHV(dstr);
3741 import_flag = GVf_IMPORTED_HV;
3744 location = (SV **) &GvAV(dstr);
3745 import_flag = GVf_IMPORTED_AV;
3748 location = (SV **) &GvIOp(dstr);
3751 location = (SV **) &GvFORM(dstr);
3754 location = &GvSV(dstr);
3755 import_flag = GVf_IMPORTED_SV;
3758 if (stype == SVt_PVCV) {
3759 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3760 if (GvCVGEN(dstr)) {
3761 SvREFCNT_dec(GvCV(dstr));
3762 GvCV_set(dstr, NULL);
3763 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3766 SAVEGENERICSV(*location);
3770 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3771 CV* const cv = MUTABLE_CV(*location);
3773 if (!GvCVGEN((const GV *)dstr) &&
3774 (CvROOT(cv) || CvXSUB(cv)))
3776 /* Redefining a sub - warning is mandatory if
3777 it was a const and its value changed. */
3778 if (CvCONST(cv) && CvCONST((const CV *)sref)
3780 == cv_const_sv((const CV *)sref)) {
3782 /* They are 2 constant subroutines generated from
3783 the same constant. This probably means that
3784 they are really the "same" proxy subroutine
3785 instantiated in 2 places. Most likely this is
3786 when a constant is exported twice. Don't warn.
3789 else if (ckWARN(WARN_REDEFINE)
3791 && (!CvCONST((const CV *)sref)
3792 || sv_cmp(cv_const_sv(cv),
3793 cv_const_sv((const CV *)
3795 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3798 ? "Constant subroutine %s::%s redefined"
3799 : "Subroutine %s::%s redefined"),
3800 HvNAME_get(GvSTASH((const GV *)dstr)),
3801 GvENAME(MUTABLE_GV(dstr)));
3805 cv_ckproto_len(cv, (const GV *)dstr,
3806 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3807 SvPOK(sref) ? SvCUR(sref) : 0);
3809 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3810 GvASSUMECV_on(dstr);
3811 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3814 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3815 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3816 GvFLAGS(dstr) |= import_flag;
3818 if (stype == SVt_PVHV) {
3819 const char * const name = GvNAME((GV*)dstr);
3820 const STRLEN len = GvNAMELEN(dstr);
3822 len > 1 && name[len-2] == ':' && name[len-1] == ':'
3823 && (!dref || HvENAME_get(dref))
3826 (HV *)sref, (HV *)dref,
3832 stype == SVt_PVAV && sref != dref
3833 && strEQ(GvNAME((GV*)dstr), "ISA")
3834 /* The stash may have been detached from the symbol table, so
3835 check its name before doing anything. */
3836 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3839 MAGIC * const omg = dref && SvSMAGICAL(dref)
3840 ? mg_find(dref, PERL_MAGIC_isa)
3842 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3843 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3844 AV * const ary = newAV();
3845 av_push(ary, mg->mg_obj); /* takes the refcount */
3846 mg->mg_obj = (SV *)ary;
3849 if (SvTYPE(omg->mg_obj) == SVt_PVAV) {
3850 SV **svp = AvARRAY((AV *)omg->mg_obj);
3851 I32 items = AvFILLp((AV *)omg->mg_obj) + 1;
3855 SvREFCNT_inc_simple_NN(*svp++)
3861 SvREFCNT_inc_simple_NN(omg->mg_obj)
3865 av_push((AV *)mg->mg_obj,SvREFCNT_inc_simple_NN(dstr));
3870 sref, omg ? omg->mg_obj : dstr, PERL_MAGIC_isa, NULL, 0
3872 mg = mg_find(sref, PERL_MAGIC_isa);
3874 /* Since the *ISA assignment could have affected more than
3875 one stash, don’t call mro_isa_changed_in directly, but let
3876 magic_clearisa do it for us, as it already has the logic for
3877 dealing with globs vs arrays of globs. */
3879 Perl_magic_clearisa(aTHX_ NULL, mg);
3884 if (SvTAINTED(sstr))
3890 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3893 register U32 sflags;
3895 register svtype stype;
3897 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3902 if (SvIS_FREED(dstr)) {
3903 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3904 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3906 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3908 sstr = &PL_sv_undef;
3909 if (SvIS_FREED(sstr)) {
3910 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3911 (void*)sstr, (void*)dstr);
3913 stype = SvTYPE(sstr);
3914 dtype = SvTYPE(dstr);
3916 (void)SvAMAGIC_off(dstr);
3919 /* need to nuke the magic */
3923 /* There's a lot of redundancy below but we're going for speed here */
3928 if (dtype != SVt_PVGV && dtype != SVt_PVLV) {
3929 (void)SvOK_off(dstr);
3937 sv_upgrade(dstr, SVt_IV);
3941 sv_upgrade(dstr, SVt_PVIV);
3945 goto end_of_first_switch;
3947 (void)SvIOK_only(dstr);
3948 SvIV_set(dstr, SvIVX(sstr));
3951 /* SvTAINTED can only be true if the SV has taint magic, which in
3952 turn means that the SV type is PVMG (or greater). This is the
3953 case statement for SVt_IV, so this cannot be true (whatever gcov
3955 assert(!SvTAINTED(sstr));
3960 if (dtype < SVt_PV && dtype != SVt_IV)
3961 sv_upgrade(dstr, SVt_IV);
3969 sv_upgrade(dstr, SVt_NV);
3973 sv_upgrade(dstr, SVt_PVNV);
3977 goto end_of_first_switch;
3979 SvNV_set(dstr, SvNVX(sstr));
3980 (void)SvNOK_only(dstr);
3981 /* SvTAINTED can only be true if the SV has taint magic, which in
3982 turn means that the SV type is PVMG (or greater). This is the
3983 case statement for SVt_NV, so this cannot be true (whatever gcov
3985 assert(!SvTAINTED(sstr));
3991 #ifdef PERL_OLD_COPY_ON_WRITE
3992 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3993 if (dtype < SVt_PVIV)
3994 sv_upgrade(dstr, SVt_PVIV);
4001 sv_upgrade(dstr, SVt_PV);
4004 if (dtype < SVt_PVIV)
4005 sv_upgrade(dstr, SVt_PVIV);
4008 if (dtype < SVt_PVNV)
4009 sv_upgrade(dstr, SVt_PVNV);
4013 const char * const type = sv_reftype(sstr,0);
4015 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
4017 Perl_croak(aTHX_ "Bizarre copy of %s", type);
4022 if (dtype < SVt_REGEXP)
4023 sv_upgrade(dstr, SVt_REGEXP);
4026 /* case SVt_BIND: */
4029 /* SvVALID means that this PVGV is playing at being an FBM. */
4032 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
4034 if (SvTYPE(sstr) != stype)
4035 stype = SvTYPE(sstr);
4037 if (isGV_with_GP(sstr) && dtype <= SVt_PVLV) {
4038 glob_assign_glob(dstr, sstr, dtype);
4041 if (stype == SVt_PVLV)
4042 SvUPGRADE(dstr, SVt_PVNV);
4044 SvUPGRADE(dstr, (svtype)stype);
4046 end_of_first_switch:
4048 /* dstr may have been upgraded. */
4049 dtype = SvTYPE(dstr);
4050 sflags = SvFLAGS(sstr);
4052 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
4053 /* Assigning to a subroutine sets the prototype. */
4056 const char *const ptr = SvPV_const(sstr, len);
4058 SvGROW(dstr, len + 1);
4059 Copy(ptr, SvPVX(dstr), len + 1, char);
4060 SvCUR_set(dstr, len);
4062 SvFLAGS(dstr) |= sflags & SVf_UTF8;
4066 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
4067 const char * const type = sv_reftype(dstr,0);
4069 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
4071 Perl_croak(aTHX_ "Cannot copy to %s", type);
4072 } else if (sflags & SVf_ROK) {
4073 if (isGV_with_GP(dstr)
4074 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
4077 if (GvIMPORTED(dstr) != GVf_IMPORTED
4078 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
4080 GvIMPORTED_on(dstr);
4085 glob_assign_glob(dstr, sstr, dtype);
4089 if (dtype >= SVt_PV) {
4090 if (isGV_with_GP(dstr)) {
4091 glob_assign_ref(dstr, sstr);
4094 if (SvPVX_const(dstr)) {
4100 (void)SvOK_off(dstr);
4101 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4102 SvFLAGS(dstr) |= sflags & SVf_ROK;
4103 assert(!(sflags & SVp_NOK));
4104 assert(!(sflags & SVp_IOK));
4105 assert(!(sflags & SVf_NOK));
4106 assert(!(sflags & SVf_IOK));
4108 else if (isGV_with_GP(dstr)) {
4109 if (!(sflags & SVf_OK)) {
4110 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4111 "Undefined value assigned to typeglob");
4114 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
4115 if (dstr != (const SV *)gv) {
4116 const char * const name = GvNAME((const GV *)dstr);
4117 const STRLEN len = GvNAMELEN(dstr);
4118 HV *old_stash = NULL;
4119 bool reset_isa = FALSE;
4120 if (len > 1 && name[len-2] == ':' && name[len-1] == ':') {
4121 /* Set aside the old stash, so we can reset isa caches
4122 on its subclasses. */
4123 if((old_stash = GvHV(dstr))) {
4124 /* Make sure we do not lose it early. */
4125 SvREFCNT_inc_simple_void_NN(
4126 sv_2mortal((SV *)old_stash)
4133 gp_free(MUTABLE_GV(dstr));
4134 GvGP_set(dstr, gp_ref(GvGP(gv)));
4137 HV * const stash = GvHV(dstr);
4139 old_stash ? (HV *)HvENAME_get(old_stash) : stash
4149 else if (dtype == SVt_REGEXP && stype == SVt_REGEXP) {
4150 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4152 else if (sflags & SVp_POK) {
4156 * Check to see if we can just swipe the string. If so, it's a
4157 * possible small lose on short strings, but a big win on long ones.
4158 * It might even be a win on short strings if SvPVX_const(dstr)
4159 * has to be allocated and SvPVX_const(sstr) has to be freed.
4160 * Likewise if we can set up COW rather than doing an actual copy, we
4161 * drop to the else clause, as the swipe code and the COW setup code
4162 * have much in common.
4165 /* Whichever path we take through the next code, we want this true,
4166 and doing it now facilitates the COW check. */
4167 (void)SvPOK_only(dstr);
4170 /* If we're already COW then this clause is not true, and if COW
4171 is allowed then we drop down to the else and make dest COW
4172 with us. If caller hasn't said that we're allowed to COW
4173 shared hash keys then we don't do the COW setup, even if the
4174 source scalar is a shared hash key scalar. */
4175 (((flags & SV_COW_SHARED_HASH_KEYS)
4176 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
4177 : 1 /* If making a COW copy is forbidden then the behaviour we
4178 desire is as if the source SV isn't actually already
4179 COW, even if it is. So we act as if the source flags
4180 are not COW, rather than actually testing them. */
4182 #ifndef PERL_OLD_COPY_ON_WRITE
4183 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
4184 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
4185 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
4186 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
4187 but in turn, it's somewhat dead code, never expected to go
4188 live, but more kept as a placeholder on how to do it better
4189 in a newer implementation. */
4190 /* If we are COW and dstr is a suitable target then we drop down
4191 into the else and make dest a COW of us. */
4192 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
4197 (sflags & SVs_TEMP) && /* slated for free anyway? */
4198 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4199 (!(flags & SV_NOSTEAL)) &&
4200 /* and we're allowed to steal temps */
4201 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4202 SvLEN(sstr)) /* and really is a string */
4203 #ifdef PERL_OLD_COPY_ON_WRITE
4204 && ((flags & SV_COW_SHARED_HASH_KEYS)
4205 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4206 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4207 && SvTYPE(sstr) >= SVt_PVIV && SvTYPE(sstr) != SVt_PVFM))
4211 /* Failed the swipe test, and it's not a shared hash key either.
4212 Have to copy the string. */
4213 STRLEN len = SvCUR(sstr);
4214 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
4215 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
4216 SvCUR_set(dstr, len);
4217 *SvEND(dstr) = '\0';
4219 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4221 /* Either it's a shared hash key, or it's suitable for
4222 copy-on-write or we can swipe the string. */
4224 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4228 #ifdef PERL_OLD_COPY_ON_WRITE
4230 if ((sflags & (SVf_FAKE | SVf_READONLY))
4231 != (SVf_FAKE | SVf_READONLY)) {
4232 SvREADONLY_on(sstr);
4234 /* Make the source SV into a loop of 1.
4235 (about to become 2) */
4236 SV_COW_NEXT_SV_SET(sstr, sstr);
4240 /* Initial code is common. */
4241 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4246 /* making another shared SV. */
4247 STRLEN cur = SvCUR(sstr);
4248 STRLEN len = SvLEN(sstr);
4249 #ifdef PERL_OLD_COPY_ON_WRITE
4251 assert (SvTYPE(dstr) >= SVt_PVIV);
4252 /* SvIsCOW_normal */
4253 /* splice us in between source and next-after-source. */
4254 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4255 SV_COW_NEXT_SV_SET(sstr, dstr);
4256 SvPV_set(dstr, SvPVX_mutable(sstr));
4260 /* SvIsCOW_shared_hash */
4261 DEBUG_C(PerlIO_printf(Perl_debug_log,
4262 "Copy on write: Sharing hash\n"));
4264 assert (SvTYPE(dstr) >= SVt_PV);
4266 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4268 SvLEN_set(dstr, len);
4269 SvCUR_set(dstr, cur);
4270 SvREADONLY_on(dstr);
4274 { /* Passes the swipe test. */
4275 SvPV_set(dstr, SvPVX_mutable(sstr));
4276 SvLEN_set(dstr, SvLEN(sstr));
4277 SvCUR_set(dstr, SvCUR(sstr));
4280 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4281 SvPV_set(sstr, NULL);
4287 if (sflags & SVp_NOK) {
4288 SvNV_set(dstr, SvNVX(sstr));
4290 if (sflags & SVp_IOK) {
4291 SvIV_set(dstr, SvIVX(sstr));
4292 /* Must do this otherwise some other overloaded use of 0x80000000
4293 gets confused. I guess SVpbm_VALID */
4294 if (sflags & SVf_IVisUV)
4297 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4299 const MAGIC * const smg = SvVSTRING_mg(sstr);
4301 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4302 smg->mg_ptr, smg->mg_len);
4303 SvRMAGICAL_on(dstr);
4307 else if (sflags & (SVp_IOK|SVp_NOK)) {
4308 (void)SvOK_off(dstr);
4309 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4310 if (sflags & SVp_IOK) {
4311 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4312 SvIV_set(dstr, SvIVX(sstr));
4314 if (sflags & SVp_NOK) {
4315 SvNV_set(dstr, SvNVX(sstr));
4319 if (isGV_with_GP(sstr)) {
4320 /* This stringification rule for globs is spread in 3 places.
4321 This feels bad. FIXME. */
4322 const U32 wasfake = sflags & SVf_FAKE;
4324 /* FAKE globs can get coerced, so need to turn this off
4325 temporarily if it is on. */
4327 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4328 SvFLAGS(sstr) |= wasfake;
4331 (void)SvOK_off(dstr);
4333 if (SvTAINTED(sstr))
4338 =for apidoc sv_setsv_mg
4340 Like C<sv_setsv>, but also handles 'set' magic.
4346 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
4348 PERL_ARGS_ASSERT_SV_SETSV_MG;
4350 sv_setsv(dstr,sstr);
4354 #ifdef PERL_OLD_COPY_ON_WRITE
4356 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4358 STRLEN cur = SvCUR(sstr);
4359 STRLEN len = SvLEN(sstr);
4360 register char *new_pv;
4362 PERL_ARGS_ASSERT_SV_SETSV_COW;
4365 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4366 (void*)sstr, (void*)dstr);
4373 if (SvTHINKFIRST(dstr))
4374 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4375 else if (SvPVX_const(dstr))
4376 Safefree(SvPVX_const(dstr));
4380 SvUPGRADE(dstr, SVt_PVIV);
4382 assert (SvPOK(sstr));
4383 assert (SvPOKp(sstr));
4384 assert (!SvIOK(sstr));
4385 assert (!SvIOKp(sstr));
4386 assert (!SvNOK(sstr));
4387 assert (!SvNOKp(sstr));
4389 if (SvIsCOW(sstr)) {
4391 if (SvLEN(sstr) == 0) {
4392 /* source is a COW shared hash key. */
4393 DEBUG_C(PerlIO_printf(Perl_debug_log,
4394 "Fast copy on write: Sharing hash\n"));
4395 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4398 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4400 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4401 SvUPGRADE(sstr, SVt_PVIV);
4402 SvREADONLY_on(sstr);
4404 DEBUG_C(PerlIO_printf(Perl_debug_log,
4405 "Fast copy on write: Converting sstr to COW\n"));
4406 SV_COW_NEXT_SV_SET(dstr, sstr);
4408 SV_COW_NEXT_SV_SET(sstr, dstr);
4409 new_pv = SvPVX_mutable(sstr);
4412 SvPV_set(dstr, new_pv);
4413 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4416 SvLEN_set(dstr, len);
4417 SvCUR_set(dstr, cur);
4426 =for apidoc sv_setpvn
4428 Copies a string into an SV. The C<len> parameter indicates the number of
4429 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4430 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4436 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4439 register char *dptr;
4441 PERL_ARGS_ASSERT_SV_SETPVN;
4443 SV_CHECK_THINKFIRST_COW_DROP(sv);
4449 /* len is STRLEN which is unsigned, need to copy to signed */
4452 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
4454 SvUPGRADE(sv, SVt_PV);
4456 dptr = SvGROW(sv, len + 1);
4457 Move(ptr,dptr,len,char);
4460 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4465 =for apidoc sv_setpvn_mg
4467 Like C<sv_setpvn>, but also handles 'set' magic.
4473 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4475 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4477 sv_setpvn(sv,ptr,len);
4482 =for apidoc sv_setpv
4484 Copies a string into an SV. The string must be null-terminated. Does not
4485 handle 'set' magic. See C<sv_setpv_mg>.
4491 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4494 register STRLEN len;
4496 PERL_ARGS_ASSERT_SV_SETPV;
4498 SV_CHECK_THINKFIRST_COW_DROP(sv);
4504 SvUPGRADE(sv, SVt_PV);
4506 SvGROW(sv, len + 1);
4507 Move(ptr,SvPVX(sv),len+1,char);
4509 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4514 =for apidoc sv_setpv_mg
4516 Like C<sv_setpv>, but also handles 'set' magic.
4522 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4524 PERL_ARGS_ASSERT_SV_SETPV_MG;
4531 =for apidoc sv_usepvn_flags
4533 Tells an SV to use C<ptr> to find its string value. Normally the
4534 string is stored inside the SV but sv_usepvn allows the SV to use an
4535 outside string. The C<ptr> should point to memory that was allocated
4536 by C<malloc>. The string length, C<len>, must be supplied. By default
4537 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4538 so that pointer should not be freed or used by the programmer after
4539 giving it to sv_usepvn, and neither should any pointers from "behind"
4540 that pointer (e.g. ptr + 1) be used.
4542 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4543 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4544 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
4545 C<len>, and already meets the requirements for storing in C<SvPVX>)
4551 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4556 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4558 SV_CHECK_THINKFIRST_COW_DROP(sv);
4559 SvUPGRADE(sv, SVt_PV);
4562 if (flags & SV_SMAGIC)
4566 if (SvPVX_const(sv))
4570 if (flags & SV_HAS_TRAILING_NUL)
4571 assert(ptr[len] == '\0');
4574 allocate = (flags & SV_HAS_TRAILING_NUL)
4576 #ifdef Perl_safesysmalloc_size
4579 PERL_STRLEN_ROUNDUP(len + 1);
4581 if (flags & SV_HAS_TRAILING_NUL) {
4582 /* It's long enough - do nothing.
4583 Specifically Perl_newCONSTSUB is relying on this. */
4586 /* Force a move to shake out bugs in callers. */
4587 char *new_ptr = (char*)safemalloc(allocate);
4588 Copy(ptr, new_ptr, len, char);
4589 PoisonFree(ptr,len,char);
4593 ptr = (char*) saferealloc (ptr, allocate);
4596 #ifdef Perl_safesysmalloc_size
4597 SvLEN_set(sv, Perl_safesysmalloc_size(ptr));
4599 SvLEN_set(sv, allocate);
4603 if (!(flags & SV_HAS_TRAILING_NUL)) {
4606 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4608 if (flags & SV_SMAGIC)
4612 #ifdef PERL_OLD_COPY_ON_WRITE
4613 /* Need to do this *after* making the SV normal, as we need the buffer
4614 pointer to remain valid until after we've copied it. If we let go too early,
4615 another thread could invalidate it by unsharing last of the same hash key
4616 (which it can do by means other than releasing copy-on-write Svs)
4617 or by changing the other copy-on-write SVs in the loop. */
4619 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
4621 PERL_ARGS_ASSERT_SV_RELEASE_COW;
4623 { /* this SV was SvIsCOW_normal(sv) */
4624 /* we need to find the SV pointing to us. */
4625 SV *current = SV_COW_NEXT_SV(after);
4627 if (current == sv) {
4628 /* The SV we point to points back to us (there were only two of us