5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 EXTERN_C const struct regexp_engine my_reg_engine;
89 #include "dquote_inline.h"
90 #include "invlist_inline.h"
91 #include "unicode_constants.h"
93 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
94 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
96 _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
97 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
98 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
101 #define STATIC static
104 /* this is a chain of data about sub patterns we are processing that
105 need to be handled separately/specially in study_chunk. Its so
106 we can simulate recursion without losing state. */
108 typedef struct scan_frame {
109 regnode *last_regnode; /* last node to process in this frame */
110 regnode *next_regnode; /* next node to process when last is reached */
111 U32 prev_recursed_depth;
112 I32 stopparen; /* what stopparen do we use */
113 U32 is_top_frame; /* what flags do we use? */
115 struct scan_frame *this_prev_frame; /* this previous frame */
116 struct scan_frame *prev_frame; /* previous frame */
117 struct scan_frame *next_frame; /* next frame */
120 /* Certain characters are output as a sequence with the first being a
122 #define isBACKSLASHED_PUNCT(c) \
123 ((c) == '-' || (c) == ']' || (c) == '\\' || (c) == '^')
126 struct RExC_state_t {
127 U32 flags; /* RXf_* are we folding, multilining? */
128 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
129 char *precomp; /* uncompiled string. */
130 char *precomp_end; /* pointer to end of uncompiled string. */
131 REGEXP *rx_sv; /* The SV that is the regexp. */
132 regexp *rx; /* perl core regexp structure */
133 regexp_internal *rxi; /* internal data for regexp object
135 char *start; /* Start of input for compile */
136 char *end; /* End of input for compile */
137 char *parse; /* Input-scan pointer. */
138 char *adjusted_start; /* 'start', adjusted. See code use */
139 STRLEN precomp_adj; /* an offset beyond precomp. See code use */
140 SSize_t whilem_seen; /* number of WHILEM in this expr */
141 regnode *emit_start; /* Start of emitted-code area */
142 regnode *emit_bound; /* First regnode outside of the
144 regnode *emit; /* Code-emit pointer; if = &emit_dummy,
145 implies compiling, so don't emit */
146 regnode_ssc emit_dummy; /* placeholder for emit to point to;
147 large enough for the largest
148 non-EXACTish node, so can use it as
150 I32 naughty; /* How bad is this pattern? */
151 I32 sawback; /* Did we see \1, ...? */
153 SSize_t size; /* Code size. */
154 I32 npar; /* Capture buffer count, (OPEN) plus
155 one. ("par" 0 is the whole
157 I32 nestroot; /* root parens we are in - used by
161 regnode **open_parens; /* pointers to open parens */
162 regnode **close_parens; /* pointers to close parens */
163 regnode *end_op; /* END node in program */
164 I32 utf8; /* whether the pattern is utf8 or not */
165 I32 orig_utf8; /* whether the pattern was originally in utf8 */
166 /* XXX use this for future optimisation of case
167 * where pattern must be upgraded to utf8. */
168 I32 uni_semantics; /* If a d charset modifier should use unicode
169 rules, even if the pattern is not in
171 HV *paren_names; /* Paren names */
173 regnode **recurse; /* Recurse regops */
174 I32 recurse_count; /* Number of recurse regops we have generated */
175 U8 *study_chunk_recursed; /* bitmap of which subs we have moved
177 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
180 I32 override_recoding;
182 I32 recode_x_to_native;
184 I32 in_multi_char_class;
185 struct reg_code_block *code_blocks; /* positions of literal (?{})
187 int num_code_blocks; /* size of code_blocks[] */
188 int code_index; /* next code_blocks[] slot */
189 SSize_t maxlen; /* mininum possible number of chars in string to match */
190 scan_frame *frame_head;
191 scan_frame *frame_last;
194 #ifdef ADD_TO_REGEXEC
195 char *starttry; /* -Dr: where regtry was called. */
196 #define RExC_starttry (pRExC_state->starttry)
198 SV *runtime_code_qr; /* qr with the runtime code blocks */
200 const char *lastparse;
202 AV *paren_name_list; /* idx -> name */
203 U32 study_chunk_recursed_count;
206 #define RExC_lastparse (pRExC_state->lastparse)
207 #define RExC_lastnum (pRExC_state->lastnum)
208 #define RExC_paren_name_list (pRExC_state->paren_name_list)
209 #define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
210 #define RExC_mysv (pRExC_state->mysv1)
211 #define RExC_mysv1 (pRExC_state->mysv1)
212 #define RExC_mysv2 (pRExC_state->mysv2)
215 bool seen_unfolded_sharp_s;
220 #define RExC_flags (pRExC_state->flags)
221 #define RExC_pm_flags (pRExC_state->pm_flags)
222 #define RExC_precomp (pRExC_state->precomp)
223 #define RExC_precomp_adj (pRExC_state->precomp_adj)
224 #define RExC_adjusted_start (pRExC_state->adjusted_start)
225 #define RExC_precomp_end (pRExC_state->precomp_end)
226 #define RExC_rx_sv (pRExC_state->rx_sv)
227 #define RExC_rx (pRExC_state->rx)
228 #define RExC_rxi (pRExC_state->rxi)
229 #define RExC_start (pRExC_state->start)
230 #define RExC_end (pRExC_state->end)
231 #define RExC_parse (pRExC_state->parse)
232 #define RExC_whilem_seen (pRExC_state->whilem_seen)
234 /* Set during the sizing pass when there is a LATIN SMALL LETTER SHARP S in any
235 * EXACTF node, hence was parsed under /di rules. If later in the parse,
236 * something forces the pattern into using /ui rules, the sharp s should be
237 * folded into the sequence 'ss', which takes up more space than previously
238 * calculated. This means that the sizing pass needs to be restarted. (The
239 * node also becomes an EXACTFU_SS.) For all other characters, an EXACTF node
240 * that gets converted to /ui (and EXACTFU) occupies the same amount of space,
241 * so there is no need to resize [perl #125990]. */
242 #define RExC_seen_unfolded_sharp_s (pRExC_state->seen_unfolded_sharp_s)
244 #ifdef RE_TRACK_PATTERN_OFFSETS
245 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
248 #define RExC_emit (pRExC_state->emit)
249 #define RExC_emit_dummy (pRExC_state->emit_dummy)
250 #define RExC_emit_start (pRExC_state->emit_start)
251 #define RExC_emit_bound (pRExC_state->emit_bound)
252 #define RExC_sawback (pRExC_state->sawback)
253 #define RExC_seen (pRExC_state->seen)
254 #define RExC_size (pRExC_state->size)
255 #define RExC_maxlen (pRExC_state->maxlen)
256 #define RExC_npar (pRExC_state->npar)
257 #define RExC_nestroot (pRExC_state->nestroot)
258 #define RExC_extralen (pRExC_state->extralen)
259 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
260 #define RExC_utf8 (pRExC_state->utf8)
261 #define RExC_uni_semantics (pRExC_state->uni_semantics)
262 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
263 #define RExC_open_parens (pRExC_state->open_parens)
264 #define RExC_close_parens (pRExC_state->close_parens)
265 #define RExC_end_op (pRExC_state->end_op)
266 #define RExC_paren_names (pRExC_state->paren_names)
267 #define RExC_recurse (pRExC_state->recurse)
268 #define RExC_recurse_count (pRExC_state->recurse_count)
269 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
270 #define RExC_study_chunk_recursed_bytes \
271 (pRExC_state->study_chunk_recursed_bytes)
272 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
273 #define RExC_contains_locale (pRExC_state->contains_locale)
275 # define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
277 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
278 #define RExC_frame_head (pRExC_state->frame_head)
279 #define RExC_frame_last (pRExC_state->frame_last)
280 #define RExC_frame_count (pRExC_state->frame_count)
281 #define RExC_strict (pRExC_state->strict)
282 #define RExC_study_started (pRExC_state->study_started)
283 #define RExC_warn_text (pRExC_state->warn_text)
285 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
286 * a flag to disable back-off on the fixed/floating substrings - if it's
287 * a high complexity pattern we assume the benefit of avoiding a full match
288 * is worth the cost of checking for the substrings even if they rarely help.
290 #define RExC_naughty (pRExC_state->naughty)
291 #define TOO_NAUGHTY (10)
292 #define MARK_NAUGHTY(add) \
293 if (RExC_naughty < TOO_NAUGHTY) \
294 RExC_naughty += (add)
295 #define MARK_NAUGHTY_EXP(exp, add) \
296 if (RExC_naughty < TOO_NAUGHTY) \
297 RExC_naughty += RExC_naughty / (exp) + (add)
299 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
300 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
301 ((*s) == '{' && regcurly(s)))
304 * Flags to be passed up and down.
306 #define WORST 0 /* Worst case. */
307 #define HASWIDTH 0x01 /* Known to match non-null strings. */
309 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
310 * character. (There needs to be a case: in the switch statement in regexec.c
311 * for any node marked SIMPLE.) Note that this is not the same thing as
314 #define SPSTART 0x04 /* Starts with * or + */
315 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
316 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
317 #define RESTART_PASS1 0x20 /* Need to restart sizing pass */
318 #define NEED_UTF8 0x40 /* In conjunction with RESTART_PASS1, need to
319 calcuate sizes as UTF-8 */
321 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
323 /* whether trie related optimizations are enabled */
324 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
325 #define TRIE_STUDY_OPT
326 #define FULL_TRIE_STUDY
332 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
333 #define PBITVAL(paren) (1 << ((paren) & 7))
334 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
335 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
336 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
338 #define REQUIRE_UTF8(flagp) STMT_START { \
341 *flagp = RESTART_PASS1|NEED_UTF8; \
346 /* Change from /d into /u rules, and restart the parse if we've already seen
347 * something whose size would increase as a result, by setting *flagp and
348 * returning 'restart_retval'. RExC_uni_semantics is a flag that indicates
349 * we've change to /u during the parse. */
350 #define REQUIRE_UNI_RULES(flagp, restart_retval) \
352 if (DEPENDS_SEMANTICS) { \
354 set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET); \
355 RExC_uni_semantics = 1; \
356 if (RExC_seen_unfolded_sharp_s) { \
357 *flagp |= RESTART_PASS1; \
358 return restart_retval; \
363 /* This converts the named class defined in regcomp.h to its equivalent class
364 * number defined in handy.h. */
365 #define namedclass_to_classnum(class) ((int) ((class) / 2))
366 #define classnum_to_namedclass(classnum) ((classnum) * 2)
368 #define _invlist_union_complement_2nd(a, b, output) \
369 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
370 #define _invlist_intersection_complement_2nd(a, b, output) \
371 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
373 /* About scan_data_t.
375 During optimisation we recurse through the regexp program performing
376 various inplace (keyhole style) optimisations. In addition study_chunk
377 and scan_commit populate this data structure with information about
378 what strings MUST appear in the pattern. We look for the longest
379 string that must appear at a fixed location, and we look for the
380 longest string that may appear at a floating location. So for instance
385 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
386 strings (because they follow a .* construct). study_chunk will identify
387 both FOO and BAR as being the longest fixed and floating strings respectively.
389 The strings can be composites, for instance
393 will result in a composite fixed substring 'foo'.
395 For each string some basic information is maintained:
397 - offset or min_offset
398 This is the position the string must appear at, or not before.
399 It also implicitly (when combined with minlenp) tells us how many
400 characters must match before the string we are searching for.
401 Likewise when combined with minlenp and the length of the string it
402 tells us how many characters must appear after the string we have
406 Only used for floating strings. This is the rightmost point that
407 the string can appear at. If set to SSize_t_MAX it indicates that the
408 string can occur infinitely far to the right.
411 A pointer to the minimum number of characters of the pattern that the
412 string was found inside. This is important as in the case of positive
413 lookahead or positive lookbehind we can have multiple patterns
418 The minimum length of the pattern overall is 3, the minimum length
419 of the lookahead part is 3, but the minimum length of the part that
420 will actually match is 1. So 'FOO's minimum length is 3, but the
421 minimum length for the F is 1. This is important as the minimum length
422 is used to determine offsets in front of and behind the string being
423 looked for. Since strings can be composites this is the length of the
424 pattern at the time it was committed with a scan_commit. Note that
425 the length is calculated by study_chunk, so that the minimum lengths
426 are not known until the full pattern has been compiled, thus the
427 pointer to the value.
431 In the case of lookbehind the string being searched for can be
432 offset past the start point of the final matching string.
433 If this value was just blithely removed from the min_offset it would
434 invalidate some of the calculations for how many chars must match
435 before or after (as they are derived from min_offset and minlen and
436 the length of the string being searched for).
437 When the final pattern is compiled and the data is moved from the
438 scan_data_t structure into the regexp structure the information
439 about lookbehind is factored in, with the information that would
440 have been lost precalculated in the end_shift field for the
443 The fields pos_min and pos_delta are used to store the minimum offset
444 and the delta to the maximum offset at the current point in the pattern.
448 typedef struct scan_data_t {
449 /*I32 len_min; unused */
450 /*I32 len_delta; unused */
454 SSize_t last_end; /* min value, <0 unless valid. */
455 SSize_t last_start_min;
456 SSize_t last_start_max;
457 SV **longest; /* Either &l_fixed, or &l_float. */
458 SV *longest_fixed; /* longest fixed string found in pattern */
459 SSize_t offset_fixed; /* offset where it starts */
460 SSize_t *minlen_fixed; /* pointer to the minlen relevant to the string */
461 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
462 SV *longest_float; /* longest floating string found in pattern */
463 SSize_t offset_float_min; /* earliest point in string it can appear */
464 SSize_t offset_float_max; /* latest point in string it can appear */
465 SSize_t *minlen_float; /* pointer to the minlen relevant to the string */
466 SSize_t lookbehind_float; /* is the pos of the string modified by LB */
469 SSize_t *last_closep;
470 regnode_ssc *start_class;
474 * Forward declarations for pregcomp()'s friends.
477 static const scan_data_t zero_scan_data =
478 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
480 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
481 #define SF_BEFORE_SEOL 0x0001
482 #define SF_BEFORE_MEOL 0x0002
483 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
484 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
486 #define SF_FIX_SHIFT_EOL (+2)
487 #define SF_FL_SHIFT_EOL (+4)
489 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
490 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
492 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
493 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
494 #define SF_IS_INF 0x0040
495 #define SF_HAS_PAR 0x0080
496 #define SF_IN_PAR 0x0100
497 #define SF_HAS_EVAL 0x0200
500 /* SCF_DO_SUBSTR is the flag that tells the regexp analyzer to track the
501 * longest substring in the pattern. When it is not set the optimiser keeps
502 * track of position, but does not keep track of the actual strings seen,
504 * So for instance /foo/ will be parsed with SCF_DO_SUBSTR being true, but
507 * Similarly, /foo.*(blah|erm|huh).*fnorble/ will have "foo" and "fnorble"
508 * parsed with SCF_DO_SUBSTR on, but while processing the (...) it will be
509 * turned off because of the alternation (BRANCH). */
510 #define SCF_DO_SUBSTR 0x0400
512 #define SCF_DO_STCLASS_AND 0x0800
513 #define SCF_DO_STCLASS_OR 0x1000
514 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
515 #define SCF_WHILEM_VISITED_POS 0x2000
517 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
518 #define SCF_SEEN_ACCEPT 0x8000
519 #define SCF_TRIE_DOING_RESTUDY 0x10000
520 #define SCF_IN_DEFINE 0x20000
525 #define UTF cBOOL(RExC_utf8)
527 /* The enums for all these are ordered so things work out correctly */
528 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
529 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
530 == REGEX_DEPENDS_CHARSET)
531 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
532 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
533 >= REGEX_UNICODE_CHARSET)
534 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
535 == REGEX_ASCII_RESTRICTED_CHARSET)
536 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
537 >= REGEX_ASCII_RESTRICTED_CHARSET)
538 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
539 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
541 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
543 /* For programs that want to be strictly Unicode compatible by dying if any
544 * attempt is made to match a non-Unicode code point against a Unicode
546 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
548 #define OOB_NAMEDCLASS -1
550 /* There is no code point that is out-of-bounds, so this is problematic. But
551 * its only current use is to initialize a variable that is always set before
553 #define OOB_UNICODE 0xDEADBEEF
555 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
558 /* length of regex to show in messages that don't mark a position within */
559 #define RegexLengthToShowInErrorMessages 127
562 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
563 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
564 * op/pragma/warn/regcomp.
566 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
567 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
569 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
570 " in m/%" UTF8f MARKER2 "%" UTF8f "/"
572 /* The code in this file in places uses one level of recursion with parsing
573 * rebased to an alternate string constructed by us in memory. This can take
574 * the form of something that is completely different from the input, or
575 * something that uses the input as part of the alternate. In the first case,
576 * there should be no possibility of an error, as we are in complete control of
577 * the alternate string. But in the second case we don't control the input
578 * portion, so there may be errors in that. Here's an example:
580 * is handled specially because \x{df} folds to a sequence of more than one
581 * character, 'ss'. What is done is to create and parse an alternate string,
582 * which looks like this:
583 * /(?:\x{DF}|[abc\x{DF}def])/ui
584 * where it uses the input unchanged in the middle of something it constructs,
585 * which is a branch for the DF outside the character class, and clustering
586 * parens around the whole thing. (It knows enough to skip the DF inside the
587 * class while in this substitute parse.) 'abc' and 'def' may have errors that
588 * need to be reported. The general situation looks like this:
591 * Input: ----------------------------------------------------
592 * Constructed: ---------------------------------------------------
595 * The input string sI..eI is the input pattern. The string sC..EC is the
596 * constructed substitute parse string. The portions sC..tC and eC..EC are
597 * constructed by us. The portion tC..eC is an exact duplicate of the input
598 * pattern tI..eI. In the diagram, these are vertically aligned. Suppose that
599 * while parsing, we find an error at xC. We want to display a message showing
600 * the real input string. Thus we need to find the point xI in it which
601 * corresponds to xC. xC >= tC, since the portion of the string sC..tC has
602 * been constructed by us, and so shouldn't have errors. We get:
604 * xI = sI + (tI - sI) + (xC - tC)
606 * and, the offset into sI is:
608 * (xI - sI) = (tI - sI) + (xC - tC)
610 * When the substitute is constructed, we save (tI -sI) as RExC_precomp_adj,
611 * and we save tC as RExC_adjusted_start.
613 * During normal processing of the input pattern, everything points to that,
614 * with RExC_precomp_adj set to 0, and RExC_adjusted_start set to sI.
617 #define tI_sI RExC_precomp_adj
618 #define tC RExC_adjusted_start
619 #define sC RExC_precomp
620 #define xI_offset(xC) ((IV) (tI_sI + (xC - tC)))
621 #define xI(xC) (sC + xI_offset(xC))
622 #define eC RExC_precomp_end
624 #define REPORT_LOCATION_ARGS(xC) \
626 (xI(xC) > eC) /* Don't run off end */ \
627 ? eC - sC /* Length before the <--HERE */ \
629 sC), /* The input pattern printed up to the <--HERE */ \
631 (xI(xC) > eC) ? 0 : eC - xI(xC), /* Length after <--HERE */ \
632 (xI(xC) > eC) ? eC : xI(xC)) /* pattern after <--HERE */
634 /* Used to point after bad bytes for an error message, but avoid skipping
635 * past a nul byte. */
636 #define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
639 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
640 * arg. Show regex, up to a maximum length. If it's too long, chop and add
643 #define _FAIL(code) STMT_START { \
644 const char *ellipses = ""; \
645 IV len = RExC_precomp_end - RExC_precomp; \
648 SAVEFREESV(RExC_rx_sv); \
649 if (len > RegexLengthToShowInErrorMessages) { \
650 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
651 len = RegexLengthToShowInErrorMessages - 10; \
657 #define FAIL(msg) _FAIL( \
658 Perl_croak(aTHX_ "%s in regex m/%" UTF8f "%s/", \
659 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
661 #define FAIL2(msg,arg) _FAIL( \
662 Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/", \
663 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
666 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
668 #define Simple_vFAIL(m) STMT_START { \
669 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
670 m, REPORT_LOCATION_ARGS(RExC_parse)); \
674 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
676 #define vFAIL(m) STMT_START { \
678 SAVEFREESV(RExC_rx_sv); \
683 * Like Simple_vFAIL(), but accepts two arguments.
685 #define Simple_vFAIL2(m,a1) STMT_START { \
686 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
687 REPORT_LOCATION_ARGS(RExC_parse)); \
691 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
693 #define vFAIL2(m,a1) STMT_START { \
695 SAVEFREESV(RExC_rx_sv); \
696 Simple_vFAIL2(m, a1); \
701 * Like Simple_vFAIL(), but accepts three arguments.
703 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
704 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
705 REPORT_LOCATION_ARGS(RExC_parse)); \
709 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
711 #define vFAIL3(m,a1,a2) STMT_START { \
713 SAVEFREESV(RExC_rx_sv); \
714 Simple_vFAIL3(m, a1, a2); \
718 * Like Simple_vFAIL(), but accepts four arguments.
720 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
721 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
722 REPORT_LOCATION_ARGS(RExC_parse)); \
725 #define vFAIL4(m,a1,a2,a3) STMT_START { \
727 SAVEFREESV(RExC_rx_sv); \
728 Simple_vFAIL4(m, a1, a2, a3); \
731 /* A specialized version of vFAIL2 that works with UTF8f */
732 #define vFAIL2utf8f(m, a1) STMT_START { \
734 SAVEFREESV(RExC_rx_sv); \
735 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
736 REPORT_LOCATION_ARGS(RExC_parse)); \
739 #define vFAIL3utf8f(m, a1, a2) STMT_START { \
741 SAVEFREESV(RExC_rx_sv); \
742 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
743 REPORT_LOCATION_ARGS(RExC_parse)); \
746 /* These have asserts in them because of [perl #122671] Many warnings in
747 * regcomp.c can occur twice. If they get output in pass1 and later in that
748 * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
749 * would get output again. So they should be output in pass2, and these
750 * asserts make sure new warnings follow that paradigm. */
752 /* m is not necessarily a "literal string", in this macro */
753 #define reg_warn_non_literal_string(loc, m) STMT_START { \
754 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
755 "%s" REPORT_LOCATION, \
756 m, REPORT_LOCATION_ARGS(loc)); \
759 #define ckWARNreg(loc,m) STMT_START { \
760 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
762 REPORT_LOCATION_ARGS(loc)); \
765 #define vWARN(loc, m) STMT_START { \
766 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
768 REPORT_LOCATION_ARGS(loc)); \
771 #define vWARN_dep(loc, m) STMT_START { \
772 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), \
774 REPORT_LOCATION_ARGS(loc)); \
777 #define ckWARNdep(loc,m) STMT_START { \
778 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
780 REPORT_LOCATION_ARGS(loc)); \
783 #define ckWARNregdep(loc,m) STMT_START { \
784 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, \
787 REPORT_LOCATION_ARGS(loc)); \
790 #define ckWARN2reg_d(loc,m, a1) STMT_START { \
791 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
793 a1, REPORT_LOCATION_ARGS(loc)); \
796 #define ckWARN2reg(loc, m, a1) STMT_START { \
797 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
799 a1, REPORT_LOCATION_ARGS(loc)); \
802 #define vWARN3(loc, m, a1, a2) STMT_START { \
803 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
805 a1, a2, REPORT_LOCATION_ARGS(loc)); \
808 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
809 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
812 REPORT_LOCATION_ARGS(loc)); \
815 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
816 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
819 REPORT_LOCATION_ARGS(loc)); \
822 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
823 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
826 REPORT_LOCATION_ARGS(loc)); \
829 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
830 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
833 REPORT_LOCATION_ARGS(loc)); \
836 /* Macros for recording node offsets. 20001227 mjd@plover.com
837 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
838 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
839 * Element 0 holds the number n.
840 * Position is 1 indexed.
842 #ifndef RE_TRACK_PATTERN_OFFSETS
843 #define Set_Node_Offset_To_R(node,byte)
844 #define Set_Node_Offset(node,byte)
845 #define Set_Cur_Node_Offset
846 #define Set_Node_Length_To_R(node,len)
847 #define Set_Node_Length(node,len)
848 #define Set_Node_Cur_Length(node,start)
849 #define Node_Offset(n)
850 #define Node_Length(n)
851 #define Set_Node_Offset_Length(node,offset,len)
852 #define ProgLen(ri) ri->u.proglen
853 #define SetProgLen(ri,x) ri->u.proglen = x
855 #define ProgLen(ri) ri->u.offsets[0]
856 #define SetProgLen(ri,x) ri->u.offsets[0] = x
857 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
859 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
860 __LINE__, (int)(node), (int)(byte))); \
862 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
865 RExC_offsets[2*(node)-1] = (byte); \
870 #define Set_Node_Offset(node,byte) \
871 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
872 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
874 #define Set_Node_Length_To_R(node,len) STMT_START { \
876 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
877 __LINE__, (int)(node), (int)(len))); \
879 Perl_croak(aTHX_ "value of node is %d in Length macro", \
882 RExC_offsets[2*(node)] = (len); \
887 #define Set_Node_Length(node,len) \
888 Set_Node_Length_To_R((node)-RExC_emit_start, len)
889 #define Set_Node_Cur_Length(node, start) \
890 Set_Node_Length(node, RExC_parse - start)
892 /* Get offsets and lengths */
893 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
894 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
896 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
897 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
898 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
902 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
903 #define EXPERIMENTAL_INPLACESCAN
904 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
908 Perl_re_printf(pTHX_ const char *fmt, ...)
912 PerlIO *f= Perl_debug_log;
913 PERL_ARGS_ASSERT_RE_PRINTF;
915 result = PerlIO_vprintf(f, fmt, ap);
921 Perl_re_indentf(pTHX_ const char *fmt, U32 depth, ...)
925 PerlIO *f= Perl_debug_log;
926 PERL_ARGS_ASSERT_RE_INDENTF;
928 PerlIO_printf(f, "%*s", ( (int)depth % 20 ) * 2, "");
929 result = PerlIO_vprintf(f, fmt, ap);
933 #endif /* DEBUGGING */
935 #define DEBUG_RExC_seen() \
936 DEBUG_OPTIMISE_MORE_r({ \
937 Perl_re_printf( aTHX_ "RExC_seen: "); \
939 if (RExC_seen & REG_ZERO_LEN_SEEN) \
940 Perl_re_printf( aTHX_ "REG_ZERO_LEN_SEEN "); \
942 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
943 Perl_re_printf( aTHX_ "REG_LOOKBEHIND_SEEN "); \
945 if (RExC_seen & REG_GPOS_SEEN) \
946 Perl_re_printf( aTHX_ "REG_GPOS_SEEN "); \
948 if (RExC_seen & REG_RECURSE_SEEN) \
949 Perl_re_printf( aTHX_ "REG_RECURSE_SEEN "); \
951 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
952 Perl_re_printf( aTHX_ "REG_TOP_LEVEL_BRANCHES_SEEN "); \
954 if (RExC_seen & REG_VERBARG_SEEN) \
955 Perl_re_printf( aTHX_ "REG_VERBARG_SEEN "); \
957 if (RExC_seen & REG_CUTGROUP_SEEN) \
958 Perl_re_printf( aTHX_ "REG_CUTGROUP_SEEN "); \
960 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
961 Perl_re_printf( aTHX_ "REG_RUN_ON_COMMENT_SEEN "); \
963 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
964 Perl_re_printf( aTHX_ "REG_UNFOLDED_MULTI_SEEN "); \
966 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
967 Perl_re_printf( aTHX_ "REG_UNBOUNDED_QUANTIFIER_SEEN "); \
969 Perl_re_printf( aTHX_ "\n"); \
972 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
973 if ((flags) & flag) Perl_re_printf( aTHX_ "%s ", #flag)
975 #define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str) \
977 Perl_re_printf( aTHX_ "%s", open_str); \
978 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL); \
979 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL); \
980 DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF); \
981 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR); \
982 DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR); \
983 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL); \
984 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR); \
985 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND); \
986 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR); \
987 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS); \
988 DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS); \
989 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY); \
990 DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT); \
991 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY); \
992 DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE); \
993 Perl_re_printf( aTHX_ "%s", close_str); \
997 #define DEBUG_STUDYDATA(str,data,depth) \
998 DEBUG_OPTIMISE_MORE_r(if(data){ \
999 Perl_re_indentf( aTHX_ "" str "Pos:%" IVdf "/%" IVdf \
1000 " Flags: 0x%" UVXf, \
1002 (IV)((data)->pos_min), \
1003 (IV)((data)->pos_delta), \
1004 (UV)((data)->flags) \
1006 DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]"); \
1007 Perl_re_printf( aTHX_ \
1008 " Whilem_c: %" IVdf " Lcp: %" IVdf " %s", \
1009 (IV)((data)->whilem_c), \
1010 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
1011 is_inf ? "INF " : "" \
1013 if ((data)->last_found) \
1014 Perl_re_printf( aTHX_ \
1015 "Last:'%s' %" IVdf ":%" IVdf "/%" IVdf \
1016 " %sFixed:'%s' @ %" IVdf \
1017 " %sFloat: '%s' @ %" IVdf "/%" IVdf, \
1018 SvPVX_const((data)->last_found), \
1019 (IV)((data)->last_end), \
1020 (IV)((data)->last_start_min), \
1021 (IV)((data)->last_start_max), \
1022 ((data)->longest && \
1023 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
1024 SvPVX_const((data)->longest_fixed), \
1025 (IV)((data)->offset_fixed), \
1026 ((data)->longest && \
1027 (data)->longest==&((data)->longest_float)) ? "*" : "", \
1028 SvPVX_const((data)->longest_float), \
1029 (IV)((data)->offset_float_min), \
1030 (IV)((data)->offset_float_max) \
1032 Perl_re_printf( aTHX_ "\n"); \
1036 /* =========================================================
1037 * BEGIN edit_distance stuff.
1039 * This calculates how many single character changes of any type are needed to
1040 * transform a string into another one. It is taken from version 3.1 of
1042 * https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
1045 /* Our unsorted dictionary linked list. */
1046 /* Note we use UVs, not chars. */
1051 struct dictionary* next;
1053 typedef struct dictionary item;
1056 PERL_STATIC_INLINE item*
1057 push(UV key,item* curr)
1060 Newxz(head, 1, item);
1068 PERL_STATIC_INLINE item*
1069 find(item* head, UV key)
1071 item* iterator = head;
1073 if (iterator->key == key){
1076 iterator = iterator->next;
1082 PERL_STATIC_INLINE item*
1083 uniquePush(item* head,UV key)
1085 item* iterator = head;
1088 if (iterator->key == key) {
1091 iterator = iterator->next;
1094 return push(key,head);
1097 PERL_STATIC_INLINE void
1098 dict_free(item* head)
1100 item* iterator = head;
1103 item* temp = iterator;
1104 iterator = iterator->next;
1111 /* End of Dictionary Stuff */
1113 /* All calculations/work are done here */
1115 S_edit_distance(const UV* src,
1117 const STRLEN x, /* length of src[] */
1118 const STRLEN y, /* length of tgt[] */
1119 const SSize_t maxDistance
1123 UV swapCount,swapScore,targetCharCount,i,j;
1125 UV score_ceil = x + y;
1127 PERL_ARGS_ASSERT_EDIT_DISTANCE;
1129 /* intialize matrix start values */
1130 Newxz(scores, ( (x + 2) * (y + 2)), UV);
1131 scores[0] = score_ceil;
1132 scores[1 * (y + 2) + 0] = score_ceil;
1133 scores[0 * (y + 2) + 1] = score_ceil;
1134 scores[1 * (y + 2) + 1] = 0;
1135 head = uniquePush(uniquePush(head,src[0]),tgt[0]);
1140 for (i=1;i<=x;i++) {
1142 head = uniquePush(head,src[i]);
1143 scores[(i+1) * (y + 2) + 1] = i;
1144 scores[(i+1) * (y + 2) + 0] = score_ceil;
1147 for (j=1;j<=y;j++) {
1150 head = uniquePush(head,tgt[j]);
1151 scores[1 * (y + 2) + (j + 1)] = j;
1152 scores[0 * (y + 2) + (j + 1)] = score_ceil;
1155 targetCharCount = find(head,tgt[j-1])->value;
1156 swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;
1158 if (src[i-1] != tgt[j-1]){
1159 scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
1163 scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
1167 find(head,src[i-1])->value = i;
1171 IV score = scores[(x+1) * (y + 2) + (y + 1)];
1174 return (maxDistance != 0 && maxDistance < score)?(-1):score;
1178 /* END of edit_distance() stuff
1179 * ========================================================= */
1181 /* is c a control character for which we have a mnemonic? */
1182 #define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
1185 S_cntrl_to_mnemonic(const U8 c)
1187 /* Returns the mnemonic string that represents character 'c', if one
1188 * exists; NULL otherwise. The only ones that exist for the purposes of
1189 * this routine are a few control characters */
1192 case '\a': return "\\a";
1193 case '\b': return "\\b";
1194 case ESC_NATIVE: return "\\e";
1195 case '\f': return "\\f";
1196 case '\n': return "\\n";
1197 case '\r': return "\\r";
1198 case '\t': return "\\t";
1204 /* Mark that we cannot extend a found fixed substring at this point.
1205 Update the longest found anchored substring and the longest found
1206 floating substrings if needed. */
1209 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
1210 SSize_t *minlenp, int is_inf)
1212 const STRLEN l = CHR_SVLEN(data->last_found);
1213 const STRLEN old_l = CHR_SVLEN(*data->longest);
1214 GET_RE_DEBUG_FLAGS_DECL;
1216 PERL_ARGS_ASSERT_SCAN_COMMIT;
1218 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
1219 SvSetMagicSV(*data->longest, data->last_found);
1220 if (*data->longest == data->longest_fixed) {
1221 data->offset_fixed = l ? data->last_start_min : data->pos_min;
1222 if (data->flags & SF_BEFORE_EOL)
1224 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
1226 data->flags &= ~SF_FIX_BEFORE_EOL;
1227 data->minlen_fixed=minlenp;
1228 data->lookbehind_fixed=0;
1230 else { /* *data->longest == data->longest_float */
1231 data->offset_float_min = l ? data->last_start_min : data->pos_min;
1232 data->offset_float_max = (l
1233 ? data->last_start_max
1234 : (data->pos_delta > SSize_t_MAX - data->pos_min
1236 : data->pos_min + data->pos_delta));
1238 || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
1239 data->offset_float_max = SSize_t_MAX;
1240 if (data->flags & SF_BEFORE_EOL)
1242 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
1244 data->flags &= ~SF_FL_BEFORE_EOL;
1245 data->minlen_float=minlenp;
1246 data->lookbehind_float=0;
1249 SvCUR_set(data->last_found, 0);
1251 SV * const sv = data->last_found;
1252 if (SvUTF8(sv) && SvMAGICAL(sv)) {
1253 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
1258 data->last_end = -1;
1259 data->flags &= ~SF_BEFORE_EOL;
1260 DEBUG_STUDYDATA("commit: ",data,0);
1263 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
1264 * list that describes which code points it matches */
1267 S_ssc_anything(pTHX_ regnode_ssc *ssc)
1269 /* Set the SSC 'ssc' to match an empty string or any code point */
1271 PERL_ARGS_ASSERT_SSC_ANYTHING;
1273 assert(is_ANYOF_SYNTHETIC(ssc));
1275 /* mortalize so won't leak */
1276 ssc->invlist = sv_2mortal(_add_range_to_invlist(NULL, 0, UV_MAX));
1277 ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
1281 S_ssc_is_anything(const regnode_ssc *ssc)
1283 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1284 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
1285 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1286 * in any way, so there's no point in using it */
1291 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1293 assert(is_ANYOF_SYNTHETIC(ssc));
1295 if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1299 /* See if the list consists solely of the range 0 - Infinity */
1300 invlist_iterinit(ssc->invlist);
1301 ret = invlist_iternext(ssc->invlist, &start, &end)
1305 invlist_iterfinish(ssc->invlist);
1311 /* If e.g., both \w and \W are set, matches everything */
1312 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1314 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1315 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1325 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1327 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
1328 * string, any code point, or any posix class under locale */
1330 PERL_ARGS_ASSERT_SSC_INIT;
1332 Zero(ssc, 1, regnode_ssc);
1333 set_ANYOF_SYNTHETIC(ssc);
1334 ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1337 /* If any portion of the regex is to operate under locale rules that aren't
1338 * fully known at compile time, initialization includes it. The reason
1339 * this isn't done for all regexes is that the optimizer was written under
1340 * the assumption that locale was all-or-nothing. Given the complexity and
1341 * lack of documentation in the optimizer, and that there are inadequate
1342 * test cases for locale, many parts of it may not work properly, it is
1343 * safest to avoid locale unless necessary. */
1344 if (RExC_contains_locale) {
1345 ANYOF_POSIXL_SETALL(ssc);
1348 ANYOF_POSIXL_ZERO(ssc);
1353 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1354 const regnode_ssc *ssc)
1356 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1357 * to the list of code points matched, and locale posix classes; hence does
1358 * not check its flags) */
1363 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1365 assert(is_ANYOF_SYNTHETIC(ssc));
1367 invlist_iterinit(ssc->invlist);
1368 ret = invlist_iternext(ssc->invlist, &start, &end)
1372 invlist_iterfinish(ssc->invlist);
1378 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1386 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1387 const regnode_charclass* const node)
1389 /* Returns a mortal inversion list defining which code points are matched
1390 * by 'node', which is of type ANYOF. Handles complementing the result if
1391 * appropriate. If some code points aren't knowable at this time, the
1392 * returned list must, and will, contain every code point that is a
1396 SV* only_utf8_locale_invlist = NULL;
1398 const U32 n = ARG(node);
1399 bool new_node_has_latin1 = FALSE;
1401 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1403 /* Look at the data structure created by S_set_ANYOF_arg() */
1404 if (n != ANYOF_ONLY_HAS_BITMAP) {
1405 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1406 AV * const av = MUTABLE_AV(SvRV(rv));
1407 SV **const ary = AvARRAY(av);
1408 assert(RExC_rxi->data->what[n] == 's');
1410 if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
1411 invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
1413 else if (ary[0] && ary[0] != &PL_sv_undef) {
1415 /* Here, no compile-time swash, and there are things that won't be
1416 * known until runtime -- we have to assume it could be anything */
1417 invlist = sv_2mortal(_new_invlist(1));
1418 return _add_range_to_invlist(invlist, 0, UV_MAX);
1420 else if (ary[3] && ary[3] != &PL_sv_undef) {
1422 /* Here no compile-time swash, and no run-time only data. Use the
1423 * node's inversion list */
1424 invlist = sv_2mortal(invlist_clone(ary[3]));
1427 /* Get the code points valid only under UTF-8 locales */
1428 if ((ANYOF_FLAGS(node) & ANYOFL_FOLD)
1429 && ary[2] && ary[2] != &PL_sv_undef)
1431 only_utf8_locale_invlist = ary[2];
1436 invlist = sv_2mortal(_new_invlist(0));
1439 /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1440 * code points, and an inversion list for the others, but if there are code
1441 * points that should match only conditionally on the target string being
1442 * UTF-8, those are placed in the inversion list, and not the bitmap.
1443 * Since there are circumstances under which they could match, they are
1444 * included in the SSC. But if the ANYOF node is to be inverted, we have
1445 * to exclude them here, so that when we invert below, the end result
1446 * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
1447 * have to do this here before we add the unconditionally matched code
1449 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1450 _invlist_intersection_complement_2nd(invlist,
1455 /* Add in the points from the bit map */
1456 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1457 if (ANYOF_BITMAP_TEST(node, i)) {
1458 unsigned int start = i++;
1460 for (; i < NUM_ANYOF_CODE_POINTS && ANYOF_BITMAP_TEST(node, i); ++i) {
1463 invlist = _add_range_to_invlist(invlist, start, i-1);
1464 new_node_has_latin1 = TRUE;
1468 /* If this can match all upper Latin1 code points, have to add them
1469 * as well. But don't add them if inverting, as when that gets done below,
1470 * it would exclude all these characters, including the ones it shouldn't
1471 * that were added just above */
1472 if (! (ANYOF_FLAGS(node) & ANYOF_INVERT) && OP(node) == ANYOFD
1473 && (ANYOF_FLAGS(node) & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
1475 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1478 /* Similarly for these */
1479 if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1480 _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1483 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1484 _invlist_invert(invlist);
1486 else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOFL_FOLD) {
1488 /* Under /li, any 0-255 could fold to any other 0-255, depending on the
1489 * locale. We can skip this if there are no 0-255 at all. */
1490 _invlist_union(invlist, PL_Latin1, &invlist);
1493 /* Similarly add the UTF-8 locale possible matches. These have to be
1494 * deferred until after the non-UTF-8 locale ones are taken care of just
1495 * above, or it leads to wrong results under ANYOF_INVERT */
1496 if (only_utf8_locale_invlist) {
1497 _invlist_union_maybe_complement_2nd(invlist,
1498 only_utf8_locale_invlist,
1499 ANYOF_FLAGS(node) & ANYOF_INVERT,
1506 /* These two functions currently do the exact same thing */
1507 #define ssc_init_zero ssc_init
1509 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1510 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1512 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1513 * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1514 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1517 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1518 const regnode_charclass *and_with)
1520 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1521 * another SSC or a regular ANYOF class. Can create false positives. */
1526 PERL_ARGS_ASSERT_SSC_AND;
1528 assert(is_ANYOF_SYNTHETIC(ssc));
1530 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1531 * the code point inversion list and just the relevant flags */
1532 if (is_ANYOF_SYNTHETIC(and_with)) {
1533 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1534 anded_flags = ANYOF_FLAGS(and_with);
1536 /* XXX This is a kludge around what appears to be deficiencies in the
1537 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1538 * there are paths through the optimizer where it doesn't get weeded
1539 * out when it should. And if we don't make some extra provision for
1540 * it like the code just below, it doesn't get added when it should.
1541 * This solution is to add it only when AND'ing, which is here, and
1542 * only when what is being AND'ed is the pristine, original node
1543 * matching anything. Thus it is like adding it to ssc_anything() but
1544 * only when the result is to be AND'ed. Probably the same solution
1545 * could be adopted for the same problem we have with /l matching,
1546 * which is solved differently in S_ssc_init(), and that would lead to
1547 * fewer false positives than that solution has. But if this solution
1548 * creates bugs, the consequences are only that a warning isn't raised
1549 * that should be; while the consequences for having /l bugs is
1550 * incorrect matches */
1551 if (ssc_is_anything((regnode_ssc *)and_with)) {
1552 anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1556 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1557 if (OP(and_with) == ANYOFD) {
1558 anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
1561 anded_flags = ANYOF_FLAGS(and_with)
1562 &( ANYOF_COMMON_FLAGS
1563 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1564 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1565 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(and_with))) {
1567 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1572 ANYOF_FLAGS(ssc) &= anded_flags;
1574 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1575 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1576 * 'and_with' may be inverted. When not inverted, we have the situation of
1578 * (C1 | P1) & (C2 | P2)
1579 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1580 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1581 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1582 * <= ((C1 & C2) | P1 | P2)
1583 * Alternatively, the last few steps could be:
1584 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1585 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1586 * <= (C1 | C2 | (P1 & P2))
1587 * We favor the second approach if either P1 or P2 is non-empty. This is
1588 * because these components are a barrier to doing optimizations, as what
1589 * they match cannot be known until the moment of matching as they are
1590 * dependent on the current locale, 'AND"ing them likely will reduce or
1592 * But we can do better if we know that C1,P1 are in their initial state (a
1593 * frequent occurrence), each matching everything:
1594 * (<everything>) & (C2 | P2) = C2 | P2
1595 * Similarly, if C2,P2 are in their initial state (again a frequent
1596 * occurrence), the result is a no-op
1597 * (C1 | P1) & (<everything>) = C1 | P1
1600 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1601 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1602 * <= (C1 & ~C2) | (P1 & ~P2)
1605 if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
1606 && ! is_ANYOF_SYNTHETIC(and_with))
1610 ssc_intersection(ssc,
1612 FALSE /* Has already been inverted */
1615 /* If either P1 or P2 is empty, the intersection will be also; can skip
1617 if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
1618 ANYOF_POSIXL_ZERO(ssc);
1620 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1622 /* Note that the Posix class component P from 'and_with' actually
1624 * P = Pa | Pb | ... | Pn
1625 * where each component is one posix class, such as in [\w\s].
1627 * ~P = ~(Pa | Pb | ... | Pn)
1628 * = ~Pa & ~Pb & ... & ~Pn
1629 * <= ~Pa | ~Pb | ... | ~Pn
1630 * The last is something we can easily calculate, but unfortunately
1631 * is likely to have many false positives. We could do better
1632 * in some (but certainly not all) instances if two classes in
1633 * P have known relationships. For example
1634 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1636 * :lower: & :print: = :lower:
1637 * And similarly for classes that must be disjoint. For example,
1638 * since \s and \w can have no elements in common based on rules in
1639 * the POSIX standard,
1640 * \w & ^\S = nothing
1641 * Unfortunately, some vendor locales do not meet the Posix
1642 * standard, in particular almost everything by Microsoft.
1643 * The loop below just changes e.g., \w into \W and vice versa */
1645 regnode_charclass_posixl temp;
1646 int add = 1; /* To calculate the index of the complement */
1648 ANYOF_POSIXL_ZERO(&temp);
1649 for (i = 0; i < ANYOF_MAX; i++) {
1651 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1652 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1654 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1655 ANYOF_POSIXL_SET(&temp, i + add);
1657 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1659 ANYOF_POSIXL_AND(&temp, ssc);
1661 } /* else ssc already has no posixes */
1662 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1663 in its initial state */
1664 else if (! is_ANYOF_SYNTHETIC(and_with)
1665 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1667 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1668 * copy it over 'ssc' */
1669 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1670 if (is_ANYOF_SYNTHETIC(and_with)) {
1671 StructCopy(and_with, ssc, regnode_ssc);
1674 ssc->invlist = anded_cp_list;
1675 ANYOF_POSIXL_ZERO(ssc);
1676 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1677 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1681 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1682 || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
1684 /* One or the other of P1, P2 is non-empty. */
1685 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1686 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1688 ssc_union(ssc, anded_cp_list, FALSE);
1690 else { /* P1 = P2 = empty */
1691 ssc_intersection(ssc, anded_cp_list, FALSE);
1697 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1698 const regnode_charclass *or_with)
1700 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1701 * another SSC or a regular ANYOF class. Can create false positives if
1702 * 'or_with' is to be inverted. */
1707 PERL_ARGS_ASSERT_SSC_OR;
1709 assert(is_ANYOF_SYNTHETIC(ssc));
1711 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1712 * the code point inversion list and just the relevant flags */
1713 if (is_ANYOF_SYNTHETIC(or_with)) {
1714 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1715 ored_flags = ANYOF_FLAGS(or_with);
1718 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1719 ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
1720 if (OP(or_with) != ANYOFD) {
1722 |= ANYOF_FLAGS(or_with)
1723 & ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1724 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1725 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(or_with))) {
1727 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1732 ANYOF_FLAGS(ssc) |= ored_flags;
1734 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1735 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1736 * 'or_with' may be inverted. When not inverted, we have the simple
1737 * situation of computing:
1738 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1739 * If P1|P2 yields a situation with both a class and its complement are
1740 * set, like having both \w and \W, this matches all code points, and we
1741 * can delete these from the P component of the ssc going forward. XXX We
1742 * might be able to delete all the P components, but I (khw) am not certain
1743 * about this, and it is better to be safe.
1746 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1747 * <= (C1 | P1) | ~C2
1748 * <= (C1 | ~C2) | P1
1749 * (which results in actually simpler code than the non-inverted case)
1752 if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
1753 && ! is_ANYOF_SYNTHETIC(or_with))
1755 /* We ignore P2, leaving P1 going forward */
1756 } /* else Not inverted */
1757 else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
1758 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1759 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1761 for (i = 0; i < ANYOF_MAX; i += 2) {
1762 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1764 ssc_match_all_cp(ssc);
1765 ANYOF_POSIXL_CLEAR(ssc, i);
1766 ANYOF_POSIXL_CLEAR(ssc, i+1);
1774 FALSE /* Already has been inverted */
1778 PERL_STATIC_INLINE void
1779 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1781 PERL_ARGS_ASSERT_SSC_UNION;
1783 assert(is_ANYOF_SYNTHETIC(ssc));
1785 _invlist_union_maybe_complement_2nd(ssc->invlist,
1791 PERL_STATIC_INLINE void
1792 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
1794 const bool invert2nd)
1796 PERL_ARGS_ASSERT_SSC_INTERSECTION;
1798 assert(is_ANYOF_SYNTHETIC(ssc));
1800 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
1806 PERL_STATIC_INLINE void
1807 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
1809 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
1811 assert(is_ANYOF_SYNTHETIC(ssc));
1813 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
1816 PERL_STATIC_INLINE void
1817 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
1819 /* AND just the single code point 'cp' into the SSC 'ssc' */
1821 SV* cp_list = _new_invlist(2);
1823 PERL_ARGS_ASSERT_SSC_CP_AND;
1825 assert(is_ANYOF_SYNTHETIC(ssc));
1827 cp_list = add_cp_to_invlist(cp_list, cp);
1828 ssc_intersection(ssc, cp_list,
1829 FALSE /* Not inverted */
1831 SvREFCNT_dec_NN(cp_list);
1834 PERL_STATIC_INLINE void
1835 S_ssc_clear_locale(regnode_ssc *ssc)
1837 /* Set the SSC 'ssc' to not match any locale things */
1838 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
1840 assert(is_ANYOF_SYNTHETIC(ssc));
1842 ANYOF_POSIXL_ZERO(ssc);
1843 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
1846 #define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
1849 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
1851 /* The synthetic start class is used to hopefully quickly winnow down
1852 * places where a pattern could start a match in the target string. If it
1853 * doesn't really narrow things down that much, there isn't much point to
1854 * having the overhead of using it. This function uses some very crude
1855 * heuristics to decide if to use the ssc or not.
1857 * It returns TRUE if 'ssc' rules out more than half what it considers to
1858 * be the "likely" possible matches, but of course it doesn't know what the
1859 * actual things being matched are going to be; these are only guesses
1861 * For /l matches, it assumes that the only likely matches are going to be
1862 * in the 0-255 range, uniformly distributed, so half of that is 127
1863 * For /a and /d matches, it assumes that the likely matches will be just
1864 * the ASCII range, so half of that is 63
1865 * For /u and there isn't anything matching above the Latin1 range, it
1866 * assumes that that is the only range likely to be matched, and uses
1867 * half that as the cut-off: 127. If anything matches above Latin1,
1868 * it assumes that all of Unicode could match (uniformly), except for
1869 * non-Unicode code points and things in the General Category "Other"
1870 * (unassigned, private use, surrogates, controls and formats). This
1871 * is a much large number. */
1873 U32 count = 0; /* Running total of number of code points matched by
1875 UV start, end; /* Start and end points of current range in inversion
1877 const U32 max_code_points = (LOC)
1879 : (( ! UNI_SEMANTICS
1880 || invlist_highest(ssc->invlist) < 256)
1883 const U32 max_match = max_code_points / 2;
1885 PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
1887 invlist_iterinit(ssc->invlist);
1888 while (invlist_iternext(ssc->invlist, &start, &end)) {
1889 if (start >= max_code_points) {
1892 end = MIN(end, max_code_points - 1);
1893 count += end - start + 1;
1894 if (count >= max_match) {
1895 invlist_iterfinish(ssc->invlist);
1905 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
1907 /* The inversion list in the SSC is marked mortal; now we need a more
1908 * permanent copy, which is stored the same way that is done in a regular
1909 * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
1912 SV* invlist = invlist_clone(ssc->invlist);
1914 PERL_ARGS_ASSERT_SSC_FINALIZE;
1916 assert(is_ANYOF_SYNTHETIC(ssc));
1918 /* The code in this file assumes that all but these flags aren't relevant
1919 * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
1920 * by the time we reach here */
1921 assert(! (ANYOF_FLAGS(ssc)
1922 & ~( ANYOF_COMMON_FLAGS
1923 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1924 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));
1926 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
1928 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
1929 NULL, NULL, NULL, FALSE);
1931 /* Make sure is clone-safe */
1932 ssc->invlist = NULL;
1934 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1935 ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
1938 if (RExC_contains_locale) {
1942 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
1945 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1946 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1947 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1948 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
1949 ? (TRIE_LIST_CUR( idx ) - 1) \
1955 dump_trie(trie,widecharmap,revcharmap)
1956 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1957 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1959 These routines dump out a trie in a somewhat readable format.
1960 The _interim_ variants are used for debugging the interim
1961 tables that are used to generate the final compressed
1962 representation which is what dump_trie expects.
1964 Part of the reason for their existence is to provide a form
1965 of documentation as to how the different representations function.
1970 Dumps the final compressed table form of the trie to Perl_debug_log.
1971 Used for debugging make_trie().
1975 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1976 AV *revcharmap, U32 depth)
1979 SV *sv=sv_newmortal();
1980 int colwidth= widecharmap ? 6 : 4;
1982 GET_RE_DEBUG_FLAGS_DECL;
1984 PERL_ARGS_ASSERT_DUMP_TRIE;
1986 Perl_re_indentf( aTHX_ "Char : %-6s%-6s%-4s ",
1987 depth+1, "Match","Base","Ofs" );
1989 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1990 SV ** const tmp = av_fetch( revcharmap, state, 0);
1992 Perl_re_printf( aTHX_ "%*s",
1994 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1995 PL_colors[0], PL_colors[1],
1996 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1997 PERL_PV_ESCAPE_FIRSTCHAR
2002 Perl_re_printf( aTHX_ "\n");
2003 Perl_re_indentf( aTHX_ "State|-----------------------", depth+1);
2005 for( state = 0 ; state < trie->uniquecharcount ; state++ )
2006 Perl_re_printf( aTHX_ "%.*s", colwidth, "--------");
2007 Perl_re_printf( aTHX_ "\n");
2009 for( state = 1 ; state < trie->statecount ; state++ ) {
2010 const U32 base = trie->states[ state ].trans.base;
2012 Perl_re_indentf( aTHX_ "#%4" UVXf "|", depth+1, (UV)state);
2014 if ( trie->states[ state ].wordnum ) {
2015 Perl_re_printf( aTHX_ " W%4X", trie->states[ state ].wordnum );
2017 Perl_re_printf( aTHX_ "%6s", "" );
2020 Perl_re_printf( aTHX_ " @%4" UVXf " ", (UV)base );
2025 while( ( base + ofs < trie->uniquecharcount ) ||
2026 ( base + ofs - trie->uniquecharcount < trie->lasttrans
2027 && trie->trans[ base + ofs - trie->uniquecharcount ].check
2031 Perl_re_printf( aTHX_ "+%2" UVXf "[ ", (UV)ofs);
2033 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2034 if ( ( base + ofs >= trie->uniquecharcount )
2035 && ( base + ofs - trie->uniquecharcount
2037 && trie->trans[ base + ofs
2038 - trie->uniquecharcount ].check == state )
2040 Perl_re_printf( aTHX_ "%*" UVXf, colwidth,
2041 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next
2044 Perl_re_printf( aTHX_ "%*s",colwidth," ." );
2048 Perl_re_printf( aTHX_ "]");
2051 Perl_re_printf( aTHX_ "\n" );
2053 Perl_re_indentf( aTHX_ "word_info N:(prev,len)=",
2055 for (word=1; word <= trie->wordcount; word++) {
2056 Perl_re_printf( aTHX_ " %d:(%d,%d)",
2057 (int)word, (int)(trie->wordinfo[word].prev),
2058 (int)(trie->wordinfo[word].len));
2060 Perl_re_printf( aTHX_ "\n" );
2063 Dumps a fully constructed but uncompressed trie in list form.
2064 List tries normally only are used for construction when the number of
2065 possible chars (trie->uniquecharcount) is very high.
2066 Used for debugging make_trie().
2069 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
2070 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2074 SV *sv=sv_newmortal();
2075 int colwidth= widecharmap ? 6 : 4;
2076 GET_RE_DEBUG_FLAGS_DECL;
2078 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
2080 /* print out the table precompression. */
2081 Perl_re_indentf( aTHX_ "State :Word | Transition Data\n",
2083 Perl_re_indentf( aTHX_ "%s",
2084 depth+1, "------:-----+-----------------\n" );
2086 for( state=1 ; state < next_alloc ; state ++ ) {
2089 Perl_re_indentf( aTHX_ " %4" UVXf " :",
2090 depth+1, (UV)state );
2091 if ( ! trie->states[ state ].wordnum ) {
2092 Perl_re_printf( aTHX_ "%5s| ","");
2094 Perl_re_printf( aTHX_ "W%4x| ",
2095 trie->states[ state ].wordnum
2098 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
2099 SV ** const tmp = av_fetch( revcharmap,
2100 TRIE_LIST_ITEM(state,charid).forid, 0);
2102 Perl_re_printf( aTHX_ "%*s:%3X=%4" UVXf " | ",
2104 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
2106 PL_colors[0], PL_colors[1],
2107 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
2108 | PERL_PV_ESCAPE_FIRSTCHAR
2110 TRIE_LIST_ITEM(state,charid).forid,
2111 (UV)TRIE_LIST_ITEM(state,charid).newstate
2114 Perl_re_printf( aTHX_ "\n%*s| ",
2115 (int)((depth * 2) + 14), "");
2118 Perl_re_printf( aTHX_ "\n");
2123 Dumps a fully constructed but uncompressed trie in table form.
2124 This is the normal DFA style state transition table, with a few
2125 twists to facilitate compression later.
2126 Used for debugging make_trie().
2129 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
2130 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2135 SV *sv=sv_newmortal();
2136 int colwidth= widecharmap ? 6 : 4;
2137 GET_RE_DEBUG_FLAGS_DECL;
2139 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
2142 print out the table precompression so that we can do a visual check
2143 that they are identical.
2146 Perl_re_indentf( aTHX_ "Char : ", depth+1 );
2148 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2149 SV ** const tmp = av_fetch( revcharmap, charid, 0);
2151 Perl_re_printf( aTHX_ "%*s",
2153 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2154 PL_colors[0], PL_colors[1],
2155 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2156 PERL_PV_ESCAPE_FIRSTCHAR
2162 Perl_re_printf( aTHX_ "\n");
2163 Perl_re_indentf( aTHX_ "State+-", depth+1 );
2165 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
2166 Perl_re_printf( aTHX_ "%.*s", colwidth,"--------");
2169 Perl_re_printf( aTHX_ "\n" );
2171 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
2173 Perl_re_indentf( aTHX_ "%4" UVXf " : ",
2175 (UV)TRIE_NODENUM( state ) );
2177 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2178 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
2180 Perl_re_printf( aTHX_ "%*" UVXf, colwidth, v );
2182 Perl_re_printf( aTHX_ "%*s", colwidth, "." );
2184 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
2185 Perl_re_printf( aTHX_ " (%4" UVXf ")\n",
2186 (UV)trie->trans[ state ].check );
2188 Perl_re_printf( aTHX_ " (%4" UVXf ") W%4X\n",
2189 (UV)trie->trans[ state ].check,
2190 trie->states[ TRIE_NODENUM( state ) ].wordnum );
2198 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
2199 startbranch: the first branch in the whole branch sequence
2200 first : start branch of sequence of branch-exact nodes.
2201 May be the same as startbranch
2202 last : Thing following the last branch.
2203 May be the same as tail.
2204 tail : item following the branch sequence
2205 count : words in the sequence
2206 flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
2207 depth : indent depth
2209 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
2211 A trie is an N'ary tree where the branches are determined by digital
2212 decomposition of the key. IE, at the root node you look up the 1st character and
2213 follow that branch repeat until you find the end of the branches. Nodes can be
2214 marked as "accepting" meaning they represent a complete word. Eg:
2218 would convert into the following structure. Numbers represent states, letters
2219 following numbers represent valid transitions on the letter from that state, if
2220 the number is in square brackets it represents an accepting state, otherwise it
2221 will be in parenthesis.
2223 +-h->+-e->[3]-+-r->(8)-+-s->[9]
2227 (1) +-i->(6)-+-s->[7]
2229 +-s->(3)-+-h->(4)-+-e->[5]
2231 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
2233 This shows that when matching against the string 'hers' we will begin at state 1
2234 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
2235 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
2236 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
2237 single traverse. We store a mapping from accepting to state to which word was
2238 matched, and then when we have multiple possibilities we try to complete the
2239 rest of the regex in the order in which they occurred in the alternation.
2241 The only prior NFA like behaviour that would be changed by the TRIE support is
2242 the silent ignoring of duplicate alternations which are of the form:
2244 / (DUPE|DUPE) X? (?{ ... }) Y /x
2246 Thus EVAL blocks following a trie may be called a different number of times with
2247 and without the optimisation. With the optimisations dupes will be silently
2248 ignored. This inconsistent behaviour of EVAL type nodes is well established as
2249 the following demonstrates:
2251 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
2253 which prints out 'word' three times, but
2255 'words'=~/(word|word|word)(?{ print $1 })S/
2257 which doesnt print it out at all. This is due to other optimisations kicking in.
2259 Example of what happens on a structural level:
2261 The regexp /(ac|ad|ab)+/ will produce the following debug output:
2263 1: CURLYM[1] {1,32767}(18)
2274 This would be optimizable with startbranch=5, first=5, last=16, tail=16
2275 and should turn into:
2277 1: CURLYM[1] {1,32767}(18)
2279 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
2287 Cases where tail != last would be like /(?foo|bar)baz/:
2297 which would be optimizable with startbranch=1, first=1, last=7, tail=8
2298 and would end up looking like:
2301 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
2308 d = uvchr_to_utf8_flags(d, uv, 0);
2310 is the recommended Unicode-aware way of saying
2315 #define TRIE_STORE_REVCHAR(val) \
2318 SV *zlopp = newSV(UTF8_MAXBYTES); \
2319 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
2320 unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
2321 SvCUR_set(zlopp, kapow - flrbbbbb); \
2324 av_push(revcharmap, zlopp); \
2326 char ooooff = (char)val; \
2327 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
2331 /* This gets the next character from the input, folding it if not already
2333 #define TRIE_READ_CHAR STMT_START { \
2336 /* if it is UTF then it is either already folded, or does not need \
2338 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
2340 else if (folder == PL_fold_latin1) { \
2341 /* This folder implies Unicode rules, which in the range expressible \
2342 * by not UTF is the lower case, with the two exceptions, one of \
2343 * which should have been taken care of before calling this */ \
2344 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
2345 uvc = toLOWER_L1(*uc); \
2346 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
2349 /* raw data, will be folded later if needed */ \
2357 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
2358 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
2359 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
2360 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2362 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
2363 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
2364 TRIE_LIST_CUR( state )++; \
2367 #define TRIE_LIST_NEW(state) STMT_START { \
2368 Newxz( trie->states[ state ].trans.list, \
2369 4, reg_trie_trans_le ); \
2370 TRIE_LIST_CUR( state ) = 1; \
2371 TRIE_LIST_LEN( state ) = 4; \
2374 #define TRIE_HANDLE_WORD(state) STMT_START { \
2375 U16 dupe= trie->states[ state ].wordnum; \
2376 regnode * const noper_next = regnext( noper ); \
2379 /* store the word for dumping */ \
2381 if (OP(noper) != NOTHING) \
2382 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
2384 tmp = newSVpvn_utf8( "", 0, UTF ); \
2385 av_push( trie_words, tmp ); \
2389 trie->wordinfo[curword].prev = 0; \
2390 trie->wordinfo[curword].len = wordlen; \
2391 trie->wordinfo[curword].accept = state; \
2393 if ( noper_next < tail ) { \
2395 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2397 trie->jump[curword] = (U16)(noper_next - convert); \
2399 jumper = noper_next; \
2401 nextbranch= regnext(cur); \
2405 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
2406 /* chain, so that when the bits of chain are later */\
2407 /* linked together, the dups appear in the chain */\
2408 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2409 trie->wordinfo[dupe].prev = curword; \
2411 /* we haven't inserted this word yet. */ \
2412 trie->states[ state ].wordnum = curword; \
2417 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
2418 ( ( base + charid >= ucharcount \
2419 && base + charid < ubound \
2420 && state == trie->trans[ base - ucharcount + charid ].check \
2421 && trie->trans[ base - ucharcount + charid ].next ) \
2422 ? trie->trans[ base - ucharcount + charid ].next \
2423 : ( state==1 ? special : 0 ) \
2426 #define TRIE_BITMAP_SET_FOLDED(trie, uvc, folder) \
2428 TRIE_BITMAP_SET(trie, uvc); \
2429 /* store the folded codepoint */ \
2431 TRIE_BITMAP_SET(trie, folder[(U8) uvc ]); \
2434 /* store first byte of utf8 representation of */ \
2435 /* variant codepoints */ \
2436 if (! UVCHR_IS_INVARIANT(uvc)) { \
2437 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc)); \
2442 #define MADE_JUMP_TRIE 2
2443 #define MADE_EXACT_TRIE 4
2446 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2447 regnode *first, regnode *last, regnode *tail,
2448 U32 word_count, U32 flags, U32 depth)
2450 /* first pass, loop through and scan words */
2451 reg_trie_data *trie;
2452 HV *widecharmap = NULL;
2453 AV *revcharmap = newAV();
2459 regnode *jumper = NULL;
2460 regnode *nextbranch = NULL;
2461 regnode *convert = NULL;
2462 U32 *prev_states; /* temp array mapping each state to previous one */
2463 /* we just use folder as a flag in utf8 */
2464 const U8 * folder = NULL;
2467 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
2468 AV *trie_words = NULL;
2469 /* along with revcharmap, this only used during construction but both are
2470 * useful during debugging so we store them in the struct when debugging.
2473 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2474 STRLEN trie_charcount=0;
2476 SV *re_trie_maxbuff;
2477 GET_RE_DEBUG_FLAGS_DECL;
2479 PERL_ARGS_ASSERT_MAKE_TRIE;
2481 PERL_UNUSED_ARG(depth);
2485 case EXACT: case EXACTL: break;
2489 case EXACTFLU8: folder = PL_fold_latin1; break;
2490 case EXACTF: folder = PL_fold; break;
2491 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2494 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2496 trie->startstate = 1;
2497 trie->wordcount = word_count;
2498 RExC_rxi->data->data[ data_slot ] = (void*)trie;
2499 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2500 if (flags == EXACT || flags == EXACTL)
2501 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2502 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2503 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2506 trie_words = newAV();
2509 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2510 assert(re_trie_maxbuff);
2511 if (!SvIOK(re_trie_maxbuff)) {
2512 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2514 DEBUG_TRIE_COMPILE_r({
2515 Perl_re_indentf( aTHX_
2516 "make_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2518 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
2519 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2522 /* Find the node we are going to overwrite */
2523 if ( first == startbranch && OP( last ) != BRANCH ) {
2524 /* whole branch chain */
2527 /* branch sub-chain */
2528 convert = NEXTOPER( first );
2531 /* -- First loop and Setup --
2533 We first traverse the branches and scan each word to determine if it
2534 contains widechars, and how many unique chars there are, this is
2535 important as we have to build a table with at least as many columns as we
2538 We use an array of integers to represent the character codes 0..255
2539 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2540 the native representation of the character value as the key and IV's for
2543 *TODO* If we keep track of how many times each character is used we can
2544 remap the columns so that the table compression later on is more
2545 efficient in terms of memory by ensuring the most common value is in the
2546 middle and the least common are on the outside. IMO this would be better
2547 than a most to least common mapping as theres a decent chance the most
2548 common letter will share a node with the least common, meaning the node
2549 will not be compressible. With a middle is most common approach the worst
2550 case is when we have the least common nodes twice.
2554 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2555 regnode *noper = NEXTOPER( cur );
2559 U32 wordlen = 0; /* required init */
2560 STRLEN minchars = 0;
2561 STRLEN maxchars = 0;
2562 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2565 if (OP(noper) == NOTHING) {
2566 /* skip past a NOTHING at the start of an alternation
2567 * eg, /(?:)a|(?:b)/ should be the same as /a|b/
2569 regnode *noper_next= regnext(noper);
2570 if (noper_next < tail)
2574 if ( noper < tail &&
2576 OP(noper) == flags ||
2579 OP(noper) == EXACTFU_SS
2583 uc= (U8*)STRING(noper);
2584 e= uc + STR_LEN(noper);
2591 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2592 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2593 regardless of encoding */
2594 if (OP( noper ) == EXACTFU_SS) {
2595 /* false positives are ok, so just set this */
2596 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2600 for ( ; uc < e ; uc += len ) { /* Look at each char in the current
2602 TRIE_CHARCOUNT(trie)++;
2605 /* TRIE_READ_CHAR returns the current character, or its fold if /i
2606 * is in effect. Under /i, this character can match itself, or
2607 * anything that folds to it. If not under /i, it can match just
2608 * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
2609 * all fold to k, and all are single characters. But some folds
2610 * expand to more than one character, so for example LATIN SMALL
2611 * LIGATURE FFI folds to the three character sequence 'ffi'. If
2612 * the string beginning at 'uc' is 'ffi', it could be matched by
2613 * three characters, or just by the one ligature character. (It
2614 * could also be matched by two characters: LATIN SMALL LIGATURE FF
2615 * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2616 * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2617 * match.) The trie needs to know the minimum and maximum number
2618 * of characters that could match so that it can use size alone to
2619 * quickly reject many match attempts. The max is simple: it is
2620 * the number of folded characters in this branch (since a fold is
2621 * never shorter than what folds to it. */
2625 /* And the min is equal to the max if not under /i (indicated by
2626 * 'folder' being NULL), or there are no multi-character folds. If
2627 * there is a multi-character fold, the min is incremented just
2628 * once, for the character that folds to the sequence. Each
2629 * character in the sequence needs to be added to the list below of
2630 * characters in the trie, but we count only the first towards the
2631 * min number of characters needed. This is done through the
2632 * variable 'foldlen', which is returned by the macros that look
2633 * for these sequences as the number of bytes the sequence
2634 * occupies. Each time through the loop, we decrement 'foldlen' by
2635 * how many bytes the current char occupies. Only when it reaches
2636 * 0 do we increment 'minchars' or look for another multi-character
2638 if (folder == NULL) {
2641 else if (foldlen > 0) {
2642 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2647 /* See if *uc is the beginning of a multi-character fold. If
2648 * so, we decrement the length remaining to look at, to account
2649 * for the current character this iteration. (We can use 'uc'
2650 * instead of the fold returned by TRIE_READ_CHAR because for
2651 * non-UTF, the latin1_safe macro is smart enough to account
2652 * for all the unfolded characters, and because for UTF, the
2653 * string will already have been folded earlier in the
2654 * compilation process */
2656 if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2657 foldlen -= UTF8SKIP(uc);
2660 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2665 /* The current character (and any potential folds) should be added
2666 * to the possible matching characters for this position in this
2670 U8 folded= folder[ (U8) uvc ];
2671 if ( !trie->charmap[ folded ] ) {
2672 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2673 TRIE_STORE_REVCHAR( folded );
2676 if ( !trie->charmap[ uvc ] ) {
2677 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2678 TRIE_STORE_REVCHAR( uvc );
2681 /* store the codepoint in the bitmap, and its folded
2683 TRIE_BITMAP_SET_FOLDED(trie, uvc, folder);
2684 set_bit = 0; /* We've done our bit :-) */
2688 /* XXX We could come up with the list of code points that fold
2689 * to this using PL_utf8_foldclosures, except not for
2690 * multi-char folds, as there may be multiple combinations
2691 * there that could work, which needs to wait until runtime to
2692 * resolve (The comment about LIGATURE FFI above is such an
2697 widecharmap = newHV();
2699 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2702 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%" UVXf, uvc );
2704 if ( !SvTRUE( *svpp ) ) {
2705 sv_setiv( *svpp, ++trie->uniquecharcount );
2706 TRIE_STORE_REVCHAR(uvc);
2709 } /* end loop through characters in this branch of the trie */
2711 /* We take the min and max for this branch and combine to find the min
2712 * and max for all branches processed so far */
2713 if( cur == first ) {
2714 trie->minlen = minchars;
2715 trie->maxlen = maxchars;
2716 } else if (minchars < trie->minlen) {
2717 trie->minlen = minchars;
2718 } else if (maxchars > trie->maxlen) {
2719 trie->maxlen = maxchars;
2721 } /* end first pass */
2722 DEBUG_TRIE_COMPILE_r(
2723 Perl_re_indentf( aTHX_
2724 "TRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2726 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2727 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2728 (int)trie->minlen, (int)trie->maxlen )
2732 We now know what we are dealing with in terms of unique chars and
2733 string sizes so we can calculate how much memory a naive
2734 representation using a flat table will take. If it's over a reasonable
2735 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2736 conservative but potentially much slower representation using an array
2739 At the end we convert both representations into the same compressed
2740 form that will be used in regexec.c for matching with. The latter
2741 is a form that cannot be used to construct with but has memory
2742 properties similar to the list form and access properties similar
2743 to the table form making it both suitable for fast searches and
2744 small enough that its feasable to store for the duration of a program.
2746 See the comment in the code where the compressed table is produced
2747 inplace from the flat tabe representation for an explanation of how
2748 the compression works.
2753 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2756 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2757 > SvIV(re_trie_maxbuff) )
2760 Second Pass -- Array Of Lists Representation
2762 Each state will be represented by a list of charid:state records
2763 (reg_trie_trans_le) the first such element holds the CUR and LEN
2764 points of the allocated array. (See defines above).
2766 We build the initial structure using the lists, and then convert
2767 it into the compressed table form which allows faster lookups
2768 (but cant be modified once converted).
2771 STRLEN transcount = 1;
2773 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using list compiler\n",
2776 trie->states = (reg_trie_state *)
2777 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2778 sizeof(reg_trie_state) );
2782 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2784 regnode *noper = NEXTOPER( cur );
2785 U32 state = 1; /* required init */
2786 U16 charid = 0; /* sanity init */
2787 U32 wordlen = 0; /* required init */
2789 if (OP(noper) == NOTHING) {
2790 regnode *noper_next= regnext(noper);
2791 if (noper_next < tail)
2795 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
2796 const U8 *uc= (U8*)STRING(noper);
2797 const U8 *e= uc + STR_LEN(noper);
2799 for ( ; uc < e ; uc += len ) {
2804 charid = trie->charmap[ uvc ];
2806 SV** const svpp = hv_fetch( widecharmap,
2813 charid=(U16)SvIV( *svpp );
2816 /* charid is now 0 if we dont know the char read, or
2817 * nonzero if we do */
2824 if ( !trie->states[ state ].trans.list ) {
2825 TRIE_LIST_NEW( state );
2828 check <= TRIE_LIST_USED( state );
2831 if ( TRIE_LIST_ITEM( state, check ).forid
2834 newstate = TRIE_LIST_ITEM( state, check ).newstate;
2839 newstate = next_alloc++;
2840 prev_states[newstate] = state;
2841 TRIE_LIST_PUSH( state, charid, newstate );
2846 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
2850 TRIE_HANDLE_WORD(state);
2852 } /* end second pass */
2854 /* next alloc is the NEXT state to be allocated */
2855 trie->statecount = next_alloc;
2856 trie->states = (reg_trie_state *)
2857 PerlMemShared_realloc( trie->states,
2859 * sizeof(reg_trie_state) );
2861 /* and now dump it out before we compress it */
2862 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
2863 revcharmap, next_alloc,
2867 trie->trans = (reg_trie_trans *)
2868 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
2875 for( state=1 ; state < next_alloc ; state ++ ) {
2879 DEBUG_TRIE_COMPILE_MORE_r(
2880 Perl_re_printf( aTHX_ "tp: %d zp: %d ",tp,zp)
2884 if (trie->states[state].trans.list) {
2885 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
2889 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2890 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
2891 if ( forid < minid ) {
2893 } else if ( forid > maxid ) {
2897 if ( transcount < tp + maxid - minid + 1) {
2899 trie->trans = (reg_trie_trans *)
2900 PerlMemShared_realloc( trie->trans,
2902 * sizeof(reg_trie_trans) );
2903 Zero( trie->trans + (transcount / 2),
2907 base = trie->uniquecharcount + tp - minid;
2908 if ( maxid == minid ) {
2910 for ( ; zp < tp ; zp++ ) {
2911 if ( ! trie->trans[ zp ].next ) {
2912 base = trie->uniquecharcount + zp - minid;
2913 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
2915 trie->trans[ zp ].check = state;
2921 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
2923 trie->trans[ tp ].check = state;
2928 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2929 const U32 tid = base
2930 - trie->uniquecharcount
2931 + TRIE_LIST_ITEM( state, idx ).forid;
2932 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
2934 trie->trans[ tid ].check = state;
2936 tp += ( maxid - minid + 1 );
2938 Safefree(trie->states[ state ].trans.list);
2941 DEBUG_TRIE_COMPILE_MORE_r(
2942 Perl_re_printf( aTHX_ " base: %d\n",base);
2945 trie->states[ state ].trans.base=base;
2947 trie->lasttrans = tp + 1;
2951 Second Pass -- Flat Table Representation.
2953 we dont use the 0 slot of either trans[] or states[] so we add 1 to
2954 each. We know that we will need Charcount+1 trans at most to store
2955 the data (one row per char at worst case) So we preallocate both
2956 structures assuming worst case.
2958 We then construct the trie using only the .next slots of the entry
2961 We use the .check field of the first entry of the node temporarily
2962 to make compression both faster and easier by keeping track of how
2963 many non zero fields are in the node.
2965 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
2968 There are two terms at use here: state as a TRIE_NODEIDX() which is
2969 a number representing the first entry of the node, and state as a
2970 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
2971 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
2972 if there are 2 entrys per node. eg:
2980 The table is internally in the right hand, idx form. However as we
2981 also have to deal with the states array which is indexed by nodenum
2982 we have to use TRIE_NODENUM() to convert.
2985 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using table compiler\n",
2988 trie->trans = (reg_trie_trans *)
2989 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
2990 * trie->uniquecharcount + 1,
2991 sizeof(reg_trie_trans) );
2992 trie->states = (reg_trie_state *)
2993 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2994 sizeof(reg_trie_state) );
2995 next_alloc = trie->uniquecharcount + 1;
2998 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
3000 regnode *noper = NEXTOPER( cur );
3002 U32 state = 1; /* required init */
3004 U16 charid = 0; /* sanity init */
3005 U32 accept_state = 0; /* sanity init */
3007 U32 wordlen = 0; /* required init */
3009 if (OP(noper) == NOTHING) {
3010 regnode *noper_next= regnext(noper);
3011 if (noper_next < tail)
3015 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
3016 const U8 *uc= (U8*)STRING(noper);
3017 const U8 *e= uc + STR_LEN(noper);
3019 for ( ; uc < e ; uc += len ) {
3024 charid = trie->charmap[ uvc ];
3026 SV* const * const svpp = hv_fetch( widecharmap,
3030 charid = svpp ? (U16)SvIV(*svpp) : 0;
3034 if ( !trie->trans[ state + charid ].next ) {
3035 trie->trans[ state + charid ].next = next_alloc;
3036 trie->trans[ state ].check++;
3037 prev_states[TRIE_NODENUM(next_alloc)]
3038 = TRIE_NODENUM(state);
3039 next_alloc += trie->uniquecharcount;
3041 state = trie->trans[ state + charid ].next;
3043 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3045 /* charid is now 0 if we dont know the char read, or
3046 * nonzero if we do */
3049 accept_state = TRIE_NODENUM( state );
3050 TRIE_HANDLE_WORD(accept_state);
3052 } /* end second pass */
3054 /* and now dump it out before we compress it */
3055 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
3057 next_alloc, depth+1));
3061 * Inplace compress the table.*
3063 For sparse data sets the table constructed by the trie algorithm will
3064 be mostly 0/FAIL transitions or to put it another way mostly empty.
3065 (Note that leaf nodes will not contain any transitions.)
3067 This algorithm compresses the tables by eliminating most such
3068 transitions, at the cost of a modest bit of extra work during lookup:
3070 - Each states[] entry contains a .base field which indicates the
3071 index in the state[] array wheres its transition data is stored.
3073 - If .base is 0 there are no valid transitions from that node.
3075 - If .base is nonzero then charid is added to it to find an entry in
3078 -If trans[states[state].base+charid].check!=state then the
3079 transition is taken to be a 0/Fail transition. Thus if there are fail
3080 transitions at the front of the node then the .base offset will point
3081 somewhere inside the previous nodes data (or maybe even into a node
3082 even earlier), but the .check field determines if the transition is
3086 The following process inplace converts the table to the compressed
3087 table: We first do not compress the root node 1,and mark all its
3088 .check pointers as 1 and set its .base pointer as 1 as well. This
3089 allows us to do a DFA construction from the compressed table later,
3090 and ensures that any .base pointers we calculate later are greater
3093 - We set 'pos' to indicate the first entry of the second node.
3095 - We then iterate over the columns of the node, finding the first and
3096 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
3097 and set the .check pointers accordingly, and advance pos
3098 appropriately and repreat for the next node. Note that when we copy
3099 the next pointers we have to convert them from the original
3100 NODEIDX form to NODENUM form as the former is not valid post
3103 - If a node has no transitions used we mark its base as 0 and do not
3104 advance the pos pointer.
3106 - If a node only has one transition we use a second pointer into the
3107 structure to fill in allocated fail transitions from other states.
3108 This pointer is independent of the main pointer and scans forward
3109 looking for null transitions that are allocated to a state. When it
3110 finds one it writes the single transition into the "hole". If the
3111 pointer doesnt find one the single transition is appended as normal.
3113 - Once compressed we can Renew/realloc the structures to release the
3116 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
3117 specifically Fig 3.47 and the associated pseudocode.
3121 const U32 laststate = TRIE_NODENUM( next_alloc );
3124 trie->statecount = laststate;
3126 for ( state = 1 ; state < laststate ; state++ ) {
3128 const U32 stateidx = TRIE_NODEIDX( state );
3129 const U32 o_used = trie->trans[ stateidx ].check;
3130 U32 used = trie->trans[ stateidx ].check;
3131 trie->trans[ stateidx ].check = 0;
3134 used && charid < trie->uniquecharcount;
3137 if ( flag || trie->trans[ stateidx + charid ].next ) {
3138 if ( trie->trans[ stateidx + charid ].next ) {
3140 for ( ; zp < pos ; zp++ ) {
3141 if ( ! trie->trans[ zp ].next ) {
3145 trie->states[ state ].trans.base
3147 + trie->uniquecharcount
3149 trie->trans[ zp ].next
3150 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
3152 trie->trans[ zp ].check = state;
3153 if ( ++zp > pos ) pos = zp;
3160 trie->states[ state ].trans.base
3161 = pos + trie->uniquecharcount - charid ;
3163 trie->trans[ pos ].next
3164 = SAFE_TRIE_NODENUM(
3165 trie->trans[ stateidx + charid ].next );
3166 trie->trans[ pos ].check = state;
3171 trie->lasttrans = pos + 1;
3172 trie->states = (reg_trie_state *)
3173 PerlMemShared_realloc( trie->states, laststate
3174 * sizeof(reg_trie_state) );
3175 DEBUG_TRIE_COMPILE_MORE_r(
3176 Perl_re_indentf( aTHX_ "Alloc: %d Orig: %" IVdf " elements, Final:%" IVdf ". Savings of %%%5.2f\n",
3178 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
3182 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
3185 } /* end table compress */
3187 DEBUG_TRIE_COMPILE_MORE_r(
3188 Perl_re_indentf( aTHX_ "Statecount:%" UVxf " Lasttrans:%" UVxf "\n",
3190 (UV)trie->statecount,
3191 (UV)trie->lasttrans)
3193 /* resize the trans array to remove unused space */
3194 trie->trans = (reg_trie_trans *)
3195 PerlMemShared_realloc( trie->trans, trie->lasttrans
3196 * sizeof(reg_trie_trans) );
3198 { /* Modify the program and insert the new TRIE node */
3199 U8 nodetype =(U8)(flags & 0xFF);
3203 regnode *optimize = NULL;
3204 #ifdef RE_TRACK_PATTERN_OFFSETS
3207 U32 mjd_nodelen = 0;
3208 #endif /* RE_TRACK_PATTERN_OFFSETS */
3209 #endif /* DEBUGGING */
3211 This means we convert either the first branch or the first Exact,
3212 depending on whether the thing following (in 'last') is a branch
3213 or not and whther first is the startbranch (ie is it a sub part of
3214 the alternation or is it the whole thing.)
3215 Assuming its a sub part we convert the EXACT otherwise we convert
3216 the whole branch sequence, including the first.
3218 /* Find the node we are going to overwrite */
3219 if ( first != startbranch || OP( last ) == BRANCH ) {
3220 /* branch sub-chain */
3221 NEXT_OFF( first ) = (U16)(last - first);
3222 #ifdef RE_TRACK_PATTERN_OFFSETS
3224 mjd_offset= Node_Offset((convert));
3225 mjd_nodelen= Node_Length((convert));
3228 /* whole branch chain */
3230 #ifdef RE_TRACK_PATTERN_OFFSETS
3233 const regnode *nop = NEXTOPER( convert );
3234 mjd_offset= Node_Offset((nop));
3235 mjd_nodelen= Node_Length((nop));
3239 Perl_re_indentf( aTHX_ "MJD offset:%" UVuf " MJD length:%" UVuf "\n",
3241 (UV)mjd_offset, (UV)mjd_nodelen)
3244 /* But first we check to see if there is a common prefix we can
3245 split out as an EXACT and put in front of the TRIE node. */
3246 trie->startstate= 1;
3247 if ( trie->bitmap && !widecharmap && !trie->jump ) {
3248 /* we want to find the first state that has more than
3249 * one transition, if that state is not the first state
3250 * then we have a common prefix which we can remove.
3253 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
3255 I32 first_ofs = -1; /* keeps track of the ofs of the first
3256 transition, -1 means none */
3258 const U32 base = trie->states[ state ].trans.base;
3260 /* does this state terminate an alternation? */
3261 if ( trie->states[state].wordnum )
3264 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
3265 if ( ( base + ofs >= trie->uniquecharcount ) &&
3266 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
3267 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
3269 if ( ++count > 1 ) {
3270 /* we have more than one transition */
3273 /* if this is the first state there is no common prefix
3274 * to extract, so we can exit */
3275 if ( state == 1 ) break;
3276 tmp = av_fetch( revcharmap, ofs, 0);
3277 ch = (U8*)SvPV_nolen_const( *tmp );
3279 /* if we are on count 2 then we need to initialize the
3280 * bitmap, and store the previous char if there was one
3283 /* clear the bitmap */
3284 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
3286 Perl_re_indentf( aTHX_ "New Start State=%" UVuf " Class: [",
3289 if (first_ofs >= 0) {
3290 SV ** const tmp = av_fetch( revcharmap, first_ofs, 0);
3291 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
3293 TRIE_BITMAP_SET_FOLDED(trie,*ch,folder);
3295 Perl_re_printf( aTHX_ "%s", (char*)ch)
3299 /* store the current firstchar in the bitmap */
3300 TRIE_BITMAP_SET_FOLDED(trie,*ch,folder);
3301 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "%s", ch));
3307 /* This state has only one transition, its transition is part
3308 * of a common prefix - we need to concatenate the char it
3309 * represents to what we have so far. */
3310 SV **tmp = av_fetch( revcharmap, first_ofs, 0);
3312 char *ch = SvPV( *tmp, len );
3314 SV *sv=sv_newmortal();
3315 Perl_re_indentf( aTHX_ "Prefix State: %" UVuf " Ofs:%" UVuf " Char='%s'\n",
3317 (UV)state, (UV)first_ofs,
3318 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
3319 PL_colors[0], PL_colors[1],
3320 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
3321 PERL_PV_ESCAPE_FIRSTCHAR
3326 OP( convert ) = nodetype;
3327 str=STRING(convert);
3330 STR_LEN(convert) += len;
3336 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "]\n"));
3341 trie->prefixlen = (state-1);
3343 regnode *n = convert+NODE_SZ_STR(convert);
3344 NEXT_OFF(convert) = NODE_SZ_STR(convert);
3345 trie->startstate = state;
3346 trie->minlen -= (state - 1);
3347 trie->maxlen -= (state - 1);
3349 /* At least the UNICOS C compiler choked on this
3350 * being argument to DEBUG_r(), so let's just have
3353 #ifdef PERL_EXT_RE_BUILD
3359 regnode *fix = convert;
3360 U32 word = trie->wordcount;
3362 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3363 while( ++fix < n ) {
3364 Set_Node_Offset_Length(fix, 0, 0);
3367 SV ** const tmp = av_fetch( trie_words, word, 0 );
3369 if ( STR_LEN(convert) <= SvCUR(*tmp) )
3370 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3372 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3380 NEXT_OFF(convert) = (U16)(tail - convert);
3381 DEBUG_r(optimize= n);
3387 if ( trie->maxlen ) {
3388 NEXT_OFF( convert ) = (U16)(tail - convert);
3389 ARG_SET( convert, data_slot );
3390 /* Store the offset to the first unabsorbed branch in
3391 jump[0], which is otherwise unused by the jump logic.
3392 We use this when dumping a trie and during optimisation. */
3394 trie->jump[0] = (U16)(nextbranch - convert);
3396 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3397 * and there is a bitmap
3398 * and the first "jump target" node we found leaves enough room
3399 * then convert the TRIE node into a TRIEC node, with the bitmap
3400 * embedded inline in the opcode - this is hypothetically faster.
3402 if ( !trie->states[trie->startstate].wordnum
3404 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3406 OP( convert ) = TRIEC;
3407 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3408 PerlMemShared_free(trie->bitmap);
3411 OP( convert ) = TRIE;
3413 /* store the type in the flags */
3414 convert->flags = nodetype;
3418 + regarglen[ OP( convert ) ];
3420 /* XXX We really should free up the resource in trie now,
3421 as we won't use them - (which resources?) dmq */
3423 /* needed for dumping*/
3424 DEBUG_r(if (optimize) {
3425 regnode *opt = convert;
3427 while ( ++opt < optimize) {
3428 Set_Node_Offset_Length(opt,0,0);
3431 Try to clean up some of the debris left after the
3434 while( optimize < jumper ) {
3435 mjd_nodelen += Node_Length((optimize));
3436 OP( optimize ) = OPTIMIZED;
3437 Set_Node_Offset_Length(optimize,0,0);
3440 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
3442 } /* end node insert */
3444 /* Finish populating the prev field of the wordinfo array. Walk back
3445 * from each accept state until we find another accept state, and if
3446 * so, point the first word's .prev field at the second word. If the
3447 * second already has a .prev field set, stop now. This will be the
3448 * case either if we've already processed that word's accept state,
3449 * or that state had multiple words, and the overspill words were
3450 * already linked up earlier.
3457 for (word=1; word <= trie->wordcount; word++) {
3459 if (trie->wordinfo[word].prev)
3461 state = trie->wordinfo[word].accept;
3463 state = prev_states[state];
3466 prev = trie->states[state].wordnum;
3470 trie->wordinfo[word].prev = prev;
3472 Safefree(prev_states);
3476 /* and now dump out the compressed format */
3477 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3479 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3481 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3482 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3484 SvREFCNT_dec_NN(revcharmap);
3488 : trie->startstate>1
3494 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3496 /* The Trie is constructed and compressed now so we can build a fail array if
3499 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3501 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3505 We find the fail state for each state in the trie, this state is the longest
3506 proper suffix of the current state's 'word' that is also a proper prefix of
3507 another word in our trie. State 1 represents the word '' and is thus the
3508 default fail state. This allows the DFA not to have to restart after its
3509 tried and failed a word at a given point, it simply continues as though it
3510 had been matching the other word in the first place.
3512 'abcdgu'=~/abcdefg|cdgu/
3513 When we get to 'd' we are still matching the first word, we would encounter
3514 'g' which would fail, which would bring us to the state representing 'd' in
3515 the second word where we would try 'g' and succeed, proceeding to match
3518 /* add a fail transition */
3519 const U32 trie_offset = ARG(source);
3520 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3522 const U32 ucharcount = trie->uniquecharcount;
3523 const U32 numstates = trie->statecount;
3524 const U32 ubound = trie->lasttrans + ucharcount;
3528 U32 base = trie->states[ 1 ].trans.base;
3531 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3533 GET_RE_DEBUG_FLAGS_DECL;
3535 PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3536 PERL_UNUSED_CONTEXT;
3538 PERL_UNUSED_ARG(depth);
3541 if ( OP(source) == TRIE ) {
3542 struct regnode_1 *op = (struct regnode_1 *)
3543 PerlMemShared_calloc(1, sizeof(struct regnode_1));
3544 StructCopy(source,op,struct regnode_1);
3545 stclass = (regnode *)op;
3547 struct regnode_charclass *op = (struct regnode_charclass *)
3548 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3549 StructCopy(source,op,struct regnode_charclass);
3550 stclass = (regnode *)op;
3552 OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3554 ARG_SET( stclass, data_slot );
3555 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3556 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3557 aho->trie=trie_offset;
3558 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3559 Copy( trie->states, aho->states, numstates, reg_trie_state );
3560 Newxz( q, numstates, U32);
3561 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3564 /* initialize fail[0..1] to be 1 so that we always have
3565 a valid final fail state */
3566 fail[ 0 ] = fail[ 1 ] = 1;
3568 for ( charid = 0; charid < ucharcount ; charid++ ) {
3569 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3571 q[ q_write ] = newstate;
3572 /* set to point at the root */
3573 fail[ q[ q_write++ ] ]=1;
3576 while ( q_read < q_write) {
3577 const U32 cur = q[ q_read++ % numstates ];
3578 base = trie->states[ cur ].trans.base;
3580 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3581 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3583 U32 fail_state = cur;
3586 fail_state = fail[ fail_state ];
3587 fail_base = aho->states[ fail_state ].trans.base;
3588 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3590 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3591 fail[ ch_state ] = fail_state;
3592 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3594 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3596 q[ q_write++ % numstates] = ch_state;
3600 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3601 when we fail in state 1, this allows us to use the
3602 charclass scan to find a valid start char. This is based on the principle
3603 that theres a good chance the string being searched contains lots of stuff
3604 that cant be a start char.
3606 fail[ 0 ] = fail[ 1 ] = 0;
3607 DEBUG_TRIE_COMPILE_r({
3608 Perl_re_indentf( aTHX_ "Stclass Failtable (%" UVuf " states): 0",
3609 depth, (UV)numstates
3611 for( q_read=1; q_read<numstates; q_read++ ) {
3612 Perl_re_printf( aTHX_ ", %" UVuf, (UV)fail[q_read]);
3614 Perl_re_printf( aTHX_ "\n");
3617 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3622 #define DEBUG_PEEP(str,scan,depth) \
3623 DEBUG_OPTIMISE_r({if (scan){ \
3624 regnode *Next = regnext(scan); \
3625 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);\
3626 Perl_re_indentf( aTHX_ "" str ">%3d: %s (%d)", \
3627 depth, REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
3628 Next ? (REG_NODE_NUM(Next)) : 0 );\
3629 DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
3630 Perl_re_printf( aTHX_ "\n"); \
3633 /* The below joins as many adjacent EXACTish nodes as possible into a single
3634 * one. The regop may be changed if the node(s) contain certain sequences that
3635 * require special handling. The joining is only done if:
3636 * 1) there is room in the current conglomerated node to entirely contain the
3638 * 2) they are the exact same node type
3640 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3641 * these get optimized out
3643 * XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
3644 * as possible, even if that means splitting an existing node so that its first
3645 * part is moved to the preceeding node. This would maximise the efficiency of
3646 * memEQ during matching. Elsewhere in this file, khw proposes splitting
3647 * EXACTFish nodes into portions that don't change under folding vs those that
3648 * do. Those portions that don't change may be the only things in the pattern that
3649 * could be used to find fixed and floating strings.
3651 * If a node is to match under /i (folded), the number of characters it matches
3652 * can be different than its character length if it contains a multi-character
3653 * fold. *min_subtract is set to the total delta number of characters of the
3656 * And *unfolded_multi_char is set to indicate whether or not the node contains
3657 * an unfolded multi-char fold. This happens when whether the fold is valid or
3658 * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
3659 * SMALL LETTER SHARP S, as only if the target string being matched against
3660 * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
3661 * folding rules depend on the locale in force at runtime. (Multi-char folds
3662 * whose components are all above the Latin1 range are not run-time locale
3663 * dependent, and have already been folded by the time this function is
3666 * This is as good a place as any to discuss the design of handling these
3667 * multi-character fold sequences. It's been wrong in Perl for a very long
3668 * time. There are three code points in Unicode whose multi-character folds
3669 * were long ago discovered to mess things up. The previous designs for
3670 * dealing with these involved assigning a special node for them. This
3671 * approach doesn't always work, as evidenced by this example:
3672 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3673 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3674 * would match just the \xDF, it won't be able to handle the case where a
3675 * successful match would have to cross the node's boundary. The new approach
3676 * that hopefully generally solves the problem generates an EXACTFU_SS node
3677 * that is "sss" in this case.
3679 * It turns out that there are problems with all multi-character folds, and not
3680 * just these three. Now the code is general, for all such cases. The
3681 * approach taken is:
3682 * 1) This routine examines each EXACTFish node that could contain multi-
3683 * character folded sequences. Since a single character can fold into
3684 * such a sequence, the minimum match length for this node is less than
3685 * the number of characters in the node. This routine returns in
3686 * *min_subtract how many characters to subtract from the the actual
3687 * length of the string to get a real minimum match length; it is 0 if
3688 * there are no multi-char foldeds. This delta is used by the caller to
3689 * adjust the min length of the match, and the delta between min and max,
3690 * so that the optimizer doesn't reject these possibilities based on size
3692 * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
3693 * is used for an EXACTFU node that contains at least one "ss" sequence in
3694 * it. For non-UTF-8 patterns and strings, this is the only case where
3695 * there is a possible fold length change. That means that a regular
3696 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
3697 * with length changes, and so can be processed faster. regexec.c takes
3698 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
3699 * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
3700 * known until runtime). This saves effort in regex matching. However,
3701 * the pre-folding isn't done for non-UTF8 patterns because the fold of
3702 * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
3703 * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
3704 * again, EXACTFL) nodes fold to isn't known until runtime. The fold
3705 * possibilities for the non-UTF8 patterns are quite simple, except for
3706 * the sharp s. All the ones that don't involve a UTF-8 target string are
3707 * members of a fold-pair, and arrays are set up for all of them so that
3708 * the other member of the pair can be found quickly. Code elsewhere in
3709 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
3710 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
3711 * described in the next item.
3712 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3713 * validity of the fold won't be known until runtime, and so must remain
3714 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFA
3715 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3716 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3717 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3718 * The reason this is a problem is that the optimizer part of regexec.c
3719 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3720 * that a character in the pattern corresponds to at most a single
3721 * character in the target string. (And I do mean character, and not byte
3722 * here, unlike other parts of the documentation that have never been
3723 * updated to account for multibyte Unicode.) sharp s in EXACTF and
3724 * EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
3725 * it can match "\x{17F}\x{17F}". These, along with other ones in EXACTFL
3726 * nodes, violate the assumption, and they are the only instances where it
3727 * is violated. I'm reluctant to try to change the assumption, as the
3728 * code involved is impenetrable to me (khw), so instead the code here
3729 * punts. This routine examines EXACTFL nodes, and (when the pattern
3730 * isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
3731 * boolean indicating whether or not the node contains such a fold. When
3732 * it is true, the caller sets a flag that later causes the optimizer in
3733 * this file to not set values for the floating and fixed string lengths,
3734 * and thus avoids the optimizer code in regexec.c that makes the invalid
3735 * assumption. Thus, there is no optimization based on string lengths for
3736 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3737 * EXACTF and EXACTFA nodes that contain the sharp s. (The reason the
3738 * assumption is wrong only in these cases is that all other non-UTF-8
3739 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
3740 * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
3741 * EXACTF nodes because we don't know at compile time if it actually
3742 * matches 'ss' or not. For EXACTF nodes it will match iff the target
3743 * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
3744 * always matches; and EXACTFA where it never does. In an EXACTFA node in
3745 * a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
3746 * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
3747 * string would require the pattern to be forced into UTF-8, the overhead
3748 * of which we want to avoid. Similarly the unfolded multi-char folds in
3749 * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
3752 * Similarly, the code that generates tries doesn't currently handle
3753 * not-already-folded multi-char folds, and it looks like a pain to change
3754 * that. Therefore, trie generation of EXACTFA nodes with the sharp s
3755 * doesn't work. Instead, such an EXACTFA is turned into a new regnode,
3756 * EXACTFA_NO_TRIE, which the trie code knows not to handle. Most people
3757 * using /iaa matching will be doing so almost entirely with ASCII
3758 * strings, so this should rarely be encountered in practice */
3760 #define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
3761 if (PL_regkind[OP(scan)] == EXACT) \
3762 join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
3765 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
3766 UV *min_subtract, bool *unfolded_multi_char,
3767 U32 flags,regnode *val, U32 depth)
3769 /* Merge several consecutive EXACTish nodes into one. */
3770 regnode *n = regnext(scan);
3772 regnode *next = scan + NODE_SZ_STR(scan);
3776 regnode *stop = scan;
3777 GET_RE_DEBUG_FLAGS_DECL;
3779 PERL_UNUSED_ARG(depth);
3782 PERL_ARGS_ASSERT_JOIN_EXACT;
3783 #ifndef EXPERIMENTAL_INPLACESCAN
3784 PERL_UNUSED_ARG(flags);
3785 PERL_UNUSED_ARG(val);
3787 DEBUG_PEEP("join",scan,depth);
3789 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
3790 * EXACT ones that are mergeable to the current one. */
3792 && (PL_regkind[OP(n)] == NOTHING
3793 || (stringok && OP(n) == OP(scan)))
3795 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
3798 if (OP(n) == TAIL || n > next)
3800 if (PL_regkind[OP(n)] == NOTHING) {
3801 DEBUG_PEEP("skip:",n,depth);
3802 NEXT_OFF(scan) += NEXT_OFF(n);
3803 next = n + NODE_STEP_REGNODE;
3810 else if (stringok) {
3811 const unsigned int oldl = STR_LEN(scan);
3812 regnode * const nnext = regnext(n);
3814 /* XXX I (khw) kind of doubt that this works on platforms (should
3815 * Perl ever run on one) where U8_MAX is above 255 because of lots
3816 * of other assumptions */
3817 /* Don't join if the sum can't fit into a single node */
3818 if (oldl + STR_LEN(n) > U8_MAX)
3821 DEBUG_PEEP("merg",n,depth);
3824 NEXT_OFF(scan) += NEXT_OFF(n);
3825 STR_LEN(scan) += STR_LEN(n);
3826 next = n + NODE_SZ_STR(n);
3827 /* Now we can overwrite *n : */
3828 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
3836 #ifdef EXPERIMENTAL_INPLACESCAN
3837 if (flags && !NEXT_OFF(n)) {
3838 DEBUG_PEEP("atch", val, depth);
3839 if (reg_off_by_arg[OP(n)]) {
3840 ARG_SET(n, val - n);
3843 NEXT_OFF(n) = val - n;
3851 *unfolded_multi_char = FALSE;
3853 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
3854 * can now analyze for sequences of problematic code points. (Prior to
3855 * this final joining, sequences could have been split over boundaries, and
3856 * hence missed). The sequences only happen in folding, hence for any
3857 * non-EXACT EXACTish node */
3858 if (OP(scan) != EXACT && OP(scan) != EXACTL) {
3859 U8* s0 = (U8*) STRING(scan);
3861 U8* s_end = s0 + STR_LEN(scan);
3863 int total_count_delta = 0; /* Total delta number of characters that
3864 multi-char folds expand to */
3866 /* One pass is made over the node's string looking for all the
3867 * possibilities. To avoid some tests in the loop, there are two main
3868 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
3873 if (OP(scan) == EXACTFL) {
3876 /* An EXACTFL node would already have been changed to another
3877 * node type unless there is at least one character in it that
3878 * is problematic; likely a character whose fold definition
3879 * won't be known until runtime, and so has yet to be folded.
3880 * For all but the UTF-8 locale, folds are 1-1 in length, but
3881 * to handle the UTF-8 case, we need to create a temporary
3882 * folded copy using UTF-8 locale rules in order to analyze it.
3883 * This is because our macros that look to see if a sequence is
3884 * a multi-char fold assume everything is folded (otherwise the
3885 * tests in those macros would be too complicated and slow).
3886 * Note that here, the non-problematic folds will have already
3887 * been done, so we can just copy such characters. We actually
3888 * don't completely fold the EXACTFL string. We skip the
3889 * unfolded multi-char folds, as that would just create work
3890 * below to figure out the size they already are */
3892 Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
3895 STRLEN s_len = UTF8SKIP(s);
3896 if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
3897 Copy(s, d, s_len, U8);
3900 else if (is_FOLDS_TO_MULTI_utf8(s)) {
3901 *unfolded_multi_char = TRUE;
3902 Copy(s, d, s_len, U8);
3905 else if (isASCII(*s)) {
3906 *(d++) = toFOLD(*s);
3910 _toFOLD_utf8_flags(s, s_end, d, &len, FOLD_FLAGS_FULL);
3916 /* Point the remainder of the routine to look at our temporary
3920 } /* End of creating folded copy of EXACTFL string */
3922 /* Examine the string for a multi-character fold sequence. UTF-8
3923 * patterns have all characters pre-folded by the time this code is
3925 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
3926 length sequence we are looking for is 2 */
3928 int count = 0; /* How many characters in a multi-char fold */
3929 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
3930 if (! len) { /* Not a multi-char fold: get next char */
3935 /* Nodes with 'ss' require special handling, except for
3936 * EXACTFA-ish for which there is no multi-char fold to this */
3937 if (len == 2 && *s == 's' && *(s+1) == 's'
3938 && OP(scan) != EXACTFA
3939 && OP(scan) != EXACTFA_NO_TRIE)
3942 if (OP(scan) != EXACTFL) {
3943 OP(scan) = EXACTFU_SS;
3947 else { /* Here is a generic multi-char fold. */
3948 U8* multi_end = s + len;
3950 /* Count how many characters are in it. In the case of
3951 * /aa, no folds which contain ASCII code points are
3952 * allowed, so check for those, and skip if found. */
3953 if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
3954 count = utf8_length(s, multi_end);
3958 while (s < multi_end) {
3961 goto next_iteration;
3971 /* The delta is how long the sequence is minus 1 (1 is how long
3972 * the character that folds to the sequence is) */
3973 total_count_delta += count - 1;
3977 /* We created a temporary folded copy of the string in EXACTFL
3978 * nodes. Therefore we need to be sure it doesn't go below zero,