5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 extern const struct regexp_engine my_reg_engine;
89 #include "dquote_static.c"
90 #include "charclass_invlists.h"
91 #include "inline_invlist.c"
92 #include "unicode_constants.h"
94 #define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
96 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
103 # if defined(BUGGY_MSC6)
104 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
105 # pragma optimize("a",off)
106 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
107 # pragma optimize("w",on )
108 # endif /* BUGGY_MSC6 */
112 #define STATIC static
116 typedef struct RExC_state_t {
117 U32 flags; /* RXf_* are we folding, multilining? */
118 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
119 char *precomp; /* uncompiled string. */
120 REGEXP *rx_sv; /* The SV that is the regexp. */
121 regexp *rx; /* perl core regexp structure */
122 regexp_internal *rxi; /* internal data for regexp object pprivate field */
123 char *start; /* Start of input for compile */
124 char *end; /* End of input for compile */
125 char *parse; /* Input-scan pointer. */
126 I32 whilem_seen; /* number of WHILEM in this expr */
127 regnode *emit_start; /* Start of emitted-code area */
128 regnode *emit_bound; /* First regnode outside of the allocated space */
129 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
130 I32 naughty; /* How bad is this pattern? */
131 I32 sawback; /* Did we see \1, ...? */
133 I32 size; /* Code size. */
134 I32 npar; /* Capture buffer count, (OPEN). */
135 I32 cpar; /* Capture buffer count, (CLOSE). */
136 I32 nestroot; /* root parens we are in - used by accept */
139 regnode **open_parens; /* pointers to open parens */
140 regnode **close_parens; /* pointers to close parens */
141 regnode *opend; /* END node in program */
142 I32 utf8; /* whether the pattern is utf8 or not */
143 I32 orig_utf8; /* whether the pattern was originally in utf8 */
144 /* XXX use this for future optimisation of case
145 * where pattern must be upgraded to utf8. */
146 I32 uni_semantics; /* If a d charset modifier should use unicode
147 rules, even if the pattern is not in
149 HV *paren_names; /* Paren names */
151 regnode **recurse; /* Recurse regops */
152 I32 recurse_count; /* Number of recurse regops */
155 I32 override_recoding;
156 I32 in_multi_char_class;
157 struct reg_code_block *code_blocks; /* positions of literal (?{})
159 int num_code_blocks; /* size of code_blocks[] */
160 int code_index; /* next code_blocks[] slot */
162 char *starttry; /* -Dr: where regtry was called. */
163 #define RExC_starttry (pRExC_state->starttry)
165 SV *runtime_code_qr; /* qr with the runtime code blocks */
167 const char *lastparse;
169 AV *paren_name_list; /* idx -> name */
170 #define RExC_lastparse (pRExC_state->lastparse)
171 #define RExC_lastnum (pRExC_state->lastnum)
172 #define RExC_paren_name_list (pRExC_state->paren_name_list)
176 #define RExC_flags (pRExC_state->flags)
177 #define RExC_pm_flags (pRExC_state->pm_flags)
178 #define RExC_precomp (pRExC_state->precomp)
179 #define RExC_rx_sv (pRExC_state->rx_sv)
180 #define RExC_rx (pRExC_state->rx)
181 #define RExC_rxi (pRExC_state->rxi)
182 #define RExC_start (pRExC_state->start)
183 #define RExC_end (pRExC_state->end)
184 #define RExC_parse (pRExC_state->parse)
185 #define RExC_whilem_seen (pRExC_state->whilem_seen)
186 #ifdef RE_TRACK_PATTERN_OFFSETS
187 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
189 #define RExC_emit (pRExC_state->emit)
190 #define RExC_emit_start (pRExC_state->emit_start)
191 #define RExC_emit_bound (pRExC_state->emit_bound)
192 #define RExC_naughty (pRExC_state->naughty)
193 #define RExC_sawback (pRExC_state->sawback)
194 #define RExC_seen (pRExC_state->seen)
195 #define RExC_size (pRExC_state->size)
196 #define RExC_npar (pRExC_state->npar)
197 #define RExC_nestroot (pRExC_state->nestroot)
198 #define RExC_extralen (pRExC_state->extralen)
199 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
200 #define RExC_utf8 (pRExC_state->utf8)
201 #define RExC_uni_semantics (pRExC_state->uni_semantics)
202 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
203 #define RExC_open_parens (pRExC_state->open_parens)
204 #define RExC_close_parens (pRExC_state->close_parens)
205 #define RExC_opend (pRExC_state->opend)
206 #define RExC_paren_names (pRExC_state->paren_names)
207 #define RExC_recurse (pRExC_state->recurse)
208 #define RExC_recurse_count (pRExC_state->recurse_count)
209 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
210 #define RExC_contains_locale (pRExC_state->contains_locale)
211 #define RExC_override_recoding (pRExC_state->override_recoding)
212 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
215 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
216 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
217 ((*s) == '{' && regcurly(s)))
220 #undef SPSTART /* dratted cpp namespace... */
223 * Flags to be passed up and down.
225 #define WORST 0 /* Worst case. */
226 #define HASWIDTH 0x01 /* Known to match non-null strings. */
228 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
229 * character. (There needs to be a case: in the switch statement in regexec.c
230 * for any node marked SIMPLE.) Note that this is not the same thing as
233 #define SPSTART 0x04 /* Starts with * or + */
234 #define TRYAGAIN 0x08 /* Weeded out a declaration. */
235 #define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
237 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
239 /* whether trie related optimizations are enabled */
240 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
241 #define TRIE_STUDY_OPT
242 #define FULL_TRIE_STUDY
248 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
249 #define PBITVAL(paren) (1 << ((paren) & 7))
250 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
251 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
252 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
254 /* If not already in utf8, do a longjmp back to the beginning */
255 #define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
256 #define REQUIRE_UTF8 STMT_START { \
257 if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
260 /* This converts the named class defined in regcomp.h to its equivalent class
261 * number defined in handy.h. */
262 #define namedclass_to_classnum(class) ((int) ((class) / 2))
263 #define classnum_to_namedclass(classnum) ((classnum) * 2)
265 /* About scan_data_t.
267 During optimisation we recurse through the regexp program performing
268 various inplace (keyhole style) optimisations. In addition study_chunk
269 and scan_commit populate this data structure with information about
270 what strings MUST appear in the pattern. We look for the longest
271 string that must appear at a fixed location, and we look for the
272 longest string that may appear at a floating location. So for instance
277 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
278 strings (because they follow a .* construct). study_chunk will identify
279 both FOO and BAR as being the longest fixed and floating strings respectively.
281 The strings can be composites, for instance
285 will result in a composite fixed substring 'foo'.
287 For each string some basic information is maintained:
289 - offset or min_offset
290 This is the position the string must appear at, or not before.
291 It also implicitly (when combined with minlenp) tells us how many
292 characters must match before the string we are searching for.
293 Likewise when combined with minlenp and the length of the string it
294 tells us how many characters must appear after the string we have
298 Only used for floating strings. This is the rightmost point that
299 the string can appear at. If set to I32 max it indicates that the
300 string can occur infinitely far to the right.
303 A pointer to the minimum number of characters of the pattern that the
304 string was found inside. This is important as in the case of positive
305 lookahead or positive lookbehind we can have multiple patterns
310 The minimum length of the pattern overall is 3, the minimum length
311 of the lookahead part is 3, but the minimum length of the part that
312 will actually match is 1. So 'FOO's minimum length is 3, but the
313 minimum length for the F is 1. This is important as the minimum length
314 is used to determine offsets in front of and behind the string being
315 looked for. Since strings can be composites this is the length of the
316 pattern at the time it was committed with a scan_commit. Note that
317 the length is calculated by study_chunk, so that the minimum lengths
318 are not known until the full pattern has been compiled, thus the
319 pointer to the value.
323 In the case of lookbehind the string being searched for can be
324 offset past the start point of the final matching string.
325 If this value was just blithely removed from the min_offset it would
326 invalidate some of the calculations for how many chars must match
327 before or after (as they are derived from min_offset and minlen and
328 the length of the string being searched for).
329 When the final pattern is compiled and the data is moved from the
330 scan_data_t structure into the regexp structure the information
331 about lookbehind is factored in, with the information that would
332 have been lost precalculated in the end_shift field for the
335 The fields pos_min and pos_delta are used to store the minimum offset
336 and the delta to the maximum offset at the current point in the pattern.
340 typedef struct scan_data_t {
341 /*I32 len_min; unused */
342 /*I32 len_delta; unused */
346 I32 last_end; /* min value, <0 unless valid. */
349 SV **longest; /* Either &l_fixed, or &l_float. */
350 SV *longest_fixed; /* longest fixed string found in pattern */
351 I32 offset_fixed; /* offset where it starts */
352 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
353 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
354 SV *longest_float; /* longest floating string found in pattern */
355 I32 offset_float_min; /* earliest point in string it can appear */
356 I32 offset_float_max; /* latest point in string it can appear */
357 I32 *minlen_float; /* pointer to the minlen relevant to the string */
358 I32 lookbehind_float; /* is the position of the string modified by LB */
362 struct regnode_charclass_class *start_class;
366 * Forward declarations for pregcomp()'s friends.
369 static const scan_data_t zero_scan_data =
370 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
372 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
373 #define SF_BEFORE_SEOL 0x0001
374 #define SF_BEFORE_MEOL 0x0002
375 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
376 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
379 # define SF_FIX_SHIFT_EOL (0+2)
380 # define SF_FL_SHIFT_EOL (0+4)
382 # define SF_FIX_SHIFT_EOL (+2)
383 # define SF_FL_SHIFT_EOL (+4)
386 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
387 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
389 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
390 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
391 #define SF_IS_INF 0x0040
392 #define SF_HAS_PAR 0x0080
393 #define SF_IN_PAR 0x0100
394 #define SF_HAS_EVAL 0x0200
395 #define SCF_DO_SUBSTR 0x0400
396 #define SCF_DO_STCLASS_AND 0x0800
397 #define SCF_DO_STCLASS_OR 0x1000
398 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
399 #define SCF_WHILEM_VISITED_POS 0x2000
401 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
402 #define SCF_SEEN_ACCEPT 0x8000
404 #define UTF cBOOL(RExC_utf8)
406 /* The enums for all these are ordered so things work out correctly */
407 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
408 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
409 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
410 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
411 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
412 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
413 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
415 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
417 #define OOB_NAMEDCLASS -1
419 /* There is no code point that is out-of-bounds, so this is problematic. But
420 * its only current use is to initialize a variable that is always set before
422 #define OOB_UNICODE 0xDEADBEEF
424 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
425 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
428 /* length of regex to show in messages that don't mark a position within */
429 #define RegexLengthToShowInErrorMessages 127
432 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
433 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
434 * op/pragma/warn/regcomp.
436 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
437 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
439 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
442 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
443 * arg. Show regex, up to a maximum length. If it's too long, chop and add
446 #define _FAIL(code) STMT_START { \
447 const char *ellipses = ""; \
448 IV len = RExC_end - RExC_precomp; \
451 SAVEFREESV(RExC_rx_sv); \
452 if (len > RegexLengthToShowInErrorMessages) { \
453 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
454 len = RegexLengthToShowInErrorMessages - 10; \
460 #define FAIL(msg) _FAIL( \
461 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
462 msg, (int)len, RExC_precomp, ellipses))
464 #define FAIL2(msg,arg) _FAIL( \
465 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
466 arg, (int)len, RExC_precomp, ellipses))
469 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
471 #define Simple_vFAIL(m) STMT_START { \
472 const IV offset = RExC_parse - RExC_precomp; \
473 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
474 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
478 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
480 #define vFAIL(m) STMT_START { \
482 SAVEFREESV(RExC_rx_sv); \
487 * Like Simple_vFAIL(), but accepts two arguments.
489 #define Simple_vFAIL2(m,a1) STMT_START { \
490 const IV offset = RExC_parse - RExC_precomp; \
491 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
492 (int)offset, RExC_precomp, RExC_precomp + offset); \
496 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
498 #define vFAIL2(m,a1) STMT_START { \
500 SAVEFREESV(RExC_rx_sv); \
501 Simple_vFAIL2(m, a1); \
506 * Like Simple_vFAIL(), but accepts three arguments.
508 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
509 const IV offset = RExC_parse - RExC_precomp; \
510 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
511 (int)offset, RExC_precomp, RExC_precomp + offset); \
515 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
517 #define vFAIL3(m,a1,a2) STMT_START { \
519 SAVEFREESV(RExC_rx_sv); \
520 Simple_vFAIL3(m, a1, a2); \
524 * Like Simple_vFAIL(), but accepts four arguments.
526 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
527 const IV offset = RExC_parse - RExC_precomp; \
528 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
529 (int)offset, RExC_precomp, RExC_precomp + offset); \
532 #define ckWARNreg(loc,m) STMT_START { \
533 const IV offset = loc - RExC_precomp; \
534 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
535 (int)offset, RExC_precomp, RExC_precomp + offset); \
538 #define ckWARNregdep(loc,m) STMT_START { \
539 const IV offset = loc - RExC_precomp; \
540 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
542 (int)offset, RExC_precomp, RExC_precomp + offset); \
545 #define ckWARN2regdep(loc,m, a1) STMT_START { \
546 const IV offset = loc - RExC_precomp; \
547 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
549 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
552 #define ckWARN2reg(loc, m, a1) STMT_START { \
553 const IV offset = loc - RExC_precomp; \
554 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
555 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
558 #define vWARN3(loc, m, a1, a2) STMT_START { \
559 const IV offset = loc - RExC_precomp; \
560 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
561 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
564 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
565 const IV offset = loc - RExC_precomp; \
566 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
567 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
570 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
571 const IV offset = loc - RExC_precomp; \
572 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
573 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
576 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
577 const IV offset = loc - RExC_precomp; \
578 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
579 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
582 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
583 const IV offset = loc - RExC_precomp; \
584 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
585 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
589 /* Allow for side effects in s */
590 #define REGC(c,s) STMT_START { \
591 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
594 /* Macros for recording node offsets. 20001227 mjd@plover.com
595 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
596 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
597 * Element 0 holds the number n.
598 * Position is 1 indexed.
600 #ifndef RE_TRACK_PATTERN_OFFSETS
601 #define Set_Node_Offset_To_R(node,byte)
602 #define Set_Node_Offset(node,byte)
603 #define Set_Cur_Node_Offset
604 #define Set_Node_Length_To_R(node,len)
605 #define Set_Node_Length(node,len)
606 #define Set_Node_Cur_Length(node)
607 #define Node_Offset(n)
608 #define Node_Length(n)
609 #define Set_Node_Offset_Length(node,offset,len)
610 #define ProgLen(ri) ri->u.proglen
611 #define SetProgLen(ri,x) ri->u.proglen = x
613 #define ProgLen(ri) ri->u.offsets[0]
614 #define SetProgLen(ri,x) ri->u.offsets[0] = x
615 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
617 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
618 __LINE__, (int)(node), (int)(byte))); \
620 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
622 RExC_offsets[2*(node)-1] = (byte); \
627 #define Set_Node_Offset(node,byte) \
628 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
629 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
631 #define Set_Node_Length_To_R(node,len) STMT_START { \
633 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
634 __LINE__, (int)(node), (int)(len))); \
636 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
638 RExC_offsets[2*(node)] = (len); \
643 #define Set_Node_Length(node,len) \
644 Set_Node_Length_To_R((node)-RExC_emit_start, len)
645 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
646 #define Set_Node_Cur_Length(node) \
647 Set_Node_Length(node, RExC_parse - parse_start)
649 /* Get offsets and lengths */
650 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
651 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
653 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
654 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
655 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
659 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
660 #define EXPERIMENTAL_INPLACESCAN
661 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
663 #define DEBUG_STUDYDATA(str,data,depth) \
664 DEBUG_OPTIMISE_MORE_r(if(data){ \
665 PerlIO_printf(Perl_debug_log, \
666 "%*s" str "Pos:%"IVdf"/%"IVdf \
667 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
668 (int)(depth)*2, "", \
669 (IV)((data)->pos_min), \
670 (IV)((data)->pos_delta), \
671 (UV)((data)->flags), \
672 (IV)((data)->whilem_c), \
673 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
674 is_inf ? "INF " : "" \
676 if ((data)->last_found) \
677 PerlIO_printf(Perl_debug_log, \
678 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
679 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
680 SvPVX_const((data)->last_found), \
681 (IV)((data)->last_end), \
682 (IV)((data)->last_start_min), \
683 (IV)((data)->last_start_max), \
684 ((data)->longest && \
685 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
686 SvPVX_const((data)->longest_fixed), \
687 (IV)((data)->offset_fixed), \
688 ((data)->longest && \
689 (data)->longest==&((data)->longest_float)) ? "*" : "", \
690 SvPVX_const((data)->longest_float), \
691 (IV)((data)->offset_float_min), \
692 (IV)((data)->offset_float_max) \
694 PerlIO_printf(Perl_debug_log,"\n"); \
697 /* Mark that we cannot extend a found fixed substring at this point.
698 Update the longest found anchored substring and the longest found
699 floating substrings if needed. */
702 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
704 const STRLEN l = CHR_SVLEN(data->last_found);
705 const STRLEN old_l = CHR_SVLEN(*data->longest);
706 GET_RE_DEBUG_FLAGS_DECL;
708 PERL_ARGS_ASSERT_SCAN_COMMIT;
710 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
711 SvSetMagicSV(*data->longest, data->last_found);
712 if (*data->longest == data->longest_fixed) {
713 data->offset_fixed = l ? data->last_start_min : data->pos_min;
714 if (data->flags & SF_BEFORE_EOL)
716 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
718 data->flags &= ~SF_FIX_BEFORE_EOL;
719 data->minlen_fixed=minlenp;
720 data->lookbehind_fixed=0;
722 else { /* *data->longest == data->longest_float */
723 data->offset_float_min = l ? data->last_start_min : data->pos_min;
724 data->offset_float_max = (l
725 ? data->last_start_max
726 : data->pos_min + data->pos_delta);
727 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
728 data->offset_float_max = I32_MAX;
729 if (data->flags & SF_BEFORE_EOL)
731 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
733 data->flags &= ~SF_FL_BEFORE_EOL;
734 data->minlen_float=minlenp;
735 data->lookbehind_float=0;
738 SvCUR_set(data->last_found, 0);
740 SV * const sv = data->last_found;
741 if (SvUTF8(sv) && SvMAGICAL(sv)) {
742 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
748 data->flags &= ~SF_BEFORE_EOL;
749 DEBUG_STUDYDATA("commit: ",data,0);
752 /* Can match anything (initialization) */
754 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
756 PERL_ARGS_ASSERT_CL_ANYTHING;
758 ANYOF_BITMAP_SETALL(cl);
759 cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
760 |ANYOF_NON_UTF8_LATIN1_ALL;
762 /* If any portion of the regex is to operate under locale rules,
763 * initialization includes it. The reason this isn't done for all regexes
764 * is that the optimizer was written under the assumption that locale was
765 * all-or-nothing. Given the complexity and lack of documentation in the
766 * optimizer, and that there are inadequate test cases for locale, so many
767 * parts of it may not work properly, it is safest to avoid locale unless
769 if (RExC_contains_locale) {
770 ANYOF_CLASS_SETALL(cl); /* /l uses class */
771 cl->flags |= ANYOF_LOCALE|ANYOF_LOC_FOLD;
774 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
778 /* Can match anything (initialization) */
780 S_cl_is_anything(const struct regnode_charclass_class *cl)
784 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
786 for (value = 0; value <= ANYOF_MAX; value += 2)
787 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
789 if (!(cl->flags & ANYOF_UNICODE_ALL))
791 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
796 /* Can match anything (initialization) */
798 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
800 PERL_ARGS_ASSERT_CL_INIT;
802 Zero(cl, 1, struct regnode_charclass_class);
804 cl_anything(pRExC_state, cl);
805 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
808 /* These two functions currently do the exact same thing */
809 #define cl_init_zero S_cl_init
811 /* 'AND' a given class with another one. Can create false positives. 'cl'
812 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
813 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
815 S_cl_and(struct regnode_charclass_class *cl,
816 const struct regnode_charclass_class *and_with)
818 PERL_ARGS_ASSERT_CL_AND;
820 assert(and_with->type == ANYOF);
822 /* I (khw) am not sure all these restrictions are necessary XXX */
823 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
824 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
825 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
826 && !(and_with->flags & ANYOF_LOC_FOLD)
827 && !(cl->flags & ANYOF_LOC_FOLD)) {
830 if (and_with->flags & ANYOF_INVERT)
831 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
832 cl->bitmap[i] &= ~and_with->bitmap[i];
834 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
835 cl->bitmap[i] &= and_with->bitmap[i];
836 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
838 if (and_with->flags & ANYOF_INVERT) {
840 /* Here, the and'ed node is inverted. Get the AND of the flags that
841 * aren't affected by the inversion. Those that are affected are
842 * handled individually below */
843 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
844 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
845 cl->flags |= affected_flags;
847 /* We currently don't know how to deal with things that aren't in the
848 * bitmap, but we know that the intersection is no greater than what
849 * is already in cl, so let there be false positives that get sorted
850 * out after the synthetic start class succeeds, and the node is
851 * matched for real. */
853 /* The inversion of these two flags indicate that the resulting
854 * intersection doesn't have them */
855 if (and_with->flags & ANYOF_UNICODE_ALL) {
856 cl->flags &= ~ANYOF_UNICODE_ALL;
858 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
859 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
862 else { /* and'd node is not inverted */
863 U8 outside_bitmap_but_not_utf8; /* Temp variable */
865 if (! ANYOF_NONBITMAP(and_with)) {
867 /* Here 'and_with' doesn't match anything outside the bitmap
868 * (except possibly ANYOF_UNICODE_ALL), which means the
869 * intersection can't either, except for ANYOF_UNICODE_ALL, in
870 * which case we don't know what the intersection is, but it's no
871 * greater than what cl already has, so can just leave it alone,
872 * with possible false positives */
873 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
874 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
875 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
878 else if (! ANYOF_NONBITMAP(cl)) {
880 /* Here, 'and_with' does match something outside the bitmap, and cl
881 * doesn't have a list of things to match outside the bitmap. If
882 * cl can match all code points above 255, the intersection will
883 * be those above-255 code points that 'and_with' matches. If cl
884 * can't match all Unicode code points, it means that it can't
885 * match anything outside the bitmap (since the 'if' that got us
886 * into this block tested for that), so we leave the bitmap empty.
888 if (cl->flags & ANYOF_UNICODE_ALL) {
889 ARG_SET(cl, ARG(and_with));
891 /* and_with's ARG may match things that don't require UTF8.
892 * And now cl's will too, in spite of this being an 'and'. See
893 * the comments below about the kludge */
894 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
898 /* Here, both 'and_with' and cl match something outside the
899 * bitmap. Currently we do not do the intersection, so just match
900 * whatever cl had at the beginning. */
904 /* Take the intersection of the two sets of flags. However, the
905 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
906 * kludge around the fact that this flag is not treated like the others
907 * which are initialized in cl_anything(). The way the optimizer works
908 * is that the synthetic start class (SSC) is initialized to match
909 * anything, and then the first time a real node is encountered, its
910 * values are AND'd with the SSC's with the result being the values of
911 * the real node. However, there are paths through the optimizer where
912 * the AND never gets called, so those initialized bits are set
913 * inappropriately, which is not usually a big deal, as they just cause
914 * false positives in the SSC, which will just mean a probably
915 * imperceptible slow down in execution. However this bit has a
916 * higher false positive consequence in that it can cause utf8.pm,
917 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
918 * bigger slowdown and also causes significant extra memory to be used.
919 * In order to prevent this, the code now takes a different tack. The
920 * bit isn't set unless some part of the regular expression needs it,
921 * but once set it won't get cleared. This means that these extra
922 * modules won't get loaded unless there was some path through the
923 * pattern that would have required them anyway, and so any false
924 * positives that occur by not ANDing them out when they could be
925 * aren't as severe as they would be if we treated this bit like all
927 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
928 & ANYOF_NONBITMAP_NON_UTF8;
929 cl->flags &= and_with->flags;
930 cl->flags |= outside_bitmap_but_not_utf8;
934 /* 'OR' a given class with another one. Can create false positives. 'cl'
935 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
936 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
938 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
940 PERL_ARGS_ASSERT_CL_OR;
942 if (or_with->flags & ANYOF_INVERT) {
944 /* Here, the or'd node is to be inverted. This means we take the
945 * complement of everything not in the bitmap, but currently we don't
946 * know what that is, so give up and match anything */
947 if (ANYOF_NONBITMAP(or_with)) {
948 cl_anything(pRExC_state, cl);
951 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
952 * <= (B1 | !B2) | (CL1 | !CL2)
953 * which is wasteful if CL2 is small, but we ignore CL2:
954 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
955 * XXXX Can we handle case-fold? Unclear:
956 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
957 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
959 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
960 && !(or_with->flags & ANYOF_LOC_FOLD)
961 && !(cl->flags & ANYOF_LOC_FOLD) ) {
964 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
965 cl->bitmap[i] |= ~or_with->bitmap[i];
966 } /* XXXX: logic is complicated otherwise */
968 cl_anything(pRExC_state, cl);
971 /* And, we can just take the union of the flags that aren't affected
972 * by the inversion */
973 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
975 /* For the remaining flags:
976 ANYOF_UNICODE_ALL and inverted means to not match anything above
977 255, which means that the union with cl should just be
978 what cl has in it, so can ignore this flag
979 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
980 is 127-255 to match them, but then invert that, so the
981 union with cl should just be what cl has in it, so can
984 } else { /* 'or_with' is not inverted */
985 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
986 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
987 && (!(or_with->flags & ANYOF_LOC_FOLD)
988 || (cl->flags & ANYOF_LOC_FOLD)) ) {
991 /* OR char bitmap and class bitmap separately */
992 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
993 cl->bitmap[i] |= or_with->bitmap[i];
994 ANYOF_CLASS_OR(or_with, cl);
996 else { /* XXXX: logic is complicated, leave it along for a moment. */
997 cl_anything(pRExC_state, cl);
1000 if (ANYOF_NONBITMAP(or_with)) {
1002 /* Use the added node's outside-the-bit-map match if there isn't a
1003 * conflict. If there is a conflict (both nodes match something
1004 * outside the bitmap, but what they match outside is not the same
1005 * pointer, and hence not easily compared until XXX we extend
1006 * inversion lists this far), give up and allow the start class to
1007 * match everything outside the bitmap. If that stuff is all above
1008 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
1009 if (! ANYOF_NONBITMAP(cl)) {
1010 ARG_SET(cl, ARG(or_with));
1012 else if (ARG(cl) != ARG(or_with)) {
1014 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
1015 cl_anything(pRExC_state, cl);
1018 cl->flags |= ANYOF_UNICODE_ALL;
1023 /* Take the union */
1024 cl->flags |= or_with->flags;
1028 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1029 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1030 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1031 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1036 dump_trie(trie,widecharmap,revcharmap)
1037 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1038 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1040 These routines dump out a trie in a somewhat readable format.
1041 The _interim_ variants are used for debugging the interim
1042 tables that are used to generate the final compressed
1043 representation which is what dump_trie expects.
1045 Part of the reason for their existence is to provide a form
1046 of documentation as to how the different representations function.
1051 Dumps the final compressed table form of the trie to Perl_debug_log.
1052 Used for debugging make_trie().
1056 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1057 AV *revcharmap, U32 depth)
1060 SV *sv=sv_newmortal();
1061 int colwidth= widecharmap ? 6 : 4;
1063 GET_RE_DEBUG_FLAGS_DECL;
1065 PERL_ARGS_ASSERT_DUMP_TRIE;
1067 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1068 (int)depth * 2 + 2,"",
1069 "Match","Base","Ofs" );
1071 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1072 SV ** const tmp = av_fetch( revcharmap, state, 0);
1074 PerlIO_printf( Perl_debug_log, "%*s",
1076 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1077 PL_colors[0], PL_colors[1],
1078 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1079 PERL_PV_ESCAPE_FIRSTCHAR
1084 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1085 (int)depth * 2 + 2,"");
1087 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1088 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1089 PerlIO_printf( Perl_debug_log, "\n");
1091 for( state = 1 ; state < trie->statecount ; state++ ) {
1092 const U32 base = trie->states[ state ].trans.base;
1094 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1096 if ( trie->states[ state ].wordnum ) {
1097 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1099 PerlIO_printf( Perl_debug_log, "%6s", "" );
1102 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1107 while( ( base + ofs < trie->uniquecharcount ) ||
1108 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1109 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1112 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1114 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1115 if ( ( base + ofs >= trie->uniquecharcount ) &&
1116 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1117 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1119 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1121 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1123 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1127 PerlIO_printf( Perl_debug_log, "]");
1130 PerlIO_printf( Perl_debug_log, "\n" );
1132 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1133 for (word=1; word <= trie->wordcount; word++) {
1134 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1135 (int)word, (int)(trie->wordinfo[word].prev),
1136 (int)(trie->wordinfo[word].len));
1138 PerlIO_printf(Perl_debug_log, "\n" );
1141 Dumps a fully constructed but uncompressed trie in list form.
1142 List tries normally only are used for construction when the number of
1143 possible chars (trie->uniquecharcount) is very high.
1144 Used for debugging make_trie().
1147 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1148 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1152 SV *sv=sv_newmortal();
1153 int colwidth= widecharmap ? 6 : 4;
1154 GET_RE_DEBUG_FLAGS_DECL;
1156 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1158 /* print out the table precompression. */
1159 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1160 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1161 "------:-----+-----------------\n" );
1163 for( state=1 ; state < next_alloc ; state ++ ) {
1166 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1167 (int)depth * 2 + 2,"", (UV)state );
1168 if ( ! trie->states[ state ].wordnum ) {
1169 PerlIO_printf( Perl_debug_log, "%5s| ","");
1171 PerlIO_printf( Perl_debug_log, "W%4x| ",
1172 trie->states[ state ].wordnum
1175 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1176 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1178 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1180 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1181 PL_colors[0], PL_colors[1],
1182 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1183 PERL_PV_ESCAPE_FIRSTCHAR
1185 TRIE_LIST_ITEM(state,charid).forid,
1186 (UV)TRIE_LIST_ITEM(state,charid).newstate
1189 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1190 (int)((depth * 2) + 14), "");
1193 PerlIO_printf( Perl_debug_log, "\n");
1198 Dumps a fully constructed but uncompressed trie in table form.
1199 This is the normal DFA style state transition table, with a few
1200 twists to facilitate compression later.
1201 Used for debugging make_trie().
1204 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1205 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1210 SV *sv=sv_newmortal();
1211 int colwidth= widecharmap ? 6 : 4;
1212 GET_RE_DEBUG_FLAGS_DECL;
1214 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1217 print out the table precompression so that we can do a visual check
1218 that they are identical.
1221 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1223 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1224 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1226 PerlIO_printf( Perl_debug_log, "%*s",
1228 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1229 PL_colors[0], PL_colors[1],
1230 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1231 PERL_PV_ESCAPE_FIRSTCHAR
1237 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1239 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1240 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1243 PerlIO_printf( Perl_debug_log, "\n" );
1245 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1247 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1248 (int)depth * 2 + 2,"",
1249 (UV)TRIE_NODENUM( state ) );
1251 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1252 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1254 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1256 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1258 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1259 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1261 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1262 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1270 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1271 startbranch: the first branch in the whole branch sequence
1272 first : start branch of sequence of branch-exact nodes.
1273 May be the same as startbranch
1274 last : Thing following the last branch.
1275 May be the same as tail.
1276 tail : item following the branch sequence
1277 count : words in the sequence
1278 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1279 depth : indent depth
1281 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1283 A trie is an N'ary tree where the branches are determined by digital
1284 decomposition of the key. IE, at the root node you look up the 1st character and
1285 follow that branch repeat until you find the end of the branches. Nodes can be
1286 marked as "accepting" meaning they represent a complete word. Eg:
1290 would convert into the following structure. Numbers represent states, letters
1291 following numbers represent valid transitions on the letter from that state, if
1292 the number is in square brackets it represents an accepting state, otherwise it
1293 will be in parenthesis.
1295 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1299 (1) +-i->(6)-+-s->[7]
1301 +-s->(3)-+-h->(4)-+-e->[5]
1303 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1305 This shows that when matching against the string 'hers' we will begin at state 1
1306 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1307 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1308 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1309 single traverse. We store a mapping from accepting to state to which word was
1310 matched, and then when we have multiple possibilities we try to complete the
1311 rest of the regex in the order in which they occured in the alternation.
1313 The only prior NFA like behaviour that would be changed by the TRIE support is
1314 the silent ignoring of duplicate alternations which are of the form:
1316 / (DUPE|DUPE) X? (?{ ... }) Y /x
1318 Thus EVAL blocks following a trie may be called a different number of times with
1319 and without the optimisation. With the optimisations dupes will be silently
1320 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1321 the following demonstrates:
1323 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1325 which prints out 'word' three times, but
1327 'words'=~/(word|word|word)(?{ print $1 })S/
1329 which doesnt print it out at all. This is due to other optimisations kicking in.
1331 Example of what happens on a structural level:
1333 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1335 1: CURLYM[1] {1,32767}(18)
1346 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1347 and should turn into:
1349 1: CURLYM[1] {1,32767}(18)
1351 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1359 Cases where tail != last would be like /(?foo|bar)baz/:
1369 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1370 and would end up looking like:
1373 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1380 d = uvuni_to_utf8_flags(d, uv, 0);
1382 is the recommended Unicode-aware way of saying
1387 #define TRIE_STORE_REVCHAR(val) \
1390 SV *zlopp = newSV(7); /* XXX: optimize me */ \
1391 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1392 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, val); \
1393 SvCUR_set(zlopp, kapow - flrbbbbb); \
1396 av_push(revcharmap, zlopp); \
1398 char ooooff = (char)val; \
1399 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1403 #define TRIE_READ_CHAR STMT_START { \
1406 /* if it is UTF then it is either already folded, or does not need folding */ \
1407 uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags); \
1409 else if (folder == PL_fold_latin1) { \
1410 /* if we use this folder we have to obey unicode rules on latin-1 data */ \
1411 if ( foldlen > 0 ) { \
1412 uvc = utf8n_to_uvuni( (const U8*) scan, UTF8_MAXLEN, &len, uniflags ); \
1418 uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \
1419 skiplen = UNISKIP(uvc); \
1420 foldlen -= skiplen; \
1421 scan = foldbuf + skiplen; \
1424 /* raw data, will be folded later if needed */ \
1432 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1433 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1434 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1435 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1437 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1438 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1439 TRIE_LIST_CUR( state )++; \
1442 #define TRIE_LIST_NEW(state) STMT_START { \
1443 Newxz( trie->states[ state ].trans.list, \
1444 4, reg_trie_trans_le ); \
1445 TRIE_LIST_CUR( state ) = 1; \
1446 TRIE_LIST_LEN( state ) = 4; \
1449 #define TRIE_HANDLE_WORD(state) STMT_START { \
1450 U16 dupe= trie->states[ state ].wordnum; \
1451 regnode * const noper_next = regnext( noper ); \
1454 /* store the word for dumping */ \
1456 if (OP(noper) != NOTHING) \
1457 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1459 tmp = newSVpvn_utf8( "", 0, UTF ); \
1460 av_push( trie_words, tmp ); \
1464 trie->wordinfo[curword].prev = 0; \
1465 trie->wordinfo[curword].len = wordlen; \
1466 trie->wordinfo[curword].accept = state; \
1468 if ( noper_next < tail ) { \
1470 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1471 trie->jump[curword] = (U16)(noper_next - convert); \
1473 jumper = noper_next; \
1475 nextbranch= regnext(cur); \
1479 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1480 /* chain, so that when the bits of chain are later */\
1481 /* linked together, the dups appear in the chain */\
1482 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1483 trie->wordinfo[dupe].prev = curword; \
1485 /* we haven't inserted this word yet. */ \
1486 trie->states[ state ].wordnum = curword; \
1491 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1492 ( ( base + charid >= ucharcount \
1493 && base + charid < ubound \
1494 && state == trie->trans[ base - ucharcount + charid ].check \
1495 && trie->trans[ base - ucharcount + charid ].next ) \
1496 ? trie->trans[ base - ucharcount + charid ].next \
1497 : ( state==1 ? special : 0 ) \
1501 #define MADE_JUMP_TRIE 2
1502 #define MADE_EXACT_TRIE 4
1505 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1508 /* first pass, loop through and scan words */
1509 reg_trie_data *trie;
1510 HV *widecharmap = NULL;
1511 AV *revcharmap = newAV();
1513 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1518 regnode *jumper = NULL;
1519 regnode *nextbranch = NULL;
1520 regnode *convert = NULL;
1521 U32 *prev_states; /* temp array mapping each state to previous one */
1522 /* we just use folder as a flag in utf8 */
1523 const U8 * folder = NULL;
1526 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1527 AV *trie_words = NULL;
1528 /* along with revcharmap, this only used during construction but both are
1529 * useful during debugging so we store them in the struct when debugging.
1532 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1533 STRLEN trie_charcount=0;
1535 SV *re_trie_maxbuff;
1536 GET_RE_DEBUG_FLAGS_DECL;
1538 PERL_ARGS_ASSERT_MAKE_TRIE;
1540 PERL_UNUSED_ARG(depth);
1547 case EXACTFU_TRICKYFOLD:
1548 case EXACTFU: folder = PL_fold_latin1; break;
1549 case EXACTF: folder = PL_fold; break;
1550 case EXACTFL: folder = PL_fold_locale; break;
1551 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
1554 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1556 trie->startstate = 1;
1557 trie->wordcount = word_count;
1558 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1559 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1561 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1562 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1563 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1566 trie_words = newAV();
1569 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1570 if (!SvIOK(re_trie_maxbuff)) {
1571 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1573 DEBUG_TRIE_COMPILE_r({
1574 PerlIO_printf( Perl_debug_log,
1575 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1576 (int)depth * 2 + 2, "",
1577 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1578 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1582 /* Find the node we are going to overwrite */
1583 if ( first == startbranch && OP( last ) != BRANCH ) {
1584 /* whole branch chain */
1587 /* branch sub-chain */
1588 convert = NEXTOPER( first );
1591 /* -- First loop and Setup --
1593 We first traverse the branches and scan each word to determine if it
1594 contains widechars, and how many unique chars there are, this is
1595 important as we have to build a table with at least as many columns as we
1598 We use an array of integers to represent the character codes 0..255
1599 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1600 native representation of the character value as the key and IV's for the
1603 *TODO* If we keep track of how many times each character is used we can
1604 remap the columns so that the table compression later on is more
1605 efficient in terms of memory by ensuring the most common value is in the
1606 middle and the least common are on the outside. IMO this would be better
1607 than a most to least common mapping as theres a decent chance the most
1608 common letter will share a node with the least common, meaning the node
1609 will not be compressible. With a middle is most common approach the worst
1610 case is when we have the least common nodes twice.
1614 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1615 regnode *noper = NEXTOPER( cur );
1616 const U8 *uc = (U8*)STRING( noper );
1617 const U8 *e = uc + STR_LEN( noper );
1619 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1621 const U8 *scan = (U8*)NULL;
1622 U32 wordlen = 0; /* required init */
1624 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1626 if (OP(noper) == NOTHING) {
1627 regnode *noper_next= regnext(noper);
1628 if (noper_next != tail && OP(noper_next) == flags) {
1630 uc= (U8*)STRING(noper);
1631 e= uc + STR_LEN(noper);
1632 trie->minlen= STR_LEN(noper);
1639 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
1640 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1641 regardless of encoding */
1642 if (OP( noper ) == EXACTFU_SS) {
1643 /* false positives are ok, so just set this */
1644 TRIE_BITMAP_SET(trie,0xDF);
1647 for ( ; uc < e ; uc += len ) {
1648 TRIE_CHARCOUNT(trie)++;
1653 U8 folded= folder[ (U8) uvc ];
1654 if ( !trie->charmap[ folded ] ) {
1655 trie->charmap[ folded ]=( ++trie->uniquecharcount );
1656 TRIE_STORE_REVCHAR( folded );
1659 if ( !trie->charmap[ uvc ] ) {
1660 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1661 TRIE_STORE_REVCHAR( uvc );
1664 /* store the codepoint in the bitmap, and its folded
1666 TRIE_BITMAP_SET(trie, uvc);
1668 /* store the folded codepoint */
1669 if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
1672 /* store first byte of utf8 representation of
1673 variant codepoints */
1674 if (! UNI_IS_INVARIANT(uvc)) {
1675 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1678 set_bit = 0; /* We've done our bit :-) */
1683 widecharmap = newHV();
1685 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1688 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1690 if ( !SvTRUE( *svpp ) ) {
1691 sv_setiv( *svpp, ++trie->uniquecharcount );
1692 TRIE_STORE_REVCHAR(uvc);
1696 if( cur == first ) {
1697 trie->minlen = chars;
1698 trie->maxlen = chars;
1699 } else if (chars < trie->minlen) {
1700 trie->minlen = chars;
1701 } else if (chars > trie->maxlen) {
1702 trie->maxlen = chars;
1704 if (OP( noper ) == EXACTFU_SS) {
1705 /* XXX: workaround - 'ss' could match "\x{DF}" so minlen could be 1 and not 2*/
1706 if (trie->minlen > 1)
1709 if (OP( noper ) == EXACTFU_TRICKYFOLD) {
1710 /* XXX: workround - things like "\x{1FBE}\x{0308}\x{0301}" can match "\x{0390}"
1711 * - We assume that any such sequence might match a 2 byte string */
1712 if (trie->minlen > 2 )
1716 } /* end first pass */
1717 DEBUG_TRIE_COMPILE_r(
1718 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1719 (int)depth * 2 + 2,"",
1720 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1721 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1722 (int)trie->minlen, (int)trie->maxlen )
1726 We now know what we are dealing with in terms of unique chars and
1727 string sizes so we can calculate how much memory a naive
1728 representation using a flat table will take. If it's over a reasonable
1729 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1730 conservative but potentially much slower representation using an array
1733 At the end we convert both representations into the same compressed
1734 form that will be used in regexec.c for matching with. The latter
1735 is a form that cannot be used to construct with but has memory
1736 properties similar to the list form and access properties similar
1737 to the table form making it both suitable for fast searches and
1738 small enough that its feasable to store for the duration of a program.
1740 See the comment in the code where the compressed table is produced
1741 inplace from the flat tabe representation for an explanation of how
1742 the compression works.
1747 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1750 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1752 Second Pass -- Array Of Lists Representation
1754 Each state will be represented by a list of charid:state records
1755 (reg_trie_trans_le) the first such element holds the CUR and LEN
1756 points of the allocated array. (See defines above).
1758 We build the initial structure using the lists, and then convert
1759 it into the compressed table form which allows faster lookups
1760 (but cant be modified once converted).
1763 STRLEN transcount = 1;
1765 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1766 "%*sCompiling trie using list compiler\n",
1767 (int)depth * 2 + 2, ""));
1769 trie->states = (reg_trie_state *)
1770 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1771 sizeof(reg_trie_state) );
1775 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1777 regnode *noper = NEXTOPER( cur );
1778 U8 *uc = (U8*)STRING( noper );
1779 const U8 *e = uc + STR_LEN( noper );
1780 U32 state = 1; /* required init */
1781 U16 charid = 0; /* sanity init */
1782 U8 *scan = (U8*)NULL; /* sanity init */
1783 STRLEN foldlen = 0; /* required init */
1784 U32 wordlen = 0; /* required init */
1785 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1788 if (OP(noper) == NOTHING) {
1789 regnode *noper_next= regnext(noper);
1790 if (noper_next != tail && OP(noper_next) == flags) {
1792 uc= (U8*)STRING(noper);
1793 e= uc + STR_LEN(noper);
1797 if (OP(noper) != NOTHING) {
1798 for ( ; uc < e ; uc += len ) {
1803 charid = trie->charmap[ uvc ];
1805 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1809 charid=(U16)SvIV( *svpp );
1812 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1819 if ( !trie->states[ state ].trans.list ) {
1820 TRIE_LIST_NEW( state );
1822 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1823 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1824 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1829 newstate = next_alloc++;
1830 prev_states[newstate] = state;
1831 TRIE_LIST_PUSH( state, charid, newstate );
1836 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1840 TRIE_HANDLE_WORD(state);
1842 } /* end second pass */
1844 /* next alloc is the NEXT state to be allocated */
1845 trie->statecount = next_alloc;
1846 trie->states = (reg_trie_state *)
1847 PerlMemShared_realloc( trie->states,
1849 * sizeof(reg_trie_state) );
1851 /* and now dump it out before we compress it */
1852 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1853 revcharmap, next_alloc,
1857 trie->trans = (reg_trie_trans *)
1858 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1865 for( state=1 ; state < next_alloc ; state ++ ) {
1869 DEBUG_TRIE_COMPILE_MORE_r(
1870 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1874 if (trie->states[state].trans.list) {
1875 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1879 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1880 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1881 if ( forid < minid ) {
1883 } else if ( forid > maxid ) {
1887 if ( transcount < tp + maxid - minid + 1) {
1889 trie->trans = (reg_trie_trans *)
1890 PerlMemShared_realloc( trie->trans,
1892 * sizeof(reg_trie_trans) );
1893 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1895 base = trie->uniquecharcount + tp - minid;
1896 if ( maxid == minid ) {
1898 for ( ; zp < tp ; zp++ ) {
1899 if ( ! trie->trans[ zp ].next ) {
1900 base = trie->uniquecharcount + zp - minid;
1901 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1902 trie->trans[ zp ].check = state;
1908 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1909 trie->trans[ tp ].check = state;
1914 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1915 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1916 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1917 trie->trans[ tid ].check = state;
1919 tp += ( maxid - minid + 1 );
1921 Safefree(trie->states[ state ].trans.list);
1924 DEBUG_TRIE_COMPILE_MORE_r(
1925 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1928 trie->states[ state ].trans.base=base;
1930 trie->lasttrans = tp + 1;
1934 Second Pass -- Flat Table Representation.
1936 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1937 We know that we will need Charcount+1 trans at most to store the data
1938 (one row per char at worst case) So we preallocate both structures
1939 assuming worst case.
1941 We then construct the trie using only the .next slots of the entry
1944 We use the .check field of the first entry of the node temporarily to
1945 make compression both faster and easier by keeping track of how many non
1946 zero fields are in the node.
1948 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1951 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1952 number representing the first entry of the node, and state as a
1953 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1954 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1955 are 2 entrys per node. eg:
1963 The table is internally in the right hand, idx form. However as we also
1964 have to deal with the states array which is indexed by nodenum we have to
1965 use TRIE_NODENUM() to convert.
1968 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1969 "%*sCompiling trie using table compiler\n",
1970 (int)depth * 2 + 2, ""));
1972 trie->trans = (reg_trie_trans *)
1973 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
1974 * trie->uniquecharcount + 1,
1975 sizeof(reg_trie_trans) );
1976 trie->states = (reg_trie_state *)
1977 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1978 sizeof(reg_trie_state) );
1979 next_alloc = trie->uniquecharcount + 1;
1982 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1984 regnode *noper = NEXTOPER( cur );
1985 const U8 *uc = (U8*)STRING( noper );
1986 const U8 *e = uc + STR_LEN( noper );
1988 U32 state = 1; /* required init */
1990 U16 charid = 0; /* sanity init */
1991 U32 accept_state = 0; /* sanity init */
1992 U8 *scan = (U8*)NULL; /* sanity init */
1994 STRLEN foldlen = 0; /* required init */
1995 U32 wordlen = 0; /* required init */
1997 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1999 if (OP(noper) == NOTHING) {
2000 regnode *noper_next= regnext(noper);
2001 if (noper_next != tail && OP(noper_next) == flags) {
2003 uc= (U8*)STRING(noper);
2004 e= uc + STR_LEN(noper);
2008 if ( OP(noper) != NOTHING ) {
2009 for ( ; uc < e ; uc += len ) {
2014 charid = trie->charmap[ uvc ];
2016 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
2017 charid = svpp ? (U16)SvIV(*svpp) : 0;
2021 if ( !trie->trans[ state + charid ].next ) {
2022 trie->trans[ state + charid ].next = next_alloc;
2023 trie->trans[ state ].check++;
2024 prev_states[TRIE_NODENUM(next_alloc)]
2025 = TRIE_NODENUM(state);
2026 next_alloc += trie->uniquecharcount;
2028 state = trie->trans[ state + charid ].next;
2030 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2032 /* charid is now 0 if we dont know the char read, or nonzero if we do */
2035 accept_state = TRIE_NODENUM( state );
2036 TRIE_HANDLE_WORD(accept_state);
2038 } /* end second pass */
2040 /* and now dump it out before we compress it */
2041 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
2043 next_alloc, depth+1));
2047 * Inplace compress the table.*
2049 For sparse data sets the table constructed by the trie algorithm will
2050 be mostly 0/FAIL transitions or to put it another way mostly empty.
2051 (Note that leaf nodes will not contain any transitions.)
2053 This algorithm compresses the tables by eliminating most such
2054 transitions, at the cost of a modest bit of extra work during lookup:
2056 - Each states[] entry contains a .base field which indicates the
2057 index in the state[] array wheres its transition data is stored.
2059 - If .base is 0 there are no valid transitions from that node.
2061 - If .base is nonzero then charid is added to it to find an entry in
2064 -If trans[states[state].base+charid].check!=state then the
2065 transition is taken to be a 0/Fail transition. Thus if there are fail
2066 transitions at the front of the node then the .base offset will point
2067 somewhere inside the previous nodes data (or maybe even into a node
2068 even earlier), but the .check field determines if the transition is
2072 The following process inplace converts the table to the compressed
2073 table: We first do not compress the root node 1,and mark all its
2074 .check pointers as 1 and set its .base pointer as 1 as well. This
2075 allows us to do a DFA construction from the compressed table later,
2076 and ensures that any .base pointers we calculate later are greater
2079 - We set 'pos' to indicate the first entry of the second node.
2081 - We then iterate over the columns of the node, finding the first and
2082 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2083 and set the .check pointers accordingly, and advance pos
2084 appropriately and repreat for the next node. Note that when we copy
2085 the next pointers we have to convert them from the original
2086 NODEIDX form to NODENUM form as the former is not valid post
2089 - If a node has no transitions used we mark its base as 0 and do not
2090 advance the pos pointer.
2092 - If a node only has one transition we use a second pointer into the
2093 structure to fill in allocated fail transitions from other states.
2094 This pointer is independent of the main pointer and scans forward
2095 looking for null transitions that are allocated to a state. When it
2096 finds one it writes the single transition into the "hole". If the
2097 pointer doesnt find one the single transition is appended as normal.
2099 - Once compressed we can Renew/realloc the structures to release the
2102 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2103 specifically Fig 3.47 and the associated pseudocode.
2107 const U32 laststate = TRIE_NODENUM( next_alloc );
2110 trie->statecount = laststate;
2112 for ( state = 1 ; state < laststate ; state++ ) {
2114 const U32 stateidx = TRIE_NODEIDX( state );
2115 const U32 o_used = trie->trans[ stateidx ].check;
2116 U32 used = trie->trans[ stateidx ].check;
2117 trie->trans[ stateidx ].check = 0;
2119 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2120 if ( flag || trie->trans[ stateidx + charid ].next ) {
2121 if ( trie->trans[ stateidx + charid ].next ) {
2123 for ( ; zp < pos ; zp++ ) {
2124 if ( ! trie->trans[ zp ].next ) {
2128 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2129 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2130 trie->trans[ zp ].check = state;
2131 if ( ++zp > pos ) pos = zp;
2138 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2140 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2141 trie->trans[ pos ].check = state;
2146 trie->lasttrans = pos + 1;
2147 trie->states = (reg_trie_state *)
2148 PerlMemShared_realloc( trie->states, laststate
2149 * sizeof(reg_trie_state) );
2150 DEBUG_TRIE_COMPILE_MORE_r(
2151 PerlIO_printf( Perl_debug_log,
2152 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2153 (int)depth * 2 + 2,"",
2154 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2157 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2160 } /* end table compress */
2162 DEBUG_TRIE_COMPILE_MORE_r(
2163 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2164 (int)depth * 2 + 2, "",
2165 (UV)trie->statecount,
2166 (UV)trie->lasttrans)
2168 /* resize the trans array to remove unused space */
2169 trie->trans = (reg_trie_trans *)
2170 PerlMemShared_realloc( trie->trans, trie->lasttrans
2171 * sizeof(reg_trie_trans) );
2173 { /* Modify the program and insert the new TRIE node */
2174 U8 nodetype =(U8)(flags & 0xFF);
2178 regnode *optimize = NULL;
2179 #ifdef RE_TRACK_PATTERN_OFFSETS
2182 U32 mjd_nodelen = 0;
2183 #endif /* RE_TRACK_PATTERN_OFFSETS */
2184 #endif /* DEBUGGING */
2186 This means we convert either the first branch or the first Exact,
2187 depending on whether the thing following (in 'last') is a branch
2188 or not and whther first is the startbranch (ie is it a sub part of
2189 the alternation or is it the whole thing.)
2190 Assuming its a sub part we convert the EXACT otherwise we convert
2191 the whole branch sequence, including the first.
2193 /* Find the node we are going to overwrite */
2194 if ( first != startbranch || OP( last ) == BRANCH ) {
2195 /* branch sub-chain */
2196 NEXT_OFF( first ) = (U16)(last - first);
2197 #ifdef RE_TRACK_PATTERN_OFFSETS
2199 mjd_offset= Node_Offset((convert));
2200 mjd_nodelen= Node_Length((convert));
2203 /* whole branch chain */
2205 #ifdef RE_TRACK_PATTERN_OFFSETS
2208 const regnode *nop = NEXTOPER( convert );
2209 mjd_offset= Node_Offset((nop));
2210 mjd_nodelen= Node_Length((nop));
2214 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2215 (int)depth * 2 + 2, "",
2216 (UV)mjd_offset, (UV)mjd_nodelen)
2219 /* But first we check to see if there is a common prefix we can
2220 split out as an EXACT and put in front of the TRIE node. */
2221 trie->startstate= 1;
2222 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2224 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2228 const U32 base = trie->states[ state ].trans.base;
2230 if ( trie->states[state].wordnum )
2233 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2234 if ( ( base + ofs >= trie->uniquecharcount ) &&
2235 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2236 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2238 if ( ++count > 1 ) {
2239 SV **tmp = av_fetch( revcharmap, ofs, 0);
2240 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2241 if ( state == 1 ) break;
2243 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2245 PerlIO_printf(Perl_debug_log,
2246 "%*sNew Start State=%"UVuf" Class: [",
2247 (int)depth * 2 + 2, "",
2250 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2251 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2253 TRIE_BITMAP_SET(trie,*ch);
2255 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2257 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2261 TRIE_BITMAP_SET(trie,*ch);
2263 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2264 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2270 SV **tmp = av_fetch( revcharmap, idx, 0);
2272 char *ch = SvPV( *tmp, len );
2274 SV *sv=sv_newmortal();
2275 PerlIO_printf( Perl_debug_log,
2276 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2277 (int)depth * 2 + 2, "",
2279 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2280 PL_colors[0], PL_colors[1],
2281 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2282 PERL_PV_ESCAPE_FIRSTCHAR
2287 OP( convert ) = nodetype;
2288 str=STRING(convert);
2291 STR_LEN(convert) += len;
2297 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2302 trie->prefixlen = (state-1);
2304 regnode *n = convert+NODE_SZ_STR(convert);
2305 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2306 trie->startstate = state;
2307 trie->minlen -= (state - 1);
2308 trie->maxlen -= (state - 1);
2310 /* At least the UNICOS C compiler choked on this
2311 * being argument to DEBUG_r(), so let's just have
2314 #ifdef PERL_EXT_RE_BUILD
2320 regnode *fix = convert;
2321 U32 word = trie->wordcount;
2323 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2324 while( ++fix < n ) {
2325 Set_Node_Offset_Length(fix, 0, 0);
2328 SV ** const tmp = av_fetch( trie_words, word, 0 );
2330 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2331 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2333 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2341 NEXT_OFF(convert) = (U16)(tail - convert);
2342 DEBUG_r(optimize= n);
2348 if ( trie->maxlen ) {
2349 NEXT_OFF( convert ) = (U16)(tail - convert);
2350 ARG_SET( convert, data_slot );
2351 /* Store the offset to the first unabsorbed branch in
2352 jump[0], which is otherwise unused by the jump logic.
2353 We use this when dumping a trie and during optimisation. */
2355 trie->jump[0] = (U16)(nextbranch - convert);
2357 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2358 * and there is a bitmap
2359 * and the first "jump target" node we found leaves enough room
2360 * then convert the TRIE node into a TRIEC node, with the bitmap
2361 * embedded inline in the opcode - this is hypothetically faster.
2363 if ( !trie->states[trie->startstate].wordnum
2365 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2367 OP( convert ) = TRIEC;
2368 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2369 PerlMemShared_free(trie->bitmap);
2372 OP( convert ) = TRIE;
2374 /* store the type in the flags */
2375 convert->flags = nodetype;
2379 + regarglen[ OP( convert ) ];
2381 /* XXX We really should free up the resource in trie now,
2382 as we won't use them - (which resources?) dmq */
2384 /* needed for dumping*/
2385 DEBUG_r(if (optimize) {
2386 regnode *opt = convert;
2388 while ( ++opt < optimize) {
2389 Set_Node_Offset_Length(opt,0,0);
2392 Try to clean up some of the debris left after the
2395 while( optimize < jumper ) {
2396 mjd_nodelen += Node_Length((optimize));
2397 OP( optimize ) = OPTIMIZED;
2398 Set_Node_Offset_Length(optimize,0,0);
2401 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2403 } /* end node insert */
2405 /* Finish populating the prev field of the wordinfo array. Walk back
2406 * from each accept state until we find another accept state, and if
2407 * so, point the first word's .prev field at the second word. If the
2408 * second already has a .prev field set, stop now. This will be the
2409 * case either if we've already processed that word's accept state,
2410 * or that state had multiple words, and the overspill words were
2411 * already linked up earlier.
2418 for (word=1; word <= trie->wordcount; word++) {
2420 if (trie->wordinfo[word].prev)
2422 state = trie->wordinfo[word].accept;
2424 state = prev_states[state];
2427 prev = trie->states[state].wordnum;
2431 trie->wordinfo[word].prev = prev;
2433 Safefree(prev_states);
2437 /* and now dump out the compressed format */
2438 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2440 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2442 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2443 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2445 SvREFCNT_dec_NN(revcharmap);
2449 : trie->startstate>1
2455 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2457 /* The Trie is constructed and compressed now so we can build a fail array if it's needed
2459 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2460 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2463 We find the fail state for each state in the trie, this state is the longest proper
2464 suffix of the current state's 'word' that is also a proper prefix of another word in our
2465 trie. State 1 represents the word '' and is thus the default fail state. This allows
2466 the DFA not to have to restart after its tried and failed a word at a given point, it
2467 simply continues as though it had been matching the other word in the first place.
2469 'abcdgu'=~/abcdefg|cdgu/
2470 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2471 fail, which would bring us to the state representing 'd' in the second word where we would
2472 try 'g' and succeed, proceeding to match 'cdgu'.
2474 /* add a fail transition */
2475 const U32 trie_offset = ARG(source);
2476 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2478 const U32 ucharcount = trie->uniquecharcount;
2479 const U32 numstates = trie->statecount;
2480 const U32 ubound = trie->lasttrans + ucharcount;
2484 U32 base = trie->states[ 1 ].trans.base;
2487 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2488 GET_RE_DEBUG_FLAGS_DECL;
2490 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2492 PERL_UNUSED_ARG(depth);
2496 ARG_SET( stclass, data_slot );
2497 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2498 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2499 aho->trie=trie_offset;
2500 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2501 Copy( trie->states, aho->states, numstates, reg_trie_state );
2502 Newxz( q, numstates, U32);
2503 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2506 /* initialize fail[0..1] to be 1 so that we always have
2507 a valid final fail state */
2508 fail[ 0 ] = fail[ 1 ] = 1;
2510 for ( charid = 0; charid < ucharcount ; charid++ ) {
2511 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2513 q[ q_write ] = newstate;
2514 /* set to point at the root */
2515 fail[ q[ q_write++ ] ]=1;
2518 while ( q_read < q_write) {
2519 const U32 cur = q[ q_read++ % numstates ];
2520 base = trie->states[ cur ].trans.base;
2522 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2523 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2525 U32 fail_state = cur;
2528 fail_state = fail[ fail_state ];
2529 fail_base = aho->states[ fail_state ].trans.base;
2530 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2532 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2533 fail[ ch_state ] = fail_state;
2534 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2536 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2538 q[ q_write++ % numstates] = ch_state;
2542 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2543 when we fail in state 1, this allows us to use the
2544 charclass scan to find a valid start char. This is based on the principle
2545 that theres a good chance the string being searched contains lots of stuff
2546 that cant be a start char.
2548 fail[ 0 ] = fail[ 1 ] = 0;
2549 DEBUG_TRIE_COMPILE_r({
2550 PerlIO_printf(Perl_debug_log,
2551 "%*sStclass Failtable (%"UVuf" states): 0",
2552 (int)(depth * 2), "", (UV)numstates
2554 for( q_read=1; q_read<numstates; q_read++ ) {
2555 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2557 PerlIO_printf(Perl_debug_log, "\n");
2560 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2565 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2566 * These need to be revisited when a newer toolchain becomes available.
2568 #if defined(__sparc64__) && defined(__GNUC__)
2569 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2570 # undef SPARC64_GCC_WORKAROUND
2571 # define SPARC64_GCC_WORKAROUND 1
2575 #define DEBUG_PEEP(str,scan,depth) \
2576 DEBUG_OPTIMISE_r({if (scan){ \
2577 SV * const mysv=sv_newmortal(); \
2578 regnode *Next = regnext(scan); \
2579 regprop(RExC_rx, mysv, scan); \
2580 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2581 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2582 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2586 /* The below joins as many adjacent EXACTish nodes as possible into a single
2587 * one. The regop may be changed if the node(s) contain certain sequences that
2588 * require special handling. The joining is only done if:
2589 * 1) there is room in the current conglomerated node to entirely contain the
2591 * 2) they are the exact same node type
2593 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
2594 * these get optimized out
2596 * If a node is to match under /i (folded), the number of characters it matches
2597 * can be different than its character length if it contains a multi-character
2598 * fold. *min_subtract is set to the total delta of the input nodes.
2600 * And *has_exactf_sharp_s is set to indicate whether or not the node is EXACTF
2601 * and contains LATIN SMALL LETTER SHARP S
2603 * This is as good a place as any to discuss the design of handling these
2604 * multi-character fold sequences. It's been wrong in Perl for a very long
2605 * time. There are three code points in Unicode whose multi-character folds
2606 * were long ago discovered to mess things up. The previous designs for
2607 * dealing with these involved assigning a special node for them. This
2608 * approach doesn't work, as evidenced by this example:
2609 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
2610 * Both these fold to "sss", but if the pattern is parsed to create a node that
2611 * would match just the \xDF, it won't be able to handle the case where a
2612 * successful match would have to cross the node's boundary. The new approach
2613 * that hopefully generally solves the problem generates an EXACTFU_SS node
2616 * It turns out that there are problems with all multi-character folds, and not
2617 * just these three. Now the code is general, for all such cases, but the
2618 * three still have some special handling. The approach taken is:
2619 * 1) This routine examines each EXACTFish node that could contain multi-
2620 * character fold sequences. It returns in *min_subtract how much to
2621 * subtract from the the actual length of the string to get a real minimum
2622 * match length; it is 0 if there are no multi-char folds. This delta is
2623 * used by the caller to adjust the min length of the match, and the delta
2624 * between min and max, so that the optimizer doesn't reject these
2625 * possibilities based on size constraints.
2626 * 2) Certain of these sequences require special handling by the trie code,
2627 * so, if found, this code changes the joined node type to special ops:
2628 * EXACTFU_TRICKYFOLD and EXACTFU_SS.
2629 * 3) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
2630 * is used for an EXACTFU node that contains at least one "ss" sequence in
2631 * it. For non-UTF-8 patterns and strings, this is the only case where
2632 * there is a possible fold length change. That means that a regular
2633 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
2634 * with length changes, and so can be processed faster. regexec.c takes
2635 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
2636 * pre-folded by regcomp.c. This saves effort in regex matching.
2637 * However, the pre-folding isn't done for non-UTF8 patterns because the
2638 * fold of the MICRO SIGN requires UTF-8, and we don't want to slow things
2639 * down by forcing the pattern into UTF8 unless necessary. Also what
2640 * EXACTF and EXACTFL nodes fold to isn't known until runtime. The fold
2641 * possibilities for the non-UTF8 patterns are quite simple, except for
2642 * the sharp s. All the ones that don't involve a UTF-8 target string are
2643 * members of a fold-pair, and arrays are set up for all of them so that
2644 * the other member of the pair can be found quickly. Code elsewhere in
2645 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
2646 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
2647 * described in the next item.
2648 * 4) A problem remains for the sharp s in EXACTF nodes. Whether it matches
2649 * 'ss' or not is not knowable at compile time. It will match iff the
2650 * target string is in UTF-8, unlike the EXACTFU nodes, where it always
2651 * matches; and the EXACTFL and EXACTFA nodes where it never does. Thus
2652 * it can't be folded to "ss" at compile time, unlike EXACTFU does (as
2653 * described in item 3). An assumption that the optimizer part of
2654 * regexec.c (probably unwittingly) makes is that a character in the
2655 * pattern corresponds to at most a single character in the target string.
2656 * (And I do mean character, and not byte here, unlike other parts of the
2657 * documentation that have never been updated to account for multibyte
2658 * Unicode.) This assumption is wrong only in this case, as all other
2659 * cases are either 1-1 folds when no UTF-8 is involved; or is true by
2660 * virtue of having this file pre-fold UTF-8 patterns. I'm
2661 * reluctant to try to change this assumption, so instead the code punts.
2662 * This routine examines EXACTF nodes for the sharp s, and returns a
2663 * boolean indicating whether or not the node is an EXACTF node that
2664 * contains a sharp s. When it is true, the caller sets a flag that later
2665 * causes the optimizer in this file to not set values for the floating
2666 * and fixed string lengths, and thus avoids the optimizer code in
2667 * regexec.c that makes the invalid assumption. Thus, there is no
2668 * optimization based on string lengths for EXACTF nodes that contain the
2669 * sharp s. This only happens for /id rules (which means the pattern
2673 #define JOIN_EXACT(scan,min_subtract,has_exactf_sharp_s, flags) \
2674 if (PL_regkind[OP(scan)] == EXACT) \
2675 join_exact(pRExC_state,(scan),(min_subtract),has_exactf_sharp_s, (flags),NULL,depth+1)
2678 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, UV *min_subtract, bool *has_exactf_sharp_s, U32 flags,regnode *val, U32 depth) {
2679 /* Merge several consecutive EXACTish nodes into one. */
2680 regnode *n = regnext(scan);
2682 regnode *next = scan + NODE_SZ_STR(scan);
2686 regnode *stop = scan;
2687 GET_RE_DEBUG_FLAGS_DECL;
2689 PERL_UNUSED_ARG(depth);
2692 PERL_ARGS_ASSERT_JOIN_EXACT;
2693 #ifndef EXPERIMENTAL_INPLACESCAN
2694 PERL_UNUSED_ARG(flags);
2695 PERL_UNUSED_ARG(val);
2697 DEBUG_PEEP("join",scan,depth);
2699 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
2700 * EXACT ones that are mergeable to the current one. */
2702 && (PL_regkind[OP(n)] == NOTHING
2703 || (stringok && OP(n) == OP(scan)))
2705 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
2708 if (OP(n) == TAIL || n > next)
2710 if (PL_regkind[OP(n)] == NOTHING) {
2711 DEBUG_PEEP("skip:",n,depth);
2712 NEXT_OFF(scan) += NEXT_OFF(n);
2713 next = n + NODE_STEP_REGNODE;
2720 else if (stringok) {
2721 const unsigned int oldl = STR_LEN(scan);
2722 regnode * const nnext = regnext(n);
2724 /* XXX I (khw) kind of doubt that this works on platforms where
2725 * U8_MAX is above 255 because of lots of other assumptions */
2726 /* Don't join if the sum can't fit into a single node */
2727 if (oldl + STR_LEN(n) > U8_MAX)
2730 DEBUG_PEEP("merg",n,depth);
2733 NEXT_OFF(scan) += NEXT_OFF(n);
2734 STR_LEN(scan) += STR_LEN(n);
2735 next = n + NODE_SZ_STR(n);
2736 /* Now we can overwrite *n : */
2737 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2745 #ifdef EXPERIMENTAL_INPLACESCAN
2746 if (flags && !NEXT_OFF(n)) {
2747 DEBUG_PEEP("atch", val, depth);
2748 if (reg_off_by_arg[OP(n)]) {
2749 ARG_SET(n, val - n);
2752 NEXT_OFF(n) = val - n;
2760 *has_exactf_sharp_s = FALSE;
2762 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
2763 * can now analyze for sequences of problematic code points. (Prior to
2764 * this final joining, sequences could have been split over boundaries, and
2765 * hence missed). The sequences only happen in folding, hence for any
2766 * non-EXACT EXACTish node */
2767 if (OP(scan) != EXACT) {
2768 const U8 * const s0 = (U8*) STRING(scan);
2770 const U8 * const s_end = s0 + STR_LEN(scan);
2772 /* One pass is made over the node's string looking for all the
2773 * possibilities. to avoid some tests in the loop, there are two main
2774 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
2778 /* Examine the string for a multi-character fold sequence. UTF-8
2779 * patterns have all characters pre-folded by the time this code is
2781 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
2782 length sequence we are looking for is 2 */
2785 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
2786 if (! len) { /* Not a multi-char fold: get next char */
2791 /* Nodes with 'ss' require special handling, except for EXACTFL
2792 * and EXACTFA for which there is no multi-char fold to this */
2793 if (len == 2 && *s == 's' && *(s+1) == 's'
2794 && OP(scan) != EXACTFL && OP(scan) != EXACTFA)
2797 OP(scan) = EXACTFU_SS;
2800 else if (len == 6 /* len is the same in both ASCII and EBCDIC for these */
2801 && (memEQ(s, GREEK_SMALL_LETTER_IOTA_UTF8
2802 COMBINING_DIAERESIS_UTF8
2803 COMBINING_ACUTE_ACCENT_UTF8,
2805 || memEQ(s, GREEK_SMALL_LETTER_UPSILON_UTF8
2806 COMBINING_DIAERESIS_UTF8
2807 COMBINING_ACUTE_ACCENT_UTF8,
2812 /* These two folds require special handling by trie's, so
2813 * change the node type to indicate this. If EXACTFA and
2814 * EXACTFL were ever to be handled by trie's, this would
2815 * have to be changed. If this node has already been
2816 * changed to EXACTFU_SS in this loop, leave it as is. (I
2817 * (khw) think it doesn't matter in regexec.c for UTF
2818 * patterns, but no need to change it */
2819 if (OP(scan) == EXACTFU) {
2820 OP(scan) = EXACTFU_TRICKYFOLD;
2824 else { /* Here is a generic multi-char fold. */
2825 const U8* multi_end = s + len;
2827 /* Count how many characters in it. In the case of /l and
2828 * /aa, no folds which contain ASCII code points are
2829 * allowed, so check for those, and skip if found. (In
2830 * EXACTFL, no folds are allowed to any Latin1 code point,
2831 * not just ASCII. But there aren't any of these
2832 * currently, nor ever likely, so don't take the time to
2833 * test for them. The code that generates the
2834 * is_MULTI_foo() macros croaks should one actually get put
2835 * into Unicode .) */
2836 if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
2837 count = utf8_length(s, multi_end);
2841 while (s < multi_end) {
2844 goto next_iteration;
2854 /* The delta is how long the sequence is minus 1 (1 is how long
2855 * the character that folds to the sequence is) */
2856 *min_subtract += count - 1;
2860 else if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
2862 /* Here, the pattern is not UTF-8. Look for the multi-char folds
2863 * that are all ASCII. As in the above case, EXACTFL and EXACTFA
2864 * nodes can't have multi-char folds to this range (and there are
2865 * no existing ones in the upper latin1 range). In the EXACTF
2866 * case we look also for the sharp s, which can be in the final
2867 * position. Otherwise we can stop looking 1 byte earlier because
2868 * have to find at least two characters for a multi-fold */
2869 const U8* upper = (OP(scan) == EXACTF) ? s_end : s_end -1;
2871 /* The below is perhaps overboard, but this allows us to save a
2872 * test each time through the loop at the expense of a mask. This
2873 * is because on both EBCDIC and ASCII machines, 'S' and 's' differ
2874 * by a single bit. On ASCII they are 32 apart; on EBCDIC, they
2875 * are 64. This uses an exclusive 'or' to find that bit and then
2876 * inverts it to form a mask, with just a single 0, in the bit
2877 * position where 'S' and 's' differ. */
2878 const U8 S_or_s_mask = (U8) ~ ('S' ^ 's');
2879 const U8 s_masked = 's' & S_or_s_mask;
2882 int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
2883 if (! len) { /* Not a multi-char fold. */
2884 if (*s == LATIN_SMALL_LETTER_SHARP_S && OP(scan) == EXACTF)
2886 *has_exactf_sharp_s = TRUE;
2893 && ((*s & S_or_s_mask) == s_masked)
2894 && ((*(s+1) & S_or_s_mask) == s_masked))
2897 /* EXACTF nodes need to know that the minimum length
2898 * changed so that a sharp s in the string can match this
2899 * ss in the pattern, but they remain EXACTF nodes, as they
2900 * won't match this unless the target string is is UTF-8,
2901 * which we don't know until runtime */
2902 if (OP(scan) != EXACTF) {
2903 OP(scan) = EXACTFU_SS;
2907 *min_subtract += len - 1;
2914 /* Allow dumping but overwriting the collection of skipped
2915 * ops and/or strings with fake optimized ops */
2916 n = scan + NODE_SZ_STR(scan);
2924 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2928 /* REx optimizer. Converts nodes into quicker variants "in place".
2929 Finds fixed substrings. */
2931 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2932 to the position after last scanned or to NULL. */
2934 #define INIT_AND_WITHP \
2935 assert(!and_withp); \
2936 Newx(and_withp,1,struct regnode_charclass_class); \
2937 SAVEFREEPV(and_withp)
2939 /* this is a chain of data about sub patterns we are processing that
2940 need to be handled separately/specially in study_chunk. Its so
2941 we can simulate recursion without losing state. */
2943 typedef struct scan_frame {
2944 regnode *last; /* last node to process in this frame */
2945 regnode *next; /* next node to process when last is reached */
2946 struct scan_frame *prev; /*previous frame*/
2947 I32 stop; /* what stopparen do we use */
2951 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2954 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2955 I32 *minlenp, I32 *deltap,
2960 struct regnode_charclass_class *and_withp,
2961 U32 flags, U32 depth)
2962 /* scanp: Start here (read-write). */
2963 /* deltap: Write maxlen-minlen here. */
2964 /* last: Stop before this one. */
2965 /* data: string data about the pattern */
2966 /* stopparen: treat close N as END */
2967 /* recursed: which subroutines have we recursed into */
2968 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
2971 I32 min = 0; /* There must be at least this number of characters to match */
2973 regnode *scan = *scanp, *next;
2975 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
2976 int is_inf_internal = 0; /* The studied chunk is infinite */
2977 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
2978 scan_data_t data_fake;
2979 SV *re_trie_maxbuff = NULL;
2980 regnode *first_non_open = scan;
2981 I32 stopmin = I32_MAX;
2982 scan_frame *frame = NULL;
2983 GET_RE_DEBUG_FLAGS_DECL;
2985 PERL_ARGS_ASSERT_STUDY_CHUNK;
2988 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
2992 while (first_non_open && OP(first_non_open) == OPEN)
2993 first_non_open=regnext(first_non_open);
2998 while ( scan && OP(scan) != END && scan < last ){
2999 UV min_subtract = 0; /* How mmany chars to subtract from the minimum
3000 node length to get a real minimum (because
3001 the folded version may be shorter) */
3002 bool has_exactf_sharp_s = FALSE;
3003 /* Peephole optimizer: */
3004 DEBUG_STUDYDATA("Peep:", data,depth);
3005 DEBUG_PEEP("Peep",scan,depth);
3007 /* Its not clear to khw or hv why this is done here, and not in the
3008 * clauses that deal with EXACT nodes. khw's guess is that it's
3009 * because of a previous design */
3010 JOIN_EXACT(scan,&min_subtract, &has_exactf_sharp_s, 0);
3012 /* Follow the next-chain of the current node and optimize
3013 away all the NOTHINGs from it. */
3014 if (OP(scan) != CURLYX) {
3015 const int max = (reg_off_by_arg[OP(scan)]
3017 /* I32 may be smaller than U16 on CRAYs! */
3018 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
3019 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
3023 /* Skip NOTHING and LONGJMP. */
3024 while ((n = regnext(n))
3025 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
3026 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
3027 && off + noff < max)
3029 if (reg_off_by_arg[OP(scan)])
3032 NEXT_OFF(scan) = off;
3037 /* The principal pseudo-switch. Cannot be a switch, since we
3038 look into several different things. */
3039 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
3040 || OP(scan) == IFTHEN) {
3041 next = regnext(scan);
3043 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
3045 if (OP(next) == code || code == IFTHEN) {
3046 /* NOTE - There is similar code to this block below for handling
3047 TRIE nodes on a re-study. If you change stuff here check there
3049 I32 max1 = 0, min1 = I32_MAX, num = 0;
3050 struct regnode_charclass_class accum;
3051 regnode * const startbranch=scan;
3053 if (flags & SCF_DO_SUBSTR)
3054 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
3055 if (flags & SCF_DO_STCLASS)
3056 cl_init_zero(pRExC_state, &accum);
3058 while (OP(scan) == code) {
3059 I32 deltanext, minnext, f = 0, fake;
3060 struct regnode_charclass_class this_class;
3063 data_fake.flags = 0;
3065 data_fake.whilem_c = data->whilem_c;
3066 data_fake.last_closep = data->last_closep;
3069 data_fake.last_closep = &fake;
3071 data_fake.pos_delta = delta;
3072 next = regnext(scan);
3073 scan = NEXTOPER(scan);
3075 scan = NEXTOPER(scan);
3076 if (flags & SCF_DO_STCLASS) {
3077 cl_init(pRExC_state, &this_class);
3078 data_fake.start_class = &this_class;
3079 f = SCF_DO_STCLASS_AND;
3081 if (flags & SCF_WHILEM_VISITED_POS)
3082 f |= SCF_WHILEM_VISITED_POS;
3084 /* we suppose the run is continuous, last=next...*/
3085 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3087 stopparen, recursed, NULL, f,depth+1);
3090 if (max1 < minnext + deltanext)
3091 max1 = minnext + deltanext;
3092 if (deltanext == I32_MAX)
3093 is_inf = is_inf_internal = 1;
3095 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3097 if (data_fake.flags & SCF_SEEN_ACCEPT) {
3098 if ( stopmin > minnext)
3099 stopmin = min + min1;
3100 flags &= ~SCF_DO_SUBSTR;
3102 data->flags |= SCF_SEEN_ACCEPT;
3105 if (data_fake.flags & SF_HAS_EVAL)
3106 data->flags |= SF_HAS_EVAL;
3107 data->whilem_c = data_fake.whilem_c;
3109 if (flags & SCF_DO_STCLASS)
3110 cl_or(pRExC_state, &accum, &this_class);
3112 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
3114 if (flags & SCF_DO_SUBSTR) {
3115 data->pos_min += min1;
3116 data->pos_delta += max1 - min1;
3117 if (max1 != min1 || is_inf)
3118 data->longest = &(data->longest_float);
3121 delta += max1 - min1;
3122 if (flags & SCF_DO_STCLASS_OR) {
3123 cl_or(pRExC_state, data->start_class, &accum);
3125 cl_and(data->start_class, and_withp);
3126 flags &= ~SCF_DO_STCLASS;
3129 else if (flags & SCF_DO_STCLASS_AND) {
3131 cl_and(data->start_class, &accum);
3132 flags &= ~SCF_DO_STCLASS;
3135 /* Switch to OR mode: cache the old value of
3136 * data->start_class */
3138 StructCopy(data->start_class, and_withp,
3139 struct regnode_charclass_class);
3140 flags &= ~SCF_DO_STCLASS_AND;
3141 StructCopy(&accum, data->start_class,
3142 struct regnode_charclass_class);
3143 flags |= SCF_DO_STCLASS_OR;
3144 data->start_class->flags |= ANYOF_EOS;
3148 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
3151 Assuming this was/is a branch we are dealing with: 'scan' now
3152 points at the item that follows the branch sequence, whatever
3153 it is. We now start at the beginning of the sequence and look
3160 which would be constructed from a pattern like /A|LIST|OF|WORDS/
3162 If we can find such a subsequence we need to turn the first
3163 element into a trie and then add the subsequent branch exact
3164 strings to the trie.
3168 1. patterns where the whole set of branches can be converted.
3170 2. patterns where only a subset can be converted.
3172 In case 1 we can replace the whole set with a single regop
3173 for the trie. In case 2 we need to keep the start and end
3176 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
3177 becomes BRANCH TRIE; BRANCH X;
3179 There is an additional case, that being where there is a
3180 common prefix, which gets split out into an EXACT like node
3181 preceding the TRIE node.
3183 If x(1..n)==tail then we can do a simple trie, if not we make
3184 a "jump" trie, such that when we match the appropriate word
3185 we "jump" to the appropriate tail node. Essentially we turn
3186 a nested if into a case structure of sorts.
3191 if (!re_trie_maxbuff) {
3192 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
3193 if (!SvIOK(re_trie_maxbuff))
3194 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
3196 if ( SvIV(re_trie_maxbuff)>=0 ) {
3198 regnode *first = (regnode *)NULL;
3199 regnode *last = (regnode *)NULL;
3200 regnode *tail = scan;
3205 SV * const mysv = sv_newmortal(); /* for dumping */
3207 /* var tail is used because there may be a TAIL
3208 regop in the way. Ie, the exacts will point to the
3209 thing following the TAIL, but the last branch will
3210 point at the TAIL. So we advance tail. If we
3211 have nested (?:) we may have to move through several
3215 while ( OP( tail ) == TAIL ) {
3216 /* this is the TAIL generated by (?:) */
3217 tail = regnext( tail );
3221 DEBUG_TRIE_COMPILE_r({
3222 regprop(RExC_rx, mysv, tail );
3223 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
3224 (int)depth * 2 + 2, "",
3225 "Looking for TRIE'able sequences. Tail node is: ",
3226 SvPV_nolen_const( mysv )
3232 Step through the branches
3233 cur represents each branch,
3234 noper is the first thing to be matched as part of that branch
3235 noper_next is the regnext() of that node.
3237 We normally handle a case like this /FOO[xyz]|BAR[pqr]/
3238 via a "jump trie" but we also support building with NOJUMPTRIE,
3239 which restricts the trie logic to structures like /FOO|BAR/.
3241 If noper is a trieable nodetype then the branch is a possible optimization
3242 target. If we are building under NOJUMPTRIE then we require that noper_next
3243 is the same as scan (our current position in the regex program).
3245 Once we have two or more consecutive such branches we can create a
3246 trie of the EXACT's contents and stitch it in place into the program.
3248 If the sequence represents all of the branches in the alternation we
3249 replace the entire thing with a single TRIE node.
3251 Otherwise when it is a subsequence we need to stitch it in place and
3252 replace only the relevant branches. This means the first branch has
3253 to remain as it is used by the alternation logic, and its next pointer,
3254 and needs to be repointed at the item on the branch chain following
3255 the last branch we have optimized away.
3257 This could be either a BRANCH, in which case the subsequence is internal,
3258 or it could be the item following the branch sequence in which case the
3259 subsequence is at the end (which does not necessarily mean the first node
3260 is the start of the alternation).
3262 TRIE_TYPE(X) is a define which maps the optype to a trietype.
3265 ----------------+-----------
3269 EXACTFU_SS | EXACTFU
3270 EXACTFU_TRICKYFOLD | EXACTFU
3275 #define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \
3276 ( EXACT == (X) ) ? EXACT : \
3277 ( EXACTFU == (X) || EXACTFU_SS == (X) || EXACTFU_TRICKYFOLD == (X) ) ? EXACTFU : \
3280 /* dont use tail as the end marker for this traverse */
3281 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3282 regnode * const noper = NEXTOPER( cur );
3283 U8 noper_type = OP( noper );
3284 U8 noper_trietype = TRIE_TYPE( noper_type );
3285 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3286 regnode * const noper_next = regnext( noper );
3287 U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
3288 U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
3291 DEBUG_TRIE_COMPILE_r({
3292 regprop(RExC_rx, mysv, cur);
3293 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3294 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3296 regprop(RExC_rx, mysv, noper);
3297 PerlIO_printf( Perl_debug_log, " -> %s",
3298 SvPV_nolen_const(mysv));
3301 regprop(RExC_rx, mysv, noper_next );
3302 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3303 SvPV_nolen_const(mysv));
3305 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
3306 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
3307 PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
3311 /* Is noper a trieable nodetype that can be merged with the
3312 * current trie (if there is one)? */
3316 ( noper_trietype == NOTHING)
3317 || ( trietype == NOTHING )
3318 || ( trietype == noper_trietype )
3321 && noper_next == tail
3325 /* Handle mergable triable node
3326 * Either we are the first node in a new trieable sequence,
3327 * in which case we do some bookkeeping, otherwise we update
3328 * the end pointer. */
3331 if ( noper_trietype == NOTHING ) {
3332 #if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
3333 regnode * const noper_next = regnext( noper );
3334 U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
3335 U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
3338 if ( noper_next_trietype ) {
3339 trietype = noper_next_trietype;
3340 } else if (noper_next_type) {
3341 /* a NOTHING regop is 1 regop wide. We need at least two
3342 * for a trie so we can't merge this in */
3346 trietype = noper_trietype;
3349 if ( trietype == NOTHING )
3350 trietype = noper_trietype;
3355 } /* end handle mergable triable node */
3357 /* handle unmergable node -
3358 * noper may either be a triable node which can not be tried
3359 * together with the current trie, or a non triable node */
3361 /* If last is set and trietype is not NOTHING then we have found
3362 * at least two triable branch sequences in a row of a similar
3363 * trietype so we can turn them into a trie. If/when we
3364 * allow NOTHING to start a trie sequence this condition will be
3365 * required, and it isn't expensive so we leave it in for now. */
3366 if ( trietype && trietype != NOTHING )
3367 make_trie( pRExC_state,
3368 startbranch, first, cur, tail, count,
3369 trietype, depth+1 );
3370 last = NULL; /* note: we clear/update first, trietype etc below, so we dont do it here */
3374 && noper_next == tail
3377 /* noper is triable, so we can start a new trie sequence */
3380 trietype = noper_trietype;
3382 /* if we already saw a first but the current node is not triable then we have
3383 * to reset the first information. */
3388 } /* end handle unmergable node */
3389 } /* loop over branches */
3390 DEBUG_TRIE_COMPILE_r({
3391 regprop(RExC_rx, mysv, cur);
3392 PerlIO_printf( Perl_debug_log,
3393 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3394 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3397 if ( last && trietype ) {
3398 if ( trietype != NOTHING ) {
3399 /* the last branch of the sequence was part of a trie,
3400 * so we have to construct it here outside of the loop
3402 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, trietype, depth+1 );
3403 #ifdef TRIE_STUDY_OPT
3404 if ( ((made == MADE_EXACT_TRIE &&
3405 startbranch == first)
3406 || ( first_non_open == first )) &&
3408 flags |= SCF_TRIE_RESTUDY;
3409 if ( startbranch == first
3412 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3417 /* at this point we know whatever we have is a NOTHING sequence/branch
3418 * AND if 'startbranch' is 'first' then we can turn the whole thing into a NOTHING
3420 if ( startbranch == first ) {
3422 /* the entire thing is a NOTHING sequence, something like this:
3423 * (?:|) So we can turn it into a plain NOTHING op. */
3424 DEBUG_TRIE_COMPILE_r({
3425 regprop(RExC_rx, mysv, cur);
3426 PerlIO_printf( Perl_debug_log,
3427 "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
3428 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3431 OP(startbranch)= NOTHING;
3432 NEXT_OFF(startbranch)= tail - startbranch;
3433 for ( opt= startbranch + 1; opt < tail ; opt++ )
3437 } /* end if ( last) */
3438 } /* TRIE_MAXBUF is non zero */
3443 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3444 scan = NEXTOPER(NEXTOPER(scan));
3445 } else /* single branch is optimized. */
3446 scan = NEXTOPER(scan);
3448 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3449 scan_frame *newframe = NULL;
3454 if (OP(scan) != SUSPEND) {
3455 /* set the pointer */
3456 if (OP(scan) == GOSUB) {
3458 RExC_recurse[ARG2L(scan)] = scan;
3459 start = RExC_open_parens[paren-1];
3460 end = RExC_close_parens[paren-1];
3463 start = RExC_rxi->program + 1;
3467 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3468 SAVEFREEPV(recursed);
3470 if (!PAREN_TEST(recursed,paren+1)) {
3471 PAREN_SET(recursed,paren+1);
3472 Newx(newframe,1,scan_frame);
3474 if (flags & SCF_DO_SUBSTR) {
3475 SCAN_COMMIT(pRExC_state,data,minlenp);
3476 data->longest = &(data->longest_float);
3478 is_inf = is_inf_internal = 1;
3479 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3480 cl_anything(pRExC_state, data->start_class);
3481 flags &= ~SCF_DO_STCLASS;
3484 Newx(newframe,1,scan_frame);
3487 end = regnext(scan);
3492 SAVEFREEPV(newframe);
3493 newframe->next = regnext(scan);
3494 newframe->last = last;
3495 newframe->stop = stopparen;
3496 newframe->prev = frame;
3506 else if (OP(scan) == EXACT) {
3507 I32 l = STR_LEN(scan);
3510 const U8 * const s = (U8*)STRING(scan);
3511 uc = utf8_to_uvchr_buf(s, s + l, NULL);
3512 l = utf8_length(s, s + l);
3514 uc = *((U8*)STRING(scan));
3517 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3518 /* The code below prefers earlier match for fixed
3519 offset, later match for variable offset. */
3520 if (data->last_end == -1) { /* Update the start info. */
3521 data->last_start_min = data->pos_min;
3522 data->last_start_max = is_inf
3523 ? I32_MAX : data->pos_min + data->pos_delta;
3525 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3527 SvUTF8_on(data->last_found);
3529 SV * const sv = data->last_found;
3530 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3531 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3532 if (mg && mg->mg_len >= 0)
3533 mg->mg_len += utf8_length((U8*)STRING(scan),
3534 (U8*)STRING(scan)+STR_LEN(scan));
3536 data->last_end = data->pos_min + l;
3537 data->pos_min += l; /* As in the first entry. */
3538 data->flags &= ~SF_BEFORE_EOL;
3540 if (flags & SCF_DO_STCLASS_AND) {
3541 /* Check whether it is compatible with what we know already! */
3545 /* If compatible, we or it in below. It is compatible if is
3546 * in the bitmp and either 1) its bit or its fold is set, or 2)
3547 * it's for a locale. Even if there isn't unicode semantics
3548 * here, at runtime there may be because of matching against a
3549 * utf8 string, so accept a possible false positive for
3550 * latin1-range folds */
3552 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3553 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3554 && (!(data->start_class->flags & ANYOF_LOC_FOLD)
3555 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3560 ANYOF_CLASS_ZERO(data->start_class);
3561 ANYOF_BITMAP_ZERO(data->start_class);
3563 ANYOF_BITMAP_SET(data->start_class, uc);
3564 else if (uc >= 0x100) {
3567 /* Some Unicode code points fold to the Latin1 range; as
3568 * XXX temporary code, instead of figuring out if this is
3569 * one, just assume it is and set all the start class bits
3570 * that could be some such above 255 code point's fold
3571 * which will generate fals positives. As the code
3572 * elsewhere that does compute the fold settles down, it
3573 * can be extracted out and re-used here */
3574 for (i = 0; i < 256; i++){
3575 if (HAS_NONLATIN1_FOLD_CLOSURE(i)) {
3576 ANYOF_BITMAP_SET(data->start_class, i);
3580 data->start_class->flags &= ~ANYOF_EOS;
3582 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3584 else if (flags & SCF_DO_STCLASS_OR) {
3585 /* false positive possible if the class is case-folded */
3587 ANYOF_BITMAP_SET(data->start_class, uc);
3589 data->start_class->flags |= ANYOF_UNICODE_ALL;
3590 data->start_class->flags &= ~ANYOF_EOS;
3591 cl_and(data->start_class, and_withp);
3593 flags &= ~SCF_DO_STCLASS;
3595 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3596 I32 l = STR_LEN(scan);
3597 UV uc = *((U8*)STRING(scan));
3599 /* Search for fixed substrings supports EXACT only. */
3600 if (flags & SCF_DO_SUBSTR) {
3602 SCAN_COMMIT(pRExC_state, data, minlenp);
3605 const U8 * const s = (U8 *)STRING(scan);
3606 uc = utf8_to_uvchr_buf(s, s + l, NULL);
3607 l = utf8_length(s, s + l);
3609 if (has_exactf_sharp_s) {
3610 RExC_seen |= REG_SEEN_EXACTF_SHARP_S;
3612 min += l - min_subtract;
3614 delta += min_subtract;
3615 if (flags & SCF_DO_SUBSTR) {
3616 data->pos_min += l - min_subtract;
3617 if (data->pos_min < 0) {
3620 data->pos_delta += min_subtract;
3622 data->longest = &(data->longest_float);
3625 if (flags & SCF_DO_STCLASS_AND) {
3626 /* Check whether it is compatible with what we know already! */
3629 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3630 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3631 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3635 ANYOF_CLASS_ZERO(data->start_class);
3636 ANYOF_BITMAP_ZERO(data->start_class);
3638 ANYOF_BITMAP_SET(data->start_class, uc);
3639 data->start_class->flags &= ~ANYOF_EOS;
3640 if (OP(scan) == EXACTFL) {
3641 /* XXX This set is probably no longer necessary, and
3642 * probably wrong as LOCALE now is on in the initial
3644 data->start_class->flags |= ANYOF_LOCALE|ANYOF_LOC_FOLD;
3648 /* Also set the other member of the fold pair. In case
3649 * that unicode semantics is called for at runtime, use
3650 * the full latin1 fold. (Can't do this for locale,
3651 * because not known until runtime) */
3652 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3654 /* All other (EXACTFL handled above) folds except under
3655 * /iaa that include s, S, and sharp_s also may include
3657 if (OP(scan) != EXACTFA) {
3658 if (uc == 's' || uc == 'S') {
3659 ANYOF_BITMAP_SET(data->start_class,
3660 LATIN_SMALL_LETTER_SHARP_S);
3662 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3663 ANYOF_BITMAP_SET(data->start_class, 's');
3664 ANYOF_BITMAP_SET(data->start_class, 'S');
3669 else if (uc >= 0x100) {
3671 for (i = 0; i < 256; i++){
3672 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3673 ANYOF_BITMAP_SET(data->start_class, i);
3678 else if (flags & SCF_DO_STCLASS_OR) {
3679 if (data->start_class->flags & ANYOF_LOC_FOLD) {
3680 /* false positive possible if the class is case-folded.
3681 Assume that the locale settings are the same... */
3683 ANYOF_BITMAP_SET(data->start_class, uc);
3684 if (OP(scan) != EXACTFL) {
3686 /* And set the other member of the fold pair, but
3687 * can't do that in locale because not known until
3689 ANYOF_BITMAP_SET(data->start_class,
3690 PL_fold_latin1[uc]);
3692 /* All folds except under /iaa that include s, S,
3693 * and sharp_s also may include the others */
3694 if (OP(scan) != EXACTFA) {
3695 if (uc == 's' || uc == 'S') {
3696 ANYOF_BITMAP_SET(data->start_class,
3697 LATIN_SMALL_LETTER_SHARP_S);
3699 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3700 ANYOF_BITMAP_SET(data->start_class, 's');
3701 ANYOF_BITMAP_SET(data->start_class, 'S');
3706 data->start_class->flags &= ~ANYOF_EOS;
3708 cl_and(data->start_class, and_withp);
3710 flags &= ~SCF_DO_STCLASS;
3712 else if (REGNODE_VARIES(OP(scan))) {
3713 I32 mincount, maxcount, minnext, deltanext, fl = 0;
3714 I32 f = flags, pos_before = 0;
3715 regnode * const oscan = scan;
3716 struct regnode_charclass_class this_class;
3717 struct regnode_charclass_class *oclass = NULL;
3718 I32 next_is_eval = 0;
3720 switch (PL_regkind[OP(scan)]) {
3721 case WHILEM: /* End of (?:...)* . */
3722 scan = NEXTOPER(scan);
3725 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3726 next = NEXTOPER(scan);
3727 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3729 maxcount = REG_INFTY;
3730 next = regnext(scan);
3731 scan = NEXTOPER(scan);
3735 if (flags & SCF_DO_SUBSTR)
3740 if (flags & SCF_DO_STCLASS) {
3742 maxcount = REG_INFTY;
3743 next = regnext(scan);
3744 scan = NEXTOPER(scan);
3747 is_inf = is_inf_internal = 1;
3748 scan = regnext(scan);
3749 if (flags & SCF_DO_SUBSTR) {
3750 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3751 data->longest = &(data->longest_float);
3753 goto optimize_curly_tail;
3755 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3756 && (scan->flags == stopparen))
3761 mincount = ARG1(scan);
3762 maxcount = ARG2(scan);
3764 next = regnext(scan);
3765 if (OP(scan) == CURLYX) {
3766 I32 lp = (data ? *(data->last_closep) : 0);
3767 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3769 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3770 next_is_eval = (OP(scan) == EVAL);
3772 if (flags & SCF_DO_SUBSTR) {
3773 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3774 pos_before = data->pos_min;
3778 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3780 data->flags |= SF_IS_INF;
3782 if (flags & SCF_DO_STCLASS) {
3783 cl_init(pRExC_state, &this_class);
3784 oclass = data->start_class;
3785 data->start_class = &this_class;
3786 f |= SCF_DO_STCLASS_AND;
3787 f &= ~SCF_DO_STCLASS_OR;
3789 /* Exclude from super-linear cache processing any {n,m}
3790 regops for which the combination of input pos and regex
3791 pos is not enough information to determine if a match
3794 For example, in the regex /foo(bar\s*){4,8}baz/ with the
3795 regex pos at the \s*, the prospects for a match depend not
3796 only on the input position but also on how many (bar\s*)
3797 repeats into the {4,8} we are. */
3798 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3799 f &= ~SCF_WHILEM_VISITED_POS;
3801 /* This will finish on WHILEM, setting scan, or on NULL: */
3802 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3803 last, data, stopparen, recursed, NULL,
3805 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3807 if (flags & SCF_DO_STCLASS)
3808 data->start_class = oclass;
3809 if (mincount == 0 || minnext == 0) {
3810 if (flags & SCF_DO_STCLASS_OR) {
3811 cl_or(pRExC_state, data->start_class, &this_class);
3813 else if (flags & SCF_DO_STCLASS_AND) {
3814 /* Switch to OR mode: cache the old value of
3815 * data->start_class */
3817 StructCopy(data->start_class, and_withp,
3818 struct regnode_charclass_class);
3819 flags &= ~SCF_DO_STCLASS_AND;
3820 StructCopy(&this_class, data->start_class,
3821 struct regnode_charclass_class);
3822 flags |= SCF_DO_STCLASS_OR;
3823 data->start_class->flags |= ANYOF_EOS;
3825 } else { /* Non-zero len */
3826 if (flags & SCF_DO_STCLASS_OR) {
3827 cl_or(pRExC_state, data->start_class, &this_class);
3828 cl_and(data->start_class, and_withp);
3830 else if (flags & SCF_DO_STCLASS_AND)
3831 cl_and(data->start_class, &this_class);
3832 flags &= ~SCF_DO_STCLASS;
3834 if (!scan) /* It was not&nbs