3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 * 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
9 * "I wonder what the Entish is for 'yes' and 'no'," he thought.
12 * This file contains the code that creates, manipulates and destroys
13 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
14 * structure of an SV, so their creation and destruction is handled
15 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
16 * level functions (eg. substr, split, join) for each of the types are
28 /* Missing proto on LynxOS */
29 char *gconvert(double, int, int, char *);
32 #ifdef PERL_UTF8_CACHE_ASSERT
33 /* if adding more checks watch out for the following tests:
34 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
35 * lib/utf8.t lib/Unicode/Collate/t/index.t
38 # define ASSERT_UTF8_CACHE(cache) \
39 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
40 assert((cache)[2] <= (cache)[3]); \
41 assert((cache)[3] <= (cache)[1]);} \
44 # define ASSERT_UTF8_CACHE(cache) NOOP
47 #ifdef PERL_OLD_COPY_ON_WRITE
48 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
49 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
50 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
54 /* ============================================================================
56 =head1 Allocation and deallocation of SVs.
58 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
59 sv, av, hv...) contains type and reference count information, and for
60 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
61 contains fields specific to each type. Some types store all they need
62 in the head, so don't have a body.
64 In all but the most memory-paranoid configuations (ex: PURIFY), heads
65 and bodies are allocated out of arenas, which by default are
66 approximately 4K chunks of memory parcelled up into N heads or bodies.
67 Sv-bodies are allocated by their sv-type, guaranteeing size
68 consistency needed to allocate safely from arrays.
70 For SV-heads, the first slot in each arena is reserved, and holds a
71 link to the next arena, some flags, and a note of the number of slots.
72 Snaked through each arena chain is a linked list of free items; when
73 this becomes empty, an extra arena is allocated and divided up into N
74 items which are threaded into the free list.
76 SV-bodies are similar, but they use arena-sets by default, which
77 separate the link and info from the arena itself, and reclaim the 1st
78 slot in the arena. SV-bodies are further described later.
80 The following global variables are associated with arenas:
82 PL_sv_arenaroot pointer to list of SV arenas
83 PL_sv_root pointer to list of free SV structures
85 PL_body_arenas head of linked-list of body arenas
86 PL_body_roots[] array of pointers to list of free bodies of svtype
87 arrays are indexed by the svtype needed
89 A few special SV heads are not allocated from an arena, but are
90 instead directly created in the interpreter structure, eg PL_sv_undef.
91 The size of arenas can be changed from the default by setting
92 PERL_ARENA_SIZE appropriately at compile time.
94 The SV arena serves the secondary purpose of allowing still-live SVs
95 to be located and destroyed during final cleanup.
97 At the lowest level, the macros new_SV() and del_SV() grab and free
98 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
99 to return the SV to the free list with error checking.) new_SV() calls
100 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
101 SVs in the free list have their SvTYPE field set to all ones.
103 At the time of very final cleanup, sv_free_arenas() is called from
104 perl_destruct() to physically free all the arenas allocated since the
105 start of the interpreter.
107 The function visit() scans the SV arenas list, and calls a specified
108 function for each SV it finds which is still live - ie which has an SvTYPE
109 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
110 following functions (specified as [function that calls visit()] / [function
111 called by visit() for each SV]):
113 sv_report_used() / do_report_used()
114 dump all remaining SVs (debugging aid)
116 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
117 Attempt to free all objects pointed to by RVs,
118 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
119 try to do the same for all objects indirectly
120 referenced by typeglobs too. Called once from
121 perl_destruct(), prior to calling sv_clean_all()
124 sv_clean_all() / do_clean_all()
125 SvREFCNT_dec(sv) each remaining SV, possibly
126 triggering an sv_free(). It also sets the
127 SVf_BREAK flag on the SV to indicate that the
128 refcnt has been artificially lowered, and thus
129 stopping sv_free() from giving spurious warnings
130 about SVs which unexpectedly have a refcnt
131 of zero. called repeatedly from perl_destruct()
132 until there are no SVs left.
134 =head2 Arena allocator API Summary
136 Private API to rest of sv.c
140 new_XIV(), del_XIV(),
141 new_XNV(), del_XNV(),
146 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
150 ============================================================================ */
153 * "A time to plant, and a time to uproot what was planted..."
157 Perl_offer_nice_chunk(pTHX_ void *chunk, U32 chunk_size)
162 new_chunk = (void *)(chunk);
163 new_chunk_size = (chunk_size);
164 if (new_chunk_size > PL_nice_chunk_size) {
165 Safefree(PL_nice_chunk);
166 PL_nice_chunk = (char *) new_chunk;
167 PL_nice_chunk_size = new_chunk_size;
173 #ifdef DEBUG_LEAKING_SCALARS
174 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
176 # define FREE_SV_DEBUG_FILE(sv)
180 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
181 /* Whilst I'd love to do this, it seems that things like to check on
183 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
185 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
186 PoisonNew(&SvREFCNT(sv), 1, U32)
188 # define SvARENA_CHAIN(sv) SvANY(sv)
189 # define POSION_SV_HEAD(sv)
192 #define plant_SV(p) \
194 FREE_SV_DEBUG_FILE(p); \
196 SvARENA_CHAIN(p) = (void *)PL_sv_root; \
197 SvFLAGS(p) = SVTYPEMASK; \
202 #define uproot_SV(p) \
205 PL_sv_root = (SV*)SvARENA_CHAIN(p); \
210 /* make some more SVs by adding another arena */
219 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
220 PL_nice_chunk = NULL;
221 PL_nice_chunk_size = 0;
224 char *chunk; /* must use New here to match call to */
225 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
226 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
232 /* new_SV(): return a new, empty SV head */
234 #ifdef DEBUG_LEAKING_SCALARS
235 /* provide a real function for a debugger to play with */
244 sv = S_more_sv(aTHX);
248 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
249 sv->sv_debug_line = (U16) ((PL_copline == NOLINE) ?
250 (PL_curcop ? CopLINE(PL_curcop) : 0) : PL_copline);
251 sv->sv_debug_inpad = 0;
252 sv->sv_debug_cloned = 0;
253 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
257 # define new_SV(p) (p)=S_new_SV(aTHX)
265 (p) = S_more_sv(aTHX); \
273 /* del_SV(): return an empty SV head to the free list */
286 S_del_sv(pTHX_ SV *p)
292 for (sva = PL_sv_arenaroot; sva; sva = (SV *) SvANY(sva)) {
293 const SV * const sv = sva + 1;
294 const SV * const svend = &sva[SvREFCNT(sva)];
295 if (p >= sv && p < svend) {
301 if (ckWARN_d(WARN_INTERNAL))
302 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
303 "Attempt to free non-arena SV: 0x%"UVxf
304 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
311 #else /* ! DEBUGGING */
313 #define del_SV(p) plant_SV(p)
315 #endif /* DEBUGGING */
319 =head1 SV Manipulation Functions
321 =for apidoc sv_add_arena
323 Given a chunk of memory, link it to the head of the list of arenas,
324 and split it into a list of free SVs.
330 Perl_sv_add_arena(pTHX_ char *ptr, U32 size, U32 flags)
333 SV* const sva = (SV*)ptr;
337 /* The first SV in an arena isn't an SV. */
338 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
339 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
340 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
342 PL_sv_arenaroot = sva;
343 PL_sv_root = sva + 1;
345 svend = &sva[SvREFCNT(sva) - 1];
348 SvARENA_CHAIN(sv) = (void *)(SV*)(sv + 1);
352 /* Must always set typemask because it's awlays checked in on cleanup
353 when the arenas are walked looking for objects. */
354 SvFLAGS(sv) = SVTYPEMASK;
357 SvARENA_CHAIN(sv) = 0;
361 SvFLAGS(sv) = SVTYPEMASK;
364 /* visit(): call the named function for each non-free SV in the arenas
365 * whose flags field matches the flags/mask args. */
368 S_visit(pTHX_ SVFUNC_t f, U32 flags, U32 mask)
374 for (sva = PL_sv_arenaroot; sva; sva = (SV*)SvANY(sva)) {
375 register const SV * const svend = &sva[SvREFCNT(sva)];
377 for (sv = sva + 1; sv < svend; ++sv) {
378 if (SvTYPE(sv) != SVTYPEMASK
379 && (sv->sv_flags & mask) == flags
392 /* called by sv_report_used() for each live SV */
395 do_report_used(pTHX_ SV *sv)
397 if (SvTYPE(sv) != SVTYPEMASK) {
398 PerlIO_printf(Perl_debug_log, "****\n");
405 =for apidoc sv_report_used
407 Dump the contents of all SVs not yet freed. (Debugging aid).
413 Perl_sv_report_used(pTHX)
416 visit(do_report_used, 0, 0);
422 /* called by sv_clean_objs() for each live SV */
425 do_clean_objs(pTHX_ SV *ref)
430 SV * const target = SvRV(ref);
431 if (SvOBJECT(target)) {
432 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
433 if (SvWEAKREF(ref)) {
434 sv_del_backref(target, ref);
440 SvREFCNT_dec(target);
445 /* XXX Might want to check arrays, etc. */
448 /* called by sv_clean_objs() for each live SV */
450 #ifndef DISABLE_DESTRUCTOR_KLUDGE
452 do_clean_named_objs(pTHX_ SV *sv)
455 assert(SvTYPE(sv) == SVt_PVGV);
456 assert(isGV_with_GP(sv));
459 #ifdef PERL_DONT_CREATE_GVSV
462 SvOBJECT(GvSV(sv))) ||
463 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
464 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
465 (GvIO(sv) && SvOBJECT(GvIO(sv))) ||
466 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
468 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
469 SvFLAGS(sv) |= SVf_BREAK;
477 =for apidoc sv_clean_objs
479 Attempt to destroy all objects not yet freed
485 Perl_sv_clean_objs(pTHX)
488 PL_in_clean_objs = TRUE;
489 visit(do_clean_objs, SVf_ROK, SVf_ROK);
490 #ifndef DISABLE_DESTRUCTOR_KLUDGE
491 /* some barnacles may yet remain, clinging to typeglobs */
492 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
494 PL_in_clean_objs = FALSE;
497 /* called by sv_clean_all() for each live SV */
500 do_clean_all(pTHX_ SV *sv)
503 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
504 SvFLAGS(sv) |= SVf_BREAK;
505 if (PL_comppad == (AV*)sv) {
513 =for apidoc sv_clean_all
515 Decrement the refcnt of each remaining SV, possibly triggering a
516 cleanup. This function may have to be called multiple times to free
517 SVs which are in complex self-referential hierarchies.
523 Perl_sv_clean_all(pTHX)
527 PL_in_clean_all = TRUE;
528 cleaned = visit(do_clean_all, 0,0);
529 PL_in_clean_all = FALSE;
534 ARENASETS: a meta-arena implementation which separates arena-info
535 into struct arena_set, which contains an array of struct
536 arena_descs, each holding info for a single arena. By separating
537 the meta-info from the arena, we recover the 1st slot, formerly
538 borrowed for list management. The arena_set is about the size of an
539 arena, avoiding the needless malloc overhead of a naive linked-list.
541 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
542 memory in the last arena-set (1/2 on average). In trade, we get
543 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
544 smaller types). The recovery of the wasted space allows use of
545 small arenas for large, rare body types,
548 char *arena; /* the raw storage, allocated aligned */
549 size_t size; /* its size ~4k typ */
550 U32 misc; /* type, and in future other things. */
555 /* Get the maximum number of elements in set[] such that struct arena_set
556 will fit within PERL_ARENA_SIZE, which is probabably just under 4K, and
557 therefore likely to be 1 aligned memory page. */
559 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
560 - 2 * sizeof(int)) / sizeof (struct arena_desc))
563 struct arena_set* next;
564 unsigned int set_size; /* ie ARENAS_PER_SET */
565 unsigned int curr; /* index of next available arena-desc */
566 struct arena_desc set[ARENAS_PER_SET];
570 =for apidoc sv_free_arenas
572 Deallocate the memory used by all arenas. Note that all the individual SV
573 heads and bodies within the arenas must already have been freed.
578 Perl_sv_free_arenas(pTHX)
585 /* Free arenas here, but be careful about fake ones. (We assume
586 contiguity of the fake ones with the corresponding real ones.) */
588 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
589 svanext = (SV*) SvANY(sva);
590 while (svanext && SvFAKE(svanext))
591 svanext = (SV*) SvANY(svanext);
598 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
601 struct arena_set *current = aroot;
604 assert(aroot->set[i].arena);
605 Safefree(aroot->set[i].arena);
613 i = PERL_ARENA_ROOTS_SIZE;
615 PL_body_roots[i] = 0;
617 Safefree(PL_nice_chunk);
618 PL_nice_chunk = NULL;
619 PL_nice_chunk_size = 0;
625 Here are mid-level routines that manage the allocation of bodies out
626 of the various arenas. There are 5 kinds of arenas:
628 1. SV-head arenas, which are discussed and handled above
629 2. regular body arenas
630 3. arenas for reduced-size bodies
632 5. pte arenas (thread related)
634 Arena types 2 & 3 are chained by body-type off an array of
635 arena-root pointers, which is indexed by svtype. Some of the
636 larger/less used body types are malloced singly, since a large
637 unused block of them is wasteful. Also, several svtypes dont have
638 bodies; the data fits into the sv-head itself. The arena-root
639 pointer thus has a few unused root-pointers (which may be hijacked
640 later for arena types 4,5)
642 3 differs from 2 as an optimization; some body types have several
643 unused fields in the front of the structure (which are kept in-place
644 for consistency). These bodies can be allocated in smaller chunks,
645 because the leading fields arent accessed. Pointers to such bodies
646 are decremented to point at the unused 'ghost' memory, knowing that
647 the pointers are used with offsets to the real memory.
649 HE, HEK arenas are managed separately, with separate code, but may
650 be merge-able later..
652 PTE arenas are not sv-bodies, but they share these mid-level
653 mechanics, so are considered here. The new mid-level mechanics rely
654 on the sv_type of the body being allocated, so we just reserve one
655 of the unused body-slots for PTEs, then use it in those (2) PTE
656 contexts below (line ~10k)
659 /* get_arena(size): this creates custom-sized arenas
660 TBD: export properly for hv.c: S_more_he().
663 Perl_get_arena(pTHX_ size_t arena_size, U32 misc)
666 struct arena_desc* adesc;
667 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
670 /* shouldnt need this
671 if (!arena_size) arena_size = PERL_ARENA_SIZE;
674 /* may need new arena-set to hold new arena */
675 if (!aroot || aroot->curr >= aroot->set_size) {
676 struct arena_set *newroot;
677 Newxz(newroot, 1, struct arena_set);
678 newroot->set_size = ARENAS_PER_SET;
679 newroot->next = aroot;
681 PL_body_arenas = (void *) newroot;
682 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
685 /* ok, now have arena-set with at least 1 empty/available arena-desc */
686 curr = aroot->curr++;
687 adesc = &(aroot->set[curr]);
688 assert(!adesc->arena);
690 Newx(adesc->arena, arena_size, char);
691 adesc->size = arena_size;
693 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %d\n",
694 curr, (void*)adesc->arena, arena_size));
700 /* return a thing to the free list */
702 #define del_body(thing, root) \
704 void ** const thing_copy = (void **)thing;\
705 *thing_copy = *root; \
706 *root = (void*)thing_copy; \
711 =head1 SV-Body Allocation
713 Allocation of SV-bodies is similar to SV-heads, differing as follows;
714 the allocation mechanism is used for many body types, so is somewhat
715 more complicated, it uses arena-sets, and has no need for still-live
718 At the outermost level, (new|del)_X*V macros return bodies of the
719 appropriate type. These macros call either (new|del)_body_type or
720 (new|del)_body_allocated macro pairs, depending on specifics of the
721 type. Most body types use the former pair, the latter pair is used to
722 allocate body types with "ghost fields".
724 "ghost fields" are fields that are unused in certain types, and
725 consequently dont need to actually exist. They are declared because
726 they're part of a "base type", which allows use of functions as
727 methods. The simplest examples are AVs and HVs, 2 aggregate types
728 which don't use the fields which support SCALAR semantics.
730 For these types, the arenas are carved up into *_allocated size
731 chunks, we thus avoid wasted memory for those unaccessed members.
732 When bodies are allocated, we adjust the pointer back in memory by the
733 size of the bit not allocated, so it's as if we allocated the full
734 structure. (But things will all go boom if you write to the part that
735 is "not there", because you'll be overwriting the last members of the
736 preceding structure in memory.)
738 We calculate the correction using the STRUCT_OFFSET macro. For
739 example, if xpv_allocated is the same structure as XPV then the two
740 OFFSETs sum to zero, and the pointer is unchanged. If the allocated
741 structure is smaller (no initial NV actually allocated) then the net
742 effect is to subtract the size of the NV from the pointer, to return a
743 new pointer as if an initial NV were actually allocated.
745 This is the same trick as was used for NV and IV bodies. Ironically it
746 doesn't need to be used for NV bodies any more, because NV is now at
747 the start of the structure. IV bodies don't need it either, because
748 they are no longer allocated.
750 In turn, the new_body_* allocators call S_new_body(), which invokes
751 new_body_inline macro, which takes a lock, and takes a body off the
752 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
753 necessary to refresh an empty list. Then the lock is released, and
754 the body is returned.
756 S_more_bodies calls get_arena(), and carves it up into an array of N
757 bodies, which it strings into a linked list. It looks up arena-size
758 and body-size from the body_details table described below, thus
759 supporting the multiple body-types.
761 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
762 the (new|del)_X*V macros are mapped directly to malloc/free.
768 For each sv-type, struct body_details bodies_by_type[] carries
769 parameters which control these aspects of SV handling:
771 Arena_size determines whether arenas are used for this body type, and if
772 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
773 zero, forcing individual mallocs and frees.
775 Body_size determines how big a body is, and therefore how many fit into
776 each arena. Offset carries the body-pointer adjustment needed for
777 *_allocated body types, and is used in *_allocated macros.
779 But its main purpose is to parameterize info needed in
780 Perl_sv_upgrade(). The info here dramatically simplifies the function
781 vs the implementation in 5.8.7, making it table-driven. All fields
782 are used for this, except for arena_size.
784 For the sv-types that have no bodies, arenas are not used, so those
785 PL_body_roots[sv_type] are unused, and can be overloaded. In
786 something of a special case, SVt_NULL is borrowed for HE arenas;
787 PL_body_roots[SVt_NULL] is filled by S_more_he, but the
788 bodies_by_type[SVt_NULL] slot is not used, as the table is not
791 PTEs also use arenas, but are never seen in Perl_sv_upgrade.
792 Nonetheless, they get their own slot in bodies_by_type[SVt_NULL], so
793 they can just use the same allocation semantics. At first, PTEs were
794 also overloaded to a non-body sv-type, but this yielded hard-to-find
795 malloc bugs, so was simplified by claiming a new slot. This choice
796 has no consequence at this time.
800 struct body_details {
801 U8 body_size; /* Size to allocate */
802 U8 copy; /* Size of structure to copy (may be shorter) */
804 unsigned int type : 4; /* We have space for a sanity check. */
805 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
806 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
807 unsigned int arena : 1; /* Allocated from an arena */
808 size_t arena_size; /* Size of arena to allocate */
816 /* With -DPURFIY we allocate everything directly, and don't use arenas.
817 This seems a rather elegant way to simplify some of the code below. */
818 #define HASARENA FALSE
820 #define HASARENA TRUE
822 #define NOARENA FALSE
824 /* Size the arenas to exactly fit a given number of bodies. A count
825 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
826 simplifying the default. If count > 0, the arena is sized to fit
827 only that many bodies, allowing arenas to be used for large, rare
828 bodies (XPVFM, XPVIO) without undue waste. The arena size is
829 limited by PERL_ARENA_SIZE, so we can safely oversize the
832 #define FIT_ARENA0(body_size) \
833 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
834 #define FIT_ARENAn(count,body_size) \
835 ( count * body_size <= PERL_ARENA_SIZE) \
836 ? count * body_size \
837 : FIT_ARENA0 (body_size)
838 #define FIT_ARENA(count,body_size) \
840 ? FIT_ARENAn (count, body_size) \
841 : FIT_ARENA0 (body_size)
843 /* A macro to work out the offset needed to subtract from a pointer to (say)
850 to make its members accessible via a pointer to (say)
860 #define relative_STRUCT_OFFSET(longer, shorter, member) \
861 (STRUCT_OFFSET(shorter, member) - STRUCT_OFFSET(longer, member))
863 /* Calculate the length to copy. Specifically work out the length less any
864 final padding the compiler needed to add. See the comment in sv_upgrade
865 for why copying the padding proved to be a bug. */
867 #define copy_length(type, last_member) \
868 STRUCT_OFFSET(type, last_member) \
869 + sizeof (((type*)SvANY((SV*)0))->last_member)
871 static const struct body_details bodies_by_type[] = {
872 { sizeof(HE), 0, 0, SVt_NULL,
873 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
875 /* The bind placeholder pretends to be an RV for now.
876 Also it's marked as "can't upgrade" top stop anyone using it before it's
878 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
880 /* IVs are in the head, so the allocation size is 0.
881 However, the slot is overloaded for PTEs. */
882 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
883 sizeof(IV), /* This is used to copy out the IV body. */
884 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
885 NOARENA /* IVS don't need an arena */,
886 /* But PTEs need to know the size of their arena */
887 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
890 /* 8 bytes on most ILP32 with IEEE doubles */
891 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
892 FIT_ARENA(0, sizeof(NV)) },
894 /* RVs are in the head now. */
895 { 0, 0, 0, SVt_RV, FALSE, NONV, NOARENA, 0 },
897 /* 8 bytes on most ILP32 with IEEE doubles */
898 { sizeof(xpv_allocated),
899 copy_length(XPV, xpv_len)
900 - relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
901 + relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
902 SVt_PV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpv_allocated)) },
905 { sizeof(xpviv_allocated),
906 copy_length(XPVIV, xiv_u)
907 - relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
908 + relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
909 SVt_PVIV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpviv_allocated)) },
912 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
913 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
916 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
917 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
920 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
921 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
924 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
925 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
927 { sizeof(xpvav_allocated),
928 copy_length(XPVAV, xmg_stash)
929 - relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
930 + relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
931 SVt_PVAV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvav_allocated)) },
933 { sizeof(xpvhv_allocated),
934 copy_length(XPVHV, xmg_stash)
935 - relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
936 + relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
937 SVt_PVHV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvhv_allocated)) },
940 { sizeof(xpvcv_allocated), sizeof(xpvcv_allocated),
941 + relative_STRUCT_OFFSET(xpvcv_allocated, XPVCV, xpv_cur),
942 SVt_PVCV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvcv_allocated)) },
944 { sizeof(xpvfm_allocated), sizeof(xpvfm_allocated),
945 + relative_STRUCT_OFFSET(xpvfm_allocated, XPVFM, xpv_cur),
946 SVt_PVFM, TRUE, NONV, NOARENA, FIT_ARENA(20, sizeof(xpvfm_allocated)) },
948 /* XPVIO is 84 bytes, fits 48x */
949 { sizeof(XPVIO), sizeof(XPVIO), 0, SVt_PVIO, TRUE, HADNV,
950 HASARENA, FIT_ARENA(24, sizeof(XPVIO)) },
953 #define new_body_type(sv_type) \
954 (void *)((char *)S_new_body(aTHX_ sv_type))
956 #define del_body_type(p, sv_type) \
957 del_body(p, &PL_body_roots[sv_type])
960 #define new_body_allocated(sv_type) \
961 (void *)((char *)S_new_body(aTHX_ sv_type) \
962 - bodies_by_type[sv_type].offset)
964 #define del_body_allocated(p, sv_type) \
965 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
968 #define my_safemalloc(s) (void*)safemalloc(s)
969 #define my_safecalloc(s) (void*)safecalloc(s, 1)
970 #define my_safefree(p) safefree((char*)p)
974 #define new_XNV() my_safemalloc(sizeof(XPVNV))
975 #define del_XNV(p) my_safefree(p)
977 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
978 #define del_XPVNV(p) my_safefree(p)
980 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
981 #define del_XPVAV(p) my_safefree(p)
983 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
984 #define del_XPVHV(p) my_safefree(p)
986 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
987 #define del_XPVMG(p) my_safefree(p)
989 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
990 #define del_XPVGV(p) my_safefree(p)
994 #define new_XNV() new_body_type(SVt_NV)
995 #define del_XNV(p) del_body_type(p, SVt_NV)
997 #define new_XPVNV() new_body_type(SVt_PVNV)
998 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1000 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1001 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1003 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1004 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1006 #define new_XPVMG() new_body_type(SVt_PVMG)
1007 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1009 #define new_XPVGV() new_body_type(SVt_PVGV)
1010 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1014 /* no arena for you! */
1016 #define new_NOARENA(details) \
1017 my_safemalloc((details)->body_size + (details)->offset)
1018 #define new_NOARENAZ(details) \
1019 my_safecalloc((details)->body_size + (details)->offset)
1022 S_more_bodies (pTHX_ svtype sv_type)
1025 void ** const root = &PL_body_roots[sv_type];
1026 const struct body_details * const bdp = &bodies_by_type[sv_type];
1027 const size_t body_size = bdp->body_size;
1030 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1031 static bool done_sanity_check;
1033 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1034 * variables like done_sanity_check. */
1035 if (!done_sanity_check) {
1036 unsigned int i = SVt_LAST;
1038 done_sanity_check = TRUE;
1041 assert (bodies_by_type[i].type == i);
1045 assert(bdp->arena_size);
1047 start = (char*) Perl_get_arena(aTHX_ bdp->arena_size, sv_type);
1049 end = start + bdp->arena_size - body_size;
1051 /* computed count doesnt reflect the 1st slot reservation */
1052 DEBUG_m(PerlIO_printf(Perl_debug_log,
1053 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1054 (void*)start, (void*)end,
1055 (int)bdp->arena_size, sv_type, (int)body_size,
1056 (int)bdp->arena_size / (int)body_size));
1058 *root = (void *)start;
1060 while (start < end) {
1061 char * const next = start + body_size;
1062 *(void**) start = (void *)next;
1065 *(void **)start = 0;
1070 /* grab a new thing from the free list, allocating more if necessary.
1071 The inline version is used for speed in hot routines, and the
1072 function using it serves the rest (unless PURIFY).
1074 #define new_body_inline(xpv, sv_type) \
1076 void ** const r3wt = &PL_body_roots[sv_type]; \
1077 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1078 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1079 *(r3wt) = *(void**)(xpv); \
1085 S_new_body(pTHX_ svtype sv_type)
1089 new_body_inline(xpv, sv_type);
1096 =for apidoc sv_upgrade
1098 Upgrade an SV to a more complex form. Generally adds a new body type to the
1099 SV, then copies across as much information as possible from the old body.
1100 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1106 Perl_sv_upgrade(pTHX_ register SV *sv, svtype new_type)
1111 const svtype old_type = SvTYPE(sv);
1112 const struct body_details *new_type_details;
1113 const struct body_details *const old_type_details
1114 = bodies_by_type + old_type;
1116 if (new_type != SVt_PV && SvIsCOW(sv)) {
1117 sv_force_normal_flags(sv, 0);
1120 if (old_type == new_type)
1123 if (old_type > new_type)
1124 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1125 (int)old_type, (int)new_type);
1128 old_body = SvANY(sv);
1130 /* Copying structures onto other structures that have been neatly zeroed
1131 has a subtle gotcha. Consider XPVMG
1133 +------+------+------+------+------+-------+-------+
1134 | NV | CUR | LEN | IV | MAGIC | STASH |
1135 +------+------+------+------+------+-------+-------+
1136 0 4 8 12 16 20 24 28
1138 where NVs are aligned to 8 bytes, so that sizeof that structure is
1139 actually 32 bytes long, with 4 bytes of padding at the end:
1141 +------+------+------+------+------+-------+-------+------+
1142 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1143 +------+------+------+------+------+-------+-------+------+
1144 0 4 8 12 16 20 24 28 32
1146 so what happens if you allocate memory for this structure:
1148 +------+------+------+------+------+-------+-------+------+------+...
1149 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1150 +------+------+------+------+------+-------+-------+------+------+...
1151 0 4 8 12 16 20 24 28 32 36
1153 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1154 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1155 started out as zero once, but it's quite possible that it isn't. So now,
1156 rather than a nicely zeroed GP, you have it pointing somewhere random.
1159 (In fact, GP ends up pointing at a previous GP structure, because the
1160 principle cause of the padding in XPVMG getting garbage is a copy of
1161 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1162 this happens to be moot because XPVGV has been re-ordered, with GP
1163 no longer after STASH)
1165 So we are careful and work out the size of used parts of all the
1172 if (new_type < SVt_PVIV) {
1173 new_type = (new_type == SVt_NV)
1174 ? SVt_PVNV : SVt_PVIV;
1178 if (new_type < SVt_PVNV) {
1179 new_type = SVt_PVNV;
1185 assert(new_type > SVt_PV);
1186 assert(SVt_IV < SVt_PV);
1187 assert(SVt_NV < SVt_PV);
1194 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1195 there's no way that it can be safely upgraded, because perl.c
1196 expects to Safefree(SvANY(PL_mess_sv)) */
1197 assert(sv != PL_mess_sv);
1198 /* This flag bit is used to mean other things in other scalar types.
1199 Given that it only has meaning inside the pad, it shouldn't be set
1200 on anything that can get upgraded. */
1201 assert(!SvPAD_TYPED(sv));
1204 if (old_type_details->cant_upgrade)
1205 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1206 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1208 new_type_details = bodies_by_type + new_type;
1210 SvFLAGS(sv) &= ~SVTYPEMASK;
1211 SvFLAGS(sv) |= new_type;
1213 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1214 the return statements above will have triggered. */
1215 assert (new_type != SVt_NULL);
1218 assert(old_type == SVt_NULL);
1219 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1223 assert(old_type == SVt_NULL);
1224 SvANY(sv) = new_XNV();
1228 assert(old_type == SVt_NULL);
1229 SvANY(sv) = &sv->sv_u.svu_rv;
1234 assert(new_type_details->body_size);
1237 assert(new_type_details->arena);
1238 assert(new_type_details->arena_size);
1239 /* This points to the start of the allocated area. */
1240 new_body_inline(new_body, new_type);
1241 Zero(new_body, new_type_details->body_size, char);
1242 new_body = ((char *)new_body) - new_type_details->offset;
1244 /* We always allocated the full length item with PURIFY. To do this
1245 we fake things so that arena is false for all 16 types.. */
1246 new_body = new_NOARENAZ(new_type_details);
1248 SvANY(sv) = new_body;
1249 if (new_type == SVt_PVAV) {
1255 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1256 The target created by newSVrv also is, and it can have magic.
1257 However, it never has SvPVX set.
1259 if (old_type >= SVt_RV) {
1260 assert(SvPVX_const(sv) == 0);
1263 if (old_type >= SVt_PVMG) {
1264 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1265 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1267 sv->sv_u.svu_array = NULL; /* or svu_hash */
1273 /* XXX Is this still needed? Was it ever needed? Surely as there is
1274 no route from NV to PVIV, NOK can never be true */
1275 assert(!SvNOKp(sv));
1286 assert(new_type_details->body_size);
1287 /* We always allocated the full length item with PURIFY. To do this
1288 we fake things so that arena is false for all 16 types.. */
1289 if(new_type_details->arena) {
1290 /* This points to the start of the allocated area. */
1291 new_body_inline(new_body, new_type);
1292 Zero(new_body, new_type_details->body_size, char);
1293 new_body = ((char *)new_body) - new_type_details->offset;
1295 new_body = new_NOARENAZ(new_type_details);
1297 SvANY(sv) = new_body;
1299 if (old_type_details->copy) {
1300 /* There is now the potential for an upgrade from something without
1301 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1302 int offset = old_type_details->offset;
1303 int length = old_type_details->copy;
1305 if (new_type_details->offset > old_type_details->offset) {
1306 const int difference
1307 = new_type_details->offset - old_type_details->offset;
1308 offset += difference;
1309 length -= difference;
1311 assert (length >= 0);
1313 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1317 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1318 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1319 * correct 0.0 for us. Otherwise, if the old body didn't have an
1320 * NV slot, but the new one does, then we need to initialise the
1321 * freshly created NV slot with whatever the correct bit pattern is
1323 if (old_type_details->zero_nv && !new_type_details->zero_nv
1324 && !isGV_with_GP(sv))
1328 if (new_type == SVt_PVIO)
1329 IoPAGE_LEN(sv) = 60;
1330 if (old_type < SVt_RV)
1334 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1335 (unsigned long)new_type);
1338 if (old_type_details->arena) {
1339 /* If there was an old body, then we need to free it.
1340 Note that there is an assumption that all bodies of types that
1341 can be upgraded came from arenas. Only the more complex non-
1342 upgradable types are allowed to be directly malloc()ed. */
1344 my_safefree(old_body);
1346 del_body((void*)((char*)old_body + old_type_details->offset),
1347 &PL_body_roots[old_type]);
1353 =for apidoc sv_backoff
1355 Remove any string offset. You should normally use the C<SvOOK_off> macro
1362 Perl_sv_backoff(pTHX_ register SV *sv)
1364 PERL_UNUSED_CONTEXT;
1366 assert(SvTYPE(sv) != SVt_PVHV);
1367 assert(SvTYPE(sv) != SVt_PVAV);
1369 const char * const s = SvPVX_const(sv);
1370 SvLEN_set(sv, SvLEN(sv) + SvIVX(sv));
1371 SvPV_set(sv, SvPVX(sv) - SvIVX(sv));
1373 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1375 SvFLAGS(sv) &= ~SVf_OOK;
1382 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1383 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1384 Use the C<SvGROW> wrapper instead.
1390 Perl_sv_grow(pTHX_ register SV *sv, register STRLEN newlen)
1394 if (PL_madskills && newlen >= 0x100000) {
1395 PerlIO_printf(Perl_debug_log,
1396 "Allocation too large: %"UVxf"\n", (UV)newlen);
1398 #ifdef HAS_64K_LIMIT
1399 if (newlen >= 0x10000) {
1400 PerlIO_printf(Perl_debug_log,
1401 "Allocation too large: %"UVxf"\n", (UV)newlen);
1404 #endif /* HAS_64K_LIMIT */
1407 if (SvTYPE(sv) < SVt_PV) {
1408 sv_upgrade(sv, SVt_PV);
1409 s = SvPVX_mutable(sv);
1411 else if (SvOOK(sv)) { /* pv is offset? */
1413 s = SvPVX_mutable(sv);
1414 if (newlen > SvLEN(sv))
1415 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1416 #ifdef HAS_64K_LIMIT
1417 if (newlen >= 0x10000)
1422 s = SvPVX_mutable(sv);
1424 if (newlen > SvLEN(sv)) { /* need more room? */
1425 newlen = PERL_STRLEN_ROUNDUP(newlen);
1426 if (SvLEN(sv) && s) {
1428 const STRLEN l = malloced_size((void*)SvPVX_const(sv));
1434 s = (char*)saferealloc(s, newlen);
1437 s = (char*)safemalloc(newlen);
1438 if (SvPVX_const(sv) && SvCUR(sv)) {
1439 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1443 SvLEN_set(sv, newlen);
1449 =for apidoc sv_setiv
1451 Copies an integer into the given SV, upgrading first if necessary.
1452 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1458 Perl_sv_setiv(pTHX_ register SV *sv, IV i)
1461 SV_CHECK_THINKFIRST_COW_DROP(sv);
1462 switch (SvTYPE(sv)) {
1464 sv_upgrade(sv, SVt_IV);
1467 sv_upgrade(sv, SVt_PVNV);
1471 sv_upgrade(sv, SVt_PVIV);
1480 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1484 (void)SvIOK_only(sv); /* validate number */
1490 =for apidoc sv_setiv_mg
1492 Like C<sv_setiv>, but also handles 'set' magic.
1498 Perl_sv_setiv_mg(pTHX_ register SV *sv, IV i)
1505 =for apidoc sv_setuv
1507 Copies an unsigned integer into the given SV, upgrading first if necessary.
1508 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1514 Perl_sv_setuv(pTHX_ register SV *sv, UV u)
1516 /* With these two if statements:
1517 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1520 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1522 If you wish to remove them, please benchmark to see what the effect is
1524 if (u <= (UV)IV_MAX) {
1525 sv_setiv(sv, (IV)u);
1534 =for apidoc sv_setuv_mg
1536 Like C<sv_setuv>, but also handles 'set' magic.
1542 Perl_sv_setuv_mg(pTHX_ register SV *sv, UV u)
1549 =for apidoc sv_setnv
1551 Copies a double into the given SV, upgrading first if necessary.
1552 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1558 Perl_sv_setnv(pTHX_ register SV *sv, NV num)
1561 SV_CHECK_THINKFIRST_COW_DROP(sv);
1562 switch (SvTYPE(sv)) {
1565 sv_upgrade(sv, SVt_NV);
1570 sv_upgrade(sv, SVt_PVNV);
1579 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1584 (void)SvNOK_only(sv); /* validate number */
1589 =for apidoc sv_setnv_mg
1591 Like C<sv_setnv>, but also handles 'set' magic.
1597 Perl_sv_setnv_mg(pTHX_ register SV *sv, NV num)
1603 /* Print an "isn't numeric" warning, using a cleaned-up,
1604 * printable version of the offending string
1608 S_not_a_number(pTHX_ SV *sv)
1616 dsv = sv_2mortal(newSVpvs(""));
1617 pv = sv_uni_display(dsv, sv, 10, 0);
1620 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1621 /* each *s can expand to 4 chars + "...\0",
1622 i.e. need room for 8 chars */
1624 const char *s = SvPVX_const(sv);
1625 const char * const end = s + SvCUR(sv);
1626 for ( ; s < end && d < limit; s++ ) {
1628 if (ch & 128 && !isPRINT_LC(ch)) {
1637 else if (ch == '\r') {
1641 else if (ch == '\f') {
1645 else if (ch == '\\') {
1649 else if (ch == '\0') {
1653 else if (isPRINT_LC(ch))
1670 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1671 "Argument \"%s\" isn't numeric in %s", pv,
1674 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1675 "Argument \"%s\" isn't numeric", pv);
1679 =for apidoc looks_like_number
1681 Test if the content of an SV looks like a number (or is a number).
1682 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1683 non-numeric warning), even if your atof() doesn't grok them.
1689 Perl_looks_like_number(pTHX_ SV *sv)
1691 register const char *sbegin;
1695 sbegin = SvPVX_const(sv);
1698 else if (SvPOKp(sv))
1699 sbegin = SvPV_const(sv, len);
1701 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1702 return grok_number(sbegin, len, NULL);
1706 S_glob_2number(pTHX_ GV * const gv)
1708 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1709 SV *const buffer = sv_newmortal();
1711 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1714 gv_efullname3(buffer, gv, "*");
1715 SvFLAGS(gv) |= wasfake;
1717 /* We know that all GVs stringify to something that is not-a-number,
1718 so no need to test that. */
1719 if (ckWARN(WARN_NUMERIC))
1720 not_a_number(buffer);
1721 /* We just want something true to return, so that S_sv_2iuv_common
1722 can tail call us and return true. */
1727 S_glob_2pv(pTHX_ GV * const gv, STRLEN * const len)
1729 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1730 SV *const buffer = sv_newmortal();
1732 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1735 gv_efullname3(buffer, gv, "*");
1736 SvFLAGS(gv) |= wasfake;
1738 assert(SvPOK(buffer));
1740 *len = SvCUR(buffer);
1742 return SvPVX(buffer);
1745 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1746 until proven guilty, assume that things are not that bad... */
1751 As 64 bit platforms often have an NV that doesn't preserve all bits of
1752 an IV (an assumption perl has been based on to date) it becomes necessary
1753 to remove the assumption that the NV always carries enough precision to
1754 recreate the IV whenever needed, and that the NV is the canonical form.
1755 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1756 precision as a side effect of conversion (which would lead to insanity
1757 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1758 1) to distinguish between IV/UV/NV slots that have cached a valid
1759 conversion where precision was lost and IV/UV/NV slots that have a
1760 valid conversion which has lost no precision
1761 2) to ensure that if a numeric conversion to one form is requested that
1762 would lose precision, the precise conversion (or differently
1763 imprecise conversion) is also performed and cached, to prevent
1764 requests for different numeric formats on the same SV causing
1765 lossy conversion chains. (lossless conversion chains are perfectly
1770 SvIOKp is true if the IV slot contains a valid value
1771 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1772 SvNOKp is true if the NV slot contains a valid value
1773 SvNOK is true only if the NV value is accurate
1776 while converting from PV to NV, check to see if converting that NV to an
1777 IV(or UV) would lose accuracy over a direct conversion from PV to
1778 IV(or UV). If it would, cache both conversions, return NV, but mark
1779 SV as IOK NOKp (ie not NOK).
1781 While converting from PV to IV, check to see if converting that IV to an
1782 NV would lose accuracy over a direct conversion from PV to NV. If it
1783 would, cache both conversions, flag similarly.
1785 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1786 correctly because if IV & NV were set NV *always* overruled.
1787 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1788 changes - now IV and NV together means that the two are interchangeable:
1789 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1791 The benefit of this is that operations such as pp_add know that if
1792 SvIOK is true for both left and right operands, then integer addition
1793 can be used instead of floating point (for cases where the result won't
1794 overflow). Before, floating point was always used, which could lead to
1795 loss of precision compared with integer addition.
1797 * making IV and NV equal status should make maths accurate on 64 bit
1799 * may speed up maths somewhat if pp_add and friends start to use
1800 integers when possible instead of fp. (Hopefully the overhead in
1801 looking for SvIOK and checking for overflow will not outweigh the
1802 fp to integer speedup)
1803 * will slow down integer operations (callers of SvIV) on "inaccurate"
1804 values, as the change from SvIOK to SvIOKp will cause a call into
1805 sv_2iv each time rather than a macro access direct to the IV slot
1806 * should speed up number->string conversion on integers as IV is
1807 favoured when IV and NV are equally accurate
1809 ####################################################################
1810 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1811 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1812 On the other hand, SvUOK is true iff UV.
1813 ####################################################################
1815 Your mileage will vary depending your CPU's relative fp to integer
1819 #ifndef NV_PRESERVES_UV
1820 # define IS_NUMBER_UNDERFLOW_IV 1
1821 # define IS_NUMBER_UNDERFLOW_UV 2
1822 # define IS_NUMBER_IV_AND_UV 2
1823 # define IS_NUMBER_OVERFLOW_IV 4
1824 # define IS_NUMBER_OVERFLOW_UV 5
1826 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1828 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1830 S_sv_2iuv_non_preserve(pTHX_ register SV *sv, I32 numtype)
1833 PERL_UNUSED_ARG(numtype); /* Used only under DEBUGGING? */
1834 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1835 if (SvNVX(sv) < (NV)IV_MIN) {
1836 (void)SvIOKp_on(sv);
1838 SvIV_set(sv, IV_MIN);
1839 return IS_NUMBER_UNDERFLOW_IV;
1841 if (SvNVX(sv) > (NV)UV_MAX) {
1842 (void)SvIOKp_on(sv);
1845 SvUV_set(sv, UV_MAX);
1846 return IS_NUMBER_OVERFLOW_UV;
1848 (void)SvIOKp_on(sv);
1850 /* Can't use strtol etc to convert this string. (See truth table in
1852 if (SvNVX(sv) <= (UV)IV_MAX) {
1853 SvIV_set(sv, I_V(SvNVX(sv)));
1854 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1855 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1857 /* Integer is imprecise. NOK, IOKp */
1859 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1862 SvUV_set(sv, U_V(SvNVX(sv)));
1863 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1864 if (SvUVX(sv) == UV_MAX) {
1865 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1866 possibly be preserved by NV. Hence, it must be overflow.
1868 return IS_NUMBER_OVERFLOW_UV;
1870 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1872 /* Integer is imprecise. NOK, IOKp */
1874 return IS_NUMBER_OVERFLOW_IV;
1876 #endif /* !NV_PRESERVES_UV*/
1879 S_sv_2iuv_common(pTHX_ SV *sv) {
1882 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1883 * without also getting a cached IV/UV from it at the same time
1884 * (ie PV->NV conversion should detect loss of accuracy and cache
1885 * IV or UV at same time to avoid this. */
1886 /* IV-over-UV optimisation - choose to cache IV if possible */
1888 if (SvTYPE(sv) == SVt_NV)
1889 sv_upgrade(sv, SVt_PVNV);
1891 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1892 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1893 certainly cast into the IV range at IV_MAX, whereas the correct
1894 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1896 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1897 if (Perl_isnan(SvNVX(sv))) {
1903 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
1904 SvIV_set(sv, I_V(SvNVX(sv)));
1905 if (SvNVX(sv) == (NV) SvIVX(sv)
1906 #ifndef NV_PRESERVES_UV
1907 && (((UV)1 << NV_PRESERVES_UV_BITS) >
1908 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
1909 /* Don't flag it as "accurately an integer" if the number
1910 came from a (by definition imprecise) NV operation, and
1911 we're outside the range of NV integer precision */
1914 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
1915 DEBUG_c(PerlIO_printf(Perl_debug_log,
1916 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
1922 /* IV not precise. No need to convert from PV, as NV
1923 conversion would already have cached IV if it detected
1924 that PV->IV would be better than PV->NV->IV
1925 flags already correct - don't set public IOK. */
1926 DEBUG_c(PerlIO_printf(Perl_debug_log,
1927 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
1932 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
1933 but the cast (NV)IV_MIN rounds to a the value less (more
1934 negative) than IV_MIN which happens to be equal to SvNVX ??
1935 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
1936 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
1937 (NV)UVX == NVX are both true, but the values differ. :-(
1938 Hopefully for 2s complement IV_MIN is something like
1939 0x8000000000000000 which will be exact. NWC */
1942 SvUV_set(sv, U_V(SvNVX(sv)));
1944 (SvNVX(sv) == (NV) SvUVX(sv))
1945 #ifndef NV_PRESERVES_UV
1946 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
1947 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
1948 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
1949 /* Don't flag it as "accurately an integer" if the number
1950 came from a (by definition imprecise) NV operation, and
1951 we're outside the range of NV integer precision */
1956 DEBUG_c(PerlIO_printf(Perl_debug_log,
1957 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
1963 else if (SvPOKp(sv) && SvLEN(sv)) {
1965 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
1966 /* We want to avoid a possible problem when we cache an IV/ a UV which
1967 may be later translated to an NV, and the resulting NV is not
1968 the same as the direct translation of the initial string
1969 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
1970 be careful to ensure that the value with the .456 is around if the
1971 NV value is requested in the future).
1973 This means that if we cache such an IV/a UV, we need to cache the
1974 NV as well. Moreover, we trade speed for space, and do not
1975 cache the NV if we are sure it's not needed.
1978 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
1979 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
1980 == IS_NUMBER_IN_UV) {
1981 /* It's definitely an integer, only upgrade to PVIV */
1982 if (SvTYPE(sv) < SVt_PVIV)
1983 sv_upgrade(sv, SVt_PVIV);
1985 } else if (SvTYPE(sv) < SVt_PVNV)
1986 sv_upgrade(sv, SVt_PVNV);
1988 /* If NVs preserve UVs then we only use the UV value if we know that
1989 we aren't going to call atof() below. If NVs don't preserve UVs
1990 then the value returned may have more precision than atof() will
1991 return, even though value isn't perfectly accurate. */
1992 if ((numtype & (IS_NUMBER_IN_UV
1993 #ifdef NV_PRESERVES_UV
1996 )) == IS_NUMBER_IN_UV) {
1997 /* This won't turn off the public IOK flag if it was set above */
1998 (void)SvIOKp_on(sv);
2000 if (!(numtype & IS_NUMBER_NEG)) {
2002 if (value <= (UV)IV_MAX) {
2003 SvIV_set(sv, (IV)value);
2005 /* it didn't overflow, and it was positive. */
2006 SvUV_set(sv, value);
2010 /* 2s complement assumption */
2011 if (value <= (UV)IV_MIN) {
2012 SvIV_set(sv, -(IV)value);
2014 /* Too negative for an IV. This is a double upgrade, but
2015 I'm assuming it will be rare. */
2016 if (SvTYPE(sv) < SVt_PVNV)
2017 sv_upgrade(sv, SVt_PVNV);
2021 SvNV_set(sv, -(NV)value);
2022 SvIV_set(sv, IV_MIN);
2026 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2027 will be in the previous block to set the IV slot, and the next
2028 block to set the NV slot. So no else here. */
2030 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2031 != IS_NUMBER_IN_UV) {
2032 /* It wasn't an (integer that doesn't overflow the UV). */
2033 SvNV_set(sv, Atof(SvPVX_const(sv)));
2035 if (! numtype && ckWARN(WARN_NUMERIC))
2038 #if defined(USE_LONG_DOUBLE)
2039 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2040 PTR2UV(sv), SvNVX(sv)));
2042 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2043 PTR2UV(sv), SvNVX(sv)));
2046 #ifdef NV_PRESERVES_UV
2047 (void)SvIOKp_on(sv);
2049 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2050 SvIV_set(sv, I_V(SvNVX(sv)));
2051 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2054 NOOP; /* Integer is imprecise. NOK, IOKp */
2056 /* UV will not work better than IV */
2058 if (SvNVX(sv) > (NV)UV_MAX) {
2060 /* Integer is inaccurate. NOK, IOKp, is UV */
2061 SvUV_set(sv, UV_MAX);
2063 SvUV_set(sv, U_V(SvNVX(sv)));
2064 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2065 NV preservse UV so can do correct comparison. */
2066 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2069 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2074 #else /* NV_PRESERVES_UV */
2075 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2076 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2077 /* The IV/UV slot will have been set from value returned by
2078 grok_number above. The NV slot has just been set using
2081 assert (SvIOKp(sv));
2083 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2084 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2085 /* Small enough to preserve all bits. */
2086 (void)SvIOKp_on(sv);
2088 SvIV_set(sv, I_V(SvNVX(sv)));
2089 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2091 /* Assumption: first non-preserved integer is < IV_MAX,
2092 this NV is in the preserved range, therefore: */
2093 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2095 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2099 0 0 already failed to read UV.
2100 0 1 already failed to read UV.
2101 1 0 you won't get here in this case. IV/UV
2102 slot set, public IOK, Atof() unneeded.
2103 1 1 already read UV.
2104 so there's no point in sv_2iuv_non_preserve() attempting
2105 to use atol, strtol, strtoul etc. */
2106 sv_2iuv_non_preserve (sv, numtype);
2109 #endif /* NV_PRESERVES_UV */
2113 if (isGV_with_GP(sv))
2114 return glob_2number((GV *)sv);
2116 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2117 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2120 if (SvTYPE(sv) < SVt_IV)
2121 /* Typically the caller expects that sv_any is not NULL now. */
2122 sv_upgrade(sv, SVt_IV);
2123 /* Return 0 from the caller. */
2130 =for apidoc sv_2iv_flags
2132 Return the integer value of an SV, doing any necessary string
2133 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2134 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2140 Perl_sv_2iv_flags(pTHX_ register SV *sv, I32 flags)
2145 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2146 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2147 cache IVs just in case. In practice it seems that they never
2148 actually anywhere accessible by user Perl code, let alone get used
2149 in anything other than a string context. */
2150 if (flags & SV_GMAGIC)
2155 return I_V(SvNVX(sv));
2157 if (SvPOKp(sv) && SvLEN(sv)) {
2160 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2162 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2163 == IS_NUMBER_IN_UV) {
2164 /* It's definitely an integer */
2165 if (numtype & IS_NUMBER_NEG) {
2166 if (value < (UV)IV_MIN)
2169 if (value < (UV)IV_MAX)
2174 if (ckWARN(WARN_NUMERIC))
2177 return I_V(Atof(SvPVX_const(sv)));
2182 assert(SvTYPE(sv) >= SVt_PVMG);
2183 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2184 } else if (SvTHINKFIRST(sv)) {
2188 SV * const tmpstr=AMG_CALLun(sv,numer);
2189 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2190 return SvIV(tmpstr);
2193 return PTR2IV(SvRV(sv));
2196 sv_force_normal_flags(sv, 0);
2198 if (SvREADONLY(sv) && !SvOK(sv)) {
2199 if (ckWARN(WARN_UNINITIALIZED))
2205 if (S_sv_2iuv_common(aTHX_ sv))
2208 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2209 PTR2UV(sv),SvIVX(sv)));
2210 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2214 =for apidoc sv_2uv_flags
2216 Return the unsigned integer value of an SV, doing any necessary string
2217 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2218 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2224 Perl_sv_2uv_flags(pTHX_ register SV *sv, I32 flags)
2229 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2230 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2231 cache IVs just in case. */
2232 if (flags & SV_GMAGIC)
2237 return U_V(SvNVX(sv));
2238 if (SvPOKp(sv) && SvLEN(sv)) {
2241 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2243 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2244 == IS_NUMBER_IN_UV) {
2245 /* It's definitely an integer */
2246 if (!(numtype & IS_NUMBER_NEG))
2250 if (ckWARN(WARN_NUMERIC))
2253 return U_V(Atof(SvPVX_const(sv)));
2258 assert(SvTYPE(sv) >= SVt_PVMG);
2259 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2260 } else if (SvTHINKFIRST(sv)) {
2264 SV *const tmpstr = AMG_CALLun(sv,numer);
2265 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2266 return SvUV(tmpstr);
2269 return PTR2UV(SvRV(sv));
2272 sv_force_normal_flags(sv, 0);
2274 if (SvREADONLY(sv) && !SvOK(sv)) {
2275 if (ckWARN(WARN_UNINITIALIZED))
2281 if (S_sv_2iuv_common(aTHX_ sv))
2285 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2286 PTR2UV(sv),SvUVX(sv)));
2287 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2293 Return the num value of an SV, doing any necessary string or integer
2294 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2301 Perl_sv_2nv(pTHX_ register SV *sv)
2306 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2307 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2308 cache IVs just in case. */
2312 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2313 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2314 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2316 return Atof(SvPVX_const(sv));
2320 return (NV)SvUVX(sv);
2322 return (NV)SvIVX(sv);
2327 assert(SvTYPE(sv) >= SVt_PVMG);
2328 /* This falls through to the report_uninit near the end of the
2330 } else if (SvTHINKFIRST(sv)) {
2334 SV *const tmpstr = AMG_CALLun(sv,numer);
2335 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2336 return SvNV(tmpstr);
2339 return PTR2NV(SvRV(sv));
2342 sv_force_normal_flags(sv, 0);
2344 if (SvREADONLY(sv) && !SvOK(sv)) {
2345 if (ckWARN(WARN_UNINITIALIZED))
2350 if (SvTYPE(sv) < SVt_NV) {
2351 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2352 sv_upgrade(sv, SVt_NV);
2353 #ifdef USE_LONG_DOUBLE
2355 STORE_NUMERIC_LOCAL_SET_STANDARD();
2356 PerlIO_printf(Perl_debug_log,
2357 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2358 PTR2UV(sv), SvNVX(sv));
2359 RESTORE_NUMERIC_LOCAL();
2363 STORE_NUMERIC_LOCAL_SET_STANDARD();
2364 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2365 PTR2UV(sv), SvNVX(sv));
2366 RESTORE_NUMERIC_LOCAL();
2370 else if (SvTYPE(sv) < SVt_PVNV)
2371 sv_upgrade(sv, SVt_PVNV);
2376 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2377 #ifdef NV_PRESERVES_UV
2380 /* Only set the public NV OK flag if this NV preserves the IV */
2381 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2382 if (SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2383 : (SvIVX(sv) == I_V(SvNVX(sv))))
2389 else if (SvPOKp(sv) && SvLEN(sv)) {
2391 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2392 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2394 #ifdef NV_PRESERVES_UV
2395 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2396 == IS_NUMBER_IN_UV) {
2397 /* It's definitely an integer */
2398 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2400 SvNV_set(sv, Atof(SvPVX_const(sv)));
2403 SvNV_set(sv, Atof(SvPVX_const(sv)));
2404 /* Only set the public NV OK flag if this NV preserves the value in
2405 the PV at least as well as an IV/UV would.
2406 Not sure how to do this 100% reliably. */
2407 /* if that shift count is out of range then Configure's test is
2408 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2410 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2411 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2412 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2413 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2414 /* Can't use strtol etc to convert this string, so don't try.
2415 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2418 /* value has been set. It may not be precise. */
2419 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2420 /* 2s complement assumption for (UV)IV_MIN */
2421 SvNOK_on(sv); /* Integer is too negative. */
2426 if (numtype & IS_NUMBER_NEG) {
2427 SvIV_set(sv, -(IV)value);
2428 } else if (value <= (UV)IV_MAX) {
2429 SvIV_set(sv, (IV)value);
2431 SvUV_set(sv, value);
2435 if (numtype & IS_NUMBER_NOT_INT) {
2436 /* I believe that even if the original PV had decimals,
2437 they are lost beyond the limit of the FP precision.
2438 However, neither is canonical, so both only get p
2439 flags. NWC, 2000/11/25 */
2440 /* Both already have p flags, so do nothing */
2442 const NV nv = SvNVX(sv);
2443 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2444 if (SvIVX(sv) == I_V(nv)) {
2447 /* It had no "." so it must be integer. */
2451 /* between IV_MAX and NV(UV_MAX).
2452 Could be slightly > UV_MAX */
2454 if (numtype & IS_NUMBER_NOT_INT) {
2455 /* UV and NV both imprecise. */
2457 const UV nv_as_uv = U_V(nv);
2459 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2468 #endif /* NV_PRESERVES_UV */
2471 if (isGV_with_GP(sv)) {
2472 glob_2number((GV *)sv);
2476 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2478 assert (SvTYPE(sv) >= SVt_NV);
2479 /* Typically the caller expects that sv_any is not NULL now. */
2480 /* XXX Ilya implies that this is a bug in callers that assume this
2481 and ideally should be fixed. */
2484 #if defined(USE_LONG_DOUBLE)
2486 STORE_NUMERIC_LOCAL_SET_STANDARD();
2487 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2488 PTR2UV(sv), SvNVX(sv));
2489 RESTORE_NUMERIC_LOCAL();
2493 STORE_NUMERIC_LOCAL_SET_STANDARD();
2494 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2495 PTR2UV(sv), SvNVX(sv));
2496 RESTORE_NUMERIC_LOCAL();
2502 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2503 * UV as a string towards the end of buf, and return pointers to start and
2506 * We assume that buf is at least TYPE_CHARS(UV) long.
2510 S_uiv_2buf(char *buf, IV iv, UV uv, int is_uv, char **peob)
2512 char *ptr = buf + TYPE_CHARS(UV);
2513 char * const ebuf = ptr;
2526 *--ptr = '0' + (char)(uv % 10);
2535 =for apidoc sv_2pv_flags
2537 Returns a pointer to the string value of an SV, and sets *lp to its length.
2538 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2540 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2541 usually end up here too.
2547 Perl_sv_2pv_flags(pTHX_ register SV *sv, STRLEN *lp, I32 flags)
2557 if (SvGMAGICAL(sv)) {
2558 if (flags & SV_GMAGIC)
2563 if (flags & SV_MUTABLE_RETURN)
2564 return SvPVX_mutable(sv);
2565 if (flags & SV_CONST_RETURN)
2566 return (char *)SvPVX_const(sv);
2569 if (SvIOKp(sv) || SvNOKp(sv)) {
2570 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2575 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2576 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2578 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2585 #ifdef FIXNEGATIVEZERO
2586 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2592 SvUPGRADE(sv, SVt_PV);
2595 s = SvGROW_mutable(sv, len + 1);
2598 return (char*)memcpy(s, tbuf, len + 1);
2604 assert(SvTYPE(sv) >= SVt_PVMG);
2605 /* This falls through to the report_uninit near the end of the
2607 } else if (SvTHINKFIRST(sv)) {
2611 SV *const tmpstr = AMG_CALLun(sv,string);
2612 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2614 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2618 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2619 if (flags & SV_CONST_RETURN) {
2620 pv = (char *) SvPVX_const(tmpstr);
2622 pv = (flags & SV_MUTABLE_RETURN)
2623 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2626 *lp = SvCUR(tmpstr);
2628 pv = sv_2pv_flags(tmpstr, lp, flags);
2642 const SV *const referent = (SV*)SvRV(sv);
2646 retval = buffer = savepvn("NULLREF", len);
2647 } else if (SvTYPE(referent) == SVt_PVMG
2648 && ((SvFLAGS(referent) &
2649 (SVs_OBJECT|SVf_OK|SVs_GMG|SVs_SMG|SVs_RMG))
2650 == (SVs_OBJECT|SVs_SMG))
2651 && (mg = mg_find(referent, PERL_MAGIC_qr)))
2656 (str) = CALLREG_AS_STR(mg,lp,&flags,&haseval);
2661 PL_reginterp_cnt += haseval;
2664 const char *const typestr = sv_reftype(referent, 0);
2665 const STRLEN typelen = strlen(typestr);
2666 UV addr = PTR2UV(referent);
2667 const char *stashname = NULL;
2668 STRLEN stashnamelen = 0; /* hush, gcc */
2669 const char *buffer_end;
2671 if (SvOBJECT(referent)) {
2672 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2675 stashname = HEK_KEY(name);
2676 stashnamelen = HEK_LEN(name);
2678 if (HEK_UTF8(name)) {
2684 stashname = "__ANON__";
2687 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2688 + 2 * sizeof(UV) + 2 /* )\0 */;
2690 len = typelen + 3 /* (0x */
2691 + 2 * sizeof(UV) + 2 /* )\0 */;
2694 Newx(buffer, len, char);
2695 buffer_end = retval = buffer + len;
2697 /* Working backwards */
2701 *--retval = PL_hexdigit[addr & 15];
2702 } while (addr >>= 4);
2708 memcpy(retval, typestr, typelen);
2712 retval -= stashnamelen;
2713 memcpy(retval, stashname, stashnamelen);
2715 /* retval may not neccesarily have reached the start of the
2717 assert (retval >= buffer);
2719 len = buffer_end - retval - 1; /* -1 for that \0 */
2727 if (SvREADONLY(sv) && !SvOK(sv)) {
2728 if (ckWARN(WARN_UNINITIALIZED))
2735 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2736 /* I'm assuming that if both IV and NV are equally valid then
2737 converting the IV is going to be more efficient */
2738 const U32 isUIOK = SvIsUV(sv);
2739 char buf[TYPE_CHARS(UV)];
2742 if (SvTYPE(sv) < SVt_PVIV)
2743 sv_upgrade(sv, SVt_PVIV);
2744 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2745 /* inlined from sv_setpvn */
2746 SvGROW_mutable(sv, (STRLEN)(ebuf - ptr + 1));
2747 Move(ptr,SvPVX_mutable(sv),ebuf - ptr,char);
2748 SvCUR_set(sv, ebuf - ptr);
2752 else if (SvNOKp(sv)) {
2753 const int olderrno = errno;
2754 if (SvTYPE(sv) < SVt_PVNV)
2755 sv_upgrade(sv, SVt_PVNV);
2756 /* The +20 is pure guesswork. Configure test needed. --jhi */
2757 s = SvGROW_mutable(sv, NV_DIG + 20);
2758 /* some Xenix systems wipe out errno here */
2760 if (SvNVX(sv) == 0.0)
2761 my_strlcpy(s, "0", SvLEN(sv));
2765 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2768 #ifdef FIXNEGATIVEZERO
2769 if (*s == '-' && s[1] == '0' && !s[2])
2770 my_strlcpy(s, "0", SvLEN(s));
2779 if (isGV_with_GP(sv))
2780 return glob_2pv((GV *)sv, lp);
2782 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2786 if (SvTYPE(sv) < SVt_PV)
2787 /* Typically the caller expects that sv_any is not NULL now. */
2788 sv_upgrade(sv, SVt_PV);
2792 const STRLEN len = s - SvPVX_const(sv);
2798 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2799 PTR2UV(sv),SvPVX_const(sv)));
2800 if (flags & SV_CONST_RETURN)
2801 return (char *)SvPVX_const(sv);
2802 if (flags & SV_MUTABLE_RETURN)
2803 return SvPVX_mutable(sv);
2808 =for apidoc sv_copypv
2810 Copies a stringified representation of the source SV into the
2811 destination SV. Automatically performs any necessary mg_get and
2812 coercion of numeric values into strings. Guaranteed to preserve
2813 UTF8 flag even from overloaded objects. Similar in nature to
2814 sv_2pv[_flags] but operates directly on an SV instead of just the
2815 string. Mostly uses sv_2pv_flags to do its work, except when that
2816 would lose the UTF-8'ness of the PV.
2822 Perl_sv_copypv(pTHX_ SV *dsv, register SV *ssv)
2825 const char * const s = SvPV_const(ssv,len);
2826 sv_setpvn(dsv,s,len);
2834 =for apidoc sv_2pvbyte
2836 Return a pointer to the byte-encoded representation of the SV, and set *lp
2837 to its length. May cause the SV to be downgraded from UTF-8 as a
2840 Usually accessed via the C<SvPVbyte> macro.
2846 Perl_sv_2pvbyte(pTHX_ register SV *sv, STRLEN *lp)
2848 sv_utf8_downgrade(sv,0);
2849 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2853 =for apidoc sv_2pvutf8
2855 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
2856 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
2858 Usually accessed via the C<SvPVutf8> macro.
2864 Perl_sv_2pvutf8(pTHX_ register SV *sv, STRLEN *lp)
2866 sv_utf8_upgrade(sv);
2867 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2872 =for apidoc sv_2bool
2874 This function is only called on magical items, and is only used by
2875 sv_true() or its macro equivalent.
2881 Perl_sv_2bool(pTHX_ register SV *sv)
2890 SV * const tmpsv = AMG_CALLun(sv,bool_);
2891 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2892 return (bool)SvTRUE(tmpsv);
2894 return SvRV(sv) != 0;
2897 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
2899 (*sv->sv_u.svu_pv > '0' ||
2900 Xpvtmp->xpv_cur > 1 ||
2901 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
2908 return SvIVX(sv) != 0;
2911 return SvNVX(sv) != 0.0;
2913 if (isGV_with_GP(sv))
2923 =for apidoc sv_utf8_upgrade
2925 Converts the PV of an SV to its UTF-8-encoded form.
2926 Forces the SV to string form if it is not already.
2927 Always sets the SvUTF8 flag to avoid future validity checks even
2928 if all the bytes have hibit clear.
2930 This is not as a general purpose byte encoding to Unicode interface:
2931 use the Encode extension for that.
2933 =for apidoc sv_utf8_upgrade_flags
2935 Converts the PV of an SV to its UTF-8-encoded form.
2936 Forces the SV to string form if it is not already.
2937 Always sets the SvUTF8 flag to avoid future validity checks even
2938 if all the bytes have hibit clear. If C<flags> has C<SV_GMAGIC> bit set,
2939 will C<mg_get> on C<sv> if appropriate, else not. C<sv_utf8_upgrade> and
2940 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
2942 This is not as a general purpose byte encoding to Unicode interface:
2943 use the Encode extension for that.
2949 Perl_sv_utf8_upgrade_flags(pTHX_ register SV *sv, I32 flags)
2952 if (sv == &PL_sv_undef)
2956 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
2957 (void) sv_2pv_flags(sv,&len, flags);
2961 (void) SvPV_force(sv,len);
2970 sv_force_normal_flags(sv, 0);
2973 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING))
2974 sv_recode_to_utf8(sv, PL_encoding);
2975 else { /* Assume Latin-1/EBCDIC */
2976 /* This function could be much more efficient if we
2977 * had a FLAG in SVs to signal if there are any hibit
2978 * chars in the PV. Given that there isn't such a flag
2979 * make the loop as fast as possible. */
2980 const U8 * const s = (U8 *) SvPVX_const(sv);
2981 const U8 * const e = (U8 *) SvEND(sv);
2986 /* Check for hi bit */
2987 if (!NATIVE_IS_INVARIANT(ch)) {
2988 STRLEN len = SvCUR(sv) + 1; /* Plus the \0 */
2989 U8 * const recoded = bytes_to_utf8((U8*)s, &len);
2991 SvPV_free(sv); /* No longer using what was there before. */
2992 SvPV_set(sv, (char*)recoded);
2993 SvCUR_set(sv, len - 1);
2994 SvLEN_set(sv, len); /* No longer know the real size. */
2998 /* Mark as UTF-8 even if no hibit - saves scanning loop */
3005 =for apidoc sv_utf8_downgrade
3007 Attempts to convert the PV of an SV from characters to bytes.
3008 If the PV contains a character beyond byte, this conversion will fail;
3009 in this case, either returns false or, if C<fail_ok> is not
3012 This is not as a general purpose Unicode to byte encoding interface:
3013 use the Encode extension for that.
3019 Perl_sv_utf8_downgrade(pTHX_ register SV* sv, bool fail_ok)
3022 if (SvPOKp(sv) && SvUTF8(sv)) {
3028 sv_force_normal_flags(sv, 0);
3030 s = (U8 *) SvPV(sv, len);
3031 if (!utf8_to_bytes(s, &len)) {
3036 Perl_croak(aTHX_ "Wide character in %s",
3039 Perl_croak(aTHX_ "Wide character");
3050 =for apidoc sv_utf8_encode
3052 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3053 flag off so that it looks like octets again.
3059 Perl_sv_utf8_encode(pTHX_ register SV *sv)
3062 sv_force_normal_flags(sv, 0);
3064 if (SvREADONLY(sv)) {
3065 Perl_croak(aTHX_ PL_no_modify);
3067 (void) sv_utf8_upgrade(sv);
3072 =for apidoc sv_utf8_decode
3074 If the PV of the SV is an octet sequence in UTF-8
3075 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3076 so that it looks like a character. If the PV contains only single-byte
3077 characters, the C<SvUTF8> flag stays being off.
3078 Scans PV for validity and returns false if the PV is invalid UTF-8.
3084 Perl_sv_utf8_decode(pTHX_ register SV *sv)
3090 /* The octets may have got themselves encoded - get them back as
3093 if (!sv_utf8_downgrade(sv, TRUE))
3096 /* it is actually just a matter of turning the utf8 flag on, but
3097 * we want to make sure everything inside is valid utf8 first.
3099 c = (const U8 *) SvPVX_const(sv);
3100 if (!is_utf8_string(c, SvCUR(sv)+1))
3102 e = (const U8 *) SvEND(sv);
3105 if (!UTF8_IS_INVARIANT(ch)) {
3115 =for apidoc sv_setsv
3117 Copies the contents of the source SV C<ssv> into the destination SV
3118 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3119 function if the source SV needs to be reused. Does not handle 'set' magic.
3120 Loosely speaking, it performs a copy-by-value, obliterating any previous
3121 content of the destination.
3123 You probably want to use one of the assortment of wrappers, such as
3124 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3125 C<SvSetMagicSV_nosteal>.
3127 =for apidoc sv_setsv_flags
3129 Copies the contents of the source SV C<ssv> into the destination SV
3130 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3131 function if the source SV needs to be reused. Does not handle 'set' magic.
3132 Loosely speaking, it performs a copy-by-value, obliterating any previous
3133 content of the destination.
3134 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3135 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3136 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3137 and C<sv_setsv_nomg> are implemented in terms of this function.
3139 You probably want to use one of the assortment of wrappers, such as
3140 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3141 C<SvSetMagicSV_nosteal>.
3143 This is the primary function for copying scalars, and most other
3144 copy-ish functions and macros use this underneath.
3150 S_glob_assign_glob(pTHX_ SV *dstr, SV *sstr, const int dtype)
3152 if (dtype != SVt_PVGV) {
3153 const char * const name = GvNAME(sstr);
3154 const STRLEN len = GvNAMELEN(sstr);
3156 if (dtype >= SVt_PV) {
3162 SvUPGRADE(dstr, SVt_PVGV);
3163 (void)SvOK_off(dstr);
3164 /* FIXME - why are we doing this, then turning it off and on again
3166 isGV_with_GP_on(dstr);
3168 GvSTASH(dstr) = GvSTASH(sstr);
3170 Perl_sv_add_backref(aTHX_ (SV*)GvSTASH(dstr), dstr);
3171 gv_name_set((GV *)dstr, name, len, GV_ADD);
3172 SvFAKE_on(dstr); /* can coerce to non-glob */
3175 #ifdef GV_UNIQUE_CHECK
3176 if (GvUNIQUE((GV*)dstr)) {
3177 Perl_croak(aTHX_ PL_no_modify);
3182 isGV_with_GP_off(dstr);
3183 (void)SvOK_off(dstr);
3184 isGV_with_GP_on(dstr);
3185 GvINTRO_off(dstr); /* one-shot flag */
3186 GvGP(dstr) = gp_ref(GvGP(sstr));
3187 if (SvTAINTED(sstr))
3189 if (GvIMPORTED(dstr) != GVf_IMPORTED
3190 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3192 GvIMPORTED_on(dstr);
3199 S_glob_assign_ref(pTHX_ SV *dstr, SV *sstr) {
3200 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3202 const int intro = GvINTRO(dstr);
3205 const U32 stype = SvTYPE(sref);
3208 #ifdef GV_UNIQUE_CHECK
3209 if (GvUNIQUE((GV*)dstr)) {
3210 Perl_croak(aTHX_ PL_no_modify);
3215 GvINTRO_off(dstr); /* one-shot flag */
3216 GvLINE(dstr) = CopLINE(PL_curcop);
3217 GvEGV(dstr) = (GV*)dstr;
3222 location = (SV **) &GvCV(dstr);
3223 import_flag = GVf_IMPORTED_CV;
3226 location = (SV **) &GvHV(dstr);
3227 import_flag = GVf_IMPORTED_HV;
3230 location = (SV **) &GvAV(dstr);
3231 import_flag = GVf_IMPORTED_AV;
3234 location = (SV **) &GvIOp(dstr);
3237 location = (SV **) &GvFORM(dstr);
3239 location = &GvSV(dstr);
3240 import_flag = GVf_IMPORTED_SV;
3243 if (stype == SVt_PVCV) {
3244 if (GvCVGEN(dstr) && GvCV(dstr) != (CV*)sref) {
3245 SvREFCNT_dec(GvCV(dstr));
3247 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3248 PL_sub_generation++;
3251 SAVEGENERICSV(*location);
3255 if (stype == SVt_PVCV && *location != sref) {
3256 CV* const cv = (CV*)*location;
3258 if (!GvCVGEN((GV*)dstr) &&
3259 (CvROOT(cv) || CvXSUB(cv)))
3261 /* Redefining a sub - warning is mandatory if
3262 it was a const and its value changed. */
3263 if (CvCONST(cv) && CvCONST((CV*)sref)
3264 && cv_const_sv(cv) == cv_const_sv((CV*)sref)) {
3266 /* They are 2 constant subroutines generated from
3267 the same constant. This probably means that
3268 they are really the "same" proxy subroutine
3269 instantiated in 2 places. Most likely this is
3270 when a constant is exported twice. Don't warn.
3273 else if (ckWARN(WARN_REDEFINE)
3275 && (!CvCONST((CV*)sref)
3276 || sv_cmp(cv_const_sv(cv),
3277 cv_const_sv((CV*)sref))))) {
3278 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3281 ? "Constant subroutine %s::%s redefined"
3282 : "Subroutine %s::%s redefined"),
3283 HvNAME_get(GvSTASH((GV*)dstr)),
3284 GvENAME((GV*)dstr));
3288 cv_ckproto_len(cv, (GV*)dstr,
3289 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3290 SvPOK(sref) ? SvCUR(sref) : 0);
3292 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3293 GvASSUMECV_on(dstr);
3294 PL_sub_generation++;
3297 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3298 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3299 GvFLAGS(dstr) |= import_flag;
3304 if (SvTAINTED(sstr))
3310 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV *sstr, I32 flags)
3313 register U32 sflags;
3315 register svtype stype;
3320 if (SvIS_FREED(dstr)) {
3321 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3322 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3324 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3326 sstr = &PL_sv_undef;
3327 if (SvIS_FREED(sstr)) {
3328 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3329 (void*)sstr, (void*)dstr);
3331 stype = SvTYPE(sstr);
3332 dtype = SvTYPE(dstr);
3334 (void)SvAMAGIC_off(dstr);
3337 /* need to nuke the magic */
3339 SvRMAGICAL_off(dstr);
3342 /* There's a lot of redundancy below but we're going for speed here */
3347 if (dtype != SVt_PVGV) {
3348 (void)SvOK_off(dstr);
3356 sv_upgrade(dstr, SVt_IV);
3361 sv_upgrade(dstr, SVt_PVIV);
3364 goto end_of_first_switch;
3366 (void)SvIOK_only(dstr);
3367 SvIV_set(dstr, SvIVX(sstr));
3370 /* SvTAINTED can only be true if the SV has taint magic, which in
3371 turn means that the SV type is PVMG (or greater). This is the
3372 case statement for SVt_IV, so this cannot be true (whatever gcov
3374 assert(!SvTAINTED(sstr));
3384 sv_upgrade(dstr, SVt_NV);
3389 sv_upgrade(dstr, SVt_PVNV);
3392 goto end_of_first_switch;
3394 SvNV_set(dstr, SvNVX(sstr));
3395 (void)SvNOK_only(dstr);
3396 /* SvTAINTED can only be true if the SV has taint magic, which in
3397 turn means that the SV type is PVMG (or greater). This is the
3398 case statement for SVt_NV, so this cannot be true (whatever gcov
3400 assert(!SvTAINTED(sstr));
3407 sv_upgrade(dstr, SVt_RV);
3410 #ifdef PERL_OLD_COPY_ON_WRITE
3411 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3412 if (dtype < SVt_PVIV)
3413 sv_upgrade(dstr, SVt_PVIV);
3420 sv_upgrade(dstr, SVt_PV);
3423 if (dtype < SVt_PVIV)
3424 sv_upgrade(dstr, SVt_PVIV);
3427 if (dtype < SVt_PVNV)
3428 sv_upgrade(dstr, SVt_PVNV);
3432 const char * const type = sv_reftype(sstr,0);
3434 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3436 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3440 /* case SVt_BIND: */
3443 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3444 glob_assign_glob(dstr, sstr, dtype);
3447 /* SvVALID means that this PVGV is playing at being an FBM. */
3451 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3453 if (SvTYPE(sstr) != stype) {
3454 stype = SvTYPE(sstr);
3455 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3456 glob_assign_glob(dstr, sstr, dtype);
3461 if (stype == SVt_PVLV)
3462 SvUPGRADE(dstr, SVt_PVNV);
3464 SvUPGRADE(dstr, (svtype)stype);
3466 end_of_first_switch:
3468 /* dstr may have been upgraded. */
3469 dtype = SvTYPE(dstr);
3470 sflags = SvFLAGS(sstr);
3472 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3473 /* Assigning to a subroutine sets the prototype. */
3476 const char *const ptr = SvPV_const(sstr, len);
3478 SvGROW(dstr, len + 1);
3479 Copy(ptr, SvPVX(dstr), len + 1, char);
3480 SvCUR_set(dstr, len);
3482 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3486 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3487 const char * const type = sv_reftype(dstr,0);
3489 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_NAME(PL_op));
3491 Perl_croak(aTHX_ "Cannot copy to %s", type);
3492 } else if (sflags & SVf_ROK) {
3493 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3494 && SvTYPE(SvRV(sstr)) == SVt_PVGV) {
3497 if (GvIMPORTED(dstr) != GVf_IMPORTED
3498 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3500 GvIMPORTED_on(dstr);
3505 glob_assign_glob(dstr, sstr, dtype);
3509 if (dtype >= SVt_PV) {
3510 if (dtype == SVt_PVGV) {
3511 glob_assign_ref(dstr, sstr);
3514 if (SvPVX_const(dstr)) {
3520 (void)SvOK_off(dstr);
3521 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
3522 SvFLAGS(dstr) |= sflags & SVf_ROK;
3523 assert(!(sflags & SVp_NOK));
3524 assert(!(sflags & SVp_IOK));
3525 assert(!(sflags & SVf_NOK));
3526 assert(!(sflags & SVf_IOK));
3528 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3529 if (!(sflags & SVf_OK)) {
3530 if (ckWARN(WARN_MISC))
3531 Perl_warner(aTHX_ packWARN(WARN_MISC),
3532 "Undefined value assigned to typeglob");
3535 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
3536 if (dstr != (SV*)gv) {
3539 GvGP(dstr) = gp_ref(GvGP(gv));
3543 else if (sflags & SVp_POK) {
3547 * Check to see if we can just swipe the string. If so, it's a
3548 * possible small lose on short strings, but a big win on long ones.
3549 * It might even be a win on short strings if SvPVX_const(dstr)
3550 * has to be allocated and SvPVX_const(sstr) has to be freed.
3551 * Likewise if we can set up COW rather than doing an actual copy, we
3552 * drop to the else clause, as the swipe code and the COW setup code
3553 * have much in common.
3556 /* Whichever path we take through the next code, we want this true,
3557 and doing it now facilitates the COW check. */
3558 (void)SvPOK_only(dstr);
3561 /* If we're already COW then this clause is not true, and if COW
3562 is allowed then we drop down to the else and make dest COW
3563 with us. If caller hasn't said that we're allowed to COW
3564 shared hash keys then we don't do the COW setup, even if the
3565 source scalar is a shared hash key scalar. */
3566 (((flags & SV_COW_SHARED_HASH_KEYS)
3567 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
3568 : 1 /* If making a COW copy is forbidden then the behaviour we
3569 desire is as if the source SV isn't actually already
3570 COW, even if it is. So we act as if the source flags
3571 are not COW, rather than actually testing them. */
3573 #ifndef PERL_OLD_COPY_ON_WRITE
3574 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
3575 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
3576 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
3577 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
3578 but in turn, it's somewhat dead code, never expected to go
3579 live, but more kept as a placeholder on how to do it better
3580 in a newer implementation. */
3581 /* If we are COW and dstr is a suitable target then we drop down
3582 into the else and make dest a COW of us. */
3583 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
3588 (sflags & SVs_TEMP) && /* slated for free anyway? */
3589 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
3590 (!(flags & SV_NOSTEAL)) &&
3591 /* and we're allowed to steal temps */
3592 SvREFCNT(sstr) == 1 && /* and no other references to it? */
3593 SvLEN(sstr) && /* and really is a string */
3594 /* and won't be needed again, potentially */
3595 !(PL_op && PL_op->op_type == OP_AASSIGN))
3596 #ifdef PERL_OLD_COPY_ON_WRITE
3597 && !((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
3598 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
3599 && SvTYPE(sstr) >= SVt_PVIV)
3602 /* Failed the swipe test, and it's not a shared hash key either.
3603 Have to copy the string. */
3604 STRLEN len = SvCUR(sstr);
3605 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
3606 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
3607 SvCUR_set(dstr, len);
3608 *SvEND(dstr) = '\0';
3610 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
3612 /* Either it's a shared hash key, or it's suitable for
3613 copy-on-write or we can swipe the string. */
3615 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
3619 #ifdef PERL_OLD_COPY_ON_WRITE
3621 /* I believe I should acquire a global SV mutex if
3622 it's a COW sv (not a shared hash key) to stop
3623 it going un copy-on-write.
3624 If the source SV has gone un copy on write between up there
3625 and down here, then (assert() that) it is of the correct
3626 form to make it copy on write again */
3627 if ((sflags & (SVf_FAKE | SVf_READONLY))
3628 != (SVf_FAKE | SVf_READONLY)) {
3629 SvREADONLY_on(sstr);
3631 /* Make the source SV into a loop of 1.
3632 (about to become 2) */
3633 SV_COW_NEXT_SV_SET(sstr, sstr);
3637 /* Initial code is common. */
3638 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
3643 /* making another shared SV. */
3644 STRLEN cur = SvCUR(sstr);
3645 STRLEN len = SvLEN(sstr);
3646 #ifdef PERL_OLD_COPY_ON_WRITE
3648 assert (SvTYPE(dstr) >= SVt_PVIV);
3649 /* SvIsCOW_normal */
3650 /* splice us in between source and next-after-source. */
3651 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3652 SV_COW_NEXT_SV_SET(sstr, dstr);
3653 SvPV_set(dstr, SvPVX_mutable(sstr));
3657 /* SvIsCOW_shared_hash */
3658 DEBUG_C(PerlIO_printf(Perl_debug_log,
3659 "Copy on write: Sharing hash\n"));
3661 assert (SvTYPE(dstr) >= SVt_PV);
3663 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
3665 SvLEN_set(dstr, len);
3666 SvCUR_set(dstr, cur);
3667 SvREADONLY_on(dstr);
3669 /* Relesase a global SV mutex. */
3672 { /* Passes the swipe test. */
3673 SvPV_set(dstr, SvPVX_mutable(sstr));
3674 SvLEN_set(dstr, SvLEN(sstr));
3675 SvCUR_set(dstr, SvCUR(sstr));
3678 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
3679 SvPV_set(sstr, NULL);
3685 if (sflags & SVp_NOK) {
3686 SvNV_set(dstr, SvNVX(sstr));
3688 if (sflags & SVp_IOK) {
3690 SvIV_set(dstr, SvIVX(sstr));
3691 /* Must do this otherwise some other overloaded use of 0x80000000
3692 gets confused. I guess SVpbm_VALID */
3693 if (sflags & SVf_IVisUV)
3696 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
3698 const MAGIC * const smg = SvVSTRING_mg(sstr);
3700 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
3701 smg->mg_ptr, smg->mg_len);
3702 SvRMAGICAL_on(dstr);
3706 else if (sflags & (SVp_IOK|SVp_NOK)) {
3707 (void)SvOK_off(dstr);
3708 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
3709 if (sflags & SVp_IOK) {
3710 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
3711 SvIV_set(dstr, SvIVX(sstr));
3713 if (sflags & SVp_NOK) {
3714 SvNV_set(dstr, SvNVX(sstr));
3718 if (isGV_with_GP(sstr)) {
3719 /* This stringification rule for globs is spread in 3 places.
3720 This feels bad. FIXME. */
3721 const U32 wasfake = sflags & SVf_FAKE;
3723 /* FAKE globs can get coerced, so need to turn this off
3724 temporarily if it is on. */
3726 gv_efullname3(dstr, (GV *)sstr, "*");
3727 SvFLAGS(sstr) |= wasfake;
3730 (void)SvOK_off(dstr);
3732 if (SvTAINTED(sstr))
3737 =for apidoc sv_setsv_mg
3739 Like C<sv_setsv>, but also handles 'set' magic.
3745 Perl_sv_setsv_mg(pTHX_ SV *dstr, register SV *sstr)
3747 sv_setsv(dstr,sstr);
3751 #ifdef PERL_OLD_COPY_ON_WRITE
3753 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
3755 STRLEN cur = SvCUR(sstr);
3756 STRLEN len = SvLEN(sstr);
3757 register char *new_pv;
3760 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
3761 (void*)sstr, (void*)dstr);
3768 if (SvTHINKFIRST(dstr))
3769 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
3770 else if (SvPVX_const(dstr))
3771 Safefree(SvPVX_const(dstr));
3775 SvUPGRADE(dstr, SVt_PVIV);
3777 assert (SvPOK(sstr));
3778 assert (SvPOKp(sstr));
3779 assert (!SvIOK(sstr));
3780 assert (!SvIOKp(sstr));
3781 assert (!SvNOK(sstr));
3782 assert (!SvNOKp(sstr));
3784 if (SvIsCOW(sstr)) {
3786 if (SvLEN(sstr) == 0) {
3787 /* source is a COW shared hash key. */
3788 DEBUG_C(PerlIO_printf(Perl_debug_log,
3789 "Fast copy on write: Sharing hash\n"));
3790 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
3793 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3795 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
3796 SvUPGRADE(sstr, SVt_PVIV);
3797 SvREADONLY_on(sstr);
3799 DEBUG_C(PerlIO_printf(Perl_debug_log,
3800 "Fast copy on write: Converting sstr to COW\n"));
3801 SV_COW_NEXT_SV_SET(dstr, sstr);
3803 SV_COW_NEXT_SV_SET(sstr, dstr);
3804 new_pv = SvPVX_mutable(sstr);
3807 SvPV_set(dstr, new_pv);
3808 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
3811 SvLEN_set(dstr, len);
3812 SvCUR_set(dstr, cur);
3821 =for apidoc sv_setpvn
3823 Copies a string into an SV. The C<len> parameter indicates the number of
3824 bytes to be copied. If the C<ptr> argument is NULL the SV will become
3825 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
3831 Perl_sv_setpvn(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3834 register char *dptr;
3836 SV_CHECK_THINKFIRST_COW_DROP(sv);
3842 /* len is STRLEN which is unsigned, need to copy to signed */
3845 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
3847 SvUPGRADE(sv, SVt_PV);
3849 dptr = SvGROW(sv, len + 1);
3850 Move(ptr,dptr,len,char);
3853 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3858 =for apidoc sv_setpvn_mg
3860 Like C<sv_setpvn>, but also handles 'set' magic.
3866 Perl_sv_setpvn_mg(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3868 sv_setpvn(sv,ptr,len);
3873 =for apidoc sv_setpv
3875 Copies a string into an SV. The string must be null-terminated. Does not
3876 handle 'set' magic. See C<sv_setpv_mg>.
3882 Perl_sv_setpv(pTHX_ register SV *sv, register const char *ptr)
3885 register STRLEN len;
3887 SV_CHECK_THINKFIRST_COW_DROP(sv);
3893 SvUPGRADE(sv, SVt_PV);
3895 SvGROW(sv, len + 1);
3896 Move(ptr,SvPVX(sv),len+1,char);
3898 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3903 =for apidoc sv_setpv_mg
3905 Like C<sv_setpv>, but also handles 'set' magic.
3911 Perl_sv_setpv_mg(pTHX_ register SV *sv, register const char *ptr)
3918 =for apidoc sv_usepvn_flags
3920 Tells an SV to use C<ptr> to find its string value. Normally the
3921 string is stored inside the SV but sv_usepvn allows the SV to use an
3922 outside string. The C<ptr> should point to memory that was allocated
3923 by C<malloc>. The string length, C<len>, must be supplied. By default
3924 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
3925 so that pointer should not be freed or used by the programmer after
3926 giving it to sv_usepvn, and neither should any pointers from "behind"
3927 that pointer (e.g. ptr + 1) be used.
3929 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
3930 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
3931 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
3932 C<len>, and already meets the requirements for storing in C<SvPVX>)
3938 Perl_sv_usepvn_flags(pTHX_ SV *sv, char *ptr, STRLEN len, U32 flags)
3942 SV_CHECK_THINKFIRST_COW_DROP(sv);
3943 SvUPGRADE(sv, SVt_PV);
3946 if (flags & SV_SMAGIC)
3950 if (SvPVX_const(sv))
3954 if (flags & SV_HAS_TRAILING_NUL)
3955 assert(ptr[len] == '\0');
3958 allocate = (flags & SV_HAS_TRAILING_NUL)
3959 ? len + 1: PERL_STRLEN_ROUNDUP(len + 1);
3960 if (flags & SV_HAS_TRAILING_NUL) {
3961 /* It's long enough - do nothing.
3962 Specfically Perl_newCONSTSUB is relying on this. */
3965 /* Force a move to shake out bugs in callers. */
3966 char *new_ptr = (char*)safemalloc(allocate);
3967 Copy(ptr, new_ptr, len, char);
3968 PoisonFree(ptr,len,char);
3972 ptr = (char*) saferealloc (ptr, allocate);
3977 SvLEN_set(sv, allocate);
3978 if (!(flags & SV_HAS_TRAILING_NUL)) {
3981 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3983 if (flags & SV_SMAGIC)
3987 #ifdef PERL_OLD_COPY_ON_WRITE
3988 /* Need to do this *after* making the SV normal, as we need the buffer
3989 pointer to remain valid until after we've copied it. If we let go too early,
3990 another thread could invalidate it by unsharing last of the same hash key
3991 (which it can do by means other than releasing copy-on-write Svs)
3992 or by changing the other copy-on-write SVs in the loop. */
3994 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
3996 { /* this SV was SvIsCOW_normal(sv) */
3997 /* we need to find the SV pointing to us. */
3998 SV *current = SV_COW_NEXT_SV(after);
4000 if (current == sv) {
4001 /* The SV we point to points back to us (there were only two of us
4003 Hence other SV is no longer copy on write either. */
4005 SvREADONLY_off(after);
4007 /* We need to follow the pointers around the loop. */
4009 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4012 /* don't loop forever if the structure is bust, and we have
4013 a pointer into a closed loop. */
4014 assert (current != after);
4015 assert (SvPVX_const(current) == pvx);
4017 /* Make the SV before us point to the SV after us. */
4018 SV_COW_NEXT_SV_SET(current, after);
4024 =for apidoc sv_force_normal_flags
4026 Undo various types of fakery on an SV: if the PV is a shared string, make
4027 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4028 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4029 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4030 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4031 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4032 set to some other value.) In addition, the C<flags> parameter gets passed to
4033 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4034 with flags set to 0.
4040 Perl_sv_force_normal_flags(pTHX_ register SV *sv, U32 flags)
4043 #ifdef PERL_OLD_COPY_ON_WRITE
4044 if (SvREADONLY(sv)) {
4045 /* At this point I believe I should acquire a global SV mutex. */
4047 const char * const pvx = SvPVX_const(sv);
4048 const STRLEN len = SvLEN(sv);
4049 const STRLEN cur = SvCUR(sv);
4050 /* next COW sv in the loop. If len is 0 then this is a shared-hash
4051 key scalar, so we mustn't attempt to call SV_COW_NEXT_SV(), as
4052 we'll fail an assertion. */
4053 SV * const next = len ? SV_COW_NEXT_SV(sv) : 0;
4056 PerlIO_printf(Perl_debug_log,
4057 "Copy on write: Force normal %ld\n",
4063 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4066 if (flags & SV_COW_DROP_PV) {
4067 /* OK, so we don't need to copy our buffer. */
4070 SvGROW(sv, cur + 1);
4071 Move(pvx,SvPVX(sv),cur,char);
4076 sv_release_COW(sv, pvx, next);
4078 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4084 else if (IN_PERL_RUNTIME)
4085 Perl_croak(aTHX_ PL_no_modify);
4086 /* At this point I believe that I can drop the global SV mutex. */
4089 if (SvREADONLY(sv)) {
4091 const char * const pvx = SvPVX_const(sv);
4092 const STRLEN len = SvCUR(sv);
4097 SvGROW(sv, len + 1);
4098 Move(pvx,SvPVX(sv),len,char);
4100 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4102 else if (IN_PERL_RUNTIME)
4103 Perl_croak(aTHX_ PL_no_modify);
4107 sv_unref_flags(sv, flags);
4108 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4115 Efficient removal of characters from the beginning of the string buffer.
4116 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4117 the string buffer. The C<ptr> becomes the first character of the adjusted
4118 string. Uses the "OOK hack".
4119 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4120 refer to the same chunk of data.
4126 Perl_sv_chop(pTHX_ register SV *sv, register const char *ptr)
4128 register STRLEN delta;
4129 if (!ptr || !SvPOKp(sv))
4131 delta = ptr - SvPVX_const(sv);
4132 SV_CHECK_THINKFIRST(sv);
4133 if (SvTYPE(sv) < SVt_PVIV)
4134 sv_upgrade(sv,SVt_PVIV);
4137 if (!SvLEN(sv)) { /* make copy of shared string */
4138 const char *pvx = SvPVX_const(sv);
4139 const STRLEN len = SvCUR(sv);
4140 SvGROW(sv, len + 1);
4141 Move(pvx,SvPVX(sv),len,char);
4145 /* Same SvOOK_on but SvOOK_on does a SvIOK_off
4146 and we do that anyway inside the SvNIOK_off
4148 SvFLAGS(sv) |= SVf_OOK;
4151 SvLEN_set(sv, SvLEN(sv) - delta);
4152 SvCUR_set(sv, SvCUR(sv) - delta);
4153 SvPV_set(sv, SvPVX(sv) + delta);
4154 SvIV_set(sv, SvIVX(sv) + delta);
4158 =for apidoc sv_catpvn
4160 Concatenates the string onto the end of the string which is in the SV. The
4161 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4162 status set, then the bytes appended should be valid UTF-8.
4163 Handles 'get' magic, but not 'set' magic. See C<sv_catpvn_mg>.
4165 =for apidoc sv_catpvn_flags
4167 Concatenates the string onto the end of the string which is in the SV. The
4168 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4169 status set, then the bytes appended should be valid UTF-8.
4170 If C<flags> has C<SV_GMAGIC> bit set, will C<mg_get> on C<dsv> if
4171 appropriate, else not. C<sv_catpvn> and C<sv_catpvn_nomg> are implemented
4172 in terms of this function.
4178 Perl_sv_catpvn_flags(pTHX_ register SV *dsv, register const char *sstr, register STRLEN slen, I32 flags)
4182 const char * const dstr = SvPV_force_flags(dsv, dlen, flags);
4184 SvGROW(dsv, dlen + slen + 1);
4186 sstr = SvPVX_const(dsv);
4187 Move(sstr, SvPVX(dsv) + dlen, slen, char);
4188 SvCUR_set(dsv, SvCUR(dsv) + slen);
4190 (void)SvPOK_only_UTF8(dsv); /* validate pointer */
4192 if (flags & SV_SMAGIC)
4197 =for apidoc sv_catsv
4199 Concatenates the string from SV C<ssv> onto the end of the string in
4200 SV C<dsv>. Modifies C<dsv> but not C<ssv>. Handles 'get' magic, but
4201 not 'set' magic. See C<sv_catsv_mg>.
4203 =for apidoc sv_catsv_flags
4205 Concatenates the string from SV C<ssv> onto the end of the string in
4206 SV C<dsv>. Modifies C<dsv> but not C<ssv>. If C<flags> has C<SV_GMAGIC>
4207 bit set, will C<mg_get> on the SVs if appropriate, else not. C<sv_catsv>
4208 and C<sv_catsv_nomg> are implemented in terms of this function.
4213 Perl_sv_catsv_flags(pTHX_ SV *dsv, register SV *ssv, I32 flags)
4218 const char *spv = SvPV_const(ssv, slen);
4220 /* sutf8 and dutf8 were type bool, but under USE_ITHREADS,
4221 gcc version 2.95.2 20000220 (Debian GNU/Linux) for
4222 Linux xxx 2.2.17 on sparc64 with gcc -O2, we erroneously
4223 get dutf8 = 0x20000000, (i.e. SVf_UTF8) even though
4224 dsv->sv_flags doesn't have that bit set.
4225 Andy Dougherty 12 Oct 2001
4227 const I32 sutf8 = DO_UTF8(ssv);
4230 if (SvGMAGICAL(dsv) && (flags & SV_GMAGIC))
4232 dutf8 = DO_UTF8(dsv);
4234 if (dutf8 != sutf8) {
4236 /* Not modifying source SV, so taking a temporary copy. */
4237 SV* const csv = sv_2mortal(newSVpvn(spv, slen));
4239 sv_utf8_upgrade(csv);
4240 spv = SvPV_const(csv, slen);
4243 sv_utf8_upgrade_nomg(dsv);
4245 sv_catpvn_nomg(dsv, spv, slen);
4248 if (flags & SV_SMAGIC)
4253 =for apidoc sv_catpv
4255 Concatenates the string onto the end of the string which is in the SV.
4256 If the SV has the UTF-8 status set, then the bytes appended should be
4257 valid UTF-8. Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
4262 Perl_sv_catpv(pTHX_ register SV *sv, register const char *ptr)
4265 register STRLEN len;
4271 junk = SvPV_force(sv, tlen);
4273 SvGROW(sv, tlen + len + 1);
4275 ptr = SvPVX_const(sv);
4276 Move(ptr,SvPVX(sv)+tlen,len+1,char);
4277 SvCUR_set(sv, SvCUR(sv) + len);
4278 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4283 =for apidoc sv_catpv_mg
4285 Like C<sv_catpv>, but also handles 'set' magic.
4291 Perl_sv_catpv_mg(pTHX_ register SV *sv, register const char *ptr)
4300 Creates a new SV. A non-zero C<len> parameter indicates the number of
4301 bytes of preallocated string space the SV should have. An extra byte for a
4302 trailing NUL is also reserved. (SvPOK is not set for the SV even if string
4303 space is allocated.) The reference count for the new SV is set to 1.
4305 In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
4306 parameter, I<x>, a debug aid which allowed callers to identify themselves.
4307 This aid has been superseded by a new build option, PERL_MEM_LOG (see
4308 L<perlhack/PERL_MEM_LOG>). The older API is still there for use in XS
4309 modules supporting older perls.
4315 Perl_newSV(pTHX_ STRLEN len)
4322 sv_upgrade(sv, SVt_PV);
4323 SvGROW(sv, len + 1);
4328 =for apidoc sv_magicext
4330 Adds magic to an SV, upgrading it if necessary. Applies the
4331 supplied vtable and returns a pointer to the magic added.
4333 Note that C<sv_magicext> will allow things that C<sv_magic> will not.
4334 In particular, you can add magic to SvREADONLY SVs, and add more than
4335 one instance of the same 'how'.
4337 If C<namlen> is greater than zero then a C<savepvn> I<copy> of C<name> is
4338 stored, if C<namlen> is zero then C<name> is stored as-is and - as another
4339 special case - if C<(name && namlen == HEf_SVKEY)> then C<name> is assumed
4340 to contain an C<SV*> and is stored as-is with its REFCNT incremented.
4342 (This is now used as a subroutine by C<sv_magic>.)
4347 Perl_sv_magicext(pTHX_ SV* sv, SV* obj, int how, const MGVTBL *vtable,
4348 const char* name, I32 namlen)
4353 SvUPGRADE(sv, SVt_PVMG);
4354 Newxz(mg, 1, MAGIC);
4355 mg->mg_moremagic = SvMAGIC(sv);
4356 SvMAGIC_set(sv, mg);
4358 /* Sometimes a magic contains a reference loop, where the sv and
4359 object refer to each other. To prevent a reference loop that
4360 would prevent such objects being freed, we look for such loops
4361 and if we find one we avoid incrementing the object refcount.
4363 Note we cannot do this to avoid self-tie loops as intervening RV must
4364 have its REFCNT incremented to keep it in existence.
4367 if (!obj || obj == sv ||
4368 how == PERL_MAGIC_arylen ||
4369 how == PERL_MAGIC_qr ||
4370 how == PERL_MAGIC_symtab ||
4371 (SvTYPE(obj) == SVt_PVGV &&
4372 (GvSV(obj) == sv || GvHV(obj) == (HV*)sv || GvAV(obj) == (AV*)sv ||
4373 GvCV(obj) == (CV*)sv || GvIOp(obj) == (IO*)sv ||
4374 GvFORM(obj) == (CV*)sv)))
4379 mg->mg_obj = SvREFCNT_inc_simple(obj);
4380 mg->mg_flags |= MGf_REFCOUNTED;
4383 /* Normal self-ties simply pass a null object, and instead of
4384 using mg_obj directly, use the SvTIED_obj macro to produce a
4385 new RV as needed. For glob "self-ties", we are tieing the PVIO
4386 with an RV obj pointing to the glob containing the PVIO. In
4387 this case, to avoid a reference loop, we need to weaken the
4391 if (how == PERL_MAGIC_tiedscalar && SvTYPE(sv) == SVt_PVIO &&
4392 obj && SvROK(obj) && GvIO(SvRV(obj)) == (IO*)sv)
4398 mg->mg_len = namlen;
4401 mg->mg_ptr = savepvn(name, namlen);
4402 else if (namlen == HEf_SVKEY)
4403 mg->mg_ptr = (char*)SvREFCNT_inc_simple_NN((SV*)name);
4405 mg->mg_ptr = (char *) name;
4407 mg->mg_virtual = (MGVTBL *) vtable;
4411 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4416 =for apidoc sv_magic
4418 Adds magic to an SV. First upgrades C<sv> to type C<SVt_PVMG> if necessary,
4419 then adds a new magic item of type C<how> to the head of the magic list.
4421 See C<sv_magicext> (which C<sv_magic> now calls) for a description of the
4422 handling of the C<name> and C<namlen> arguments.
4424 You need to use C<sv_magicext> to add magic to SvREADONLY SVs and also
4425 to add more than one instance of the same 'how'.
4431 Perl_sv_magic(pTHX_ register SV *sv, SV *obj, int how, const char *name, I32 namlen)
4434 const MGVTBL *vtable;
4437 #ifdef PERL_OLD_COPY_ON_WRITE
4439 sv_force_normal_flags(sv, 0);
4441 if (SvREADONLY(sv)) {
4443 /* its okay to attach magic to shared strings; the subsequent
4444 * upgrade to PVMG will unshare the string */
4445 !(SvFAKE(sv) && SvTYPE(sv) < SVt_PVMG)
4448 && how != PERL_MAGIC_regex_global
4449 && how != PERL_MAGIC_bm
4450 && how != PERL_MAGIC_fm
4451 && how != PERL_MAGIC_sv
4452 && how != PERL_MAGIC_backref
4455 Perl_croak(aTHX_ PL_no_modify);
4458 if (SvMAGICAL(sv) || (how == PERL_MAGIC_taint && SvTYPE(sv) >= SVt_PVMG)) {
4459 if (SvMAGIC(sv) && (mg = mg_find(sv, how))) {
4460 /* sv_magic() refuses to add a magic of the same 'how' as an
4463 if (how == PERL_MAGIC_taint) {
4465 /* Any scalar which already had taint magic on which someone
4466 (erroneously?) did SvIOK_on() or similar will now be
4467 incorrectly sporting public "OK" flags. */
4468 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4476 vtable = &PL_vtbl_sv;
4478 case PERL_MAGIC_overload:
4479 vtable = &PL_vtbl_amagic;
4481 case PERL_MAGIC_overload_elem:
4482 vtable = &PL_vtbl_amagicelem;
4484 case PERL_MAGIC_overload_table:
4485 vtable = &PL_vtbl_ovrld;
4488 vtable = &PL_vtbl_bm;
4490 case PERL_MAGIC_regdata:
4491 vtable = &PL_vtbl_regdata;
4493 case PERL_MAGIC_regdatum:
4494 vtable = &PL_vtbl_regdatum;
4496 case PERL_MAGIC_env:
4497 vtable = &PL_vtbl_env;
4500 vtable = &PL_vtbl_fm;
4502 case PERL_MAGIC_envelem:
4503 vtable = &PL_vtbl_envelem;
4505 case PERL_MAGIC_regex_global:
4506 vtable = &PL_vtbl_mglob;
4508 case PERL_MAGIC_isa:
4509 vtable = &PL_vtbl_isa;
4511 case PERL_MAGIC_isaelem:
4512 vtable = &PL_vtbl_isaelem;
4514 case PERL_MAGIC_nkeys:
4515 vtable = &PL_vtbl_nkeys;
4517 case PERL_MAGIC_dbfile:
4520 case PERL_MAGIC_dbline:
4521 vtable = &PL_vtbl_dbline;
4523 #ifdef USE_LOCALE_COLLATE
4524 case PERL_MAGIC_collxfrm:
4525 vtable = &PL_vtbl_collxfrm;
4527 #endif /* USE_LOCALE_COLLATE */
4528 case PERL_MAGIC_tied:
4529 vtable = &PL_vtbl_pack;
4531 case PERL_MAGIC_tiedelem:
4532 case PERL_MAGIC_tiedscalar:
4533 vtable = &PL_vtbl_packelem;
4536 vtable = &PL_vtbl_regexp;
4538 case PERL_MAGIC_hints:
4539 /* As this vtable is all NULL, we can reuse it. */
4540 case PERL_MAGIC_sig:
4541 vtable = &PL_vtbl_sig;
4543 case PERL_MAGIC_sigelem:
4544 vtable = &PL_vtbl_sigelem;
4546 case PERL_MAGIC_taint:
4547 vtable = &PL_vtbl_taint;
4549 case PERL_MAGIC_uvar:
4550 vtable = &PL_vtbl_uvar;
4552 case PERL_MAGIC_vec:
4553 vtable = &PL_vtbl_vec;
4555 case PERL_MAGIC_arylen_p:
4556 case PERL_MAGIC_rhash:
4557 case PERL_MAGIC_symtab:
4558 case PERL_MAGIC_vstring:
4561 case PERL_MAGIC_utf8:
4562 vtable = &PL_vtbl_utf8;
4564 case PERL_MAGIC_substr:
4565 vtable = &PL_vtbl_substr;
4567 case PERL_MAGIC_defelem:
4568 vtable = &PL_vtbl_defelem;
4570 case PERL_MAGIC_arylen:
4571 vtable = &PL_vtbl_arylen;
4573 case PERL_MAGIC_pos:
4574 vtable = &PL_vtbl_pos;
4576 case PERL_MAGIC_backref:
4577 vtable = &PL_vtbl_backref;
4579 case PERL_MAGIC_hintselem:
4580 vtable = &PL_vtbl_hintselem;
4582 case PERL_MAGIC_ext:
4583 /* Reserved for use by extensions not perl internals. */
4584 /* Useful for attaching extension internal data to perl vars. */
4585 /* Note that multiple extensions may clash if magical scalars */
4586 /* etc holding private data from one are passed to another. */
4590 Perl_croak(aTHX_ "Don't know how to handle magic of type \\%o", how);
4593 /* Rest of work is done else where */
4594 mg = sv_magicext(sv,obj,how,vtable,name,namlen);
4597 case PERL_MAGIC_taint:
4600 case PERL_MAGIC_ext:
4601 case PERL_MAGIC_dbfile:
4608 =for apidoc sv_unmagic
4610 Removes all magic of type C<type> from an SV.
4616 Perl_sv_unmagic(pTHX_ SV *sv, int type)
4620 if (SvTYPE(sv) < SVt_PVMG || !SvMAGIC(sv))
4622 mgp = &(((XPVMG*) SvANY(sv))->xmg_u.xmg_magic);
4623 for (mg = *mgp; mg; mg = *mgp) {
4624 if (mg->mg_type == type) {
4625 const MGVTBL* const vtbl = mg->mg_virtual;
4626 *mgp = mg->mg_moremagic;
4627 if (vtbl && vtbl->svt_free)
4628 CALL_FPTR(vtbl->svt_free)(aTHX_ sv, mg);
4629 if (mg->mg_ptr && mg->mg_type != PERL_MAGIC_regex_global) {
4631 Safefree(mg->mg_ptr);
4632 else if (mg->mg_len == HEf_SVKEY)
4633 SvREFCNT_dec((SV*)mg->mg_ptr);
4634 else if (mg->mg_type == PERL_MAGIC_utf8)
4635 Safefree(mg->mg_ptr);
4637 if (mg->mg_flags & MGf_REFCOUNTED)
4638 SvREFCNT_dec(mg->mg_obj);
4642 mgp = &mg->mg_moremagic;
4646 SvFLAGS(sv) |= (SvFLAGS(sv) & (SVp_IOK|SVp_NOK|SVp_POK)) >> PRIVSHIFT;
4647 SvMAGIC_set(sv, NULL);
4654 =for apidoc sv_rvweaken
4656 Weaken a reference: set the C<SvWEAKREF> flag on this RV; give the
4657 referred-to SV C<PERL_MAGIC_backref> magic if it hasn't already; and
4658 push a back-reference to this RV onto the array of backreferences
4659 associated with that magic. If the RV is magical, set magic will be
4660 called after the RV is cleared.
4666 Perl_sv_rvweaken(pTHX_ SV *sv)
4669 if (!SvOK(sv)) /* let undefs pass */
4672 Perl_croak(aTHX_ "Can't weaken a nonreference");
4673 else if (SvWEAKREF(sv)) {
4674 if (ckWARN(WARN_MISC))
4675 Perl_warner(aTHX_ packWARN(WARN_MISC), "Reference is already weak");
4679 Perl_sv_add_backref(aTHX_ tsv, sv);
4685 /* Give tsv backref magic if it hasn't already got it, then push a
4686 * back-reference to sv onto the array associated with the backref magic.
4690 Perl_sv_add_backref(pTHX_ SV *tsv, SV *sv)
4695 if (SvTYPE(tsv) == SVt_PVHV) {
4696 AV **const avp = Perl_hv_backreferences_p(aTHX_ (HV*)tsv);
4700 /* There is no AV in the offical place - try a fixup. */
4701 MAGIC *const mg = mg_find(tsv, PERL_MAGIC_backref);
4704 /* Aha. They've got it stowed in magic. Bring it back. */
4705 av = (AV*)mg->mg_obj;
4706 /* Stop mg_free decreasing the refernce count. */
4708 /* Stop mg_free even calling the destructor, given that
4709 there's no AV to free up. */
4711 sv_unmagic(tsv, PERL_MAGIC_backref);
4715 SvREFCNT_inc_simple_void(av);
4720 const MAGIC *const mg
4721 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
4723 av = (AV*)mg->mg_obj;
4727 sv_magic(tsv, (SV*)av, PERL_MAGIC_backref, NULL, 0);
4728 /* av now has a refcnt of 2, which avoids it getting freed
4729 * before us during global cleanup. The extra ref is removed
4730 * by magic_killbackrefs() when tsv is being freed */
4733 if (AvFILLp(av) >= AvMAX(av)) {
4734 av_extend(av, AvFILLp(av)+1);
4736 AvARRAY(av)[++AvFILLp(av)] = sv; /* av_push() */
4739 /* delete a back-reference to ourselves from the backref magic associated
4740 * with the SV we point to.
4744 S_sv_del_backref(pTHX_ SV *tsv, SV *sv)
4751 if (SvTYPE(tsv) == SVt_PVHV && SvOOK(tsv)) {
4752 av = *Perl_hv_backreferences_p(aTHX_ (HV*)tsv);
4753 /* We mustn't attempt to "fix up" the hash here by moving the
4754 backreference array back to the hv_aux structure, as that is stored
4755 in the main HvARRAY(), and hfreentries assumes that no-one
4756 reallocates HvARRAY() while it is running. */
4759 const MAGIC *const mg
4760 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
4762 av = (AV *)mg->mg_obj;
4765 if (PL_in_clean_all)
4767 Perl_croak(aTHX_ "panic: del_backref");