3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 * 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
9 * "I wonder what the Entish is for 'yes' and 'no'," he thought.
12 * This file contains the code that creates, manipulates and destroys
13 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
14 * structure of an SV, so their creation and destruction is handled
15 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
16 * level functions (eg. substr, split, join) for each of the types are
28 /* Missing proto on LynxOS */
29 char *gconvert(double, int, int, char *);
32 #ifdef PERL_UTF8_CACHE_ASSERT
33 /* if adding more checks watch out for the following tests:
34 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
35 * lib/utf8.t lib/Unicode/Collate/t/index.t
38 # define ASSERT_UTF8_CACHE(cache) \
39 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
40 assert((cache)[2] <= (cache)[3]); \
41 assert((cache)[3] <= (cache)[1]);} \
44 # define ASSERT_UTF8_CACHE(cache) NOOP
47 #ifdef PERL_OLD_COPY_ON_WRITE
48 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
49 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
50 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
54 /* ============================================================================
56 =head1 Allocation and deallocation of SVs.
58 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
59 sv, av, hv...) contains type and reference count information, and for
60 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
61 contains fields specific to each type. Some types store all they need
62 in the head, so don't have a body.
64 In all but the most memory-paranoid configuations (ex: PURIFY), heads
65 and bodies are allocated out of arenas, which by default are
66 approximately 4K chunks of memory parcelled up into N heads or bodies.
67 Sv-bodies are allocated by their sv-type, guaranteeing size
68 consistency needed to allocate safely from arrays.
70 For SV-heads, the first slot in each arena is reserved, and holds a
71 link to the next arena, some flags, and a note of the number of slots.
72 Snaked through each arena chain is a linked list of free items; when
73 this becomes empty, an extra arena is allocated and divided up into N
74 items which are threaded into the free list.
76 SV-bodies are similar, but they use arena-sets by default, which
77 separate the link and info from the arena itself, and reclaim the 1st
78 slot in the arena. SV-bodies are further described later.
80 The following global variables are associated with arenas:
82 PL_sv_arenaroot pointer to list of SV arenas
83 PL_sv_root pointer to list of free SV structures
85 PL_body_arenas head of linked-list of body arenas
86 PL_body_roots[] array of pointers to list of free bodies of svtype
87 arrays are indexed by the svtype needed
89 A few special SV heads are not allocated from an arena, but are
90 instead directly created in the interpreter structure, eg PL_sv_undef.
91 The size of arenas can be changed from the default by setting
92 PERL_ARENA_SIZE appropriately at compile time.
94 The SV arena serves the secondary purpose of allowing still-live SVs
95 to be located and destroyed during final cleanup.
97 At the lowest level, the macros new_SV() and del_SV() grab and free
98 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
99 to return the SV to the free list with error checking.) new_SV() calls
100 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
101 SVs in the free list have their SvTYPE field set to all ones.
103 At the time of very final cleanup, sv_free_arenas() is called from
104 perl_destruct() to physically free all the arenas allocated since the
105 start of the interpreter.
107 The function visit() scans the SV arenas list, and calls a specified
108 function for each SV it finds which is still live - ie which has an SvTYPE
109 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
110 following functions (specified as [function that calls visit()] / [function
111 called by visit() for each SV]):
113 sv_report_used() / do_report_used()
114 dump all remaining SVs (debugging aid)
116 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
117 Attempt to free all objects pointed to by RVs,
118 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
119 try to do the same for all objects indirectly
120 referenced by typeglobs too. Called once from
121 perl_destruct(), prior to calling sv_clean_all()
124 sv_clean_all() / do_clean_all()
125 SvREFCNT_dec(sv) each remaining SV, possibly
126 triggering an sv_free(). It also sets the
127 SVf_BREAK flag on the SV to indicate that the
128 refcnt has been artificially lowered, and thus
129 stopping sv_free() from giving spurious warnings
130 about SVs which unexpectedly have a refcnt
131 of zero. called repeatedly from perl_destruct()
132 until there are no SVs left.
134 =head2 Arena allocator API Summary
136 Private API to rest of sv.c
140 new_XIV(), del_XIV(),
141 new_XNV(), del_XNV(),
146 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
150 ============================================================================ */
153 * "A time to plant, and a time to uproot what was planted..."
157 Perl_offer_nice_chunk(pTHX_ void *chunk, U32 chunk_size)
162 new_chunk = (void *)(chunk);
163 new_chunk_size = (chunk_size);
164 if (new_chunk_size > PL_nice_chunk_size) {
165 Safefree(PL_nice_chunk);
166 PL_nice_chunk = (char *) new_chunk;
167 PL_nice_chunk_size = new_chunk_size;
173 #ifdef DEBUG_LEAKING_SCALARS
174 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
176 # define FREE_SV_DEBUG_FILE(sv)
180 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
181 /* Whilst I'd love to do this, it seems that things like to check on
183 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
185 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
186 PoisonNew(&SvREFCNT(sv), 1, U32)
188 # define SvARENA_CHAIN(sv) SvANY(sv)
189 # define POSION_SV_HEAD(sv)
192 #define plant_SV(p) \
194 FREE_SV_DEBUG_FILE(p); \
196 SvARENA_CHAIN(p) = (void *)PL_sv_root; \
197 SvFLAGS(p) = SVTYPEMASK; \
202 #define uproot_SV(p) \
205 PL_sv_root = (SV*)SvARENA_CHAIN(p); \
210 /* make some more SVs by adding another arena */
219 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
220 PL_nice_chunk = NULL;
221 PL_nice_chunk_size = 0;
224 char *chunk; /* must use New here to match call to */
225 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
226 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
232 /* new_SV(): return a new, empty SV head */
234 #ifdef DEBUG_LEAKING_SCALARS
235 /* provide a real function for a debugger to play with */
244 sv = S_more_sv(aTHX);
248 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
249 sv->sv_debug_line = (U16) ((PL_copline == NOLINE) ?
250 (PL_curcop ? CopLINE(PL_curcop) : 0) : PL_copline);
251 sv->sv_debug_inpad = 0;
252 sv->sv_debug_cloned = 0;
253 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
257 # define new_SV(p) (p)=S_new_SV(aTHX)
265 (p) = S_more_sv(aTHX); \
273 /* del_SV(): return an empty SV head to the free list */
286 S_del_sv(pTHX_ SV *p)
292 for (sva = PL_sv_arenaroot; sva; sva = (SV *) SvANY(sva)) {
293 const SV * const sv = sva + 1;
294 const SV * const svend = &sva[SvREFCNT(sva)];
295 if (p >= sv && p < svend) {
301 if (ckWARN_d(WARN_INTERNAL))
302 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
303 "Attempt to free non-arena SV: 0x%"UVxf
304 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
311 #else /* ! DEBUGGING */
313 #define del_SV(p) plant_SV(p)
315 #endif /* DEBUGGING */
319 =head1 SV Manipulation Functions
321 =for apidoc sv_add_arena
323 Given a chunk of memory, link it to the head of the list of arenas,
324 and split it into a list of free SVs.
330 Perl_sv_add_arena(pTHX_ char *ptr, U32 size, U32 flags)
333 SV* const sva = (SV*)ptr;
337 /* The first SV in an arena isn't an SV. */
338 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
339 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
340 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
342 PL_sv_arenaroot = sva;
343 PL_sv_root = sva + 1;
345 svend = &sva[SvREFCNT(sva) - 1];
348 SvARENA_CHAIN(sv) = (void *)(SV*)(sv + 1);
352 /* Must always set typemask because it's awlays checked in on cleanup
353 when the arenas are walked looking for objects. */
354 SvFLAGS(sv) = SVTYPEMASK;
357 SvARENA_CHAIN(sv) = 0;
361 SvFLAGS(sv) = SVTYPEMASK;
364 /* visit(): call the named function for each non-free SV in the arenas
365 * whose flags field matches the flags/mask args. */
368 S_visit(pTHX_ SVFUNC_t f, U32 flags, U32 mask)
374 for (sva = PL_sv_arenaroot; sva; sva = (SV*)SvANY(sva)) {
375 register const SV * const svend = &sva[SvREFCNT(sva)];
377 for (sv = sva + 1; sv < svend; ++sv) {
378 if (SvTYPE(sv) != SVTYPEMASK
379 && (sv->sv_flags & mask) == flags
392 /* called by sv_report_used() for each live SV */
395 do_report_used(pTHX_ SV *sv)
397 if (SvTYPE(sv) != SVTYPEMASK) {
398 PerlIO_printf(Perl_debug_log, "****\n");
405 =for apidoc sv_report_used
407 Dump the contents of all SVs not yet freed. (Debugging aid).
413 Perl_sv_report_used(pTHX)
416 visit(do_report_used, 0, 0);
422 /* called by sv_clean_objs() for each live SV */
425 do_clean_objs(pTHX_ SV *ref)
430 SV * const target = SvRV(ref);
431 if (SvOBJECT(target)) {
432 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
433 if (SvWEAKREF(ref)) {
434 sv_del_backref(target, ref);
440 SvREFCNT_dec(target);
445 /* XXX Might want to check arrays, etc. */
448 /* called by sv_clean_objs() for each live SV */
450 #ifndef DISABLE_DESTRUCTOR_KLUDGE
452 do_clean_named_objs(pTHX_ SV *sv)
455 assert(SvTYPE(sv) == SVt_PVGV);
456 assert(isGV_with_GP(sv));
459 #ifdef PERL_DONT_CREATE_GVSV
462 SvOBJECT(GvSV(sv))) ||
463 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
464 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
465 (GvIO(sv) && SvOBJECT(GvIO(sv))) ||
466 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
468 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
469 SvFLAGS(sv) |= SVf_BREAK;
477 =for apidoc sv_clean_objs
479 Attempt to destroy all objects not yet freed
485 Perl_sv_clean_objs(pTHX)
488 PL_in_clean_objs = TRUE;
489 visit(do_clean_objs, SVf_ROK, SVf_ROK);
490 #ifndef DISABLE_DESTRUCTOR_KLUDGE
491 /* some barnacles may yet remain, clinging to typeglobs */
492 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
494 PL_in_clean_objs = FALSE;
497 /* called by sv_clean_all() for each live SV */
500 do_clean_all(pTHX_ SV *sv)
503 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
504 SvFLAGS(sv) |= SVf_BREAK;
509 =for apidoc sv_clean_all
511 Decrement the refcnt of each remaining SV, possibly triggering a
512 cleanup. This function may have to be called multiple times to free
513 SVs which are in complex self-referential hierarchies.
519 Perl_sv_clean_all(pTHX)
523 PL_in_clean_all = TRUE;
524 cleaned = visit(do_clean_all, 0,0);
525 PL_in_clean_all = FALSE;
530 ARENASETS: a meta-arena implementation which separates arena-info
531 into struct arena_set, which contains an array of struct
532 arena_descs, each holding info for a single arena. By separating
533 the meta-info from the arena, we recover the 1st slot, formerly
534 borrowed for list management. The arena_set is about the size of an
535 arena, avoiding the needless malloc overhead of a naive linked-list.
537 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
538 memory in the last arena-set (1/2 on average). In trade, we get
539 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
540 smaller types). The recovery of the wasted space allows use of
541 small arenas for large, rare body types,
544 char *arena; /* the raw storage, allocated aligned */
545 size_t size; /* its size ~4k typ */
546 U32 misc; /* type, and in future other things. */
551 /* Get the maximum number of elements in set[] such that struct arena_set
552 will fit within PERL_ARENA_SIZE, which is probabably just under 4K, and
553 therefore likely to be 1 aligned memory page. */
555 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
556 - 2 * sizeof(int)) / sizeof (struct arena_desc))
559 struct arena_set* next;
560 unsigned int set_size; /* ie ARENAS_PER_SET */
561 unsigned int curr; /* index of next available arena-desc */
562 struct arena_desc set[ARENAS_PER_SET];
566 =for apidoc sv_free_arenas
568 Deallocate the memory used by all arenas. Note that all the individual SV
569 heads and bodies within the arenas must already have been freed.
574 Perl_sv_free_arenas(pTHX)
581 /* Free arenas here, but be careful about fake ones. (We assume
582 contiguity of the fake ones with the corresponding real ones.) */
584 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
585 svanext = (SV*) SvANY(sva);
586 while (svanext && SvFAKE(svanext))
587 svanext = (SV*) SvANY(svanext);
594 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
597 struct arena_set *current = aroot;
600 assert(aroot->set[i].arena);
601 Safefree(aroot->set[i].arena);
609 i = PERL_ARENA_ROOTS_SIZE;
611 PL_body_roots[i] = 0;
613 Safefree(PL_nice_chunk);
614 PL_nice_chunk = NULL;
615 PL_nice_chunk_size = 0;
621 Here are mid-level routines that manage the allocation of bodies out
622 of the various arenas. There are 5 kinds of arenas:
624 1. SV-head arenas, which are discussed and handled above
625 2. regular body arenas
626 3. arenas for reduced-size bodies
628 5. pte arenas (thread related)
630 Arena types 2 & 3 are chained by body-type off an array of
631 arena-root pointers, which is indexed by svtype. Some of the
632 larger/less used body types are malloced singly, since a large
633 unused block of them is wasteful. Also, several svtypes dont have
634 bodies; the data fits into the sv-head itself. The arena-root
635 pointer thus has a few unused root-pointers (which may be hijacked
636 later for arena types 4,5)
638 3 differs from 2 as an optimization; some body types have several
639 unused fields in the front of the structure (which are kept in-place
640 for consistency). These bodies can be allocated in smaller chunks,
641 because the leading fields arent accessed. Pointers to such bodies
642 are decremented to point at the unused 'ghost' memory, knowing that
643 the pointers are used with offsets to the real memory.
645 HE, HEK arenas are managed separately, with separate code, but may
646 be merge-able later..
648 PTE arenas are not sv-bodies, but they share these mid-level
649 mechanics, so are considered here. The new mid-level mechanics rely
650 on the sv_type of the body being allocated, so we just reserve one
651 of the unused body-slots for PTEs, then use it in those (2) PTE
652 contexts below (line ~10k)
655 /* get_arena(size): this creates custom-sized arenas
656 TBD: export properly for hv.c: S_more_he().
659 Perl_get_arena(pTHX_ size_t arena_size, U32 misc)
662 struct arena_desc* adesc;
663 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
666 /* shouldnt need this
667 if (!arena_size) arena_size = PERL_ARENA_SIZE;
670 /* may need new arena-set to hold new arena */
671 if (!aroot || aroot->curr >= aroot->set_size) {
672 struct arena_set *newroot;
673 Newxz(newroot, 1, struct arena_set);
674 newroot->set_size = ARENAS_PER_SET;
675 newroot->next = aroot;
677 PL_body_arenas = (void *) newroot;
678 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
681 /* ok, now have arena-set with at least 1 empty/available arena-desc */
682 curr = aroot->curr++;
683 adesc = &(aroot->set[curr]);
684 assert(!adesc->arena);
686 Newx(adesc->arena, arena_size, char);
687 adesc->size = arena_size;
689 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
690 curr, (void*)adesc->arena, (UV)arena_size));
696 /* return a thing to the free list */
698 #define del_body(thing, root) \
700 void ** const thing_copy = (void **)thing;\
701 *thing_copy = *root; \
702 *root = (void*)thing_copy; \
707 =head1 SV-Body Allocation
709 Allocation of SV-bodies is similar to SV-heads, differing as follows;
710 the allocation mechanism is used for many body types, so is somewhat
711 more complicated, it uses arena-sets, and has no need for still-live
714 At the outermost level, (new|del)_X*V macros return bodies of the
715 appropriate type. These macros call either (new|del)_body_type or
716 (new|del)_body_allocated macro pairs, depending on specifics of the
717 type. Most body types use the former pair, the latter pair is used to
718 allocate body types with "ghost fields".
720 "ghost fields" are fields that are unused in certain types, and
721 consequently dont need to actually exist. They are declared because
722 they're part of a "base type", which allows use of functions as
723 methods. The simplest examples are AVs and HVs, 2 aggregate types
724 which don't use the fields which support SCALAR semantics.
726 For these types, the arenas are carved up into *_allocated size
727 chunks, we thus avoid wasted memory for those unaccessed members.
728 When bodies are allocated, we adjust the pointer back in memory by the
729 size of the bit not allocated, so it's as if we allocated the full
730 structure. (But things will all go boom if you write to the part that
731 is "not there", because you'll be overwriting the last members of the
732 preceding structure in memory.)
734 We calculate the correction using the STRUCT_OFFSET macro. For
735 example, if xpv_allocated is the same structure as XPV then the two
736 OFFSETs sum to zero, and the pointer is unchanged. If the allocated
737 structure is smaller (no initial NV actually allocated) then the net
738 effect is to subtract the size of the NV from the pointer, to return a
739 new pointer as if an initial NV were actually allocated.
741 This is the same trick as was used for NV and IV bodies. Ironically it
742 doesn't need to be used for NV bodies any more, because NV is now at
743 the start of the structure. IV bodies don't need it either, because
744 they are no longer allocated.
746 In turn, the new_body_* allocators call S_new_body(), which invokes
747 new_body_inline macro, which takes a lock, and takes a body off the
748 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
749 necessary to refresh an empty list. Then the lock is released, and
750 the body is returned.
752 S_more_bodies calls get_arena(), and carves it up into an array of N
753 bodies, which it strings into a linked list. It looks up arena-size
754 and body-size from the body_details table described below, thus
755 supporting the multiple body-types.
757 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
758 the (new|del)_X*V macros are mapped directly to malloc/free.
764 For each sv-type, struct body_details bodies_by_type[] carries
765 parameters which control these aspects of SV handling:
767 Arena_size determines whether arenas are used for this body type, and if
768 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
769 zero, forcing individual mallocs and frees.
771 Body_size determines how big a body is, and therefore how many fit into
772 each arena. Offset carries the body-pointer adjustment needed for
773 *_allocated body types, and is used in *_allocated macros.
775 But its main purpose is to parameterize info needed in
776 Perl_sv_upgrade(). The info here dramatically simplifies the function
777 vs the implementation in 5.8.7, making it table-driven. All fields
778 are used for this, except for arena_size.
780 For the sv-types that have no bodies, arenas are not used, so those
781 PL_body_roots[sv_type] are unused, and can be overloaded. In
782 something of a special case, SVt_NULL is borrowed for HE arenas;
783 PL_body_roots[SVt_NULL] is filled by S_more_he, but the
784 bodies_by_type[SVt_NULL] slot is not used, as the table is not
787 PTEs also use arenas, but are never seen in Perl_sv_upgrade.
788 Nonetheless, they get their own slot in bodies_by_type[SVt_NULL], so
789 they can just use the same allocation semantics. At first, PTEs were
790 also overloaded to a non-body sv-type, but this yielded hard-to-find
791 malloc bugs, so was simplified by claiming a new slot. This choice
792 has no consequence at this time.
796 struct body_details {
797 U8 body_size; /* Size to allocate */
798 U8 copy; /* Size of structure to copy (may be shorter) */
800 unsigned int type : 4; /* We have space for a sanity check. */
801 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
802 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
803 unsigned int arena : 1; /* Allocated from an arena */
804 size_t arena_size; /* Size of arena to allocate */
812 /* With -DPURFIY we allocate everything directly, and don't use arenas.
813 This seems a rather elegant way to simplify some of the code below. */
814 #define HASARENA FALSE
816 #define HASARENA TRUE
818 #define NOARENA FALSE
820 /* Size the arenas to exactly fit a given number of bodies. A count
821 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
822 simplifying the default. If count > 0, the arena is sized to fit
823 only that many bodies, allowing arenas to be used for large, rare
824 bodies (XPVFM, XPVIO) without undue waste. The arena size is
825 limited by PERL_ARENA_SIZE, so we can safely oversize the
828 #define FIT_ARENA0(body_size) \
829 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
830 #define FIT_ARENAn(count,body_size) \
831 ( count * body_size <= PERL_ARENA_SIZE) \
832 ? count * body_size \
833 : FIT_ARENA0 (body_size)
834 #define FIT_ARENA(count,body_size) \
836 ? FIT_ARENAn (count, body_size) \
837 : FIT_ARENA0 (body_size)
839 /* A macro to work out the offset needed to subtract from a pointer to (say)
846 to make its members accessible via a pointer to (say)
856 #define relative_STRUCT_OFFSET(longer, shorter, member) \
857 (STRUCT_OFFSET(shorter, member) - STRUCT_OFFSET(longer, member))
859 /* Calculate the length to copy. Specifically work out the length less any
860 final padding the compiler needed to add. See the comment in sv_upgrade
861 for why copying the padding proved to be a bug. */
863 #define copy_length(type, last_member) \
864 STRUCT_OFFSET(type, last_member) \
865 + sizeof (((type*)SvANY((SV*)0))->last_member)
867 static const struct body_details bodies_by_type[] = {
868 { sizeof(HE), 0, 0, SVt_NULL,
869 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
871 /* The bind placeholder pretends to be an RV for now.
872 Also it's marked as "can't upgrade" top stop anyone using it before it's
874 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
876 /* IVs are in the head, so the allocation size is 0.
877 However, the slot is overloaded for PTEs. */
878 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
879 sizeof(IV), /* This is used to copy out the IV body. */
880 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
881 NOARENA /* IVS don't need an arena */,
882 /* But PTEs need to know the size of their arena */
883 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
886 /* 8 bytes on most ILP32 with IEEE doubles */
887 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
888 FIT_ARENA(0, sizeof(NV)) },
890 /* RVs are in the head now. */
891 { 0, 0, 0, SVt_RV, FALSE, NONV, NOARENA, 0 },
893 /* 8 bytes on most ILP32 with IEEE doubles */
894 { sizeof(xpv_allocated),
895 copy_length(XPV, xpv_len)
896 - relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
897 + relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
898 SVt_PV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpv_allocated)) },
901 { sizeof(xpviv_allocated),
902 copy_length(XPVIV, xiv_u)
903 - relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
904 + relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
905 SVt_PVIV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpviv_allocated)) },
908 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
909 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
912 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
913 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
916 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
917 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
920 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
921 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
923 { sizeof(xpvav_allocated),
924 copy_length(XPVAV, xmg_stash)
925 - relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
926 + relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
927 SVt_PVAV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvav_allocated)) },
929 { sizeof(xpvhv_allocated),
930 copy_length(XPVHV, xmg_stash)
931 - relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
932 + relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
933 SVt_PVHV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvhv_allocated)) },
936 { sizeof(xpvcv_allocated), sizeof(xpvcv_allocated),
937 + relative_STRUCT_OFFSET(xpvcv_allocated, XPVCV, xpv_cur),
938 SVt_PVCV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvcv_allocated)) },
940 { sizeof(xpvfm_allocated), sizeof(xpvfm_allocated),
941 + relative_STRUCT_OFFSET(xpvfm_allocated, XPVFM, xpv_cur),
942 SVt_PVFM, TRUE, NONV, NOARENA, FIT_ARENA(20, sizeof(xpvfm_allocated)) },
944 /* XPVIO is 84 bytes, fits 48x */
945 { sizeof(XPVIO), sizeof(XPVIO), 0, SVt_PVIO, TRUE, HADNV,
946 HASARENA, FIT_ARENA(24, sizeof(XPVIO)) },
949 #define new_body_type(sv_type) \
950 (void *)((char *)S_new_body(aTHX_ sv_type))
952 #define del_body_type(p, sv_type) \
953 del_body(p, &PL_body_roots[sv_type])
956 #define new_body_allocated(sv_type) \
957 (void *)((char *)S_new_body(aTHX_ sv_type) \
958 - bodies_by_type[sv_type].offset)
960 #define del_body_allocated(p, sv_type) \
961 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
964 #define my_safemalloc(s) (void*)safemalloc(s)
965 #define my_safecalloc(s) (void*)safecalloc(s, 1)
966 #define my_safefree(p) safefree((char*)p)
970 #define new_XNV() my_safemalloc(sizeof(XPVNV))
971 #define del_XNV(p) my_safefree(p)
973 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
974 #define del_XPVNV(p) my_safefree(p)
976 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
977 #define del_XPVAV(p) my_safefree(p)
979 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
980 #define del_XPVHV(p) my_safefree(p)
982 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
983 #define del_XPVMG(p) my_safefree(p)
985 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
986 #define del_XPVGV(p) my_safefree(p)
990 #define new_XNV() new_body_type(SVt_NV)
991 #define del_XNV(p) del_body_type(p, SVt_NV)
993 #define new_XPVNV() new_body_type(SVt_PVNV)
994 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
996 #define new_XPVAV() new_body_allocated(SVt_PVAV)
997 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
999 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1000 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1002 #define new_XPVMG() new_body_type(SVt_PVMG)
1003 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1005 #define new_XPVGV() new_body_type(SVt_PVGV)
1006 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1010 /* no arena for you! */
1012 #define new_NOARENA(details) \
1013 my_safemalloc((details)->body_size + (details)->offset)
1014 #define new_NOARENAZ(details) \
1015 my_safecalloc((details)->body_size + (details)->offset)
1018 S_more_bodies (pTHX_ svtype sv_type)
1021 void ** const root = &PL_body_roots[sv_type];
1022 const struct body_details * const bdp = &bodies_by_type[sv_type];
1023 const size_t body_size = bdp->body_size;
1026 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1027 static bool done_sanity_check;
1029 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1030 * variables like done_sanity_check. */
1031 if (!done_sanity_check) {
1032 unsigned int i = SVt_LAST;
1034 done_sanity_check = TRUE;
1037 assert (bodies_by_type[i].type == i);
1041 assert(bdp->arena_size);
1043 start = (char*) Perl_get_arena(aTHX_ bdp->arena_size, sv_type);
1045 end = start + bdp->arena_size - body_size;
1047 /* computed count doesnt reflect the 1st slot reservation */
1048 DEBUG_m(PerlIO_printf(Perl_debug_log,
1049 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1050 (void*)start, (void*)end,
1051 (int)bdp->arena_size, sv_type, (int)body_size,
1052 (int)bdp->arena_size / (int)body_size));
1054 *root = (void *)start;
1056 while (start < end) {
1057 char * const next = start + body_size;
1058 *(void**) start = (void *)next;
1061 *(void **)start = 0;
1066 /* grab a new thing from the free list, allocating more if necessary.
1067 The inline version is used for speed in hot routines, and the
1068 function using it serves the rest (unless PURIFY).
1070 #define new_body_inline(xpv, sv_type) \
1072 void ** const r3wt = &PL_body_roots[sv_type]; \
1073 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1074 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1075 *(r3wt) = *(void**)(xpv); \
1081 S_new_body(pTHX_ svtype sv_type)
1085 new_body_inline(xpv, sv_type);
1092 =for apidoc sv_upgrade
1094 Upgrade an SV to a more complex form. Generally adds a new body type to the
1095 SV, then copies across as much information as possible from the old body.
1096 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1102 Perl_sv_upgrade(pTHX_ register SV *sv, svtype new_type)
1107 const svtype old_type = SvTYPE(sv);
1108 const struct body_details *new_type_details;
1109 const struct body_details *const old_type_details
1110 = bodies_by_type + old_type;
1112 if (new_type != SVt_PV && SvIsCOW(sv)) {
1113 sv_force_normal_flags(sv, 0);
1116 if (old_type == new_type)
1119 if (old_type > new_type)
1120 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1121 (int)old_type, (int)new_type);
1124 old_body = SvANY(sv);
1126 /* Copying structures onto other structures that have been neatly zeroed
1127 has a subtle gotcha. Consider XPVMG
1129 +------+------+------+------+------+-------+-------+
1130 | NV | CUR | LEN | IV | MAGIC | STASH |
1131 +------+------+------+------+------+-------+-------+
1132 0 4 8 12 16 20 24 28
1134 where NVs are aligned to 8 bytes, so that sizeof that structure is
1135 actually 32 bytes long, with 4 bytes of padding at the end:
1137 +------+------+------+------+------+-------+-------+------+
1138 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1139 +------+------+------+------+------+-------+-------+------+
1140 0 4 8 12 16 20 24 28 32
1142 so what happens if you allocate memory for this structure:
1144 +------+------+------+------+------+-------+-------+------+------+...
1145 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1146 +------+------+------+------+------+-------+-------+------+------+...
1147 0 4 8 12 16 20 24 28 32 36
1149 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1150 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1151 started out as zero once, but it's quite possible that it isn't. So now,
1152 rather than a nicely zeroed GP, you have it pointing somewhere random.
1155 (In fact, GP ends up pointing at a previous GP structure, because the
1156 principle cause of the padding in XPVMG getting garbage is a copy of
1157 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1158 this happens to be moot because XPVGV has been re-ordered, with GP
1159 no longer after STASH)
1161 So we are careful and work out the size of used parts of all the
1168 if (new_type < SVt_PVIV) {
1169 new_type = (new_type == SVt_NV)
1170 ? SVt_PVNV : SVt_PVIV;
1174 if (new_type < SVt_PVNV) {
1175 new_type = SVt_PVNV;
1181 assert(new_type > SVt_PV);
1182 assert(SVt_IV < SVt_PV);
1183 assert(SVt_NV < SVt_PV);
1190 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1191 there's no way that it can be safely upgraded, because perl.c
1192 expects to Safefree(SvANY(PL_mess_sv)) */
1193 assert(sv != PL_mess_sv);
1194 /* This flag bit is used to mean other things in other scalar types.
1195 Given that it only has meaning inside the pad, it shouldn't be set
1196 on anything that can get upgraded. */
1197 assert(!SvPAD_TYPED(sv));
1200 if (old_type_details->cant_upgrade)
1201 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1202 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1204 new_type_details = bodies_by_type + new_type;
1206 SvFLAGS(sv) &= ~SVTYPEMASK;
1207 SvFLAGS(sv) |= new_type;
1209 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1210 the return statements above will have triggered. */
1211 assert (new_type != SVt_NULL);
1214 assert(old_type == SVt_NULL);
1215 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1219 assert(old_type == SVt_NULL);
1220 SvANY(sv) = new_XNV();
1224 assert(old_type == SVt_NULL);
1225 SvANY(sv) = &sv->sv_u.svu_rv;
1230 assert(new_type_details->body_size);
1233 assert(new_type_details->arena);
1234 assert(new_type_details->arena_size);
1235 /* This points to the start of the allocated area. */
1236 new_body_inline(new_body, new_type);
1237 Zero(new_body, new_type_details->body_size, char);
1238 new_body = ((char *)new_body) - new_type_details->offset;
1240 /* We always allocated the full length item with PURIFY. To do this
1241 we fake things so that arena is false for all 16 types.. */
1242 new_body = new_NOARENAZ(new_type_details);
1244 SvANY(sv) = new_body;
1245 if (new_type == SVt_PVAV) {
1251 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1252 The target created by newSVrv also is, and it can have magic.
1253 However, it never has SvPVX set.
1255 if (old_type >= SVt_RV) {
1256 assert(SvPVX_const(sv) == 0);
1259 if (old_type >= SVt_PVMG) {
1260 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1261 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1263 sv->sv_u.svu_array = NULL; /* or svu_hash */
1269 /* XXX Is this still needed? Was it ever needed? Surely as there is
1270 no route from NV to PVIV, NOK can never be true */
1271 assert(!SvNOKp(sv));
1282 assert(new_type_details->body_size);
1283 /* We always allocated the full length item with PURIFY. To do this
1284 we fake things so that arena is false for all 16 types.. */
1285 if(new_type_details->arena) {
1286 /* This points to the start of the allocated area. */
1287 new_body_inline(new_body, new_type);
1288 Zero(new_body, new_type_details->body_size, char);
1289 new_body = ((char *)new_body) - new_type_details->offset;
1291 new_body = new_NOARENAZ(new_type_details);
1293 SvANY(sv) = new_body;
1295 if (old_type_details->copy) {
1296 /* There is now the potential for an upgrade from something without
1297 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1298 int offset = old_type_details->offset;
1299 int length = old_type_details->copy;
1301 if (new_type_details->offset > old_type_details->offset) {
1302 const int difference
1303 = new_type_details->offset - old_type_details->offset;
1304 offset += difference;
1305 length -= difference;
1307 assert (length >= 0);
1309 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1313 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1314 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1315 * correct 0.0 for us. Otherwise, if the old body didn't have an
1316 * NV slot, but the new one does, then we need to initialise the
1317 * freshly created NV slot with whatever the correct bit pattern is
1319 if (old_type_details->zero_nv && !new_type_details->zero_nv
1320 && !isGV_with_GP(sv))
1324 if (new_type == SVt_PVIO)
1325 IoPAGE_LEN(sv) = 60;
1326 if (old_type < SVt_RV)
1330 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1331 (unsigned long)new_type);
1334 if (old_type_details->arena) {
1335 /* If there was an old body, then we need to free it.
1336 Note that there is an assumption that all bodies of types that
1337 can be upgraded came from arenas. Only the more complex non-
1338 upgradable types are allowed to be directly malloc()ed. */
1340 my_safefree(old_body);
1342 del_body((void*)((char*)old_body + old_type_details->offset),
1343 &PL_body_roots[old_type]);
1349 =for apidoc sv_backoff
1351 Remove any string offset. You should normally use the C<SvOOK_off> macro
1358 Perl_sv_backoff(pTHX_ register SV *sv)
1360 PERL_UNUSED_CONTEXT;
1362 assert(SvTYPE(sv) != SVt_PVHV);
1363 assert(SvTYPE(sv) != SVt_PVAV);
1365 const char * const s = SvPVX_const(sv);
1366 SvLEN_set(sv, SvLEN(sv) + SvIVX(sv));
1367 SvPV_set(sv, SvPVX(sv) - SvIVX(sv));
1369 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1371 SvFLAGS(sv) &= ~SVf_OOK;
1378 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1379 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1380 Use the C<SvGROW> wrapper instead.
1386 Perl_sv_grow(pTHX_ register SV *sv, register STRLEN newlen)
1390 if (PL_madskills && newlen >= 0x100000) {
1391 PerlIO_printf(Perl_debug_log,
1392 "Allocation too large: %"UVxf"\n", (UV)newlen);
1394 #ifdef HAS_64K_LIMIT
1395 if (newlen >= 0x10000) {
1396 PerlIO_printf(Perl_debug_log,
1397 "Allocation too large: %"UVxf"\n", (UV)newlen);
1400 #endif /* HAS_64K_LIMIT */
1403 if (SvTYPE(sv) < SVt_PV) {
1404 sv_upgrade(sv, SVt_PV);
1405 s = SvPVX_mutable(sv);
1407 else if (SvOOK(sv)) { /* pv is offset? */
1409 s = SvPVX_mutable(sv);
1410 if (newlen > SvLEN(sv))
1411 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1412 #ifdef HAS_64K_LIMIT
1413 if (newlen >= 0x10000)
1418 s = SvPVX_mutable(sv);
1420 if (newlen > SvLEN(sv)) { /* need more room? */
1421 newlen = PERL_STRLEN_ROUNDUP(newlen);
1422 if (SvLEN(sv) && s) {
1424 const STRLEN l = malloced_size((void*)SvPVX_const(sv));
1430 s = (char*)saferealloc(s, newlen);
1433 s = (char*)safemalloc(newlen);
1434 if (SvPVX_const(sv) && SvCUR(sv)) {
1435 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1439 SvLEN_set(sv, newlen);
1445 =for apidoc sv_setiv
1447 Copies an integer into the given SV, upgrading first if necessary.
1448 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1454 Perl_sv_setiv(pTHX_ register SV *sv, IV i)
1457 SV_CHECK_THINKFIRST_COW_DROP(sv);
1458 switch (SvTYPE(sv)) {
1460 sv_upgrade(sv, SVt_IV);
1463 sv_upgrade(sv, SVt_PVNV);
1467 sv_upgrade(sv, SVt_PVIV);
1476 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1480 (void)SvIOK_only(sv); /* validate number */
1486 =for apidoc sv_setiv_mg
1488 Like C<sv_setiv>, but also handles 'set' magic.
1494 Perl_sv_setiv_mg(pTHX_ register SV *sv, IV i)
1501 =for apidoc sv_setuv
1503 Copies an unsigned integer into the given SV, upgrading first if necessary.
1504 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1510 Perl_sv_setuv(pTHX_ register SV *sv, UV u)
1512 /* With these two if statements:
1513 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1516 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1518 If you wish to remove them, please benchmark to see what the effect is
1520 if (u <= (UV)IV_MAX) {
1521 sv_setiv(sv, (IV)u);
1530 =for apidoc sv_setuv_mg
1532 Like C<sv_setuv>, but also handles 'set' magic.
1538 Perl_sv_setuv_mg(pTHX_ register SV *sv, UV u)
1545 =for apidoc sv_setnv
1547 Copies a double into the given SV, upgrading first if necessary.
1548 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1554 Perl_sv_setnv(pTHX_ register SV *sv, NV num)
1557 SV_CHECK_THINKFIRST_COW_DROP(sv);
1558 switch (SvTYPE(sv)) {
1561 sv_upgrade(sv, SVt_NV);
1566 sv_upgrade(sv, SVt_PVNV);
1575 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1580 (void)SvNOK_only(sv); /* validate number */
1585 =for apidoc sv_setnv_mg
1587 Like C<sv_setnv>, but also handles 'set' magic.
1593 Perl_sv_setnv_mg(pTHX_ register SV *sv, NV num)
1599 /* Print an "isn't numeric" warning, using a cleaned-up,
1600 * printable version of the offending string
1604 S_not_a_number(pTHX_ SV *sv)
1612 dsv = sv_2mortal(newSVpvs(""));
1613 pv = sv_uni_display(dsv, sv, 10, 0);
1616 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1617 /* each *s can expand to 4 chars + "...\0",
1618 i.e. need room for 8 chars */
1620 const char *s = SvPVX_const(sv);
1621 const char * const end = s + SvCUR(sv);
1622 for ( ; s < end && d < limit; s++ ) {
1624 if (ch & 128 && !isPRINT_LC(ch)) {
1633 else if (ch == '\r') {
1637 else if (ch == '\f') {
1641 else if (ch == '\\') {
1645 else if (ch == '\0') {
1649 else if (isPRINT_LC(ch))
1666 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1667 "Argument \"%s\" isn't numeric in %s", pv,
1670 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1671 "Argument \"%s\" isn't numeric", pv);
1675 =for apidoc looks_like_number
1677 Test if the content of an SV looks like a number (or is a number).
1678 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1679 non-numeric warning), even if your atof() doesn't grok them.
1685 Perl_looks_like_number(pTHX_ SV *sv)
1687 register const char *sbegin;
1691 sbegin = SvPVX_const(sv);
1694 else if (SvPOKp(sv))
1695 sbegin = SvPV_const(sv, len);
1697 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1698 return grok_number(sbegin, len, NULL);
1702 S_glob_2number(pTHX_ GV * const gv)
1704 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1705 SV *const buffer = sv_newmortal();
1707 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1710 gv_efullname3(buffer, gv, "*");
1711 SvFLAGS(gv) |= wasfake;
1713 /* We know that all GVs stringify to something that is not-a-number,
1714 so no need to test that. */
1715 if (ckWARN(WARN_NUMERIC))
1716 not_a_number(buffer);
1717 /* We just want something true to return, so that S_sv_2iuv_common
1718 can tail call us and return true. */
1723 S_glob_2pv(pTHX_ GV * const gv, STRLEN * const len)
1725 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1726 SV *const buffer = sv_newmortal();
1728 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1731 gv_efullname3(buffer, gv, "*");
1732 SvFLAGS(gv) |= wasfake;
1734 assert(SvPOK(buffer));
1736 *len = SvCUR(buffer);
1738 return SvPVX(buffer);
1741 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1742 until proven guilty, assume that things are not that bad... */
1747 As 64 bit platforms often have an NV that doesn't preserve all bits of
1748 an IV (an assumption perl has been based on to date) it becomes necessary
1749 to remove the assumption that the NV always carries enough precision to
1750 recreate the IV whenever needed, and that the NV is the canonical form.
1751 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1752 precision as a side effect of conversion (which would lead to insanity
1753 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1754 1) to distinguish between IV/UV/NV slots that have cached a valid
1755 conversion where precision was lost and IV/UV/NV slots that have a
1756 valid conversion which has lost no precision
1757 2) to ensure that if a numeric conversion to one form is requested that
1758 would lose precision, the precise conversion (or differently
1759 imprecise conversion) is also performed and cached, to prevent
1760 requests for different numeric formats on the same SV causing
1761 lossy conversion chains. (lossless conversion chains are perfectly
1766 SvIOKp is true if the IV slot contains a valid value
1767 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1768 SvNOKp is true if the NV slot contains a valid value
1769 SvNOK is true only if the NV value is accurate
1772 while converting from PV to NV, check to see if converting that NV to an
1773 IV(or UV) would lose accuracy over a direct conversion from PV to
1774 IV(or UV). If it would, cache both conversions, return NV, but mark
1775 SV as IOK NOKp (ie not NOK).
1777 While converting from PV to IV, check to see if converting that IV to an
1778 NV would lose accuracy over a direct conversion from PV to NV. If it
1779 would, cache both conversions, flag similarly.
1781 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1782 correctly because if IV & NV were set NV *always* overruled.
1783 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1784 changes - now IV and NV together means that the two are interchangeable:
1785 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1787 The benefit of this is that operations such as pp_add know that if
1788 SvIOK is true for both left and right operands, then integer addition
1789 can be used instead of floating point (for cases where the result won't
1790 overflow). Before, floating point was always used, which could lead to
1791 loss of precision compared with integer addition.
1793 * making IV and NV equal status should make maths accurate on 64 bit
1795 * may speed up maths somewhat if pp_add and friends start to use
1796 integers when possible instead of fp. (Hopefully the overhead in
1797 looking for SvIOK and checking for overflow will not outweigh the
1798 fp to integer speedup)
1799 * will slow down integer operations (callers of SvIV) on "inaccurate"
1800 values, as the change from SvIOK to SvIOKp will cause a call into
1801 sv_2iv each time rather than a macro access direct to the IV slot
1802 * should speed up number->string conversion on integers as IV is
1803 favoured when IV and NV are equally accurate
1805 ####################################################################
1806 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1807 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1808 On the other hand, SvUOK is true iff UV.
1809 ####################################################################
1811 Your mileage will vary depending your CPU's relative fp to integer
1815 #ifndef NV_PRESERVES_UV
1816 # define IS_NUMBER_UNDERFLOW_IV 1
1817 # define IS_NUMBER_UNDERFLOW_UV 2
1818 # define IS_NUMBER_IV_AND_UV 2
1819 # define IS_NUMBER_OVERFLOW_IV 4
1820 # define IS_NUMBER_OVERFLOW_UV 5
1822 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1824 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1826 S_sv_2iuv_non_preserve(pTHX_ register SV *sv, I32 numtype)
1829 PERL_UNUSED_ARG(numtype); /* Used only under DEBUGGING? */
1830 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1831 if (SvNVX(sv) < (NV)IV_MIN) {
1832 (void)SvIOKp_on(sv);
1834 SvIV_set(sv, IV_MIN);
1835 return IS_NUMBER_UNDERFLOW_IV;
1837 if (SvNVX(sv) > (NV)UV_MAX) {
1838 (void)SvIOKp_on(sv);
1841 SvUV_set(sv, UV_MAX);
1842 return IS_NUMBER_OVERFLOW_UV;
1844 (void)SvIOKp_on(sv);
1846 /* Can't use strtol etc to convert this string. (See truth table in
1848 if (SvNVX(sv) <= (UV)IV_MAX) {
1849 SvIV_set(sv, I_V(SvNVX(sv)));
1850 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1851 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1853 /* Integer is imprecise. NOK, IOKp */
1855 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1858 SvUV_set(sv, U_V(SvNVX(sv)));
1859 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1860 if (SvUVX(sv) == UV_MAX) {
1861 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1862 possibly be preserved by NV. Hence, it must be overflow.
1864 return IS_NUMBER_OVERFLOW_UV;
1866 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1868 /* Integer is imprecise. NOK, IOKp */
1870 return IS_NUMBER_OVERFLOW_IV;
1872 #endif /* !NV_PRESERVES_UV*/
1875 S_sv_2iuv_common(pTHX_ SV *sv) {
1878 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1879 * without also getting a cached IV/UV from it at the same time
1880 * (ie PV->NV conversion should detect loss of accuracy and cache
1881 * IV or UV at same time to avoid this. */
1882 /* IV-over-UV optimisation - choose to cache IV if possible */
1884 if (SvTYPE(sv) == SVt_NV)
1885 sv_upgrade(sv, SVt_PVNV);
1887 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1888 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1889 certainly cast into the IV range at IV_MAX, whereas the correct
1890 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1892 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1893 if (Perl_isnan(SvNVX(sv))) {
1899 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
1900 SvIV_set(sv, I_V(SvNVX(sv)));
1901 if (SvNVX(sv) == (NV) SvIVX(sv)
1902 #ifndef NV_PRESERVES_UV
1903 && (((UV)1 << NV_PRESERVES_UV_BITS) >
1904 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
1905 /* Don't flag it as "accurately an integer" if the number
1906 came from a (by definition imprecise) NV operation, and
1907 we're outside the range of NV integer precision */
1910 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
1911 DEBUG_c(PerlIO_printf(Perl_debug_log,
1912 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
1918 /* IV not precise. No need to convert from PV, as NV
1919 conversion would already have cached IV if it detected
1920 that PV->IV would be better than PV->NV->IV
1921 flags already correct - don't set public IOK. */
1922 DEBUG_c(PerlIO_printf(Perl_debug_log,
1923 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
1928 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
1929 but the cast (NV)IV_MIN rounds to a the value less (more
1930 negative) than IV_MIN which happens to be equal to SvNVX ??
1931 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
1932 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
1933 (NV)UVX == NVX are both true, but the values differ. :-(
1934 Hopefully for 2s complement IV_MIN is something like
1935 0x8000000000000000 which will be exact. NWC */
1938 SvUV_set(sv, U_V(SvNVX(sv)));
1940 (SvNVX(sv) == (NV) SvUVX(sv))
1941 #ifndef NV_PRESERVES_UV
1942 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
1943 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
1944 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
1945 /* Don't flag it as "accurately an integer" if the number
1946 came from a (by definition imprecise) NV operation, and
1947 we're outside the range of NV integer precision */
1952 DEBUG_c(PerlIO_printf(Perl_debug_log,
1953 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
1959 else if (SvPOKp(sv) && SvLEN(sv)) {
1961 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
1962 /* We want to avoid a possible problem when we cache an IV/ a UV which
1963 may be later translated to an NV, and the resulting NV is not
1964 the same as the direct translation of the initial string
1965 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
1966 be careful to ensure that the value with the .456 is around if the
1967 NV value is requested in the future).
1969 This means that if we cache such an IV/a UV, we need to cache the
1970 NV as well. Moreover, we trade speed for space, and do not
1971 cache the NV if we are sure it's not needed.
1974 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
1975 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
1976 == IS_NUMBER_IN_UV) {
1977 /* It's definitely an integer, only upgrade to PVIV */
1978 if (SvTYPE(sv) < SVt_PVIV)
1979 sv_upgrade(sv, SVt_PVIV);
1981 } else if (SvTYPE(sv) < SVt_PVNV)
1982 sv_upgrade(sv, SVt_PVNV);
1984 /* If NVs preserve UVs then we only use the UV value if we know that
1985 we aren't going to call atof() below. If NVs don't preserve UVs
1986 then the value returned may have more precision than atof() will
1987 return, even though value isn't perfectly accurate. */
1988 if ((numtype & (IS_NUMBER_IN_UV
1989 #ifdef NV_PRESERVES_UV
1992 )) == IS_NUMBER_IN_UV) {
1993 /* This won't turn off the public IOK flag if it was set above */
1994 (void)SvIOKp_on(sv);
1996 if (!(numtype & IS_NUMBER_NEG)) {
1998 if (value <= (UV)IV_MAX) {
1999 SvIV_set(sv, (IV)value);
2001 /* it didn't overflow, and it was positive. */
2002 SvUV_set(sv, value);
2006 /* 2s complement assumption */
2007 if (value <= (UV)IV_MIN) {
2008 SvIV_set(sv, -(IV)value);
2010 /* Too negative for an IV. This is a double upgrade, but
2011 I'm assuming it will be rare. */
2012 if (SvTYPE(sv) < SVt_PVNV)
2013 sv_upgrade(sv, SVt_PVNV);
2017 SvNV_set(sv, -(NV)value);
2018 SvIV_set(sv, IV_MIN);
2022 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2023 will be in the previous block to set the IV slot, and the next
2024 block to set the NV slot. So no else here. */
2026 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2027 != IS_NUMBER_IN_UV) {
2028 /* It wasn't an (integer that doesn't overflow the UV). */
2029 SvNV_set(sv, Atof(SvPVX_const(sv)));
2031 if (! numtype && ckWARN(WARN_NUMERIC))
2034 #if defined(USE_LONG_DOUBLE)
2035 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2036 PTR2UV(sv), SvNVX(sv)));
2038 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2039 PTR2UV(sv), SvNVX(sv)));
2042 #ifdef NV_PRESERVES_UV
2043 (void)SvIOKp_on(sv);
2045 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2046 SvIV_set(sv, I_V(SvNVX(sv)));
2047 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2050 NOOP; /* Integer is imprecise. NOK, IOKp */
2052 /* UV will not work better than IV */
2054 if (SvNVX(sv) > (NV)UV_MAX) {
2056 /* Integer is inaccurate. NOK, IOKp, is UV */
2057 SvUV_set(sv, UV_MAX);
2059 SvUV_set(sv, U_V(SvNVX(sv)));
2060 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2061 NV preservse UV so can do correct comparison. */
2062 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2065 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2070 #else /* NV_PRESERVES_UV */
2071 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2072 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2073 /* The IV/UV slot will have been set from value returned by
2074 grok_number above. The NV slot has just been set using
2077 assert (SvIOKp(sv));
2079 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2080 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2081 /* Small enough to preserve all bits. */
2082 (void)SvIOKp_on(sv);
2084 SvIV_set(sv, I_V(SvNVX(sv)));
2085 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2087 /* Assumption: first non-preserved integer is < IV_MAX,
2088 this NV is in the preserved range, therefore: */
2089 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2091 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2095 0 0 already failed to read UV.
2096 0 1 already failed to read UV.
2097 1 0 you won't get here in this case. IV/UV
2098 slot set, public IOK, Atof() unneeded.
2099 1 1 already read UV.
2100 so there's no point in sv_2iuv_non_preserve() attempting
2101 to use atol, strtol, strtoul etc. */
2102 sv_2iuv_non_preserve (sv, numtype);
2105 #endif /* NV_PRESERVES_UV */
2109 if (isGV_with_GP(sv))
2110 return glob_2number((GV *)sv);
2112 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2113 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2116 if (SvTYPE(sv) < SVt_IV)
2117 /* Typically the caller expects that sv_any is not NULL now. */
2118 sv_upgrade(sv, SVt_IV);
2119 /* Return 0 from the caller. */
2126 =for apidoc sv_2iv_flags
2128 Return the integer value of an SV, doing any necessary string
2129 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2130 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2136 Perl_sv_2iv_flags(pTHX_ register SV *sv, I32 flags)
2141 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2142 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2143 cache IVs just in case. In practice it seems that they never
2144 actually anywhere accessible by user Perl code, let alone get used
2145 in anything other than a string context. */
2146 if (flags & SV_GMAGIC)
2151 return I_V(SvNVX(sv));
2153 if (SvPOKp(sv) && SvLEN(sv)) {
2156 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2158 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2159 == IS_NUMBER_IN_UV) {
2160 /* It's definitely an integer */
2161 if (numtype & IS_NUMBER_NEG) {
2162 if (value < (UV)IV_MIN)
2165 if (value < (UV)IV_MAX)
2170 if (ckWARN(WARN_NUMERIC))
2173 return I_V(Atof(SvPVX_const(sv)));
2178 assert(SvTYPE(sv) >= SVt_PVMG);
2179 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2180 } else if (SvTHINKFIRST(sv)) {
2184 SV * const tmpstr=AMG_CALLun(sv,numer);
2185 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2186 return SvIV(tmpstr);
2189 return PTR2IV(SvRV(sv));
2192 sv_force_normal_flags(sv, 0);
2194 if (SvREADONLY(sv) && !SvOK(sv)) {
2195 if (ckWARN(WARN_UNINITIALIZED))
2201 if (S_sv_2iuv_common(aTHX_ sv))
2204 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2205 PTR2UV(sv),SvIVX(sv)));
2206 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2210 =for apidoc sv_2uv_flags
2212 Return the unsigned integer value of an SV, doing any necessary string
2213 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2214 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2220 Perl_sv_2uv_flags(pTHX_ register SV *sv, I32 flags)
2225 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2226 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2227 cache IVs just in case. */
2228 if (flags & SV_GMAGIC)
2233 return U_V(SvNVX(sv));
2234 if (SvPOKp(sv) && SvLEN(sv)) {
2237 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2239 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2240 == IS_NUMBER_IN_UV) {
2241 /* It's definitely an integer */
2242 if (!(numtype & IS_NUMBER_NEG))
2246 if (ckWARN(WARN_NUMERIC))
2249 return U_V(Atof(SvPVX_const(sv)));
2254 assert(SvTYPE(sv) >= SVt_PVMG);
2255 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2256 } else if (SvTHINKFIRST(sv)) {
2260 SV *const tmpstr = AMG_CALLun(sv,numer);
2261 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2262 return SvUV(tmpstr);
2265 return PTR2UV(SvRV(sv));
2268 sv_force_normal_flags(sv, 0);
2270 if (SvREADONLY(sv) && !SvOK(sv)) {
2271 if (ckWARN(WARN_UNINITIALIZED))
2277 if (S_sv_2iuv_common(aTHX_ sv))
2281 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2282 PTR2UV(sv),SvUVX(sv)));
2283 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2289 Return the num value of an SV, doing any necessary string or integer
2290 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2297 Perl_sv_2nv(pTHX_ register SV *sv)
2302 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2303 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2304 cache IVs just in case. */
2308 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2309 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2310 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2312 return Atof(SvPVX_const(sv));
2316 return (NV)SvUVX(sv);
2318 return (NV)SvIVX(sv);
2323 assert(SvTYPE(sv) >= SVt_PVMG);
2324 /* This falls through to the report_uninit near the end of the
2326 } else if (SvTHINKFIRST(sv)) {
2330 SV *const tmpstr = AMG_CALLun(sv,numer);
2331 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2332 return SvNV(tmpstr);
2335 return PTR2NV(SvRV(sv));
2338 sv_force_normal_flags(sv, 0);
2340 if (SvREADONLY(sv) && !SvOK(sv)) {
2341 if (ckWARN(WARN_UNINITIALIZED))
2346 if (SvTYPE(sv) < SVt_NV) {
2347 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2348 sv_upgrade(sv, SVt_NV);
2349 #ifdef USE_LONG_DOUBLE
2351 STORE_NUMERIC_LOCAL_SET_STANDARD();
2352 PerlIO_printf(Perl_debug_log,
2353 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2354 PTR2UV(sv), SvNVX(sv));
2355 RESTORE_NUMERIC_LOCAL();
2359 STORE_NUMERIC_LOCAL_SET_STANDARD();
2360 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2361 PTR2UV(sv), SvNVX(sv));
2362 RESTORE_NUMERIC_LOCAL();
2366 else if (SvTYPE(sv) < SVt_PVNV)
2367 sv_upgrade(sv, SVt_PVNV);
2372 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2373 #ifdef NV_PRESERVES_UV
2376 /* Only set the public NV OK flag if this NV preserves the IV */
2377 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2378 if (SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2379 : (SvIVX(sv) == I_V(SvNVX(sv))))
2385 else if (SvPOKp(sv) && SvLEN(sv)) {
2387 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2388 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2390 #ifdef NV_PRESERVES_UV
2391 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2392 == IS_NUMBER_IN_UV) {
2393 /* It's definitely an integer */
2394 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2396 SvNV_set(sv, Atof(SvPVX_const(sv)));
2399 SvNV_set(sv, Atof(SvPVX_const(sv)));
2400 /* Only set the public NV OK flag if this NV preserves the value in
2401 the PV at least as well as an IV/UV would.
2402 Not sure how to do this 100% reliably. */
2403 /* if that shift count is out of range then Configure's test is
2404 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2406 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2407 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2408 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2409 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2410 /* Can't use strtol etc to convert this string, so don't try.
2411 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2414 /* value has been set. It may not be precise. */
2415 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2416 /* 2s complement assumption for (UV)IV_MIN */
2417 SvNOK_on(sv); /* Integer is too negative. */
2422 if (numtype & IS_NUMBER_NEG) {
2423 SvIV_set(sv, -(IV)value);
2424 } else if (value <= (UV)IV_MAX) {
2425 SvIV_set(sv, (IV)value);
2427 SvUV_set(sv, value);
2431 if (numtype & IS_NUMBER_NOT_INT) {
2432 /* I believe that even if the original PV had decimals,
2433 they are lost beyond the limit of the FP precision.
2434 However, neither is canonical, so both only get p
2435 flags. NWC, 2000/11/25 */
2436 /* Both already have p flags, so do nothing */
2438 const NV nv = SvNVX(sv);
2439 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2440 if (SvIVX(sv) == I_V(nv)) {
2443 /* It had no "." so it must be integer. */
2447 /* between IV_MAX and NV(UV_MAX).
2448 Could be slightly > UV_MAX */
2450 if (numtype & IS_NUMBER_NOT_INT) {
2451 /* UV and NV both imprecise. */
2453 const UV nv_as_uv = U_V(nv);
2455 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2464 #endif /* NV_PRESERVES_UV */
2467 if (isGV_with_GP(sv)) {
2468 glob_2number((GV *)sv);
2472 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2474 assert (SvTYPE(sv) >= SVt_NV);
2475 /* Typically the caller expects that sv_any is not NULL now. */
2476 /* XXX Ilya implies that this is a bug in callers that assume this
2477 and ideally should be fixed. */
2480 #if defined(USE_LONG_DOUBLE)
2482 STORE_NUMERIC_LOCAL_SET_STANDARD();
2483 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2484 PTR2UV(sv), SvNVX(sv));
2485 RESTORE_NUMERIC_LOCAL();
2489 STORE_NUMERIC_LOCAL_SET_STANDARD();
2490 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2491 PTR2UV(sv), SvNVX(sv));
2492 RESTORE_NUMERIC_LOCAL();
2498 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2499 * UV as a string towards the end of buf, and return pointers to start and
2502 * We assume that buf is at least TYPE_CHARS(UV) long.
2506 S_uiv_2buf(char *buf, IV iv, UV uv, int is_uv, char **peob)
2508 char *ptr = buf + TYPE_CHARS(UV);
2509 char * const ebuf = ptr;
2522 *--ptr = '0' + (char)(uv % 10);
2531 =for apidoc sv_2pv_flags
2533 Returns a pointer to the string value of an SV, and sets *lp to its length.
2534 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2536 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2537 usually end up here too.
2543 Perl_sv_2pv_flags(pTHX_ register SV *sv, STRLEN *lp, I32 flags)
2553 if (SvGMAGICAL(sv)) {
2554 if (flags & SV_GMAGIC)
2559 if (flags & SV_MUTABLE_RETURN)
2560 return SvPVX_mutable(sv);
2561 if (flags & SV_CONST_RETURN)
2562 return (char *)SvPVX_const(sv);
2565 if (SvIOKp(sv) || SvNOKp(sv)) {
2566 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2571 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2572 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2574 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2581 #ifdef FIXNEGATIVEZERO
2582 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2588 SvUPGRADE(sv, SVt_PV);
2591 s = SvGROW_mutable(sv, len + 1);
2594 return (char*)memcpy(s, tbuf, len + 1);
2600 assert(SvTYPE(sv) >= SVt_PVMG);
2601 /* This falls through to the report_uninit near the end of the
2603 } else if (SvTHINKFIRST(sv)) {
2607 SV *const tmpstr = AMG_CALLun(sv,string);
2608 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2610 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2614 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2615 if (flags & SV_CONST_RETURN) {
2616 pv = (char *) SvPVX_const(tmpstr);
2618 pv = (flags & SV_MUTABLE_RETURN)
2619 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2622 *lp = SvCUR(tmpstr);
2624 pv = sv_2pv_flags(tmpstr, lp, flags);
2638 const SV *const referent = (SV*)SvRV(sv);
2642 retval = buffer = savepvn("NULLREF", len);
2643 } else if (SvTYPE(referent) == SVt_PVMG
2644 && ((SvFLAGS(referent) &
2645 (SVs_OBJECT|SVf_OK|SVs_GMG|SVs_SMG|SVs_RMG))
2646 == (SVs_OBJECT|SVs_SMG))
2647 && (mg = mg_find(referent, PERL_MAGIC_qr)))
2652 (str) = CALLREG_AS_STR(mg,lp,&flags,&haseval);
2657 PL_reginterp_cnt += haseval;
2660 const char *const typestr = sv_reftype(referent, 0);
2661 const STRLEN typelen = strlen(typestr);
2662 UV addr = PTR2UV(referent);
2663 const char *stashname = NULL;
2664 STRLEN stashnamelen = 0; /* hush, gcc */
2665 const char *buffer_end;
2667 if (SvOBJECT(referent)) {
2668 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2671 stashname = HEK_KEY(name);
2672 stashnamelen = HEK_LEN(name);
2674 if (HEK_UTF8(name)) {
2680 stashname = "__ANON__";
2683 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2684 + 2 * sizeof(UV) + 2 /* )\0 */;
2686 len = typelen + 3 /* (0x */
2687 + 2 * sizeof(UV) + 2 /* )\0 */;
2690 Newx(buffer, len, char);
2691 buffer_end = retval = buffer + len;
2693 /* Working backwards */
2697 *--retval = PL_hexdigit[addr & 15];
2698 } while (addr >>= 4);
2704 memcpy(retval, typestr, typelen);
2708 retval -= stashnamelen;
2709 memcpy(retval, stashname, stashnamelen);
2711 /* retval may not neccesarily have reached the start of the
2713 assert (retval >= buffer);
2715 len = buffer_end - retval - 1; /* -1 for that \0 */
2723 if (SvREADONLY(sv) && !SvOK(sv)) {
2724 if (ckWARN(WARN_UNINITIALIZED))
2731 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2732 /* I'm assuming that if both IV and NV are equally valid then
2733 converting the IV is going to be more efficient */
2734 const U32 isUIOK = SvIsUV(sv);
2735 char buf[TYPE_CHARS(UV)];
2738 if (SvTYPE(sv) < SVt_PVIV)
2739 sv_upgrade(sv, SVt_PVIV);
2740 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2741 /* inlined from sv_setpvn */
2742 SvGROW_mutable(sv, (STRLEN)(ebuf - ptr + 1));
2743 Move(ptr,SvPVX_mutable(sv),ebuf - ptr,char);
2744 SvCUR_set(sv, ebuf - ptr);
2748 else if (SvNOKp(sv)) {
2749 const int olderrno = errno;
2750 if (SvTYPE(sv) < SVt_PVNV)
2751 sv_upgrade(sv, SVt_PVNV);
2752 /* The +20 is pure guesswork. Configure test needed. --jhi */
2753 s = SvGROW_mutable(sv, NV_DIG + 20);
2754 /* some Xenix systems wipe out errno here */
2756 if (SvNVX(sv) == 0.0)
2757 my_strlcpy(s, "0", SvLEN(sv));
2761 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2764 #ifdef FIXNEGATIVEZERO
2765 if (*s == '-' && s[1] == '0' && !s[2])
2766 my_strlcpy(s, "0", SvLEN(s));
2775 if (isGV_with_GP(sv))
2776 return glob_2pv((GV *)sv, lp);
2778 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2782 if (SvTYPE(sv) < SVt_PV)
2783 /* Typically the caller expects that sv_any is not NULL now. */
2784 sv_upgrade(sv, SVt_PV);
2788 const STRLEN len = s - SvPVX_const(sv);
2794 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2795 PTR2UV(sv),SvPVX_const(sv)));
2796 if (flags & SV_CONST_RETURN)
2797 return (char *)SvPVX_const(sv);
2798 if (flags & SV_MUTABLE_RETURN)
2799 return SvPVX_mutable(sv);
2804 =for apidoc sv_copypv
2806 Copies a stringified representation of the source SV into the
2807 destination SV. Automatically performs any necessary mg_get and
2808 coercion of numeric values into strings. Guaranteed to preserve
2809 UTF8 flag even from overloaded objects. Similar in nature to
2810 sv_2pv[_flags] but operates directly on an SV instead of just the
2811 string. Mostly uses sv_2pv_flags to do its work, except when that
2812 would lose the UTF-8'ness of the PV.
2818 Perl_sv_copypv(pTHX_ SV *dsv, register SV *ssv)
2821 const char * const s = SvPV_const(ssv,len);
2822 sv_setpvn(dsv,s,len);
2830 =for apidoc sv_2pvbyte
2832 Return a pointer to the byte-encoded representation of the SV, and set *lp
2833 to its length. May cause the SV to be downgraded from UTF-8 as a
2836 Usually accessed via the C<SvPVbyte> macro.
2842 Perl_sv_2pvbyte(pTHX_ register SV *sv, STRLEN *lp)
2844 sv_utf8_downgrade(sv,0);
2845 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2849 =for apidoc sv_2pvutf8
2851 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
2852 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
2854 Usually accessed via the C<SvPVutf8> macro.
2860 Perl_sv_2pvutf8(pTHX_ register SV *sv, STRLEN *lp)
2862 sv_utf8_upgrade(sv);
2863 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2868 =for apidoc sv_2bool
2870 This function is only called on magical items, and is only used by
2871 sv_true() or its macro equivalent.
2877 Perl_sv_2bool(pTHX_ register SV *sv)
2886 SV * const tmpsv = AMG_CALLun(sv,bool_);
2887 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2888 return (bool)SvTRUE(tmpsv);
2890 return SvRV(sv) != 0;
2893 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
2895 (*sv->sv_u.svu_pv > '0' ||
2896 Xpvtmp->xpv_cur > 1 ||
2897 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
2904 return SvIVX(sv) != 0;
2907 return SvNVX(sv) != 0.0;
2909 if (isGV_with_GP(sv))
2919 =for apidoc sv_utf8_upgrade
2921 Converts the PV of an SV to its UTF-8-encoded form.
2922 Forces the SV to string form if it is not already.
2923 Always sets the SvUTF8 flag to avoid future validity checks even
2924 if all the bytes have hibit clear.
2926 This is not as a general purpose byte encoding to Unicode interface:
2927 use the Encode extension for that.
2929 =for apidoc sv_utf8_upgrade_flags
2931 Converts the PV of an SV to its UTF-8-encoded form.
2932 Forces the SV to string form if it is not already.
2933 Always sets the SvUTF8 flag to avoid future validity checks even
2934 if all the bytes have hibit clear. If C<flags> has C<SV_GMAGIC> bit set,
2935 will C<mg_get> on C<sv> if appropriate, else not. C<sv_utf8_upgrade> and
2936 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
2938 This is not as a general purpose byte encoding to Unicode interface:
2939 use the Encode extension for that.
2945 Perl_sv_utf8_upgrade_flags(pTHX_ register SV *sv, I32 flags)
2948 if (sv == &PL_sv_undef)
2952 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
2953 (void) sv_2pv_flags(sv,&len, flags);
2957 (void) SvPV_force(sv,len);
2966 sv_force_normal_flags(sv, 0);
2969 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING))
2970 sv_recode_to_utf8(sv, PL_encoding);
2971 else { /* Assume Latin-1/EBCDIC */
2972 /* This function could be much more efficient if we
2973 * had a FLAG in SVs to signal if there are any hibit
2974 * chars in the PV. Given that there isn't such a flag
2975 * make the loop as fast as possible. */
2976 const U8 * const s = (U8 *) SvPVX_const(sv);
2977 const U8 * const e = (U8 *) SvEND(sv);
2982 /* Check for hi bit */
2983 if (!NATIVE_IS_INVARIANT(ch)) {
2984 STRLEN len = SvCUR(sv) + 1; /* Plus the \0 */
2985 U8 * const recoded = bytes_to_utf8((U8*)s, &len);
2987 SvPV_free(sv); /* No longer using what was there before. */
2988 SvPV_set(sv, (char*)recoded);
2989 SvCUR_set(sv, len - 1);
2990 SvLEN_set(sv, len); /* No longer know the real size. */
2994 /* Mark as UTF-8 even if no hibit - saves scanning loop */
3001 =for apidoc sv_utf8_downgrade
3003 Attempts to convert the PV of an SV from characters to bytes.
3004 If the PV contains a character beyond byte, this conversion will fail;
3005 in this case, either returns false or, if C<fail_ok> is not
3008 This is not as a general purpose Unicode to byte encoding interface:
3009 use the Encode extension for that.
3015 Perl_sv_utf8_downgrade(pTHX_ register SV* sv, bool fail_ok)
3018 if (SvPOKp(sv) && SvUTF8(sv)) {
3024 sv_force_normal_flags(sv, 0);
3026 s = (U8 *) SvPV(sv, len);
3027 if (!utf8_to_bytes(s, &len)) {
3032 Perl_croak(aTHX_ "Wide character in %s",
3035 Perl_croak(aTHX_ "Wide character");
3046 =for apidoc sv_utf8_encode
3048 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3049 flag off so that it looks like octets again.
3055 Perl_sv_utf8_encode(pTHX_ register SV *sv)
3058 sv_force_normal_flags(sv, 0);
3060 if (SvREADONLY(sv)) {
3061 Perl_croak(aTHX_ PL_no_modify);
3063 (void) sv_utf8_upgrade(sv);
3068 =for apidoc sv_utf8_decode
3070 If the PV of the SV is an octet sequence in UTF-8
3071 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3072 so that it looks like a character. If the PV contains only single-byte
3073 characters, the C<SvUTF8> flag stays being off.
3074 Scans PV for validity and returns false if the PV is invalid UTF-8.
3080 Perl_sv_utf8_decode(pTHX_ register SV *sv)
3086 /* The octets may have got themselves encoded - get them back as
3089 if (!sv_utf8_downgrade(sv, TRUE))
3092 /* it is actually just a matter of turning the utf8 flag on, but
3093 * we want to make sure everything inside is valid utf8 first.
3095 c = (const U8 *) SvPVX_const(sv);
3096 if (!is_utf8_string(c, SvCUR(sv)+1))
3098 e = (const U8 *) SvEND(sv);
3101 if (!UTF8_IS_INVARIANT(ch)) {
3111 =for apidoc sv_setsv
3113 Copies the contents of the source SV C<ssv> into the destination SV
3114 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3115 function if the source SV needs to be reused. Does not handle 'set' magic.
3116 Loosely speaking, it performs a copy-by-value, obliterating any previous
3117 content of the destination.
3119 You probably want to use one of the assortment of wrappers, such as
3120 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3121 C<SvSetMagicSV_nosteal>.
3123 =for apidoc sv_setsv_flags
3125 Copies the contents of the source SV C<ssv> into the destination SV
3126 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3127 function if the source SV needs to be reused. Does not handle 'set' magic.
3128 Loosely speaking, it performs a copy-by-value, obliterating any previous
3129 content of the destination.
3130 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3131 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3132 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3133 and C<sv_setsv_nomg> are implemented in terms of this function.
3135 You probably want to use one of the assortment of wrappers, such as
3136 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3137 C<SvSetMagicSV_nosteal>.
3139 This is the primary function for copying scalars, and most other
3140 copy-ish functions and macros use this underneath.
3146 S_glob_assign_glob(pTHX_ SV *dstr, SV *sstr, const int dtype)
3148 if (dtype != SVt_PVGV) {
3149 const char * const name = GvNAME(sstr);
3150 const STRLEN len = GvNAMELEN(sstr);
3152 if (dtype >= SVt_PV) {
3158 SvUPGRADE(dstr, SVt_PVGV);
3159 (void)SvOK_off(dstr);
3160 /* FIXME - why are we doing this, then turning it off and on again
3162 isGV_with_GP_on(dstr);
3164 GvSTASH(dstr) = GvSTASH(sstr);
3166 Perl_sv_add_backref(aTHX_ (SV*)GvSTASH(dstr), dstr);
3167 gv_name_set((GV *)dstr, name, len, GV_ADD);
3168 SvFAKE_on(dstr); /* can coerce to non-glob */
3171 #ifdef GV_UNIQUE_CHECK
3172 if (GvUNIQUE((GV*)dstr)) {
3173 Perl_croak(aTHX_ PL_no_modify);
3178 isGV_with_GP_off(dstr);
3179 (void)SvOK_off(dstr);
3180 isGV_with_GP_on(dstr);
3181 GvINTRO_off(dstr); /* one-shot flag */
3182 GvGP(dstr) = gp_ref(GvGP(sstr));
3183 if (SvTAINTED(sstr))
3185 if (GvIMPORTED(dstr) != GVf_IMPORTED
3186 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3188 GvIMPORTED_on(dstr);
3195 S_glob_assign_ref(pTHX_ SV *dstr, SV *sstr) {
3196 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3198 const int intro = GvINTRO(dstr);
3201 const U32 stype = SvTYPE(sref);
3204 #ifdef GV_UNIQUE_CHECK
3205 if (GvUNIQUE((GV*)dstr)) {
3206 Perl_croak(aTHX_ PL_no_modify);
3211 GvINTRO_off(dstr); /* one-shot flag */
3212 GvLINE(dstr) = CopLINE(PL_curcop);
3213 GvEGV(dstr) = (GV*)dstr;
3218 location = (SV **) &GvCV(dstr);
3219 import_flag = GVf_IMPORTED_CV;
3222 location = (SV **) &GvHV(dstr);
3223 import_flag = GVf_IMPORTED_HV;
3226 location = (SV **) &GvAV(dstr);
3227 import_flag = GVf_IMPORTED_AV;
3230 location = (SV **) &GvIOp(dstr);
3233 location = (SV **) &GvFORM(dstr);
3235 location = &GvSV(dstr);
3236 import_flag = GVf_IMPORTED_SV;
3239 if (stype == SVt_PVCV) {
3240 if (GvCVGEN(dstr) && GvCV(dstr) != (CV*)sref) {
3241 SvREFCNT_dec(GvCV(dstr));
3243 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3244 mro_method_changed_in(GvSTASH(dstr));
3247 SAVEGENERICSV(*location);
3251 if (stype == SVt_PVCV && *location != sref) {
3252 CV* const cv = (CV*)*location;
3254 if (!GvCVGEN((GV*)dstr) &&
3255 (CvROOT(cv) || CvXSUB(cv)))
3257 /* Redefining a sub - warning is mandatory if
3258 it was a const and its value changed. */
3259 if (CvCONST(cv) && CvCONST((CV*)sref)
3260 && cv_const_sv(cv) == cv_const_sv((CV*)sref)) {
3262 /* They are 2 constant subroutines generated from
3263 the same constant. This probably means that
3264 they are really the "same" proxy subroutine
3265 instantiated in 2 places. Most likely this is
3266 when a constant is exported twice. Don't warn.
3269 else if (ckWARN(WARN_REDEFINE)
3271 && (!CvCONST((CV*)sref)
3272 || sv_cmp(cv_const_sv(cv),
3273 cv_const_sv((CV*)sref))))) {
3274 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3277 ? "Constant subroutine %s::%s redefined"
3278 : "Subroutine %s::%s redefined"),
3279 HvNAME_get(GvSTASH((GV*)dstr)),
3280 GvENAME((GV*)dstr));
3284 cv_ckproto_len(cv, (GV*)dstr,
3285 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3286 SvPOK(sref) ? SvCUR(sref) : 0);
3288 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3289 GvASSUMECV_on(dstr);
3290 mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3293 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3294 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3295 GvFLAGS(dstr) |= import_flag;
3300 if (SvTAINTED(sstr))
3306 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV *sstr, I32 flags)
3309 register U32 sflags;
3311 register svtype stype;
3316 if (SvIS_FREED(dstr)) {
3317 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3318 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3320 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3322 sstr = &PL_sv_undef;
3323 if (SvIS_FREED(sstr)) {
3324 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3325 (void*)sstr, (void*)dstr);
3327 stype = SvTYPE(sstr);
3328 dtype = SvTYPE(dstr);
3330 (void)SvAMAGIC_off(dstr);
3333 /* need to nuke the magic */
3335 SvRMAGICAL_off(dstr);
3338 /* There's a lot of redundancy below but we're going for speed here */
3343 if (dtype != SVt_PVGV) {
3344 (void)SvOK_off(dstr);
3352 sv_upgrade(dstr, SVt_IV);
3357 sv_upgrade(dstr, SVt_PVIV);
3360 goto end_of_first_switch;
3362 (void)SvIOK_only(dstr);
3363 SvIV_set(dstr, SvIVX(sstr));
3366 /* SvTAINTED can only be true if the SV has taint magic, which in
3367 turn means that the SV type is PVMG (or greater). This is the
3368 case statement for SVt_IV, so this cannot be true (whatever gcov
3370 assert(!SvTAINTED(sstr));
3380 sv_upgrade(dstr, SVt_NV);
3385 sv_upgrade(dstr, SVt_PVNV);
3388 goto end_of_first_switch;
3390 SvNV_set(dstr, SvNVX(sstr));
3391 (void)SvNOK_only(dstr);
3392 /* SvTAINTED can only be true if the SV has taint magic, which in
3393 turn means that the SV type is PVMG (or greater). This is the
3394 case statement for SVt_NV, so this cannot be true (whatever gcov
3396 assert(!SvTAINTED(sstr));
3403 sv_upgrade(dstr, SVt_RV);
3406 #ifdef PERL_OLD_COPY_ON_WRITE
3407 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3408 if (dtype < SVt_PVIV)
3409 sv_upgrade(dstr, SVt_PVIV);
3416 sv_upgrade(dstr, SVt_PV);
3419 if (dtype < SVt_PVIV)
3420 sv_upgrade(dstr, SVt_PVIV);
3423 if (dtype < SVt_PVNV)
3424 sv_upgrade(dstr, SVt_PVNV);
3428 const char * const type = sv_reftype(sstr,0);
3430 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3432 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3436 /* case SVt_BIND: */
3439 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3440 glob_assign_glob(dstr, sstr, dtype);
3443 /* SvVALID means that this PVGV is playing at being an FBM. */
3447 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3449 if (SvTYPE(sstr) != stype) {
3450 stype = SvTYPE(sstr);
3451 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3452 glob_assign_glob(dstr, sstr, dtype);
3457 if (stype == SVt_PVLV)
3458 SvUPGRADE(dstr, SVt_PVNV);
3460 SvUPGRADE(dstr, (svtype)stype);
3462 end_of_first_switch:
3464 /* dstr may have been upgraded. */
3465 dtype = SvTYPE(dstr);
3466 sflags = SvFLAGS(sstr);
3468 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3469 /* Assigning to a subroutine sets the prototype. */
3472 const char *const ptr = SvPV_const(sstr, len);
3474 SvGROW(dstr, len + 1);
3475 Copy(ptr, SvPVX(dstr), len + 1, char);
3476 SvCUR_set(dstr, len);
3478 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3482 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3483 const char * const type = sv_reftype(dstr,0);
3485 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_NAME(PL_op));
3487 Perl_croak(aTHX_ "Cannot copy to %s", type);
3488 } else if (sflags & SVf_ROK) {
3489 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3490 && SvTYPE(SvRV(sstr)) == SVt_PVGV) {
3493 if (GvIMPORTED(dstr) != GVf_IMPORTED
3494 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3496 GvIMPORTED_on(dstr);
3501 glob_assign_glob(dstr, sstr, dtype);
3505 if (dtype >= SVt_PV) {
3506 if (dtype == SVt_PVGV) {
3507 glob_assign_ref(dstr, sstr);
3510 if (SvPVX_const(dstr)) {
3516 (void)SvOK_off(dstr);
3517 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
3518 SvFLAGS(dstr) |= sflags & SVf_ROK;
3519 assert(!(sflags & SVp_NOK));
3520 assert(!(sflags & SVp_IOK));
3521 assert(!(sflags & SVf_NOK));
3522 assert(!(sflags & SVf_IOK));
3524 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3525 if (!(sflags & SVf_OK)) {
3526 if (ckWARN(WARN_MISC))
3527 Perl_warner(aTHX_ packWARN(WARN_MISC),
3528 "Undefined value assigned to typeglob");
3531 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
3532 if (dstr != (SV*)gv) {
3535 GvGP(dstr) = gp_ref(GvGP(gv));
3539 else if (sflags & SVp_POK) {
3543 * Check to see if we can just swipe the string. If so, it's a
3544 * possible small lose on short strings, but a big win on long ones.
3545 * It might even be a win on short strings if SvPVX_const(dstr)
3546 * has to be allocated and SvPVX_const(sstr) has to be freed.
3547 * Likewise if we can set up COW rather than doing an actual copy, we
3548 * drop to the else clause, as the swipe code and the COW setup code
3549 * have much in common.
3552 /* Whichever path we take through the next code, we want this true,
3553 and doing it now facilitates the COW check. */
3554 (void)SvPOK_only(dstr);
3557 /* If we're already COW then this clause is not true, and if COW
3558 is allowed then we drop down to the else and make dest COW
3559 with us. If caller hasn't said that we're allowed to COW
3560 shared hash keys then we don't do the COW setup, even if the
3561 source scalar is a shared hash key scalar. */
3562 (((flags & SV_COW_SHARED_HASH_KEYS)
3563 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
3564 : 1 /* If making a COW copy is forbidden then the behaviour we
3565 desire is as if the source SV isn't actually already
3566 COW, even if it is. So we act as if the source flags
3567 are not COW, rather than actually testing them. */
3569 #ifndef PERL_OLD_COPY_ON_WRITE
3570 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
3571 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
3572 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
3573 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
3574 but in turn, it's somewhat dead code, never expected to go
3575 live, but more kept as a placeholder on how to do it better
3576 in a newer implementation. */
3577 /* If we are COW and dstr is a suitable target then we drop down
3578 into the else and make dest a COW of us. */
3579 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
3584 (sflags & SVs_TEMP) && /* slated for free anyway? */
3585 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
3586 (!(flags & SV_NOSTEAL)) &&
3587 /* and we're allowed to steal temps */
3588 SvREFCNT(sstr) == 1 && /* and no other references to it? */
3589 SvLEN(sstr) && /* and really is a string */
3590 /* and won't be needed again, potentially */
3591 !(PL_op && PL_op->op_type == OP_AASSIGN))
3592 #ifdef PERL_OLD_COPY_ON_WRITE
3593 && !((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
3594 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
3595 && SvTYPE(sstr) >= SVt_PVIV)
3598 /* Failed the swipe test, and it's not a shared hash key either.
3599 Have to copy the string. */
3600 STRLEN len = SvCUR(sstr);
3601 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
3602 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
3603 SvCUR_set(dstr, len);
3604 *SvEND(dstr) = '\0';
3606 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
3608 /* Either it's a shared hash key, or it's suitable for
3609 copy-on-write or we can swipe the string. */
3611 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
3615 #ifdef PERL_OLD_COPY_ON_WRITE
3617 /* I believe I should acquire a global SV mutex if
3618 it's a COW sv (not a shared hash key) to stop
3619 it going un copy-on-write.
3620 If the source SV has gone un copy on write between up there
3621 and down here, then (assert() that) it is of the correct
3622 form to make it copy on write again */
3623 if ((sflags & (SVf_FAKE | SVf_READONLY))
3624 != (SVf_FAKE | SVf_READONLY)) {
3625 SvREADONLY_on(sstr);
3627 /* Make the source SV into a loop of 1.
3628 (about to become 2) */
3629 SV_COW_NEXT_SV_SET(sstr, sstr);
3633 /* Initial code is common. */
3634 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
3639 /* making another shared SV. */
3640 STRLEN cur = SvCUR(sstr);
3641 STRLEN len = SvLEN(sstr);
3642 #ifdef PERL_OLD_COPY_ON_WRITE
3644 assert (SvTYPE(dstr) >= SVt_PVIV);
3645 /* SvIsCOW_normal */
3646 /* splice us in between source and next-after-source. */
3647 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3648 SV_COW_NEXT_SV_SET(sstr, dstr);
3649 SvPV_set(dstr, SvPVX_mutable(sstr));
3653 /* SvIsCOW_shared_hash */
3654 DEBUG_C(PerlIO_printf(Perl_debug_log,
3655 "Copy on write: Sharing hash\n"));
3657 assert (SvTYPE(dstr) >= SVt_PV);
3659 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
3661 SvLEN_set(dstr, len);
3662 SvCUR_set(dstr, cur);
3663 SvREADONLY_on(dstr);
3665 /* Relesase a global SV mutex. */
3668 { /* Passes the swipe test. */
3669 SvPV_set(dstr, SvPVX_mutable(sstr));
3670 SvLEN_set(dstr, SvLEN(sstr));
3671 SvCUR_set(dstr, SvCUR(sstr));
3674 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
3675 SvPV_set(sstr, NULL);
3681 if (sflags & SVp_NOK) {
3682 SvNV_set(dstr, SvNVX(sstr));
3684 if (sflags & SVp_IOK) {
3686 SvIV_set(dstr, SvIVX(sstr));
3687 /* Must do this otherwise some other overloaded use of 0x80000000
3688 gets confused. I guess SVpbm_VALID */
3689 if (sflags & SVf_IVisUV)
3692 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
3694 const MAGIC * const smg = SvVSTRING_mg(sstr);
3696 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
3697 smg->mg_ptr, smg->mg_len);
3698 SvRMAGICAL_on(dstr);
3702 else if (sflags & (SVp_IOK|SVp_NOK)) {
3703 (void)SvOK_off(dstr);
3704 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
3705 if (sflags & SVp_IOK) {
3706 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
3707 SvIV_set(dstr, SvIVX(sstr));
3709 if (sflags & SVp_NOK) {
3710 SvNV_set(dstr, SvNVX(sstr));
3714 if (isGV_with_GP(sstr)) {
3715 /* This stringification rule for globs is spread in 3 places.
3716 This feels bad. FIXME. */
3717 const U32 wasfake = sflags & SVf_FAKE;
3719 /* FAKE globs can get coerced, so need to turn this off
3720 temporarily if it is on. */
3722 gv_efullname3(dstr, (GV *)sstr, "*");
3723 SvFLAGS(sstr) |= wasfake;
3726 (void)SvOK_off(dstr);
3728 if (SvTAINTED(sstr))
3733 =for apidoc sv_setsv_mg
3735 Like C<sv_setsv>, but also handles 'set' magic.
3741 Perl_sv_setsv_mg(pTHX_ SV *dstr, register SV *sstr)
3743 sv_setsv(dstr,sstr);
3747 #ifdef PERL_OLD_COPY_ON_WRITE
3749 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
3751 STRLEN cur = SvCUR(sstr);
3752 STRLEN len = SvLEN(sstr);
3753 register char *new_pv;
3756 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
3757 (void*)sstr, (void*)dstr);
3764 if (SvTHINKFIRST(dstr))
3765 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
3766 else if (SvPVX_const(dstr))
3767 Safefree(SvPVX_const(dstr));
3771 SvUPGRADE(dstr, SVt_PVIV);
3773 assert (SvPOK(sstr));
3774 assert (SvPOKp(sstr));
3775 assert (!SvIOK(sstr));
3776 assert (!SvIOKp(sstr));
3777 assert (!SvNOK(sstr));
3778 assert (!SvNOKp(sstr));
3780 if (SvIsCOW(sstr)) {
3782 if (SvLEN(sstr) == 0) {
3783 /* source is a COW shared hash key. */
3784 DEBUG_C(PerlIO_printf(Perl_debug_log,
3785 "Fast copy on write: Sharing hash\n"));
3786 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
3789 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3791 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
3792 SvUPGRADE(sstr, SVt_PVIV);
3793 SvREADONLY_on(sstr);
3795 DEBUG_C(PerlIO_printf(Perl_debug_log,
3796 "Fast copy on write: Converting sstr to COW\n"));
3797 SV_COW_NEXT_SV_SET(dstr, sstr);
3799 SV_COW_NEXT_SV_SET(sstr, dstr);
3800 new_pv = SvPVX_mutable(sstr);
3803 SvPV_set(dstr, new_pv);
3804 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
3807 SvLEN_set(dstr, len);
3808 SvCUR_set(dstr, cur);
3817 =for apidoc sv_setpvn
3819 Copies a string into an SV. The C<len> parameter indicates the number of
3820 bytes to be copied. If the C<ptr> argument is NULL the SV will become
3821 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
3827 Perl_sv_setpvn(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3830 register char *dptr;
3832 SV_CHECK_THINKFIRST_COW_DROP(sv);
3838 /* len is STRLEN which is unsigned, need to copy to signed */
3841 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
3843 SvUPGRADE(sv, SVt_PV);
3845 dptr = SvGROW(sv, len + 1);
3846 Move(ptr,dptr,len,char);
3849 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3854 =for apidoc sv_setpvn_mg
3856 Like C<sv_setpvn>, but also handles 'set' magic.
3862 Perl_sv_setpvn_mg(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3864 sv_setpvn(sv,ptr,len);
3869 =for apidoc sv_setpv
3871 Copies a string into an SV. The string must be null-terminated. Does not
3872 handle 'set' magic. See C<sv_setpv_mg>.
3878 Perl_sv_setpv(pTHX_ register SV *sv, register const char *ptr)
3881 register STRLEN len;
3883 SV_CHECK_THINKFIRST_COW_DROP(sv);
3889 SvUPGRADE(sv, SVt_PV);
3891 SvGROW(sv, len + 1);
3892 Move(ptr,SvPVX(sv),len+1,char);
3894 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3899 =for apidoc sv_setpv_mg
3901 Like C<sv_setpv>, but also handles 'set' magic.
3907 Perl_sv_setpv_mg(pTHX_ register SV *sv, register const char *ptr)
3914 =for apidoc sv_usepvn_flags
3916 Tells an SV to use C<ptr> to find its string value. Normally the
3917 string is stored inside the SV but sv_usepvn allows the SV to use an
3918 outside string. The C<ptr> should point to memory that was allocated
3919 by C<malloc>. The string length, C<len>, must be supplied. By default
3920 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
3921 so that pointer should not be freed or used by the programmer after
3922 giving it to sv_usepvn, and neither should any pointers from "behind"
3923 that pointer (e.g. ptr + 1) be used.
3925 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
3926 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
3927 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
3928 C<len>, and already meets the requirements for storing in C<SvPVX>)
3934 Perl_sv_usepvn_flags(pTHX_ SV *sv, char *ptr, STRLEN len, U32 flags)
3938 SV_CHECK_THINKFIRST_COW_DROP(sv);
3939 SvUPGRADE(sv, SVt_PV);
3942 if (flags & SV_SMAGIC)
3946 if (SvPVX_const(sv))
3950 if (flags & SV_HAS_TRAILING_NUL)
3951 assert(ptr[len] == '\0');
3954 allocate = (flags & SV_HAS_TRAILING_NUL)
3955 ? len + 1: PERL_STRLEN_ROUNDUP(len + 1);
3956 if (flags & SV_HAS_TRAILING_NUL) {
3957 /* It's long enough - do nothing.
3958 Specfically Perl_newCONSTSUB is relying on this. */
3961 /* Force a move to shake out bugs in callers. */
3962 char *new_ptr = (char*)safemalloc(allocate);
3963 Copy(ptr, new_ptr, len, char);
3964 PoisonFree(ptr,len,char);
3968 ptr = (char*) saferealloc (ptr, allocate);
3973 SvLEN_set(sv, allocate);
3974 if (!(flags & SV_HAS_TRAILING_NUL)) {
3977 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3979 if (flags & SV_SMAGIC)
3983 #ifdef PERL_OLD_COPY_ON_WRITE
3984 /* Need to do this *after* making the SV normal, as we need the buffer
3985 pointer to remain valid until after we've copied it. If we let go too early,
3986 another thread could invalidate it by unsharing last of the same hash key
3987 (which it can do by means other than releasing copy-on-write Svs)
3988 or by changing the other copy-on-write SVs in the loop. */
3990 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
3992 { /* this SV was SvIsCOW_normal(sv) */
3993 /* we need to find the SV pointing to us. */
3994 SV *current = SV_COW_NEXT_SV(after);
3996 if (current == sv) {
3997 /* The SV we point to points back to us (there were only two of us
3999 Hence other SV is no longer copy on write either. */
4001 SvREADONLY_off(after);
4003 /* We need to follow the pointers around the loop. */
4005 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4008 /* don't loop forever if the structure is bust, and we have
4009 a pointer into a closed loop. */
4010 assert (current != after);
4011 assert (SvPVX_const(current) == pvx);
4013 /* Make the SV before us point to the SV after us. */
4014 SV_COW_NEXT_SV_SET(current, after);
4020 =for apidoc sv_force_normal_flags
4022 Undo various types of fakery on an SV: if the PV is a shared string, make
4023 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4024 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4025 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4026 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4027 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4028 set to some other value.) In addition, the C<flags> parameter gets passed to
4029 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4030 with flags set to 0.
4036 Perl_sv_force_normal_flags(pTHX_ register SV *sv, U32 flags)
4039 #ifdef PERL_OLD_COPY_ON_WRITE
4040 if (SvREADONLY(sv)) {
4041 /* At this point I believe I should acquire a global SV mutex. */
4043 const char * const pvx = SvPVX_const(sv);
4044 const STRLEN len = SvLEN(sv);
4045 const STRLEN cur = SvCUR(sv);
4046 /* next COW sv in the loop. If len is 0 then this is a shared-hash
4047 key scalar, so we mustn't attempt to call SV_COW_NEXT_SV(), as
4048 we'll fail an assertion. */
4049 SV * const next = len ? SV_COW_NEXT_SV(sv) : 0;
4052 PerlIO_printf(Perl_debug_log,
4053 "Copy on write: Force normal %ld\n",
4059 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4062 if (flags & SV_COW_DROP_PV) {
4063 /* OK, so we don't need to copy our buffer. */
4066 SvGROW(sv, cur + 1);
4067 Move(pvx,SvPVX(sv),cur,char);
4072 sv_release_COW(sv, pvx, next);
4074 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4080 else if (IN_PERL_RUNTIME)
4081 Perl_croak(aTHX_ PL_no_modify);
4082 /* At this point I believe that I can drop the global SV mutex. */
4085 if (SvREADONLY(sv)) {
4087 const char * const pvx = SvPVX_const(sv);
4088 const STRLEN len = SvCUR(sv);
4093 SvGROW(sv, len + 1);
4094 Move(pvx,SvPVX(sv),len,char);
4096 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4098 else if (IN_PERL_RUNTIME)
4099 Perl_croak(aTHX_ PL_no_modify);
4103 sv_unref_flags(sv, flags);
4104 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4111 Efficient removal of characters from the beginning of the string buffer.
4112 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4113 the string buffer. The C<ptr> becomes the first character of the adjusted
4114 string. Uses the "OOK hack".
4115 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4116 refer to the same chunk of data.
4122 Perl_sv_chop(pTHX_ register SV *sv, register const char *ptr)
4124 register STRLEN delta;
4125 if (!ptr || !SvPOKp(sv))
4127 delta = ptr - SvPVX_const(sv);
4128 SV_CHECK_THINKFIRST(sv);
4129 if (SvTYPE(sv) < SVt_PVIV)
4130 sv_upgrade(sv,SVt_PVIV);
4133 if (!SvLEN(sv)) { /* make copy of shared string */
4134 const char *pvx = SvPVX_const(sv);
4135 const STRLEN len = SvCUR(sv);
4136 SvGROW(sv, len + 1);
4137 Move(pvx,SvPVX(sv),len,char);
4141 /* Same SvOOK_on but SvOOK_on does a SvIOK_off
4142 and we do that anyway inside the SvNIOK_off
4144 SvFLAGS(sv) |= SVf_OOK;
4147 SvLEN_set(sv, SvLEN(sv) - delta);
4148 SvCUR_set(sv, SvCUR(sv) - delta);
4149 SvPV_set(sv, SvPVX(sv) + delta);
4150 SvIV_set(sv, SvIVX(sv) + delta);
4154 =for apidoc sv_catpvn
4156 Concatenates the string onto the end of the string which is in the SV. The
4157 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4158 status set, then the bytes appended should be valid UTF-8.
4159 Handles 'get' magic, but not 'set' magic. See C<sv_catpvn_mg>.
4161 =for apidoc sv_catpvn_flags
4163 Concatenates the string onto the end of the string which is in the SV. The
4164 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4165 status set, then the bytes appended should be valid UTF-8.
4166 If C<flags> has C<SV_GMAGIC> bit set, will C<mg_get> on C<dsv> if
4167 appropriate, else not. C<sv_catpvn> and C<sv_catpvn_nomg> are implemented
4168 in terms of this function.
4174 Perl_sv_catpvn_flags(pTHX_ register SV *dsv, register const char *sstr, register STRLEN slen, I32 flags)
4178 const char * const dstr = SvPV_force_flags(dsv, dlen, flags);
4180 SvGROW(dsv, dlen + slen + 1);
4182 sstr = SvPVX_const(dsv);
4183 Move(sstr, SvPVX(dsv) + dlen, slen, char);
4184 SvCUR_set(dsv, SvCUR(dsv) + slen);
4186 (void)SvPOK_only_UTF8(dsv); /* validate pointer */
4188 if (flags & SV_SMAGIC)
4193 =for apidoc sv_catsv
4195 Concatenates the string from SV C<ssv> onto the end of the string in
4196 SV C<dsv>. Modifies C<dsv> but not C<ssv>. Handles 'get' magic, but
4197 not 'set' magic. See C<sv_catsv_mg>.
4199 =for apidoc sv_catsv_flags
4201 Concatenates the string from SV C<ssv> onto the end of the string in
4202 SV C<dsv>. Modifies C<dsv> but not C<ssv>. If C<flags> has C<SV_GMAGIC>
4203 bit set, will C<mg_get> on the SVs if appropriate, else not. C<sv_catsv>
4204 and C<sv_catsv_nomg> are implemented in terms of this function.
4209 Perl_sv_catsv_flags(pTHX_ SV *dsv, register SV *ssv, I32 flags)
4214 const char *spv = SvPV_const(ssv, slen);
4216 /* sutf8 and dutf8 were type bool, but under USE_ITHREADS,
4217 gcc version 2.95.2 20000220 (Debian GNU/Linux) for
4218 Linux xxx 2.2.17 on sparc64 with gcc -O2, we erroneously
4219 get dutf8 = 0x20000000, (i.e. SVf_UTF8) even though
4220 dsv->sv_flags doesn't have that bit set.
4221 Andy Dougherty 12 Oct 2001
4223 const I32 sutf8 = DO_UTF8(ssv);
4226 if (SvGMAGICAL(dsv) && (flags & SV_GMAGIC))
4228 dutf8 = DO_UTF8(dsv);
4230 if (dutf8 != sutf8) {
4232 /* Not modifying source SV, so taking a temporary copy. */
4233 SV* const csv = sv_2mortal(newSVpvn(spv, slen));
4235 sv_utf8_upgrade(csv);
4236 spv = SvPV_const(csv, slen);
4239 sv_utf8_upgrade_nomg(dsv);
4241 sv_catpvn_nomg(dsv, spv, slen);
4244 if (flags & SV_SMAGIC)
4249 =for apidoc sv_catpv
4251 Concatenates the string onto the end of the string which is in the SV.
4252 If the SV has the UTF-8 status set, then the bytes appended should be
4253 valid UTF-8. Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
4258 Perl_sv_catpv(pTHX_ register SV *sv, register const char *ptr)
4261 register STRLEN len;
4267 junk = SvPV_force(sv, tlen);
4269 SvGROW(sv, tlen + len + 1);
4271 ptr = SvPVX_const(sv);
4272 Move(ptr,SvPVX(sv)+tlen,len+1,char);
4273 SvCUR_set(sv, SvCUR(sv) + len);
4274 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4279 =for apidoc sv_catpv_mg
4281 Like C<sv_catpv>, but also handles 'set' magic.
4287 Perl_sv_catpv_mg(pTHX_ register SV *sv, register const char *ptr)
4296 Creates a new SV. A non-zero C<len> parameter indicates the number of
4297 bytes of preallocated string space the SV should have. An extra byte for a
4298 trailing NUL is also reserved. (SvPOK is not set for the SV even if string
4299 space is allocated.) The reference count for the new SV is set to 1.
4301 In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
4302 parameter, I<x>, a debug aid which allowed callers to identify themselves.
4303 This aid has been superseded by a new build option, PERL_MEM_LOG (see
4304 L<perlhack/PERL_MEM_LOG>). The older API is still there for use in XS
4305 modules supporting older perls.
4311 Perl_newSV(pTHX_ STRLEN len)
4318 sv_upgrade(sv, SVt_PV);
4319 SvGROW(sv, len + 1);
4324 =for apidoc sv_magicext
4326 Adds magic to an SV, upgrading it if necessary. Applies the
4327 supplied vtable and returns a pointer to the magic added.
4329 Note that C<sv_magicext> will allow things that C<sv_magic> will not.
4330 In particular, you can add magic to SvREADONLY SVs, and add more than
4331 one instance of the same 'how'.
4333 If C<namlen> is greater than zero then a C<savepvn> I<copy> of C<name> is
4334 stored, if C<namlen> is zero then C<name> is stored as-is and - as another
4335 special case - if C<(name && namlen == HEf_SVKEY)> then C<name> is assumed
4336 to contain an C<SV*> and is stored as-is with its REFCNT incremented.
4338 (This is now used as a subroutine by C<sv_magic>.)
4343 Perl_sv_magicext(pTHX_ SV* sv, SV* obj, int how, const MGVTBL *vtable,
4344 const char* name, I32 namlen)
4349 SvUPGRADE(sv, SVt_PVMG);
4350 Newxz(mg, 1, MAGIC);
4351 mg->mg_moremagic = SvMAGIC(sv);
4352 SvMAGIC_set(sv, mg);
4354 /* Sometimes a magic contains a reference loop, where the sv and
4355 object refer to each other. To prevent a reference loop that
4356 would prevent such objects being freed, we look for such loops
4357 and if we find one we avoid incrementing the object refcount.
4359 Note we cannot do this to avoid self-tie loops as intervening RV must
4360 have its REFCNT incremented to keep it in existence.
4363 if (!obj || obj == sv ||
4364 how == PERL_MAGIC_arylen ||
4365 how == PERL_MAGIC_qr ||
4366 how == PERL_MAGIC_symtab ||
4367 (SvTYPE(obj) == SVt_PVGV &&
4368 (GvSV(obj) == sv || GvHV(obj) == (HV*)sv || GvAV(obj) == (AV*)sv ||
4369 GvCV(obj) == (CV*)sv || GvIOp(obj) == (IO*)sv ||
4370 GvFORM(obj) == (CV*)sv)))
4375 mg->mg_obj = SvREFCNT_inc_simple(obj);
4376 mg->mg_flags |= MGf_REFCOUNTED;
4379 /* Normal self-ties simply pass a null object, and instead of
4380 using mg_obj directly, use the SvTIED_obj macro to produce a
4381 new RV as needed. For glob "self-ties", we are tieing the PVIO
4382 with an RV obj pointing to the glob containing the PVIO. In
4383 this case, to avoid a reference loop, we need to weaken the
4387 if (how == PERL_MAGIC_tiedscalar && SvTYPE(sv) == SVt_PVIO &&
4388 obj && SvROK(obj) && GvIO(SvRV(obj)) == (IO*)sv)
4394 mg->mg_len = namlen;
4397 mg->mg_ptr = savepvn(name, namlen);
4398 else if (namlen == HEf_SVKEY)
4399 mg->mg_ptr = (char*)SvREFCNT_inc_simple_NN((SV*)name);
4401 mg->mg_ptr = (char *) name;
4403 mg->mg_virtual = (MGVTBL *) vtable;
4407 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4412 =for apidoc sv_magic
4414 Adds magic to an SV. First upgrades C<sv> to type C<SVt_PVMG> if necessary,
4415 then adds a new magic item of type C<how> to the head of the magic list.
4417 See C<sv_magicext> (which C<sv_magic> now calls) for a description of the
4418 handling of the C<name> and C<namlen> arguments.
4420 You need to use C<sv_magicext> to add magic to SvREADONLY SVs and also
4421 to add more than one instance of the same 'how'.
4427 Perl_sv_magic(pTHX_ register SV *sv, SV *obj, int how, const char *name, I32 namlen)
4430 const MGVTBL *vtable;
4433 #ifdef PERL_OLD_COPY_ON_WRITE
4435 sv_force_normal_flags(sv, 0);
4437 if (SvREADONLY(sv)) {
4439 /* its okay to attach magic to shared strings; the subsequent
4440 * upgrade to PVMG will unshare the string */
4441 !(SvFAKE(sv) && SvTYPE(sv) < SVt_PVMG)
4444 && how != PERL_MAGIC_regex_global
4445 && how != PERL_MAGIC_bm
4446 && how != PERL_MAGIC_fm
4447 && how != PERL_MAGIC_sv
4448 && how != PERL_MAGIC_backref
4451 Perl_croak(aTHX_ PL_no_modify);
4454 if (SvMAGICAL(sv) || (how == PERL_MAGIC_taint && SvTYPE(sv) >= SVt_PVMG)) {
4455 if (SvMAGIC(sv) && (mg = mg_find(sv, how))) {
4456 /* sv_magic() refuses to add a magic of the same 'how' as an
4459 if (how == PERL_MAGIC_taint) {
4461 /* Any scalar which already had taint magic on which someone
4462 (erroneously?) did SvIOK_on() or similar will now be
4463 incorrectly sporting public "OK" flags. */
4464 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4472 vtable = &PL_vtbl_sv;
4474 case PERL_MAGIC_overload:
4475 vtable = &PL_vtbl_amagic;
4477 case PERL_MAGIC_overload_elem:
4478 vtable = &PL_vtbl_amagicelem;
4480 case PERL_MAGIC_overload_table:
4481 vtable = &PL_vtbl_ovrld;
4484 vtable = &PL_vtbl_bm;
4486 case PERL_MAGIC_regdata:
4487 vtable = &PL_vtbl_regdata;
4489 case PERL_MAGIC_regdatum:
4490 vtable = &PL_vtbl_regdatum;
4492 case PERL_MAGIC_env:
4493 vtable = &PL_vtbl_env;
4496 vtable = &PL_vtbl_fm;
4498 case PERL_MAGIC_envelem:
4499 vtable = &PL_vtbl_envelem;
4501 case PERL_MAGIC_regex_global:
4502 vtable = &PL_vtbl_mglob;
4504 case PERL_MAGIC_isa:
4505 vtable = &PL_vtbl_isa;
4507 case PERL_MAGIC_isaelem:
4508 vtable = &PL_vtbl_isaelem;
4510 case PERL_MAGIC_nkeys:
4511 vtable = &PL_vtbl_nkeys;
4513 case PERL_MAGIC_dbfile:
4516 case PERL_MAGIC_dbline:
4517 vtable = &PL_vtbl_dbline;
4519 #ifdef USE_LOCALE_COLLATE
4520 case PERL_MAGIC_collxfrm:
4521 vtable = &PL_vtbl_collxfrm;
4523 #endif /* USE_LOCALE_COLLATE */
4524 case PERL_MAGIC_tied:
4525 vtable = &PL_vtbl_pack;
4527 case PERL_MAGIC_tiedelem:
4528 case PERL_MAGIC_tiedscalar:
4529 vtable = &PL_vtbl_packelem;
4532 vtable = &PL_vtbl_regexp;
4534 case PERL_MAGIC_hints:
4535 /* As this vtable is all NULL, we can reuse it. */
4536 case PERL_MAGIC_sig:
4537 vtable = &PL_vtbl_sig;
4539 case PERL_MAGIC_sigelem:
4540 vtable = &PL_vtbl_sigelem;
4542 case PERL_MAGIC_taint:
4543 vtable = &PL_vtbl_taint;
4545 case PERL_MAGIC_uvar:
4546 vtable = &PL_vtbl_uvar;
4548 case PERL_MAGIC_vec:
4549 vtable = &PL_vtbl_vec;
4551 case PERL_MAGIC_arylen_p:
4552 case PERL_MAGIC_rhash:
4553 case PERL_MAGIC_symtab:
4554 case PERL_MAGIC_vstring:
4557 case PERL_MAGIC_utf8:
4558 vtable = &PL_vtbl_utf8;
4560 case PERL_MAGIC_substr:
4561 vtable = &PL_vtbl_substr;
4563 case PERL_MAGIC_defelem:
4564 vtable = &PL_vtbl_defelem;
4566 case PERL_MAGIC_arylen:
4567 vtable = &PL_vtbl_arylen;
4569 case PERL_MAGIC_pos:
4570 vtable = &PL_vtbl_pos;
4572 case PERL_MAGIC_backref:
4573 vtable = &PL_vtbl_backref;
4575 case PERL_MAGIC_hintselem:
4576 vtable = &PL_vtbl_hintselem;
4578 case PERL_MAGIC_ext:
4579 /* Reserved for use by extensions not perl internals. */
4580 /* Useful for attaching extension internal data to perl vars. */
4581 /* Note that multiple extensions may clash if magical scalars */
4582 /* etc holding private data from one are passed to another. */
4586 Perl_croak(aTHX_ "Don't know how to handle magic of type \\%o", how);
4589 /* Rest of work is done else where */
4590 mg = sv_magicext(sv,obj,how,vtable,name,namlen);
4593 case PERL_MAGIC_taint:
4596 case PERL_MAGIC_ext:
4597 case PERL_MAGIC_dbfile:
4604 =for apidoc sv_unmagic
4606 Removes all magic of type C<type> from an SV.
4612 Perl_sv_unmagic(pTHX_ SV *sv, int type)
4616 if (SvTYPE(sv) < SVt_PVMG || !SvMAGIC(sv))
4618 mgp = &(((XPVMG*) SvANY(sv))->xmg_u.xmg_magic);
4619 for (mg = *mgp; mg; mg = *mgp) {
4620 if (mg->mg_type == type) {
4621 const MGVTBL* const vtbl = mg->mg_virtual;
4622 *mgp = mg->mg_moremagic;
4623 if (vtbl && vtbl->svt_free)
4624 CALL_FPTR(vtbl->svt_free)(aTHX_ sv, mg);
4625 if (mg->mg_ptr && mg->mg_type != PERL_MAGIC_regex_global) {
4627 Safefree(mg->mg_ptr);
4628 else if (mg->mg_len == HEf_SVKEY)
4629 SvREFCNT_dec((SV*)mg->mg_ptr);
4630 else if (mg->mg_type == PERL_MAGIC_utf8)
4631 Safefree(mg->mg_ptr);
4633 if (mg->mg_flags & MGf_REFCOUNTED)
4634 SvREFCNT_dec(mg->mg_obj);
4638 mgp = &mg->mg_moremagic;
4642 SvFLAGS(sv) |= (SvFLAGS(sv) & (SVp_IOK|SVp_NOK|SVp_POK)) >> PRIVSHIFT;
4643 SvMAGIC_set(sv, NULL);
4650 =for apidoc sv_rvweaken
4652 Weaken a reference: set the C<SvWEAKREF> flag on this RV; give the
4653 referred-to SV C<PERL_MAGIC_backref> magic if it hasn't already; and
4654 push a back-reference to this RV onto the array of backreferences
4655 associated with that magic. If the RV is magical, set magic will be
4656 called after the RV is cleared.
4662 Perl_sv_rvweaken(pTHX_ SV *sv)
4665 if (!SvOK(sv)) /* let undefs pass */
4668 Perl_croak(aTHX_ "Can't weaken a nonreference");
4669 else if (SvWEAKREF(sv)) {
4670 if (ckWARN(WARN_MISC))
4671 Perl_warner(aTHX_ packWARN(WARN_MISC), "Reference is already weak");
4675 Perl_sv_add_backref(aTHX_ tsv, sv);
4681 /* Give tsv backref magic if it hasn't already got it, then push a
4682 * back-reference to sv onto the array associated with the backref magic.
4686 Perl_sv_add_backref(pTHX_ SV *tsv, SV *sv)
4691 if (SvTYPE(tsv) == SVt_PVHV) {
4692 AV **const avp = Perl_hv_backreferences_p(aTHX_ (HV*)tsv);
4696 /* There is no AV in the offical place - try a fixup. */
4697 MAGIC *const mg = mg_find(tsv, PERL_MAGIC_backref);
4700 /* Aha. They've got it stowed in magic. Bring it back. */
4701 av = (AV*)mg->mg_obj;
4702 /* Stop mg_free decreasing the refernce count. */
4704 /* Stop mg_free even calling the destructor, given that
4705 there's no AV to free up. */
4707 sv_unmagic(tsv, PERL_MAGIC_backref);
4711 SvREFCNT_inc_simple_void(av);
4716 const MAGIC *const mg
4717 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
4719 av = (AV*)mg->mg_obj;
4723 sv_magic(tsv, (SV*)av, PERL_MAGIC_backref, NULL, 0);
4724 /* av now has a refcnt of 2, which avoids it getting freed
4725 * before us during global cleanup. The extra ref is removed
4726 * by magic_killbackrefs() when tsv is being freed */
4729 if (AvFILLp(av) >= AvMAX(av)) {
4730 av_extend(av, AvFILLp(av)+1);
4732 AvARRAY(av)[++AvFILLp(av)] = sv; /* av_push() */
4735 /* delete a back-reference to ourselves from the backref magic associated
4736 * with the SV we point to.
4740 S_sv_del_backref(pTHX_ SV *tsv, SV *sv)
4747 if (SvTYPE(tsv) == SVt_PVHV && SvOOK(tsv)) {
4748 av = *Perl_hv_backreferences_p(aTHX_ (HV*)tsv);
4749 /* We mustn't attempt to "fix up" the hash here by moving the
4750 backreference array back to the hv_aux structure, as that is stored
4751 in the main HvARRAY(), and hfreentries assumes that no-one
4752 reallocates HvARRAY() while it is running. */
4755 const MAGIC *const mg
4756 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
4758 av = (AV *)mg->mg_obj;
4761 if (PL_in_clean_all)
4763 Perl_croak(aTHX_ "panic: del_backref");