3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
38 /* Missing proto on LynxOS */
39 char *gconvert(double, int, int, char *);
42 #ifdef PERL_UTF8_CACHE_ASSERT
43 /* if adding more checks watch out for the following tests:
44 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
45 * lib/utf8.t lib/Unicode/Collate/t/index.t
48 # define ASSERT_UTF8_CACHE(cache) \
49 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
50 assert((cache)[2] <= (cache)[3]); \
51 assert((cache)[3] <= (cache)[1]);} \
54 # define ASSERT_UTF8_CACHE(cache) NOOP
57 #ifdef PERL_OLD_COPY_ON_WRITE
58 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
59 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
60 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
64 /* ============================================================================
66 =head1 Allocation and deallocation of SVs.
68 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
69 sv, av, hv...) contains type and reference count information, and for
70 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
71 contains fields specific to each type. Some types store all they need
72 in the head, so don't have a body.
74 In all but the most memory-paranoid configuations (ex: PURIFY), heads
75 and bodies are allocated out of arenas, which by default are
76 approximately 4K chunks of memory parcelled up into N heads or bodies.
77 Sv-bodies are allocated by their sv-type, guaranteeing size
78 consistency needed to allocate safely from arrays.
80 For SV-heads, the first slot in each arena is reserved, and holds a
81 link to the next arena, some flags, and a note of the number of slots.
82 Snaked through each arena chain is a linked list of free items; when
83 this becomes empty, an extra arena is allocated and divided up into N
84 items which are threaded into the free list.
86 SV-bodies are similar, but they use arena-sets by default, which
87 separate the link and info from the arena itself, and reclaim the 1st
88 slot in the arena. SV-bodies are further described later.
90 The following global variables are associated with arenas:
92 PL_sv_arenaroot pointer to list of SV arenas
93 PL_sv_root pointer to list of free SV structures
95 PL_body_arenas head of linked-list of body arenas
96 PL_body_roots[] array of pointers to list of free bodies of svtype
97 arrays are indexed by the svtype needed
99 A few special SV heads are not allocated from an arena, but are
100 instead directly created in the interpreter structure, eg PL_sv_undef.
101 The size of arenas can be changed from the default by setting
102 PERL_ARENA_SIZE appropriately at compile time.
104 The SV arena serves the secondary purpose of allowing still-live SVs
105 to be located and destroyed during final cleanup.
107 At the lowest level, the macros new_SV() and del_SV() grab and free
108 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
109 to return the SV to the free list with error checking.) new_SV() calls
110 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
111 SVs in the free list have their SvTYPE field set to all ones.
113 At the time of very final cleanup, sv_free_arenas() is called from
114 perl_destruct() to physically free all the arenas allocated since the
115 start of the interpreter.
117 The function visit() scans the SV arenas list, and calls a specified
118 function for each SV it finds which is still live - ie which has an SvTYPE
119 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
120 following functions (specified as [function that calls visit()] / [function
121 called by visit() for each SV]):
123 sv_report_used() / do_report_used()
124 dump all remaining SVs (debugging aid)
126 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
127 Attempt to free all objects pointed to by RVs,
128 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
129 try to do the same for all objects indirectly
130 referenced by typeglobs too. Called once from
131 perl_destruct(), prior to calling sv_clean_all()
134 sv_clean_all() / do_clean_all()
135 SvREFCNT_dec(sv) each remaining SV, possibly
136 triggering an sv_free(). It also sets the
137 SVf_BREAK flag on the SV to indicate that the
138 refcnt has been artificially lowered, and thus
139 stopping sv_free() from giving spurious warnings
140 about SVs which unexpectedly have a refcnt
141 of zero. called repeatedly from perl_destruct()
142 until there are no SVs left.
144 =head2 Arena allocator API Summary
146 Private API to rest of sv.c
150 new_XPVNV(), del_XPVGV(),
155 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
159 * ========================================================================= */
162 * "A time to plant, and a time to uproot what was planted..."
166 # define MEM_LOG_NEW_SV(sv, file, line, func) \
167 Perl_mem_log_new_sv(sv, file, line, func)
168 # define MEM_LOG_DEL_SV(sv, file, line, func) \
169 Perl_mem_log_del_sv(sv, file, line, func)
171 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
172 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
175 #ifdef DEBUG_LEAKING_SCALARS
176 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
177 # define DEBUG_SV_SERIAL(sv) \
178 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
179 PTR2UV(sv), (long)(sv)->sv_debug_serial))
181 # define FREE_SV_DEBUG_FILE(sv)
182 # define DEBUG_SV_SERIAL(sv) NOOP
186 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
187 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
188 /* Whilst I'd love to do this, it seems that things like to check on
190 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
192 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
193 PoisonNew(&SvREFCNT(sv), 1, U32)
195 # define SvARENA_CHAIN(sv) SvANY(sv)
196 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
197 # define POSION_SV_HEAD(sv)
200 /* Mark an SV head as unused, and add to free list.
202 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
203 * its refcount artificially decremented during global destruction, so
204 * there may be dangling pointers to it. The last thing we want in that
205 * case is for it to be reused. */
207 #define plant_SV(p) \
209 const U32 old_flags = SvFLAGS(p); \
210 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
211 DEBUG_SV_SERIAL(p); \
212 FREE_SV_DEBUG_FILE(p); \
214 SvFLAGS(p) = SVTYPEMASK; \
215 if (!(old_flags & SVf_BREAK)) { \
216 SvARENA_CHAIN_SET(p, PL_sv_root); \
222 #define uproot_SV(p) \
225 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
230 /* make some more SVs by adding another arena */
237 char *chunk; /* must use New here to match call to */
238 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
239 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
244 /* new_SV(): return a new, empty SV head */
246 #ifdef DEBUG_LEAKING_SCALARS
247 /* provide a real function for a debugger to play with */
249 S_new_SV(pTHX_ const char *file, int line, const char *func)
256 sv = S_more_sv(aTHX);
260 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
261 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
267 sv->sv_debug_inpad = 0;
268 sv->sv_debug_parent = NULL;
269 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
271 sv->sv_debug_serial = PL_sv_serial++;
273 MEM_LOG_NEW_SV(sv, file, line, func);
274 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
275 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
279 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
287 (p) = S_more_sv(aTHX); \
291 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
296 /* del_SV(): return an empty SV head to the free list */
309 S_del_sv(pTHX_ SV *p)
313 PERL_ARGS_ASSERT_DEL_SV;
318 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
319 const SV * const sv = sva + 1;
320 const SV * const svend = &sva[SvREFCNT(sva)];
321 if (p >= sv && p < svend) {
327 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
328 "Attempt to free non-arena SV: 0x%"UVxf
329 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
336 #else /* ! DEBUGGING */
338 #define del_SV(p) plant_SV(p)
340 #endif /* DEBUGGING */
344 =head1 SV Manipulation Functions
346 =for apidoc sv_add_arena
348 Given a chunk of memory, link it to the head of the list of arenas,
349 and split it into a list of free SVs.
355 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
358 SV *const sva = MUTABLE_SV(ptr);
362 PERL_ARGS_ASSERT_SV_ADD_ARENA;
364 /* The first SV in an arena isn't an SV. */
365 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
366 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
367 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
369 PL_sv_arenaroot = sva;
370 PL_sv_root = sva + 1;
372 svend = &sva[SvREFCNT(sva) - 1];
375 SvARENA_CHAIN_SET(sv, (sv + 1));
379 /* Must always set typemask because it's always checked in on cleanup
380 when the arenas are walked looking for objects. */
381 SvFLAGS(sv) = SVTYPEMASK;
384 SvARENA_CHAIN_SET(sv, 0);
388 SvFLAGS(sv) = SVTYPEMASK;
391 /* visit(): call the named function for each non-free SV in the arenas
392 * whose flags field matches the flags/mask args. */
395 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
401 PERL_ARGS_ASSERT_VISIT;
403 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
404 register const SV * const svend = &sva[SvREFCNT(sva)];
406 for (sv = sva + 1; sv < svend; ++sv) {
407 if (SvTYPE(sv) != SVTYPEMASK
408 && (sv->sv_flags & mask) == flags
421 /* called by sv_report_used() for each live SV */
424 do_report_used(pTHX_ SV *const sv)
426 if (SvTYPE(sv) != SVTYPEMASK) {
427 PerlIO_printf(Perl_debug_log, "****\n");
434 =for apidoc sv_report_used
436 Dump the contents of all SVs not yet freed. (Debugging aid).
442 Perl_sv_report_used(pTHX)
445 visit(do_report_used, 0, 0);
451 /* called by sv_clean_objs() for each live SV */
454 do_clean_objs(pTHX_ SV *const ref)
459 SV * const target = SvRV(ref);
460 if (SvOBJECT(target)) {
461 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
462 if (SvWEAKREF(ref)) {
463 sv_del_backref(target, ref);
469 SvREFCNT_dec(target);
474 /* XXX Might want to check arrays, etc. */
477 /* called by sv_clean_objs() for each live SV */
479 #ifndef DISABLE_DESTRUCTOR_KLUDGE
481 do_clean_named_objs(pTHX_ SV *const sv)
484 assert(SvTYPE(sv) == SVt_PVGV);
485 assert(isGV_with_GP(sv));
488 #ifdef PERL_DONT_CREATE_GVSV
491 SvOBJECT(GvSV(sv))) ||
492 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
493 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
494 /* In certain rare cases GvIOp(sv) can be NULL, which would make SvOBJECT(GvIO(sv)) dereference NULL. */
495 (GvIO(sv) ? (SvFLAGS(GvIOp(sv)) & SVs_OBJECT) : 0) ||
496 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
498 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
499 SvFLAGS(sv) |= SVf_BREAK;
507 =for apidoc sv_clean_objs
509 Attempt to destroy all objects not yet freed
515 Perl_sv_clean_objs(pTHX)
518 PL_in_clean_objs = TRUE;
519 visit(do_clean_objs, SVf_ROK, SVf_ROK);
520 #ifndef DISABLE_DESTRUCTOR_KLUDGE
521 /* some barnacles may yet remain, clinging to typeglobs */
522 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
524 PL_in_clean_objs = FALSE;
527 /* called by sv_clean_all() for each live SV */
530 do_clean_all(pTHX_ SV *const sv)
533 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
534 /* don't clean pid table and strtab */
537 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
538 SvFLAGS(sv) |= SVf_BREAK;
543 =for apidoc sv_clean_all
545 Decrement the refcnt of each remaining SV, possibly triggering a
546 cleanup. This function may have to be called multiple times to free
547 SVs which are in complex self-referential hierarchies.
553 Perl_sv_clean_all(pTHX)
557 PL_in_clean_all = TRUE;
558 cleaned = visit(do_clean_all, 0,0);
559 PL_in_clean_all = FALSE;
564 ARENASETS: a meta-arena implementation which separates arena-info
565 into struct arena_set, which contains an array of struct
566 arena_descs, each holding info for a single arena. By separating
567 the meta-info from the arena, we recover the 1st slot, formerly
568 borrowed for list management. The arena_set is about the size of an
569 arena, avoiding the needless malloc overhead of a naive linked-list.
571 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
572 memory in the last arena-set (1/2 on average). In trade, we get
573 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
574 smaller types). The recovery of the wasted space allows use of
575 small arenas for large, rare body types, by changing array* fields
576 in body_details_by_type[] below.
579 char *arena; /* the raw storage, allocated aligned */
580 size_t size; /* its size ~4k typ */
581 svtype utype; /* bodytype stored in arena */
586 /* Get the maximum number of elements in set[] such that struct arena_set
587 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
588 therefore likely to be 1 aligned memory page. */
590 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
591 - 2 * sizeof(int)) / sizeof (struct arena_desc))
594 struct arena_set* next;
595 unsigned int set_size; /* ie ARENAS_PER_SET */
596 unsigned int curr; /* index of next available arena-desc */
597 struct arena_desc set[ARENAS_PER_SET];
601 =for apidoc sv_free_arenas
603 Deallocate the memory used by all arenas. Note that all the individual SV
604 heads and bodies within the arenas must already have been freed.
609 Perl_sv_free_arenas(pTHX)
616 /* Free arenas here, but be careful about fake ones. (We assume
617 contiguity of the fake ones with the corresponding real ones.) */
619 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
620 svanext = MUTABLE_SV(SvANY(sva));
621 while (svanext && SvFAKE(svanext))
622 svanext = MUTABLE_SV(SvANY(svanext));
629 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
632 struct arena_set *current = aroot;
635 assert(aroot->set[i].arena);
636 Safefree(aroot->set[i].arena);
644 i = PERL_ARENA_ROOTS_SIZE;
646 PL_body_roots[i] = 0;
653 Here are mid-level routines that manage the allocation of bodies out
654 of the various arenas. There are 5 kinds of arenas:
656 1. SV-head arenas, which are discussed and handled above
657 2. regular body arenas
658 3. arenas for reduced-size bodies
661 Arena types 2 & 3 are chained by body-type off an array of
662 arena-root pointers, which is indexed by svtype. Some of the
663 larger/less used body types are malloced singly, since a large
664 unused block of them is wasteful. Also, several svtypes dont have
665 bodies; the data fits into the sv-head itself. The arena-root
666 pointer thus has a few unused root-pointers (which may be hijacked
667 later for arena types 4,5)
669 3 differs from 2 as an optimization; some body types have several
670 unused fields in the front of the structure (which are kept in-place
671 for consistency). These bodies can be allocated in smaller chunks,
672 because the leading fields arent accessed. Pointers to such bodies
673 are decremented to point at the unused 'ghost' memory, knowing that
674 the pointers are used with offsets to the real memory.
677 =head1 SV-Body Allocation
679 Allocation of SV-bodies is similar to SV-heads, differing as follows;
680 the allocation mechanism is used for many body types, so is somewhat
681 more complicated, it uses arena-sets, and has no need for still-live
684 At the outermost level, (new|del)_X*V macros return bodies of the
685 appropriate type. These macros call either (new|del)_body_type or
686 (new|del)_body_allocated macro pairs, depending on specifics of the
687 type. Most body types use the former pair, the latter pair is used to
688 allocate body types with "ghost fields".
690 "ghost fields" are fields that are unused in certain types, and
691 consequently don't need to actually exist. They are declared because
692 they're part of a "base type", which allows use of functions as
693 methods. The simplest examples are AVs and HVs, 2 aggregate types
694 which don't use the fields which support SCALAR semantics.
696 For these types, the arenas are carved up into appropriately sized
697 chunks, we thus avoid wasted memory for those unaccessed members.
698 When bodies are allocated, we adjust the pointer back in memory by the
699 size of the part not allocated, so it's as if we allocated the full
700 structure. (But things will all go boom if you write to the part that
701 is "not there", because you'll be overwriting the last members of the
702 preceding structure in memory.)
704 We calculate the correction using the STRUCT_OFFSET macro on the first
705 member present. If the allocated structure is smaller (no initial NV
706 actually allocated) then the net effect is to subtract the size of the NV
707 from the pointer, to return a new pointer as if an initial NV were actually
708 allocated. (We were using structures named *_allocated for this, but
709 this turned out to be a subtle bug, because a structure without an NV
710 could have a lower alignment constraint, but the compiler is allowed to
711 optimised accesses based on the alignment constraint of the actual pointer
712 to the full structure, for example, using a single 64 bit load instruction
713 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
715 This is the same trick as was used for NV and IV bodies. Ironically it
716 doesn't need to be used for NV bodies any more, because NV is now at
717 the start of the structure. IV bodies don't need it either, because
718 they are no longer allocated.
720 In turn, the new_body_* allocators call S_new_body(), which invokes
721 new_body_inline macro, which takes a lock, and takes a body off the
722 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
723 necessary to refresh an empty list. Then the lock is released, and
724 the body is returned.
726 Perl_more_bodies allocates a new arena, and carves it up into an array of N
727 bodies, which it strings into a linked list. It looks up arena-size
728 and body-size from the body_details table described below, thus
729 supporting the multiple body-types.
731 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
732 the (new|del)_X*V macros are mapped directly to malloc/free.
734 For each sv-type, struct body_details bodies_by_type[] carries
735 parameters which control these aspects of SV handling:
737 Arena_size determines whether arenas are used for this body type, and if
738 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
739 zero, forcing individual mallocs and frees.
741 Body_size determines how big a body is, and therefore how many fit into
742 each arena. Offset carries the body-pointer adjustment needed for
743 "ghost fields", and is used in *_allocated macros.
745 But its main purpose is to parameterize info needed in
746 Perl_sv_upgrade(). The info here dramatically simplifies the function
747 vs the implementation in 5.8.8, making it table-driven. All fields
748 are used for this, except for arena_size.
750 For the sv-types that have no bodies, arenas are not used, so those
751 PL_body_roots[sv_type] are unused, and can be overloaded. In
752 something of a special case, SVt_NULL is borrowed for HE arenas;
753 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
754 bodies_by_type[SVt_NULL] slot is not used, as the table is not
759 struct body_details {
760 U8 body_size; /* Size to allocate */
761 U8 copy; /* Size of structure to copy (may be shorter) */
763 unsigned int type : 4; /* We have space for a sanity check. */
764 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
765 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
766 unsigned int arena : 1; /* Allocated from an arena */
767 size_t arena_size; /* Size of arena to allocate */
775 /* With -DPURFIY we allocate everything directly, and don't use arenas.
776 This seems a rather elegant way to simplify some of the code below. */
777 #define HASARENA FALSE
779 #define HASARENA TRUE
781 #define NOARENA FALSE
783 /* Size the arenas to exactly fit a given number of bodies. A count
784 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
785 simplifying the default. If count > 0, the arena is sized to fit
786 only that many bodies, allowing arenas to be used for large, rare
787 bodies (XPVFM, XPVIO) without undue waste. The arena size is
788 limited by PERL_ARENA_SIZE, so we can safely oversize the
791 #define FIT_ARENA0(body_size) \
792 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
793 #define FIT_ARENAn(count,body_size) \
794 ( count * body_size <= PERL_ARENA_SIZE) \
795 ? count * body_size \
796 : FIT_ARENA0 (body_size)
797 #define FIT_ARENA(count,body_size) \
799 ? FIT_ARENAn (count, body_size) \
800 : FIT_ARENA0 (body_size)
802 /* Calculate the length to copy. Specifically work out the length less any
803 final padding the compiler needed to add. See the comment in sv_upgrade
804 for why copying the padding proved to be a bug. */
806 #define copy_length(type, last_member) \
807 STRUCT_OFFSET(type, last_member) \
808 + sizeof (((type*)SvANY((const SV *)0))->last_member)
810 static const struct body_details bodies_by_type[] = {
811 /* HEs use this offset for their arena. */
812 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
814 /* The bind placeholder pretends to be an RV for now.
815 Also it's marked as "can't upgrade" to stop anyone using it before it's
817 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
819 /* IVs are in the head, so the allocation size is 0. */
821 sizeof(IV), /* This is used to copy out the IV body. */
822 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
823 NOARENA /* IVS don't need an arena */, 0
826 /* 8 bytes on most ILP32 with IEEE doubles */
827 { sizeof(NV), sizeof(NV),
828 STRUCT_OFFSET(XPVNV, xnv_u),
829 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
831 /* 8 bytes on most ILP32 with IEEE doubles */
832 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
833 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
834 + STRUCT_OFFSET(XPV, xpv_cur),
835 SVt_PV, FALSE, NONV, HASARENA,
836 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
839 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
840 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
841 + STRUCT_OFFSET(XPV, xpv_cur),
842 SVt_PVIV, FALSE, NONV, HASARENA,
843 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
846 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
847 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
848 + STRUCT_OFFSET(XPV, xpv_cur),
849 SVt_PVNV, FALSE, HADNV, HASARENA,
850 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
853 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
854 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
860 SVt_REGEXP, FALSE, NONV, HASARENA,
861 FIT_ARENA(0, sizeof(regexp))
865 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
866 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
869 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
870 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
873 copy_length(XPVAV, xav_alloc),
875 SVt_PVAV, TRUE, NONV, HASARENA,
876 FIT_ARENA(0, sizeof(XPVAV)) },
879 copy_length(XPVHV, xhv_max),
881 SVt_PVHV, TRUE, NONV, HASARENA,
882 FIT_ARENA(0, sizeof(XPVHV)) },
888 SVt_PVCV, TRUE, NONV, HASARENA,
889 FIT_ARENA(0, sizeof(XPVCV)) },
894 SVt_PVFM, TRUE, NONV, NOARENA,
895 FIT_ARENA(20, sizeof(XPVFM)) },
897 /* XPVIO is 84 bytes, fits 48x */
901 SVt_PVIO, TRUE, NONV, HASARENA,
902 FIT_ARENA(24, sizeof(XPVIO)) },
905 #define new_body_allocated(sv_type) \
906 (void *)((char *)S_new_body(aTHX_ sv_type) \
907 - bodies_by_type[sv_type].offset)
909 /* return a thing to the free list */
911 #define del_body(thing, root) \
913 void ** const thing_copy = (void **)thing; \
914 *thing_copy = *root; \
915 *root = (void*)thing_copy; \
920 #define new_XNV() safemalloc(sizeof(XPVNV))
921 #define new_XPVNV() safemalloc(sizeof(XPVNV))
922 #define new_XPVMG() safemalloc(sizeof(XPVMG))
924 #define del_XPVGV(p) safefree(p)
928 #define new_XNV() new_body_allocated(SVt_NV)
929 #define new_XPVNV() new_body_allocated(SVt_PVNV)
930 #define new_XPVMG() new_body_allocated(SVt_PVMG)
932 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
933 &PL_body_roots[SVt_PVGV])
937 /* no arena for you! */
939 #define new_NOARENA(details) \
940 safemalloc((details)->body_size + (details)->offset)
941 #define new_NOARENAZ(details) \
942 safecalloc((details)->body_size + (details)->offset, 1)
945 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
946 const size_t arena_size)
949 void ** const root = &PL_body_roots[sv_type];
950 struct arena_desc *adesc;
951 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
955 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
956 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
957 static bool done_sanity_check;
959 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
960 * variables like done_sanity_check. */
961 if (!done_sanity_check) {
962 unsigned int i = SVt_LAST;
964 done_sanity_check = TRUE;
967 assert (bodies_by_type[i].type == i);
973 /* may need new arena-set to hold new arena */
974 if (!aroot || aroot->curr >= aroot->set_size) {
975 struct arena_set *newroot;
976 Newxz(newroot, 1, struct arena_set);
977 newroot->set_size = ARENAS_PER_SET;
978 newroot->next = aroot;
980 PL_body_arenas = (void *) newroot;
981 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
984 /* ok, now have arena-set with at least 1 empty/available arena-desc */
985 curr = aroot->curr++;
986 adesc = &(aroot->set[curr]);
987 assert(!adesc->arena);
989 Newx(adesc->arena, good_arena_size, char);
990 adesc->size = good_arena_size;
991 adesc->utype = sv_type;
992 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
993 curr, (void*)adesc->arena, (UV)good_arena_size));
995 start = (char *) adesc->arena;
997 /* Get the address of the byte after the end of the last body we can fit.
998 Remember, this is integer division: */
999 end = start + good_arena_size / body_size * body_size;
1001 /* computed count doesnt reflect the 1st slot reservation */
1002 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1003 DEBUG_m(PerlIO_printf(Perl_debug_log,
1004 "arena %p end %p arena-size %d (from %d) type %d "
1006 (void*)start, (void*)end, (int)good_arena_size,
1007 (int)arena_size, sv_type, (int)body_size,
1008 (int)good_arena_size / (int)body_size));
1010 DEBUG_m(PerlIO_printf(Perl_debug_log,
1011 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1012 (void*)start, (void*)end,
1013 (int)arena_size, sv_type, (int)body_size,
1014 (int)good_arena_size / (int)body_size));
1016 *root = (void *)start;
1019 /* Where the next body would start: */
1020 char * const next = start + body_size;
1023 /* This is the last body: */
1024 assert(next == end);
1026 *(void **)start = 0;
1030 *(void**) start = (void *)next;
1035 /* grab a new thing from the free list, allocating more if necessary.
1036 The inline version is used for speed in hot routines, and the
1037 function using it serves the rest (unless PURIFY).
1039 #define new_body_inline(xpv, sv_type) \
1041 void ** const r3wt = &PL_body_roots[sv_type]; \
1042 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1043 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1044 bodies_by_type[sv_type].body_size,\
1045 bodies_by_type[sv_type].arena_size)); \
1046 *(r3wt) = *(void**)(xpv); \
1052 S_new_body(pTHX_ const svtype sv_type)
1056 new_body_inline(xpv, sv_type);
1062 static const struct body_details fake_rv =
1063 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1066 =for apidoc sv_upgrade
1068 Upgrade an SV to a more complex form. Generally adds a new body type to the
1069 SV, then copies across as much information as possible from the old body.
1070 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1076 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1081 const svtype old_type = SvTYPE(sv);
1082 const struct body_details *new_type_details;
1083 const struct body_details *old_type_details
1084 = bodies_by_type + old_type;
1085 SV *referant = NULL;
1087 PERL_ARGS_ASSERT_SV_UPGRADE;
1089 if (old_type == new_type)
1092 /* This clause was purposefully added ahead of the early return above to
1093 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1094 inference by Nick I-S that it would fix other troublesome cases. See
1095 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1097 Given that shared hash key scalars are no longer PVIV, but PV, there is
1098 no longer need to unshare so as to free up the IVX slot for its proper
1099 purpose. So it's safe to move the early return earlier. */
1101 if (new_type != SVt_PV && SvIsCOW(sv)) {
1102 sv_force_normal_flags(sv, 0);
1105 old_body = SvANY(sv);
1107 /* Copying structures onto other structures that have been neatly zeroed
1108 has a subtle gotcha. Consider XPVMG
1110 +------+------+------+------+------+-------+-------+
1111 | NV | CUR | LEN | IV | MAGIC | STASH |
1112 +------+------+------+------+------+-------+-------+
1113 0 4 8 12 16 20 24 28
1115 where NVs are aligned to 8 bytes, so that sizeof that structure is
1116 actually 32 bytes long, with 4 bytes of padding at the end:
1118 +------+------+------+------+------+-------+-------+------+
1119 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1120 +------+------+------+------+------+-------+-------+------+
1121 0 4 8 12 16 20 24 28 32
1123 so what happens if you allocate memory for this structure:
1125 +------+------+------+------+------+-------+-------+------+------+...
1126 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1127 +------+------+------+------+------+-------+-------+------+------+...
1128 0 4 8 12 16 20 24 28 32 36
1130 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1131 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1132 started out as zero once, but it's quite possible that it isn't. So now,
1133 rather than a nicely zeroed GP, you have it pointing somewhere random.
1136 (In fact, GP ends up pointing at a previous GP structure, because the
1137 principle cause of the padding in XPVMG getting garbage is a copy of
1138 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1139 this happens to be moot because XPVGV has been re-ordered, with GP
1140 no longer after STASH)
1142 So we are careful and work out the size of used parts of all the
1150 referant = SvRV(sv);
1151 old_type_details = &fake_rv;
1152 if (new_type == SVt_NV)
1153 new_type = SVt_PVNV;
1155 if (new_type < SVt_PVIV) {
1156 new_type = (new_type == SVt_NV)
1157 ? SVt_PVNV : SVt_PVIV;
1162 if (new_type < SVt_PVNV) {
1163 new_type = SVt_PVNV;
1167 assert(new_type > SVt_PV);
1168 assert(SVt_IV < SVt_PV);
1169 assert(SVt_NV < SVt_PV);
1176 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1177 there's no way that it can be safely upgraded, because perl.c
1178 expects to Safefree(SvANY(PL_mess_sv)) */
1179 assert(sv != PL_mess_sv);
1180 /* This flag bit is used to mean other things in other scalar types.
1181 Given that it only has meaning inside the pad, it shouldn't be set
1182 on anything that can get upgraded. */
1183 assert(!SvPAD_TYPED(sv));
1186 if (old_type_details->cant_upgrade)
1187 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1188 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1191 if (old_type > new_type)
1192 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1193 (int)old_type, (int)new_type);
1195 new_type_details = bodies_by_type + new_type;
1197 SvFLAGS(sv) &= ~SVTYPEMASK;
1198 SvFLAGS(sv) |= new_type;
1200 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1201 the return statements above will have triggered. */
1202 assert (new_type != SVt_NULL);
1205 assert(old_type == SVt_NULL);
1206 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1210 assert(old_type == SVt_NULL);
1211 SvANY(sv) = new_XNV();
1216 assert(new_type_details->body_size);
1219 assert(new_type_details->arena);
1220 assert(new_type_details->arena_size);
1221 /* This points to the start of the allocated area. */
1222 new_body_inline(new_body, new_type);
1223 Zero(new_body, new_type_details->body_size, char);
1224 new_body = ((char *)new_body) - new_type_details->offset;
1226 /* We always allocated the full length item with PURIFY. To do this
1227 we fake things so that arena is false for all 16 types.. */
1228 new_body = new_NOARENAZ(new_type_details);
1230 SvANY(sv) = new_body;
1231 if (new_type == SVt_PVAV) {
1235 if (old_type_details->body_size) {
1238 /* It will have been zeroed when the new body was allocated.
1239 Lets not write to it, in case it confuses a write-back
1245 #ifndef NODEFAULT_SHAREKEYS
1246 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1248 HvMAX(sv) = 7; /* (start with 8 buckets) */
1251 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1252 The target created by newSVrv also is, and it can have magic.
1253 However, it never has SvPVX set.
1255 if (old_type == SVt_IV) {
1257 } else if (old_type >= SVt_PV) {
1258 assert(SvPVX_const(sv) == 0);
1261 if (old_type >= SVt_PVMG) {
1262 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1263 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1265 sv->sv_u.svu_array = NULL; /* or svu_hash */
1271 /* This ensures that SvTHINKFIRST(sv) is true, and hence that
1272 sv_force_normal_flags(sv) is called. */
1275 /* XXX Is this still needed? Was it ever needed? Surely as there is
1276 no route from NV to PVIV, NOK can never be true */
1277 assert(!SvNOKp(sv));
1288 assert(new_type_details->body_size);
1289 /* We always allocated the full length item with PURIFY. To do this
1290 we fake things so that arena is false for all 16 types.. */
1291 if(new_type_details->arena) {
1292 /* This points to the start of the allocated area. */
1293 new_body_inline(new_body, new_type);
1294 Zero(new_body, new_type_details->body_size, char);
1295 new_body = ((char *)new_body) - new_type_details->offset;
1297 new_body = new_NOARENAZ(new_type_details);
1299 SvANY(sv) = new_body;
1301 if (old_type_details->copy) {
1302 /* There is now the potential for an upgrade from something without
1303 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1304 int offset = old_type_details->offset;
1305 int length = old_type_details->copy;
1307 if (new_type_details->offset > old_type_details->offset) {
1308 const int difference
1309 = new_type_details->offset - old_type_details->offset;
1310 offset += difference;
1311 length -= difference;
1313 assert (length >= 0);
1315 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1319 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1320 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1321 * correct 0.0 for us. Otherwise, if the old body didn't have an
1322 * NV slot, but the new one does, then we need to initialise the
1323 * freshly created NV slot with whatever the correct bit pattern is
1325 if (old_type_details->zero_nv && !new_type_details->zero_nv
1326 && !isGV_with_GP(sv))
1330 if (new_type == SVt_PVIO) {
1331 IO * const io = MUTABLE_IO(sv);
1332 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1335 /* Clear the stashcache because a new IO could overrule a package
1337 hv_clear(PL_stashcache);
1339 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1340 IoPAGE_LEN(sv) = 60;
1342 if (old_type < SVt_PV) {
1343 /* referant will be NULL unless the old type was SVt_IV emulating
1345 sv->sv_u.svu_rv = referant;
1349 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1350 (unsigned long)new_type);
1353 if (old_type > SVt_IV) {
1357 /* Note that there is an assumption that all bodies of types that
1358 can be upgraded came from arenas. Only the more complex non-
1359 upgradable types are allowed to be directly malloc()ed. */
1360 assert(old_type_details->arena);
1361 del_body((void*)((char*)old_body + old_type_details->offset),
1362 &PL_body_roots[old_type]);
1368 =for apidoc sv_backoff
1370 Remove any string offset. You should normally use the C<SvOOK_off> macro
1377 Perl_sv_backoff(pTHX_ register SV *const sv)
1380 const char * const s = SvPVX_const(sv);
1382 PERL_ARGS_ASSERT_SV_BACKOFF;
1383 PERL_UNUSED_CONTEXT;
1386 assert(SvTYPE(sv) != SVt_PVHV);
1387 assert(SvTYPE(sv) != SVt_PVAV);
1389 SvOOK_offset(sv, delta);
1391 SvLEN_set(sv, SvLEN(sv) + delta);
1392 SvPV_set(sv, SvPVX(sv) - delta);
1393 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1394 SvFLAGS(sv) &= ~SVf_OOK;
1401 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1402 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1403 Use the C<SvGROW> wrapper instead.
1409 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1413 PERL_ARGS_ASSERT_SV_GROW;
1415 if (PL_madskills && newlen >= 0x100000) {
1416 PerlIO_printf(Perl_debug_log,
1417 "Allocation too large: %"UVxf"\n", (UV)newlen);
1419 #ifdef HAS_64K_LIMIT
1420 if (newlen >= 0x10000) {
1421 PerlIO_printf(Perl_debug_log,
1422 "Allocation too large: %"UVxf"\n", (UV)newlen);
1425 #endif /* HAS_64K_LIMIT */
1428 if (SvTYPE(sv) < SVt_PV) {
1429 sv_upgrade(sv, SVt_PV);
1430 s = SvPVX_mutable(sv);
1432 else if (SvOOK(sv)) { /* pv is offset? */
1434 s = SvPVX_mutable(sv);
1435 if (newlen > SvLEN(sv))
1436 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1437 #ifdef HAS_64K_LIMIT
1438 if (newlen >= 0x10000)
1443 s = SvPVX_mutable(sv);
1445 if (newlen > SvLEN(sv)) { /* need more room? */
1446 STRLEN minlen = SvCUR(sv);
1447 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1448 if (newlen < minlen)
1450 #ifndef Perl_safesysmalloc_size
1451 newlen = PERL_STRLEN_ROUNDUP(newlen);
1453 if (SvLEN(sv) && s) {
1454 s = (char*)saferealloc(s, newlen);
1457 s = (char*)safemalloc(newlen);
1458 if (SvPVX_const(sv) && SvCUR(sv)) {
1459 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1463 #ifdef Perl_safesysmalloc_size
1464 /* Do this here, do it once, do it right, and then we will never get
1465 called back into sv_grow() unless there really is some growing
1467 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1469 SvLEN_set(sv, newlen);
1476 =for apidoc sv_setiv
1478 Copies an integer into the given SV, upgrading first if necessary.
1479 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1485 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1489 PERL_ARGS_ASSERT_SV_SETIV;
1491 SV_CHECK_THINKFIRST_COW_DROP(sv);
1492 switch (SvTYPE(sv)) {
1495 sv_upgrade(sv, SVt_IV);
1498 sv_upgrade(sv, SVt_PVIV);
1502 if (!isGV_with_GP(sv))
1509 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1513 (void)SvIOK_only(sv); /* validate number */
1519 =for apidoc sv_setiv_mg
1521 Like C<sv_setiv>, but also handles 'set' magic.
1527 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1529 PERL_ARGS_ASSERT_SV_SETIV_MG;
1536 =for apidoc sv_setuv
1538 Copies an unsigned integer into the given SV, upgrading first if necessary.
1539 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1545 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1547 PERL_ARGS_ASSERT_SV_SETUV;
1549 /* With these two if statements:
1550 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1553 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1555 If you wish to remove them, please benchmark to see what the effect is
1557 if (u <= (UV)IV_MAX) {
1558 sv_setiv(sv, (IV)u);
1567 =for apidoc sv_setuv_mg
1569 Like C<sv_setuv>, but also handles 'set' magic.
1575 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1577 PERL_ARGS_ASSERT_SV_SETUV_MG;
1584 =for apidoc sv_setnv
1586 Copies a double into the given SV, upgrading first if necessary.
1587 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1593 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1597 PERL_ARGS_ASSERT_SV_SETNV;
1599 SV_CHECK_THINKFIRST_COW_DROP(sv);
1600 switch (SvTYPE(sv)) {
1603 sv_upgrade(sv, SVt_NV);
1607 sv_upgrade(sv, SVt_PVNV);
1611 if (!isGV_with_GP(sv))
1618 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1623 (void)SvNOK_only(sv); /* validate number */
1628 =for apidoc sv_setnv_mg
1630 Like C<sv_setnv>, but also handles 'set' magic.
1636 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1638 PERL_ARGS_ASSERT_SV_SETNV_MG;
1644 /* Print an "isn't numeric" warning, using a cleaned-up,
1645 * printable version of the offending string
1649 S_not_a_number(pTHX_ SV *const sv)
1656 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1659 dsv = newSVpvs_flags("", SVs_TEMP);
1660 pv = sv_uni_display(dsv, sv, 10, 0);
1663 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1664 /* each *s can expand to 4 chars + "...\0",
1665 i.e. need room for 8 chars */
1667 const char *s = SvPVX_const(sv);
1668 const char * const end = s + SvCUR(sv);
1669 for ( ; s < end && d < limit; s++ ) {
1671 if (ch & 128 && !isPRINT_LC(ch)) {
1680 else if (ch == '\r') {
1684 else if (ch == '\f') {
1688 else if (ch == '\\') {
1692 else if (ch == '\0') {
1696 else if (isPRINT_LC(ch))
1713 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1714 "Argument \"%s\" isn't numeric in %s", pv,
1717 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1718 "Argument \"%s\" isn't numeric", pv);
1722 =for apidoc looks_like_number
1724 Test if the content of an SV looks like a number (or is a number).
1725 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1726 non-numeric warning), even if your atof() doesn't grok them.
1732 Perl_looks_like_number(pTHX_ SV *const sv)
1734 register const char *sbegin;
1737 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1740 sbegin = SvPVX_const(sv);
1743 else if (SvPOKp(sv))
1744 sbegin = SvPV_const(sv, len);
1746 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1747 return grok_number(sbegin, len, NULL);
1751 S_glob_2number(pTHX_ GV * const gv)
1753 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1754 SV *const buffer = sv_newmortal();
1756 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1758 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1761 gv_efullname3(buffer, gv, "*");
1762 SvFLAGS(gv) |= wasfake;
1764 /* We know that all GVs stringify to something that is not-a-number,
1765 so no need to test that. */
1766 if (ckWARN(WARN_NUMERIC))
1767 not_a_number(buffer);
1768 /* We just want something true to return, so that S_sv_2iuv_common
1769 can tail call us and return true. */
1773 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1774 until proven guilty, assume that things are not that bad... */
1779 As 64 bit platforms often have an NV that doesn't preserve all bits of
1780 an IV (an assumption perl has been based on to date) it becomes necessary
1781 to remove the assumption that the NV always carries enough precision to
1782 recreate the IV whenever needed, and that the NV is the canonical form.
1783 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1784 precision as a side effect of conversion (which would lead to insanity
1785 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1786 1) to distinguish between IV/UV/NV slots that have cached a valid
1787 conversion where precision was lost and IV/UV/NV slots that have a
1788 valid conversion which has lost no precision
1789 2) to ensure that if a numeric conversion to one form is requested that
1790 would lose precision, the precise conversion (or differently
1791 imprecise conversion) is also performed and cached, to prevent
1792 requests for different numeric formats on the same SV causing
1793 lossy conversion chains. (lossless conversion chains are perfectly
1798 SvIOKp is true if the IV slot contains a valid value
1799 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1800 SvNOKp is true if the NV slot contains a valid value
1801 SvNOK is true only if the NV value is accurate
1804 while converting from PV to NV, check to see if converting that NV to an
1805 IV(or UV) would lose accuracy over a direct conversion from PV to
1806 IV(or UV). If it would, cache both conversions, return NV, but mark
1807 SV as IOK NOKp (ie not NOK).
1809 While converting from PV to IV, check to see if converting that IV to an
1810 NV would lose accuracy over a direct conversion from PV to NV. If it
1811 would, cache both conversions, flag similarly.
1813 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1814 correctly because if IV & NV were set NV *always* overruled.
1815 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1816 changes - now IV and NV together means that the two are interchangeable:
1817 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1819 The benefit of this is that operations such as pp_add know that if
1820 SvIOK is true for both left and right operands, then integer addition
1821 can be used instead of floating point (for cases where the result won't
1822 overflow). Before, floating point was always used, which could lead to
1823 loss of precision compared with integer addition.
1825 * making IV and NV equal status should make maths accurate on 64 bit
1827 * may speed up maths somewhat if pp_add and friends start to use
1828 integers when possible instead of fp. (Hopefully the overhead in
1829 looking for SvIOK and checking for overflow will not outweigh the
1830 fp to integer speedup)
1831 * will slow down integer operations (callers of SvIV) on "inaccurate"
1832 values, as the change from SvIOK to SvIOKp will cause a call into
1833 sv_2iv each time rather than a macro access direct to the IV slot
1834 * should speed up number->string conversion on integers as IV is
1835 favoured when IV and NV are equally accurate
1837 ####################################################################
1838 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1839 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1840 On the other hand, SvUOK is true iff UV.
1841 ####################################################################
1843 Your mileage will vary depending your CPU's relative fp to integer
1847 #ifndef NV_PRESERVES_UV
1848 # define IS_NUMBER_UNDERFLOW_IV 1
1849 # define IS_NUMBER_UNDERFLOW_UV 2
1850 # define IS_NUMBER_IV_AND_UV 2
1851 # define IS_NUMBER_OVERFLOW_IV 4
1852 # define IS_NUMBER_OVERFLOW_UV 5
1854 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1856 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1858 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1866 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1868 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1869 if (SvNVX(sv) < (NV)IV_MIN) {
1870 (void)SvIOKp_on(sv);
1872 SvIV_set(sv, IV_MIN);
1873 return IS_NUMBER_UNDERFLOW_IV;
1875 if (SvNVX(sv) > (NV)UV_MAX) {
1876 (void)SvIOKp_on(sv);
1879 SvUV_set(sv, UV_MAX);
1880 return IS_NUMBER_OVERFLOW_UV;
1882 (void)SvIOKp_on(sv);
1884 /* Can't use strtol etc to convert this string. (See truth table in
1886 if (SvNVX(sv) <= (UV)IV_MAX) {
1887 SvIV_set(sv, I_V(SvNVX(sv)));
1888 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1889 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1891 /* Integer is imprecise. NOK, IOKp */
1893 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1896 SvUV_set(sv, U_V(SvNVX(sv)));
1897 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1898 if (SvUVX(sv) == UV_MAX) {
1899 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1900 possibly be preserved by NV. Hence, it must be overflow.
1902 return IS_NUMBER_OVERFLOW_UV;
1904 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1906 /* Integer is imprecise. NOK, IOKp */
1908 return IS_NUMBER_OVERFLOW_IV;
1910 #endif /* !NV_PRESERVES_UV*/
1913 S_sv_2iuv_common(pTHX_ SV *const sv)
1917 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
1920 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1921 * without also getting a cached IV/UV from it at the same time
1922 * (ie PV->NV conversion should detect loss of accuracy and cache
1923 * IV or UV at same time to avoid this. */
1924 /* IV-over-UV optimisation - choose to cache IV if possible */
1926 if (SvTYPE(sv) == SVt_NV)
1927 sv_upgrade(sv, SVt_PVNV);
1929 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1930 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1931 certainly cast into the IV range at IV_MAX, whereas the correct
1932 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1934 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1935 if (Perl_isnan(SvNVX(sv))) {
1941 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
1942 SvIV_set(sv, I_V(SvNVX(sv)));
1943 if (SvNVX(sv) == (NV) SvIVX(sv)
1944 #ifndef NV_PRESERVES_UV
1945 && (((UV)1 << NV_PRESERVES_UV_BITS) >
1946 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
1947 /* Don't flag it as "accurately an integer" if the number
1948 came from a (by definition imprecise) NV operation, and
1949 we're outside the range of NV integer precision */
1953 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
1955 /* scalar has trailing garbage, eg "42a" */
1957 DEBUG_c(PerlIO_printf(Perl_debug_log,
1958 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
1964 /* IV not precise. No need to convert from PV, as NV
1965 conversion would already have cached IV if it detected
1966 that PV->IV would be better than PV->NV->IV
1967 flags already correct - don't set public IOK. */
1968 DEBUG_c(PerlIO_printf(Perl_debug_log,
1969 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
1974 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
1975 but the cast (NV)IV_MIN rounds to a the value less (more
1976 negative) than IV_MIN which happens to be equal to SvNVX ??
1977 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
1978 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
1979 (NV)UVX == NVX are both true, but the values differ. :-(
1980 Hopefully for 2s complement IV_MIN is something like
1981 0x8000000000000000 which will be exact. NWC */
1984 SvUV_set(sv, U_V(SvNVX(sv)));
1986 (SvNVX(sv) == (NV) SvUVX(sv))
1987 #ifndef NV_PRESERVES_UV
1988 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
1989 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
1990 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
1991 /* Don't flag it as "accurately an integer" if the number
1992 came from a (by definition imprecise) NV operation, and
1993 we're outside the range of NV integer precision */
1999 DEBUG_c(PerlIO_printf(Perl_debug_log,
2000 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2006 else if (SvPOKp(sv) && SvLEN(sv)) {
2008 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2009 /* We want to avoid a possible problem when we cache an IV/ a UV which
2010 may be later translated to an NV, and the resulting NV is not
2011 the same as the direct translation of the initial string
2012 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2013 be careful to ensure that the value with the .456 is around if the
2014 NV value is requested in the future).
2016 This means that if we cache such an IV/a UV, we need to cache the
2017 NV as well. Moreover, we trade speed for space, and do not
2018 cache the NV if we are sure it's not needed.
2021 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2022 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2023 == IS_NUMBER_IN_UV) {
2024 /* It's definitely an integer, only upgrade to PVIV */
2025 if (SvTYPE(sv) < SVt_PVIV)
2026 sv_upgrade(sv, SVt_PVIV);
2028 } else if (SvTYPE(sv) < SVt_PVNV)
2029 sv_upgrade(sv, SVt_PVNV);
2031 /* If NVs preserve UVs then we only use the UV value if we know that
2032 we aren't going to call atof() below. If NVs don't preserve UVs
2033 then the value returned may have more precision than atof() will
2034 return, even though value isn't perfectly accurate. */
2035 if ((numtype & (IS_NUMBER_IN_UV
2036 #ifdef NV_PRESERVES_UV
2039 )) == IS_NUMBER_IN_UV) {
2040 /* This won't turn off the public IOK flag if it was set above */
2041 (void)SvIOKp_on(sv);
2043 if (!(numtype & IS_NUMBER_NEG)) {
2045 if (value <= (UV)IV_MAX) {
2046 SvIV_set(sv, (IV)value);
2048 /* it didn't overflow, and it was positive. */
2049 SvUV_set(sv, value);
2053 /* 2s complement assumption */
2054 if (value <= (UV)IV_MIN) {
2055 SvIV_set(sv, -(IV)value);
2057 /* Too negative for an IV. This is a double upgrade, but
2058 I'm assuming it will be rare. */
2059 if (SvTYPE(sv) < SVt_PVNV)
2060 sv_upgrade(sv, SVt_PVNV);
2064 SvNV_set(sv, -(NV)value);
2065 SvIV_set(sv, IV_MIN);
2069 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2070 will be in the previous block to set the IV slot, and the next
2071 block to set the NV slot. So no else here. */
2073 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2074 != IS_NUMBER_IN_UV) {
2075 /* It wasn't an (integer that doesn't overflow the UV). */
2076 SvNV_set(sv, Atof(SvPVX_const(sv)));
2078 if (! numtype && ckWARN(WARN_NUMERIC))
2081 #if defined(USE_LONG_DOUBLE)
2082 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2083 PTR2UV(sv), SvNVX(sv)));
2085 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2086 PTR2UV(sv), SvNVX(sv)));
2089 #ifdef NV_PRESERVES_UV
2090 (void)SvIOKp_on(sv);
2092 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2093 SvIV_set(sv, I_V(SvNVX(sv)));
2094 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2097 NOOP; /* Integer is imprecise. NOK, IOKp */
2099 /* UV will not work better than IV */
2101 if (SvNVX(sv) > (NV)UV_MAX) {
2103 /* Integer is inaccurate. NOK, IOKp, is UV */
2104 SvUV_set(sv, UV_MAX);
2106 SvUV_set(sv, U_V(SvNVX(sv)));
2107 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2108 NV preservse UV so can do correct comparison. */
2109 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2112 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2117 #else /* NV_PRESERVES_UV */
2118 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2119 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2120 /* The IV/UV slot will have been set from value returned by
2121 grok_number above. The NV slot has just been set using
2124 assert (SvIOKp(sv));
2126 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2127 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2128 /* Small enough to preserve all bits. */
2129 (void)SvIOKp_on(sv);
2131 SvIV_set(sv, I_V(SvNVX(sv)));
2132 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2134 /* Assumption: first non-preserved integer is < IV_MAX,
2135 this NV is in the preserved range, therefore: */
2136 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2138 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2142 0 0 already failed to read UV.
2143 0 1 already failed to read UV.
2144 1 0 you won't get here in this case. IV/UV
2145 slot set, public IOK, Atof() unneeded.
2146 1 1 already read UV.
2147 so there's no point in sv_2iuv_non_preserve() attempting
2148 to use atol, strtol, strtoul etc. */
2150 sv_2iuv_non_preserve (sv, numtype);
2152 sv_2iuv_non_preserve (sv);
2156 #endif /* NV_PRESERVES_UV */
2157 /* It might be more code efficient to go through the entire logic above
2158 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2159 gets complex and potentially buggy, so more programmer efficient
2160 to do it this way, by turning off the public flags: */
2162 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2166 if (isGV_with_GP(sv))
2167 return glob_2number(MUTABLE_GV(sv));
2169 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2170 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2173 if (SvTYPE(sv) < SVt_IV)
2174 /* Typically the caller expects that sv_any is not NULL now. */
2175 sv_upgrade(sv, SVt_IV);
2176 /* Return 0 from the caller. */
2183 =for apidoc sv_2iv_flags
2185 Return the integer value of an SV, doing any necessary string
2186 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2187 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2193 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2198 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2199 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2200 cache IVs just in case. In practice it seems that they never
2201 actually anywhere accessible by user Perl code, let alone get used
2202 in anything other than a string context. */
2203 if (flags & SV_GMAGIC)
2208 return I_V(SvNVX(sv));
2210 if (SvPOKp(sv) && SvLEN(sv)) {
2213 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2215 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2216 == IS_NUMBER_IN_UV) {
2217 /* It's definitely an integer */
2218 if (numtype & IS_NUMBER_NEG) {
2219 if (value < (UV)IV_MIN)
2222 if (value < (UV)IV_MAX)
2227 if (ckWARN(WARN_NUMERIC))
2230 return I_V(Atof(SvPVX_const(sv)));
2235 assert(SvTYPE(sv) >= SVt_PVMG);
2236 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2237 } else if (SvTHINKFIRST(sv)) {
2242 if (flags & SV_SKIP_OVERLOAD)
2244 tmpstr=AMG_CALLun(sv,numer);
2245 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2246 return SvIV(tmpstr);
2249 return PTR2IV(SvRV(sv));
2252 sv_force_normal_flags(sv, 0);
2254 if (SvREADONLY(sv) && !SvOK(sv)) {
2255 if (ckWARN(WARN_UNINITIALIZED))
2261 if (S_sv_2iuv_common(aTHX_ sv))
2264 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2265 PTR2UV(sv),SvIVX(sv)));
2266 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2270 =for apidoc sv_2uv_flags
2272 Return the unsigned integer value of an SV, doing any necessary string
2273 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2274 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2280 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2285 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2286 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2287 cache IVs just in case. */
2288 if (flags & SV_GMAGIC)
2293 return U_V(SvNVX(sv));
2294 if (SvPOKp(sv) && SvLEN(sv)) {
2297 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2299 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2300 == IS_NUMBER_IN_UV) {
2301 /* It's definitely an integer */
2302 if (!(numtype & IS_NUMBER_NEG))
2306 if (ckWARN(WARN_NUMERIC))
2309 return U_V(Atof(SvPVX_const(sv)));
2314 assert(SvTYPE(sv) >= SVt_PVMG);
2315 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2316 } else if (SvTHINKFIRST(sv)) {
2321 if (flags & SV_SKIP_OVERLOAD)
2323 tmpstr = AMG_CALLun(sv,numer);
2324 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2325 return SvUV(tmpstr);
2328 return PTR2UV(SvRV(sv));
2331 sv_force_normal_flags(sv, 0);
2333 if (SvREADONLY(sv) && !SvOK(sv)) {
2334 if (ckWARN(WARN_UNINITIALIZED))
2340 if (S_sv_2iuv_common(aTHX_ sv))
2344 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2345 PTR2UV(sv),SvUVX(sv)));
2346 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2350 =for apidoc sv_2nv_flags
2352 Return the num value of an SV, doing any necessary string or integer
2353 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2354 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2360 Perl_sv_2nv_flags(pTHX_ register SV *const sv, const I32 flags)
2365 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2366 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2367 cache IVs just in case. */
2368 if (flags & SV_GMAGIC)
2372 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2373 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2374 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2376 return Atof(SvPVX_const(sv));
2380 return (NV)SvUVX(sv);
2382 return (NV)SvIVX(sv);
2387 assert(SvTYPE(sv) >= SVt_PVMG);
2388 /* This falls through to the report_uninit near the end of the
2390 } else if (SvTHINKFIRST(sv)) {
2395 if (flags & SV_SKIP_OVERLOAD)
2397 tmpstr = AMG_CALLun(sv,numer);
2398 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2399 return SvNV(tmpstr);
2402 return PTR2NV(SvRV(sv));
2405 sv_force_normal_flags(sv, 0);
2407 if (SvREADONLY(sv) && !SvOK(sv)) {
2408 if (ckWARN(WARN_UNINITIALIZED))
2413 if (SvTYPE(sv) < SVt_NV) {
2414 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2415 sv_upgrade(sv, SVt_NV);
2416 #ifdef USE_LONG_DOUBLE
2418 STORE_NUMERIC_LOCAL_SET_STANDARD();
2419 PerlIO_printf(Perl_debug_log,
2420 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2421 PTR2UV(sv), SvNVX(sv));
2422 RESTORE_NUMERIC_LOCAL();
2426 STORE_NUMERIC_LOCAL_SET_STANDARD();
2427 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2428 PTR2UV(sv), SvNVX(sv));
2429 RESTORE_NUMERIC_LOCAL();
2433 else if (SvTYPE(sv) < SVt_PVNV)
2434 sv_upgrade(sv, SVt_PVNV);
2439 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2440 #ifdef NV_PRESERVES_UV
2446 /* Only set the public NV OK flag if this NV preserves the IV */
2447 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2449 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2450 : (SvIVX(sv) == I_V(SvNVX(sv))))
2456 else if (SvPOKp(sv) && SvLEN(sv)) {
2458 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2459 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2461 #ifdef NV_PRESERVES_UV
2462 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2463 == IS_NUMBER_IN_UV) {
2464 /* It's definitely an integer */
2465 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2467 SvNV_set(sv, Atof(SvPVX_const(sv)));
2473 SvNV_set(sv, Atof(SvPVX_const(sv)));
2474 /* Only set the public NV OK flag if this NV preserves the value in
2475 the PV at least as well as an IV/UV would.
2476 Not sure how to do this 100% reliably. */
2477 /* if that shift count is out of range then Configure's test is
2478 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2480 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2481 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2482 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2483 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2484 /* Can't use strtol etc to convert this string, so don't try.
2485 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2488 /* value has been set. It may not be precise. */
2489 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2490 /* 2s complement assumption for (UV)IV_MIN */
2491 SvNOK_on(sv); /* Integer is too negative. */
2496 if (numtype & IS_NUMBER_NEG) {
2497 SvIV_set(sv, -(IV)value);
2498 } else if (value <= (UV)IV_MAX) {
2499 SvIV_set(sv, (IV)value);
2501 SvUV_set(sv, value);
2505 if (numtype & IS_NUMBER_NOT_INT) {
2506 /* I believe that even if the original PV had decimals,
2507 they are lost beyond the limit of the FP precision.
2508 However, neither is canonical, so both only get p
2509 flags. NWC, 2000/11/25 */
2510 /* Both already have p flags, so do nothing */
2512 const NV nv = SvNVX(sv);
2513 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2514 if (SvIVX(sv) == I_V(nv)) {
2517 /* It had no "." so it must be integer. */
2521 /* between IV_MAX and NV(UV_MAX).
2522 Could be slightly > UV_MAX */
2524 if (numtype & IS_NUMBER_NOT_INT) {
2525 /* UV and NV both imprecise. */
2527 const UV nv_as_uv = U_V(nv);
2529 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2538 /* It might be more code efficient to go through the entire logic above
2539 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2540 gets complex and potentially buggy, so more programmer efficient
2541 to do it this way, by turning off the public flags: */
2543 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2544 #endif /* NV_PRESERVES_UV */
2547 if (isGV_with_GP(sv)) {
2548 glob_2number(MUTABLE_GV(sv));
2552 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2554 assert (SvTYPE(sv) >= SVt_NV);
2555 /* Typically the caller expects that sv_any is not NULL now. */
2556 /* XXX Ilya implies that this is a bug in callers that assume this
2557 and ideally should be fixed. */
2560 #if defined(USE_LONG_DOUBLE)
2562 STORE_NUMERIC_LOCAL_SET_STANDARD();
2563 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2564 PTR2UV(sv), SvNVX(sv));
2565 RESTORE_NUMERIC_LOCAL();
2569 STORE_NUMERIC_LOCAL_SET_STANDARD();
2570 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2571 PTR2UV(sv), SvNVX(sv));
2572 RESTORE_NUMERIC_LOCAL();
2581 Return an SV with the numeric value of the source SV, doing any necessary
2582 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2583 access this function.
2589 Perl_sv_2num(pTHX_ register SV *const sv)
2591 PERL_ARGS_ASSERT_SV_2NUM;
2596 SV * const tmpsv = AMG_CALLun(sv,numer);
2597 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2598 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2599 return sv_2num(tmpsv);
2601 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2604 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2605 * UV as a string towards the end of buf, and return pointers to start and
2608 * We assume that buf is at least TYPE_CHARS(UV) long.
2612 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2614 char *ptr = buf + TYPE_CHARS(UV);
2615 char * const ebuf = ptr;
2618 PERL_ARGS_ASSERT_UIV_2BUF;
2630 *--ptr = '0' + (char)(uv % 10);
2639 =for apidoc sv_2pv_flags
2641 Returns a pointer to the string value of an SV, and sets *lp to its length.
2642 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2644 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2645 usually end up here too.
2651 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2661 if (SvGMAGICAL(sv)) {
2662 if (flags & SV_GMAGIC)
2667 if (flags & SV_MUTABLE_RETURN)
2668 return SvPVX_mutable(sv);
2669 if (flags & SV_CONST_RETURN)
2670 return (char *)SvPVX_const(sv);
2673 if (SvIOKp(sv) || SvNOKp(sv)) {
2674 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2679 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2680 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2682 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2689 #ifdef FIXNEGATIVEZERO
2690 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2696 SvUPGRADE(sv, SVt_PV);
2699 s = SvGROW_mutable(sv, len + 1);
2702 return (char*)memcpy(s, tbuf, len + 1);
2708 assert(SvTYPE(sv) >= SVt_PVMG);
2709 /* This falls through to the report_uninit near the end of the
2711 } else if (SvTHINKFIRST(sv)) {
2716 if (flags & SV_SKIP_OVERLOAD)
2718 tmpstr = AMG_CALLun(sv,string);
2719 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2720 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2722 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2726 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2727 if (flags & SV_CONST_RETURN) {
2728 pv = (char *) SvPVX_const(tmpstr);
2730 pv = (flags & SV_MUTABLE_RETURN)
2731 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2734 *lp = SvCUR(tmpstr);
2736 pv = sv_2pv_flags(tmpstr, lp, flags);
2749 SV *const referent = SvRV(sv);
2753 retval = buffer = savepvn("NULLREF", len);
2754 } else if (SvTYPE(referent) == SVt_REGEXP) {
2755 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2760 /* If the regex is UTF-8 we want the containing scalar to
2761 have an UTF-8 flag too */
2767 if ((seen_evals = RX_SEEN_EVALS(re)))
2768 PL_reginterp_cnt += seen_evals;
2771 *lp = RX_WRAPLEN(re);
2773 return RX_WRAPPED(re);
2775 const char *const typestr = sv_reftype(referent, 0);
2776 const STRLEN typelen = strlen(typestr);
2777 UV addr = PTR2UV(referent);
2778 const char *stashname = NULL;
2779 STRLEN stashnamelen = 0; /* hush, gcc */
2780 const char *buffer_end;
2782 if (SvOBJECT(referent)) {
2783 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2786 stashname = HEK_KEY(name);
2787 stashnamelen = HEK_LEN(name);
2789 if (HEK_UTF8(name)) {
2795 stashname = "__ANON__";
2798 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2799 + 2 * sizeof(UV) + 2 /* )\0 */;
2801 len = typelen + 3 /* (0x */
2802 + 2 * sizeof(UV) + 2 /* )\0 */;
2805 Newx(buffer, len, char);
2806 buffer_end = retval = buffer + len;
2808 /* Working backwards */
2812 *--retval = PL_hexdigit[addr & 15];
2813 } while (addr >>= 4);
2819 memcpy(retval, typestr, typelen);
2823 retval -= stashnamelen;
2824 memcpy(retval, stashname, stashnamelen);
2826 /* retval may not neccesarily have reached the start of the
2828 assert (retval >= buffer);
2830 len = buffer_end - retval - 1; /* -1 for that \0 */
2838 if (SvREADONLY(sv) && !SvOK(sv)) {
2841 if (flags & SV_UNDEF_RETURNS_NULL)
2843 if (ckWARN(WARN_UNINITIALIZED))
2848 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2849 /* I'm assuming that if both IV and NV are equally valid then
2850 converting the IV is going to be more efficient */
2851 const U32 isUIOK = SvIsUV(sv);
2852 char buf[TYPE_CHARS(UV)];
2856 if (SvTYPE(sv) < SVt_PVIV)
2857 sv_upgrade(sv, SVt_PVIV);
2858 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2860 /* inlined from sv_setpvn */
2861 s = SvGROW_mutable(sv, len + 1);
2862 Move(ptr, s, len, char);
2866 else if (SvNOKp(sv)) {
2868 if (SvTYPE(sv) < SVt_PVNV)
2869 sv_upgrade(sv, SVt_PVNV);
2870 /* The +20 is pure guesswork. Configure test needed. --jhi */
2871 s = SvGROW_mutable(sv, NV_DIG + 20);
2872 /* some Xenix systems wipe out errno here */
2874 if (SvNVX(sv) == 0.0)
2875 my_strlcpy(s, "0", SvLEN(sv));
2879 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2882 #ifdef FIXNEGATIVEZERO
2883 if (*s == '-' && s[1] == '0' && !s[2]) {
2895 if (isGV_with_GP(sv)) {
2896 GV *const gv = MUTABLE_GV(sv);
2897 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
2898 SV *const buffer = sv_newmortal();
2900 /* FAKE globs can get coerced, so need to turn this off temporarily
2903 gv_efullname3(buffer, gv, "*");
2904 SvFLAGS(gv) |= wasfake;
2906 if (SvPOK(buffer)) {
2908 *lp = SvCUR(buffer);
2910 return SvPVX(buffer);
2921 if (flags & SV_UNDEF_RETURNS_NULL)
2923 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2925 if (SvTYPE(sv) < SVt_PV)
2926 /* Typically the caller expects that sv_any is not NULL now. */
2927 sv_upgrade(sv, SVt_PV);
2931 const STRLEN len = s - SvPVX_const(sv);
2937 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2938 PTR2UV(sv),SvPVX_const(sv)));
2939 if (flags & SV_CONST_RETURN)
2940 return (char *)SvPVX_const(sv);
2941 if (flags & SV_MUTABLE_RETURN)
2942 return SvPVX_mutable(sv);
2947 =for apidoc sv_copypv
2949 Copies a stringified representation of the source SV into the
2950 destination SV. Automatically performs any necessary mg_get and
2951 coercion of numeric values into strings. Guaranteed to preserve
2952 UTF8 flag even from overloaded objects. Similar in nature to
2953 sv_2pv[_flags] but operates directly on an SV instead of just the
2954 string. Mostly uses sv_2pv_flags to do its work, except when that
2955 would lose the UTF-8'ness of the PV.
2961 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
2964 const char * const s = SvPV_const(ssv,len);
2966 PERL_ARGS_ASSERT_SV_COPYPV;
2968 sv_setpvn(dsv,s,len);
2976 =for apidoc sv_2pvbyte
2978 Return a pointer to the byte-encoded representation of the SV, and set *lp
2979 to its length. May cause the SV to be downgraded from UTF-8 as a
2982 Usually accessed via the C<SvPVbyte> macro.
2988 Perl_sv_2pvbyte(pTHX_ register SV *const sv, STRLEN *const lp)
2990 PERL_ARGS_ASSERT_SV_2PVBYTE;
2992 sv_utf8_downgrade(sv,0);
2993 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2997 =for apidoc sv_2pvutf8
2999 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3000 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3002 Usually accessed via the C<SvPVutf8> macro.
3008 Perl_sv_2pvutf8(pTHX_ register SV *const sv, STRLEN *const lp)
3010 PERL_ARGS_ASSERT_SV_2PVUTF8;
3012 sv_utf8_upgrade(sv);
3013 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3018 =for apidoc sv_2bool
3020 This function is only called on magical items, and is only used by
3021 sv_true() or its macro equivalent.
3027 Perl_sv_2bool(pTHX_ register SV *const sv)
3031 PERL_ARGS_ASSERT_SV_2BOOL;
3039 SV * const tmpsv = AMG_CALLun(sv,bool_);
3040 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3041 return cBOOL(SvTRUE(tmpsv));
3043 return SvRV(sv) != 0;
3046 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
3048 (*sv->sv_u.svu_pv > '0' ||
3049 Xpvtmp->xpv_cur > 1 ||
3050 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
3057 return SvIVX(sv) != 0;
3060 return SvNVX(sv) != 0.0;
3062 if (isGV_with_GP(sv))
3072 =for apidoc sv_utf8_upgrade
3074 Converts the PV of an SV to its UTF-8-encoded form.
3075 Forces the SV to string form if it is not already.
3076 Will C<mg_get> on C<sv> if appropriate.
3077 Always sets the SvUTF8 flag to avoid future validity checks even
3078 if the whole string is the same in UTF-8 as not.
3079 Returns the number of bytes in the converted string
3081 This is not as a general purpose byte encoding to Unicode interface:
3082 use the Encode extension for that.
3084 =for apidoc sv_utf8_upgrade_nomg
3086 Like sv_utf8_upgrade, but doesn't do magic on C<sv>
3088 =for apidoc sv_utf8_upgrade_flags
3090 Converts the PV of an SV to its UTF-8-encoded form.
3091 Forces the SV to string form if it is not already.
3092 Always sets the SvUTF8 flag to avoid future validity checks even
3093 if all the bytes are invariant in UTF-8. If C<flags> has C<SV_GMAGIC> bit set,
3094 will C<mg_get> on C<sv> if appropriate, else not.
3095 Returns the number of bytes in the converted string
3096 C<sv_utf8_upgrade> and
3097 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3099 This is not as a general purpose byte encoding to Unicode interface:
3100 use the Encode extension for that.
3104 The grow version is currently not externally documented. It adds a parameter,
3105 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3106 have free after it upon return. This allows the caller to reserve extra space
3107 that it intends to fill, to avoid extra grows.
3109 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3110 which can be used to tell this function to not first check to see if there are
3111 any characters that are different in UTF-8 (variant characters) which would
3112 force it to allocate a new string to sv, but to assume there are. Typically
3113 this flag is used by a routine that has already parsed the string to find that
3114 there are such characters, and passes this information on so that the work
3115 doesn't have to be repeated.
3117 (One might think that the calling routine could pass in the position of the
3118 first such variant, so it wouldn't have to be found again. But that is not the
3119 case, because typically when the caller is likely to use this flag, it won't be
3120 calling this routine unless it finds something that won't fit into a byte.
3121 Otherwise it tries to not upgrade and just use bytes. But some things that
3122 do fit into a byte are variants in utf8, and the caller may not have been
3123 keeping track of these.)
3125 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3126 isn't guaranteed due to having other routines do the work in some input cases,
3127 or if the input is already flagged as being in utf8.
3129 The speed of this could perhaps be improved for many cases if someone wanted to
3130 write a fast function that counts the number of variant characters in a string,
3131 especially if it could return the position of the first one.
3136 Perl_sv_utf8_upgrade_flags_grow(pTHX_ register SV *const sv, const I32 flags, STRLEN extra)
3140 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3142 if (sv == &PL_sv_undef)
3146 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3147 (void) sv_2pv_flags(sv,&len, flags);
3149 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3153 (void) SvPV_force(sv,len);
3158 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3163 sv_force_normal_flags(sv, 0);
3166 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3167 sv_recode_to_utf8(sv, PL_encoding);
3168 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3172 if (SvCUR(sv) == 0) {
3173 if (extra) SvGROW(sv, extra);
3174 } else { /* Assume Latin-1/EBCDIC */
3175 /* This function could be much more efficient if we
3176 * had a FLAG in SVs to signal if there are any variant
3177 * chars in the PV. Given that there isn't such a flag
3178 * make the loop as fast as possible (although there are certainly ways
3179 * to speed this up, eg. through vectorization) */
3180 U8 * s = (U8 *) SvPVX_const(sv);
3181 U8 * e = (U8 *) SvEND(sv);
3183 STRLEN two_byte_count = 0;
3185 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3187 /* See if really will need to convert to utf8. We mustn't rely on our
3188 * incoming SV being well formed and having a trailing '\0', as certain
3189 * code in pp_formline can send us partially built SVs. */
3193 if (NATIVE_IS_INVARIANT(ch)) continue;
3195 t--; /* t already incremented; re-point to first variant */
3200 /* utf8 conversion not needed because all are invariants. Mark as
3201 * UTF-8 even if no variant - saves scanning loop */
3207 /* Here, the string should be converted to utf8, either because of an
3208 * input flag (two_byte_count = 0), or because a character that
3209 * requires 2 bytes was found (two_byte_count = 1). t points either to
3210 * the beginning of the string (if we didn't examine anything), or to
3211 * the first variant. In either case, everything from s to t - 1 will
3212 * occupy only 1 byte each on output.
3214 * There are two main ways to convert. One is to create a new string
3215 * and go through the input starting from the beginning, appending each
3216 * converted value onto the new string as we go along. It's probably
3217 * best to allocate enough space in the string for the worst possible
3218 * case rather than possibly running out of space and having to
3219 * reallocate and then copy what we've done so far. Since everything
3220 * from s to t - 1 is invariant, the destination can be initialized
3221 * with these using a fast memory copy
3223 * The other way is to figure out exactly how big the string should be
3224 * by parsing the entire input. Then you don't have to make it big
3225 * enough to handle the worst possible case, and more importantly, if
3226 * the string you already have is large enough, you don't have to
3227 * allocate a new string, you can copy the last character in the input
3228 * string to the final position(s) that will be occupied by the
3229 * converted string and go backwards, stopping at t, since everything
3230 * before that is invariant.
3232 * There are advantages and disadvantages to each method.
3234 * In the first method, we can allocate a new string, do the memory
3235 * copy from the s to t - 1, and then proceed through the rest of the
3236 * string byte-by-byte.
3238 * In the second method, we proceed through the rest of the input
3239 * string just calculating how big the converted string will be. Then
3240 * there are two cases:
3241 * 1) if the string has enough extra space to handle the converted
3242 * value. We go backwards through the string, converting until we
3243 * get to the position we are at now, and then stop. If this
3244 * position is far enough along in the string, this method is
3245 * faster than the other method. If the memory copy were the same
3246 * speed as the byte-by-byte loop, that position would be about
3247 * half-way, as at the half-way mark, parsing to the end and back
3248 * is one complete string's parse, the same amount as starting
3249 * over and going all the way through. Actually, it would be
3250 * somewhat less than half-way, as it's faster to just count bytes
3251 * than to also copy, and we don't have the overhead of allocating
3252 * a new string, changing the scalar to use it, and freeing the
3253 * existing one. But if the memory copy is fast, the break-even
3254 * point is somewhere after half way. The counting loop could be
3255 * sped up by vectorization, etc, to move the break-even point
3256 * further towards the beginning.
3257 * 2) if the string doesn't have enough space to handle the converted
3258 * value. A new string will have to be allocated, and one might
3259 * as well, given that, start from the beginning doing the first
3260 * method. We've spent extra time parsing the string and in
3261 * exchange all we've gotten is that we know precisely how big to
3262 * make the new one. Perl is more optimized for time than space,
3263 * so this case is a loser.
3264 * So what I've decided to do is not use the 2nd method unless it is
3265 * guaranteed that a new string won't have to be allocated, assuming
3266 * the worst case. I also decided not to put any more conditions on it
3267 * than this, for now. It seems likely that, since the worst case is
3268 * twice as big as the unknown portion of the string (plus 1), we won't
3269 * be guaranteed enough space, causing us to go to the first method,
3270 * unless the string is short, or the first variant character is near
3271 * the end of it. In either of these cases, it seems best to use the
3272 * 2nd method. The only circumstance I can think of where this would
3273 * be really slower is if the string had once had much more data in it
3274 * than it does now, but there is still a substantial amount in it */
3277 STRLEN invariant_head = t - s;
3278 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3279 if (SvLEN(sv) < size) {
3281 /* Here, have decided to allocate a new string */
3286 Newx(dst, size, U8);
3288 /* If no known invariants at the beginning of the input string,
3289 * set so starts from there. Otherwise, can use memory copy to
3290 * get up to where we are now, and then start from here */
3292 if (invariant_head <= 0) {
3295 Copy(s, dst, invariant_head, char);
3296 d = dst + invariant_head;
3300 const UV uv = NATIVE8_TO_UNI(*t++);
3301 if (UNI_IS_INVARIANT(uv))
3302 *d++ = (U8)UNI_TO_NATIVE(uv);
3304 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3305 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3309 SvPV_free(sv); /* No longer using pre-existing string */
3310 SvPV_set(sv, (char*)dst);
3311 SvCUR_set(sv, d - dst);
3312 SvLEN_set(sv, size);
3315 /* Here, have decided to get the exact size of the string.
3316 * Currently this happens only when we know that there is
3317 * guaranteed enough space to fit the converted string, so
3318 * don't have to worry about growing. If two_byte_count is 0,
3319 * then t points to the first byte of the string which hasn't
3320 * been examined yet. Otherwise two_byte_count is 1, and t
3321 * points to the first byte in the string that will expand to
3322 * two. Depending on this, start examining at t or 1 after t.
3325 U8 *d = t + two_byte_count;
3328 /* Count up the remaining bytes that expand to two */
3331 const U8 chr = *d++;
3332 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3335 /* The string will expand by just the number of bytes that
3336 * occupy two positions. But we are one afterwards because of
3337 * the increment just above. This is the place to put the
3338 * trailing NUL, and to set the length before we decrement */
3340 d += two_byte_count;
3341 SvCUR_set(sv, d - s);
3345 /* Having decremented d, it points to the position to put the
3346 * very last byte of the expanded string. Go backwards through
3347 * the string, copying and expanding as we go, stopping when we
3348 * get to the part that is invariant the rest of the way down */
3352 const U8 ch = NATIVE8_TO_UNI(*e--);
3353 if (UNI_IS_INVARIANT(ch)) {
3354 *d-- = UNI_TO_NATIVE(ch);
3356 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3357 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3364 /* Mark as UTF-8 even if no variant - saves scanning loop */
3370 =for apidoc sv_utf8_downgrade
3372 Attempts to convert the PV of an SV from characters to bytes.
3373 If the PV contains a character that cannot fit
3374 in a byte, this conversion will fail;
3375 in this case, either returns false or, if C<fail_ok> is not
3378 This is not as a general purpose Unicode to byte encoding interface:
3379 use the Encode extension for that.
3385 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3389 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3391 if (SvPOKp(sv) && SvUTF8(sv)) {
3397 sv_force_normal_flags(sv, 0);
3399 s = (U8 *) SvPV(sv, len);
3400 if (!utf8_to_bytes(s, &len)) {
3405 Perl_croak(aTHX_ "Wide character in %s",
3408 Perl_croak(aTHX_ "Wide character");
3419 =for apidoc sv_utf8_encode
3421 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3422 flag off so that it looks like octets again.
3428 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3430 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3433 sv_force_normal_flags(sv, 0);
3435 if (SvREADONLY(sv)) {
3436 Perl_croak_no_modify(aTHX);
3438 (void) sv_utf8_upgrade(sv);
3443 =for apidoc sv_utf8_decode
3445 If the PV of the SV is an octet sequence in UTF-8
3446 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3447 so that it looks like a character. If the PV contains only single-byte
3448 characters, the C<SvUTF8> flag stays being off.
3449 Scans PV for validity and returns false if the PV is invalid UTF-8.
3455 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3457 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3463 /* The octets may have got themselves encoded - get them back as
3466 if (!sv_utf8_downgrade(sv, TRUE))
3469 /* it is actually just a matter of turning the utf8 flag on, but
3470 * we want to make sure everything inside is valid utf8 first.
3472 c = (const U8 *) SvPVX_const(sv);
3473 if (!is_utf8_string(c, SvCUR(sv)+1))
3475 e = (const U8 *) SvEND(sv);
3478 if (!UTF8_IS_INVARIANT(ch)) {
3488 =for apidoc sv_setsv
3490 Copies the contents of the source SV C<ssv> into the destination SV
3491 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3492 function if the source SV needs to be reused. Does not handle 'set' magic.
3493 Loosely speaking, it performs a copy-by-value, obliterating any previous
3494 content of the destination.
3496 You probably want to use one of the assortment of wrappers, such as
3497 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3498 C<SvSetMagicSV_nosteal>.
3500 =for apidoc sv_setsv_flags
3502 Copies the contents of the source SV C<ssv> into the destination SV
3503 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3504 function if the source SV needs to be reused. Does not handle 'set' magic.
3505 Loosely speaking, it performs a copy-by-value, obliterating any previous
3506 content of the destination.
3507 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3508 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3509 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3510 and C<sv_setsv_nomg> are implemented in terms of this function.
3512 You probably want to use one of the assortment of wrappers, such as
3513 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3514 C<SvSetMagicSV_nosteal>.
3516 This is the primary function for copying scalars, and most other
3517 copy-ish functions and macros use this underneath.
3523 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3525 I32 mro_changes = 0; /* 1 = method, 2 = isa */
3527 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3529 if (dtype != SVt_PVGV) {
3530 const char * const name = GvNAME(sstr);
3531 const STRLEN len = GvNAMELEN(sstr);
3533 if (dtype >= SVt_PV) {
3539 SvUPGRADE(dstr, SVt_PVGV);
3540 (void)SvOK_off(dstr);
3541 /* FIXME - why are we doing this, then turning it off and on again
3543 isGV_with_GP_on(dstr);
3545 GvSTASH(dstr) = GvSTASH(sstr);
3547 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3548 gv_name_set(MUTABLE_GV(dstr), name, len, GV_ADD);
3549 SvFAKE_on(dstr); /* can coerce to non-glob */
3552 if(GvGP(MUTABLE_GV(sstr))) {
3553 /* If source has method cache entry, clear it */
3555 SvREFCNT_dec(GvCV(sstr));
3559 /* If source has a real method, then a method is
3561 else if(GvCV((const GV *)sstr)) {
3566 /* If dest already had a real method, that's a change as well */
3567 if(!mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)) {
3571 if(strEQ(GvNAME((const GV *)dstr),"ISA"))
3574 gp_free(MUTABLE_GV(dstr));
3575 isGV_with_GP_off(dstr);
3576 (void)SvOK_off(dstr);
3577 isGV_with_GP_on(dstr);
3578 GvINTRO_off(dstr); /* one-shot flag */
3579 GvGP(dstr) = gp_ref(GvGP(sstr));
3580 if (SvTAINTED(sstr))
3582 if (GvIMPORTED(dstr) != GVf_IMPORTED
3583 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3585 GvIMPORTED_on(dstr);
3588 if(mro_changes == 2) mro_isa_changed_in(GvSTASH(dstr));
3589 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3594 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3596 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3598 const int intro = GvINTRO(dstr);
3601 const U32 stype = SvTYPE(sref);
3603 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3606 GvINTRO_off(dstr); /* one-shot flag */
3607 GvLINE(dstr) = CopLINE(PL_curcop);
3608 GvEGV(dstr) = MUTABLE_GV(dstr);
3613 location = (SV **) &GvCV(dstr);
3614 import_flag = GVf_IMPORTED_CV;
3617 location = (SV **) &GvHV(dstr);
3618 import_flag = GVf_IMPORTED_HV;
3621 location = (SV **) &GvAV(dstr);
3622 import_flag = GVf_IMPORTED_AV;
3625 location = (SV **) &GvIOp(dstr);
3628 location = (SV **) &GvFORM(dstr);
3631 location = &GvSV(dstr);
3632 import_flag = GVf_IMPORTED_SV;
3635 if (stype == SVt_PVCV) {
3636 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3637 if (GvCVGEN(dstr)) {
3638 SvREFCNT_dec(GvCV(dstr));
3640 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3643 SAVEGENERICSV(*location);
3647 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3648 CV* const cv = MUTABLE_CV(*location);
3650 if (!GvCVGEN((const GV *)dstr) &&
3651 (CvROOT(cv) || CvXSUB(cv)))
3653 /* Redefining a sub - warning is mandatory if
3654 it was a const and its value changed. */
3655 if (CvCONST(cv) && CvCONST((const CV *)sref)
3657 == cv_const_sv((const CV *)sref)) {
3659 /* They are 2 constant subroutines generated from
3660 the same constant. This probably means that
3661 they are really the "same" proxy subroutine
3662 instantiated in 2 places. Most likely this is
3663 when a constant is exported twice. Don't warn.
3666 else if (ckWARN(WARN_REDEFINE)
3668 && (!CvCONST((const CV *)sref)
3669 || sv_cmp(cv_const_sv(cv),
3670 cv_const_sv((const CV *)
3672 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3675 ? "Constant subroutine %s::%s redefined"
3676 : "Subroutine %s::%s redefined"),
3677 HvNAME_get(GvSTASH((const GV *)dstr)),
3678 GvENAME(MUTABLE_GV(dstr)));
3682 cv_ckproto_len(cv, (const GV *)dstr,
3683 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3684 SvPOK(sref) ? SvCUR(sref) : 0);
3686 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3687 GvASSUMECV_on(dstr);
3688 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3691 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3692 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3693 GvFLAGS(dstr) |= import_flag;
3695 if (stype == SVt_PVAV && strEQ(GvNAME((GV*)dstr), "ISA")) {
3696 sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3697 mro_isa_changed_in(GvSTASH(dstr));
3702 if (SvTAINTED(sstr))
3708 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3711 register U32 sflags;
3713 register svtype stype;
3715 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3720 if (SvIS_FREED(dstr)) {
3721 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3722 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3724 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3726 sstr = &PL_sv_undef;
3727 if (SvIS_FREED(sstr)) {
3728 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3729 (void*)sstr, (void*)dstr);
3731 stype = SvTYPE(sstr);
3732 dtype = SvTYPE(dstr);
3734 (void)SvAMAGIC_off(dstr);
3737 /* need to nuke the magic */
3741 /* There's a lot of redundancy below but we're going for speed here */
3746 if (dtype != SVt_PVGV) {
3747 (void)SvOK_off(dstr);
3755 sv_upgrade(dstr, SVt_IV);
3759 sv_upgrade(dstr, SVt_PVIV);
3762 goto end_of_first_switch;
3764 (void)SvIOK_only(dstr);
3765 SvIV_set(dstr, SvIVX(sstr));
3768 /* SvTAINTED can only be true if the SV has taint magic, which in
3769 turn means that the SV type is PVMG (or greater). This is the
3770 case statement for SVt_IV, so this cannot be true (whatever gcov
3772 assert(!SvTAINTED(sstr));
3777 if (dtype < SVt_PV && dtype != SVt_IV)
3778 sv_upgrade(dstr, SVt_IV);
3786 sv_upgrade(dstr, SVt_NV);
3790 sv_upgrade(dstr, SVt_PVNV);
3793 goto end_of_first_switch;
3795 SvNV_set(dstr, SvNVX(sstr));
3796 (void)SvNOK_only(dstr);
3797 /* SvTAINTED can only be true if the SV has taint magic, which in
3798 turn means that the SV type is PVMG (or greater). This is the
3799 case statement for SVt_NV, so this cannot be true (whatever gcov
3801 assert(!SvTAINTED(sstr));
3807 #ifdef PERL_OLD_COPY_ON_WRITE
3808 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3809 if (dtype < SVt_PVIV)
3810 sv_upgrade(dstr, SVt_PVIV);
3817 sv_upgrade(dstr, SVt_PV);
3820 if (dtype < SVt_PVIV)
3821 sv_upgrade(dstr, SVt_PVIV);
3824 if (dtype < SVt_PVNV)
3825 sv_upgrade(dstr, SVt_PVNV);
3829 const char * const type = sv_reftype(sstr,0);
3831 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
3833 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3838 if (dtype < SVt_REGEXP)
3839 sv_upgrade(dstr, SVt_REGEXP);
3842 /* case SVt_BIND: */
3845 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3846 glob_assign_glob(dstr, sstr, dtype);
3849 /* SvVALID means that this PVGV is playing at being an FBM. */
3853 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3855 if (SvTYPE(sstr) != stype) {
3856 stype = SvTYPE(sstr);
3857 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3858 glob_assign_glob(dstr, sstr, dtype);
3863 if (stype == SVt_PVLV)
3864 SvUPGRADE(dstr, SVt_PVNV);
3866 SvUPGRADE(dstr, (svtype)stype);
3868 end_of_first_switch:
3870 /* dstr may have been upgraded. */
3871 dtype = SvTYPE(dstr);
3872 sflags = SvFLAGS(sstr);
3874 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3875 /* Assigning to a subroutine sets the prototype. */
3878 const char *const ptr = SvPV_const(sstr, len);
3880 SvGROW(dstr, len + 1);
3881 Copy(ptr, SvPVX(dstr), len + 1, char);
3882 SvCUR_set(dstr, len);
3884 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3888 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3889 const char * const type = sv_reftype(dstr,0);
3891 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
3893 Perl_croak(aTHX_ "Cannot copy to %s", type);
3894 } else if (sflags & SVf_ROK) {
3895 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3896 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
3899 if (GvIMPORTED(dstr) != GVf_IMPORTED
3900 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3902 GvIMPORTED_on(dstr);
3907 glob_assign_glob(dstr, sstr, dtype);
3911 if (dtype >= SVt_PV) {
3912 if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3913 glob_assign_ref(dstr, sstr);
3916 if (SvPVX_const(dstr)) {
3922 (void)SvOK_off(dstr);
3923 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
3924 SvFLAGS(dstr) |= sflags & SVf_ROK;
3925 assert(!(sflags & SVp_NOK));
3926 assert(!(sflags & SVp_IOK));
3927 assert(!(sflags & SVf_NOK));
3928 assert(!(sflags & SVf_IOK));
3930 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3931 if (!(sflags & SVf_OK)) {
3932 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
3933 "Undefined value assigned to typeglob");
3936 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
3937 if (dstr != (const SV *)gv) {
3939 gp_free(MUTABLE_GV(dstr));
3940 GvGP(dstr) = gp_ref(GvGP(gv));
3944 else if (dtype == SVt_REGEXP && stype == SVt_REGEXP) {
3945 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
3947 else if (sflags & SVp_POK) {
3951 * Check to see if we can just swipe the string. If so, it's a
3952 * possible small lose on short strings, but a big win on long ones.
3953 * It might even be a win on short strings if SvPVX_const(dstr)
3954 * has to be allocated and SvPVX_const(sstr) has to be freed.
3955 * Likewise if we can set up COW rather than doing an actual copy, we
3956 * drop to the else clause, as the swipe code and the COW setup code
3957 * have much in common.
3960 /* Whichever path we take through the next code, we want this true,
3961 and doing it now facilitates the COW check. */
3962 (void)SvPOK_only(dstr);
3965 /* If we're already COW then this clause is not true, and if COW
3966 is allowed then we drop down to the else and make dest COW
3967 with us. If caller hasn't said that we're allowed to COW
3968 shared hash keys then we don't do the COW setup, even if the
3969 source scalar is a shared hash key scalar. */
3970 (((flags & SV_COW_SHARED_HASH_KEYS)
3971 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
3972 : 1 /* If making a COW copy is forbidden then the behaviour we
3973 desire is as if the source SV isn't actually already
3974 COW, even if it is. So we act as if the source flags
3975 are not COW, rather than actually testing them. */
3977 #ifndef PERL_OLD_COPY_ON_WRITE
3978 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
3979 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
3980 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
3981 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
3982 but in turn, it's somewhat dead code, never expected to go
3983 live, but more kept as a placeholder on how to do it better
3984 in a newer implementation. */
3985 /* If we are COW and dstr is a suitable target then we drop down
3986 into the else and make dest a COW of us. */
3987 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
3992 (sflags & SVs_TEMP) && /* slated for free anyway? */
3993 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
3994 (!(flags & SV_NOSTEAL)) &&
3995 /* and we're allowed to steal temps */
3996 SvREFCNT(sstr) == 1 && /* and no other references to it? */
3997 SvLEN(sstr)) /* and really is a string */
3998 #ifdef PERL_OLD_COPY_ON_WRITE
3999 && ((flags & SV_COW_SHARED_HASH_KEYS)
4000 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4001 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4002 && SvTYPE(sstr) >= SVt_PVIV && SvTYPE(sstr) != SVt_PVFM))
4006 /* Failed the swipe test, and it's not a shared hash key either.
4007 Have to copy the string. */
4008 STRLEN len = SvCUR(sstr);
4009 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
4010 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
4011 SvCUR_set(dstr, len);
4012 *SvEND(dstr) = '\0';
4014 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4016 /* Either it's a shared hash key, or it's suitable for
4017 copy-on-write or we can swipe the string. */
4019 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4023 #ifdef PERL_OLD_COPY_ON_WRITE
4025 if ((sflags & (SVf_FAKE | SVf_READONLY))
4026 != (SVf_FAKE | SVf_READONLY)) {
4027 SvREADONLY_on(sstr);
4029 /* Make the source SV into a loop of 1.
4030 (about to become 2) */
4031 SV_COW_NEXT_SV_SET(sstr, sstr);
4035 /* Initial code is common. */
4036 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4041 /* making another shared SV. */
4042 STRLEN cur = SvCUR(sstr);
4043 STRLEN len = SvLEN(sstr);
4044 #ifdef PERL_OLD_COPY_ON_WRITE
4046 assert (SvTYPE(dstr) >= SVt_PVIV);
4047 /* SvIsCOW_normal */
4048 /* splice us in between source and next-after-source. */
4049 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4050 SV_COW_NEXT_SV_SET(sstr, dstr);
4051 SvPV_set(dstr, SvPVX_mutable(sstr));
4055 /* SvIsCOW_shared_hash */
4056 DEBUG_C(PerlIO_printf(Perl_debug_log,
4057 "Copy on write: Sharing hash\n"));
4059 assert (SvTYPE(dstr) >= SVt_PV);
4061 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4063 SvLEN_set(dstr, len);
4064 SvCUR_set(dstr, cur);
4065 SvREADONLY_on(dstr);
4069 { /* Passes the swipe test. */
4070 SvPV_set(dstr, SvPVX_mutable(sstr));
4071 SvLEN_set(dstr, SvLEN(sstr));
4072 SvCUR_set(dstr, SvCUR(sstr));
4075 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4076 SvPV_set(sstr, NULL);
4082 if (sflags & SVp_NOK) {
4083 SvNV_set(dstr, SvNVX(sstr));
4085 if (sflags & SVp_IOK) {
4086 SvIV_set(dstr, SvIVX(sstr));
4087 /* Must do this otherwise some other overloaded use of 0x80000000
4088 gets confused. I guess SVpbm_VALID */
4089 if (sflags & SVf_IVisUV)
4092 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4094 const MAGIC * const smg = SvVSTRING_mg(sstr);
4096 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4097 smg->mg_ptr, smg->mg_len);
4098 SvRMAGICAL_on(dstr);
4102 else if (sflags & (SVp_IOK|SVp_NOK)) {
4103 (void)SvOK_off(dstr);
4104 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4105 if (sflags & SVp_IOK) {
4106 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4107 SvIV_set(dstr, SvIVX(sstr));
4109 if (sflags & SVp_NOK) {
4110 SvNV_set(dstr, SvNVX(sstr));
4114 if (isGV_with_GP(sstr)) {
4115 /* This stringification rule for globs is spread in 3 places.
4116 This feels bad. FIXME. */
4117 const U32 wasfake = sflags & SVf_FAKE;
4119 /* FAKE globs can get coerced, so need to turn this off
4120 temporarily if it is on. */
4122 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4123 SvFLAGS(sstr) |= wasfake;
4126 (void)SvOK_off(dstr);
4128 if (SvTAINTED(sstr))
4133 =for apidoc sv_setsv_mg
4135 Like C<sv_setsv>, but also handles 'set' magic.
4141 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
4143 PERL_ARGS_ASSERT_SV_SETSV_MG;
4145 sv_setsv(dstr,sstr);
4149 #ifdef PERL_OLD_COPY_ON_WRITE
4151 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4153 STRLEN cur = SvCUR(sstr);
4154 STRLEN len = SvLEN(sstr);
4155 register char *new_pv;
4157 PERL_ARGS_ASSERT_SV_SETSV_COW;
4160 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4161 (void*)sstr, (void*)dstr);
4168 if (SvTHINKFIRST(dstr))
4169 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4170 else if (SvPVX_const(dstr))
4171 Safefree(SvPVX_const(dstr));
4175 SvUPGRADE(dstr, SVt_PVIV);
4177 assert (SvPOK(sstr));
4178 assert (SvPOKp(sstr));
4179 assert (!SvIOK(sstr));
4180 assert (!SvIOKp(sstr));
4181 assert (!SvNOK(sstr));
4182 assert (!SvNOKp(sstr));
4184 if (SvIsCOW(sstr)) {
4186 if (SvLEN(sstr) == 0) {
4187 /* source is a COW shared hash key. */
4188 DEBUG_C(PerlIO_printf(Perl_debug_log,
4189 "Fast copy on write: Sharing hash\n"));
4190 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4193 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4195 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4196 SvUPGRADE(sstr, SVt_PVIV);
4197 SvREADONLY_on(sstr);
4199 DEBUG_C(PerlIO_printf(Perl_debug_log,
4200 "Fast copy on write: Converting sstr to COW\n"));
4201 SV_COW_NEXT_SV_SET(dstr, sstr);
4203 SV_COW_NEXT_SV_SET(sstr, dstr);
4204 new_pv = SvPVX_mutable(sstr);
4207 SvPV_set(dstr, new_pv);
4208 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4211 SvLEN_set(dstr, len);
4212 SvCUR_set(dstr, cur);
4221 =for apidoc sv_setpvn
4223 Copies a string into an SV. The C<len> parameter indicates the number of
4224 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4225 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4231 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4234 register char *dptr;
4236 PERL_ARGS_ASSERT_SV_SETPVN;
4238 SV_CHECK_THINKFIRST_COW_DROP(sv);
4244 /* len is STRLEN which is unsigned, need to copy to signed */
4247 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
4249 SvUPGRADE(sv, SVt_PV);
4251 dptr = SvGROW(sv, len + 1);
4252 Move(ptr,dptr,len,char);
4255 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4260 =for apidoc sv_setpvn_mg
4262 Like C<sv_setpvn>, but also handles 'set' magic.
4268 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4270 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4272 sv_setpvn(sv,ptr,len);
4277 =for apidoc sv_setpv
4279 Copies a string into an SV. The string must be null-terminated. Does not
4280 handle 'set' magic. See C<sv_setpv_mg>.
4286 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4289 register STRLEN len;
4291 PERL_ARGS_ASSERT_SV_SETPV;
4293 SV_CHECK_THINKFIRST_COW_DROP(sv);
4299 SvUPGRADE(sv, SVt_PV);
4301 SvGROW(sv, len + 1);
4302 Move(ptr,SvPVX(sv),len+1,char);
4304 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4309 =for apidoc sv_setpv_mg
4311 Like C<sv_setpv>, but also handles 'set' magic.
4317 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4319 PERL_ARGS_ASSERT_SV_SETPV_MG;
4326 =for apidoc sv_usepvn_flags
4328 Tells an SV to use C<ptr> to find its string value. Normally the
4329 string is stored inside the SV but sv_usepvn allows the SV to use an
4330 outside string. The C<ptr> should point to memory that was allocated
4331 by C<malloc>. The string length, C<len>, must be supplied. By default
4332 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4333 so that pointer should not be freed or used by the programmer after
4334 giving it to sv_usepvn, and neither should any pointers from "behind"
4335 that pointer (e.g. ptr + 1) be used.
4337 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4338 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4339 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
4340 C<len>, and already meets the requirements for storing in C<SvPVX>)
4346 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4351 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4353 SV_CHECK_THINKFIRST_COW_DROP(sv);
4354 SvUPGRADE(sv, SVt_PV);
4357 if (flags & SV_SMAGIC)
4361 if (SvPVX_const(sv))
4365 if (flags & SV_HAS_TRAILING_NUL)
4366 assert(ptr[len] == '\0');
4369 allocate = (flags & SV_HAS_TRAILING_NUL)
4371 #ifdef Perl_safesysmalloc_size
4374 PERL_STRLEN_ROUNDUP(len + 1);
4376 if (flags & SV_HAS_TRAILING_NUL) {
4377 /* It's long enough - do nothing.
4378 Specfically Perl_newCONSTSUB is relying on this. */
4381 /* Force a move to shake out bugs in callers. */
4382 char *new_ptr = (char*)safemalloc(allocate);
4383 Copy(ptr, new_ptr, len, char);
4384 PoisonFree(ptr,len,char);
4388 ptr = (char*) saferealloc (ptr, allocate);
4391 #ifdef Perl_safesysmalloc_size
4392 SvLEN_set(sv, Perl_safesysmalloc_size(ptr));
4394 SvLEN_set(sv, allocate);
4398 if (!(flags & SV_HAS_TRAILING_NUL)) {
4401 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4403 if (flags & SV_SMAGIC)
4407 #ifdef PERL_OLD_COPY_ON_WRITE
4408 /* Need to do this *after* making the SV normal, as we need the buffer
4409 pointer to remain valid until after we've copied it. If we let go too early,
4410 another thread could invalidate it by unsharing last of the same hash key
4411 (which it can do by means other than releasing copy-on-write Svs)
4412 or by changing the other copy-on-write SVs in the loop. */
4414 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
4416 PERL_ARGS_ASSERT_SV_RELEASE_COW;
4418 { /* this SV was SvIsCOW_normal(sv) */
4419 /* we need to find the SV pointing to us. */
4420 SV *current = SV_COW_NEXT_SV(after);
4422 if (current == sv) {
4423 /* The SV we point to points back to us (there were only two of us
4425 Hence other SV is no longer copy on write either. */
4427 SvREADONLY_off(after);
4429 /* We need to follow the pointers around the loop. */
4431 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4434 /* don't loop forever if the structure is bust, and we have
4435 a pointer into a closed loop. */
4436 assert (current != after);
4437 assert (SvPVX_const(current) == pvx);
4439 /* Make the SV before us point to the SV after us. */
4440 SV_COW_NEXT_SV_SET(current, after);
4446 =for apidoc sv_force_normal_flags
4448 Undo various types of fakery on an SV: if the PV is a shared string, make
4449 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4450 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4451 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4452 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4453 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4454 set to some other value.) In addition, the C<flags> parameter gets passed to
4455 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4456 with flags set to 0.
4462 Perl_sv_force_normal_flags(pTHX_ register SV *const sv, const U32 flags)
4466 PERL_ARGS_ASSERT_SV_FORCE_NORMAL_FLAGS;
4468 #ifdef PERL_OLD_COPY_ON_WRITE
4469 if (SvREADONLY(sv)) {
4471 const char * const pvx = SvPVX_const(sv);
4472 const STRLEN len = SvLEN(sv);
4473 const STRLEN cur = SvCUR(sv);
4474 /* next COW sv in the loop. If len is 0 then this is a shared-hash
4475 key scalar, so we mustn't attempt to call SV_COW_NEXT_SV(), as
4476 we'll fail an assertion. */
4477 SV * const next = len ? SV_COW_NEXT_SV(sv) : 0;
4480 PerlIO_printf(Perl_debug_log,
4481 "Copy on write: Force normal %ld\n",
4487 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4490 if (flags & SV_COW_DROP_PV) {
4491 /* OK, so we don't need to copy our buffer. */
4494 SvGROW(sv, cur + 1);
4495 Move(pvx,SvPVX(sv),cur,char);
4500 sv_release_COW(sv, pvx, next);
4502 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4508 else if (IN_PERL_RUNTIME)
4509 Perl_croak_no_modify(aTHX);
4512 if (SvREADONLY(sv)) {
4514 const char * const pvx = SvPVX_const(sv);
4515 const STRLEN len = SvCUR(sv);
4520 SvGROW(sv, len + 1);
4521 Move(pvx,SvPVX(sv),len,char);
4523 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4525 else if (IN_PERL_RUNTIME)
4526 Perl_croak_no_modify(aTHX);
4530 sv_unref_flags(sv, flags);
4531 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4533 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_REGEXP) {
4534 /* Need to downgrade the REGEXP to a simple(r) scalar. This is analagous
4535 to sv_unglob. We only need it here, so inline it. */
4536 const svtype new_type = SvMAGIC(sv) || SvSTASH(sv) ? SVt_PVMG : SVt_PV;
4537 SV *const temp = newSV_type(new_type);
4538 void *const temp_p = SvANY(sv);
4540 if (new_type == SVt_PVMG) {
4541 SvMAGIC_set(temp, SvMAGIC(sv));
4542 SvMAGIC_set(sv, NULL);
4543 SvSTASH_set(temp, SvSTASH(sv));
4544 SvSTASH_set(sv, NULL);
4546 SvCUR_set(temp, SvCUR(sv));
4547 /* Remember that SvPVX is in the head, not the body. */
4549 SvLEN_set(temp, SvLEN(sv));
4550 /* This signals "buffer is owned by someone else" in sv_clear,
4551 which is the least effort way to stop it freeing the buffer.
4553 SvLEN_set(sv, SvLEN(sv)+1);
4555 /* Their buffer is already owned by someone else. */
4556 SvPVX(sv) = savepvn(SvPVX(sv), SvCUR(sv));
4557 SvLEN_set(temp, SvCUR(sv)+1);
4560 /* Now swap the rest of the bodies. */
4562 SvFLAGS(sv) &= ~(SVf_FAKE|SVTYPEMASK);
4563 SvFLAGS(sv) |= new_type;
4564 SvANY(sv) = SvANY(temp);
4566 SvFLAGS(temp) &= ~(SVTYPEMASK);
4567 SvFLAGS(temp) |= SVt_REGEXP|SVf_FAKE;
4568 SvANY(temp) = temp_p;
4577 Efficient removal of characters from the beginning of the string buffer.
4578 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4579 the string buffer. The C<ptr> becomes the first character of the adjusted
4580 string. Uses the "OOK hack".
4581 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4582 refer to the same chunk of data.
4588 Perl_sv_chop(pTHX_ register SV *const sv, register const char *const ptr)
4594 const U8 *real_start;
4598 PERL_ARGS_ASSERT_SV_CHOP;
4600 if (!ptr || !SvPOKp(sv))
4602 delta = ptr - SvPVX_const(sv);
4604 /* Nothing to do. */
4607 /* SvPVX(sv) may move in SV_CHECK_THINKFIRST(sv), but after this line,
4608 nothing uses the value of ptr any more. */
4609 max_delta = SvLEN(sv) ? SvLEN(sv) : SvCUR(sv);
4610 if (ptr <= SvPVX_const(sv))
4611 Perl_croak(aTHX_ "panic: sv_chop ptr=%p, start=%p, end=%p",
4612 ptr, SvPVX_const(sv), SvPVX_const(sv) + max_delta);
4613 SV_CHECK_THINKFIRST(sv);
4614 if (delta > max_delta)
4615 Perl_croak(aTHX_ "panic: sv_chop ptr=%p (was %p), start=%p, end=%p",
4616 SvPVX_const(sv) + delta, ptr, SvPVX_const(sv),
4617 SvPVX_const(sv) + max_delta);
4620 if (!SvLEN(sv)) { /* make copy of shared string */
4621 const char *pvx = SvPVX_const(sv);
4622 const STRLEN len = SvCUR(sv);
4623 SvGROW(sv, len + 1);
4624 Move(pvx,SvPVX(sv),len,char);
4627 SvFLAGS(sv) |= SVf_OOK;
4630 SvOOK_offset(sv, old_delta);
4632 SvLEN_set(sv, SvLEN(sv) - delta);
4633 SvCUR_set(sv, SvCUR(sv) - delta);
4634 SvPV_set(sv, SvPVX(sv) + delta);
4636 p = (U8 *)SvPVX_const(sv);
4641 real_start = p - delta;
4645 if (delta < 0x100) {
4649 p -= sizeof(STRLEN);
4650 Copy((U8*)&delta, p, sizeof(STRLEN), U8);
4654 /* Fill the preceding buffer with sentinals to verify that no-one is
4656 while (p > real_start) {
4664 =for apidoc sv_catpvn
4666 Concatenates the string onto the end of the string which is in the SV. The
4667 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4668 status set, then the bytes appended should be valid UTF-8.
4669 Handles 'get' magic, but not 'set' magic. See C<sv_catpvn_mg>.
4671 =for apidoc sv_catpvn_flags