3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
38 /* Missing proto on LynxOS */
39 char *gconvert(double, int, int, char *);
42 #ifdef PERL_UTF8_CACHE_ASSERT
43 /* if adding more checks watch out for the following tests:
44 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
45 * lib/utf8.t lib/Unicode/Collate/t/index.t
48 # define ASSERT_UTF8_CACHE(cache) \
49 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
50 assert((cache)[2] <= (cache)[3]); \
51 assert((cache)[3] <= (cache)[1]);} \
54 # define ASSERT_UTF8_CACHE(cache) NOOP
57 #ifdef PERL_OLD_COPY_ON_WRITE
58 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
59 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
60 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
64 /* ============================================================================
66 =head1 Allocation and deallocation of SVs.
68 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
69 sv, av, hv...) contains type and reference count information, and for
70 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
71 contains fields specific to each type. Some types store all they need
72 in the head, so don't have a body.
74 In all but the most memory-paranoid configuations (ex: PURIFY), heads
75 and bodies are allocated out of arenas, which by default are
76 approximately 4K chunks of memory parcelled up into N heads or bodies.
77 Sv-bodies are allocated by their sv-type, guaranteeing size
78 consistency needed to allocate safely from arrays.
80 For SV-heads, the first slot in each arena is reserved, and holds a
81 link to the next arena, some flags, and a note of the number of slots.
82 Snaked through each arena chain is a linked list of free items; when
83 this becomes empty, an extra arena is allocated and divided up into N
84 items which are threaded into the free list.
86 SV-bodies are similar, but they use arena-sets by default, which
87 separate the link and info from the arena itself, and reclaim the 1st
88 slot in the arena. SV-bodies are further described later.
90 The following global variables are associated with arenas:
92 PL_sv_arenaroot pointer to list of SV arenas
93 PL_sv_root pointer to list of free SV structures
95 PL_body_arenas head of linked-list of body arenas
96 PL_body_roots[] array of pointers to list of free bodies of svtype
97 arrays are indexed by the svtype needed
99 A few special SV heads are not allocated from an arena, but are
100 instead directly created in the interpreter structure, eg PL_sv_undef.
101 The size of arenas can be changed from the default by setting
102 PERL_ARENA_SIZE appropriately at compile time.
104 The SV arena serves the secondary purpose of allowing still-live SVs
105 to be located and destroyed during final cleanup.
107 At the lowest level, the macros new_SV() and del_SV() grab and free
108 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
109 to return the SV to the free list with error checking.) new_SV() calls
110 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
111 SVs in the free list have their SvTYPE field set to all ones.
113 At the time of very final cleanup, sv_free_arenas() is called from
114 perl_destruct() to physically free all the arenas allocated since the
115 start of the interpreter.
117 The function visit() scans the SV arenas list, and calls a specified
118 function for each SV it finds which is still live - ie which has an SvTYPE
119 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
120 following functions (specified as [function that calls visit()] / [function
121 called by visit() for each SV]):
123 sv_report_used() / do_report_used()
124 dump all remaining SVs (debugging aid)
126 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
127 Attempt to free all objects pointed to by RVs,
128 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
129 try to do the same for all objects indirectly
130 referenced by typeglobs too. Called once from
131 perl_destruct(), prior to calling sv_clean_all()
134 sv_clean_all() / do_clean_all()
135 SvREFCNT_dec(sv) each remaining SV, possibly
136 triggering an sv_free(). It also sets the
137 SVf_BREAK flag on the SV to indicate that the
138 refcnt has been artificially lowered, and thus
139 stopping sv_free() from giving spurious warnings
140 about SVs which unexpectedly have a refcnt
141 of zero. called repeatedly from perl_destruct()
142 until there are no SVs left.
144 =head2 Arena allocator API Summary
146 Private API to rest of sv.c
150 new_XIV(), del_XIV(),
151 new_XNV(), del_XNV(),
156 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
160 * ========================================================================= */
163 * "A time to plant, and a time to uproot what was planted..."
167 Perl_offer_nice_chunk(pTHX_ void *const chunk, const U32 chunk_size)
173 PERL_ARGS_ASSERT_OFFER_NICE_CHUNK;
175 new_chunk = (void *)(chunk);
176 new_chunk_size = (chunk_size);
177 if (new_chunk_size > PL_nice_chunk_size) {
178 Safefree(PL_nice_chunk);
179 PL_nice_chunk = (char *) new_chunk;
180 PL_nice_chunk_size = new_chunk_size;
187 # define MEM_LOG_NEW_SV(sv, file, line, func) \
188 Perl_mem_log_new_sv(sv, file, line, func)
189 # define MEM_LOG_DEL_SV(sv, file, line, func) \
190 Perl_mem_log_del_sv(sv, file, line, func)
192 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
193 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
196 #ifdef DEBUG_LEAKING_SCALARS
197 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
198 # define DEBUG_SV_SERIAL(sv) \
199 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
200 PTR2UV(sv), (long)(sv)->sv_debug_serial))
202 # define FREE_SV_DEBUG_FILE(sv)
203 # define DEBUG_SV_SERIAL(sv) NOOP
207 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
208 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
209 /* Whilst I'd love to do this, it seems that things like to check on
211 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
213 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
214 PoisonNew(&SvREFCNT(sv), 1, U32)
216 # define SvARENA_CHAIN(sv) SvANY(sv)
217 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
218 # define POSION_SV_HEAD(sv)
221 /* Mark an SV head as unused, and add to free list.
223 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
224 * its refcount artificially decremented during global destruction, so
225 * there may be dangling pointers to it. The last thing we want in that
226 * case is for it to be reused. */
228 #define plant_SV(p) \
230 const U32 old_flags = SvFLAGS(p); \
231 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
232 DEBUG_SV_SERIAL(p); \
233 FREE_SV_DEBUG_FILE(p); \
235 SvFLAGS(p) = SVTYPEMASK; \
236 if (!(old_flags & SVf_BREAK)) { \
237 SvARENA_CHAIN_SET(p, PL_sv_root); \
243 #define uproot_SV(p) \
246 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
251 /* make some more SVs by adding another arena */
260 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
261 PL_nice_chunk = NULL;
262 PL_nice_chunk_size = 0;
265 char *chunk; /* must use New here to match call to */
266 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
267 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
273 /* new_SV(): return a new, empty SV head */
275 #ifdef DEBUG_LEAKING_SCALARS
276 /* provide a real function for a debugger to play with */
278 S_new_SV(pTHX_ const char *file, int line, const char *func)
285 sv = S_more_sv(aTHX);
289 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
290 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
296 sv->sv_debug_inpad = 0;
297 sv->sv_debug_cloned = 0;
298 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
300 sv->sv_debug_serial = PL_sv_serial++;
302 MEM_LOG_NEW_SV(sv, file, line, func);
303 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
304 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
308 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
316 (p) = S_more_sv(aTHX); \
320 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
325 /* del_SV(): return an empty SV head to the free list */
338 S_del_sv(pTHX_ SV *p)
342 PERL_ARGS_ASSERT_DEL_SV;
347 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
348 const SV * const sv = sva + 1;
349 const SV * const svend = &sva[SvREFCNT(sva)];
350 if (p >= sv && p < svend) {
356 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
357 "Attempt to free non-arena SV: 0x%"UVxf
358 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
365 #else /* ! DEBUGGING */
367 #define del_SV(p) plant_SV(p)
369 #endif /* DEBUGGING */
373 =head1 SV Manipulation Functions
375 =for apidoc sv_add_arena
377 Given a chunk of memory, link it to the head of the list of arenas,
378 and split it into a list of free SVs.
384 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
387 SV *const sva = MUTABLE_SV(ptr);
391 PERL_ARGS_ASSERT_SV_ADD_ARENA;
393 /* The first SV in an arena isn't an SV. */
394 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
395 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
396 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
398 PL_sv_arenaroot = sva;
399 PL_sv_root = sva + 1;
401 svend = &sva[SvREFCNT(sva) - 1];
404 SvARENA_CHAIN_SET(sv, (sv + 1));
408 /* Must always set typemask because it's always checked in on cleanup
409 when the arenas are walked looking for objects. */
410 SvFLAGS(sv) = SVTYPEMASK;
413 SvARENA_CHAIN_SET(sv, 0);
417 SvFLAGS(sv) = SVTYPEMASK;
420 /* visit(): call the named function for each non-free SV in the arenas
421 * whose flags field matches the flags/mask args. */
424 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
430 PERL_ARGS_ASSERT_VISIT;
432 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
433 register const SV * const svend = &sva[SvREFCNT(sva)];
435 for (sv = sva + 1; sv < svend; ++sv) {
436 if (SvTYPE(sv) != SVTYPEMASK
437 && (sv->sv_flags & mask) == flags
450 /* called by sv_report_used() for each live SV */
453 do_report_used(pTHX_ SV *const sv)
455 if (SvTYPE(sv) != SVTYPEMASK) {
456 PerlIO_printf(Perl_debug_log, "****\n");
463 =for apidoc sv_report_used
465 Dump the contents of all SVs not yet freed. (Debugging aid).
471 Perl_sv_report_used(pTHX)
474 visit(do_report_used, 0, 0);
480 /* called by sv_clean_objs() for each live SV */
483 do_clean_objs(pTHX_ SV *const ref)
488 SV * const target = SvRV(ref);
489 if (SvOBJECT(target)) {
490 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
491 if (SvWEAKREF(ref)) {
492 sv_del_backref(target, ref);
498 SvREFCNT_dec(target);
503 /* XXX Might want to check arrays, etc. */
506 /* called by sv_clean_objs() for each live SV */
508 #ifndef DISABLE_DESTRUCTOR_KLUDGE
510 do_clean_named_objs(pTHX_ SV *const sv)
513 assert(SvTYPE(sv) == SVt_PVGV);
514 assert(isGV_with_GP(sv));
517 #ifdef PERL_DONT_CREATE_GVSV
520 SvOBJECT(GvSV(sv))) ||
521 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
522 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
523 /* In certain rare cases GvIOp(sv) can be NULL, which would make SvOBJECT(GvIO(sv)) dereference NULL. */
524 (GvIO(sv) ? (SvFLAGS(GvIOp(sv)) & SVs_OBJECT) : 0) ||
525 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
527 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
528 SvFLAGS(sv) |= SVf_BREAK;
536 =for apidoc sv_clean_objs
538 Attempt to destroy all objects not yet freed
544 Perl_sv_clean_objs(pTHX)
547 PL_in_clean_objs = TRUE;
548 visit(do_clean_objs, SVf_ROK, SVf_ROK);
549 #ifndef DISABLE_DESTRUCTOR_KLUDGE
550 /* some barnacles may yet remain, clinging to typeglobs */
551 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
553 PL_in_clean_objs = FALSE;
556 /* called by sv_clean_all() for each live SV */
559 do_clean_all(pTHX_ SV *const sv)
562 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
563 /* don't clean pid table and strtab */
566 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
567 SvFLAGS(sv) |= SVf_BREAK;
572 =for apidoc sv_clean_all
574 Decrement the refcnt of each remaining SV, possibly triggering a
575 cleanup. This function may have to be called multiple times to free
576 SVs which are in complex self-referential hierarchies.
582 Perl_sv_clean_all(pTHX)
586 PL_in_clean_all = TRUE;
587 cleaned = visit(do_clean_all, 0,0);
588 PL_in_clean_all = FALSE;
593 ARENASETS: a meta-arena implementation which separates arena-info
594 into struct arena_set, which contains an array of struct
595 arena_descs, each holding info for a single arena. By separating
596 the meta-info from the arena, we recover the 1st slot, formerly
597 borrowed for list management. The arena_set is about the size of an
598 arena, avoiding the needless malloc overhead of a naive linked-list.
600 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
601 memory in the last arena-set (1/2 on average). In trade, we get
602 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
603 smaller types). The recovery of the wasted space allows use of
604 small arenas for large, rare body types, by changing array* fields
605 in body_details_by_type[] below.
608 char *arena; /* the raw storage, allocated aligned */
609 size_t size; /* its size ~4k typ */
610 svtype utype; /* bodytype stored in arena */
615 /* Get the maximum number of elements in set[] such that struct arena_set
616 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
617 therefore likely to be 1 aligned memory page. */
619 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
620 - 2 * sizeof(int)) / sizeof (struct arena_desc))
623 struct arena_set* next;
624 unsigned int set_size; /* ie ARENAS_PER_SET */
625 unsigned int curr; /* index of next available arena-desc */
626 struct arena_desc set[ARENAS_PER_SET];
630 =for apidoc sv_free_arenas
632 Deallocate the memory used by all arenas. Note that all the individual SV
633 heads and bodies within the arenas must already have been freed.
638 Perl_sv_free_arenas(pTHX)
645 /* Free arenas here, but be careful about fake ones. (We assume
646 contiguity of the fake ones with the corresponding real ones.) */
648 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
649 svanext = MUTABLE_SV(SvANY(sva));
650 while (svanext && SvFAKE(svanext))
651 svanext = MUTABLE_SV(SvANY(svanext));
658 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
661 struct arena_set *current = aroot;
664 assert(aroot->set[i].arena);
665 Safefree(aroot->set[i].arena);
673 i = PERL_ARENA_ROOTS_SIZE;
675 PL_body_roots[i] = 0;
677 Safefree(PL_nice_chunk);
678 PL_nice_chunk = NULL;
679 PL_nice_chunk_size = 0;
685 Here are mid-level routines that manage the allocation of bodies out
686 of the various arenas. There are 5 kinds of arenas:
688 1. SV-head arenas, which are discussed and handled above
689 2. regular body arenas
690 3. arenas for reduced-size bodies
693 Arena types 2 & 3 are chained by body-type off an array of
694 arena-root pointers, which is indexed by svtype. Some of the
695 larger/less used body types are malloced singly, since a large
696 unused block of them is wasteful. Also, several svtypes dont have
697 bodies; the data fits into the sv-head itself. The arena-root
698 pointer thus has a few unused root-pointers (which may be hijacked
699 later for arena types 4,5)
701 3 differs from 2 as an optimization; some body types have several
702 unused fields in the front of the structure (which are kept in-place
703 for consistency). These bodies can be allocated in smaller chunks,
704 because the leading fields arent accessed. Pointers to such bodies
705 are decremented to point at the unused 'ghost' memory, knowing that
706 the pointers are used with offsets to the real memory.
708 HE, HEK arenas are managed separately, with separate code, but may
709 be merge-able later..
712 /* get_arena(size): this creates custom-sized arenas
713 TBD: export properly for hv.c: S_more_he().
716 Perl_get_arena(pTHX_ const size_t arena_size, const svtype bodytype)
719 struct arena_desc* adesc;
720 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
723 /* shouldnt need this
724 if (!arena_size) arena_size = PERL_ARENA_SIZE;
727 /* may need new arena-set to hold new arena */
728 if (!aroot || aroot->curr >= aroot->set_size) {
729 struct arena_set *newroot;
730 Newxz(newroot, 1, struct arena_set);
731 newroot->set_size = ARENAS_PER_SET;
732 newroot->next = aroot;
734 PL_body_arenas = (void *) newroot;
735 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
738 /* ok, now have arena-set with at least 1 empty/available arena-desc */
739 curr = aroot->curr++;
740 adesc = &(aroot->set[curr]);
741 assert(!adesc->arena);
743 Newx(adesc->arena, arena_size, char);
744 adesc->size = arena_size;
745 adesc->utype = bodytype;
746 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
747 curr, (void*)adesc->arena, (UV)arena_size));
753 /* return a thing to the free list */
755 #define del_body(thing, root) \
757 void ** const thing_copy = (void **)thing;\
758 *thing_copy = *root; \
759 *root = (void*)thing_copy; \
764 =head1 SV-Body Allocation
766 Allocation of SV-bodies is similar to SV-heads, differing as follows;
767 the allocation mechanism is used for many body types, so is somewhat
768 more complicated, it uses arena-sets, and has no need for still-live
771 At the outermost level, (new|del)_X*V macros return bodies of the
772 appropriate type. These macros call either (new|del)_body_type or
773 (new|del)_body_allocated macro pairs, depending on specifics of the
774 type. Most body types use the former pair, the latter pair is used to
775 allocate body types with "ghost fields".
777 "ghost fields" are fields that are unused in certain types, and
778 consequently don't need to actually exist. They are declared because
779 they're part of a "base type", which allows use of functions as
780 methods. The simplest examples are AVs and HVs, 2 aggregate types
781 which don't use the fields which support SCALAR semantics.
783 For these types, the arenas are carved up into appropriately sized
784 chunks, we thus avoid wasted memory for those unaccessed members.
785 When bodies are allocated, we adjust the pointer back in memory by the
786 size of the part not allocated, so it's as if we allocated the full
787 structure. (But things will all go boom if you write to the part that
788 is "not there", because you'll be overwriting the last members of the
789 preceding structure in memory.)
791 We calculate the correction using the STRUCT_OFFSET macro on the first
792 member present. If the allocated structure is smaller (no initial NV
793 actually allocated) then the net effect is to subtract the size of the NV
794 from the pointer, to return a new pointer as if an initial NV were actually
795 allocated. (We were using structures named *_allocated for this, but
796 this turned out to be a subtle bug, because a structure without an NV
797 could have a lower alignment constraint, but the compiler is allowed to
798 optimised accesses based on the alignment constraint of the actual pointer
799 to the full structure, for example, using a single 64 bit load instruction
800 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
802 This is the same trick as was used for NV and IV bodies. Ironically it
803 doesn't need to be used for NV bodies any more, because NV is now at
804 the start of the structure. IV bodies don't need it either, because
805 they are no longer allocated.
807 In turn, the new_body_* allocators call S_new_body(), which invokes
808 new_body_inline macro, which takes a lock, and takes a body off the
809 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
810 necessary to refresh an empty list. Then the lock is released, and
811 the body is returned.
813 S_more_bodies calls get_arena(), and carves it up into an array of N
814 bodies, which it strings into a linked list. It looks up arena-size
815 and body-size from the body_details table described below, thus
816 supporting the multiple body-types.
818 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
819 the (new|del)_X*V macros are mapped directly to malloc/free.
825 For each sv-type, struct body_details bodies_by_type[] carries
826 parameters which control these aspects of SV handling:
828 Arena_size determines whether arenas are used for this body type, and if
829 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
830 zero, forcing individual mallocs and frees.
832 Body_size determines how big a body is, and therefore how many fit into
833 each arena. Offset carries the body-pointer adjustment needed for
834 "ghost fields", and is used in *_allocated macros.
836 But its main purpose is to parameterize info needed in
837 Perl_sv_upgrade(). The info here dramatically simplifies the function
838 vs the implementation in 5.8.8, making it table-driven. All fields
839 are used for this, except for arena_size.
841 For the sv-types that have no bodies, arenas are not used, so those
842 PL_body_roots[sv_type] are unused, and can be overloaded. In
843 something of a special case, SVt_NULL is borrowed for HE arenas;
844 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
845 bodies_by_type[SVt_NULL] slot is not used, as the table is not
850 struct body_details {
851 U8 body_size; /* Size to allocate */
852 U8 copy; /* Size of structure to copy (may be shorter) */
854 unsigned int type : 4; /* We have space for a sanity check. */
855 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
856 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
857 unsigned int arena : 1; /* Allocated from an arena */
858 size_t arena_size; /* Size of arena to allocate */
866 /* With -DPURFIY we allocate everything directly, and don't use arenas.
867 This seems a rather elegant way to simplify some of the code below. */
868 #define HASARENA FALSE
870 #define HASARENA TRUE
872 #define NOARENA FALSE
874 /* Size the arenas to exactly fit a given number of bodies. A count
875 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
876 simplifying the default. If count > 0, the arena is sized to fit
877 only that many bodies, allowing arenas to be used for large, rare
878 bodies (XPVFM, XPVIO) without undue waste. The arena size is
879 limited by PERL_ARENA_SIZE, so we can safely oversize the
882 #define FIT_ARENA0(body_size) \
883 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
884 #define FIT_ARENAn(count,body_size) \
885 ( count * body_size <= PERL_ARENA_SIZE) \
886 ? count * body_size \
887 : FIT_ARENA0 (body_size)
888 #define FIT_ARENA(count,body_size) \
890 ? FIT_ARENAn (count, body_size) \
891 : FIT_ARENA0 (body_size)
893 /* Calculate the length to copy. Specifically work out the length less any
894 final padding the compiler needed to add. See the comment in sv_upgrade
895 for why copying the padding proved to be a bug. */
897 #define copy_length(type, last_member) \
898 STRUCT_OFFSET(type, last_member) \
899 + sizeof (((type*)SvANY((const SV *)0))->last_member)
901 static const struct body_details bodies_by_type[] = {
902 { sizeof(HE), 0, 0, SVt_NULL,
903 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
905 /* The bind placeholder pretends to be an RV for now.
906 Also it's marked as "can't upgrade" to stop anyone using it before it's
908 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
910 /* IVs are in the head, so the allocation size is 0. */
912 sizeof(IV), /* This is used to copy out the IV body. */
913 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
914 NOARENA /* IVS don't need an arena */, 0
917 /* 8 bytes on most ILP32 with IEEE doubles */
918 { sizeof(NV), sizeof(NV),
919 STRUCT_OFFSET(XPVNV, xnv_u),
920 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
922 /* 8 bytes on most ILP32 with IEEE doubles */
924 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
925 + STRUCT_OFFSET(XPV, xpv_cur),
926 SVt_PV, FALSE, NONV, HASARENA,
927 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
929 #if 2 *PTRSIZE <= IVSIZE
932 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
933 + STRUCT_OFFSET(XPV, xpv_cur),
934 SVt_PVIV, FALSE, NONV, HASARENA,
935 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
939 copy_length(XPVIV, xiv_u),
941 SVt_PVIV, FALSE, NONV, HASARENA,
942 FIT_ARENA(0, sizeof(XPVIV)) },
945 #if (2 *PTRSIZE <= IVSIZE) && (2 *PTRSIZE <= NVSIZE)
948 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
949 + STRUCT_OFFSET(XPV, xpv_cur),
950 SVt_PVNV, FALSE, HADNV, HASARENA,
951 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
954 { sizeof(XPVNV), copy_length(XPVNV, xnv_u), 0, SVt_PVNV, FALSE, HADNV,
955 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
959 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
960 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
966 SVt_REGEXP, FALSE, NONV, HASARENA,
967 FIT_ARENA(0, sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur))
971 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
972 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
975 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
976 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
979 copy_length(XPVAV, xav_alloc),
981 SVt_PVAV, TRUE, NONV, HASARENA,
982 FIT_ARENA(0, sizeof(XPVAV)) },
985 copy_length(XPVHV, xhv_keys),
987 SVt_PVHV, TRUE, NONV, HASARENA,
988 FIT_ARENA(0, sizeof(XPVHV)) },
994 SVt_PVCV, TRUE, NONV, HASARENA,
995 FIT_ARENA(0, sizeof(XPVCV)) },
1000 SVt_PVFM, TRUE, NONV, NOARENA,
1001 FIT_ARENA(20, sizeof(XPVFM)) },
1003 /* XPVIO is 84 bytes, fits 48x */
1007 SVt_PVIO, TRUE, NONV, HASARENA,
1008 FIT_ARENA(24, sizeof(XPVIO)) },
1011 #define new_body_allocated(sv_type) \
1012 (void *)((char *)S_new_body(aTHX_ sv_type) \
1013 - bodies_by_type[sv_type].offset)
1015 #define del_body_allocated(p, sv_type) \
1016 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
1019 #define my_safemalloc(s) (void*)safemalloc(s)
1020 #define my_safecalloc(s) (void*)safecalloc(s, 1)
1021 #define my_safefree(p) safefree((char*)p)
1025 #define new_XNV() my_safemalloc(sizeof(XPVNV))
1026 #define del_XNV(p) my_safefree(p)
1028 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
1029 #define del_XPVNV(p) my_safefree(p)
1031 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
1032 #define del_XPVAV(p) my_safefree(p)
1034 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
1035 #define del_XPVHV(p) my_safefree(p)
1037 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1038 #define del_XPVMG(p) my_safefree(p)
1040 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1041 #define del_XPVGV(p) my_safefree(p)
1045 #define new_XNV() new_body_allocated(SVt_NV)
1046 #define del_XNV(p) del_body_allocated(p, SVt_NV)
1048 #define new_XPVNV() new_body_allocated(SVt_PVNV)
1049 #define del_XPVNV(p) del_body_allocated(p, SVt_PVNV)
1051 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1052 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1054 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1055 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1057 #define new_XPVMG() new_body_allocated(SVt_PVMG)
1058 #define del_XPVMG(p) del_body_allocated(p, SVt_PVMG)
1060 #define new_XPVGV() new_body_allocated(SVt_PVGV)
1061 #define del_XPVGV(p) del_body_allocated(p, SVt_PVGV)
1065 /* no arena for you! */
1067 #define new_NOARENA(details) \
1068 my_safemalloc((details)->body_size + (details)->offset)
1069 #define new_NOARENAZ(details) \
1070 my_safecalloc((details)->body_size + (details)->offset)
1073 S_more_bodies (pTHX_ const svtype sv_type)
1076 void ** const root = &PL_body_roots[sv_type];
1077 const struct body_details * const bdp = &bodies_by_type[sv_type];
1078 const size_t body_size = bdp->body_size;
1081 const size_t arena_size = Perl_malloc_good_size(bdp->arena_size);
1082 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1083 static bool done_sanity_check;
1085 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1086 * variables like done_sanity_check. */
1087 if (!done_sanity_check) {
1088 unsigned int i = SVt_LAST;
1090 done_sanity_check = TRUE;
1093 assert (bodies_by_type[i].type == i);
1097 assert(bdp->arena_size);
1099 start = (char*) Perl_get_arena(aTHX_ arena_size, sv_type);
1101 end = start + arena_size - 2 * body_size;
1103 /* computed count doesnt reflect the 1st slot reservation */
1104 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1105 DEBUG_m(PerlIO_printf(Perl_debug_log,
1106 "arena %p end %p arena-size %d (from %d) type %d "
1108 (void*)start, (void*)end, (int)arena_size,
1109 (int)bdp->arena_size, sv_type, (int)body_size,
1110 (int)arena_size / (int)body_size));
1112 DEBUG_m(PerlIO_printf(Perl_debug_log,
1113 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1114 (void*)start, (void*)end,
1115 (int)bdp->arena_size, sv_type, (int)body_size,
1116 (int)bdp->arena_size / (int)body_size));
1118 *root = (void *)start;
1120 while (start <= end) {
1121 char * const next = start + body_size;
1122 *(void**) start = (void *)next;
1125 *(void **)start = 0;
1130 /* grab a new thing from the free list, allocating more if necessary.
1131 The inline version is used for speed in hot routines, and the
1132 function using it serves the rest (unless PURIFY).
1134 #define new_body_inline(xpv, sv_type) \
1136 void ** const r3wt = &PL_body_roots[sv_type]; \
1137 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1138 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1139 *(r3wt) = *(void**)(xpv); \
1145 S_new_body(pTHX_ const svtype sv_type)
1149 new_body_inline(xpv, sv_type);
1155 static const struct body_details fake_rv =
1156 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1159 =for apidoc sv_upgrade
1161 Upgrade an SV to a more complex form. Generally adds a new body type to the
1162 SV, then copies across as much information as possible from the old body.
1163 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1169 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1174 const svtype old_type = SvTYPE(sv);
1175 const struct body_details *new_type_details;
1176 const struct body_details *old_type_details
1177 = bodies_by_type + old_type;
1178 SV *referant = NULL;
1180 PERL_ARGS_ASSERT_SV_UPGRADE;
1182 if (old_type == new_type)
1185 /* This clause was purposefully added ahead of the early return above to
1186 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1187 inference by Nick I-S that it would fix other troublesome cases. See
1188 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1190 Given that shared hash key scalars are no longer PVIV, but PV, there is
1191 no longer need to unshare so as to free up the IVX slot for its proper
1192 purpose. So it's safe to move the early return earlier. */
1194 if (new_type != SVt_PV && SvIsCOW(sv)) {
1195 sv_force_normal_flags(sv, 0);
1198 old_body = SvANY(sv);
1200 /* Copying structures onto other structures that have been neatly zeroed
1201 has a subtle gotcha. Consider XPVMG
1203 +------+------+------+------+------+-------+-------+
1204 | NV | CUR | LEN | IV | MAGIC | STASH |
1205 +------+------+------+------+------+-------+-------+
1206 0 4 8 12 16 20 24 28
1208 where NVs are aligned to 8 bytes, so that sizeof that structure is
1209 actually 32 bytes long, with 4 bytes of padding at the end:
1211 +------+------+------+------+------+-------+-------+------+
1212 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1213 +------+------+------+------+------+-------+-------+------+
1214 0 4 8 12 16 20 24 28 32
1216 so what happens if you allocate memory for this structure:
1218 +------+------+------+------+------+-------+-------+------+------+...
1219 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1220 +------+------+------+------+------+-------+-------+------+------+...
1221 0 4 8 12 16 20 24 28 32 36
1223 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1224 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1225 started out as zero once, but it's quite possible that it isn't. So now,
1226 rather than a nicely zeroed GP, you have it pointing somewhere random.
1229 (In fact, GP ends up pointing at a previous GP structure, because the
1230 principle cause of the padding in XPVMG getting garbage is a copy of
1231 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1232 this happens to be moot because XPVGV has been re-ordered, with GP
1233 no longer after STASH)
1235 So we are careful and work out the size of used parts of all the
1243 referant = SvRV(sv);
1244 old_type_details = &fake_rv;
1245 if (new_type == SVt_NV)
1246 new_type = SVt_PVNV;
1248 if (new_type < SVt_PVIV) {
1249 new_type = (new_type == SVt_NV)
1250 ? SVt_PVNV : SVt_PVIV;
1255 if (new_type < SVt_PVNV) {
1256 new_type = SVt_PVNV;
1260 assert(new_type > SVt_PV);
1261 assert(SVt_IV < SVt_PV);
1262 assert(SVt_NV < SVt_PV);
1269 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1270 there's no way that it can be safely upgraded, because perl.c
1271 expects to Safefree(SvANY(PL_mess_sv)) */
1272 assert(sv != PL_mess_sv);
1273 /* This flag bit is used to mean other things in other scalar types.
1274 Given that it only has meaning inside the pad, it shouldn't be set
1275 on anything that can get upgraded. */
1276 assert(!SvPAD_TYPED(sv));
1279 if (old_type_details->cant_upgrade)
1280 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1281 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1284 if (old_type > new_type)
1285 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1286 (int)old_type, (int)new_type);
1288 new_type_details = bodies_by_type + new_type;
1290 SvFLAGS(sv) &= ~SVTYPEMASK;
1291 SvFLAGS(sv) |= new_type;
1293 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1294 the return statements above will have triggered. */
1295 assert (new_type != SVt_NULL);
1298 assert(old_type == SVt_NULL);
1299 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1303 assert(old_type == SVt_NULL);
1304 SvANY(sv) = new_XNV();
1309 assert(new_type_details->body_size);
1312 assert(new_type_details->arena);
1313 assert(new_type_details->arena_size);
1314 /* This points to the start of the allocated area. */
1315 new_body_inline(new_body, new_type);
1316 Zero(new_body, new_type_details->body_size, char);
1317 new_body = ((char *)new_body) - new_type_details->offset;
1319 /* We always allocated the full length item with PURIFY. To do this
1320 we fake things so that arena is false for all 16 types.. */
1321 new_body = new_NOARENAZ(new_type_details);
1323 SvANY(sv) = new_body;
1324 if (new_type == SVt_PVAV) {
1328 if (old_type_details->body_size) {
1331 /* It will have been zeroed when the new body was allocated.
1332 Lets not write to it, in case it confuses a write-back
1338 #ifndef NODEFAULT_SHAREKEYS
1339 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1341 HvMAX(sv) = 7; /* (start with 8 buckets) */
1342 if (old_type_details->body_size) {
1345 /* It will have been zeroed when the new body was allocated.
1346 Lets not write to it, in case it confuses a write-back
1351 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1352 The target created by newSVrv also is, and it can have magic.
1353 However, it never has SvPVX set.
1355 if (old_type == SVt_IV) {
1357 } else if (old_type >= SVt_PV) {
1358 assert(SvPVX_const(sv) == 0);
1361 if (old_type >= SVt_PVMG) {
1362 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1363 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1365 sv->sv_u.svu_array = NULL; /* or svu_hash */
1371 /* This ensures that SvTHINKFIRST(sv) is true, and hence that
1372 sv_force_normal_flags(sv) is called. */
1375 /* XXX Is this still needed? Was it ever needed? Surely as there is
1376 no route from NV to PVIV, NOK can never be true */
1377 assert(!SvNOKp(sv));
1388 assert(new_type_details->body_size);
1389 /* We always allocated the full length item with PURIFY. To do this
1390 we fake things so that arena is false for all 16 types.. */
1391 if(new_type_details->arena) {
1392 /* This points to the start of the allocated area. */
1393 new_body_inline(new_body, new_type);
1394 Zero(new_body, new_type_details->body_size, char);
1395 new_body = ((char *)new_body) - new_type_details->offset;
1397 new_body = new_NOARENAZ(new_type_details);
1399 SvANY(sv) = new_body;
1401 if (old_type_details->copy) {
1402 /* There is now the potential for an upgrade from something without
1403 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1404 int offset = old_type_details->offset;
1405 int length = old_type_details->copy;
1407 if (new_type_details->offset > old_type_details->offset) {
1408 const int difference
1409 = new_type_details->offset - old_type_details->offset;
1410 offset += difference;
1411 length -= difference;
1413 assert (length >= 0);
1415 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1419 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1420 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1421 * correct 0.0 for us. Otherwise, if the old body didn't have an
1422 * NV slot, but the new one does, then we need to initialise the
1423 * freshly created NV slot with whatever the correct bit pattern is
1425 if (old_type_details->zero_nv && !new_type_details->zero_nv
1426 && !isGV_with_GP(sv))
1430 if (new_type == SVt_PVIO) {
1431 IO * const io = MUTABLE_IO(sv);
1432 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1435 /* Clear the stashcache because a new IO could overrule a package
1437 hv_clear(PL_stashcache);
1439 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1440 IoPAGE_LEN(sv) = 60;
1442 if (old_type < SVt_PV) {
1443 /* referant will be NULL unless the old type was SVt_IV emulating
1445 sv->sv_u.svu_rv = referant;
1449 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1450 (unsigned long)new_type);
1453 if (old_type > SVt_IV) {
1455 my_safefree(old_body);
1457 /* Note that there is an assumption that all bodies of types that
1458 can be upgraded came from arenas. Only the more complex non-
1459 upgradable types are allowed to be directly malloc()ed. */
1460 assert(old_type_details->arena);
1461 del_body((void*)((char*)old_body + old_type_details->offset),
1462 &PL_body_roots[old_type]);
1468 =for apidoc sv_backoff
1470 Remove any string offset. You should normally use the C<SvOOK_off> macro
1477 Perl_sv_backoff(pTHX_ register SV *const sv)
1480 const char * const s = SvPVX_const(sv);
1482 PERL_ARGS_ASSERT_SV_BACKOFF;
1483 PERL_UNUSED_CONTEXT;
1486 assert(SvTYPE(sv) != SVt_PVHV);
1487 assert(SvTYPE(sv) != SVt_PVAV);
1489 SvOOK_offset(sv, delta);
1491 SvLEN_set(sv, SvLEN(sv) + delta);
1492 SvPV_set(sv, SvPVX(sv) - delta);
1493 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1494 SvFLAGS(sv) &= ~SVf_OOK;
1501 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1502 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1503 Use the C<SvGROW> wrapper instead.
1509 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1513 PERL_ARGS_ASSERT_SV_GROW;
1515 if (PL_madskills && newlen >= 0x100000) {
1516 PerlIO_printf(Perl_debug_log,
1517 "Allocation too large: %"UVxf"\n", (UV)newlen);
1519 #ifdef HAS_64K_LIMIT
1520 if (newlen >= 0x10000) {
1521 PerlIO_printf(Perl_debug_log,
1522 "Allocation too large: %"UVxf"\n", (UV)newlen);
1525 #endif /* HAS_64K_LIMIT */
1528 if (SvTYPE(sv) < SVt_PV) {
1529 sv_upgrade(sv, SVt_PV);
1530 s = SvPVX_mutable(sv);
1532 else if (SvOOK(sv)) { /* pv is offset? */
1534 s = SvPVX_mutable(sv);
1535 if (newlen > SvLEN(sv))
1536 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1537 #ifdef HAS_64K_LIMIT
1538 if (newlen >= 0x10000)
1543 s = SvPVX_mutable(sv);
1545 if (newlen > SvLEN(sv)) { /* need more room? */
1546 #ifndef Perl_safesysmalloc_size
1547 newlen = PERL_STRLEN_ROUNDUP(newlen);
1549 if (SvLEN(sv) && s) {
1550 s = (char*)saferealloc(s, newlen);
1553 s = (char*)safemalloc(newlen);
1554 if (SvPVX_const(sv) && SvCUR(sv)) {
1555 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1559 #ifdef Perl_safesysmalloc_size
1560 /* Do this here, do it once, do it right, and then we will never get
1561 called back into sv_grow() unless there really is some growing
1563 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1565 SvLEN_set(sv, newlen);
1572 =for apidoc sv_setiv
1574 Copies an integer into the given SV, upgrading first if necessary.
1575 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1581 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1585 PERL_ARGS_ASSERT_SV_SETIV;
1587 SV_CHECK_THINKFIRST_COW_DROP(sv);
1588 switch (SvTYPE(sv)) {
1591 sv_upgrade(sv, SVt_IV);
1594 sv_upgrade(sv, SVt_PVIV);
1598 if (!isGV_with_GP(sv))
1605 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1609 (void)SvIOK_only(sv); /* validate number */
1615 =for apidoc sv_setiv_mg
1617 Like C<sv_setiv>, but also handles 'set' magic.
1623 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1625 PERL_ARGS_ASSERT_SV_SETIV_MG;
1632 =for apidoc sv_setuv
1634 Copies an unsigned integer into the given SV, upgrading first if necessary.
1635 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1641 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1643 PERL_ARGS_ASSERT_SV_SETUV;
1645 /* With these two if statements:
1646 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1649 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1651 If you wish to remove them, please benchmark to see what the effect is
1653 if (u <= (UV)IV_MAX) {
1654 sv_setiv(sv, (IV)u);
1663 =for apidoc sv_setuv_mg
1665 Like C<sv_setuv>, but also handles 'set' magic.
1671 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1673 PERL_ARGS_ASSERT_SV_SETUV_MG;
1680 =for apidoc sv_setnv
1682 Copies a double into the given SV, upgrading first if necessary.
1683 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1689 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1693 PERL_ARGS_ASSERT_SV_SETNV;
1695 SV_CHECK_THINKFIRST_COW_DROP(sv);
1696 switch (SvTYPE(sv)) {
1699 sv_upgrade(sv, SVt_NV);
1703 sv_upgrade(sv, SVt_PVNV);
1707 if (!isGV_with_GP(sv))
1714 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1719 (void)SvNOK_only(sv); /* validate number */
1724 =for apidoc sv_setnv_mg
1726 Like C<sv_setnv>, but also handles 'set' magic.
1732 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1734 PERL_ARGS_ASSERT_SV_SETNV_MG;
1740 /* Print an "isn't numeric" warning, using a cleaned-up,
1741 * printable version of the offending string
1745 S_not_a_number(pTHX_ SV *const sv)
1752 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1755 dsv = newSVpvs_flags("", SVs_TEMP);
1756 pv = sv_uni_display(dsv, sv, 10, 0);
1759 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1760 /* each *s can expand to 4 chars + "...\0",
1761 i.e. need room for 8 chars */
1763 const char *s = SvPVX_const(sv);
1764 const char * const end = s + SvCUR(sv);
1765 for ( ; s < end && d < limit; s++ ) {
1767 if (ch & 128 && !isPRINT_LC(ch)) {
1776 else if (ch == '\r') {
1780 else if (ch == '\f') {
1784 else if (ch == '\\') {
1788 else if (ch == '\0') {
1792 else if (isPRINT_LC(ch))
1809 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1810 "Argument \"%s\" isn't numeric in %s", pv,
1813 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1814 "Argument \"%s\" isn't numeric", pv);
1818 =for apidoc looks_like_number
1820 Test if the content of an SV looks like a number (or is a number).
1821 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1822 non-numeric warning), even if your atof() doesn't grok them.
1828 Perl_looks_like_number(pTHX_ SV *const sv)
1830 register const char *sbegin;
1833 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1836 sbegin = SvPVX_const(sv);
1839 else if (SvPOKp(sv))
1840 sbegin = SvPV_const(sv, len);
1842 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1843 return grok_number(sbegin, len, NULL);
1847 S_glob_2number(pTHX_ GV * const gv)
1849 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1850 SV *const buffer = sv_newmortal();
1852 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1854 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1857 gv_efullname3(buffer, gv, "*");
1858 SvFLAGS(gv) |= wasfake;
1860 /* We know that all GVs stringify to something that is not-a-number,
1861 so no need to test that. */
1862 if (ckWARN(WARN_NUMERIC))
1863 not_a_number(buffer);
1864 /* We just want something true to return, so that S_sv_2iuv_common
1865 can tail call us and return true. */
1869 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1870 until proven guilty, assume that things are not that bad... */
1875 As 64 bit platforms often have an NV that doesn't preserve all bits of
1876 an IV (an assumption perl has been based on to date) it becomes necessary
1877 to remove the assumption that the NV always carries enough precision to
1878 recreate the IV whenever needed, and that the NV is the canonical form.
1879 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1880 precision as a side effect of conversion (which would lead to insanity
1881 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1882 1) to distinguish between IV/UV/NV slots that have cached a valid
1883 conversion where precision was lost and IV/UV/NV slots that have a
1884 valid conversion which has lost no precision
1885 2) to ensure that if a numeric conversion to one form is requested that
1886 would lose precision, the precise conversion (or differently
1887 imprecise conversion) is also performed and cached, to prevent
1888 requests for different numeric formats on the same SV causing
1889 lossy conversion chains. (lossless conversion chains are perfectly
1894 SvIOKp is true if the IV slot contains a valid value
1895 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1896 SvNOKp is true if the NV slot contains a valid value
1897 SvNOK is true only if the NV value is accurate
1900 while converting from PV to NV, check to see if converting that NV to an
1901 IV(or UV) would lose accuracy over a direct conversion from PV to
1902 IV(or UV). If it would, cache both conversions, return NV, but mark
1903 SV as IOK NOKp (ie not NOK).
1905 While converting from PV to IV, check to see if converting that IV to an
1906 NV would lose accuracy over a direct conversion from PV to NV. If it
1907 would, cache both conversions, flag similarly.
1909 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1910 correctly because if IV & NV were set NV *always* overruled.
1911 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1912 changes - now IV and NV together means that the two are interchangeable:
1913 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1915 The benefit of this is that operations such as pp_add know that if
1916 SvIOK is true for both left and right operands, then integer addition
1917 can be used instead of floating point (for cases where the result won't
1918 overflow). Before, floating point was always used, which could lead to
1919 loss of precision compared with integer addition.
1921 * making IV and NV equal status should make maths accurate on 64 bit
1923 * may speed up maths somewhat if pp_add and friends start to use
1924 integers when possible instead of fp. (Hopefully the overhead in
1925 looking for SvIOK and checking for overflow will not outweigh the
1926 fp to integer speedup)
1927 * will slow down integer operations (callers of SvIV) on "inaccurate"
1928 values, as the change from SvIOK to SvIOKp will cause a call into
1929 sv_2iv each time rather than a macro access direct to the IV slot
1930 * should speed up number->string conversion on integers as IV is
1931 favoured when IV and NV are equally accurate
1933 ####################################################################
1934 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1935 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1936 On the other hand, SvUOK is true iff UV.
1937 ####################################################################
1939 Your mileage will vary depending your CPU's relative fp to integer
1943 #ifndef NV_PRESERVES_UV
1944 # define IS_NUMBER_UNDERFLOW_IV 1
1945 # define IS_NUMBER_UNDERFLOW_UV 2
1946 # define IS_NUMBER_IV_AND_UV 2
1947 # define IS_NUMBER_OVERFLOW_IV 4
1948 # define IS_NUMBER_OVERFLOW_UV 5
1950 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1952 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1954 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1962 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1964 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1965 if (SvNVX(sv) < (NV)IV_MIN) {
1966 (void)SvIOKp_on(sv);
1968 SvIV_set(sv, IV_MIN);
1969 return IS_NUMBER_UNDERFLOW_IV;
1971 if (SvNVX(sv) > (NV)UV_MAX) {
1972 (void)SvIOKp_on(sv);
1975 SvUV_set(sv, UV_MAX);
1976 return IS_NUMBER_OVERFLOW_UV;
1978 (void)SvIOKp_on(sv);
1980 /* Can't use strtol etc to convert this string. (See truth table in
1982 if (SvNVX(sv) <= (UV)IV_MAX) {
1983 SvIV_set(sv, I_V(SvNVX(sv)));
1984 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1985 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1987 /* Integer is imprecise. NOK, IOKp */
1989 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1992 SvUV_set(sv, U_V(SvNVX(sv)));
1993 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1994 if (SvUVX(sv) == UV_MAX) {
1995 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1996 possibly be preserved by NV. Hence, it must be overflow.
1998 return IS_NUMBER_OVERFLOW_UV;
2000 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
2002 /* Integer is imprecise. NOK, IOKp */
2004 return IS_NUMBER_OVERFLOW_IV;
2006 #endif /* !NV_PRESERVES_UV*/
2009 S_sv_2iuv_common(pTHX_ SV *const sv)
2013 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
2016 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
2017 * without also getting a cached IV/UV from it at the same time
2018 * (ie PV->NV conversion should detect loss of accuracy and cache
2019 * IV or UV at same time to avoid this. */
2020 /* IV-over-UV optimisation - choose to cache IV if possible */
2022 if (SvTYPE(sv) == SVt_NV)
2023 sv_upgrade(sv, SVt_PVNV);
2025 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2026 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2027 certainly cast into the IV range at IV_MAX, whereas the correct
2028 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2030 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2031 if (Perl_isnan(SvNVX(sv))) {
2037 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2038 SvIV_set(sv, I_V(SvNVX(sv)));
2039 if (SvNVX(sv) == (NV) SvIVX(sv)
2040 #ifndef NV_PRESERVES_UV
2041 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2042 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2043 /* Don't flag it as "accurately an integer" if the number
2044 came from a (by definition imprecise) NV operation, and
2045 we're outside the range of NV integer precision */
2049 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2051 /* scalar has trailing garbage, eg "42a" */
2053 DEBUG_c(PerlIO_printf(Perl_debug_log,
2054 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2060 /* IV not precise. No need to convert from PV, as NV
2061 conversion would already have cached IV if it detected
2062 that PV->IV would be better than PV->NV->IV
2063 flags already correct - don't set public IOK. */
2064 DEBUG_c(PerlIO_printf(Perl_debug_log,
2065 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2070 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2071 but the cast (NV)IV_MIN rounds to a the value less (more
2072 negative) than IV_MIN which happens to be equal to SvNVX ??
2073 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2074 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2075 (NV)UVX == NVX are both true, but the values differ. :-(
2076 Hopefully for 2s complement IV_MIN is something like
2077 0x8000000000000000 which will be exact. NWC */
2080 SvUV_set(sv, U_V(SvNVX(sv)));
2082 (SvNVX(sv) == (NV) SvUVX(sv))
2083 #ifndef NV_PRESERVES_UV
2084 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2085 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2086 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2087 /* Don't flag it as "accurately an integer" if the number
2088 came from a (by definition imprecise) NV operation, and
2089 we're outside the range of NV integer precision */
2095 DEBUG_c(PerlIO_printf(Perl_debug_log,
2096 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2102 else if (SvPOKp(sv) && SvLEN(sv)) {
2104 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2105 /* We want to avoid a possible problem when we cache an IV/ a UV which
2106 may be later translated to an NV, and the resulting NV is not
2107 the same as the direct translation of the initial string
2108 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2109 be careful to ensure that the value with the .456 is around if the
2110 NV value is requested in the future).
2112 This means that if we cache such an IV/a UV, we need to cache the
2113 NV as well. Moreover, we trade speed for space, and do not
2114 cache the NV if we are sure it's not needed.
2117 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2118 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2119 == IS_NUMBER_IN_UV) {
2120 /* It's definitely an integer, only upgrade to PVIV */
2121 if (SvTYPE(sv) < SVt_PVIV)
2122 sv_upgrade(sv, SVt_PVIV);
2124 } else if (SvTYPE(sv) < SVt_PVNV)
2125 sv_upgrade(sv, SVt_PVNV);
2127 /* If NVs preserve UVs then we only use the UV value if we know that
2128 we aren't going to call atof() below. If NVs don't preserve UVs
2129 then the value returned may have more precision than atof() will
2130 return, even though value isn't perfectly accurate. */
2131 if ((numtype & (IS_NUMBER_IN_UV
2132 #ifdef NV_PRESERVES_UV
2135 )) == IS_NUMBER_IN_UV) {
2136 /* This won't turn off the public IOK flag if it was set above */
2137 (void)SvIOKp_on(sv);
2139 if (!(numtype & IS_NUMBER_NEG)) {
2141 if (value <= (UV)IV_MAX) {
2142 SvIV_set(sv, (IV)value);
2144 /* it didn't overflow, and it was positive. */
2145 SvUV_set(sv, value);
2149 /* 2s complement assumption */
2150 if (value <= (UV)IV_MIN) {
2151 SvIV_set(sv, -(IV)value);
2153 /* Too negative for an IV. This is a double upgrade, but
2154 I'm assuming it will be rare. */
2155 if (SvTYPE(sv) < SVt_PVNV)
2156 sv_upgrade(sv, SVt_PVNV);
2160 SvNV_set(sv, -(NV)value);
2161 SvIV_set(sv, IV_MIN);
2165 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2166 will be in the previous block to set the IV slot, and the next
2167 block to set the NV slot. So no else here. */
2169 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2170 != IS_NUMBER_IN_UV) {
2171 /* It wasn't an (integer that doesn't overflow the UV). */
2172 SvNV_set(sv, Atof(SvPVX_const(sv)));
2174 if (! numtype && ckWARN(WARN_NUMERIC))
2177 #if defined(USE_LONG_DOUBLE)
2178 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2179 PTR2UV(sv), SvNVX(sv)));
2181 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2182 PTR2UV(sv), SvNVX(sv)));
2185 #ifdef NV_PRESERVES_UV
2186 (void)SvIOKp_on(sv);
2188 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2189 SvIV_set(sv, I_V(SvNVX(sv)));
2190 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2193 NOOP; /* Integer is imprecise. NOK, IOKp */
2195 /* UV will not work better than IV */
2197 if (SvNVX(sv) > (NV)UV_MAX) {
2199 /* Integer is inaccurate. NOK, IOKp, is UV */
2200 SvUV_set(sv, UV_MAX);
2202 SvUV_set(sv, U_V(SvNVX(sv)));
2203 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2204 NV preservse UV so can do correct comparison. */
2205 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2208 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2213 #else /* NV_PRESERVES_UV */
2214 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2215 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2216 /* The IV/UV slot will have been set from value returned by
2217 grok_number above. The NV slot has just been set using
2220 assert (SvIOKp(sv));
2222 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2223 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2224 /* Small enough to preserve all bits. */
2225 (void)SvIOKp_on(sv);
2227 SvIV_set(sv, I_V(SvNVX(sv)));
2228 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2230 /* Assumption: first non-preserved integer is < IV_MAX,
2231 this NV is in the preserved range, therefore: */
2232 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2234 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2238 0 0 already failed to read UV.
2239 0 1 already failed to read UV.
2240 1 0 you won't get here in this case. IV/UV
2241 slot set, public IOK, Atof() unneeded.
2242 1 1 already read UV.
2243 so there's no point in sv_2iuv_non_preserve() attempting
2244 to use atol, strtol, strtoul etc. */
2246 sv_2iuv_non_preserve (sv, numtype);
2248 sv_2iuv_non_preserve (sv);
2252 #endif /* NV_PRESERVES_UV */
2253 /* It might be more code efficient to go through the entire logic above
2254 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2255 gets complex and potentially buggy, so more programmer efficient
2256 to do it this way, by turning off the public flags: */
2258 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2262 if (isGV_with_GP(sv))
2263 return glob_2number(MUTABLE_GV(sv));
2265 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2266 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2269 if (SvTYPE(sv) < SVt_IV)
2270 /* Typically the caller expects that sv_any is not NULL now. */
2271 sv_upgrade(sv, SVt_IV);
2272 /* Return 0 from the caller. */
2279 =for apidoc sv_2iv_flags
2281 Return the integer value of an SV, doing any necessary string
2282 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2283 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2289 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2294 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2295 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2296 cache IVs just in case. In practice it seems that they never
2297 actually anywhere accessible by user Perl code, let alone get used
2298 in anything other than a string context. */
2299 if (flags & SV_GMAGIC)
2304 return I_V(SvNVX(sv));
2306 if (SvPOKp(sv) && SvLEN(sv)) {
2309 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2311 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2312 == IS_NUMBER_IN_UV) {
2313 /* It's definitely an integer */
2314 if (numtype & IS_NUMBER_NEG) {
2315 if (value < (UV)IV_MIN)
2318 if (value < (UV)IV_MAX)
2323 if (ckWARN(WARN_NUMERIC))
2326 return I_V(Atof(SvPVX_const(sv)));
2331 assert(SvTYPE(sv) >= SVt_PVMG);
2332 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2333 } else if (SvTHINKFIRST(sv)) {
2338 if (flags & SV_SKIP_OVERLOAD)
2340 tmpstr=AMG_CALLun(sv,numer);
2341 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2342 return SvIV(tmpstr);
2345 return PTR2IV(SvRV(sv));
2348 sv_force_normal_flags(sv, 0);
2350 if (SvREADONLY(sv) && !SvOK(sv)) {
2351 if (ckWARN(WARN_UNINITIALIZED))
2357 if (S_sv_2iuv_common(aTHX_ sv))
2360 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2361 PTR2UV(sv),SvIVX(sv)));
2362 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2366 =for apidoc sv_2uv_flags
2368 Return the unsigned integer value of an SV, doing any necessary string
2369 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2370 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2376 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2381 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2382 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2383 cache IVs just in case. */
2384 if (flags & SV_GMAGIC)
2389 return U_V(SvNVX(sv));
2390 if (SvPOKp(sv) && SvLEN(sv)) {
2393 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2395 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2396 == IS_NUMBER_IN_UV) {
2397 /* It's definitely an integer */
2398 if (!(numtype & IS_NUMBER_NEG))
2402 if (ckWARN(WARN_NUMERIC))
2405 return U_V(Atof(SvPVX_const(sv)));
2410 assert(SvTYPE(sv) >= SVt_PVMG);
2411 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2412 } else if (SvTHINKFIRST(sv)) {
2417 if (flags & SV_SKIP_OVERLOAD)
2419 tmpstr = AMG_CALLun(sv,numer);
2420 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2421 return SvUV(tmpstr);
2424 return PTR2UV(SvRV(sv));
2427 sv_force_normal_flags(sv, 0);
2429 if (SvREADONLY(sv) && !SvOK(sv)) {
2430 if (ckWARN(WARN_UNINITIALIZED))
2436 if (S_sv_2iuv_common(aTHX_ sv))
2440 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2441 PTR2UV(sv),SvUVX(sv)));
2442 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2448 Return the num value of an SV, doing any necessary string or integer
2449 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2450 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2456 Perl_sv_2nv_flags(pTHX_ register SV *const sv, const I32 flags)
2461 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2462 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2463 cache IVs just in case. */
2464 if (flags & SV_GMAGIC)
2468 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2469 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2470 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2472 return Atof(SvPVX_const(sv));
2476 return (NV)SvUVX(sv);
2478 return (NV)SvIVX(sv);
2483 assert(SvTYPE(sv) >= SVt_PVMG);
2484 /* This falls through to the report_uninit near the end of the
2486 } else if (SvTHINKFIRST(sv)) {
2491 if (flags & SV_SKIP_OVERLOAD)
2493 tmpstr = AMG_CALLun(sv,numer);
2494 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2495 return SvNV(tmpstr);
2498 return PTR2NV(SvRV(sv));
2501 sv_force_normal_flags(sv, 0);
2503 if (SvREADONLY(sv) && !SvOK(sv)) {
2504 if (ckWARN(WARN_UNINITIALIZED))
2509 if (SvTYPE(sv) < SVt_NV) {
2510 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2511 sv_upgrade(sv, SVt_NV);
2512 #ifdef USE_LONG_DOUBLE
2514 STORE_NUMERIC_LOCAL_SET_STANDARD();
2515 PerlIO_printf(Perl_debug_log,
2516 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2517 PTR2UV(sv), SvNVX(sv));
2518 RESTORE_NUMERIC_LOCAL();
2522 STORE_NUMERIC_LOCAL_SET_STANDARD();
2523 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2524 PTR2UV(sv), SvNVX(sv));
2525 RESTORE_NUMERIC_LOCAL();
2529 else if (SvTYPE(sv) < SVt_PVNV)
2530 sv_upgrade(sv, SVt_PVNV);
2535 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2536 #ifdef NV_PRESERVES_UV
2542 /* Only set the public NV OK flag if this NV preserves the IV */
2543 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2545 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2546 : (SvIVX(sv) == I_V(SvNVX(sv))))
2552 else if (SvPOKp(sv) && SvLEN(sv)) {
2554 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2555 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2557 #ifdef NV_PRESERVES_UV
2558 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2559 == IS_NUMBER_IN_UV) {
2560 /* It's definitely an integer */
2561 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2563 SvNV_set(sv, Atof(SvPVX_const(sv)));
2569 SvNV_set(sv, Atof(SvPVX_const(sv)));
2570 /* Only set the public NV OK flag if this NV preserves the value in
2571 the PV at least as well as an IV/UV would.
2572 Not sure how to do this 100% reliably. */
2573 /* if that shift count is out of range then Configure's test is
2574 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2576 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2577 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2578 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2579 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2580 /* Can't use strtol etc to convert this string, so don't try.
2581 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2584 /* value has been set. It may not be precise. */
2585 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2586 /* 2s complement assumption for (UV)IV_MIN */
2587 SvNOK_on(sv); /* Integer is too negative. */
2592 if (numtype & IS_NUMBER_NEG) {
2593 SvIV_set(sv, -(IV)value);
2594 } else if (value <= (UV)IV_MAX) {
2595 SvIV_set(sv, (IV)value);
2597 SvUV_set(sv, value);
2601 if (numtype & IS_NUMBER_NOT_INT) {
2602 /* I believe that even if the original PV had decimals,
2603 they are lost beyond the limit of the FP precision.
2604 However, neither is canonical, so both only get p
2605 flags. NWC, 2000/11/25 */
2606 /* Both already have p flags, so do nothing */
2608 const NV nv = SvNVX(sv);
2609 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2610 if (SvIVX(sv) == I_V(nv)) {
2613 /* It had no "." so it must be integer. */
2617 /* between IV_MAX and NV(UV_MAX).
2618 Could be slightly > UV_MAX */
2620 if (numtype & IS_NUMBER_NOT_INT) {
2621 /* UV and NV both imprecise. */
2623 const UV nv_as_uv = U_V(nv);
2625 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2634 /* It might be more code efficient to go through the entire logic above
2635 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2636 gets complex and potentially buggy, so more programmer efficient
2637 to do it this way, by turning off the public flags: */
2639 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2640 #endif /* NV_PRESERVES_UV */
2643 if (isGV_with_GP(sv)) {
2644 glob_2number(MUTABLE_GV(sv));
2648 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2650 assert (SvTYPE(sv) >= SVt_NV);
2651 /* Typically the caller expects that sv_any is not NULL now. */
2652 /* XXX Ilya implies that this is a bug in callers that assume this
2653 and ideally should be fixed. */
2656 #if defined(USE_LONG_DOUBLE)
2658 STORE_NUMERIC_LOCAL_SET_STANDARD();
2659 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2660 PTR2UV(sv), SvNVX(sv));
2661 RESTORE_NUMERIC_LOCAL();
2665 STORE_NUMERIC_LOCAL_SET_STANDARD();
2666 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2667 PTR2UV(sv), SvNVX(sv));
2668 RESTORE_NUMERIC_LOCAL();
2677 Return an SV with the numeric value of the source SV, doing any necessary
2678 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2679 access this function.
2685 Perl_sv_2num(pTHX_ register SV *const sv)
2687 PERL_ARGS_ASSERT_SV_2NUM;
2692 SV * const tmpsv = AMG_CALLun(sv,numer);
2693 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2694 return sv_2num(tmpsv);
2696 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2699 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2700 * UV as a string towards the end of buf, and return pointers to start and
2703 * We assume that buf is at least TYPE_CHARS(UV) long.
2707 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2709 char *ptr = buf + TYPE_CHARS(UV);
2710 char * const ebuf = ptr;
2713 PERL_ARGS_ASSERT_UIV_2BUF;
2725 *--ptr = '0' + (char)(uv % 10);
2734 =for apidoc sv_2pv_flags
2736 Returns a pointer to the string value of an SV, and sets *lp to its length.
2737 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2739 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2740 usually end up here too.
2746 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2756 if (SvGMAGICAL(sv)) {
2757 if (flags & SV_GMAGIC)
2762 if (flags & SV_MUTABLE_RETURN)
2763 return SvPVX_mutable(sv);
2764 if (flags & SV_CONST_RETURN)
2765 return (char *)SvPVX_const(sv);
2768 if (SvIOKp(sv) || SvNOKp(sv)) {
2769 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2774 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2775 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2777 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2784 #ifdef FIXNEGATIVEZERO
2785 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2791 SvUPGRADE(sv, SVt_PV);
2794 s = SvGROW_mutable(sv, len + 1);
2797 return (char*)memcpy(s, tbuf, len + 1);
2803 assert(SvTYPE(sv) >= SVt_PVMG);
2804 /* This falls through to the report_uninit near the end of the
2806 } else if (SvTHINKFIRST(sv)) {
2811 if (flags & SV_SKIP_OVERLOAD)
2813 tmpstr = AMG_CALLun(sv,string);
2814 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2816 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2820 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2821 if (flags & SV_CONST_RETURN) {
2822 pv = (char *) SvPVX_const(tmpstr);
2824 pv = (flags & SV_MUTABLE_RETURN)
2825 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2828 *lp = SvCUR(tmpstr);
2830 pv = sv_2pv_flags(tmpstr, lp, flags);
2843 SV *const referent = SvRV(sv);
2847 retval = buffer = savepvn("NULLREF", len);
2848 } else if (SvTYPE(referent) == SVt_REGEXP) {
2849 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2854 /* If the regex is UTF-8 we want the containing scalar to
2855 have an UTF-8 flag too */
2861 if ((seen_evals = RX_SEEN_EVALS(re)))
2862 PL_reginterp_cnt += seen_evals;
2865 *lp = RX_WRAPLEN(re);
2867 return RX_WRAPPED(re);
2869 const char *const typestr = sv_reftype(referent, 0);
2870 const STRLEN typelen = strlen(typestr);
2871 UV addr = PTR2UV(referent);
2872 const char *stashname = NULL;
2873 STRLEN stashnamelen = 0; /* hush, gcc */
2874 const char *buffer_end;
2876 if (SvOBJECT(referent)) {
2877 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2880 stashname = HEK_KEY(name);
2881 stashnamelen = HEK_LEN(name);
2883 if (HEK_UTF8(name)) {
2889 stashname = "__ANON__";
2892 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2893 + 2 * sizeof(UV) + 2 /* )\0 */;
2895 len = typelen + 3 /* (0x */
2896 + 2 * sizeof(UV) + 2 /* )\0 */;
2899 Newx(buffer, len, char);
2900 buffer_end = retval = buffer + len;
2902 /* Working backwards */
2906 *--retval = PL_hexdigit[addr & 15];
2907 } while (addr >>= 4);
2913 memcpy(retval, typestr, typelen);
2917 retval -= stashnamelen;
2918 memcpy(retval, stashname, stashnamelen);
2920 /* retval may not neccesarily have reached the start of the
2922 assert (retval >= buffer);
2924 len = buffer_end - retval - 1; /* -1 for that \0 */
2932 if (SvREADONLY(sv) && !SvOK(sv)) {
2935 if (flags & SV_UNDEF_RETURNS_NULL)
2937 if (ckWARN(WARN_UNINITIALIZED))
2942 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2943 /* I'm assuming that if both IV and NV are equally valid then
2944 converting the IV is going to be more efficient */
2945 const U32 isUIOK = SvIsUV(sv);
2946 char buf[TYPE_CHARS(UV)];
2950 if (SvTYPE(sv) < SVt_PVIV)
2951 sv_upgrade(sv, SVt_PVIV);
2952 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2954 /* inlined from sv_setpvn */
2955 s = SvGROW_mutable(sv, len + 1);
2956 Move(ptr, s, len, char);
2960 else if (SvNOKp(sv)) {
2962 if (SvTYPE(sv) < SVt_PVNV)
2963 sv_upgrade(sv, SVt_PVNV);
2964 /* The +20 is pure guesswork. Configure test needed. --jhi */
2965 s = SvGROW_mutable(sv, NV_DIG + 20);
2966 /* some Xenix systems wipe out errno here */
2968 if (SvNVX(sv) == 0.0)
2969 my_strlcpy(s, "0", SvLEN(sv));
2973 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2976 #ifdef FIXNEGATIVEZERO
2977 if (*s == '-' && s[1] == '0' && !s[2]) {
2989 if (isGV_with_GP(sv)) {
2990 GV *const gv = MUTABLE_GV(sv);
2991 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
2992 SV *const buffer = sv_newmortal();
2994 /* FAKE globs can get coerced, so need to turn this off temporarily
2997 gv_efullname3(buffer, gv, "*");
2998 SvFLAGS(gv) |= wasfake;
3000 if (SvPOK(buffer)) {
3002 *lp = SvCUR(buffer);
3004 return SvPVX(buffer);
3015 if (flags & SV_UNDEF_RETURNS_NULL)
3017 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
3019 if (SvTYPE(sv) < SVt_PV)
3020 /* Typically the caller expects that sv_any is not NULL now. */
3021 sv_upgrade(sv, SVt_PV);
3025 const STRLEN len = s - SvPVX_const(sv);
3031 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
3032 PTR2UV(sv),SvPVX_const(sv)));
3033 if (flags & SV_CONST_RETURN)
3034 return (char *)SvPVX_const(sv);
3035 if (flags & SV_MUTABLE_RETURN)
3036 return SvPVX_mutable(sv);
3041 =for apidoc sv_copypv
3043 Copies a stringified representation of the source SV into the
3044 destination SV. Automatically performs any necessary mg_get and
3045 coercion of numeric values into strings. Guaranteed to preserve
3046 UTF8 flag even from overloaded objects. Similar in nature to
3047 sv_2pv[_flags] but operates directly on an SV instead of just the
3048 string. Mostly uses sv_2pv_flags to do its work, except when that
3049 would lose the UTF-8'ness of the PV.
3055 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
3058 const char * const s = SvPV_const(ssv,len);
3060 PERL_ARGS_ASSERT_SV_COPYPV;
3062 sv_setpvn(dsv,s,len);
3070 =for apidoc sv_2pvbyte
3072 Return a pointer to the byte-encoded representation of the SV, and set *lp
3073 to its length. May cause the SV to be downgraded from UTF-8 as a
3076 Usually accessed via the C<SvPVbyte> macro.
3082 Perl_sv_2pvbyte(pTHX_ register SV *const sv, STRLEN *const lp)
3084 PERL_ARGS_ASSERT_SV_2PVBYTE;
3086 sv_utf8_downgrade(sv,0);
3087 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3091 =for apidoc sv_2pvutf8
3093 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3094 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3096 Usually accessed via the C<SvPVutf8> macro.
3102 Perl_sv_2pvutf8(pTHX_ register SV *const sv, STRLEN *const lp)
3104 PERL_ARGS_ASSERT_SV_2PVUTF8;
3106 sv_utf8_upgrade(sv);
3107 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3112 =for apidoc sv_2bool
3114 This function is only called on magical items, and is only used by
3115 sv_true() or its macro equivalent.
3121 Perl_sv_2bool(pTHX_ register SV *const sv)
3125 PERL_ARGS_ASSERT_SV_2BOOL;
3133 SV * const tmpsv = AMG_CALLun(sv,bool_);
3134 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3135 return cBOOL(SvTRUE(tmpsv));
3137 return SvRV(sv) != 0;
3140 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
3142 (*sv->sv_u.svu_pv > '0' ||
3143 Xpvtmp->xpv_cur > 1 ||
3144 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
3151 return SvIVX(sv) != 0;
3154 return SvNVX(sv) != 0.0;
3156 if (isGV_with_GP(sv))
3166 =for apidoc sv_utf8_upgrade
3168 Converts the PV of an SV to its UTF-8-encoded form.
3169 Forces the SV to string form if it is not already.
3170 Will C<mg_get> on C<sv> if appropriate.
3171 Always sets the SvUTF8 flag to avoid future validity checks even
3172 if the whole string is the same in UTF-8 as not.
3173 Returns the number of bytes in the converted string
3175 This is not as a general purpose byte encoding to Unicode interface:
3176 use the Encode extension for that.
3178 =for apidoc sv_utf8_upgrade_nomg
3180 Like sv_utf8_upgrade, but doesn't do magic on C<sv>
3182 =for apidoc sv_utf8_upgrade_flags
3184 Converts the PV of an SV to its UTF-8-encoded form.
3185 Forces the SV to string form if it is not already.
3186 Always sets the SvUTF8 flag to avoid future validity checks even
3187 if all the bytes are invariant in UTF-8. If C<flags> has C<SV_GMAGIC> bit set,
3188 will C<mg_get> on C<sv> if appropriate, else not.
3189 Returns the number of bytes in the converted string
3190 C<sv_utf8_upgrade> and
3191 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3193 This is not as a general purpose byte encoding to Unicode interface:
3194 use the Encode extension for that.
3198 The grow version is currently not externally documented. It adds a parameter,
3199 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3200 have free after it upon return. This allows the caller to reserve extra space
3201 that it intends to fill, to avoid extra grows.
3203 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3204 which can be used to tell this function to not first check to see if there are
3205 any characters that are different in UTF-8 (variant characters) which would
3206 force it to allocate a new string to sv, but to assume there are. Typically
3207 this flag is used by a routine that has already parsed the string to find that
3208 there are such characters, and passes this information on so that the work
3209 doesn't have to be repeated.
3211 (One might think that the calling routine could pass in the position of the
3212 first such variant, so it wouldn't have to be found again. But that is not the
3213 case, because typically when the caller is likely to use this flag, it won't be
3214 calling this routine unless it finds something that won't fit into a byte.
3215 Otherwise it tries to not upgrade and just use bytes. But some things that
3216 do fit into a byte are variants in utf8, and the caller may not have been
3217 keeping track of these.)
3219 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3220 isn't guaranteed due to having other routines do the work in some input cases,
3221 or if the input is already flagged as being in utf8.
3223 The speed of this could perhaps be improved for many cases if someone wanted to
3224 write a fast function that counts the number of variant characters in a string,
3225 especially if it could return the position of the first one.
3230 Perl_sv_utf8_upgrade_flags_grow(pTHX_ register SV *const sv, const I32 flags, STRLEN extra)
3234 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3236 if (sv == &PL_sv_undef)
3240 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3241 (void) sv_2pv_flags(sv,&len, flags);
3243 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3247 (void) SvPV_force(sv,len);
3252 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3257 sv_force_normal_flags(sv, 0);
3260 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3261 sv_recode_to_utf8(sv, PL_encoding);
3262 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3266 if (SvCUR(sv) == 0) {
3267 if (extra) SvGROW(sv, extra);
3268 } else { /* Assume Latin-1/EBCDIC */
3269 /* This function could be much more efficient if we
3270 * had a FLAG in SVs to signal if there are any variant
3271 * chars in the PV. Given that there isn't such a flag
3272 * make the loop as fast as possible (although there are certainly ways
3273 * to speed this up, eg. through vectorization) */
3274 U8 * s = (U8 *) SvPVX_const(sv);
3275 U8 * e = (U8 *) SvEND(sv);
3277 STRLEN two_byte_count = 0;
3279 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3281 /* See if really will need to convert to utf8. We mustn't rely on our
3282 * incoming SV being well formed and having a trailing '\0', as certain
3283 * code in pp_formline can send us partially built SVs. */
3287 if (NATIVE_IS_INVARIANT(ch)) continue;
3289 t--; /* t already incremented; re-point to first variant */
3294 /* utf8 conversion not needed because all are invariants. Mark as
3295 * UTF-8 even if no variant - saves scanning loop */
3301 /* Here, the string should be converted to utf8, either because of an
3302 * input flag (two_byte_count = 0), or because a character that
3303 * requires 2 bytes was found (two_byte_count = 1). t points either to
3304 * the beginning of the string (if we didn't examine anything), or to
3305 * the first variant. In either case, everything from s to t - 1 will
3306 * occupy only 1 byte each on output.
3308 * There are two main ways to convert. One is to create a new string
3309 * and go through the input starting from the beginning, appending each
3310 * converted value onto the new string as we go along. It's probably
3311 * best to allocate enough space in the string for the worst possible
3312 * case rather than possibly running out of space and having to
3313 * reallocate and then copy what we've done so far. Since everything
3314 * from s to t - 1 is invariant, the destination can be initialized
3315 * with these using a fast memory copy
3317 * The other way is to figure out exactly how big the string should be
3318 * by parsing the entire input. Then you don't have to make it big
3319 * enough to handle the worst possible case, and more importantly, if
3320 * the string you already have is large enough, you don't have to
3321 * allocate a new string, you can copy the last character in the input
3322 * string to the final position(s) that will be occupied by the
3323 * converted string and go backwards, stopping at t, since everything
3324 * before that is invariant.
3326 * There are advantages and disadvantages to each method.
3328 * In the first method, we can allocate a new string, do the memory
3329 * copy from the s to t - 1, and then proceed through the rest of the
3330 * string byte-by-byte.
3332 * In the second method, we proceed through the rest of the input
3333 * string just calculating how big the converted string will be. Then
3334 * there are two cases:
3335 * 1) if the string has enough extra space to handle the converted
3336 * value. We go backwards through the string, converting until we
3337 * get to the position we are at now, and then stop. If this
3338 * position is far enough along in the string, this method is
3339 * faster than the other method. If the memory copy were the same
3340 * speed as the byte-by-byte loop, that position would be about
3341 * half-way, as at the half-way mark, parsing to the end and back
3342 * is one complete string's parse, the same amount as starting
3343 * over and going all the way through. Actually, it would be
3344 * somewhat less than half-way, as it's faster to just count bytes
3345 * than to also copy, and we don't have the overhead of allocating
3346 * a new string, changing the scalar to use it, and freeing the
3347 * existing one. But if the memory copy is fast, the break-even
3348 * point is somewhere after half way. The counting loop could be
3349 * sped up by vectorization, etc, to move the break-even point
3350 * further towards the beginning.
3351 * 2) if the string doesn't have enough space to handle the converted
3352 * value. A new string will have to be allocated, and one might
3353 * as well, given that, start from the beginning doing the first
3354 * method. We've spent extra time parsing the string and in
3355 * exchange all we've gotten is that we know precisely how big to
3356 * make the new one. Perl is more optimized for time than space,
3357 * so this case is a loser.
3358 * So what I've decided to do is not use the 2nd method unless it is
3359 * guaranteed that a new string won't have to be allocated, assuming
3360 * the worst case. I also decided not to put any more conditions on it
3361 * than this, for now. It seems likely that, since the worst case is
3362 * twice as big as the unknown portion of the string (plus 1), we won't
3363 * be guaranteed enough space, causing us to go to the first method,
3364 * unless the string is short, or the first variant character is near
3365 * the end of it. In either of these cases, it seems best to use the
3366 * 2nd method. The only circumstance I can think of where this would
3367 * be really slower is if the string had once had much more data in it
3368 * than it does now, but there is still a substantial amount in it */
3371 STRLEN invariant_head = t - s;
3372 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3373 if (SvLEN(sv) < size) {
3375 /* Here, have decided to allocate a new string */
3380 Newx(dst, size, U8);
3382 /* If no known invariants at the beginning of the input string,
3383 * set so starts from there. Otherwise, can use memory copy to
3384 * get up to where we are now, and then start from here */
3386 if (invariant_head <= 0) {
3389 Copy(s, dst, invariant_head, char);
3390 d = dst + invariant_head;
3394 const UV uv = NATIVE8_TO_UNI(*t++);
3395 if (UNI_IS_INVARIANT(uv))
3396 *d++ = (U8)UNI_TO_NATIVE(uv);
3398 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3399 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3403 SvPV_free(sv); /* No longer using pre-existing string */
3404 SvPV_set(sv, (char*)dst);
3405 SvCUR_set(sv, d - dst);
3406 SvLEN_set(sv, size);
3409 /* Here, have decided to get the exact size of the string.
3410 * Currently this happens only when we know that there is
3411 * guaranteed enough space to fit the converted string, so
3412 * don't have to worry about growing. If two_byte_count is 0,
3413 * then t points to the first byte of the string which hasn't
3414 * been examined yet. Otherwise two_byte_count is 1, and t
3415 * points to the first byte in the string that will expand to
3416 * two. Depending on this, start examining at t or 1 after t.
3419 U8 *d = t + two_byte_count;
3422 /* Count up the remaining bytes that expand to two */
3425 const U8 chr = *d++;
3426 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3429 /* The string will expand by just the number of bytes that
3430 * occupy two positions. But we are one afterwards because of
3431 * the increment just above. This is the place to put the
3432 * trailing NUL, and to set the length before we decrement */
3434 d += two_byte_count;
3435 SvCUR_set(sv, d - s);
3439 /* Having decremented d, it points to the position to put the
3440 * very last byte of the expanded string. Go backwards through
3441 * the string, copying and expanding as we go, stopping when we
3442 * get to the part that is invariant the rest of the way down */
3446 const U8 ch = NATIVE8_TO_UNI(*e--);
3447 if (UNI_IS_INVARIANT(ch)) {
3448 *d-- = UNI_TO_NATIVE(ch);
3450 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3451 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3458 /* Mark as UTF-8 even if no variant - saves scanning loop */
3464 =for apidoc sv_utf8_downgrade
3466 Attempts to convert the PV of an SV from characters to bytes.
3467 If the PV contains a character that cannot fit
3468 in a byte, this conversion will fail;
3469 in this case, either returns false or, if C<fail_ok> is not
3472 This is not as a general purpose Unicode to byte encoding interface:
3473 use the Encode extension for that.
3479 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3483 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3485 if (SvPOKp(sv) && SvUTF8(sv)) {
3491 sv_force_normal_flags(sv, 0);
3493 s = (U8 *) SvPV(sv, len);
3494 if (!utf8_to_bytes(s, &len)) {
3499 Perl_croak(aTHX_ "Wide character in %s",
3502 Perl_croak(aTHX_ "Wide character");
3513 =for apidoc sv_utf8_encode
3515 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3516 flag off so that it looks like octets again.
3522 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3524 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3527 sv_force_normal_flags(sv, 0);
3529 if (SvREADONLY(sv)) {
3530 Perl_croak(aTHX_ "%s", PL_no_modify);
3532 (void) sv_utf8_upgrade(sv);
3537 =for apidoc sv_utf8_decode
3539 If the PV of the SV is an octet sequence in UTF-8
3540 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3541 so that it looks like a character. If the PV contains only single-byte
3542 characters, the C<SvUTF8> flag stays being off.
3543 Scans PV for validity and returns false if the PV is invalid UTF-8.
3549 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3551 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3557 /* The octets may have got themselves encoded - get them back as
3560 if (!sv_utf8_downgrade(sv, TRUE))
3563 /* it is actually just a matter of turning the utf8 flag on, but
3564 * we want to make sure everything inside is valid utf8 first.
3566 c = (const U8 *) SvPVX_const(sv);
3567 if (!is_utf8_string(c, SvCUR(sv)+1))
3569 e = (const U8 *) SvEND(sv);
3572 if (!UTF8_IS_INVARIANT(ch)) {
3582 =for apidoc sv_setsv
3584 Copies the contents of the source SV C<ssv> into the destination SV
3585 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3586 function if the source SV needs to be reused. Does not handle 'set' magic.
3587 Loosely speaking, it performs a copy-by-value, obliterating any previous
3588 content of the destination.
3590 You probably want to use one of the assortment of wrappers, such as
3591 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3592 C<SvSetMagicSV_nosteal>.
3594 =for apidoc sv_setsv_flags
3596 Copies the contents of the source SV C<ssv> into the destination SV
3597 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3598 function if the source SV needs to be reused. Does not handle 'set' magic.
3599 Loosely speaking, it performs a copy-by-value, obliterating any previous
3600 content of the destination.
3601 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3602 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3603 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3604 and C<sv_setsv_nomg> are implemented in terms of this function.
3606 You probably want to use one of the assortment of wrappers, such as
3607 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3608 C<SvSetMagicSV_nosteal>.
3610 This is the primary function for copying scalars, and most other
3611 copy-ish functions and macros use this underneath.
3617 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3619 I32 mro_changes = 0; /* 1 = method, 2 = isa */
3621 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3623 if (dtype != SVt_PVGV) {
3624 const char * const name = GvNAME(sstr);
3625 const STRLEN len = GvNAMELEN(sstr);
3627 if (dtype >= SVt_PV) {
3633 SvUPGRADE(dstr, SVt_PVGV);
3634 (void)SvOK_off(dstr);
3635 /* FIXME - why are we doing this, then turning it off and on again
3637 isGV_with_GP_on(dstr);
3639 GvSTASH(dstr) = GvSTASH(sstr);
3641 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3642 gv_name_set(MUTABLE_GV(dstr), name, len, GV_ADD);
3643 SvFAKE_on(dstr); /* can coerce to non-glob */
3646 if(GvGP(MUTABLE_GV(sstr))) {
3647 /* If source has method cache entry, clear it */
3649 SvREFCNT_dec(GvCV(sstr));
3653 /* If source has a real method, then a method is
3655 else if(GvCV((const GV *)sstr)) {
3660 /* If dest already had a real method, that's a change as well */
3661 if(!mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)) {
3665 if(strEQ(GvNAME((const GV *)dstr),"ISA"))
3668 gp_free(MUTABLE_GV(dstr));
3669 isGV_with_GP_off(dstr);
3670 (void)SvOK_off(dstr);
3671 isGV_with_GP_on(dstr);
3672 GvINTRO_off(dstr); /* one-shot flag */
3673 GvGP(dstr) = gp_ref(GvGP(sstr));
3674 if (SvTAINTED(sstr))
3676 if (GvIMPORTED(dstr) != GVf_IMPORTED
3677 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3679 GvIMPORTED_on(dstr);
3682 if(mro_changes == 2) mro_isa_changed_in(GvSTASH(dstr));
3683 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3688 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3690 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3692 const int intro = GvINTRO(dstr);
3695 const U32 stype = SvTYPE(sref);
3697 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3700 GvINTRO_off(dstr); /* one-shot flag */
3701 GvLINE(dstr) = CopLINE(PL_curcop);
3702 GvEGV(dstr) = MUTABLE_GV(dstr);
3707 location = (SV **) &GvCV(dstr);
3708 import_flag = GVf_IMPORTED_CV;
3711 location = (SV **) &GvHV(dstr);
3712 import_flag = GVf_IMPORTED_HV;
3715 location = (SV **) &GvAV(dstr);
3716 import_flag = GVf_IMPORTED_AV;
3719 location = (SV **) &GvIOp(dstr);
3722 location = (SV **) &GvFORM(dstr);
3725 location = &GvSV(dstr);
3726 import_flag = GVf_IMPORTED_SV;
3729 if (stype == SVt_PVCV) {
3730 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3731 if (GvCVGEN(dstr)) {
3732 SvREFCNT_dec(GvCV(dstr));
3734 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3737 SAVEGENERICSV(*location);
3741 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3742 CV* const cv = MUTABLE_CV(*location);
3744 if (!GvCVGEN((const GV *)dstr) &&
3745 (CvROOT(cv) || CvXSUB(cv)))
3747 /* Redefining a sub - warning is mandatory if
3748 it was a const and its value changed. */
3749 if (CvCONST(cv) && CvCONST((const CV *)sref)
3751 == cv_const_sv((const CV *)sref)) {
3753 /* They are 2 constant subroutines generated from
3754 the same constant. This probably means that
3755 they are really the "same" proxy subroutine
3756 instantiated in 2 places. Most likely this is
3757 when a constant is exported twice. Don't warn.
3760 else if (ckWARN(WARN_REDEFINE)
3762 && (!CvCONST((const CV *)sref)
3763 || sv_cmp(cv_const_sv(cv),
3764 cv_const_sv((const CV *)
3766 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3769 ? "Constant subroutine %s::%s redefined"
3770 : "Subroutine %s::%s redefined"),
3771 HvNAME_get(GvSTASH((const GV *)dstr)),
3772 GvENAME(MUTABLE_GV(dstr)));
3776 cv_ckproto_len(cv, (const GV *)dstr,
3777 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3778 SvPOK(sref) ? SvCUR(sref) : 0);
3780 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3781 GvASSUMECV_on(dstr);
3782 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3785 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3786 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3787 GvFLAGS(dstr) |= import_flag;
3789 if (stype == SVt_PVAV && strEQ(GvNAME((GV*)dstr), "ISA")) {
3790 sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3791 mro_isa_changed_in(GvSTASH(dstr));
3796 if (SvTAINTED(sstr))
3802 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3805 register U32 sflags;
3807 register svtype stype;
3809 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3814 if (SvIS_FREED(dstr)) {
3815 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3816 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3818 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3820 sstr = &PL_sv_undef;
3821 if (SvIS_FREED(sstr)) {
3822 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3823 (void*)sstr, (void*)dstr);
3825 stype = SvTYPE(sstr);
3826 dtype = SvTYPE(dstr);
3828 (void)SvAMAGIC_off(dstr);
3831 /* need to nuke the magic */
3835 /* There's a lot of redundancy below but we're going for speed here */
3840 if (dtype != SVt_PVGV) {
3841 (void)SvOK_off(dstr);
3849 sv_upgrade(dstr, SVt_IV);
3853 sv_upgrade(dstr, SVt_PVIV);
3856 goto end_of_first_switch;
3858 (void)SvIOK_only(dstr);
3859 SvIV_set(dstr, SvIVX(sstr));
3862 /* SvTAINTED can only be true if the SV has taint magic, which in
3863 turn means that the SV type is PVMG (or greater). This is the
3864 case statement for SVt_IV, so this cannot be true (whatever gcov
3866 assert(!SvTAINTED(sstr));
3871 if (dtype < SVt_PV && dtype != SVt_IV)
3872 sv_upgrade(dstr, SVt_IV);
3880 sv_upgrade(dstr, SVt_NV);
3884 sv_upgrade(dstr, SVt_PVNV);
3887 goto end_of_first_switch;
3889 SvNV_set(dstr, SvNVX(sstr));
3890 (void)SvNOK_only(dstr);
3891 /* SvTAINTED can only be true if the SV has taint magic, which in
3892 turn means that the SV type is PVMG (or greater). This is the
3893 case statement for SVt_NV, so this cannot be true (whatever gcov
3895 assert(!SvTAINTED(sstr));
3901 #ifdef PERL_OLD_COPY_ON_WRITE
3902 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3903 if (dtype < SVt_PVIV)
3904 sv_upgrade(dstr, SVt_PVIV);
3911 sv_upgrade(dstr, SVt_PV);
3914 if (dtype < SVt_PVIV)
3915 sv_upgrade(dstr, SVt_PVIV);
3918 if (dtype < SVt_PVNV)
3919 sv_upgrade(dstr, SVt_PVNV);
3923 const char * const type = sv_reftype(sstr,0);
3925 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
3927 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3932 if (dtype < SVt_REGEXP)
3933 sv_upgrade(dstr, SVt_REGEXP);
3936 /* case SVt_BIND: */
3939 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3940 glob_assign_glob(dstr, sstr, dtype);
3943 /* SvVALID means that this PVGV is playing at being an FBM. */
3947 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3949 if (SvTYPE(sstr) != stype) {
3950 stype = SvTYPE(sstr);
3951 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3952 glob_assign_glob(dstr, sstr, dtype);
3957 if (stype == SVt_PVLV)
3958 SvUPGRADE(dstr, SVt_PVNV);
3960 SvUPGRADE(dstr, (svtype)stype);
3962 end_of_first_switch:
3964 /* dstr may have been upgraded. */
3965 dtype = SvTYPE(dstr);
3966 sflags = SvFLAGS(sstr);
3968 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3969 /* Assigning to a subroutine sets the prototype. */
3972 const char *const ptr = SvPV_const(sstr, len);
3974 SvGROW(dstr, len + 1);
3975 Copy(ptr, SvPVX(dstr), len + 1, char);
3976 SvCUR_set(dstr, len);
3978 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3982 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3983 const char * const type = sv_reftype(dstr,0);
3985 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
3987 Perl_croak(aTHX_ "Cannot copy to %s", type);
3988 } else if (sflags & SVf_ROK) {
3989 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3990 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
3993 if (GvIMPORTED(dstr) != GVf_IMPORTED
3994 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3996 GvIMPORTED_on(dstr);
4001 glob_assign_glob(dstr, sstr, dtype);
4005 if (dtype >= SVt_PV) {
4006 if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
4007 glob_assign_ref(dstr, sstr);
4010 if (SvPVX_const(dstr)) {
4016 (void)SvOK_off(dstr);
4017 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4018 SvFLAGS(dstr) |= sflags & SVf_ROK;
4019 assert(!(sflags & SVp_NOK));
4020 assert(!(sflags & SVp_IOK));
4021 assert(!(sflags & SVf_NOK));
4022 assert(!(sflags & SVf_IOK));
4024 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
4025 if (!(sflags & SVf_OK)) {
4026 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4027 "Undefined value assigned to typeglob");
4030 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
4031 if (dstr != (const SV *)gv) {
4033 gp_free(MUTABLE_GV(dstr));
4034 GvGP(dstr) = gp_ref(GvGP(gv));
4038 else if (dtype == SVt_REGEXP && stype == SVt_REGEXP) {
4039 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4041 else if (sflags & SVp_POK) {
4045 * Check to see if we can just swipe the string. If so, it's a
4046 * possible small lose on short strings, but a big win on long ones.
4047 * It might even be a win on short strings if SvPVX_const(dstr)
4048 * has to be allocated and SvPVX_const(sstr) has to be freed.
4049 * Likewise if we can set up COW rather than doing an actual copy, we
4050 * drop to the else clause, as the swipe code and the COW setup code
4051 * have much in common.
4054 /* Whichever path we take through the next code, we want this true,
4055 and doing it now facilitates the COW check. */
4056 (void)SvPOK_only(dstr);
4059 /* If we're already COW then this clause is not true, and if COW
4060 is allowed then we drop down to the else and make dest COW
4061 with us. If caller hasn't said that we're allowed to COW
4062 shared hash keys then we don't do the COW setup, even if the
4063 source scalar is a shared hash key scalar. */
4064 (((flags & SV_COW_SHARED_HASH_KEYS)
4065 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
4066 : 1 /* If making a COW copy is forbidden then the behaviour we
4067 desire is as if the source SV isn't actually already
4068 COW, even if it is. So we act as if the source flags
4069 are not COW, rather than actually testing them. */
4071 #ifndef PERL_OLD_COPY_ON_WRITE
4072 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
4073 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
4074 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
4075 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
4076 but in turn, it's somewhat dead code, never expected to go
4077 live, but more kept as a placeholder on how to do it better
4078 in a newer implementation. */
4079 /* If we are COW and dstr is a suitable target then we drop down
4080 into the else and make dest a COW of us. */
4081 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
4086 (sflags & SVs_TEMP) && /* slated for free anyway? */
4087 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4088 (!(flags & SV_NOSTEAL)) &&
4089 /* and we're allowed to steal temps */
4090 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4091 SvLEN(sstr)) /* and really is a string */
4092 #ifdef PERL_OLD_COPY_ON_WRITE
4093 && ((flags & SV_COW_SHARED_HASH_KEYS)
4094 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4095 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4096 && SvTYPE(sstr) >= SVt_PVIV && SvTYPE(sstr) != SVt_PVFM))
4100 /* Failed the swipe test, and it's not a shared hash key either.
4101 Have to copy the string. */
4102 STRLEN len = SvCUR(sstr);
4103 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
4104 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
4105 SvCUR_set(dstr, len);
4106 *SvEND(dstr) = '\0';
4108 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4110 /* Either it's a shared hash key, or it's suitable for
4111 copy-on-write or we can swipe the string. */
4113 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4117 #ifdef PERL_OLD_COPY_ON_WRITE
4119 if ((sflags & (SVf_FAKE | SVf_READONLY))
4120 != (SVf_FAKE | SVf_READONLY)) {
4121 SvREADONLY_on(sstr);
4123 /* Make the source SV into a loop of 1.
4124 (about to become 2) */
4125 SV_COW_NEXT_SV_SET(sstr, sstr);
4129 /* Initial code is common. */
4130 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4135 /* making another shared SV. */
4136 STRLEN cur = SvCUR(sstr);
4137 STRLEN len = SvLEN(sstr);
4138 #ifdef PERL_OLD_COPY_ON_WRITE
4140 assert (SvTYPE(dstr) >= SVt_PVIV);
4141 /* SvIsCOW_normal */
4142 /* splice us in between source and next-after-source. */
4143 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4144 SV_COW_NEXT_SV_SET(sstr, dstr);
4145 SvPV_set(dstr, SvPVX_mutable(sstr));
4149 /* SvIsCOW_shared_hash */
4150 DEBUG_C(PerlIO_printf(Perl_debug_log,
4151 "Copy on write: Sharing hash\n"));
4153 assert (SvTYPE(dstr) >= SVt_PV);
4155 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4157 SvLEN_set(dstr, len);
4158 SvCUR_set(dstr, cur);
4159 SvREADONLY_on(dstr);
4163 { /* Passes the swipe test. */
4164 SvPV_set(dstr, SvPVX_mutable(sstr));
4165 SvLEN_set(dstr, SvLEN(sstr));
4166 SvCUR_set(dstr, SvCUR(sstr));
4169 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4170 SvPV_set(sstr, NULL);
4176 if (sflags & SVp_NOK) {
4177 SvNV_set(dstr, SvNVX(sstr));
4179 if (sflags & SVp_IOK) {
4180 SvIV_set(dstr, SvIVX(sstr));
4181 /* Must do this otherwise some other overloaded use of 0x80000000
4182 gets confused. I guess SVpbm_VALID */
4183 if (sflags & SVf_IVisUV)
4186 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4188 const MAGIC * const smg = SvVSTRING_mg(sstr);
4190 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4191 smg->mg_ptr, smg->mg_len);
4192 SvRMAGICAL_on(dstr);
4196 else if (sflags & (SVp_IOK|SVp_NOK)) {
4197 (void)SvOK_off(dstr);
4198 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4199 if (sflags & SVp_IOK) {
4200 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4201 SvIV_set(dstr, SvIVX(sstr));
4203 if (sflags & SVp_NOK) {
4204 SvNV_set(dstr, SvNVX(sstr));
4208 if (isGV_with_GP(sstr)) {
4209 /* This stringification rule for globs is spread in 3 places.
4210 This feels bad. FIXME. */
4211 const U32 wasfake = sflags & SVf_FAKE;
4213 /* FAKE globs can get coerced, so need to turn this off
4214 temporarily if it is on. */
4216 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4217 SvFLAGS(sstr) |= wasfake;
4220 (void)SvOK_off(dstr);
4222 if (SvTAINTED(sstr))
4227 =for apidoc sv_setsv_mg
4229 Like C<sv_setsv>, but also handles 'set' magic.
4235 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
4237 PERL_ARGS_ASSERT_SV_SETSV_MG;
4239 sv_setsv(dstr,sstr);
4243 #ifdef PERL_OLD_COPY_ON_WRITE
4245 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4247 STRLEN cur = SvCUR(sstr);
4248 STRLEN len = SvLEN(sstr);
4249 register char *new_pv;
4251 PERL_ARGS_ASSERT_SV_SETSV_COW;
4254 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4255 (void*)sstr, (void*)dstr);
4262 if (SvTHINKFIRST(dstr))
4263 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4264 else if (SvPVX_const(dstr))
4265 Safefree(SvPVX_const(dstr));
4269 SvUPGRADE(dstr, SVt_PVIV);
4271 assert (SvPOK(sstr));
4272 assert (SvPOKp(sstr));
4273 assert (!SvIOK(sstr));
4274 assert (!SvIOKp(sstr));
4275 assert (!SvNOK(sstr));
4276 assert (!SvNOKp(sstr));
4278 if (SvIsCOW(sstr)) {
4280 if (SvLEN(sstr) == 0) {
4281 /* source is a COW shared hash key. */
4282 DEBUG_C(PerlIO_printf(Perl_debug_log,
4283 "Fast copy on write: Sharing hash\n"));
4284 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4287 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4289 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4290 SvUPGRADE(sstr, SVt_PVIV);
4291 SvREADONLY_on(sstr);
4293 DEBUG_C(PerlIO_printf(Perl_debug_log,
4294 "Fast copy on write: Converting sstr to COW\n"));
4295 SV_COW_NEXT_SV_SET(dstr, sstr);
4297 SV_COW_NEXT_SV_SET(sstr, dstr);
4298 new_pv = SvPVX_mutable(sstr);
4301 SvPV_set(dstr, new_pv);
4302 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4305 SvLEN_set(dstr, len);
4306 SvCUR_set(dstr, cur);
4315 =for apidoc sv_setpvn
4317 Copies a string into an SV. The C<len> parameter indicates the number of
4318 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4319 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4325 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4328 register char *dptr;
4330 PERL_ARGS_ASSERT_SV_SETPVN;
4332 SV_CHECK_THINKFIRST_COW_DROP(sv);
4338 /* len is STRLEN which is unsigned, need to copy to signed */
4341 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
4343 SvUPGRADE(sv, SVt_PV);
4345 dptr = SvGROW(sv, len + 1);
4346 Move(ptr,dptr,len,char);
4349 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4354 =for apidoc sv_setpvn_mg
4356 Like C<sv_setpvn>, but also handles 'set' magic.
4362 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4364 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4366 sv_setpvn(sv,ptr,len);
4371 =for apidoc sv_setpv
4373 Copies a string into an SV. The string must be null-terminated. Does not
4374 handle 'set' magic. See C<sv_setpv_mg>.
4380 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4383 register STRLEN len;
4385 PERL_ARGS_ASSERT_SV_SETPV;
4387 SV_CHECK_THINKFIRST_COW_DROP(sv);
4393 SvUPGRADE(sv, SVt_PV);
4395 SvGROW(sv, len + 1);
4396 Move(ptr,SvPVX(sv),len+1,char);
4398 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4403 =for apidoc sv_setpv_mg
4405 Like C<sv_setpv>, but also handles 'set' magic.
4411 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4413 PERL_ARGS_ASSERT_SV_SETPV_MG;
4420 =for apidoc sv_usepvn_flags
4422 Tells an SV to use C<ptr> to find its string value. Normally the
4423 string is stored inside the SV but sv_usepvn allows the SV to use an
4424 outside string. The C<ptr> should point to memory that was allocated
4425 by C<malloc>. The string length, C<len>, must be supplied. By default
4426 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4427 so that pointer should not be freed or used by the programmer after
4428 giving it to sv_usepvn, and neither should any pointers from "behind"
4429 that pointer (e.g. ptr + 1) be used.
4431 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4432 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4433 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
4434 C<len>, and already meets the requirements for storing in C<SvPVX>)
4440 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4445 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4447 SV_CHECK_THINKFIRST_COW_DROP(sv);
4448 SvUPGRADE(sv, SVt_PV);
4451 if (flags & SV_SMAGIC)
4455 if (SvPVX_const(sv))
4459 if (flags & SV_HAS_TRAILING_NUL)
4460 assert(ptr[len] == '\0');
4463 allocate = (flags & SV_HAS_TRAILING_NUL)
4465 #ifdef Perl_safesysmalloc_size
4468 PERL_STRLEN_ROUNDUP(len + 1);
4470 if (flags & SV_HAS_TRAILING_NUL) {
4471 /* It's long enough - do nothing.
4472 Specfically Perl_newCONSTSUB is relying on this. */
4475 /* Force a move to shake out bugs in callers. */
4476 char *new_ptr = (char*)safemalloc(allocate);
4477 Copy(ptr, new_ptr, len, char);
4478 PoisonFree(ptr,len,char);
4482 ptr = (char*) saferealloc (ptr, allocate);
4485 #ifdef Perl_safesysmalloc_size
4486 SvLEN_set(sv, Perl_safesysmalloc_size(ptr));
4488 SvLEN_set(sv, allocate);
4492 if (!(flags & SV_HAS_TRAILING_NUL)) {
4495 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4497 if (flags & SV_SMAGIC)
4501 #ifdef PERL_OLD_COPY_ON_WRITE
4502 /* Need to do this *after* making the SV normal, as we need the buffer
4503 pointer to remain valid until after we've copied it. If we let go too early,
4504 another thread could invalidate it by unsharing last of the same hash key
4505 (which it can do by means other than releasing copy-on-write Svs)
4506 or by changing the other copy-on-write SVs in the loop. */
4508 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
4510 PERL_ARGS_ASSERT_SV_RELEASE_COW;
4512 { /* this SV was SvIsCOW_normal(sv) */
4513 /* we need to find the SV pointing to us. */
4514 SV *current = SV_COW_NEXT_SV(after);
4516 if (current == sv) {
4517 /* The SV we point to points back to us (there were only two of us
4519 Hence other SV is no longer copy on write either. */
4521 SvREADONLY_off(after);
4523 /* We need to follow the pointers around the loop. */
4525 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4528 /* don't loop forever if the structure is bust, and we have
4529 a pointer into a closed loop. */
4530 assert (current != after);
4531 assert (SvPVX_const(current) == pvx);
4533 /* Make the SV before us point to the SV after us. */
4534 SV_COW_NEXT_SV_SET(current, after);
4540 =for apidoc sv_force_normal_flags
4542 Undo various types of fakery on an SV: if the PV is a shared string, make
4543 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4544 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4545 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4546 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4547 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4548 set to some other value.) In addition, the C<flags> parameter gets passed to
4549 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4550 with flags set to 0.
4556 Perl_sv_force_normal_flags(pTHX_ register SV *const sv, const U32 flags)
4560 PERL_ARGS_ASSERT_SV_FORCE_NORMAL_FLAGS;
4562 #ifdef PERL_OLD_COPY_ON_WRITE
4563 if (SvREADONLY(sv)) {
4565 const char * const pvx = SvPVX_const(sv);
4566 const STRLEN len = SvLEN(sv);
4567 const STRLEN cur = SvCUR(sv);
4568 /* next COW sv in the loop. If len is 0 then this is a shared-hash
4569 key scalar, so we mustn't attempt to call SV_COW_NEXT_SV(), as
4570 we'll fail an assertion. */
4571 SV * const next = len ? SV_COW_NEXT_SV(sv) : 0;
4574 PerlIO_printf(Perl_debug_log,
4575 "Copy on write: Force normal %ld\n",
4581 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4584 if (flags & SV_COW_DROP_PV) {
4585 /* OK, so we don't need to copy our buffer. */
4588 SvGROW(sv, cur + 1);
4589 Move(pvx,SvPVX(sv),cur,char);
4594 sv_release_COW(sv, pvx, next);
4596 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4602 else if (IN_PERL_RUNTIME)
4603 Perl_croak(aTHX_ "%s", PL_no_modify);
4606 if (SvREADONLY(sv)) {
4608 const char * const pvx = SvPVX_const(sv);
4609 const STRLEN len = SvCUR(sv);
4614 SvGROW(sv, len + 1);
4615 Move(pvx,SvPVX(sv),len,char);
4617 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4619 else if (IN_PERL_RUNTIME)
4620 Perl_croak(aTHX_ "%s", PL_no_modify);
4624 sv_unref_flags(sv, flags);
4625 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4627 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_REGEXP) {
4628 /* Need to downgrade the REGEXP to a simple(r) scalar. This is analagous
4629 to sv_unglob. We only need it here, so inline it. */
4630 const svtype new_type = SvMAGIC(sv) || SvSTASH(sv) ? SVt_PVMG : SVt_PV;
4631 SV *const temp = newSV_type(new_type);
4632 void *const temp_p = SvANY(sv);
4634 if (new_type == SVt_PVMG) {
4635 SvMAGIC_set(temp, SvMAGIC(sv));
4636 SvMAGIC_set(sv, NULL);
4637 SvSTASH_set(temp, SvSTASH(sv));
4638 SvSTASH_set(sv, NULL);
4640 SvCUR_set(temp, SvCUR(sv));
4641 /* Remember that SvPVX is in the head, not the body. */
4643 SvLEN_set(temp, SvLEN(sv));
4644 /* This signals "buffer is owned by someone else" in sv_clear,
4645 which is the least effort way to stop it freeing the buffer.
4647 SvLEN_set(sv, SvLEN(sv)+1);
4649 /* Their buffer is already owned by someone else. */
4650 SvPVX(sv) = savepvn(SvPVX(sv), SvCUR(sv));
4651 SvLEN_set(temp, SvCUR(sv)+1);
4654 /* Now swap the rest of the bodies. */
4656 SvFLAGS(sv) &= ~(SVf_FAKE|SVTYPEMASK);
4657 SvFLAGS(sv) |= new_type;
4658 SvANY(sv) = SvANY(temp);
4660 SvFLAGS(temp) &= ~(SVTYPEMASK);
4661 SvFLAGS(temp) |= SVt_REGEXP|SVf_FAKE;
4662 SvANY(temp) = temp_p;
4671 Efficient removal of characters from the beginning of the string buffer.
4672 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4673 the string buffer. The C<ptr> becomes the first character of the adjusted
4674 string. Uses the "OOK hack".
4675 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4676 refer to the same chunk of data.
4682 Perl_sv_chop(pTHX_ register SV *const sv, register const char *const ptr)