5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 EXTERN_C const struct regexp_engine my_reg_engine;
89 #include "dquote_inline.h"
90 #include "invlist_inline.h"
91 #include "unicode_constants.h"
93 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
94 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
96 _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
97 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
98 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
101 #define STATIC static
104 /* this is a chain of data about sub patterns we are processing that
105 need to be handled separately/specially in study_chunk. Its so
106 we can simulate recursion without losing state. */
108 typedef struct scan_frame {
109 regnode *last_regnode; /* last node to process in this frame */
110 regnode *next_regnode; /* next node to process when last is reached */
111 U32 prev_recursed_depth;
112 I32 stopparen; /* what stopparen do we use */
114 struct scan_frame *this_prev_frame; /* this previous frame */
115 struct scan_frame *prev_frame; /* previous frame */
116 struct scan_frame *next_frame; /* next frame */
119 /* Certain characters are output as a sequence with the first being a
121 #define isBACKSLASHED_PUNCT(c) strchr("-[]\\^", c)
124 struct RExC_state_t {
125 U32 flags; /* RXf_* are we folding, multilining? */
126 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
127 char *precomp; /* uncompiled string. */
128 char *precomp_end; /* pointer to end of uncompiled string. */
129 REGEXP *rx_sv; /* The SV that is the regexp. */
130 regexp *rx; /* perl core regexp structure */
131 regexp_internal *rxi; /* internal data for regexp object
133 char *start; /* Start of input for compile */
134 char *end; /* End of input for compile */
135 char *parse; /* Input-scan pointer. */
136 char *copy_start; /* start of copy of input within
137 constructed parse string */
138 char *copy_start_in_input; /* Position in input string
139 corresponding to copy_start */
140 SSize_t whilem_seen; /* number of WHILEM in this expr */
141 regnode *emit_start; /* Start of emitted-code area */
142 regnode_offset emit; /* Code-emit pointer */
143 I32 naughty; /* How bad is this pattern? */
144 I32 sawback; /* Did we see \1, ...? */
146 SSize_t size; /* Number of regnode equivalents in
149 /* position beyond 'precomp' of the warning message furthest away from
150 * 'precomp'. During the parse, no warnings are raised for any problems
151 * earlier in the parse than this position. This works if warnings are
152 * raised the first time a given spot is parsed, and if only one
153 * independent warning is raised for any given spot */
154 Size_t latest_warn_offset;
156 I32 npar; /* Capture buffer count so far in the
157 parse, (OPEN) plus one. ("par" 0 is
159 I32 total_par; /* During initial parse, is either 0,
160 or -1; the latter indicating a
161 reparse is needed. After that pass,
162 it is what 'npar' became after the
163 pass. Hence, it being > 0 indicates
164 we are in a reparse situation */
165 I32 nestroot; /* root parens we are in - used by
168 regnode_offset *open_parens; /* offsets to open parens */
169 regnode_offset *close_parens; /* offsets to close parens */
170 regnode *end_op; /* END node in program */
171 I32 utf8; /* whether the pattern is utf8 or not */
172 I32 orig_utf8; /* whether the pattern was originally in utf8 */
173 /* XXX use this for future optimisation of case
174 * where pattern must be upgraded to utf8. */
175 I32 uni_semantics; /* If a d charset modifier should use unicode
176 rules, even if the pattern is not in
178 HV *paren_names; /* Paren names */
180 regnode **recurse; /* Recurse regops */
181 I32 recurse_count; /* Number of recurse regops we have generated */
182 U8 *study_chunk_recursed; /* bitmap of which subs we have moved
184 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
187 I32 override_recoding;
189 I32 recode_x_to_native;
191 I32 in_multi_char_class;
192 struct reg_code_blocks *code_blocks;/* positions of literal (?{})
194 int code_index; /* next code_blocks[] slot */
195 SSize_t maxlen; /* mininum possible number of chars in string to match */
196 scan_frame *frame_head;
197 scan_frame *frame_last;
200 #ifdef ADD_TO_REGEXEC
201 char *starttry; /* -Dr: where regtry was called. */
202 #define RExC_starttry (pRExC_state->starttry)
204 SV *runtime_code_qr; /* qr with the runtime code blocks */
206 const char *lastparse;
208 AV *paren_name_list; /* idx -> name */
209 U32 study_chunk_recursed_count;
213 #define RExC_lastparse (pRExC_state->lastparse)
214 #define RExC_lastnum (pRExC_state->lastnum)
215 #define RExC_paren_name_list (pRExC_state->paren_name_list)
216 #define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
217 #define RExC_mysv (pRExC_state->mysv1)
218 #define RExC_mysv1 (pRExC_state->mysv1)
219 #define RExC_mysv2 (pRExC_state->mysv2)
229 #define RExC_flags (pRExC_state->flags)
230 #define RExC_pm_flags (pRExC_state->pm_flags)
231 #define RExC_precomp (pRExC_state->precomp)
232 #define RExC_copy_start_in_input (pRExC_state->copy_start_in_input)
233 #define RExC_copy_start_in_constructed (pRExC_state->copy_start)
234 #define RExC_precomp_end (pRExC_state->precomp_end)
235 #define RExC_rx_sv (pRExC_state->rx_sv)
236 #define RExC_rx (pRExC_state->rx)
237 #define RExC_rxi (pRExC_state->rxi)
238 #define RExC_start (pRExC_state->start)
239 #define RExC_end (pRExC_state->end)
240 #define RExC_parse (pRExC_state->parse)
241 #define RExC_latest_warn_offset (pRExC_state->latest_warn_offset )
242 #define RExC_whilem_seen (pRExC_state->whilem_seen)
243 #define RExC_seen_d_op (pRExC_state->seen_d_op) /* Seen something that differs
244 under /d from /u ? */
247 #ifdef RE_TRACK_PATTERN_OFFSETS
248 # define RExC_offsets (RExC_rxi->u.offsets) /* I am not like the
251 #define RExC_emit (pRExC_state->emit)
252 #define RExC_emit_start (pRExC_state->emit_start)
253 #define RExC_sawback (pRExC_state->sawback)
254 #define RExC_seen (pRExC_state->seen)
255 #define RExC_size (pRExC_state->size)
256 #define RExC_maxlen (pRExC_state->maxlen)
257 #define RExC_npar (pRExC_state->npar)
258 #define RExC_total_parens (pRExC_state->total_par)
259 #define RExC_nestroot (pRExC_state->nestroot)
260 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
261 #define RExC_utf8 (pRExC_state->utf8)
262 #define RExC_uni_semantics (pRExC_state->uni_semantics)
263 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
264 #define RExC_open_parens (pRExC_state->open_parens)
265 #define RExC_close_parens (pRExC_state->close_parens)
266 #define RExC_end_op (pRExC_state->end_op)
267 #define RExC_paren_names (pRExC_state->paren_names)
268 #define RExC_recurse (pRExC_state->recurse)
269 #define RExC_recurse_count (pRExC_state->recurse_count)
270 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
271 #define RExC_study_chunk_recursed_bytes \
272 (pRExC_state->study_chunk_recursed_bytes)
273 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
274 #define RExC_contains_locale (pRExC_state->contains_locale)
276 # define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
278 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
279 #define RExC_frame_head (pRExC_state->frame_head)
280 #define RExC_frame_last (pRExC_state->frame_last)
281 #define RExC_frame_count (pRExC_state->frame_count)
282 #define RExC_strict (pRExC_state->strict)
283 #define RExC_study_started (pRExC_state->study_started)
284 #define RExC_warn_text (pRExC_state->warn_text)
285 #define RExC_in_script_run (pRExC_state->in_script_run)
286 #define RExC_use_BRANCHJ (pRExC_state->use_BRANCHJ)
288 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
289 * a flag to disable back-off on the fixed/floating substrings - if it's
290 * a high complexity pattern we assume the benefit of avoiding a full match
291 * is worth the cost of checking for the substrings even if they rarely help.
293 #define RExC_naughty (pRExC_state->naughty)
294 #define TOO_NAUGHTY (10)
295 #define MARK_NAUGHTY(add) \
296 if (RExC_naughty < TOO_NAUGHTY) \
297 RExC_naughty += (add)
298 #define MARK_NAUGHTY_EXP(exp, add) \
299 if (RExC_naughty < TOO_NAUGHTY) \
300 RExC_naughty += RExC_naughty / (exp) + (add)
302 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
303 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
304 ((*s) == '{' && regcurly(s)))
307 * Flags to be passed up and down.
309 #define WORST 0 /* Worst case. */
310 #define HASWIDTH 0x01 /* Known to match non-null strings. */
312 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
313 * character. (There needs to be a case: in the switch statement in regexec.c
314 * for any node marked SIMPLE.) Note that this is not the same thing as
317 #define SPSTART 0x04 /* Starts with * or + */
318 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
319 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
320 #define RESTART_PARSE 0x20 /* Need to redo the parse */
321 #define NEED_UTF8 0x40 /* In conjunction with RESTART_PARSE, need to
322 calcuate sizes as UTF-8 */
324 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
326 /* whether trie related optimizations are enabled */
327 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
328 #define TRIE_STUDY_OPT
329 #define FULL_TRIE_STUDY
335 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
336 #define PBITVAL(paren) (1 << ((paren) & 7))
337 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
338 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
339 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
341 #define REQUIRE_UTF8(flagp) STMT_START { \
343 *flagp = RESTART_PARSE|NEED_UTF8; \
348 /* Change from /d into /u rules, and restart the parse. RExC_uni_semantics is
349 * a flag that indicates we've changed to /u during the parse. */
350 #define REQUIRE_UNI_RULES(flagp, restart_retval) \
352 if (DEPENDS_SEMANTICS) { \
353 set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET); \
354 RExC_uni_semantics = 1; \
355 if (RExC_seen_d_op && LIKELY(RExC_total_parens >= 0)) { \
356 /* No need to restart the parse if we haven't seen \
357 * anything that differs between /u and /d, and no need \
358 * to restart immediately if we're going to reparse \
359 * anyway to count parens */ \
360 *flagp |= RESTART_PARSE; \
361 return restart_retval; \
366 #define BRANCH_MAX_OFFSET U16_MAX
367 #define REQUIRE_BRANCHJ(flagp, restart_retval) \
369 RExC_use_BRANCHJ = 1; \
370 if (LIKELY(RExC_total_parens >= 0)) { \
371 /* No need to restart the parse immediately if we're \
372 * going to reparse anyway to count parens */ \
373 *flagp |= RESTART_PARSE; \
374 return restart_retval; \
378 #define REQUIRE_PARENS_PASS \
380 if (RExC_total_parens == 0) RExC_total_parens = -1; \
383 /* This is used to return failure (zero) early from the calling function if
384 * various flags in 'flags' are set. Two flags always cause a return:
385 * 'RESTART_PARSE' and 'NEED_UTF8'. 'extra' can be used to specify any
386 * additional flags that should cause a return; 0 if none. If the return will
387 * be done, '*flagp' is first set to be all of the flags that caused the
389 #define RETURN_FAIL_ON_RESTART_OR_FLAGS(flags,flagp,extra) \
391 if ((flags) & (RESTART_PARSE|NEED_UTF8|(extra))) { \
392 *(flagp) = (flags) & (RESTART_PARSE|NEED_UTF8|(extra)); \
397 #define MUST_RESTART(flags) ((flags) & (RESTART_PARSE))
399 #define RETURN_FAIL_ON_RESTART(flags,flagp) \
400 RETURN_FAIL_ON_RESTART_OR_FLAGS( flags, flagp, 0)
401 #define RETURN_FAIL_ON_RESTART_FLAGP(flagp) \
402 if (MUST_RESTART(*(flagp))) return 0
404 /* This converts the named class defined in regcomp.h to its equivalent class
405 * number defined in handy.h. */
406 #define namedclass_to_classnum(class) ((int) ((class) / 2))
407 #define classnum_to_namedclass(classnum) ((classnum) * 2)
409 #define _invlist_union_complement_2nd(a, b, output) \
410 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
411 #define _invlist_intersection_complement_2nd(a, b, output) \
412 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
414 /* About scan_data_t.
416 During optimisation we recurse through the regexp program performing
417 various inplace (keyhole style) optimisations. In addition study_chunk
418 and scan_commit populate this data structure with information about
419 what strings MUST appear in the pattern. We look for the longest
420 string that must appear at a fixed location, and we look for the
421 longest string that may appear at a floating location. So for instance
426 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
427 strings (because they follow a .* construct). study_chunk will identify
428 both FOO and BAR as being the longest fixed and floating strings respectively.
430 The strings can be composites, for instance
434 will result in a composite fixed substring 'foo'.
436 For each string some basic information is maintained:
439 This is the position the string must appear at, or not before.
440 It also implicitly (when combined with minlenp) tells us how many
441 characters must match before the string we are searching for.
442 Likewise when combined with minlenp and the length of the string it
443 tells us how many characters must appear after the string we have
447 Only used for floating strings. This is the rightmost point that
448 the string can appear at. If set to SSize_t_MAX it indicates that the
449 string can occur infinitely far to the right.
450 For fixed strings, it is equal to min_offset.
453 A pointer to the minimum number of characters of the pattern that the
454 string was found inside. This is important as in the case of positive
455 lookahead or positive lookbehind we can have multiple patterns
460 The minimum length of the pattern overall is 3, the minimum length
461 of the lookahead part is 3, but the minimum length of the part that
462 will actually match is 1. So 'FOO's minimum length is 3, but the
463 minimum length for the F is 1. This is important as the minimum length
464 is used to determine offsets in front of and behind the string being
465 looked for. Since strings can be composites this is the length of the
466 pattern at the time it was committed with a scan_commit. Note that
467 the length is calculated by study_chunk, so that the minimum lengths
468 are not known until the full pattern has been compiled, thus the
469 pointer to the value.
473 In the case of lookbehind the string being searched for can be
474 offset past the start point of the final matching string.
475 If this value was just blithely removed from the min_offset it would
476 invalidate some of the calculations for how many chars must match
477 before or after (as they are derived from min_offset and minlen and
478 the length of the string being searched for).
479 When the final pattern is compiled and the data is moved from the
480 scan_data_t structure into the regexp structure the information
481 about lookbehind is factored in, with the information that would
482 have been lost precalculated in the end_shift field for the
485 The fields pos_min and pos_delta are used to store the minimum offset
486 and the delta to the maximum offset at the current point in the pattern.
490 struct scan_data_substrs {
491 SV *str; /* longest substring found in pattern */
492 SSize_t min_offset; /* earliest point in string it can appear */
493 SSize_t max_offset; /* latest point in string it can appear */
494 SSize_t *minlenp; /* pointer to the minlen relevant to the string */
495 SSize_t lookbehind; /* is the pos of the string modified by LB */
496 I32 flags; /* per substring SF_* and SCF_* flags */
499 typedef struct scan_data_t {
500 /*I32 len_min; unused */
501 /*I32 len_delta; unused */
505 SSize_t last_end; /* min value, <0 unless valid. */
506 SSize_t last_start_min;
507 SSize_t last_start_max;
508 U8 cur_is_floating; /* whether the last_* values should be set as
509 * the next fixed (0) or floating (1)
512 /* [0] is longest fixed substring so far, [1] is longest float so far */
513 struct scan_data_substrs substrs[2];
515 I32 flags; /* common SF_* and SCF_* flags */
517 SSize_t *last_closep;
518 regnode_ssc *start_class;
522 * Forward declarations for pregcomp()'s friends.
525 static const scan_data_t zero_scan_data = {
526 0, 0, NULL, 0, 0, 0, 0,
528 { NULL, 0, 0, 0, 0, 0 },
529 { NULL, 0, 0, 0, 0, 0 },
536 #define SF_BEFORE_SEOL 0x0001
537 #define SF_BEFORE_MEOL 0x0002
538 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
540 #define SF_IS_INF 0x0040
541 #define SF_HAS_PAR 0x0080
542 #define SF_IN_PAR 0x0100
543 #define SF_HAS_EVAL 0x0200
546 /* SCF_DO_SUBSTR is the flag that tells the regexp analyzer to track the
547 * longest substring in the pattern. When it is not set the optimiser keeps
548 * track of position, but does not keep track of the actual strings seen,
550 * So for instance /foo/ will be parsed with SCF_DO_SUBSTR being true, but
553 * Similarly, /foo.*(blah|erm|huh).*fnorble/ will have "foo" and "fnorble"
554 * parsed with SCF_DO_SUBSTR on, but while processing the (...) it will be
555 * turned off because of the alternation (BRANCH). */
556 #define SCF_DO_SUBSTR 0x0400
558 #define SCF_DO_STCLASS_AND 0x0800
559 #define SCF_DO_STCLASS_OR 0x1000
560 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
561 #define SCF_WHILEM_VISITED_POS 0x2000
563 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
564 #define SCF_SEEN_ACCEPT 0x8000
565 #define SCF_TRIE_DOING_RESTUDY 0x10000
566 #define SCF_IN_DEFINE 0x20000
571 #define UTF cBOOL(RExC_utf8)
573 /* The enums for all these are ordered so things work out correctly */
574 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
575 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
576 == REGEX_DEPENDS_CHARSET)
577 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
578 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
579 >= REGEX_UNICODE_CHARSET)
580 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
581 == REGEX_ASCII_RESTRICTED_CHARSET)
582 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
583 >= REGEX_ASCII_RESTRICTED_CHARSET)
584 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
585 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
587 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
589 /* For programs that want to be strictly Unicode compatible by dying if any
590 * attempt is made to match a non-Unicode code point against a Unicode
592 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
594 #define OOB_NAMEDCLASS -1
596 /* There is no code point that is out-of-bounds, so this is problematic. But
597 * its only current use is to initialize a variable that is always set before
599 #define OOB_UNICODE 0xDEADBEEF
601 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
604 /* length of regex to show in messages that don't mark a position within */
605 #define RegexLengthToShowInErrorMessages 127
608 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
609 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
610 * op/pragma/warn/regcomp.
612 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
613 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
615 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
616 " in m/%" UTF8f MARKER2 "%" UTF8f "/"
618 /* The code in this file in places uses one level of recursion with parsing
619 * rebased to an alternate string constructed by us in memory. This can take
620 * the form of something that is completely different from the input, or
621 * something that uses the input as part of the alternate. In the first case,
622 * there should be no possibility of an error, as we are in complete control of
623 * the alternate string. But in the second case we don't completely control
624 * the input portion, so there may be errors in that. Here's an example:
626 * is handled specially because \x{df} folds to a sequence of more than one
627 * character: 'ss'. What is done is to create and parse an alternate string,
628 * which looks like this:
629 * /(?:\x{DF}|[abc\x{DF}def])/ui
630 * where it uses the input unchanged in the middle of something it constructs,
631 * which is a branch for the DF outside the character class, and clustering
632 * parens around the whole thing. (It knows enough to skip the DF inside the
633 * class while in this substitute parse.) 'abc' and 'def' may have errors that
634 * need to be reported. The general situation looks like this:
636 * |<------- identical ------>|
638 * Input: ---------------------------------------------------------------
639 * Constructed: ---------------------------------------------------
641 * |<------- identical ------>|
643 * sI..eI is the portion of the input pattern we are concerned with here.
644 * sC..EC is the constructed substitute parse string.
645 * sC..tC is constructed by us
646 * tC..eC is an exact duplicate of the portion of the input pattern tI..eI.
647 * In the diagram, these are vertically aligned.
648 * eC..EC is also constructed by us.
649 * xC is the position in the substitute parse string where we found a
651 * xI is the position in the original pattern corresponding to xC.
653 * We want to display a message showing the real input string. Thus we need to
654 * translate from xC to xI. We know that xC >= tC, since the portion of the
655 * string sC..tC has been constructed by us, and so shouldn't have errors. We
657 * xI = tI + (xC - tC)
659 * When the substitute parse is constructed, the code needs to set:
662 * RExC_copy_start_in_input (tI)
663 * RExC_copy_start_in_constructed (tC)
664 * and restore them when done.
666 * During normal processing of the input pattern, both
667 * 'RExC_copy_start_in_input' and 'RExC_copy_start_in_constructed' are set to
668 * sI, so that xC equals xI.
671 #define sI RExC_precomp
672 #define eI RExC_precomp_end
673 #define sC RExC_start
675 #define tI RExC_copy_start_in_input
676 #define tC RExC_copy_start_in_constructed
677 #define xI(xC) (tI + (xC - tC))
678 #define xI_offset(xC) (xI(xC) - sI)
680 #define REPORT_LOCATION_ARGS(xC) \
682 (xI(xC) > eI) /* Don't run off end */ \
683 ? eI - sI /* Length before the <--HERE */ \
684 : ((xI_offset(xC) >= 0) \
686 : (Perl_croak(aTHX_ "panic: %s: %d: negative offset: %" \
687 IVdf " trying to output message for " \
689 __FILE__, __LINE__, (IV) xI_offset(xC), \
690 ((int) (eC - sC)), sC), 0)), \
691 sI), /* The input pattern printed up to the <--HERE */ \
693 (xI(xC) > eI) ? 0 : eI - xI(xC), /* Length after <--HERE */ \
694 (xI(xC) > eI) ? eI : xI(xC)) /* pattern after <--HERE */
696 /* Used to point after bad bytes for an error message, but avoid skipping
697 * past a nul byte. */
698 #define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
700 /* Set up to clean up after our imminent demise */
701 #define PREPARE_TO_DIE \
704 SAVEFREESV(RExC_rx_sv); \
705 if (RExC_open_parens) \
706 SAVEFREEPV(RExC_open_parens); \
707 if (RExC_close_parens) \
708 SAVEFREEPV(RExC_close_parens); \
712 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
713 * arg. Show regex, up to a maximum length. If it's too long, chop and add
716 #define _FAIL(code) STMT_START { \
717 const char *ellipses = ""; \
718 IV len = RExC_precomp_end - RExC_precomp; \
721 if (len > RegexLengthToShowInErrorMessages) { \
722 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
723 len = RegexLengthToShowInErrorMessages - 10; \
729 #define FAIL(msg) _FAIL( \
730 Perl_croak(aTHX_ "%s in regex m/%" UTF8f "%s/", \
731 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
733 #define FAIL2(msg,arg) _FAIL( \
734 Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/", \
735 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
738 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
740 #define Simple_vFAIL(m) STMT_START { \
741 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
742 m, REPORT_LOCATION_ARGS(RExC_parse)); \
746 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
748 #define vFAIL(m) STMT_START { \
754 * Like Simple_vFAIL(), but accepts two arguments.
756 #define Simple_vFAIL2(m,a1) STMT_START { \
757 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
758 REPORT_LOCATION_ARGS(RExC_parse)); \
762 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
764 #define vFAIL2(m,a1) STMT_START { \
766 Simple_vFAIL2(m, a1); \
771 * Like Simple_vFAIL(), but accepts three arguments.
773 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
774 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
775 REPORT_LOCATION_ARGS(RExC_parse)); \
779 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
781 #define vFAIL3(m,a1,a2) STMT_START { \
783 Simple_vFAIL3(m, a1, a2); \
787 * Like Simple_vFAIL(), but accepts four arguments.
789 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
790 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
791 REPORT_LOCATION_ARGS(RExC_parse)); \
794 #define vFAIL4(m,a1,a2,a3) STMT_START { \
796 Simple_vFAIL4(m, a1, a2, a3); \
799 /* A specialized version of vFAIL2 that works with UTF8f */
800 #define vFAIL2utf8f(m, a1) STMT_START { \
802 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
803 REPORT_LOCATION_ARGS(RExC_parse)); \
806 #define vFAIL3utf8f(m, a1, a2) STMT_START { \
808 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
809 REPORT_LOCATION_ARGS(RExC_parse)); \
812 /* Setting this to NULL is a signal to not output warnings */
813 #define TURN_OFF_WARNINGS_IN_SUBSTITUTE_PARSE RExC_copy_start_in_constructed = NULL
814 #define RESTORE_WARNINGS RExC_copy_start_in_constructed = RExC_precomp
816 /* Since a warning can be generated multiple times as the input is reparsed, we
817 * output it the first time we come to that point in the parse, but suppress it
818 * otherwise. 'RExC_copy_start_in_constructed' being NULL is a flag to not
819 * generate any warnings */
820 #define TO_OUTPUT_WARNINGS(loc) \
821 ( RExC_copy_start_in_constructed \
822 && ((xI(loc)) - RExC_precomp) > (Ptrdiff_t) RExC_latest_warn_offset)
824 /* After we've emitted a warning, we save the position in the input so we don't
826 #define UPDATE_WARNINGS_LOC(loc) \
828 if (TO_OUTPUT_WARNINGS(loc)) { \
829 RExC_latest_warn_offset = (xI(loc)) - RExC_precomp; \
833 /* 'warns' is the output of the packWARNx macro used in 'code' */
834 #define _WARN_HELPER(loc, warns, code) \
836 if (! RExC_copy_start_in_constructed) { \
837 Perl_croak( aTHX_ "panic! %s: %d: Tried to warn when none" \
838 " expected at '%s'", \
839 __FILE__, __LINE__, loc); \
841 if (TO_OUTPUT_WARNINGS(loc)) { \
845 UPDATE_WARNINGS_LOC(loc); \
849 /* m is not necessarily a "literal string", in this macro */
850 #define reg_warn_non_literal_string(loc, m) \
851 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
852 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
853 "%s" REPORT_LOCATION, \
854 m, REPORT_LOCATION_ARGS(loc)))
856 #define ckWARNreg(loc,m) \
857 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
858 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
860 REPORT_LOCATION_ARGS(loc)))
862 #define vWARN(loc, m) \
863 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
864 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
866 REPORT_LOCATION_ARGS(loc))) \
868 #define vWARN_dep(loc, m) \
869 _WARN_HELPER(loc, packWARN(WARN_DEPRECATED), \
870 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), \
872 REPORT_LOCATION_ARGS(loc)))
874 #define ckWARNdep(loc,m) \
875 _WARN_HELPER(loc, packWARN(WARN_DEPRECATED), \
876 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
878 REPORT_LOCATION_ARGS(loc)))
880 #define ckWARNregdep(loc,m) \
881 _WARN_HELPER(loc, packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
882 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, \
885 REPORT_LOCATION_ARGS(loc)))
887 #define ckWARN2reg_d(loc,m, a1) \
888 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
889 Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
891 a1, REPORT_LOCATION_ARGS(loc)))
893 #define ckWARN2reg(loc, m, a1) \
894 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
895 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
897 a1, REPORT_LOCATION_ARGS(loc)))
899 #define vWARN3(loc, m, a1, a2) \
900 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
901 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
903 a1, a2, REPORT_LOCATION_ARGS(loc)))
905 #define ckWARN3reg(loc, m, a1, a2) \
906 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
907 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
910 REPORT_LOCATION_ARGS(loc)))
912 #define vWARN4(loc, m, a1, a2, a3) \
913 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
914 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
917 REPORT_LOCATION_ARGS(loc)))
919 #define ckWARN4reg(loc, m, a1, a2, a3) \
920 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
921 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
924 REPORT_LOCATION_ARGS(loc)))
926 #define vWARN5(loc, m, a1, a2, a3, a4) \
927 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
928 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
931 REPORT_LOCATION_ARGS(loc)))
933 #define ckWARNexperimental(loc, class, m) \
934 _WARN_HELPER(loc, packWARN(class), \
935 Perl_ck_warner_d(aTHX_ packWARN(class), \
937 REPORT_LOCATION_ARGS(loc)))
939 /* Convert between a pointer to a node and its offset from the beginning of the
941 #define REGNODE_p(offset) (RExC_emit_start + (offset))
942 #define REGNODE_OFFSET(node) ((node) - RExC_emit_start)
944 /* Macros for recording node offsets. 20001227 mjd@plover.com
945 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
946 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
947 * Element 0 holds the number n.
948 * Position is 1 indexed.
950 #ifndef RE_TRACK_PATTERN_OFFSETS
951 #define Set_Node_Offset_To_R(offset,byte)
952 #define Set_Node_Offset(node,byte)
953 #define Set_Cur_Node_Offset
954 #define Set_Node_Length_To_R(node,len)
955 #define Set_Node_Length(node,len)
956 #define Set_Node_Cur_Length(node,start)
957 #define Node_Offset(n)
958 #define Node_Length(n)
959 #define Set_Node_Offset_Length(node,offset,len)
960 #define ProgLen(ri) ri->u.proglen
961 #define SetProgLen(ri,x) ri->u.proglen = x
962 #define Track_Code(code)
964 #define ProgLen(ri) ri->u.offsets[0]
965 #define SetProgLen(ri,x) ri->u.offsets[0] = x
966 #define Set_Node_Offset_To_R(offset,byte) STMT_START { \
967 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
968 __LINE__, (int)(offset), (int)(byte))); \
970 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
973 RExC_offsets[2*(offset)-1] = (byte); \
977 #define Set_Node_Offset(node,byte) \
978 Set_Node_Offset_To_R(REGNODE_OFFSET(node), (byte)-RExC_start)
979 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
981 #define Set_Node_Length_To_R(node,len) STMT_START { \
982 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
983 __LINE__, (int)(node), (int)(len))); \
985 Perl_croak(aTHX_ "value of node is %d in Length macro", \
988 RExC_offsets[2*(node)] = (len); \
992 #define Set_Node_Length(node,len) \
993 Set_Node_Length_To_R(REGNODE_OFFSET(node), len)
994 #define Set_Node_Cur_Length(node, start) \
995 Set_Node_Length(node, RExC_parse - start)
997 /* Get offsets and lengths */
998 #define Node_Offset(n) (RExC_offsets[2*(REGNODE_OFFSET(n))-1])
999 #define Node_Length(n) (RExC_offsets[2*(REGNODE_OFFSET(n))])
1001 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
1002 Set_Node_Offset_To_R(REGNODE_OFFSET(node), (offset)); \
1003 Set_Node_Length_To_R(REGNODE_OFFSET(node), (len)); \
1006 #define Track_Code(code) STMT_START { code } STMT_END
1009 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
1010 #define EXPERIMENTAL_INPLACESCAN
1011 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
1015 Perl_re_printf(pTHX_ const char *fmt, ...)
1019 PerlIO *f= Perl_debug_log;
1020 PERL_ARGS_ASSERT_RE_PRINTF;
1022 result = PerlIO_vprintf(f, fmt, ap);
1028 Perl_re_indentf(pTHX_ const char *fmt, U32 depth, ...)
1032 PerlIO *f= Perl_debug_log;
1033 PERL_ARGS_ASSERT_RE_INDENTF;
1034 va_start(ap, depth);
1035 PerlIO_printf(f, "%*s", ( (int)depth % 20 ) * 2, "");
1036 result = PerlIO_vprintf(f, fmt, ap);
1040 #endif /* DEBUGGING */
1042 #define DEBUG_RExC_seen() \
1043 DEBUG_OPTIMISE_MORE_r({ \
1044 Perl_re_printf( aTHX_ "RExC_seen: "); \
1046 if (RExC_seen & REG_ZERO_LEN_SEEN) \
1047 Perl_re_printf( aTHX_ "REG_ZERO_LEN_SEEN "); \
1049 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
1050 Perl_re_printf( aTHX_ "REG_LOOKBEHIND_SEEN "); \
1052 if (RExC_seen & REG_GPOS_SEEN) \
1053 Perl_re_printf( aTHX_ "REG_GPOS_SEEN "); \
1055 if (RExC_seen & REG_RECURSE_SEEN) \
1056 Perl_re_printf( aTHX_ "REG_RECURSE_SEEN "); \
1058 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
1059 Perl_re_printf( aTHX_ "REG_TOP_LEVEL_BRANCHES_SEEN "); \
1061 if (RExC_seen & REG_VERBARG_SEEN) \
1062 Perl_re_printf( aTHX_ "REG_VERBARG_SEEN "); \
1064 if (RExC_seen & REG_CUTGROUP_SEEN) \
1065 Perl_re_printf( aTHX_ "REG_CUTGROUP_SEEN "); \
1067 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
1068 Perl_re_printf( aTHX_ "REG_RUN_ON_COMMENT_SEEN "); \
1070 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
1071 Perl_re_printf( aTHX_ "REG_UNFOLDED_MULTI_SEEN "); \
1073 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
1074 Perl_re_printf( aTHX_ "REG_UNBOUNDED_QUANTIFIER_SEEN "); \
1076 Perl_re_printf( aTHX_ "\n"); \
1079 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
1080 if ((flags) & flag) Perl_re_printf( aTHX_ "%s ", #flag)
1085 S_debug_show_study_flags(pTHX_ U32 flags, const char *open_str,
1086 const char *close_str)
1091 Perl_re_printf( aTHX_ "%s", open_str);
1092 DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_SEOL);
1093 DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_MEOL);
1094 DEBUG_SHOW_STUDY_FLAG(flags, SF_IS_INF);
1095 DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_PAR);
1096 DEBUG_SHOW_STUDY_FLAG(flags, SF_IN_PAR);
1097 DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_EVAL);
1098 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_SUBSTR);
1099 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_AND);
1100 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_OR);
1101 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS);
1102 DEBUG_SHOW_STUDY_FLAG(flags, SCF_WHILEM_VISITED_POS);
1103 DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_RESTUDY);
1104 DEBUG_SHOW_STUDY_FLAG(flags, SCF_SEEN_ACCEPT);
1105 DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_DOING_RESTUDY);
1106 DEBUG_SHOW_STUDY_FLAG(flags, SCF_IN_DEFINE);
1107 Perl_re_printf( aTHX_ "%s", close_str);
1112 S_debug_studydata(pTHX_ const char *where, scan_data_t *data,
1113 U32 depth, int is_inf)
1115 GET_RE_DEBUG_FLAGS_DECL;
1117 DEBUG_OPTIMISE_MORE_r({
1120 Perl_re_indentf(aTHX_ "%s: Pos:%" IVdf "/%" IVdf " Flags: 0x%" UVXf,
1124 (IV)data->pos_delta,
1128 S_debug_show_study_flags(aTHX_ data->flags," [","]");
1130 Perl_re_printf( aTHX_
1131 " Whilem_c: %" IVdf " Lcp: %" IVdf " %s",
1133 (IV)(data->last_closep ? *((data)->last_closep) : -1),
1134 is_inf ? "INF " : ""
1137 if (data->last_found) {
1139 Perl_re_printf(aTHX_
1140 "Last:'%s' %" IVdf ":%" IVdf "/%" IVdf,
1141 SvPVX_const(data->last_found),
1143 (IV)data->last_start_min,
1144 (IV)data->last_start_max
1147 for (i = 0; i < 2; i++) {
1148 Perl_re_printf(aTHX_
1149 " %s%s: '%s' @ %" IVdf "/%" IVdf,
1150 data->cur_is_floating == i ? "*" : "",
1151 i ? "Float" : "Fixed",
1152 SvPVX_const(data->substrs[i].str),
1153 (IV)data->substrs[i].min_offset,
1154 (IV)data->substrs[i].max_offset
1156 S_debug_show_study_flags(aTHX_ data->substrs[i].flags," [","]");
1160 Perl_re_printf( aTHX_ "\n");
1166 S_debug_peep(pTHX_ const char *str, const RExC_state_t *pRExC_state,
1167 regnode *scan, U32 depth, U32 flags)
1169 GET_RE_DEBUG_FLAGS_DECL;
1176 Next = regnext(scan);
1177 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
1178 Perl_re_indentf( aTHX_ "%s>%3d: %s (%d)",
1181 REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),
1182 Next ? (REG_NODE_NUM(Next)) : 0 );
1183 S_debug_show_study_flags(aTHX_ flags," [ ","]");
1184 Perl_re_printf( aTHX_ "\n");
1189 # define DEBUG_STUDYDATA(where, data, depth, is_inf) \
1190 S_debug_studydata(aTHX_ where, data, depth, is_inf)
1192 # define DEBUG_PEEP(str, scan, depth, flags) \
1193 S_debug_peep(aTHX_ str, pRExC_state, scan, depth, flags)
1196 # define DEBUG_STUDYDATA(where, data, depth, is_inf) NOOP
1197 # define DEBUG_PEEP(str, scan, depth, flags) NOOP
1201 /* =========================================================
1202 * BEGIN edit_distance stuff.
1204 * This calculates how many single character changes of any type are needed to
1205 * transform a string into another one. It is taken from version 3.1 of
1207 * https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
1210 /* Our unsorted dictionary linked list. */
1211 /* Note we use UVs, not chars. */
1216 struct dictionary* next;
1218 typedef struct dictionary item;
1221 PERL_STATIC_INLINE item*
1222 push(UV key, item* curr)
1225 Newx(head, 1, item);
1233 PERL_STATIC_INLINE item*
1234 find(item* head, UV key)
1236 item* iterator = head;
1238 if (iterator->key == key){
1241 iterator = iterator->next;
1247 PERL_STATIC_INLINE item*
1248 uniquePush(item* head, UV key)
1250 item* iterator = head;
1253 if (iterator->key == key) {
1256 iterator = iterator->next;
1259 return push(key, head);
1262 PERL_STATIC_INLINE void
1263 dict_free(item* head)
1265 item* iterator = head;
1268 item* temp = iterator;
1269 iterator = iterator->next;
1276 /* End of Dictionary Stuff */
1278 /* All calculations/work are done here */
1280 S_edit_distance(const UV* src,
1282 const STRLEN x, /* length of src[] */
1283 const STRLEN y, /* length of tgt[] */
1284 const SSize_t maxDistance
1288 UV swapCount, swapScore, targetCharCount, i, j;
1290 UV score_ceil = x + y;
1292 PERL_ARGS_ASSERT_EDIT_DISTANCE;
1294 /* intialize matrix start values */
1295 Newx(scores, ( (x + 2) * (y + 2)), UV);
1296 scores[0] = score_ceil;
1297 scores[1 * (y + 2) + 0] = score_ceil;
1298 scores[0 * (y + 2) + 1] = score_ceil;
1299 scores[1 * (y + 2) + 1] = 0;
1300 head = uniquePush(uniquePush(head, src[0]), tgt[0]);
1305 for (i=1;i<=x;i++) {
1307 head = uniquePush(head, src[i]);
1308 scores[(i+1) * (y + 2) + 1] = i;
1309 scores[(i+1) * (y + 2) + 0] = score_ceil;
1312 for (j=1;j<=y;j++) {
1315 head = uniquePush(head, tgt[j]);
1316 scores[1 * (y + 2) + (j + 1)] = j;
1317 scores[0 * (y + 2) + (j + 1)] = score_ceil;
1320 targetCharCount = find(head, tgt[j-1])->value;
1321 swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;
1323 if (src[i-1] != tgt[j-1]){
1324 scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
1328 scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
1332 find(head, src[i-1])->value = i;
1336 IV score = scores[(x+1) * (y + 2) + (y + 1)];
1339 return (maxDistance != 0 && maxDistance < score)?(-1):score;
1343 /* END of edit_distance() stuff
1344 * ========================================================= */
1346 /* is c a control character for which we have a mnemonic? */
1347 #define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
1350 S_cntrl_to_mnemonic(const U8 c)
1352 /* Returns the mnemonic string that represents character 'c', if one
1353 * exists; NULL otherwise. The only ones that exist for the purposes of
1354 * this routine are a few control characters */
1357 case '\a': return "\\a";
1358 case '\b': return "\\b";
1359 case ESC_NATIVE: return "\\e";
1360 case '\f': return "\\f";
1361 case '\n': return "\\n";
1362 case '\r': return "\\r";
1363 case '\t': return "\\t";
1369 /* Mark that we cannot extend a found fixed substring at this point.
1370 Update the longest found anchored substring or the longest found
1371 floating substrings if needed. */
1374 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
1375 SSize_t *minlenp, int is_inf)
1377 const STRLEN l = CHR_SVLEN(data->last_found);
1378 SV * const longest_sv = data->substrs[data->cur_is_floating].str;
1379 const STRLEN old_l = CHR_SVLEN(longest_sv);
1380 GET_RE_DEBUG_FLAGS_DECL;
1382 PERL_ARGS_ASSERT_SCAN_COMMIT;
1384 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
1385 const U8 i = data->cur_is_floating;
1386 SvSetMagicSV(longest_sv, data->last_found);
1387 data->substrs[i].min_offset = l ? data->last_start_min : data->pos_min;
1390 data->substrs[0].max_offset = data->substrs[0].min_offset;
1392 data->substrs[1].max_offset = (l
1393 ? data->last_start_max
1394 : (data->pos_delta > SSize_t_MAX - data->pos_min
1396 : data->pos_min + data->pos_delta));
1398 || (STRLEN)data->substrs[1].max_offset > (STRLEN)SSize_t_MAX)
1399 data->substrs[1].max_offset = SSize_t_MAX;
1402 if (data->flags & SF_BEFORE_EOL)
1403 data->substrs[i].flags |= (data->flags & SF_BEFORE_EOL);
1405 data->substrs[i].flags &= ~SF_BEFORE_EOL;
1406 data->substrs[i].minlenp = minlenp;
1407 data->substrs[i].lookbehind = 0;
1410 SvCUR_set(data->last_found, 0);
1412 SV * const sv = data->last_found;
1413 if (SvUTF8(sv) && SvMAGICAL(sv)) {
1414 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
1419 data->last_end = -1;
1420 data->flags &= ~SF_BEFORE_EOL;
1421 DEBUG_STUDYDATA("commit", data, 0, is_inf);
1424 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
1425 * list that describes which code points it matches */
1428 S_ssc_anything(pTHX_ regnode_ssc *ssc)
1430 /* Set the SSC 'ssc' to match an empty string or any code point */
1432 PERL_ARGS_ASSERT_SSC_ANYTHING;
1434 assert(is_ANYOF_SYNTHETIC(ssc));
1436 /* mortalize so won't leak */
1437 ssc->invlist = sv_2mortal(_add_range_to_invlist(NULL, 0, UV_MAX));
1438 ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
1442 S_ssc_is_anything(const regnode_ssc *ssc)
1444 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1445 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
1446 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1447 * in any way, so there's no point in using it */
1452 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1454 assert(is_ANYOF_SYNTHETIC(ssc));
1456 if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1460 /* See if the list consists solely of the range 0 - Infinity */
1461 invlist_iterinit(ssc->invlist);
1462 ret = invlist_iternext(ssc->invlist, &start, &end)
1466 invlist_iterfinish(ssc->invlist);
1472 /* If e.g., both \w and \W are set, matches everything */
1473 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1475 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1476 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1486 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1488 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
1489 * string, any code point, or any posix class under locale */
1491 PERL_ARGS_ASSERT_SSC_INIT;
1493 Zero(ssc, 1, regnode_ssc);
1494 set_ANYOF_SYNTHETIC(ssc);
1495 ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1498 /* If any portion of the regex is to operate under locale rules that aren't
1499 * fully known at compile time, initialization includes it. The reason
1500 * this isn't done for all regexes is that the optimizer was written under
1501 * the assumption that locale was all-or-nothing. Given the complexity and
1502 * lack of documentation in the optimizer, and that there are inadequate
1503 * test cases for locale, many parts of it may not work properly, it is
1504 * safest to avoid locale unless necessary. */
1505 if (RExC_contains_locale) {
1506 ANYOF_POSIXL_SETALL(ssc);
1509 ANYOF_POSIXL_ZERO(ssc);
1514 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1515 const regnode_ssc *ssc)
1517 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1518 * to the list of code points matched, and locale posix classes; hence does
1519 * not check its flags) */
1524 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1526 assert(is_ANYOF_SYNTHETIC(ssc));
1528 invlist_iterinit(ssc->invlist);
1529 ret = invlist_iternext(ssc->invlist, &start, &end)
1533 invlist_iterfinish(ssc->invlist);
1539 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1547 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1548 const regnode_charclass* const node)
1550 /* Returns a mortal inversion list defining which code points are matched
1551 * by 'node', which is of type ANYOF. Handles complementing the result if
1552 * appropriate. If some code points aren't knowable at this time, the
1553 * returned list must, and will, contain every code point that is a
1557 SV* only_utf8_locale_invlist = NULL;
1559 const U32 n = ARG(node);
1560 bool new_node_has_latin1 = FALSE;
1562 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1564 /* Look at the data structure created by S_set_ANYOF_arg() */
1565 if (n != ANYOF_ONLY_HAS_BITMAP) {
1566 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1567 AV * const av = MUTABLE_AV(SvRV(rv));
1568 SV **const ary = AvARRAY(av);
1569 assert(RExC_rxi->data->what[n] == 's');
1571 if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
1572 invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1]), NULL));
1574 else if (ary[0] && ary[0] != &PL_sv_undef) {
1576 /* Here, no compile-time swash, and there are things that won't be
1577 * known until runtime -- we have to assume it could be anything */
1578 invlist = sv_2mortal(_new_invlist(1));
1579 return _add_range_to_invlist(invlist, 0, UV_MAX);
1581 else if (ary[3] && ary[3] != &PL_sv_undef) {
1583 /* Here no compile-time swash, and no run-time only data. Use the
1584 * node's inversion list */
1585 invlist = sv_2mortal(invlist_clone(ary[3], NULL));
1588 /* Get the code points valid only under UTF-8 locales */
1589 if ((ANYOF_FLAGS(node) & ANYOFL_FOLD)
1590 && ary[2] && ary[2] != &PL_sv_undef)
1592 only_utf8_locale_invlist = ary[2];
1597 invlist = sv_2mortal(_new_invlist(0));
1600 /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1601 * code points, and an inversion list for the others, but if there are code
1602 * points that should match only conditionally on the target string being
1603 * UTF-8, those are placed in the inversion list, and not the bitmap.
1604 * Since there are circumstances under which they could match, they are
1605 * included in the SSC. But if the ANYOF node is to be inverted, we have
1606 * to exclude them here, so that when we invert below, the end result
1607 * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
1608 * have to do this here before we add the unconditionally matched code
1610 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1611 _invlist_intersection_complement_2nd(invlist,
1616 /* Add in the points from the bit map */
1617 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1618 if (ANYOF_BITMAP_TEST(node, i)) {
1619 unsigned int start = i++;
1621 for (; i < NUM_ANYOF_CODE_POINTS && ANYOF_BITMAP_TEST(node, i); ++i) {
1624 invlist = _add_range_to_invlist(invlist, start, i-1);
1625 new_node_has_latin1 = TRUE;
1629 /* If this can match all upper Latin1 code points, have to add them
1630 * as well. But don't add them if inverting, as when that gets done below,
1631 * it would exclude all these characters, including the ones it shouldn't
1632 * that were added just above */
1633 if (! (ANYOF_FLAGS(node) & ANYOF_INVERT) && OP(node) == ANYOFD
1634 && (ANYOF_FLAGS(node) & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
1636 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1639 /* Similarly for these */
1640 if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1641 _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1644 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1645 _invlist_invert(invlist);
1647 else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOFL_FOLD) {
1649 /* Under /li, any 0-255 could fold to any other 0-255, depending on the
1650 * locale. We can skip this if there are no 0-255 at all. */
1651 _invlist_union(invlist, PL_Latin1, &invlist);
1654 /* Similarly add the UTF-8 locale possible matches. These have to be
1655 * deferred until after the non-UTF-8 locale ones are taken care of just
1656 * above, or it leads to wrong results under ANYOF_INVERT */
1657 if (only_utf8_locale_invlist) {
1658 _invlist_union_maybe_complement_2nd(invlist,
1659 only_utf8_locale_invlist,
1660 ANYOF_FLAGS(node) & ANYOF_INVERT,
1667 /* These two functions currently do the exact same thing */
1668 #define ssc_init_zero ssc_init
1670 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1671 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1673 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1674 * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1675 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1678 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1679 const regnode_charclass *and_with)
1681 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1682 * another SSC or a regular ANYOF class. Can create false positives. */
1687 PERL_ARGS_ASSERT_SSC_AND;
1689 assert(is_ANYOF_SYNTHETIC(ssc));
1691 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1692 * the code point inversion list and just the relevant flags */
1693 if (is_ANYOF_SYNTHETIC(and_with)) {
1694 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1695 anded_flags = ANYOF_FLAGS(and_with);
1697 /* XXX This is a kludge around what appears to be deficiencies in the
1698 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1699 * there are paths through the optimizer where it doesn't get weeded
1700 * out when it should. And if we don't make some extra provision for
1701 * it like the code just below, it doesn't get added when it should.
1702 * This solution is to add it only when AND'ing, which is here, and
1703 * only when what is being AND'ed is the pristine, original node
1704 * matching anything. Thus it is like adding it to ssc_anything() but
1705 * only when the result is to be AND'ed. Probably the same solution
1706 * could be adopted for the same problem we have with /l matching,
1707 * which is solved differently in S_ssc_init(), and that would lead to
1708 * fewer false positives than that solution has. But if this solution
1709 * creates bugs, the consequences are only that a warning isn't raised
1710 * that should be; while the consequences for having /l bugs is
1711 * incorrect matches */
1712 if (ssc_is_anything((regnode_ssc *)and_with)) {
1713 anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1717 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1718 if (OP(and_with) == ANYOFD) {
1719 anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
1722 anded_flags = ANYOF_FLAGS(and_with)
1723 &( ANYOF_COMMON_FLAGS
1724 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1725 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1726 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(and_with))) {
1728 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1733 ANYOF_FLAGS(ssc) &= anded_flags;
1735 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1736 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1737 * 'and_with' may be inverted. When not inverted, we have the situation of
1739 * (C1 | P1) & (C2 | P2)
1740 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1741 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1742 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1743 * <= ((C1 & C2) | P1 | P2)
1744 * Alternatively, the last few steps could be:
1745 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1746 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1747 * <= (C1 | C2 | (P1 & P2))
1748 * We favor the second approach if either P1 or P2 is non-empty. This is
1749 * because these components are a barrier to doing optimizations, as what
1750 * they match cannot be known until the moment of matching as they are
1751 * dependent on the current locale, 'AND"ing them likely will reduce or
1753 * But we can do better if we know that C1,P1 are in their initial state (a
1754 * frequent occurrence), each matching everything:
1755 * (<everything>) & (C2 | P2) = C2 | P2
1756 * Similarly, if C2,P2 are in their initial state (again a frequent
1757 * occurrence), the result is a no-op
1758 * (C1 | P1) & (<everything>) = C1 | P1
1761 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1762 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1763 * <= (C1 & ~C2) | (P1 & ~P2)
1766 if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
1767 && ! is_ANYOF_SYNTHETIC(and_with))
1771 ssc_intersection(ssc,
1773 FALSE /* Has already been inverted */
1776 /* If either P1 or P2 is empty, the intersection will be also; can skip
1778 if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
1779 ANYOF_POSIXL_ZERO(ssc);
1781 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1783 /* Note that the Posix class component P from 'and_with' actually
1785 * P = Pa | Pb | ... | Pn
1786 * where each component is one posix class, such as in [\w\s].
1788 * ~P = ~(Pa | Pb | ... | Pn)
1789 * = ~Pa & ~Pb & ... & ~Pn
1790 * <= ~Pa | ~Pb | ... | ~Pn
1791 * The last is something we can easily calculate, but unfortunately
1792 * is likely to have many false positives. We could do better
1793 * in some (but certainly not all) instances if two classes in
1794 * P have known relationships. For example
1795 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1797 * :lower: & :print: = :lower:
1798 * And similarly for classes that must be disjoint. For example,
1799 * since \s and \w can have no elements in common based on rules in
1800 * the POSIX standard,
1801 * \w & ^\S = nothing
1802 * Unfortunately, some vendor locales do not meet the Posix
1803 * standard, in particular almost everything by Microsoft.
1804 * The loop below just changes e.g., \w into \W and vice versa */
1806 regnode_charclass_posixl temp;
1807 int add = 1; /* To calculate the index of the complement */
1809 Zero(&temp, 1, regnode_charclass_posixl);
1810 ANYOF_POSIXL_ZERO(&temp);
1811 for (i = 0; i < ANYOF_MAX; i++) {
1813 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1814 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1816 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1817 ANYOF_POSIXL_SET(&temp, i + add);
1819 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1821 ANYOF_POSIXL_AND(&temp, ssc);
1823 } /* else ssc already has no posixes */
1824 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1825 in its initial state */
1826 else if (! is_ANYOF_SYNTHETIC(and_with)
1827 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1829 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1830 * copy it over 'ssc' */
1831 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1832 if (is_ANYOF_SYNTHETIC(and_with)) {
1833 StructCopy(and_with, ssc, regnode_ssc);
1836 ssc->invlist = anded_cp_list;
1837 ANYOF_POSIXL_ZERO(ssc);
1838 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1839 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1843 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1844 || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
1846 /* One or the other of P1, P2 is non-empty. */
1847 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1848 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1850 ssc_union(ssc, anded_cp_list, FALSE);
1852 else { /* P1 = P2 = empty */
1853 ssc_intersection(ssc, anded_cp_list, FALSE);
1859 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1860 const regnode_charclass *or_with)
1862 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1863 * another SSC or a regular ANYOF class. Can create false positives if
1864 * 'or_with' is to be inverted. */
1869 PERL_ARGS_ASSERT_SSC_OR;
1871 assert(is_ANYOF_SYNTHETIC(ssc));
1873 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1874 * the code point inversion list and just the relevant flags */
1875 if (is_ANYOF_SYNTHETIC(or_with)) {
1876 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1877 ored_flags = ANYOF_FLAGS(or_with);
1880 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1881 ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
1882 if (OP(or_with) != ANYOFD) {
1884 |= ANYOF_FLAGS(or_with)
1885 & ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1886 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1887 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(or_with))) {
1889 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1894 ANYOF_FLAGS(ssc) |= ored_flags;
1896 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1897 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1898 * 'or_with' may be inverted. When not inverted, we have the simple
1899 * situation of computing:
1900 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1901 * If P1|P2 yields a situation with both a class and its complement are
1902 * set, like having both \w and \W, this matches all code points, and we
1903 * can delete these from the P component of the ssc going forward. XXX We
1904 * might be able to delete all the P components, but I (khw) am not certain
1905 * about this, and it is better to be safe.
1908 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1909 * <= (C1 | P1) | ~C2
1910 * <= (C1 | ~C2) | P1
1911 * (which results in actually simpler code than the non-inverted case)
1914 if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
1915 && ! is_ANYOF_SYNTHETIC(or_with))
1917 /* We ignore P2, leaving P1 going forward */
1918 } /* else Not inverted */
1919 else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
1920 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1921 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1923 for (i = 0; i < ANYOF_MAX; i += 2) {
1924 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1926 ssc_match_all_cp(ssc);
1927 ANYOF_POSIXL_CLEAR(ssc, i);
1928 ANYOF_POSIXL_CLEAR(ssc, i+1);
1936 FALSE /* Already has been inverted */
1940 PERL_STATIC_INLINE void
1941 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1943 PERL_ARGS_ASSERT_SSC_UNION;
1945 assert(is_ANYOF_SYNTHETIC(ssc));
1947 _invlist_union_maybe_complement_2nd(ssc->invlist,
1953 PERL_STATIC_INLINE void
1954 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
1956 const bool invert2nd)
1958 PERL_ARGS_ASSERT_SSC_INTERSECTION;
1960 assert(is_ANYOF_SYNTHETIC(ssc));
1962 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
1968 PERL_STATIC_INLINE void
1969 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
1971 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
1973 assert(is_ANYOF_SYNTHETIC(ssc));
1975 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
1978 PERL_STATIC_INLINE void
1979 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
1981 /* AND just the single code point 'cp' into the SSC 'ssc' */
1983 SV* cp_list = _new_invlist(2);
1985 PERL_ARGS_ASSERT_SSC_CP_AND;
1987 assert(is_ANYOF_SYNTHETIC(ssc));
1989 cp_list = add_cp_to_invlist(cp_list, cp);
1990 ssc_intersection(ssc, cp_list,
1991 FALSE /* Not inverted */
1993 SvREFCNT_dec_NN(cp_list);
1996 PERL_STATIC_INLINE void
1997 S_ssc_clear_locale(regnode_ssc *ssc)
1999 /* Set the SSC 'ssc' to not match any locale things */
2000 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
2002 assert(is_ANYOF_SYNTHETIC(ssc));
2004 ANYOF_POSIXL_ZERO(ssc);
2005 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
2008 #define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
2011 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
2013 /* The synthetic start class is used to hopefully quickly winnow down
2014 * places where a pattern could start a match in the target string. If it
2015 * doesn't really narrow things down that much, there isn't much point to
2016 * having the overhead of using it. This function uses some very crude
2017 * heuristics to decide if to use the ssc or not.
2019 * It returns TRUE if 'ssc' rules out more than half what it considers to
2020 * be the "likely" possible matches, but of course it doesn't know what the
2021 * actual things being matched are going to be; these are only guesses
2023 * For /l matches, it assumes that the only likely matches are going to be
2024 * in the 0-255 range, uniformly distributed, so half of that is 127
2025 * For /a and /d matches, it assumes that the likely matches will be just
2026 * the ASCII range, so half of that is 63
2027 * For /u and there isn't anything matching above the Latin1 range, it
2028 * assumes that that is the only range likely to be matched, and uses
2029 * half that as the cut-off: 127. If anything matches above Latin1,
2030 * it assumes that all of Unicode could match (uniformly), except for
2031 * non-Unicode code points and things in the General Category "Other"
2032 * (unassigned, private use, surrogates, controls and formats). This
2033 * is a much large number. */
2035 U32 count = 0; /* Running total of number of code points matched by
2037 UV start, end; /* Start and end points of current range in inversion
2039 const U32 max_code_points = (LOC)
2041 : (( ! UNI_SEMANTICS
2042 || invlist_highest(ssc->invlist) < 256)
2045 const U32 max_match = max_code_points / 2;
2047 PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
2049 invlist_iterinit(ssc->invlist);
2050 while (invlist_iternext(ssc->invlist, &start, &end)) {
2051 if (start >= max_code_points) {
2054 end = MIN(end, max_code_points - 1);
2055 count += end - start + 1;
2056 if (count >= max_match) {
2057 invlist_iterfinish(ssc->invlist);
2067 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
2069 /* The inversion list in the SSC is marked mortal; now we need a more
2070 * permanent copy, which is stored the same way that is done in a regular
2071 * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
2074 SV* invlist = invlist_clone(ssc->invlist, NULL);
2076 PERL_ARGS_ASSERT_SSC_FINALIZE;
2078 assert(is_ANYOF_SYNTHETIC(ssc));
2080 /* The code in this file assumes that all but these flags aren't relevant
2081 * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
2082 * by the time we reach here */
2083 assert(! (ANYOF_FLAGS(ssc)
2084 & ~( ANYOF_COMMON_FLAGS
2085 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
2086 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));
2088 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
2090 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
2091 NULL, NULL, NULL, FALSE);
2093 /* Make sure is clone-safe */
2094 ssc->invlist = NULL;
2096 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
2097 ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
2098 OP(ssc) = ANYOFPOSIXL;
2100 else if (RExC_contains_locale) {
2104 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
2107 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
2108 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
2109 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
2110 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
2111 ? (TRIE_LIST_CUR( idx ) - 1) \
2117 dump_trie(trie,widecharmap,revcharmap)
2118 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
2119 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
2121 These routines dump out a trie in a somewhat readable format.
2122 The _interim_ variants are used for debugging the interim
2123 tables that are used to generate the final compressed
2124 representation which is what dump_trie expects.
2126 Part of the reason for their existence is to provide a form
2127 of documentation as to how the different representations function.
2132 Dumps the final compressed table form of the trie to Perl_debug_log.
2133 Used for debugging make_trie().
2137 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
2138 AV *revcharmap, U32 depth)
2141 SV *sv=sv_newmortal();
2142 int colwidth= widecharmap ? 6 : 4;
2144 GET_RE_DEBUG_FLAGS_DECL;
2146 PERL_ARGS_ASSERT_DUMP_TRIE;
2148 Perl_re_indentf( aTHX_ "Char : %-6s%-6s%-4s ",
2149 depth+1, "Match","Base","Ofs" );
2151 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
2152 SV ** const tmp = av_fetch( revcharmap, state, 0);
2154 Perl_re_printf( aTHX_ "%*s",
2156 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2157 PL_colors[0], PL_colors[1],
2158 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2159 PERL_PV_ESCAPE_FIRSTCHAR
2164 Perl_re_printf( aTHX_ "\n");
2165 Perl_re_indentf( aTHX_ "State|-----------------------", depth+1);
2167 for( state = 0 ; state < trie->uniquecharcount ; state++ )
2168 Perl_re_printf( aTHX_ "%.*s", colwidth, "--------");
2169 Perl_re_printf( aTHX_ "\n");
2171 for( state = 1 ; state < trie->statecount ; state++ ) {
2172 const U32 base = trie->states[ state ].trans.base;
2174 Perl_re_indentf( aTHX_ "#%4" UVXf "|", depth+1, (UV)state);
2176 if ( trie->states[ state ].wordnum ) {
2177 Perl_re_printf( aTHX_ " W%4X", trie->states[ state ].wordnum );
2179 Perl_re_printf( aTHX_ "%6s", "" );
2182 Perl_re_printf( aTHX_ " @%4" UVXf " ", (UV)base );
2187 while( ( base + ofs < trie->uniquecharcount ) ||
2188 ( base + ofs - trie->uniquecharcount < trie->lasttrans
2189 && trie->trans[ base + ofs - trie->uniquecharcount ].check
2193 Perl_re_printf( aTHX_ "+%2" UVXf "[ ", (UV)ofs);
2195 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2196 if ( ( base + ofs >= trie->uniquecharcount )
2197 && ( base + ofs - trie->uniquecharcount
2199 && trie->trans[ base + ofs
2200 - trie->uniquecharcount ].check == state )
2202 Perl_re_printf( aTHX_ "%*" UVXf, colwidth,
2203 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next
2206 Perl_re_printf( aTHX_ "%*s", colwidth," ." );
2210 Perl_re_printf( aTHX_ "]");
2213 Perl_re_printf( aTHX_ "\n" );
2215 Perl_re_indentf( aTHX_ "word_info N:(prev,len)=",
2217 for (word=1; word <= trie->wordcount; word++) {
2218 Perl_re_printf( aTHX_ " %d:(%d,%d)",
2219 (int)word, (int)(trie->wordinfo[word].prev),
2220 (int)(trie->wordinfo[word].len));
2222 Perl_re_printf( aTHX_ "\n" );
2225 Dumps a fully constructed but uncompressed trie in list form.
2226 List tries normally only are used for construction when the number of
2227 possible chars (trie->uniquecharcount) is very high.
2228 Used for debugging make_trie().
2231 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
2232 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2236 SV *sv=sv_newmortal();
2237 int colwidth= widecharmap ? 6 : 4;
2238 GET_RE_DEBUG_FLAGS_DECL;
2240 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
2242 /* print out the table precompression. */
2243 Perl_re_indentf( aTHX_ "State :Word | Transition Data\n",
2245 Perl_re_indentf( aTHX_ "%s",
2246 depth+1, "------:-----+-----------------\n" );
2248 for( state=1 ; state < next_alloc ; state ++ ) {
2251 Perl_re_indentf( aTHX_ " %4" UVXf " :",
2252 depth+1, (UV)state );
2253 if ( ! trie->states[ state ].wordnum ) {
2254 Perl_re_printf( aTHX_ "%5s| ","");
2256 Perl_re_printf( aTHX_ "W%4x| ",
2257 trie->states[ state ].wordnum
2260 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
2261 SV ** const tmp = av_fetch( revcharmap,
2262 TRIE_LIST_ITEM(state, charid).forid, 0);
2264 Perl_re_printf( aTHX_ "%*s:%3X=%4" UVXf " | ",
2266 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
2268 PL_colors[0], PL_colors[1],
2269 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
2270 | PERL_PV_ESCAPE_FIRSTCHAR
2272 TRIE_LIST_ITEM(state, charid).forid,
2273 (UV)TRIE_LIST_ITEM(state, charid).newstate
2276 Perl_re_printf( aTHX_ "\n%*s| ",
2277 (int)((depth * 2) + 14), "");
2280 Perl_re_printf( aTHX_ "\n");
2285 Dumps a fully constructed but uncompressed trie in table form.
2286 This is the normal DFA style state transition table, with a few
2287 twists to facilitate compression later.
2288 Used for debugging make_trie().
2291 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
2292 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2297 SV *sv=sv_newmortal();
2298 int colwidth= widecharmap ? 6 : 4;
2299 GET_RE_DEBUG_FLAGS_DECL;
2301 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
2304 print out the table precompression so that we can do a visual check
2305 that they are identical.
2308 Perl_re_indentf( aTHX_ "Char : ", depth+1 );
2310 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2311 SV ** const tmp = av_fetch( revcharmap, charid, 0);
2313 Perl_re_printf( aTHX_ "%*s",
2315 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2316 PL_colors[0], PL_colors[1],
2317 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2318 PERL_PV_ESCAPE_FIRSTCHAR
2324 Perl_re_printf( aTHX_ "\n");
2325 Perl_re_indentf( aTHX_ "State+-", depth+1 );
2327 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
2328 Perl_re_printf( aTHX_ "%.*s", colwidth,"--------");
2331 Perl_re_printf( aTHX_ "\n" );
2333 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
2335 Perl_re_indentf( aTHX_ "%4" UVXf " : ",
2337 (UV)TRIE_NODENUM( state ) );
2339 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2340 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
2342 Perl_re_printf( aTHX_ "%*" UVXf, colwidth, v );
2344 Perl_re_printf( aTHX_ "%*s", colwidth, "." );
2346 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
2347 Perl_re_printf( aTHX_ " (%4" UVXf ")\n",
2348 (UV)trie->trans[ state ].check );
2350 Perl_re_printf( aTHX_ " (%4" UVXf ") W%4X\n",
2351 (UV)trie->trans[ state ].check,
2352 trie->states[ TRIE_NODENUM( state ) ].wordnum );
2360 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
2361 startbranch: the first branch in the whole branch sequence
2362 first : start branch of sequence of branch-exact nodes.
2363 May be the same as startbranch
2364 last : Thing following the last branch.
2365 May be the same as tail.
2366 tail : item following the branch sequence
2367 count : words in the sequence
2368 flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
2369 depth : indent depth
2371 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
2373 A trie is an N'ary tree where the branches are determined by digital
2374 decomposition of the key. IE, at the root node you look up the 1st character and
2375 follow that branch repeat until you find the end of the branches. Nodes can be
2376 marked as "accepting" meaning they represent a complete word. Eg:
2380 would convert into the following structure. Numbers represent states, letters
2381 following numbers represent valid transitions on the letter from that state, if
2382 the number is in square brackets it represents an accepting state, otherwise it
2383 will be in parenthesis.
2385 +-h->+-e->[3]-+-r->(8)-+-s->[9]
2389 (1) +-i->(6)-+-s->[7]
2391 +-s->(3)-+-h->(4)-+-e->[5]
2393 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
2395 This shows that when matching against the string 'hers' we will begin at state 1
2396 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
2397 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
2398 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
2399 single traverse. We store a mapping from accepting to state to which word was
2400 matched, and then when we have multiple possibilities we try to complete the
2401 rest of the regex in the order in which they occurred in the alternation.
2403 The only prior NFA like behaviour that would be changed by the TRIE support is
2404 the silent ignoring of duplicate alternations which are of the form:
2406 / (DUPE|DUPE) X? (?{ ... }) Y /x
2408 Thus EVAL blocks following a trie may be called a different number of times with
2409 and without the optimisation. With the optimisations dupes will be silently
2410 ignored. This inconsistent behaviour of EVAL type nodes is well established as
2411 the following demonstrates:
2413 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
2415 which prints out 'word' three times, but
2417 'words'=~/(word|word|word)(?{ print $1 })S/
2419 which doesnt print it out at all. This is due to other optimisations kicking in.
2421 Example of what happens on a structural level:
2423 The regexp /(ac|ad|ab)+/ will produce the following debug output:
2425 1: CURLYM[1] {1,32767}(18)
2436 This would be optimizable with startbranch=5, first=5, last=16, tail=16
2437 and should turn into:
2439 1: CURLYM[1] {1,32767}(18)
2441 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
2449 Cases where tail != last would be like /(?foo|bar)baz/:
2459 which would be optimizable with startbranch=1, first=1, last=7, tail=8
2460 and would end up looking like:
2463 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
2470 d = uvchr_to_utf8_flags(d, uv, 0);
2472 is the recommended Unicode-aware way of saying
2477 #define TRIE_STORE_REVCHAR(val) \
2480 SV *zlopp = newSV(UTF8_MAXBYTES); \
2481 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
2482 unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
2483 SvCUR_set(zlopp, kapow - flrbbbbb); \
2486 av_push(revcharmap, zlopp); \
2488 char ooooff = (char)val; \
2489 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
2493 /* This gets the next character from the input, folding it if not already
2495 #define TRIE_READ_CHAR STMT_START { \
2498 /* if it is UTF then it is either already folded, or does not need \
2500 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
2502 else if (folder == PL_fold_latin1) { \
2503 /* This folder implies Unicode rules, which in the range expressible \
2504 * by not UTF is the lower case, with the two exceptions, one of \
2505 * which should have been taken care of before calling this */ \
2506 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
2507 uvc = toLOWER_L1(*uc); \
2508 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
2511 /* raw data, will be folded later if needed */ \
2519 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
2520 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
2521 U32 ging = TRIE_LIST_LEN( state ) * 2; \
2522 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2523 TRIE_LIST_LEN( state ) = ging; \
2525 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
2526 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
2527 TRIE_LIST_CUR( state )++; \
2530 #define TRIE_LIST_NEW(state) STMT_START { \
2531 Newx( trie->states[ state ].trans.list, \
2532 4, reg_trie_trans_le ); \
2533 TRIE_LIST_CUR( state ) = 1; \
2534 TRIE_LIST_LEN( state ) = 4; \
2537 #define TRIE_HANDLE_WORD(state) STMT_START { \
2538 U16 dupe= trie->states[ state ].wordnum; \
2539 regnode * const noper_next = regnext( noper ); \
2542 /* store the word for dumping */ \
2544 if (OP(noper) != NOTHING) \
2545 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
2547 tmp = newSVpvn_utf8( "", 0, UTF ); \
2548 av_push( trie_words, tmp ); \
2552 trie->wordinfo[curword].prev = 0; \
2553 trie->wordinfo[curword].len = wordlen; \
2554 trie->wordinfo[curword].accept = state; \
2556 if ( noper_next < tail ) { \
2558 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2560 trie->jump[curword] = (U16)(noper_next - convert); \
2562 jumper = noper_next; \
2564 nextbranch= regnext(cur); \
2568 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
2569 /* chain, so that when the bits of chain are later */\
2570 /* linked together, the dups appear in the chain */\
2571 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2572 trie->wordinfo[dupe].prev = curword; \
2574 /* we haven't inserted this word yet. */ \
2575 trie->states[ state ].wordnum = curword; \
2580 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
2581 ( ( base + charid >= ucharcount \
2582 && base + charid < ubound \
2583 && state == trie->trans[ base - ucharcount + charid ].check \
2584 && trie->trans[ base - ucharcount + charid ].next ) \
2585 ? trie->trans[ base - ucharcount + charid ].next \
2586 : ( state==1 ? special : 0 ) \
2589 #define TRIE_BITMAP_SET_FOLDED(trie, uvc, folder) \
2591 TRIE_BITMAP_SET(trie, uvc); \
2592 /* store the folded codepoint */ \
2594 TRIE_BITMAP_SET(trie, folder[(U8) uvc ]); \
2597 /* store first byte of utf8 representation of */ \
2598 /* variant codepoints */ \
2599 if (! UVCHR_IS_INVARIANT(uvc)) { \
2600 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc)); \
2605 #define MADE_JUMP_TRIE 2
2606 #define MADE_EXACT_TRIE 4
2609 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2610 regnode *first, regnode *last, regnode *tail,
2611 U32 word_count, U32 flags, U32 depth)
2613 /* first pass, loop through and scan words */
2614 reg_trie_data *trie;
2615 HV *widecharmap = NULL;
2616 AV *revcharmap = newAV();
2622 regnode *jumper = NULL;
2623 regnode *nextbranch = NULL;
2624 regnode *convert = NULL;
2625 U32 *prev_states; /* temp array mapping each state to previous one */
2626 /* we just use folder as a flag in utf8 */
2627 const U8 * folder = NULL;
2629 /* in the below add_data call we are storing either 'tu' or 'tuaa'
2630 * which stands for one trie structure, one hash, optionally followed
2633 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuaa"));
2634 AV *trie_words = NULL;
2635 /* along with revcharmap, this only used during construction but both are
2636 * useful during debugging so we store them in the struct when debugging.
2639 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2640 STRLEN trie_charcount=0;
2642 SV *re_trie_maxbuff;
2643 GET_RE_DEBUG_FLAGS_DECL;
2645 PERL_ARGS_ASSERT_MAKE_TRIE;
2647 PERL_UNUSED_ARG(depth);
2651 case EXACT: case EXACTL: break;
2655 case EXACTFLU8: folder = PL_fold_latin1; break;
2656 case EXACTF: folder = PL_fold; break;
2657 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2660 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2662 trie->startstate = 1;
2663 trie->wordcount = word_count;
2664 RExC_rxi->data->data[ data_slot ] = (void*)trie;
2665 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2666 if (flags == EXACT || flags == EXACTL)
2667 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2668 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2669 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2672 trie_words = newAV();
2675 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2676 assert(re_trie_maxbuff);
2677 if (!SvIOK(re_trie_maxbuff)) {
2678 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2680 DEBUG_TRIE_COMPILE_r({
2681 Perl_re_indentf( aTHX_
2682 "make_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2684 REG_NODE_NUM(startbranch), REG_NODE_NUM(first),
2685 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2688 /* Find the node we are going to overwrite */
2689 if ( first == startbranch && OP( last ) != BRANCH ) {
2690 /* whole branch chain */
2693 /* branch sub-chain */
2694 convert = NEXTOPER( first );
2697 /* -- First loop and Setup --
2699 We first traverse the branches and scan each word to determine if it
2700 contains widechars, and how many unique chars there are, this is
2701 important as we have to build a table with at least as many columns as we
2704 We use an array of integers to represent the character codes 0..255
2705 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2706 the native representation of the character value as the key and IV's for
2709 *TODO* If we keep track of how many times each character is used we can
2710 remap the columns so that the table compression later on is more
2711 efficient in terms of memory by ensuring the most common value is in the
2712 middle and the least common are on the outside. IMO this would be better
2713 than a most to least common mapping as theres a decent chance the most
2714 common letter will share a node with the least common, meaning the node
2715 will not be compressible. With a middle is most common approach the worst
2716 case is when we have the least common nodes twice.
2720 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2721 regnode *noper = NEXTOPER( cur );
2725 U32 wordlen = 0; /* required init */
2726 STRLEN minchars = 0;
2727 STRLEN maxchars = 0;
2728 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2731 if (OP(noper) == NOTHING) {
2732 /* skip past a NOTHING at the start of an alternation
2733 * eg, /(?:)a|(?:b)/ should be the same as /a|b/
2735 regnode *noper_next= regnext(noper);
2736 if (noper_next < tail)
2740 if ( noper < tail &&
2742 OP(noper) == flags ||
2745 OP(noper) == EXACTFU_SS
2749 uc= (U8*)STRING(noper);
2750 e= uc + STR_LEN(noper);
2757 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2758 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2759 regardless of encoding */
2760 if (OP( noper ) == EXACTFU_SS) {
2761 /* false positives are ok, so just set this */
2762 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2766 for ( ; uc < e ; uc += len ) { /* Look at each char in the current
2768 TRIE_CHARCOUNT(trie)++;
2771 /* TRIE_READ_CHAR returns the current character, or its fold if /i
2772 * is in effect. Under /i, this character can match itself, or
2773 * anything that folds to it. If not under /i, it can match just
2774 * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
2775 * all fold to k, and all are single characters. But some folds
2776 * expand to more than one character, so for example LATIN SMALL
2777 * LIGATURE FFI folds to the three character sequence 'ffi'. If
2778 * the string beginning at 'uc' is 'ffi', it could be matched by
2779 * three characters, or just by the one ligature character. (It
2780 * could also be matched by two characters: LATIN SMALL LIGATURE FF
2781 * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2782 * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2783 * match.) The trie needs to know the minimum and maximum number
2784 * of characters that could match so that it can use size alone to
2785 * quickly reject many match attempts. The max is simple: it is
2786 * the number of folded characters in this branch (since a fold is
2787 * never shorter than what folds to it. */
2791 /* And the min is equal to the max if not under /i (indicated by
2792 * 'folder' being NULL), or there are no multi-character folds. If
2793 * there is a multi-character fold, the min is incremented just
2794 * once, for the character that folds to the sequence. Each
2795 * character in the sequence needs to be added to the list below of
2796 * characters in the trie, but we count only the first towards the
2797 * min number of characters needed. This is done through the
2798 * variable 'foldlen', which is returned by the macros that look
2799 * for these sequences as the number of bytes the sequence
2800 * occupies. Each time through the loop, we decrement 'foldlen' by
2801 * how many bytes the current char occupies. Only when it reaches
2802 * 0 do we increment 'minchars' or look for another multi-character
2804 if (folder == NULL) {
2807 else if (foldlen > 0) {
2808 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2813 /* See if *uc is the beginning of a multi-character fold. If
2814 * so, we decrement the length remaining to look at, to account
2815 * for the current character this iteration. (We can use 'uc'
2816 * instead of the fold returned by TRIE_READ_CHAR because for
2817 * non-UTF, the latin1_safe macro is smart enough to account
2818 * for all the unfolded characters, and because for UTF, the
2819 * string will already have been folded earlier in the
2820 * compilation process */
2822 if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2823 foldlen -= UTF8SKIP(uc);
2826 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2831 /* The current character (and any potential folds) should be added
2832 * to the possible matching characters for this position in this
2836 U8 folded= folder[ (U8) uvc ];
2837 if ( !trie->charmap[ folded ] ) {
2838 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2839 TRIE_STORE_REVCHAR( folded );
2842 if ( !trie->charmap[ uvc ] ) {
2843 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2844 TRIE_STORE_REVCHAR( uvc );
2847 /* store the codepoint in the bitmap, and its folded
2849 TRIE_BITMAP_SET_FOLDED(trie, uvc, folder);
2850 set_bit = 0; /* We've done our bit :-) */
2854 /* XXX We could come up with the list of code points that fold
2855 * to this using PL_utf8_foldclosures, except not for
2856 * multi-char folds, as there may be multiple combinations
2857 * there that could work, which needs to wait until runtime to
2858 * resolve (The comment about LIGATURE FFI above is such an
2863 widecharmap = newHV();
2865 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2868 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%" UVXf, uvc );
2870 if ( !SvTRUE( *svpp ) ) {
2871 sv_setiv( *svpp, ++trie->uniquecharcount );
2872 TRIE_STORE_REVCHAR(uvc);
2875 } /* end loop through characters in this branch of the trie */
2877 /* We take the min and max for this branch and combine to find the min
2878 * and max for all branches processed so far */
2879 if( cur == first ) {
2880 trie->minlen = minchars;
2881 trie->maxlen = maxchars;
2882 } else if (minchars < trie->minlen) {
2883 trie->minlen = minchars;
2884 } else if (maxchars > trie->maxlen) {
2885 trie->maxlen = maxchars;
2887 } /* end first pass */
2888 DEBUG_TRIE_COMPILE_r(
2889 Perl_re_indentf( aTHX_
2890 "TRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2892 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2893 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2894 (int)trie->minlen, (int)trie->maxlen )
2898 We now know what we are dealing with in terms of unique chars and
2899 string sizes so we can calculate how much memory a naive
2900 representation using a flat table will take. If it's over a reasonable
2901 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2902 conservative but potentially much slower representation using an array
2905 At the end we convert both representations into the same compressed
2906 form that will be used in regexec.c for matching with. The latter
2907 is a form that cannot be used to construct with but has memory
2908 properties similar to the list form and access properties similar
2909 to the table form making it both suitable for fast searches and
2910 small enough that its feasable to store for the duration of a program.
2912 See the comment in the code where the compressed table is produced
2913 inplace from the flat tabe representation for an explanation of how
2914 the compression works.
2919 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2922 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2923 > SvIV(re_trie_maxbuff) )
2926 Second Pass -- Array Of Lists Representation
2928 Each state will be represented by a list of charid:state records
2929 (reg_trie_trans_le) the first such element holds the CUR and LEN
2930 points of the allocated array. (See defines above).
2932 We build the initial structure using the lists, and then convert
2933 it into the compressed table form which allows faster lookups
2934 (but cant be modified once converted).
2937 STRLEN transcount = 1;
2939 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using list compiler\n",
2942 trie->states = (reg_trie_state *)
2943 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2944 sizeof(reg_trie_state) );
2948 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2950 regnode *noper = NEXTOPER( cur );
2951 U32 state = 1; /* required init */
2952 U16 charid = 0; /* sanity init */
2953 U32 wordlen = 0; /* required init */
2955 if (OP(noper) == NOTHING) {
2956 regnode *noper_next= regnext(noper);
2957 if (noper_next < tail)
2961 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
2962 const U8 *uc= (U8*)STRING(noper);
2963 const U8 *e= uc + STR_LEN(noper);
2965 for ( ; uc < e ; uc += len ) {
2970 charid = trie->charmap[ uvc ];
2972 SV** const svpp = hv_fetch( widecharmap,
2979 charid=(U16)SvIV( *svpp );
2982 /* charid is now 0 if we dont know the char read, or
2983 * nonzero if we do */
2990 if ( !trie->states[ state ].trans.list ) {
2991 TRIE_LIST_NEW( state );
2994 check <= TRIE_LIST_USED( state );
2997 if ( TRIE_LIST_ITEM( state, check ).forid
3000 newstate = TRIE_LIST_ITEM( state, check ).newstate;
3005 newstate = next_alloc++;
3006 prev_states[newstate] = state;
3007 TRIE_LIST_PUSH( state, charid, newstate );
3012 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3016 TRIE_HANDLE_WORD(state);
3018 } /* end second pass */
3020 /* next alloc is the NEXT state to be allocated */
3021 trie->statecount = next_alloc;
3022 trie->states = (reg_trie_state *)
3023 PerlMemShared_realloc( trie->states,
3025 * sizeof(reg_trie_state) );
3027 /* and now dump it out before we compress it */
3028 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
3029 revcharmap, next_alloc,
3033 trie->trans = (reg_trie_trans *)
3034 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
3041 for( state=1 ; state < next_alloc ; state ++ ) {
3045 DEBUG_TRIE_COMPILE_MORE_r(
3046 Perl_re_printf( aTHX_ "tp: %d zp: %d ",tp,zp)
3050 if (trie->states[state].trans.list) {
3051 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
3055 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
3056 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
3057 if ( forid < minid ) {
3059 } else if ( forid > maxid ) {
3063 if ( transcount < tp + maxid - minid + 1) {
3065 trie->trans = (reg_trie_trans *)
3066 PerlMemShared_realloc( trie->trans,
3068 * sizeof(reg_trie_trans) );
3069 Zero( trie->trans + (transcount / 2),
3073 base = trie->uniquecharcount + tp - minid;
3074 if ( maxid == minid ) {
3076 for ( ; zp < tp ; zp++ ) {
3077 if ( ! trie->trans[ zp ].next ) {
3078 base = trie->uniquecharcount + zp - minid;
3079 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
3081 trie->trans[ zp ].check = state;
3087 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
3089 trie->trans[ tp ].check = state;
3094 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
3095 const U32 tid = base
3096 - trie->uniquecharcount
3097 + TRIE_LIST_ITEM( state, idx ).forid;
3098 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
3100 trie->trans[ tid ].check = state;
3102 tp += ( maxid - minid + 1 );
3104 Safefree(trie->states[ state ].trans.list);
3107 DEBUG_TRIE_COMPILE_MORE_r(
3108 Perl_re_printf( aTHX_ " base: %d\n",base);
3111 trie->states[ state ].trans.base=base;
3113 trie->lasttrans = tp + 1;
3117 Second Pass -- Flat Table Representation.
3119 we dont use the 0 slot of either trans[] or states[] so we add 1 to
3120 each. We know that we will need Charcount+1 trans at most to store
3121 the data (one row per char at worst case) So we preallocate both
3122 structures assuming worst case.
3124 We then construct the trie using only the .next slots of the entry
3127 We use the .check field of the first entry of the node temporarily
3128 to make compression both faster and easier by keeping track of how
3129 many non zero fields are in the node.
3131 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
3134 There are two terms at use here: state as a TRIE_NODEIDX() which is
3135 a number representing the first entry of the node, and state as a
3136 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
3137 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
3138 if there are 2 entrys per node. eg:
3146 The table is internally in the right hand, idx form. However as we
3147 also have to deal with the states array which is indexed by nodenum
3148 we have to use TRIE_NODENUM() to convert.
3151 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using table compiler\n",
3154 trie->trans = (reg_trie_trans *)
3155 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
3156 * trie->uniquecharcount + 1,
3157 sizeof(reg_trie_trans) );
3158 trie->states = (reg_trie_state *)
3159 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
3160 sizeof(reg_trie_state) );
3161 next_alloc = trie->uniquecharcount + 1;
3164 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
3166 regnode *noper = NEXTOPER( cur );
3168 U32 state = 1; /* required init */
3170 U16 charid = 0; /* sanity init */
3171 U32 accept_state = 0; /* sanity init */
3173 U32 wordlen = 0; /* required init */
3175 if (OP(noper) == NOTHING) {
3176 regnode *noper_next= regnext(noper);
3177 if (noper_next < tail)
3181 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
3182 const U8 *uc= (U8*)STRING(noper);
3183 const U8 *e= uc + STR_LEN(noper);
3185 for ( ; uc < e ; uc += len ) {
3190 charid = trie->charmap[ uvc ];
3192 SV* const * const svpp = hv_fetch( widecharmap,
3196 charid = svpp ? (U16)SvIV(*svpp) : 0;
3200 if ( !trie->trans[ state + charid ].next ) {
3201 trie->trans[ state + charid ].next = next_alloc;
3202 trie->trans[ state ].check++;
3203 prev_states[TRIE_NODENUM(next_alloc)]
3204 = TRIE_NODENUM(state);
3205 next_alloc += trie->uniquecharcount;
3207 state = trie->trans[ state + charid ].next;
3209 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3211 /* charid is now 0 if we dont know the char read, or
3212 * nonzero if we do */
3215 accept_state = TRIE_NODENUM( state );
3216 TRIE_HANDLE_WORD(accept_state);
3218 } /* end second pass */
3220 /* and now dump it out before we compress it */
3221 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
3223 next_alloc, depth+1));
3227 * Inplace compress the table.*
3229 For sparse data sets the table constructed by the trie algorithm will
3230 be mostly 0/FAIL transitions or to put it another way mostly empty.
3231 (Note that leaf nodes will not contain any transitions.)
3233 This algorithm compresses the tables by eliminating most such
3234 transitions, at the cost of a modest bit of extra work during lookup:
3236 - Each states[] entry contains a .base field which indicates the
3237 index in the state[] array wheres its transition data is stored.
3239 - If .base is 0 there are no valid transitions from that node.
3241 - If .base is nonzero then charid is added to it to find an entry in
3244 -If trans[states[state].base+charid].check!=state then the
3245 transition is taken to be a 0/Fail transition. Thus if there are fail
3246 transitions at the front of the node then the .base offset will point
3247 somewhere inside the previous nodes data (or maybe even into a node
3248 even earlier), but the .check field determines if the transition is
3252 The following process inplace converts the table to the compressed
3253 table: We first do not compress the root node 1,and mark all its
3254 .check pointers as 1 and set its .base pointer as 1 as well. This
3255 allows us to do a DFA construction from the compressed table later,
3256 and ensures that any .base pointers we calculate later are greater
3259 - We set 'pos' to indicate the first entry of the second node.
3261 - We then iterate over the columns of the node, finding the first and
3262 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
3263 and set the .check pointers accordingly, and advance pos
3264 appropriately and repreat for the next node. Note that when we copy
3265 the next pointers we have to convert them from the original
3266 NODEIDX form to NODENUM form as the former is not valid post
3269 - If a node has no transitions used we mark its base as 0 and do not
3270 advance the pos pointer.
3272 - If a node only has one transition we use a second pointer into the
3273 structure to fill in allocated fail transitions from other states.
3274 This pointer is independent of the main pointer and scans forward
3275 looking for null transitions that are allocated to a state. When it
3276 finds one it writes the single transition into the "hole". If the
3277 pointer doesnt find one the single transition is appended as normal.
3279 - Once compressed we can Renew/realloc the structures to release the
3282 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
3283 specifically Fig 3.47 and the associated pseudocode.
3287 const U32 laststate = TRIE_NODENUM( next_alloc );
3290 trie->statecount = laststate;
3292 for ( state = 1 ; state < laststate ; state++ ) {
3294 const U32 stateidx = TRIE_NODEIDX( state );
3295 const U32 o_used = trie->trans[ stateidx ].check;
3296 U32 used = trie->trans[ stateidx ].check;
3297 trie->trans[ stateidx ].check = 0;
3300 used && charid < trie->uniquecharcount;
3303 if ( flag || trie->trans[ stateidx + charid ].next ) {
3304 if ( trie->trans[ stateidx + charid ].next ) {
3306 for ( ; zp < pos ; zp++ ) {
3307 if ( ! trie->trans[ zp ].next ) {
3311 trie->states[ state ].trans.base
3313 + trie->uniquecharcount
3315 trie->trans[ zp ].next
3316 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
3318 trie->trans[ zp ].check = state;
3319 if ( ++zp > pos ) pos = zp;
3326 trie->states[ state ].trans.base
3327 = pos + trie->uniquecharcount - charid ;
3329 trie->trans[ pos ].next
3330 = SAFE_TRIE_NODENUM(
3331 trie->trans[ stateidx + charid ].next );
3332 trie->trans[ pos ].check = state;
3337 trie->lasttrans = pos + 1;
3338 trie->states = (reg_trie_state *)
3339 PerlMemShared_realloc( trie->states, laststate
3340 * sizeof(reg_trie_state) );
3341 DEBUG_TRIE_COMPILE_MORE_r(
3342 Perl_re_indentf( aTHX_ "Alloc: %d Orig: %" IVdf " elements, Final:%" IVdf ". Savings of %%%5.2f\n",
3344 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
3348 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
3351 } /* end table compress */
3353 DEBUG_TRIE_COMPILE_MORE_r(
3354 Perl_re_indentf( aTHX_ "Statecount:%" UVxf " Lasttrans:%" UVxf "\n",
3356 (UV)trie->statecount,
3357 (UV)trie->lasttrans)
3359 /* resize the trans array to remove unused space */
3360 trie->trans = (reg_trie_trans *)
3361 PerlMemShared_realloc( trie->trans, trie->lasttrans
3362 * sizeof(reg_trie_trans) );
3364 { /* Modify the program and insert the new TRIE node */
3365 U8 nodetype =(U8)(flags & 0xFF);
3369 regnode *optimize = NULL;
3370 #ifdef RE_TRACK_PATTERN_OFFSETS
3373 U32 mjd_nodelen = 0;
3374 #endif /* RE_TRACK_PATTERN_OFFSETS */
3375 #endif /* DEBUGGING */
3377 This means we convert either the first branch or the first Exact,
3378 depending on whether the thing following (in 'last') is a branch
3379 or not and whther first is the startbranch (ie is it a sub part of
3380 the alternation or is it the whole thing.)
3381 Assuming its a sub part we convert the EXACT otherwise we convert
3382 the whole branch sequence, including the first.
3384 /* Find the node we are going to overwrite */
3385 if ( first != startbranch || OP( last ) == BRANCH ) {
3386 /* branch sub-chain */
3387 NEXT_OFF( first ) = (U16)(last - first);
3388 #ifdef RE_TRACK_PATTERN_OFFSETS
3390 mjd_offset= Node_Offset((convert));
3391 mjd_nodelen= Node_Length((convert));
3394 /* whole branch chain */
3396 #ifdef RE_TRACK_PATTERN_OFFSETS
3399 const regnode *nop = NEXTOPER( convert );
3400 mjd_offset= Node_Offset((nop));
3401 mjd_nodelen= Node_Length((nop));
3405 Perl_re_indentf( aTHX_ "MJD offset:%" UVuf " MJD length:%" UVuf "\n",
3407 (UV)mjd_offset, (UV)mjd_nodelen)
3410 /* But first we check to see if there is a common prefix we can
3411 split out as an EXACT and put in front of the TRIE node. */
3412 trie->startstate= 1;
3413 if ( trie->bitmap && !widecharmap && !trie->jump ) {
3414 /* we want to find the first state that has more than
3415 * one transition, if that state is not the first state
3416 * then we have a common prefix which we can remove.
3419 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
3421 I32 first_ofs = -1; /* keeps track of the ofs of the first
3422 transition, -1 means none */
3424 const U32 base = trie->states[ state ].trans.base;
3426 /* does this state terminate an alternation? */
3427 if ( trie->states[state].wordnum )
3430 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
3431 if ( ( base + ofs >= trie->uniquecharcount ) &&
3432 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
3433 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
3435 if ( ++count > 1 ) {
3436 /* we have more than one transition */
3439 /* if this is the first state there is no common prefix
3440 * to extract, so we can exit */
3441 if ( state == 1 ) break;
3442 tmp = av_fetch( revcharmap, ofs, 0);
3443 ch = (U8*)SvPV_nolen_const( *tmp );
3445 /* if we are on count 2 then we need to initialize the
3446 * bitmap, and store the previous char if there was one
3449 /* clear the bitmap */
3450 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
3452 Perl_re_indentf( aTHX_ "New Start State=%" UVuf " Class: [",
3455 if (first_ofs >= 0) {
3456 SV ** const tmp = av_fetch( revcharmap, first_ofs, 0);
3457 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
3459 TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
3461 Perl_re_printf( aTHX_ "%s", (char*)ch)
3465 /* store the current firstchar in the bitmap */
3466 TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
3467 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "%s", ch));
3473 /* This state has only one transition, its transition is part
3474 * of a common prefix - we need to concatenate the char it
3475 * represents to what we have so far. */
3476 SV **tmp = av_fetch( revcharmap, first_ofs, 0);
3478 char *ch = SvPV( *tmp, len );
3480 SV *sv=sv_newmortal();
3481 Perl_re_indentf( aTHX_ "Prefix State: %" UVuf " Ofs:%" UVuf " Char='%s'\n",
3483 (UV)state, (UV)first_ofs,
3484 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
3485 PL_colors[0], PL_colors[1],
3486 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
3487 PERL_PV_ESCAPE_FIRSTCHAR
3492 OP( convert ) = nodetype;
3493 str=STRING(convert);
3496 STR_LEN(convert) += len;
3502 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "]\n"));
3507 trie->prefixlen = (state-1);
3509 regnode *n = convert+NODE_SZ_STR(convert);
3510 NEXT_OFF(convert) = NODE_SZ_STR(convert);
3511 trie->startstate = state;
3512 trie->minlen -= (state - 1);
3513 trie->maxlen -= (state - 1);
3515 /* At least the UNICOS C compiler choked on this
3516 * being argument to DEBUG_r(), so let's just have
3519 #ifdef PERL_EXT_RE_BUILD
3525 regnode *fix = convert;
3526 U32 word = trie->wordcount;
3527 #ifdef RE_TRACK_PATTERN_OFFSETS
3530 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3531 while( ++fix < n ) {
3532 Set_Node_Offset_Length(fix, 0, 0);
3535 SV ** const tmp = av_fetch( trie_words, word, 0 );
3537 if ( STR_LEN(convert) <= SvCUR(*tmp) )
3538 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3540 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3548 NEXT_OFF(convert) = (U16)(tail - convert);
3549 DEBUG_r(optimize= n);
3555 if ( trie->maxlen ) {
3556 NEXT_OFF( convert ) = (U16)(tail - convert);
3557 ARG_SET( convert, data_slot );
3558 /* Store the offset to the first unabsorbed branch in
3559 jump[0], which is otherwise unused by the jump logic.
3560 We use this when dumping a trie and during optimisation. */
3562 trie->jump[0] = (U16)(nextbranch - convert);
3564 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3565 * and there is a bitmap
3566 * and the first "jump target" node we found leaves enough room
3567 * then convert the TRIE node into a TRIEC node, with the bitmap
3568 * embedded inline in the opcode - this is hypothetically faster.
3570 if ( !trie->states[trie->startstate].wordnum
3572 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3574 OP( convert ) = TRIEC;
3575 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3576 PerlMemShared_free(trie->bitmap);
3579 OP( convert ) = TRIE;
3581 /* store the type in the flags */
3582 convert->flags = nodetype;
3586 + regarglen[ OP( convert ) ];
3588 /* XXX We really should free up the resource in trie now,
3589 as we won't use them - (which resources?) dmq */
3591 /* needed for dumping*/
3592 DEBUG_r(if (optimize) {
3593 regnode *opt = convert;
3595 while ( ++opt < optimize) {
3596 Set_Node_Offset_Length(opt, 0, 0);
3599 Try to clean up some of the debris left after the
3602 while( optimize < jumper ) {
3603 Track_Code( mjd_nodelen += Node_Length((optimize)); );
3604 OP( optimize ) = OPTIMIZED;
3605 Set_Node_Offset_Length(optimize, 0, 0);
3608 Set_Node_Offset_Length(convert, mjd_offset, mjd_nodelen);
3610 } /* end node insert */
3612 /* Finish populating the prev field of the wordinfo array. Walk back
3613 * from each accept state until we find another accept state, and if
3614 * so, point the first word's .prev field at the second word. If the
3615 * second already has a .prev field set, stop now. This will be the
3616 * case either if we've already processed that word's accept state,
3617 * or that state had multiple words, and the overspill words were
3618 * already linked up earlier.
3625 for (word=1; word <= trie->wordcount; word++) {
3627 if (trie->wordinfo[word].prev)
3629 state = trie->wordinfo[word].accept;
3631 state = prev_states[state];
3634 prev = trie->states[state].wordnum;
3638 trie->wordinfo[word].prev = prev;
3640 Safefree(prev_states);
3644 /* and now dump out the compressed format */
3645 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3647 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3649 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3650 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3652 SvREFCNT_dec_NN(revcharmap);
3656 : trie->startstate>1
3662 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3664 /* The Trie is constructed and compressed now so we can build a fail array if
3667 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3669 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3673 We find the fail state for each state in the trie, this state is the longest
3674 proper suffix of the current state's 'word' that is also a proper prefix of
3675 another word in our trie. State 1 represents the word '' and is thus the
3676 default fail state. This allows the DFA not to have to restart after its
3677 tried and failed a word at a given point, it simply continues as though it
3678 had been matching the other word in the first place.
3680 'abcdgu'=~/abcdefg|cdgu/
3681 When we get to 'd' we are still matching the first word, we would encounter
3682 'g' which would fail, which would bring us to the state representing 'd' in
3683 the second word where we would try 'g' and succeed, proceeding to match
3686 /* add a fail transition */
3687 const U32 trie_offset = ARG(source);
3688 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3690 const U32 ucharcount = trie->uniquecharcount;
3691 const U32 numstates = trie->statecount;
3692 const U32 ubound = trie->lasttrans + ucharcount;
3696 U32 base = trie->states[ 1 ].trans.base;
3699 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3701 GET_RE_DEBUG_FLAGS_DECL;
3703 PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3704 PERL_UNUSED_CONTEXT;
3706 PERL_UNUSED_ARG(depth);
3709 if ( OP(source) == TRIE ) {
3710 struct regnode_1 *op = (struct regnode_1 *)
3711 PerlMemShared_calloc(1, sizeof(struct regnode_1));
3712 StructCopy(source, op, struct regnode_1);
3713 stclass = (regnode *)op;
3715 struct regnode_charclass *op = (struct regnode_charclass *)
3716 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3717 StructCopy(source, op, struct regnode_charclass);
3718 stclass = (regnode *)op;
3720 OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3722 ARG_SET( stclass, data_slot );
3723 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3724 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3725 aho->trie=trie_offset;
3726 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3727 Copy( trie->states, aho->states, numstates, reg_trie_state );
3728 Newx( q, numstates, U32);
3729 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3732 /* initialize fail[0..1] to be 1 so that we always have
3733 a valid final fail state */
3734 fail[ 0 ] = fail[ 1 ] = 1;
3736 for ( charid = 0; charid < ucharcount ; charid++ ) {
3737 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3739 q[ q_write ] = newstate;
3740 /* set to point at the root */
3741 fail[ q[ q_write++ ] ]=1;
3744 while ( q_read < q_write) {
3745 const U32 cur = q[ q_read++ % numstates ];
3746 base = trie->states[ cur ].trans.base;
3748 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3749 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3751 U32 fail_state = cur;
3754 fail_state = fail[ fail_state ];
3755 fail_base = aho->states[ fail_state ].trans.base;
3756 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3758 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3759 fail[ ch_state ] = fail_state;
3760 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3762 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3764 q[ q_write++ % numstates] = ch_state;
3768 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3769 when we fail in state 1, this allows us to use the
3770 charclass scan to find a valid start char. This is based on the principle
3771 that theres a good chance the string being searched contains lots of stuff
3772 that cant be a start char.
3774 fail[ 0 ] = fail[ 1 ] = 0;
3775 DEBUG_TRIE_COMPILE_r({
3776 Perl_re_indentf( aTHX_ "Stclass Failtable (%" UVuf " states): 0",
3777 depth, (UV)numstates
3779 for( q_read=1; q_read<numstates; q_read++ ) {
3780 Perl_re_printf( aTHX_ ", %" UVuf, (UV)fail[q_read]);
3782 Perl_re_printf( aTHX_ "\n");
3785 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3790 /* The below joins as many adjacent EXACTish nodes as possible into a single
3791 * one. The regop may be changed if the node(s) contain certain sequences that
3792 * require special handling. The joining is only done if:
3793 * 1) there is room in the current conglomerated node to entirely contain the
3795 * 2) they are the exact same node type
3797 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3798 * these get optimized out
3800 * XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
3801 * as possible, even if that means splitting an existing node so that its first
3802 * part is moved to the preceeding node. This would maximise the efficiency of
3803 * memEQ during matching.
3805 * If a node is to match under /i (folded), the number of characters it matches
3806 * can be different than its character length if it contains a multi-character
3807 * fold. *min_subtract is set to the total delta number of characters of the
3810 * And *unfolded_multi_char is set to indicate whether or not the node contains
3811 * an unfolded multi-char fold. This happens when it won't be known until
3812 * runtime whether the fold is valid or not; namely
3813 * 1) for EXACTF nodes that contain LATIN SMALL LETTER SHARP S, as only if the
3814 * target string being matched against turns out to be UTF-8 is that fold
3816 * 2) for EXACTFL nodes whose folding rules depend on the locale in force at
3818 * (Multi-char folds whose components are all above the Latin1 range are not
3819 * run-time locale dependent, and have already been folded by the time this
3820 * function is called.)
3822 * This is as good a place as any to discuss the design of handling these
3823 * multi-character fold sequences. It's been wrong in Perl for a very long
3824 * time. There are three code points in Unicode whose multi-character folds
3825 * were long ago discovered to mess things up. The previous designs for
3826 * dealing with these involved assigning a special node for them. This
3827 * approach doesn't always work, as evidenced by this example:
3828 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3829 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3830 * would match just the \xDF, it won't be able to handle the case where a
3831 * successful match would have to cross the node's boundary. The new approach
3832 * that hopefully generally solves the problem generates an EXACTFU_SS node
3833 * that is "sss" in this case.
3835 * It turns out that there are problems with all multi-character folds, and not
3836 * just these three. Now the code is general, for all such cases. The
3837 * approach taken is:
3838 * 1) This routine examines each EXACTFish node that could contain multi-
3839 * character folded sequences. Since a single character can fold into
3840 * such a sequence, the minimum match length for this node is less than
3841 * the number of characters in the node. This routine returns in
3842 * *min_subtract how many characters to subtract from the the actual
3843 * length of the string to get a real minimum match length; it is 0 if
3844 * there are no multi-char foldeds. This delta is used by the caller to
3845 * adjust the min length of the match, and the delta between min and max,
3846 * so that the optimizer doesn't reject these possibilities based on size
3848 * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
3849 * is used for an EXACTFU node that contains at least one "ss" sequence in
3850 * it. For non-UTF-8 patterns and strings, this is the only case where
3851 * there is a possible fold length change. That means that a regular
3852 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
3853 * with length changes, and so can be processed faster. regexec.c takes
3854 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
3855 * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
3856 * known until runtime). This saves effort in regex matching. However,
3857 * the pre-folding isn't done for non-UTF8 patterns because the fold of
3858 * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
3859 * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
3860 * again, EXACTFL) nodes fold to isn't known until runtime. The fold
3861 * possibilities for the non-UTF8 patterns are quite simple, except for
3862 * the sharp s. All the ones that don't involve a UTF-8 target string are
3863 * members of a fold-pair, and arrays are set up for all of them so that
3864 * the other member of the pair can be found quickly. Code elsewhere in
3865 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
3866 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
3867 * described in the next item.
3868 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3869 * validity of the fold won't be known until runtime, and so must remain
3870 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFAA
3871 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3872 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3873 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3874 * The reason this is a problem is that the optimizer part of regexec.c
3875 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3876 * that a character in the pattern corresponds to at most a single
3877 * character in the target string. (And I do mean character, and not byte
3878 * here, unlike other parts of the documentation that have never been
3879 * updated to account for multibyte Unicode.) sharp s in EXACTF and
3880 * EXACTFL nodes can match the two character string 'ss'; in EXACTFAA
3881 * nodes it can match "\x{17F}\x{17F}". These, along with other ones in
3882 * EXACTFL nodes, violate the assumption, and they are the only instances
3883 * where it is violated. I'm reluctant to try to change the assumption,
3884 * as the code involved is impenetrable to me (khw), so instead the code
3885 * here punts. This routine examines EXACTFL nodes, and (when the pattern
3886 * isn't UTF-8) EXACTF and EXACTFAA for such unfolded folds, and returns a
3887 * boolean indicating whether or not the node contains such a fold. When
3888 * it is true, the caller sets a flag that later causes the optimizer in
3889 * this file to not set values for the floating and fixed string lengths,
3890 * and thus avoids the optimizer code in regexec.c that makes the invalid
3891 * assumption. Thus, there is no optimization based on string lengths for
3892 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3893 * EXACTF and EXACTFAA nodes that contain the sharp s. (The reason the
3894 * assumption is wrong only in these cases is that all other non-UTF-8
3895 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
3896 * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
3897 * EXACTF nodes because we don't know at compile time if it actually
3898 * matches 'ss' or not. For EXACTF nodes it will match iff the target
3899 * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
3900 * always matches; and EXACTFAA where it never does. In an EXACTFAA node
3901 * in a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
3902 * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
3903 * string would require the pattern to be forced into UTF-8, the overhead
3904 * of which we want to avoid. Similarly the unfolded multi-char folds in
3905 * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
3908 * Similarly, the code that generates tries doesn't currently handle
3909 * not-already-folded multi-char folds, and it looks like a pain to change
3910 * that. Therefore, trie generation of EXACTFAA nodes with the sharp s
3911 * doesn't work. Instead, such an EXACTFAA is turned into a new regnode,
3912 * EXACTFAA_NO_TRIE, which the trie code knows not to handle. Most people
3913 * using /iaa matching will be doing so almost entirely with ASCII
3914 * strings, so this should rarely be encountered in practice */
3916 #define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
3917 if (PL_regkind[OP(scan)] == EXACT) \
3918 join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags), NULL, depth+1)
3921 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
3922 UV *min_subtract, bool *unfolded_multi_char,
3923 U32 flags, regnode *val, U32 depth)
3925 /* Merge several consecutive EXACTish nodes into one. */
3926 regnode *n = regnext(scan);
3928 regnode *next = scan + NODE_SZ_STR(scan);
3932 regnode *stop = scan;
3933 GET_RE_DEBUG_FLAGS_DECL;
3935 PERL_UNUSED_ARG(depth);
3938 PERL_ARGS_ASSERT_JOIN_EXACT;
3939 #ifndef EXPERIMENTAL_INPLACESCAN
3940 PERL_UNUSED_ARG(flags);
3941 PERL_UNUSED_ARG(val);
3943 DEBUG_PEEP("join", scan, depth, 0);
3945 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
3946 * EXACT ones that are mergeable to the current one. */
3948 && (PL_regkind[OP(n)] == NOTHING
3949 || (stringok && OP(n) == OP(scan)))
3951 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
3954 if (OP(n) == TAIL || n > next)
3956 if (PL_regkind[OP(n)] == NOTHING) {
3957 DEBUG_PEEP("skip:", n, depth, 0);
3958 NEXT_OFF(scan) += NEXT_OFF(n);
3959 next = n + NODE_STEP_REGNODE;
3966 else if (stringok) {
3967 const unsigned int oldl = STR_LEN(scan);
3968 regnode * const nnext = regnext(n);
3970 /* XXX I (khw) kind of doubt that this works on platforms (should
3971 * Perl ever run on one) where U8_MAX is above 255 because of lots
3972 * of other assumptions */
3973 /* Don't join if the sum can't fit into a single node */
3974 if (oldl + STR_LEN(n) > U8_MAX)
3977 DEBUG_PEEP("merg", n, depth, 0);
3980 NEXT_OFF(scan) += NEXT_OFF(n);
3981 STR_LEN(scan) += STR_LEN(n);
3982 next = n + NODE_SZ_STR(n);
3983 /* Now we can overwrite *n : */
3984 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);