3 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 * by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * 'What a fix!' said Sam. 'That's the one place in all the lands we've ever
13 * heard of that we don't want to see any closer; and that's the one place
14 * we're trying to get to! And that's just where we can't get, nohow.'
16 * [p.603 of _The Lord of the Rings_, IV/I: "The Taming of Sméagol"]
18 * 'Well do I understand your speech,' he answered in the same language;
19 * 'yet few strangers do so. Why then do you not speak in the Common Tongue,
20 * as is the custom in the West, if you wish to be answered?'
21 * --Gandalf, addressing Théoden's door wardens
23 * [p.508 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
25 * ...the travellers perceived that the floor was paved with stones of many
26 * hues; branching runes and strange devices intertwined beneath their feet.
28 * [p.512 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
32 #define PERL_IN_UTF8_C
34 #include "invlist_inline.h"
36 static const char malformed_text[] = "Malformed UTF-8 character";
37 static const char unees[] =
38 "Malformed UTF-8 character (unexpected end of string)";
39 static const char cp_above_legal_max[] =
40 "Use of code point 0x%" UVXf " is deprecated; the permissible max is 0x%" UVXf;
42 #define MAX_NON_DEPRECATED_CP ((UV) (IV_MAX))
45 =head1 Unicode Support
46 These are various utility functions for manipulating UTF8-encoded
47 strings. For the uninitiated, this is a method of representing arbitrary
48 Unicode characters as a variable number of bytes, in such a way that
49 characters in the ASCII range are unmodified, and a zero byte never appears
50 within non-zero characters.
56 Perl__force_out_malformed_utf8_message(pTHX_
57 const U8 *const p, /* First byte in UTF-8 sequence */
58 const U8 * const e, /* Final byte in sequence (may include
60 const U32 flags, /* Flags to pass to utf8n_to_uvchr(),
61 usually 0, or some DISALLOW flags */
62 const bool die_here) /* If TRUE, this function does not return */
64 /* This core-only function is to be called when a malformed UTF-8 character
65 * is found, in order to output the detailed information about the
66 * malformation before dieing. The reason it exists is for the occasions
67 * when such a malformation is fatal, but warnings might be turned off, so
68 * that normally they would not be actually output. This ensures that they
69 * do get output. Because a sequence may be malformed in more than one
70 * way, multiple messages may be generated, so we can't make them fatal, as
71 * that would cause the first one to die.
73 * Instead we pretend -W was passed to perl, then die afterwards. The
74 * flexibility is here to return to the caller so they can finish up and
78 PERL_ARGS_ASSERT__FORCE_OUT_MALFORMED_UTF8_MESSAGE;
84 PL_dowarn = G_WARN_ALL_ON|G_WARN_ON;
86 PL_curcop->cop_warnings = pWARN_ALL;
89 (void) utf8n_to_uvchr_error(p, e - p, NULL, flags & ~UTF8_CHECK_ONLY, &errors);
94 Perl_croak(aTHX_ "panic: _force_out_malformed_utf8_message should"
95 " be called only when there are errors found");
99 Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
104 =for apidoc uvoffuni_to_utf8_flags
106 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
107 Instead, B<Almost all code should use L</uvchr_to_utf8> or
108 L</uvchr_to_utf8_flags>>.
110 This function is like them, but the input is a strict Unicode
111 (as opposed to native) code point. Only in very rare circumstances should code
112 not be using the native code point.
114 For details, see the description for L</uvchr_to_utf8_flags>.
119 #define HANDLE_UNICODE_SURROGATE(uv, flags) \
121 if (flags & UNICODE_WARN_SURROGATE) { \
122 Perl_ck_warner_d(aTHX_ packWARN(WARN_SURROGATE), \
123 "UTF-16 surrogate U+%04" UVXf, uv); \
125 if (flags & UNICODE_DISALLOW_SURROGATE) { \
130 #define HANDLE_UNICODE_NONCHAR(uv, flags) \
132 if (flags & UNICODE_WARN_NONCHAR) { \
133 Perl_ck_warner_d(aTHX_ packWARN(WARN_NONCHAR), \
134 "Unicode non-character U+%04" UVXf " is not " \
135 "recommended for open interchange", uv); \
137 if (flags & UNICODE_DISALLOW_NONCHAR) { \
142 /* Use shorter names internally in this file */
143 #define SHIFT UTF_ACCUMULATION_SHIFT
145 #define MARK UTF_CONTINUATION_MARK
146 #define MASK UTF_CONTINUATION_MASK
149 Perl_uvoffuni_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
151 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS;
153 if (OFFUNI_IS_INVARIANT(uv)) {
154 *d++ = LATIN1_TO_NATIVE(uv);
158 if (uv <= MAX_UTF8_TWO_BYTE) {
159 *d++ = I8_TO_NATIVE_UTF8(( uv >> SHIFT) | UTF_START_MARK(2));
160 *d++ = I8_TO_NATIVE_UTF8(( uv & MASK) | MARK);
164 /* Not 2-byte; test for and handle 3-byte result. In the test immediately
165 * below, the 16 is for start bytes E0-EF (which are all the possible ones
166 * for 3 byte characters). The 2 is for 2 continuation bytes; these each
167 * contribute SHIFT bits. This yields 0x4000 on EBCDIC platforms, 0x1_0000
168 * on ASCII; so 3 bytes covers the range 0x400-0x3FFF on EBCDIC;
169 * 0x800-0xFFFF on ASCII */
170 if (uv < (16 * (1U << (2 * SHIFT)))) {
171 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((3 - 1) * SHIFT)) | UTF_START_MARK(3));
172 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
173 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
175 #ifndef EBCDIC /* These problematic code points are 4 bytes on EBCDIC, so
176 aren't tested here */
177 /* The most likely code points in this range are below the surrogates.
178 * Do an extra test to quickly exclude those. */
179 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST)) {
180 if (UNLIKELY( UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv)
181 || UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv)))
183 HANDLE_UNICODE_NONCHAR(uv, flags);
185 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
186 HANDLE_UNICODE_SURROGATE(uv, flags);
193 /* Not 3-byte; that means the code point is at least 0x1_0000 on ASCII
194 * platforms, and 0x4000 on EBCDIC. There are problematic cases that can
195 * happen starting with 4-byte characters on ASCII platforms. We unify the
196 * code for these with EBCDIC, even though some of them require 5-bytes on
197 * those, because khw believes the code saving is worth the very slight
198 * performance hit on these high EBCDIC code points. */
200 if (UNLIKELY(UNICODE_IS_SUPER(uv))) {
201 if ( UNLIKELY(uv > MAX_NON_DEPRECATED_CP)
202 && ckWARN_d(WARN_DEPRECATED))
204 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED),
205 cp_above_legal_max, uv, MAX_NON_DEPRECATED_CP);
207 if ( (flags & UNICODE_WARN_SUPER)
208 || ( UNICODE_IS_ABOVE_31_BIT(uv)
209 && (flags & UNICODE_WARN_ABOVE_31_BIT)))
211 Perl_ck_warner_d(aTHX_ packWARN(WARN_NON_UNICODE),
213 /* Choose the more dire applicable warning */
214 (UNICODE_IS_ABOVE_31_BIT(uv))
215 ? "Code point 0x%" UVXf " is not Unicode, and not portable"
216 : "Code point 0x%" UVXf " is not Unicode, may not be portable",
219 if (flags & UNICODE_DISALLOW_SUPER
220 || ( UNICODE_IS_ABOVE_31_BIT(uv)
221 && (flags & UNICODE_DISALLOW_ABOVE_31_BIT)))
226 else if (UNLIKELY(UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv))) {
227 HANDLE_UNICODE_NONCHAR(uv, flags);
230 /* Test for and handle 4-byte result. In the test immediately below, the
231 * 8 is for start bytes F0-F7 (which are all the possible ones for 4 byte
232 * characters). The 3 is for 3 continuation bytes; these each contribute
233 * SHIFT bits. This yields 0x4_0000 on EBCDIC platforms, 0x20_0000 on
234 * ASCII, so 4 bytes covers the range 0x4000-0x3_FFFF on EBCDIC;
235 * 0x1_0000-0x1F_FFFF on ASCII */
236 if (uv < (8 * (1U << (3 * SHIFT)))) {
237 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((4 - 1) * SHIFT)) | UTF_START_MARK(4));
238 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((3 - 1) * SHIFT)) & MASK) | MARK);
239 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
240 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
242 #ifdef EBCDIC /* These were handled on ASCII platforms in the code for 3-byte
243 characters. The end-plane non-characters for EBCDIC were
244 handled just above */
245 if (UNLIKELY(UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv))) {
246 HANDLE_UNICODE_NONCHAR(uv, flags);
248 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
249 HANDLE_UNICODE_SURROGATE(uv, flags);
256 /* Not 4-byte; that means the code point is at least 0x20_0000 on ASCII
257 * platforms, and 0x4000 on EBCDIC. At this point we switch to a loop
258 * format. The unrolled version above turns out to not save all that much
259 * time, and at these high code points (well above the legal Unicode range
260 * on ASCII platforms, and well above anything in common use in EBCDIC),
261 * khw believes that less code outweighs slight performance gains. */
264 STRLEN len = OFFUNISKIP(uv);
267 *p-- = I8_TO_NATIVE_UTF8((uv & UTF_CONTINUATION_MASK) | UTF_CONTINUATION_MARK);
268 uv >>= UTF_ACCUMULATION_SHIFT;
270 *p = I8_TO_NATIVE_UTF8((uv & UTF_START_MASK(len)) | UTF_START_MARK(len));
276 =for apidoc uvchr_to_utf8
278 Adds the UTF-8 representation of the native code point C<uv> to the end
279 of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
280 C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
281 the byte after the end of the new character. In other words,
283 d = uvchr_to_utf8(d, uv);
285 is the recommended wide native character-aware way of saying
289 This function accepts any UV as input, but very high code points (above
290 C<IV_MAX> on the platform) will raise a deprecation warning. This is
291 typically 0x7FFF_FFFF in a 32-bit word.
293 It is possible to forbid or warn on non-Unicode code points, or those that may
294 be problematic by using L</uvchr_to_utf8_flags>.
299 /* This is also a macro */
300 PERL_CALLCONV U8* Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv);
303 Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv)
305 return uvchr_to_utf8(d, uv);
309 =for apidoc uvchr_to_utf8_flags
311 Adds the UTF-8 representation of the native code point C<uv> to the end
312 of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
313 C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
314 the byte after the end of the new character. In other words,
316 d = uvchr_to_utf8_flags(d, uv, flags);
320 d = uvchr_to_utf8_flags(d, uv, 0);
322 This is the Unicode-aware way of saying
326 If C<flags> is 0, this function accepts any UV as input, but very high code
327 points (above C<IV_MAX> for the platform) will raise a deprecation warning.
328 This is typically 0x7FFF_FFFF in a 32-bit word.
330 Specifying C<flags> can further restrict what is allowed and not warned on, as
333 If C<uv> is a Unicode surrogate code point and C<UNICODE_WARN_SURROGATE> is set,
334 the function will raise a warning, provided UTF8 warnings are enabled. If
335 instead C<UNICODE_DISALLOW_SURROGATE> is set, the function will fail and return
336 NULL. If both flags are set, the function will both warn and return NULL.
338 Similarly, the C<UNICODE_WARN_NONCHAR> and C<UNICODE_DISALLOW_NONCHAR> flags
339 affect how the function handles a Unicode non-character.
341 And likewise, the C<UNICODE_WARN_SUPER> and C<UNICODE_DISALLOW_SUPER> flags
342 affect the handling of code points that are above the Unicode maximum of
343 0x10FFFF. Languages other than Perl may not be able to accept files that
346 The flag C<UNICODE_WARN_ILLEGAL_INTERCHANGE> selects all three of
347 the above WARN flags; and C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> selects all
348 three DISALLOW flags. C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> restricts the
349 allowed inputs to the strict UTF-8 traditionally defined by Unicode.
350 Similarly, C<UNICODE_WARN_ILLEGAL_C9_INTERCHANGE> and
351 C<UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE> are shortcuts to select the
352 above-Unicode and surrogate flags, but not the non-character ones, as
354 L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
355 See L<perlunicode/Noncharacter code points>.
357 Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
358 so using them is more problematic than other above-Unicode code points. Perl
359 invented an extension to UTF-8 to represent the ones above 2**36-1, so it is
360 likely that non-Perl languages will not be able to read files that contain
361 these that written by the perl interpreter; nor would Perl understand files
362 written by something that uses a different extension. For these reasons, there
363 is a separate set of flags that can warn and/or disallow these extremely high
364 code points, even if other above-Unicode ones are accepted. These are the
365 C<UNICODE_WARN_ABOVE_31_BIT> and C<UNICODE_DISALLOW_ABOVE_31_BIT> flags. These
366 are entirely independent from the deprecation warning for code points above
367 C<IV_MAX>. On 32-bit machines, it will eventually be forbidden to have any
368 code point that needs more than 31 bits to represent. When that happens,
369 effectively the C<UNICODE_DISALLOW_ABOVE_31_BIT> flag will always be set on
370 32-bit machines. (Of course C<UNICODE_DISALLOW_SUPER> will treat all
371 above-Unicode code points, including these, as malformations; and
372 C<UNICODE_WARN_SUPER> warns on these.)
374 On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
375 extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
376 than on ASCII. Prior to that, code points 2**31 and higher were simply
377 unrepresentable, and a different, incompatible method was used to represent
378 code points between 2**30 and 2**31 - 1. The flags C<UNICODE_WARN_ABOVE_31_BIT>
379 and C<UNICODE_DISALLOW_ABOVE_31_BIT> have the same function as on ASCII
380 platforms, warning and disallowing 2**31 and higher.
385 /* This is also a macro */
386 PERL_CALLCONV U8* Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags);
389 Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
391 return uvchr_to_utf8_flags(d, uv, flags);
394 PERL_STATIC_INLINE bool
395 S_is_utf8_cp_above_31_bits(const U8 * const s, const U8 * const e)
397 /* Returns TRUE if the first code point represented by the Perl-extended-
398 * UTF-8-encoded string starting at 's', and looking no further than 'e -
399 * 1' doesn't fit into 31 bytes. That is, that if it is >= 2**31.
401 * The function handles the case where the input bytes do not include all
402 * the ones necessary to represent a full character. That is, they may be
403 * the intial bytes of the representation of a code point, but possibly
404 * the final ones necessary for the complete representation may be beyond
407 * The function assumes that the sequence is well-formed UTF-8 as far as it
408 * goes, and is for a UTF-8 variant code point. If the sequence is
409 * incomplete, the function returns FALSE if there is any well-formed
410 * UTF-8 byte sequence that can complete it in such a way that a code point
411 * < 2**31 is produced; otherwise it returns TRUE.
413 * Getting this exactly right is slightly tricky, and has to be done in
414 * several places in this file, so is centralized here. It is based on the
417 * U+7FFFFFFF (2 ** 31 - 1)
418 * ASCII: \xFD\xBF\xBF\xBF\xBF\xBF
419 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x42\x73\x73\x73\x73\x73\x73
420 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x42\x72\x72\x72\x72\x72\x72
421 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x42\x75\x75\x75\x75\x75\x75
422 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA1\xBF\xBF\xBF\xBF\xBF\xBF
423 * U+80000000 (2 ** 31):
424 * ASCII: \xFE\x82\x80\x80\x80\x80\x80
425 * [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 10 11 12 13
426 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
427 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
428 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
429 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA2\xA0\xA0\xA0\xA0\xA0\xA0
434 /* [0] is start byte [1] [2] [3] [4] [5] [6] [7] */
435 const U8 prefix[] = "\x41\x41\x41\x41\x41\x41\x42";
436 const STRLEN prefix_len = sizeof(prefix) - 1;
437 const STRLEN len = e - s;
438 const STRLEN cmp_len = MIN(prefix_len, len - 1);
446 PERL_ARGS_ASSERT_IS_UTF8_CP_ABOVE_31_BITS;
448 assert(! UTF8_IS_INVARIANT(*s));
452 /* Technically, a start byte of FE can be for a code point that fits into
453 * 31 bytes, but not for well-formed UTF-8: doing that requires an overlong
459 /* On the EBCDIC code pages we handle, only 0xFE can mean a 32-bit or
460 * larger code point (0xFF is an invariant). For 0xFE, we need at least 2
461 * bytes, and maybe up through 8 bytes, to be sure if the value is above 31
463 if (*s != 0xFE || len == 1) {
467 /* Note that in UTF-EBCDIC, the two lowest possible continuation bytes are
469 return cBOOL(memGT(s + 1, prefix, cmp_len));
475 PERL_STATIC_INLINE bool
476 S_does_utf8_overflow(const U8 * const s, const U8 * e)
479 const U8 * y = (const U8 *) HIGHEST_REPRESENTABLE_UTF8;
481 #if ! defined(UV_IS_QUAD) && ! defined(EBCDIC)
483 const STRLEN len = e - s;
487 /* Returns a boolean as to if this UTF-8 string would overflow a UV on this
488 * platform, that is if it represents a code point larger than the highest
489 * representable code point. (For ASCII platforms, we could use memcmp()
490 * because we don't have to convert each byte to I8, but it's very rare
491 * input indeed that would approach overflow, so the loop below will likely
492 * only get executed once.
494 * 'e' must not be beyond a full character. If it is less than a full
495 * character, the function returns FALSE if there is any input beyond 'e'
496 * that could result in a non-overflowing code point */
498 PERL_ARGS_ASSERT_DOES_UTF8_OVERFLOW;
499 assert(s <= e && s + UTF8SKIP(s) >= e);
501 #if ! defined(UV_IS_QUAD) && ! defined(EBCDIC)
503 /* On 32 bit ASCII machines, many overlongs that start with FF don't
506 if (isFF_OVERLONG(s, len)) {
507 const U8 max_32_bit_overlong[] = "\xFF\x80\x80\x80\x80\x80\x80\x84";
508 return memGE(s, max_32_bit_overlong,
509 MIN(len, sizeof(max_32_bit_overlong) - 1));
514 for (x = s; x < e; x++, y++) {
516 /* If this byte is larger than the corresponding highest UTF-8 byte, it
518 if (UNLIKELY(NATIVE_UTF8_TO_I8(*x) > *y)) {
522 /* If not the same as this byte, it must be smaller, doesn't overflow */
523 if (LIKELY(NATIVE_UTF8_TO_I8(*x) != *y)) {
528 /* Got to the end and all bytes are the same. If the input is a whole
529 * character, it doesn't overflow. And if it is a partial character,
530 * there's not enough information to tell, so assume doesn't overflow */
534 PERL_STATIC_INLINE bool
535 S_is_utf8_overlong_given_start_byte_ok(const U8 * const s, const STRLEN len)
537 /* Overlongs can occur whenever the number of continuation bytes
538 * changes. That means whenever the number of leading 1 bits in a start
539 * byte increases from the next lower start byte. That happens for start
540 * bytes C0, E0, F0, F8, FC, FE, and FF. On modern perls, the following
541 * illegal start bytes have already been excluded, so don't need to be
543 * ASCII platforms: C0, C1
544 * EBCDIC platforms C0, C1, C2, C3, C4, E0
546 * At least a second byte is required to determine if other sequences will
549 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
550 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
552 PERL_ARGS_ASSERT_IS_UTF8_OVERLONG_GIVEN_START_BYTE_OK;
553 assert(len > 1 && UTF8_IS_START(*s));
555 /* Each platform has overlongs after the start bytes given above (expressed
556 * in I8 for EBCDIC). What constitutes an overlong varies by platform, but
557 * the logic is the same, except the E0 overlong has already been excluded
558 * on EBCDIC platforms. The values below were found by manually
559 * inspecting the UTF-8 patterns. See the tables in utf8.h and
563 # define F0_ABOVE_OVERLONG 0xB0
564 # define F8_ABOVE_OVERLONG 0xA8
565 # define FC_ABOVE_OVERLONG 0xA4
566 # define FE_ABOVE_OVERLONG 0xA2
567 # define FF_OVERLONG_PREFIX "\xfe\x41\x41\x41\x41\x41\x41\x41"
571 if (s0 == 0xE0 && UNLIKELY(s1 < 0xA0)) {
575 # define F0_ABOVE_OVERLONG 0x90
576 # define F8_ABOVE_OVERLONG 0x88
577 # define FC_ABOVE_OVERLONG 0x84
578 # define FE_ABOVE_OVERLONG 0x82
579 # define FF_OVERLONG_PREFIX "\xff\x80\x80\x80\x80\x80\x80"
583 if ( (s0 == 0xF0 && UNLIKELY(s1 < F0_ABOVE_OVERLONG))
584 || (s0 == 0xF8 && UNLIKELY(s1 < F8_ABOVE_OVERLONG))
585 || (s0 == 0xFC && UNLIKELY(s1 < FC_ABOVE_OVERLONG))
586 || (s0 == 0xFE && UNLIKELY(s1 < FE_ABOVE_OVERLONG)))
591 /* Check for the FF overlong */
592 return isFF_OVERLONG(s, len);
595 PERL_STATIC_INLINE bool
596 S_isFF_OVERLONG(const U8 * const s, const STRLEN len)
598 PERL_ARGS_ASSERT_ISFF_OVERLONG;
600 /* Check for the FF overlong. This happens only if all these bytes match;
601 * what comes after them doesn't matter. See tables in utf8.h,
604 return len >= sizeof(FF_OVERLONG_PREFIX) - 1
605 && UNLIKELY(memEQ(s, FF_OVERLONG_PREFIX,
606 sizeof(FF_OVERLONG_PREFIX) - 1));
609 #undef F0_ABOVE_OVERLONG
610 #undef F8_ABOVE_OVERLONG
611 #undef FC_ABOVE_OVERLONG
612 #undef FE_ABOVE_OVERLONG
613 #undef FF_OVERLONG_PREFIX
616 Perl__is_utf8_char_helper(const U8 * const s, const U8 * e, const U32 flags)
621 /* A helper function that should not be called directly.
623 * This function returns non-zero if the string beginning at 's' and
624 * looking no further than 'e - 1' is well-formed Perl-extended-UTF-8 for a
625 * code point; otherwise it returns 0. The examination stops after the
626 * first code point in 's' is validated, not looking at the rest of the
627 * input. If 'e' is such that there are not enough bytes to represent a
628 * complete code point, this function will return non-zero anyway, if the
629 * bytes it does have are well-formed UTF-8 as far as they go, and aren't
630 * excluded by 'flags'.
632 * A non-zero return gives the number of bytes required to represent the
633 * code point. Be aware that if the input is for a partial character, the
634 * return will be larger than 'e - s'.
636 * This function assumes that the code point represented is UTF-8 variant.
637 * The caller should have excluded this possibility before calling this
640 * 'flags' can be 0, or any combination of the UTF8_DISALLOW_foo flags
641 * accepted by L</utf8n_to_uvchr>. If non-zero, this function will return
642 * 0 if the code point represented is well-formed Perl-extended-UTF-8, but
643 * disallowed by the flags. If the input is only for a partial character,
644 * the function will return non-zero if there is any sequence of
645 * well-formed UTF-8 that, when appended to the input sequence, could
646 * result in an allowed code point; otherwise it returns 0. Non characters
647 * cannot be determined based on partial character input. But many of the
648 * other excluded types can be determined with just the first one or two
653 PERL_ARGS_ASSERT__IS_UTF8_CHAR_HELPER;
655 assert(0 == (flags & ~(UTF8_DISALLOW_ILLEGAL_INTERCHANGE
656 |UTF8_DISALLOW_ABOVE_31_BIT)));
657 assert(! UTF8_IS_INVARIANT(*s));
659 /* A variant char must begin with a start byte */
660 if (UNLIKELY(! UTF8_IS_START(*s))) {
664 /* Examine a maximum of a single whole code point */
665 if (e - s > UTF8SKIP(s)) {
671 if (flags && isUTF8_POSSIBLY_PROBLEMATIC(*s)) {
672 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
674 /* The code below is derived from this table. Keep in mind that legal
675 * continuation bytes range between \x80..\xBF for UTF-8, and
676 * \xA0..\xBF for I8. Anything above those aren't continuation bytes.
677 * Hence, we don't have to test the upper edge because if any of those
678 * are encountered, the sequence is malformed, and will fail elsewhere
680 * UTF-8 UTF-EBCDIC I8
681 * U+D800: \xED\xA0\x80 \xF1\xB6\xA0\xA0 First surrogate
682 * U+DFFF: \xED\xBF\xBF \xF1\xB7\xBF\xBF Final surrogate
683 * U+110000: \xF4\x90\x80\x80 \xF9\xA2\xA0\xA0\xA0 First above Unicode
687 #ifdef EBCDIC /* On EBCDIC, these are actually I8 bytes */
688 # define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xFA
689 # define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF9 && (s1) >= 0xA2)
691 # define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xF1 \
693 && ((s1) & 0xFE ) == 0xB6)
695 # define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xF5
696 # define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF4 && (s1) >= 0x90)
697 # define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xED && (s1) >= 0xA0)
700 if ( (flags & UTF8_DISALLOW_SUPER)
701 && UNLIKELY(s0 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER)) {
702 return 0; /* Above Unicode */
705 if ( (flags & UTF8_DISALLOW_ABOVE_31_BIT)
706 && UNLIKELY(is_utf8_cp_above_31_bits(s, e)))
708 return 0; /* Above 31 bits */
712 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
714 if ( (flags & UTF8_DISALLOW_SUPER)
715 && UNLIKELY(IS_UTF8_2_BYTE_SUPER(s0, s1)))
717 return 0; /* Above Unicode */
720 if ( (flags & UTF8_DISALLOW_SURROGATE)
721 && UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(s0, s1)))
723 return 0; /* Surrogate */
726 if ( (flags & UTF8_DISALLOW_NONCHAR)
727 && UNLIKELY(UTF8_IS_NONCHAR(s, e)))
729 return 0; /* Noncharacter code point */
734 /* Make sure that all that follows are continuation bytes */
735 for (x = s + 1; x < e; x++) {
736 if (UNLIKELY(! UTF8_IS_CONTINUATION(*x))) {
741 /* Here is syntactically valid. Next, make sure this isn't the start of an
743 if (len > 1 && is_utf8_overlong_given_start_byte_ok(s, len)) {
747 /* And finally, that the code point represented fits in a word on this
749 if (does_utf8_overflow(s, e)) {
757 S__byte_dump_string(pTHX_ const U8 * s, const STRLEN len)
759 /* Returns a mortalized C string that is a displayable copy of the 'len'
760 * bytes starting at 's', each in a \xXY format. */
762 const STRLEN output_len = 4 * len + 1; /* 4 bytes per each input, plus a
764 const U8 * const e = s + len;
768 PERL_ARGS_ASSERT__BYTE_DUMP_STRING;
770 Newx(output, output_len, char);
775 const unsigned high_nibble = (*s & 0xF0) >> 4;
776 const unsigned low_nibble = (*s & 0x0F);
781 if (high_nibble < 10) {
782 *d++ = high_nibble + '0';
785 *d++ = high_nibble - 10 + 'a';
788 if (low_nibble < 10) {
789 *d++ = low_nibble + '0';
792 *d++ = low_nibble - 10 + 'a';
800 PERL_STATIC_INLINE char *
801 S_unexpected_non_continuation_text(pTHX_ const U8 * const s,
803 /* How many bytes to print */
806 /* Which one is the non-continuation */
807 const STRLEN non_cont_byte_pos,
809 /* How many bytes should there be? */
810 const STRLEN expect_len)
812 /* Return the malformation warning text for an unexpected continuation
815 const char * const where = (non_cont_byte_pos == 1)
817 : Perl_form(aTHX_ "%d bytes",
818 (int) non_cont_byte_pos);
821 PERL_ARGS_ASSERT_UNEXPECTED_NON_CONTINUATION_TEXT;
823 /* We don't need to pass this parameter, but since it has already been
824 * calculated, it's likely faster to pass it; verify under DEBUGGING */
825 assert(expect_len == UTF8SKIP(s));
827 /* It is possible that utf8n_to_uvchr() was called incorrectly, with a
828 * length that is larger than is actually available in the buffer. If we
829 * print all the bytes based on that length, we will read past the buffer
830 * end. Often, the strings are NUL terminated, so to lower the chances of
831 * this happening, print the malformed bytes only up through any NUL. */
832 for (i = 1; i < print_len; i++) {
833 if (*(s + i) == '\0') {
834 print_len = i + 1; /* +1 gets the NUL printed */
839 return Perl_form(aTHX_ "%s: %s (unexpected non-continuation byte 0x%02x,"
840 " %s after start byte 0x%02x; need %d bytes, got %d)",
842 _byte_dump_string(s, print_len),
843 *(s + non_cont_byte_pos),
847 (int) non_cont_byte_pos);
852 =for apidoc utf8n_to_uvchr
854 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
855 Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
857 Bottom level UTF-8 decode routine.
858 Returns the native code point value of the first character in the string C<s>,
859 which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than
860 C<curlen> bytes; C<*retlen> (if C<retlen> isn't NULL) will be set to
861 the length, in bytes, of that character.
863 The value of C<flags> determines the behavior when C<s> does not point to a
864 well-formed UTF-8 character. If C<flags> is 0, encountering a malformation
865 causes zero to be returned and C<*retlen> is set so that (S<C<s> + C<*retlen>>)
866 is the next possible position in C<s> that could begin a non-malformed
867 character. Also, if UTF-8 warnings haven't been lexically disabled, a warning
868 is raised. Some UTF-8 input sequences may contain multiple malformations.
869 This function tries to find every possible one in each call, so multiple
870 warnings can be raised for each sequence.
872 Various ALLOW flags can be set in C<flags> to allow (and not warn on)
873 individual types of malformations, such as the sequence being overlong (that
874 is, when there is a shorter sequence that can express the same code point;
875 overlong sequences are expressly forbidden in the UTF-8 standard due to
876 potential security issues). Another malformation example is the first byte of
877 a character not being a legal first byte. See F<utf8.h> for the list of such
878 flags. For allowed 0 length strings, this function returns 0; for allowed
879 overlong sequences, the computed code point is returned; for all other allowed
880 malformations, the Unicode REPLACEMENT CHARACTER is returned, as these have no
881 determinable reasonable value.
883 The C<UTF8_CHECK_ONLY> flag overrides the behavior when a non-allowed (by other
884 flags) malformation is found. If this flag is set, the routine assumes that
885 the caller will raise a warning, and this function will silently just set
886 C<retlen> to C<-1> (cast to C<STRLEN>) and return zero.
888 Note that this API requires disambiguation between successful decoding a C<NUL>
889 character, and an error return (unless the C<UTF8_CHECK_ONLY> flag is set), as
890 in both cases, 0 is returned, and, depending on the malformation, C<retlen> may
891 be set to 1. To disambiguate, upon a zero return, see if the first byte of
892 C<s> is 0 as well. If so, the input was a C<NUL>; if not, the input had an
893 error. Or you can use C<L</utf8n_to_uvchr_error>>.
895 Certain code points are considered problematic. These are Unicode surrogates,
896 Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
897 By default these are considered regular code points, but certain situations
898 warrant special handling for them, which can be specified using the C<flags>
899 parameter. If C<flags> contains C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>, all
900 three classes are treated as malformations and handled as such. The flags
901 C<UTF8_DISALLOW_SURROGATE>, C<UTF8_DISALLOW_NONCHAR>, and
902 C<UTF8_DISALLOW_SUPER> (meaning above the legal Unicode maximum) can be set to
903 disallow these categories individually. C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>
904 restricts the allowed inputs to the strict UTF-8 traditionally defined by
905 Unicode. Use C<UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE> to use the strictness
907 L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
908 The difference between traditional strictness and C9 strictness is that the
909 latter does not forbid non-character code points. (They are still discouraged,
910 however.) For more discussion see L<perlunicode/Noncharacter code points>.
912 The flags C<UTF8_WARN_ILLEGAL_INTERCHANGE>,
913 C<UTF8_WARN_ILLEGAL_C9_INTERCHANGE>, C<UTF8_WARN_SURROGATE>,
914 C<UTF8_WARN_NONCHAR>, and C<UTF8_WARN_SUPER> will cause warning messages to be
915 raised for their respective categories, but otherwise the code points are
916 considered valid (not malformations). To get a category to both be treated as
917 a malformation and raise a warning, specify both the WARN and DISALLOW flags.
918 (But note that warnings are not raised if lexically disabled nor if
919 C<UTF8_CHECK_ONLY> is also specified.)
921 It is now deprecated to have very high code points (above C<IV_MAX> on the
922 platforms) and this function will raise a deprecation warning for these (unless
923 such warnings are turned off). This value is typically 0x7FFF_FFFF (2**31 -1)
926 Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
927 so using them is more problematic than other above-Unicode code points. Perl
928 invented an extension to UTF-8 to represent the ones above 2**36-1, so it is
929 likely that non-Perl languages will not be able to read files that contain
930 these; nor would Perl understand files
931 written by something that uses a different extension. For these reasons, there
932 is a separate set of flags that can warn and/or disallow these extremely high
933 code points, even if other above-Unicode ones are accepted. These are the
934 C<UTF8_WARN_ABOVE_31_BIT> and C<UTF8_DISALLOW_ABOVE_31_BIT> flags. These
935 are entirely independent from the deprecation warning for code points above
936 C<IV_MAX>. On 32-bit machines, it will eventually be forbidden to have any
937 code point that needs more than 31 bits to represent. When that happens,
938 effectively the C<UTF8_DISALLOW_ABOVE_31_BIT> flag will always be set on
939 32-bit machines. (Of course C<UTF8_DISALLOW_SUPER> will treat all
940 above-Unicode code points, including these, as malformations; and
941 C<UTF8_WARN_SUPER> warns on these.)
943 On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
944 extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
945 than on ASCII. Prior to that, code points 2**31 and higher were simply
946 unrepresentable, and a different, incompatible method was used to represent
947 code points between 2**30 and 2**31 - 1. The flags C<UTF8_WARN_ABOVE_31_BIT>
948 and C<UTF8_DISALLOW_ABOVE_31_BIT> have the same function as on ASCII
949 platforms, warning and disallowing 2**31 and higher.
951 All other code points corresponding to Unicode characters, including private
952 use and those yet to be assigned, are never considered malformed and never
957 Also implemented as a macro in utf8.h
961 Perl_utf8n_to_uvchr(pTHX_ const U8 *s,
966 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR;
968 return utf8n_to_uvchr_error(s, curlen, retlen, flags, NULL);
973 =for apidoc utf8n_to_uvchr_error
975 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
976 Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
978 This function is for code that needs to know what the precise malformation(s)
979 are when an error is found.
981 It is like C<L</utf8n_to_uvchr>> but it takes an extra parameter placed after
982 all the others, C<errors>. If this parameter is 0, this function behaves
983 identically to C<L</utf8n_to_uvchr>>. Otherwise, C<errors> should be a pointer
984 to a C<U32> variable, which this function sets to indicate any errors found.
985 Upon return, if C<*errors> is 0, there were no errors found. Otherwise,
986 C<*errors> is the bit-wise C<OR> of the bits described in the list below. Some
987 of these bits will be set if a malformation is found, even if the input
988 C<flags> parameter indicates that the given malformation is allowed; those
989 exceptions are noted:
993 =item C<UTF8_GOT_ABOVE_31_BIT>
995 The code point represented by the input UTF-8 sequence occupies more than 31
997 This bit is set only if the input C<flags> parameter contains either the
998 C<UTF8_DISALLOW_ABOVE_31_BIT> or the C<UTF8_WARN_ABOVE_31_BIT> flags.
1000 =item C<UTF8_GOT_CONTINUATION>
1002 The input sequence was malformed in that the first byte was a a UTF-8
1005 =item C<UTF8_GOT_EMPTY>
1007 The input C<curlen> parameter was 0.
1009 =item C<UTF8_GOT_LONG>
1011 The input sequence was malformed in that there is some other sequence that
1012 evaluates to the same code point, but that sequence is shorter than this one.
1014 =item C<UTF8_GOT_NONCHAR>
1016 The code point represented by the input UTF-8 sequence is for a Unicode
1017 non-character code point.
1018 This bit is set only if the input C<flags> parameter contains either the
1019 C<UTF8_DISALLOW_NONCHAR> or the C<UTF8_WARN_NONCHAR> flags.
1021 =item C<UTF8_GOT_NON_CONTINUATION>
1023 The input sequence was malformed in that a non-continuation type byte was found
1024 in a position where only a continuation type one should be.
1026 =item C<UTF8_GOT_OVERFLOW>
1028 The input sequence was malformed in that it is for a code point that is not
1029 representable in the number of bits available in a UV on the current platform.
1031 =item C<UTF8_GOT_SHORT>
1033 The input sequence was malformed in that C<curlen> is smaller than required for
1034 a complete sequence. In other words, the input is for a partial character
1037 =item C<UTF8_GOT_SUPER>
1039 The input sequence was malformed in that it is for a non-Unicode code point;
1040 that is, one above the legal Unicode maximum.
1041 This bit is set only if the input C<flags> parameter contains either the
1042 C<UTF8_DISALLOW_SUPER> or the C<UTF8_WARN_SUPER> flags.
1044 =item C<UTF8_GOT_SURROGATE>
1046 The input sequence was malformed in that it is for a -Unicode UTF-16 surrogate
1048 This bit is set only if the input C<flags> parameter contains either the
1049 C<UTF8_DISALLOW_SURROGATE> or the C<UTF8_WARN_SURROGATE> flags.
1053 To do your own error handling, call this function with the C<UTF8_CHECK_ONLY>
1054 flag to suppress any warnings, and then examine the C<*errors> return.
1060 Perl_utf8n_to_uvchr_error(pTHX_ const U8 *s,
1066 const U8 * const s0 = s;
1067 U8 * send = NULL; /* (initialized to silence compilers' wrong
1069 U32 possible_problems = 0; /* A bit is set here for each potential problem
1070 found as we go along */
1072 STRLEN expectlen = 0; /* How long should this sequence be?
1073 (initialized to silence compilers' wrong
1075 STRLEN avail_len = 0; /* When input is too short, gives what that is */
1076 U32 discard_errors = 0; /* Used to save branches when 'errors' is NULL;
1077 this gets set and discarded */
1079 /* The below are used only if there is both an overlong malformation and a
1080 * too short one. Otherwise the first two are set to 's0' and 'send', and
1081 * the third not used at all */
1082 U8 * adjusted_s0 = (U8 *) s0;
1083 U8 * adjusted_send = NULL; /* (Initialized to silence compilers' wrong
1085 UV uv_so_far = 0; /* (Initialized to silence compilers' wrong warning) */
1087 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR_ERROR;
1093 errors = &discard_errors;
1096 /* The order of malformation tests here is important. We should consume as
1097 * few bytes as possible in order to not skip any valid character. This is
1098 * required by the Unicode Standard (section 3.9 of Unicode 6.0); see also
1099 * http://unicode.org/reports/tr36 for more discussion as to why. For
1100 * example, once we've done a UTF8SKIP, we can tell the expected number of
1101 * bytes, and could fail right off the bat if the input parameters indicate
1102 * that there are too few available. But it could be that just that first
1103 * byte is garbled, and the intended character occupies fewer bytes. If we
1104 * blindly assumed that the first byte is correct, and skipped based on
1105 * that number, we could skip over a valid input character. So instead, we
1106 * always examine the sequence byte-by-byte.
1108 * We also should not consume too few bytes, otherwise someone could inject
1109 * things. For example, an input could be deliberately designed to
1110 * overflow, and if this code bailed out immediately upon discovering that,
1111 * returning to the caller C<*retlen> pointing to the very next byte (one
1112 * which is actually part of of the overflowing sequence), that could look
1113 * legitimate to the caller, which could discard the initial partial
1114 * sequence and process the rest, inappropriately.
1116 * Some possible input sequences are malformed in more than one way. This
1117 * function goes to lengths to try to find all of them. This is necessary
1118 * for correctness, as the inputs may allow one malformation but not
1119 * another, and if we abandon searching for others after finding the
1120 * allowed one, we could allow in something that shouldn't have been.
1123 if (UNLIKELY(curlen == 0)) {
1124 possible_problems |= UTF8_GOT_EMPTY;
1126 uv = 0; /* XXX It could be argued that this should be
1127 UNICODE_REPLACEMENT? */
1128 goto ready_to_handle_errors;
1131 expectlen = UTF8SKIP(s);
1133 /* A well-formed UTF-8 character, as the vast majority of calls to this
1134 * function will be for, has this expected length. For efficiency, set
1135 * things up here to return it. It will be overriden only in those rare
1136 * cases where a malformation is found */
1138 *retlen = expectlen;
1141 /* An invariant is trivially well-formed */
1142 if (UTF8_IS_INVARIANT(uv)) {
1146 /* A continuation character can't start a valid sequence */
1147 if (UNLIKELY(UTF8_IS_CONTINUATION(uv))) {
1148 possible_problems |= UTF8_GOT_CONTINUATION;
1150 uv = UNICODE_REPLACEMENT;
1151 goto ready_to_handle_errors;
1154 /* Here is not a continuation byte, nor an invariant. The only thing left
1155 * is a start byte (possibly for an overlong) */
1157 /* Convert to I8 on EBCDIC (no-op on ASCII), then remove the leading bits
1158 * that indicate the number of bytes in the character's whole UTF-8
1159 * sequence, leaving just the bits that are part of the value. */
1160 uv = NATIVE_UTF8_TO_I8(uv) & UTF_START_MASK(expectlen);
1162 /* Setup the loop end point, making sure to not look past the end of the
1163 * input string, and flag it as too short if the size isn't big enough. */
1165 if (UNLIKELY(curlen < expectlen)) {
1166 possible_problems |= UTF8_GOT_SHORT;
1173 adjusted_send = send;
1175 /* Now, loop through the remaining bytes in the character's sequence,
1176 * accumulating each into the working value as we go. */
1177 for (s = s0 + 1; s < send; s++) {
1178 if (LIKELY(UTF8_IS_CONTINUATION(*s))) {
1179 uv = UTF8_ACCUMULATE(uv, *s);
1183 /* Here, found a non-continuation before processing all expected bytes.
1184 * This byte indicates the beginning of a new character, so quit, even
1185 * if allowing this malformation. */
1186 possible_problems |= UTF8_GOT_NON_CONTINUATION;
1188 } /* End of loop through the character's bytes */
1190 /* Save how many bytes were actually in the character */
1193 /* A convenience macro that matches either of the too-short conditions. */
1194 # define UTF8_GOT_TOO_SHORT (UTF8_GOT_SHORT|UTF8_GOT_NON_CONTINUATION)
1196 if (UNLIKELY(possible_problems & UTF8_GOT_TOO_SHORT)) {
1198 uv = UNICODE_REPLACEMENT;
1201 /* Note that there are two types of too-short malformation. One is when
1202 * there is actual wrong data before the normal termination of the
1203 * sequence. The other is that the sequence wasn't complete before the end
1204 * of the data we are allowed to look at, based on the input 'curlen'.
1205 * This means that we were passed data for a partial character, but it is
1206 * valid as far as we saw. The other is definitely invalid. This
1207 * distinction could be important to a caller, so the two types are kept
1210 /* Check for overflow */
1211 if (UNLIKELY(does_utf8_overflow(s0, send))) {
1212 possible_problems |= UTF8_GOT_OVERFLOW;
1213 uv = UNICODE_REPLACEMENT;
1216 /* Check for overlong. If no problems so far, 'uv' is the correct code
1217 * point value. Simply see if it is expressible in fewer bytes. Otherwise
1218 * we must look at the UTF-8 byte sequence itself to see if it is for an
1220 if ( ( LIKELY(! possible_problems)
1221 && UNLIKELY(expectlen > (STRLEN) OFFUNISKIP(uv)))
1222 || ( UNLIKELY( possible_problems)
1223 && ( UNLIKELY(! UTF8_IS_START(*s0))
1225 && UNLIKELY(is_utf8_overlong_given_start_byte_ok(s0,
1228 possible_problems |= UTF8_GOT_LONG;
1230 if (UNLIKELY(possible_problems & UTF8_GOT_TOO_SHORT)) {
1231 UV min_uv = uv_so_far;
1234 /* Here, the input is both overlong and is missing some trailing
1235 * bytes. There is no single code point it could be for, but there
1236 * may be enough information present to determine if what we have
1237 * so far is for an unallowed code point, such as for a surrogate.
1238 * The code below has the intelligence to determine this, but just
1239 * for non-overlong UTF-8 sequences. What we do here is calculate
1240 * the smallest code point the input could represent if there were
1241 * no too short malformation. Then we compute and save the UTF-8
1242 * for that, which is what the code below looks at instead of the
1243 * raw input. It turns out that the smallest such code point is
1245 for (i = curlen; i < expectlen; i++) {
1246 min_uv = UTF8_ACCUMULATE(min_uv,
1247 I8_TO_NATIVE_UTF8(UTF_CONTINUATION_MARK));
1250 Newx(adjusted_s0, OFFUNISKIP(min_uv) + 1, U8);
1251 SAVEFREEPV((U8 *) adjusted_s0); /* Needed because we may not get
1252 to free it ourselves if
1253 warnings are made fatal */
1254 adjusted_send = uvoffuni_to_utf8_flags(adjusted_s0, min_uv, 0);
1258 /* Now check that the input isn't for a problematic code point not allowed
1259 * by the input parameters. */
1260 /* isn't problematic if < this */
1261 if ( ( ( LIKELY(! possible_problems) && uv >= UNICODE_SURROGATE_FIRST)
1262 || ( UNLIKELY(possible_problems)
1263 && isUTF8_POSSIBLY_PROBLEMATIC(*adjusted_s0)))
1264 && ((flags & ( UTF8_DISALLOW_NONCHAR
1265 |UTF8_DISALLOW_SURROGATE
1266 |UTF8_DISALLOW_SUPER
1267 |UTF8_DISALLOW_ABOVE_31_BIT
1269 |UTF8_WARN_SURROGATE
1271 |UTF8_WARN_ABOVE_31_BIT))
1272 /* In case of a malformation, 'uv' is not valid, and has
1273 * been changed to something in the Unicode range.
1274 * Currently we don't output a deprecation message if there
1275 * is already a malformation, so we don't have to special
1276 * case the test immediately below */
1277 || ( UNLIKELY(uv > MAX_NON_DEPRECATED_CP)
1278 && ckWARN_d(WARN_DEPRECATED))))
1280 /* If there were no malformations, or the only malformation is an
1281 * overlong, 'uv' is valid */
1282 if (LIKELY(! (possible_problems & ~UTF8_GOT_LONG))) {
1283 if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
1284 possible_problems |= UTF8_GOT_SURROGATE;
1286 else if (UNLIKELY(uv > PERL_UNICODE_MAX)) {
1287 possible_problems |= UTF8_GOT_SUPER;
1289 else if (UNLIKELY(UNICODE_IS_NONCHAR(uv))) {
1290 possible_problems |= UTF8_GOT_NONCHAR;
1293 else { /* Otherwise, need to look at the source UTF-8, possibly
1294 adjusted to be non-overlong */
1296 if (UNLIKELY(NATIVE_UTF8_TO_I8(*adjusted_s0)
1297 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
1299 possible_problems |= UTF8_GOT_SUPER;
1301 else if (curlen > 1) {
1302 if (UNLIKELY(IS_UTF8_2_BYTE_SUPER(
1303 NATIVE_UTF8_TO_I8(*adjusted_s0),
1304 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1306 possible_problems |= UTF8_GOT_SUPER;
1308 else if (UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(
1309 NATIVE_UTF8_TO_I8(*adjusted_s0),
1310 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1312 possible_problems |= UTF8_GOT_SURROGATE;
1316 /* We need a complete well-formed UTF-8 character to discern
1317 * non-characters, so can't look for them here */
1321 ready_to_handle_errors:
1324 * curlen contains the number of bytes in the sequence that
1325 * this call should advance the input by.
1326 * avail_len gives the available number of bytes passed in, but
1327 * only if this is less than the expected number of
1328 * bytes, based on the code point's start byte.
1329 * possible_problems' is 0 if there weren't any problems; otherwise a bit
1330 * is set in it for each potential problem found.
1331 * uv contains the code point the input sequence
1332 * represents; or if there is a problem that prevents
1333 * a well-defined value from being computed, it is
1334 * some subsitute value, typically the REPLACEMENT
1336 * s0 points to the first byte of the character
1337 * send points to just after where that (potentially
1338 * partial) character ends
1339 * adjusted_s0 normally is the same as s0, but in case of an
1340 * overlong for which the UTF-8 matters below, it is
1341 * the first byte of the shortest form representation
1343 * adjusted_send normally is the same as 'send', but if adjusted_s0
1344 * is set to something other than s0, this points one
1348 if (UNLIKELY(possible_problems)) {
1349 bool disallowed = FALSE;
1350 const U32 orig_problems = possible_problems;
1352 while (possible_problems) { /* Handle each possible problem */
1354 char * message = NULL;
1356 /* Each 'if' clause handles one problem. They are ordered so that
1357 * the first ones' messages will be displayed before the later
1358 * ones; this is kinda in decreasing severity order */
1359 if (possible_problems & UTF8_GOT_OVERFLOW) {
1361 /* Overflow means also got a super and above 31 bits, but we
1362 * handle all three cases here */
1364 &= ~(UTF8_GOT_OVERFLOW|UTF8_GOT_SUPER|UTF8_GOT_ABOVE_31_BIT);
1365 *errors |= UTF8_GOT_OVERFLOW;
1367 /* But the API says we flag all errors found */
1368 if (flags & (UTF8_WARN_SUPER|UTF8_DISALLOW_SUPER)) {
1369 *errors |= UTF8_GOT_SUPER;
1371 if (flags & (UTF8_WARN_ABOVE_31_BIT|UTF8_DISALLOW_ABOVE_31_BIT)) {
1372 *errors |= UTF8_GOT_ABOVE_31_BIT;
1377 /* The warnings code explicitly says it doesn't handle the case
1378 * of packWARN2 and two categories which have parent-child
1379 * relationship. Even if it works now to raise the warning if
1380 * either is enabled, it wouldn't necessarily do so in the
1381 * future. We output (only) the most dire warning*/
1382 if (! (flags & UTF8_CHECK_ONLY)) {
1383 if (ckWARN_d(WARN_UTF8)) {
1384 pack_warn = packWARN(WARN_UTF8);
1386 else if (ckWARN_d(WARN_NON_UNICODE)) {
1387 pack_warn = packWARN(WARN_NON_UNICODE);
1390 message = Perl_form(aTHX_ "%s: %s (overflows)",
1392 _byte_dump_string(s0, send - s0));
1396 else if (possible_problems & UTF8_GOT_EMPTY) {
1397 possible_problems &= ~UTF8_GOT_EMPTY;
1398 *errors |= UTF8_GOT_EMPTY;
1400 if (! (flags & UTF8_ALLOW_EMPTY)) {
1402 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1403 pack_warn = packWARN(WARN_UTF8);
1404 message = Perl_form(aTHX_ "%s (empty string)",
1409 else if (possible_problems & UTF8_GOT_CONTINUATION) {
1410 possible_problems &= ~UTF8_GOT_CONTINUATION;
1411 *errors |= UTF8_GOT_CONTINUATION;
1413 if (! (flags & UTF8_ALLOW_CONTINUATION)) {
1415 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1416 pack_warn = packWARN(WARN_UTF8);
1417 message = Perl_form(aTHX_
1418 "%s: %s (unexpected continuation byte 0x%02x,"
1419 " with no preceding start byte)",
1421 _byte_dump_string(s0, 1), *s0);
1425 else if (possible_problems & UTF8_GOT_SHORT) {
1426 possible_problems &= ~UTF8_GOT_SHORT;
1427 *errors |= UTF8_GOT_SHORT;
1429 if (! (flags & UTF8_ALLOW_SHORT)) {
1431 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1432 pack_warn = packWARN(WARN_UTF8);
1433 message = Perl_form(aTHX_
1434 "%s: %s (too short; %d byte%s available, need %d)",
1436 _byte_dump_string(s0, send - s0),
1438 avail_len == 1 ? "" : "s",
1444 else if (possible_problems & UTF8_GOT_NON_CONTINUATION) {
1445 possible_problems &= ~UTF8_GOT_NON_CONTINUATION;
1446 *errors |= UTF8_GOT_NON_CONTINUATION;
1448 if (! (flags & UTF8_ALLOW_NON_CONTINUATION)) {
1450 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1451 pack_warn = packWARN(WARN_UTF8);
1452 message = Perl_form(aTHX_ "%s",
1453 unexpected_non_continuation_text(s0,
1460 else if (possible_problems & UTF8_GOT_LONG) {
1461 possible_problems &= ~UTF8_GOT_LONG;
1462 *errors |= UTF8_GOT_LONG;
1464 if (! (flags & UTF8_ALLOW_LONG)) {
1467 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1468 pack_warn = packWARN(WARN_UTF8);
1470 /* These error types cause 'uv' to be something that
1471 * isn't what was intended, so can't use it in the
1472 * message. The other error types either can't
1473 * generate an overlong, or else the 'uv' is valid */
1475 (UTF8_GOT_TOO_SHORT|UTF8_GOT_OVERFLOW))
1477 message = Perl_form(aTHX_
1478 "%s: %s (any UTF-8 sequence that starts"
1479 " with \"%s\" is overlong which can and"
1480 " should be represented with a"
1481 " different, shorter sequence)",
1483 _byte_dump_string(s0, send - s0),
1484 _byte_dump_string(s0, curlen));
1487 U8 tmpbuf[UTF8_MAXBYTES+1];
1488 const U8 * const e = uvoffuni_to_utf8_flags(tmpbuf,
1490 message = Perl_form(aTHX_
1491 "%s: %s (overlong; instead use %s to represent"
1494 _byte_dump_string(s0, send - s0),
1495 _byte_dump_string(tmpbuf, e - tmpbuf),
1496 ((uv < 256) ? 2 : 4), /* Field width of 2 for
1497 small code points */
1503 else if (possible_problems & UTF8_GOT_SURROGATE) {
1504 possible_problems &= ~UTF8_GOT_SURROGATE;
1506 if (flags & UTF8_WARN_SURROGATE) {
1507 *errors |= UTF8_GOT_SURROGATE;
1509 if ( ! (flags & UTF8_CHECK_ONLY)
1510 && ckWARN_d(WARN_SURROGATE))
1512 pack_warn = packWARN(WARN_SURROGATE);
1514 /* These are the only errors that can occur with a
1515 * surrogate when the 'uv' isn't valid */
1516 if (orig_problems & UTF8_GOT_TOO_SHORT) {
1517 message = Perl_form(aTHX_
1518 "UTF-16 surrogate (any UTF-8 sequence that"
1519 " starts with \"%s\" is for a surrogate)",
1520 _byte_dump_string(s0, curlen));
1523 message = Perl_form(aTHX_
1524 "UTF-16 surrogate U+%04" UVXf, uv);
1529 if (flags & UTF8_DISALLOW_SURROGATE) {
1531 *errors |= UTF8_GOT_SURROGATE;
1534 else if (possible_problems & UTF8_GOT_SUPER) {
1535 possible_problems &= ~UTF8_GOT_SUPER;
1537 if (flags & UTF8_WARN_SUPER) {
1538 *errors |= UTF8_GOT_SUPER;
1540 if ( ! (flags & UTF8_CHECK_ONLY)
1541 && ckWARN_d(WARN_NON_UNICODE))
1543 pack_warn = packWARN(WARN_NON_UNICODE);
1545 if (orig_problems & UTF8_GOT_TOO_SHORT) {
1546 message = Perl_form(aTHX_
1547 "Any UTF-8 sequence that starts with"
1548 " \"%s\" is for a non-Unicode code point,"
1549 " may not be portable",
1550 _byte_dump_string(s0, curlen));
1553 message = Perl_form(aTHX_
1554 "Code point 0x%04" UVXf " is not"
1555 " Unicode, may not be portable",
1561 /* The maximum code point ever specified by a standard was
1562 * 2**31 - 1. Anything larger than that is a Perl extension
1563 * that very well may not be understood by other applications
1564 * (including earlier perl versions on EBCDIC platforms). We
1565 * test for these after the regular SUPER ones, and before
1566 * possibly bailing out, so that the slightly more dire warning
1567 * will override the regular one. */
1568 if ( (flags & (UTF8_WARN_ABOVE_31_BIT
1570 |UTF8_DISALLOW_ABOVE_31_BIT))
1571 && ( ( UNLIKELY(orig_problems & UTF8_GOT_TOO_SHORT)
1572 && UNLIKELY(is_utf8_cp_above_31_bits(
1575 || ( LIKELY(! (orig_problems & UTF8_GOT_TOO_SHORT))
1576 && UNLIKELY(UNICODE_IS_ABOVE_31_BIT(uv)))))
1578 if ( ! (flags & UTF8_CHECK_ONLY)
1579 && (flags & (UTF8_WARN_ABOVE_31_BIT|UTF8_WARN_SUPER))
1580 && ckWARN_d(WARN_UTF8))
1582 pack_warn = packWARN(WARN_UTF8);
1584 if (orig_problems & UTF8_GOT_TOO_SHORT) {
1585 message = Perl_form(aTHX_
1586 "Any UTF-8 sequence that starts with"
1587 " \"%s\" is for a non-Unicode code"
1588 " point, and is not portable",
1589 _byte_dump_string(s0, curlen));
1592 message = Perl_form(aTHX_
1593 "Code point 0x%" UVXf " is not Unicode,"
1594 " and not portable",
1599 if (flags & (UTF8_WARN_ABOVE_31_BIT|UTF8_DISALLOW_ABOVE_31_BIT)) {
1600 *errors |= UTF8_GOT_ABOVE_31_BIT;
1602 if (flags & UTF8_DISALLOW_ABOVE_31_BIT) {
1608 if (flags & UTF8_DISALLOW_SUPER) {
1609 *errors |= UTF8_GOT_SUPER;
1613 /* The deprecated warning overrides any non-deprecated one. If
1614 * there are other problems, a deprecation message is not
1615 * really helpful, so don't bother to raise it in that case.
1616 * This also keeps the code from having to handle the case
1617 * where 'uv' is not valid. */
1618 if ( ! (orig_problems
1619 & (UTF8_GOT_TOO_SHORT|UTF8_GOT_OVERFLOW))
1620 && UNLIKELY(uv > MAX_NON_DEPRECATED_CP)
1621 && ckWARN_d(WARN_DEPRECATED))
1623 message = Perl_form(aTHX_ cp_above_legal_max,
1624 uv, MAX_NON_DEPRECATED_CP);
1625 pack_warn = packWARN(WARN_DEPRECATED);
1628 else if (possible_problems & UTF8_GOT_NONCHAR) {
1629 possible_problems &= ~UTF8_GOT_NONCHAR;
1631 if (flags & UTF8_WARN_NONCHAR) {
1632 *errors |= UTF8_GOT_NONCHAR;
1634 if ( ! (flags & UTF8_CHECK_ONLY)
1635 && ckWARN_d(WARN_NONCHAR))
1637 /* The code above should have guaranteed that we don't
1638 * get here with errors other than overlong */
1639 assert (! (orig_problems
1640 & ~(UTF8_GOT_LONG|UTF8_GOT_NONCHAR)));
1642 pack_warn = packWARN(WARN_NONCHAR);
1643 message = Perl_form(aTHX_ "Unicode non-character"
1644 " U+%04" UVXf " is not recommended"
1645 " for open interchange", uv);
1649 if (flags & UTF8_DISALLOW_NONCHAR) {
1651 *errors |= UTF8_GOT_NONCHAR;
1653 } /* End of looking through the possible flags */
1655 /* Display the message (if any) for the problem being handled in
1656 * this iteration of the loop */
1659 Perl_warner(aTHX_ pack_warn, "%s in %s", message,
1662 Perl_warner(aTHX_ pack_warn, "%s", message);
1664 } /* End of 'while (possible_problems) {' */
1666 /* Since there was a possible problem, the returned length may need to
1667 * be changed from the one stored at the beginning of this function.
1668 * Instead of trying to figure out if that's needed, just do it. */
1674 if (flags & UTF8_CHECK_ONLY && retlen) {
1675 *retlen = ((STRLEN) -1);
1681 return UNI_TO_NATIVE(uv);
1685 =for apidoc utf8_to_uvchr_buf
1687 Returns the native code point of the first character in the string C<s> which
1688 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
1689 C<*retlen> will be set to the length, in bytes, of that character.
1691 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
1692 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
1693 C<NULL>) to -1. If those warnings are off, the computed value, if well-defined
1694 (or the Unicode REPLACEMENT CHARACTER if not), is silently returned, and
1695 C<*retlen> is set (if C<retlen> isn't C<NULL>) so that (S<C<s> + C<*retlen>>) is
1696 the next possible position in C<s> that could begin a non-malformed character.
1697 See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is
1700 Code points above the platform's C<IV_MAX> will raise a deprecation warning,
1701 unless those are turned off.
1705 Also implemented as a macro in utf8.h
1711 Perl_utf8_to_uvchr_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
1715 return utf8n_to_uvchr(s, send - s, retlen,
1716 ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY);
1719 /* This is marked as deprecated
1721 =for apidoc utf8_to_uvuni_buf
1723 Only in very rare circumstances should code need to be dealing in Unicode
1724 (as opposed to native) code points. In those few cases, use
1725 C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|/utf8_to_uvchr_buf>> instead.
1727 Returns the Unicode (not-native) code point of the first character in the
1729 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
1730 C<retlen> will be set to the length, in bytes, of that character.
1732 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
1733 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
1734 NULL) to -1. If those warnings are off, the computed value if well-defined (or
1735 the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
1736 is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
1737 next possible position in C<s> that could begin a non-malformed character.
1738 See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is returned.
1740 Code points above the platform's C<IV_MAX> will raise a deprecation warning,
1741 unless those are turned off.
1747 Perl_utf8_to_uvuni_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
1749 PERL_ARGS_ASSERT_UTF8_TO_UVUNI_BUF;
1753 /* Call the low level routine, asking for checks */
1754 return NATIVE_TO_UNI(utf8_to_uvchr_buf(s, send, retlen));
1758 =for apidoc utf8_length
1760 Return the length of the UTF-8 char encoded string C<s> in characters.
1761 Stops at C<e> (inclusive). If C<e E<lt> s> or if the scan would end
1762 up past C<e>, croaks.
1768 Perl_utf8_length(pTHX_ const U8 *s, const U8 *e)
1772 PERL_ARGS_ASSERT_UTF8_LENGTH;
1774 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g.
1775 * the bitops (especially ~) can create illegal UTF-8.
1776 * In other words: in Perl UTF-8 is not just for Unicode. */
1779 goto warn_and_return;
1789 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1790 "%s in %s", unees, OP_DESC(PL_op));
1792 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
1799 =for apidoc bytes_cmp_utf8
1801 Compares the sequence of characters (stored as octets) in C<b>, C<blen> with the
1802 sequence of characters (stored as UTF-8)
1803 in C<u>, C<ulen>. Returns 0 if they are
1804 equal, -1 or -2 if the first string is less than the second string, +1 or +2
1805 if the first string is greater than the second string.
1807 -1 or +1 is returned if the shorter string was identical to the start of the
1808 longer string. -2 or +2 is returned if
1809 there was a difference between characters
1816 Perl_bytes_cmp_utf8(pTHX_ const U8 *b, STRLEN blen, const U8 *u, STRLEN ulen)
1818 const U8 *const bend = b + blen;
1819 const U8 *const uend = u + ulen;
1821 PERL_ARGS_ASSERT_BYTES_CMP_UTF8;
1823 while (b < bend && u < uend) {
1825 if (!UTF8_IS_INVARIANT(c)) {
1826 if (UTF8_IS_DOWNGRADEABLE_START(c)) {
1829 if (UTF8_IS_CONTINUATION(c1)) {
1830 c = EIGHT_BIT_UTF8_TO_NATIVE(c, c1);
1832 /* diag_listed_as: Malformed UTF-8 character%s */
1833 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1835 unexpected_non_continuation_text(u - 1, 2, 1, 2),
1836 PL_op ? " in " : "",
1837 PL_op ? OP_DESC(PL_op) : "");
1842 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1843 "%s in %s", unees, OP_DESC(PL_op));
1845 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
1846 return -2; /* Really want to return undef :-) */
1853 return *b < c ? -2 : +2;
1858 if (b == bend && u == uend)
1861 return b < bend ? +1 : -1;
1865 =for apidoc utf8_to_bytes
1867 Converts a string C<s> of length C<len> from UTF-8 into native byte encoding.
1868 Unlike L</bytes_to_utf8>, this over-writes the original string, and
1869 updates C<len> to contain the new length.
1870 Returns zero on failure, setting C<len> to -1.
1872 If you need a copy of the string, see L</bytes_from_utf8>.
1878 Perl_utf8_to_bytes(pTHX_ U8 *s, STRLEN *len)
1880 U8 * const save = s;
1881 U8 * const send = s + *len;
1884 PERL_ARGS_ASSERT_UTF8_TO_BYTES;
1885 PERL_UNUSED_CONTEXT;
1887 /* ensure valid UTF-8 and chars < 256 before updating string */
1889 if (! UTF8_IS_INVARIANT(*s)) {
1890 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
1891 *len = ((STRLEN) -1);
1902 if (! UTF8_IS_INVARIANT(c)) {
1903 /* Then it is two-byte encoded */
1904 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
1915 =for apidoc bytes_from_utf8
1917 Converts a string C<s> of length C<len> from UTF-8 into native byte encoding.
1918 Unlike L</utf8_to_bytes> but like L</bytes_to_utf8>, returns a pointer to
1919 the newly-created string, and updates C<len> to contain the new
1920 length. Returns the original string if no conversion occurs, C<len>
1921 is unchanged. Do nothing if C<is_utf8> points to 0. Sets C<is_utf8> to
1922 0 if C<s> is converted or consisted entirely of characters that are invariant
1923 in UTF-8 (i.e., US-ASCII on non-EBCDIC machines).
1929 Perl_bytes_from_utf8(pTHX_ const U8 *s, STRLEN *len, bool *is_utf8)
1932 const U8 *start = s;
1936 PERL_ARGS_ASSERT_BYTES_FROM_UTF8;
1937 PERL_UNUSED_CONTEXT;
1941 /* ensure valid UTF-8 and chars < 256 before converting string */
1942 for (send = s + *len; s < send;) {
1943 if (! UTF8_IS_INVARIANT(*s)) {
1944 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
1955 Newx(d, (*len) - count + 1, U8);
1956 s = start; start = d;
1959 if (! UTF8_IS_INVARIANT(c)) {
1960 /* Then it is two-byte encoded */
1961 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
1972 =for apidoc bytes_to_utf8
1974 Converts a string C<s> of length C<len> bytes from the native encoding into
1976 Returns a pointer to the newly-created string, and sets C<len> to
1977 reflect the new length in bytes.
1979 A C<NUL> character will be written after the end of the string.
1981 If you want to convert to UTF-8 from encodings other than
1982 the native (Latin1 or EBCDIC),
1983 see L</sv_recode_to_utf8>().
1988 /* This logic is duplicated in sv_catpvn_flags, so any bug fixes will
1989 likewise need duplication. */
1992 Perl_bytes_to_utf8(pTHX_ const U8 *s, STRLEN *len)
1994 const U8 * const send = s + (*len);
1998 PERL_ARGS_ASSERT_BYTES_TO_UTF8;
1999 PERL_UNUSED_CONTEXT;
2001 Newx(d, (*len) * 2 + 1, U8);
2005 append_utf8_from_native_byte(*s, &d);
2014 * Convert native (big-endian) or reversed (little-endian) UTF-16 to UTF-8.
2016 * Destination must be pre-extended to 3/2 source. Do not use in-place.
2017 * We optimize for native, for obvious reasons. */
2020 Perl_utf16_to_utf8(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2025 PERL_ARGS_ASSERT_UTF16_TO_UTF8;
2028 Perl_croak(aTHX_ "panic: utf16_to_utf8: odd bytelen %" UVuf, (UV)bytelen);
2033 UV uv = (p[0] << 8) + p[1]; /* UTF-16BE */
2035 if (OFFUNI_IS_INVARIANT(uv)) {
2036 *d++ = LATIN1_TO_NATIVE((U8) uv);
2039 if (uv <= MAX_UTF8_TWO_BYTE) {
2040 *d++ = UTF8_TWO_BYTE_HI(UNI_TO_NATIVE(uv));
2041 *d++ = UTF8_TWO_BYTE_LO(UNI_TO_NATIVE(uv));
2044 #define FIRST_HIGH_SURROGATE UNICODE_SURROGATE_FIRST
2045 #define LAST_HIGH_SURROGATE 0xDBFF
2046 #define FIRST_LOW_SURROGATE 0xDC00
2047 #define LAST_LOW_SURROGATE UNICODE_SURROGATE_LAST
2049 /* This assumes that most uses will be in the first Unicode plane, not
2050 * needing surrogates */
2051 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST
2052 && uv <= UNICODE_SURROGATE_LAST))
2054 if (UNLIKELY(p >= pend) || UNLIKELY(uv > LAST_HIGH_SURROGATE)) {
2055 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2058 UV low = (p[0] << 8) + p[1];
2059 if ( UNLIKELY(low < FIRST_LOW_SURROGATE)
2060 || UNLIKELY(low > LAST_LOW_SURROGATE))
2062 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2065 uv = ((uv - FIRST_HIGH_SURROGATE) << 10)
2066 + (low - FIRST_LOW_SURROGATE) + 0x10000;
2070 d = uvoffuni_to_utf8_flags(d, uv, 0);
2073 *d++ = (U8)(( uv >> 12) | 0xe0);
2074 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
2075 *d++ = (U8)(( uv & 0x3f) | 0x80);
2079 *d++ = (U8)(( uv >> 18) | 0xf0);
2080 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
2081 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
2082 *d++ = (U8)(( uv & 0x3f) | 0x80);
2087 *newlen = d - dstart;
2091 /* Note: this one is slightly destructive of the source. */
2094 Perl_utf16_to_utf8_reversed(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2097 U8* const send = s + bytelen;
2099 PERL_ARGS_ASSERT_UTF16_TO_UTF8_REVERSED;
2102 Perl_croak(aTHX_ "panic: utf16_to_utf8_reversed: odd bytelen %" UVuf,
2106 const U8 tmp = s[0];
2111 return utf16_to_utf8(p, d, bytelen, newlen);
2115 Perl__is_uni_FOO(pTHX_ const U8 classnum, const UV c)
2117 U8 tmpbuf[UTF8_MAXBYTES+1];
2118 uvchr_to_utf8(tmpbuf, c);
2119 return _is_utf8_FOO_with_len(classnum, tmpbuf, tmpbuf + sizeof(tmpbuf));
2122 /* Internal function so we can deprecate the external one, and call
2123 this one from other deprecated functions in this file */
2126 Perl__is_utf8_idstart(pTHX_ const U8 *p)
2128 PERL_ARGS_ASSERT__IS_UTF8_IDSTART;
2132 return is_utf8_common(p, &PL_utf8_idstart, "IdStart", NULL);
2136 Perl__is_uni_perl_idcont(pTHX_ UV c)
2138 U8 tmpbuf[UTF8_MAXBYTES+1];
2139 uvchr_to_utf8(tmpbuf, c);
2140 return _is_utf8_perl_idcont_with_len(tmpbuf, tmpbuf + sizeof(tmpbuf));
2144 Perl__is_uni_perl_idstart(pTHX_ UV c)
2146 U8 tmpbuf[UTF8_MAXBYTES+1];
2147 uvchr_to_utf8(tmpbuf, c);
2148 return _is_utf8_perl_idstart_with_len(tmpbuf, tmpbuf + sizeof(tmpbuf));
2152 Perl__to_upper_title_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, const char S_or_s)
2154 /* We have the latin1-range values compiled into the core, so just use
2155 * those, converting the result to UTF-8. The only difference between upper
2156 * and title case in this range is that LATIN_SMALL_LETTER_SHARP_S is
2157 * either "SS" or "Ss". Which one to use is passed into the routine in
2158 * 'S_or_s' to avoid a test */
2160 UV converted = toUPPER_LATIN1_MOD(c);
2162 PERL_ARGS_ASSERT__TO_UPPER_TITLE_LATIN1;
2164 assert(S_or_s == 'S' || S_or_s == 's');
2166 if (UVCHR_IS_INVARIANT(converted)) { /* No difference between the two for
2167 characters in this range */
2168 *p = (U8) converted;
2173 /* toUPPER_LATIN1_MOD gives the correct results except for three outliers,
2174 * which it maps to one of them, so as to only have to have one check for
2175 * it in the main case */
2176 if (UNLIKELY(converted == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
2178 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
2179 converted = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
2182 converted = GREEK_CAPITAL_LETTER_MU;
2184 #if UNICODE_MAJOR_VERSION > 2 \
2185 || (UNICODE_MAJOR_VERSION == 2 && UNICODE_DOT_VERSION >= 1 \
2186 && UNICODE_DOT_DOT_VERSION >= 8)
2187 case LATIN_SMALL_LETTER_SHARP_S:
2194 Perl_croak(aTHX_ "panic: to_upper_title_latin1 did not expect '%c' to map to '%c'", c, LATIN_SMALL_LETTER_Y_WITH_DIAERESIS);
2195 NOT_REACHED; /* NOTREACHED */
2199 *(p)++ = UTF8_TWO_BYTE_HI(converted);
2200 *p = UTF8_TWO_BYTE_LO(converted);
2206 /* Call the function to convert a UTF-8 encoded character to the specified case.
2207 * Note that there may be more than one character in the result.
2208 * INP is a pointer to the first byte of the input character
2209 * OUTP will be set to the first byte of the string of changed characters. It
2210 * needs to have space for UTF8_MAXBYTES_CASE+1 bytes
2211 * LENP will be set to the length in bytes of the string of changed characters
2213 * The functions return the ordinal of the first character in the string of OUTP */
2214 #define CALL_UPPER_CASE(uv, s, d, lenp) _to_utf8_case(uv, s, d, lenp, &PL_utf8_toupper, "ToUc", "")
2215 #define CALL_TITLE_CASE(uv, s, d, lenp) _to_utf8_case(uv, s, d, lenp, &PL_utf8_totitle, "ToTc", "")
2216 #define CALL_LOWER_CASE(uv, s, d, lenp) _to_utf8_case(uv, s, d, lenp, &PL_utf8_tolower, "ToLc", "")
2218 /* This additionally has the input parameter 'specials', which if non-zero will
2219 * cause this to use the specials hash for folding (meaning get full case
2220 * folding); otherwise, when zero, this implies a simple case fold */
2221 #define CALL_FOLD_CASE(uv, s, d, lenp, specials) _to_utf8_case(uv, s, d, lenp, &PL_utf8_tofold, "ToCf", (specials) ? "" : NULL)
2224 Perl_to_uni_upper(pTHX_ UV c, U8* p, STRLEN *lenp)
2226 /* Convert the Unicode character whose ordinal is <c> to its uppercase
2227 * version and store that in UTF-8 in <p> and its length in bytes in <lenp>.
2228 * Note that the <p> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
2229 * the changed version may be longer than the original character.
2231 * The ordinal of the first character of the changed version is returned
2232 * (but note, as explained above, that there may be more.) */
2234 PERL_ARGS_ASSERT_TO_UNI_UPPER;
2237 return _to_upper_title_latin1((U8) c, p, lenp, 'S');
2240 uvchr_to_utf8(p, c);
2241 return CALL_UPPER_CASE(c, p, p, lenp);
2245 Perl_to_uni_title(pTHX_ UV c, U8* p, STRLEN *lenp)
2247 PERL_ARGS_ASSERT_TO_UNI_TITLE;
2250 return _to_upper_title_latin1((U8) c, p, lenp, 's');
2253 uvchr_to_utf8(p, c);
2254 return CALL_TITLE_CASE(c, p, p, lenp);
2258 S_to_lower_latin1(const U8 c, U8* p, STRLEN *lenp, const char dummy)
2260 /* We have the latin1-range values compiled into the core, so just use
2261 * those, converting the result to UTF-8. Since the result is always just
2262 * one character, we allow <p> to be NULL */
2264 U8 converted = toLOWER_LATIN1(c);
2266 PERL_UNUSED_ARG(dummy);
2269 if (NATIVE_BYTE_IS_INVARIANT(converted)) {
2274 /* Result is known to always be < 256, so can use the EIGHT_BIT
2276 *p = UTF8_EIGHT_BIT_HI(converted);
2277 *(p+1) = UTF8_EIGHT_BIT_LO(converted);
2285 Perl_to_uni_lower(pTHX_ UV c, U8* p, STRLEN *lenp)
2287 PERL_ARGS_ASSERT_TO_UNI_LOWER;
2290 return to_lower_latin1((U8) c, p, lenp, 0 /* 0 is a dummy arg */ );
2293 uvchr_to_utf8(p, c);
2294 return CALL_LOWER_CASE(c, p, p, lenp);
2298 Perl__to_fold_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, const unsigned int flags)
2300 /* Corresponds to to_lower_latin1(); <flags> bits meanings:
2301 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
2302 * FOLD_FLAGS_FULL iff full folding is to be used;
2304 * Not to be used for locale folds
2309 PERL_ARGS_ASSERT__TO_FOLD_LATIN1;
2310 PERL_UNUSED_CONTEXT;
2312 assert (! (flags & FOLD_FLAGS_LOCALE));
2314 if (UNLIKELY(c == MICRO_SIGN)) {
2315 converted = GREEK_SMALL_LETTER_MU;
2317 #if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
2318 || (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
2319 || UNICODE_DOT_DOT_VERSION > 0)
2320 else if ( (flags & FOLD_FLAGS_FULL)
2321 && UNLIKELY(c == LATIN_SMALL_LETTER_SHARP_S))
2323 /* If can't cross 127/128 boundary, can't return "ss"; instead return
2324 * two U+017F characters, as fc("\df") should eq fc("\x{17f}\x{17f}")
2325 * under those circumstances. */
2326 if (flags & FOLD_FLAGS_NOMIX_ASCII) {
2327 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
2328 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
2330 return LATIN_SMALL_LETTER_LONG_S;
2340 else { /* In this range the fold of all other characters is their lower
2342 converted = toLOWER_LATIN1(c);
2345 if (UVCHR_IS_INVARIANT(converted)) {
2346 *p = (U8) converted;
2350 *(p)++ = UTF8_TWO_BYTE_HI(converted);
2351 *p = UTF8_TWO_BYTE_LO(converted);
2359 Perl__to_uni_fold_flags(pTHX_ UV c, U8* p, STRLEN *lenp, U8 flags)
2362 /* Not currently externally documented, and subject to change
2363 * <flags> bits meanings:
2364 * FOLD_FLAGS_FULL iff full folding is to be used;
2365 * FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
2366 * locale are to be used.
2367 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
2370 PERL_ARGS_ASSERT__TO_UNI_FOLD_FLAGS;
2372 if (flags & FOLD_FLAGS_LOCALE) {
2373 /* Treat a UTF-8 locale as not being in locale at all */
2374 if (IN_UTF8_CTYPE_LOCALE) {
2375 flags &= ~FOLD_FLAGS_LOCALE;
2378 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2379 goto needs_full_generality;
2384 return _to_fold_latin1((U8) c, p, lenp,
2385 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
2388 /* Here, above 255. If no special needs, just use the macro */
2389 if ( ! (flags & (FOLD_FLAGS_LOCALE|FOLD_FLAGS_NOMIX_ASCII))) {
2390 uvchr_to_utf8(p, c);
2391 return CALL_FOLD_CASE(c, p, p, lenp, flags & FOLD_FLAGS_FULL);
2393 else { /* Otherwise, _to_utf8_fold_flags has the intelligence to deal with
2394 the special flags. */
2395 U8 utf8_c[UTF8_MAXBYTES + 1];
2397 needs_full_generality:
2398 uvchr_to_utf8(utf8_c, c);
2399 return _to_utf8_fold_flags(utf8_c, p, lenp, flags);
2403 PERL_STATIC_INLINE bool
2404 S_is_utf8_common(pTHX_ const U8 *const p, SV **swash,
2405 const char *const swashname, SV* const invlist)
2407 /* returns a boolean giving whether or not the UTF8-encoded character that
2408 * starts at <p> is in the swash indicated by <swashname>. <swash>
2409 * contains a pointer to where the swash indicated by <swashname>
2410 * is to be stored; which this routine will do, so that future calls will
2411 * look at <*swash> and only generate a swash if it is not null. <invlist>
2412 * is NULL or an inversion list that defines the swash. If not null, it
2413 * saves time during initialization of the swash.
2415 * Note that it is assumed that the buffer length of <p> is enough to
2416 * contain all the bytes that comprise the character. Thus, <*p> should
2417 * have been checked before this call for mal-formedness enough to assure
2420 PERL_ARGS_ASSERT_IS_UTF8_COMMON;
2422 /* The API should have included a length for the UTF-8 character in <p>,
2423 * but it doesn't. We therefore assume that p has been validated at least
2424 * as far as there being enough bytes available in it to accommodate the
2425 * character without reading beyond the end, and pass that number on to the
2426 * validating routine */
2427 if (! isUTF8_CHAR(p, p + UTF8SKIP(p))) {
2428 _force_out_malformed_utf8_message(p, p + UTF8SKIP(p),
2431 NOT_REACHED; /* NOTREACHED */
2435 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2436 *swash = _core_swash_init("utf8",
2438 /* Only use the name if there is no inversion
2439 * list; otherwise will go out to disk */
2440 (invlist) ? "" : swashname,
2442 &PL_sv_undef, 1, 0, invlist, &flags);
2445 return swash_fetch(*swash, p, TRUE) != 0;
2448 PERL_STATIC_INLINE bool
2449 S_is_utf8_common_with_len(pTHX_ const U8 *const p, const U8 * const e, SV **swash,
2450 const char *const swashname, SV* const invlist)
2452 /* returns a boolean giving whether or not the UTF8-encoded character that
2453 * starts at <p>, and extending no further than <e - 1> is in the swash
2454 * indicated by <swashname>. <swash> contains a pointer to where the swash
2455 * indicated by <swashname> is to be stored; which this routine will do, so
2456 * that future calls will look at <*swash> and only generate a swash if it
2457 * is not null. <invlist> is NULL or an inversion list that defines the
2458 * swash. If not null, it saves time during initialization of the swash.
2461 PERL_ARGS_ASSERT_IS_UTF8_COMMON_WITH_LEN;
2463 if (! isUTF8_CHAR(p, e)) {
2464 _force_out_malformed_utf8_message(p, e, 0, 1);
2465 NOT_REACHED; /* NOTREACHED */
2469 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2470 *swash = _core_swash_init("utf8",
2472 /* Only use the name if there is no inversion
2473 * list; otherwise will go out to disk */
2474 (invlist) ? "" : swashname,
2476 &PL_sv_undef, 1, 0, invlist, &flags);
2479 return swash_fetch(*swash, p, TRUE) != 0;
2483 Perl__is_utf8_FOO(pTHX_ const U8 classnum, const U8 *p)
2485 PERL_ARGS_ASSERT__IS_UTF8_FOO;
2487 assert(classnum < _FIRST_NON_SWASH_CC);
2489 return is_utf8_common(p,
2490 &PL_utf8_swash_ptrs[classnum],
2491 swash_property_names[classnum],
2492 PL_XPosix_ptrs[classnum]);
2496 Perl__is_utf8_FOO_with_len(pTHX_ const U8 classnum, const U8 *p,
2499 PERL_ARGS_ASSERT__IS_UTF8_FOO_WITH_LEN;
2501 assert(classnum < _FIRST_NON_SWASH_CC);
2503 return is_utf8_common_with_len(p,
2505 &PL_utf8_swash_ptrs[classnum],
2506 swash_property_names[classnum],
2507 PL_XPosix_ptrs[classnum]);
2511 Perl__is_utf8_perl_idstart(pTHX_ const U8 *p)
2515 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDSTART;
2517 if (! PL_utf8_perl_idstart) {
2518 invlist = _new_invlist_C_array(_Perl_IDStart_invlist);
2520 return is_utf8_common(p, &PL_utf8_perl_idstart, "_Perl_IDStart", invlist);
2524 Perl__is_utf8_perl_idstart_with_len(pTHX_ const U8 *p, const U8 * const e)
2528 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDSTART_WITH_LEN;
2530 if (! PL_utf8_perl_idstart) {
2531 invlist = _new_invlist_C_array(_Perl_IDStart_invlist);
2533 return is_utf8_common_with_len(p, e, &PL_utf8_perl_idstart,
2534 "_Perl_IDStart", invlist);
2538 Perl__is_utf8_xidstart(pTHX_ const U8 *p)
2540 PERL_ARGS_ASSERT__IS_UTF8_XIDSTART;
2544 return is_utf8_common(p, &PL_utf8_xidstart, "XIdStart", NULL);
2548 Perl__is_utf8_perl_idcont(pTHX_ const U8 *p)
2552 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDCONT;
2554 if (! PL_utf8_perl_idcont) {
2555 invlist = _new_invlist_C_array(_Perl_IDCont_invlist);
2557 return is_utf8_common(p, &PL_utf8_perl_idcont, "_Perl_IDCont", invlist);
2561 Perl__is_utf8_perl_idcont_with_len(pTHX_ const U8 *p, const U8 * const e)
2565 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDCONT_WITH_LEN;
2567 if (! PL_utf8_perl_idcont) {
2568 invlist = _new_invlist_C_array(_Perl_IDCont_invlist);
2570 return is_utf8_common_with_len(p, e, &PL_utf8_perl_idcont,
2571 "_Perl_IDCont", invlist);
2575 Perl__is_utf8_idcont(pTHX_ const U8 *p)
2577 PERL_ARGS_ASSERT__IS_UTF8_IDCONT;
2579 return is_utf8_common(p, &PL_utf8_idcont, "IdContinue", NULL);
2583 Perl__is_utf8_xidcont(pTHX_ const U8 *p)
2585 PERL_ARGS_ASSERT__IS_UTF8_XIDCONT;
2587 return is_utf8_common(p, &PL_utf8_idcont, "XIdContinue", NULL);
2591 Perl__is_utf8_mark(pTHX_ const U8 *p)
2593 PERL_ARGS_ASSERT__IS_UTF8_MARK;
2595 return is_utf8_common(p, &PL_utf8_mark, "IsM", NULL);
2599 =for apidoc to_utf8_case
2601 Instead use the appropriate one of L</toUPPER_utf8>,
2606 C<p> contains the pointer to the UTF-8 string encoding
2607 the character that is being converted. This routine assumes that the character
2608 at C<p> is well-formed.
2610 C<ustrp> is a pointer to the character buffer to put the
2611 conversion result to. C<lenp> is a pointer to the length
2614 C<swashp> is a pointer to the swash to use.
2616 Both the special and normal mappings are stored in F<lib/unicore/To/Foo.pl>,
2617 and loaded by C<SWASHNEW>, using F<lib/utf8_heavy.pl>. C<special> (usually,
2618 but not always, a multicharacter mapping), is tried first.
2620 C<special> is a string, normally C<NULL> or C<"">. C<NULL> means to not use
2621 any special mappings; C<""> means to use the special mappings. Values other
2622 than these two are treated as the name of the hash containing the special
2623 mappings, like C<"utf8::ToSpecLower">.
2625 C<normal> is a string like C<"ToLower"> which means the swash
2628 Code points above the platform's C<IV_MAX> will raise a deprecation warning,
2629 unless those are turned off.
2634 Perl_to_utf8_case(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp,
2635 SV **swashp, const char *normal, const char *special)
2637 PERL_ARGS_ASSERT_TO_UTF8_CASE;
2639 return _to_utf8_case(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp, swashp, normal, special);
2642 /* change namve uv1 to 'from' */
2644 S__to_utf8_case(pTHX_ const UV uv1, const U8 *p, U8* ustrp, STRLEN *lenp,
2645 SV **swashp, const char *normal, const char *special)
2649 PERL_ARGS_ASSERT__TO_UTF8_CASE;
2651 /* For code points that don't change case, we already know that the output
2652 * of this function is the unchanged input, so we can skip doing look-ups
2653 * for them. Unfortunately the case-changing code points are scattered
2654 * around. But there are some long consecutive ranges where there are no
2655 * case changing code points. By adding tests, we can eliminate the lookup
2656 * for all the ones in such ranges. This is currently done here only for
2657 * just a few cases where the scripts are in common use in modern commerce
2658 * (and scripts adjacent to those which can be included without additional
2661 if (uv1 >= 0x0590) {
2662 /* This keeps from needing further processing the code points most
2663 * likely to be used in the following non-cased scripts: Hebrew,
2664 * Arabic, Syriac, Thaana, NKo, Samaritan, Mandaic, Devanagari,
2665 * Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada,
2666 * Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar */
2671 /* The following largish code point ranges also don't have case
2672 * changes, but khw didn't think they warranted extra tests to speed
2673 * them up (which would slightly slow down everything else above them):
2674 * 1100..139F Hangul Jamo, Ethiopic
2675 * 1400..1CFF Unified Canadian Aboriginal Syllabics, Ogham, Runic,
2676 * Tagalog, Hanunoo, Buhid, Tagbanwa, Khmer, Mongolian,
2677 * Limbu, Tai Le, New Tai Lue, Buginese, Tai Tham,
2678 * Combining Diacritical Marks Extended, Balinese,
2679 * Sundanese, Batak, Lepcha, Ol Chiki
2680 * 2000..206F General Punctuation
2683 if (uv1 >= 0x2D30) {
2685 /* This keeps the from needing further processing the code points
2686 * most likely to be used in the following non-cased major scripts:
2687 * CJK, Katakana, Hiragana, plus some less-likely scripts.
2689 * (0x2D30 above might have to be changed to 2F00 in the unlikely
2690 * event that Unicode eventually allocates the unused block as of
2691 * v8.0 2FE0..2FEF to code points that are cased. khw has verified
2692 * that the test suite will start having failures to alert you
2693 * should that happen) */
2698 if (uv1 >= 0xAC00) {
2699 if (UNLIKELY(UNICODE_IS_SURROGATE(uv1))) {
2700 if (ckWARN_d(WARN_SURROGATE)) {
2701 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
2702 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
2703 "Operation \"%s\" returns its argument for UTF-16 surrogate U+%04" UVXf, desc, uv1);
2708 /* AC00..FAFF Catches Hangul syllables and private use, plus
2715 if (UNLIKELY(UNICODE_IS_SUPER(uv1))) {
2716 if ( UNLIKELY(uv1 > MAX_NON_DEPRECATED_CP)
2717 && ckWARN_d(WARN_DEPRECATED))
2719 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED),
2720 cp_above_legal_max, uv1, MAX_NON_DEPRECATED_CP);
2722 if (ckWARN_d(WARN_NON_UNICODE)) {
2723 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
2724 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
2725 "Operation \"%s\" returns its argument for non-Unicode code point 0x%04" UVXf, desc, uv1);
2729 #ifdef HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C
2731 > HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C))
2734 /* As of this writing, this means we avoid swash creation
2735 * for anything beyond low Plane 1 */
2742 /* Note that non-characters are perfectly legal, so no warning should
2743 * be given. There are so few of them, that it isn't worth the extra
2744 * tests to avoid swash creation */
2747 if (!*swashp) /* load on-demand */
2748 *swashp = _core_swash_init("utf8", normal, &PL_sv_undef, 4, 0, NULL, NULL);
2751 /* It might be "special" (sometimes, but not always,
2752 * a multicharacter mapping) */
2756 /* If passed in the specials name, use that; otherwise use any
2757 * given in the swash */
2758 if (*special != '\0') {
2759 hv = get_hv(special, 0);
2762 svp = hv_fetchs(MUTABLE_HV(SvRV(*swashp)), "SPECIALS", 0);
2764 hv = MUTABLE_HV(SvRV(*svp));
2769 && (svp = hv_fetch(hv, (const char*)p, UVCHR_SKIP(uv1), FALSE))
2774 s = SvPV_const(*svp, len);
2777 len = uvchr_to_utf8(ustrp, *(U8*)s) - ustrp;
2779 Copy(s, ustrp, len, U8);
2784 if (!len && *swashp) {
2785 const UV uv2 = swash_fetch(*swashp, p, TRUE /* => is UTF-8 */);
2788 /* It was "normal" (a single character mapping). */
2789 len = uvchr_to_utf8(ustrp, uv2) - ustrp;
2797 return valid_utf8_to_uvchr(ustrp, 0);
2800 /* Here, there was no mapping defined, which means that the code point maps
2801 * to itself. Return the inputs */
2804 if (p != ustrp) { /* Don't copy onto itself */
2805 Copy(p, ustrp, len, U8);
2816 S_check_locale_boundary_crossing(pTHX_ const U8* const p, const UV result, U8* const ustrp, STRLEN *lenp)
2818 /* This is called when changing the case of a UTF-8-encoded character above
2819 * the Latin1 range, and the operation is in a non-UTF-8 locale. If the
2820 * result contains a character that crosses the 255/256 boundary, disallow
2821 * the change, and return the original code point. See L<perlfunc/lc> for
2824 * p points to the original string whose case was changed; assumed
2825 * by this routine to be well-formed
2826 * result the code point of the first character in the changed-case string
2827 * ustrp points to the changed-case string (<result> represents its first char)
2828 * lenp points to the length of <ustrp> */
2830 UV original; /* To store the first code point of <p> */
2832 PERL_ARGS_ASSERT_CHECK_LOCALE_BOUNDARY_CROSSING;
2834 assert(UTF8_IS_ABOVE_LATIN1(*p));
2836 /* We know immediately if the first character in the string crosses the
2837 * boundary, so can skip */
2840 /* Look at every character in the result; if any cross the
2841 * boundary, the whole thing is disallowed */
2842 U8* s = ustrp + UTF8SKIP(ustrp);
2843 U8* e = ustrp + *lenp;
2845 if (! UTF8_IS_ABOVE_LATIN1(*s)) {
2851 /* Here, no characters crossed, result is ok as-is, but we warn. */
2852 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(p, p + UTF8SKIP(p));
2858 /* Failed, have to return the original */
2859 original = valid_utf8_to_uvchr(p, lenp);
2861 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
2862 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2863 "Can't do %s(\"\\x{%" UVXf "}\") on non-UTF-8 locale; "
2864 "resolved to \"\\x{%" UVXf "}\".",
2868 Copy(p, ustrp, *lenp, char);
2872 /* The process for changing the case is essentially the same for the four case
2873 * change types, except there are complications for folding. Otherwise the
2874 * difference is only which case to change to. To make sure that they all do
2875 * the same thing, the bodies of the functions are extracted out into the
2876 * following two macros. The functions are written with the same variable
2877 * names, and these are known and used inside these macros. It would be
2878 * better, of course, to have inline functions to do it, but since different
2879 * macros are called, depending on which case is being changed to, this is not
2880 * feasible in C (to khw's knowledge). Two macros are created so that the fold
2881 * function can start with the common start macro, then finish with its special
2882 * handling; while the other three cases can just use the common end macro.
2884 * The algorithm is to use the proper (passed in) macro or function to change
2885 * the case for code points that are below 256. The macro is used if using
2886 * locale rules for the case change; the function if not. If the code point is
2887 * above 255, it is computed from the input UTF-8, and another macro is called
2888 * to do the conversion. If necessary, the output is converted to UTF-8. If
2889 * using a locale, we have to check that the change did not cross the 255/256
2890 * boundary, see check_locale_boundary_crossing() for further details.
2892 * The macros are split with the correct case change for the below-256 case
2893 * stored into 'result', and in the middle of an else clause for the above-255
2894 * case. At that point in the 'else', 'result' is not the final result, but is
2895 * the input code point calculated from the UTF-8. The fold code needs to
2896 * realize all this and take it from there.
2898 * If you read the two macros as sequential, it's easier to understand what's
2900 #define CASE_CHANGE_BODY_START(locale_flags, LC_L1_change_macro, L1_func, \
2901 L1_func_extra_param) \
2902 if (flags & (locale_flags)) { \
2903 /* Treat a UTF-8 locale as not being in locale at all */ \
2904 if (IN_UTF8_CTYPE_LOCALE) { \
2905 flags &= ~(locale_flags); \
2908 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
2912 if (UTF8_IS_INVARIANT(*p)) { \
2913 if (flags & (locale_flags)) { \
2914 result = LC_L1_change_macro(*p); \
2917 return L1_func(*p, ustrp, lenp, L1_func_extra_param); \
2920 else if UTF8_IS_DOWNGRADEABLE_START(*p) { \
2921 if (flags & (locale_flags)) { \
2922 result = LC_L1_change_macro(EIGHT_BIT_UTF8_TO_NATIVE(*p, \
2926 return L1_func(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)), \
2927 ustrp, lenp, L1_func_extra_param); \
2930 else { /* malformed UTF-8 */ \
2931 result = valid_utf8_to_uvchr(p, NULL); \
2933 #define CASE_CHANGE_BODY_END(locale_flags, change_macro) \
2934 result = change_macro(result, p, ustrp, lenp); \
2936 if (flags & (locale_flags)) { \
2937 result = check_locale_boundary_crossing(p, result, ustrp, lenp); \
2942 /* Here, used locale rules. Convert back to UTF-8 */ \
2943 if (UTF8_IS_INVARIANT(result)) { \
2944 *ustrp = (U8) result; \
2948 *ustrp = UTF8_EIGHT_BIT_HI((U8) result); \
2949 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result); \
2956 =for apidoc to_utf8_upper
2958 Instead use L</toUPPER_utf8>.
2962 /* Not currently externally documented, and subject to change:
2963 * <flags> is set iff iff the rules from the current underlying locale are to
2967 Perl__to_utf8_upper_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, bool flags)
2971 PERL_ARGS_ASSERT__TO_UTF8_UPPER_FLAGS;
2973 /* ~0 makes anything non-zero in 'flags' mean we are using locale rules */
2974 /* 2nd char of uc(U+DF) is 'S' */
2975 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 'S');
2976 CASE_CHANGE_BODY_END (~0, CALL_UPPER_CASE);
2980 =for apidoc to_utf8_title
2982 Instead use L</toTITLE_utf8>.
2986 /* Not currently externally documented, and subject to change:
2987 * <flags> is set iff the rules from the current underlying locale are to be
2988 * used. Since titlecase is not defined in POSIX, for other than a
2989 * UTF-8 locale, uppercase is used instead for code points < 256.
2993 Perl__to_utf8_title_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, bool flags)
2997 PERL_ARGS_ASSERT__TO_UTF8_TITLE_FLAGS;
2999 /* 2nd char of ucfirst(U+DF) is 's' */
3000 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 's');
3001 CASE_CHANGE_BODY_END (~0, CALL_TITLE_CASE);
3005 =for apidoc to_utf8_lower
3007 Instead use L</toLOWER_utf8>.
3011 /* Not currently externally documented, and subject to change:
3012 * <flags> is set iff iff the rules from the current underlying locale are to
3017 Perl__to_utf8_lower_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, bool flags)
3021 PERL_ARGS_ASSERT__TO_UTF8_LOWER_FLAGS;
3023 CASE_CHANGE_BODY_START(~0, toLOWER_LC, to_lower_latin1, 0 /* 0 is dummy */)
3024 CASE_CHANGE_BODY_END (~0, CALL_LOWER_CASE)
3028 =for apidoc to_utf8_fold
3030 Instead use L</toFOLD_utf8>.
3034 /* Not currently externally documented, and subject to change,
3036 * bit FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
3037 * locale are to be used.
3038 * bit FOLD_FLAGS_FULL is set iff full case folds are to be used;
3039 * otherwise simple folds
3040 * bit FOLD_FLAGS_NOMIX_ASCII is set iff folds of non-ASCII to ASCII are
3045 Perl__to_utf8_fold_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, U8 flags)
3049 PERL_ARGS_ASSERT__TO_UTF8_FOLD_FLAGS;
3051 /* These are mutually exclusive */
3052 assert (! ((flags & FOLD_FLAGS_LOCALE) && (flags & FOLD_FLAGS_NOMIX_ASCII)));
3054 assert(p != ustrp); /* Otherwise overwrites */
3056 CASE_CHANGE_BODY_START(FOLD_FLAGS_LOCALE, toFOLD_LC, _to_fold_latin1,
3057 ((flags) & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII)));
3059 result = CALL_FOLD_CASE(result, p, ustrp, lenp, flags & FOLD_FLAGS_FULL);
3061 if (flags & FOLD_FLAGS_LOCALE) {
3063 # define LONG_S_T LATIN_SMALL_LIGATURE_LONG_S_T_UTF8
3064 const unsigned int long_s_t_len = sizeof(LONG_S_T) - 1;
3066 # ifdef LATIN_CAPITAL_LETTER_SHARP_S_UTF8
3067 # define CAP_SHARP_S LATIN_CAPITAL_LETTER_SHARP_S_UTF8
3069 const unsigned int cap_sharp_s_len = sizeof(CAP_SHARP_S) - 1;
3071 /* Special case these two characters, as what normally gets
3072 * returned under locale doesn't work */
3073 if (UTF8SKIP(p) == cap_sharp_s_len
3074 && memEQ((char *) p, CAP_SHARP_S, cap_sharp_s_len))
3076 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3077 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3078 "Can't do fc(\"\\x{1E9E}\") on non-UTF-8 locale; "
3079 "resolved to \"\\x{17F}\\x{17F}\".");
3084 if (UTF8SKIP(p) == long_s_t_len
3085 && memEQ((char *) p, LONG_S_T, long_s_t_len))
3087 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3088 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3089 "Can't do fc(\"\\x{FB05}\") on non-UTF-8 locale; "
3090 "resolved to \"\\x{FB06}\".");
3091 goto return_ligature_st;
3094 #if UNICODE_MAJOR_VERSION == 3 \
3095 && UNICODE_DOT_VERSION == 0 \
3096 && UNICODE_DOT_DOT_VERSION == 1
3097 # define DOTTED_I LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8
3099 /* And special case this on this Unicode version only, for the same
3100 * reaons the other two are special cased. They would cross the
3101 * 255/256 boundary which is forbidden under /l, and so the code
3102 * wouldn't catch that they are equivalent (which they are only in
3104 else if (UTF8SKIP(p) == sizeof(DOTTED_I) - 1
3105 && memEQ((char *) p, DOTTED_I, sizeof(DOTTED_I) - 1))
3107 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3108 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3109 "Can't do fc(\"\\x{0130}\") on non-UTF-8 locale; "
3110 "resolved to \"\\x{0131}\".");
3111 goto return_dotless_i;
3115 return check_locale_boundary_crossing(p, result, ustrp, lenp);
3117 else if (! (flags & FOLD_FLAGS_NOMIX_ASCII)) {
3121 /* This is called when changing the case of a UTF-8-encoded
3122 * character above the ASCII range, and the result should not
3123 * contain an ASCII character. */
3125 UV original; /* To store the first code point of <p> */
3127 /* Look at every character in the result; if any cross the
3128 * boundary, the whole thing is disallowed */
3130 U8* e = ustrp + *lenp;
3133 /* Crossed, have to return the original */
3134 original = valid_utf8_to_uvchr(p, lenp);
3136 /* But in these instances, there is an alternative we can
3137 * return that is valid */
3138 if (original == LATIN_SMALL_LETTER_SHARP_S
3139 #ifdef LATIN_CAPITAL_LETTER_SHARP_S /* not defined in early Unicode releases */
3140 || original == LATIN_CAPITAL_LETTER_SHARP_S
3145 else if (original == LATIN_SMALL_LIGATURE_LONG_S_T) {
3146 goto return_ligature_st;
3148 #if UNICODE_MAJOR_VERSION == 3 \
3149 && UNICODE_DOT_VERSION == 0 \
3150 && UNICODE_DOT_DOT_VERSION == 1
3152 else if (original == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
3153 goto return_dotless_i;
3156 Copy(p, ustrp, *lenp, char);
3162 /* Here, no characters crossed, result is ok as-is */
3167 /* Here, used locale rules. Convert back to UTF-8 */
3168 if (UTF8_IS_INVARIANT(result)) {
3169 *ustrp = (U8) result;
3173 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
3174 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
3181 /* Certain folds to 'ss' are prohibited by the options, but they do allow
3182 * folds to a string of two of these characters. By returning this
3183 * instead, then, e.g.,
3184 * fc("\x{1E9E}") eq fc("\x{17F}\x{17F}")
3187 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
3188 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
3190 return LATIN_SMALL_LETTER_LONG_S;
3193 /* Two folds to 'st' are prohibited by the options; instead we pick one and
3194 * have the other one fold to it */
3196 *lenp = sizeof(LATIN_SMALL_LIGATURE_ST_UTF8) - 1;
3197 Copy(LATIN_SMALL_LIGATURE_ST_UTF8, ustrp, *lenp, U8);
3198 return LATIN_SMALL_LIGATURE_ST;
3200 #if UNICODE_MAJOR_VERSION == 3 \
3201 && UNICODE_DOT_VERSION == 0 \
3202 && UNICODE_DOT_DOT_VERSION == 1
3205 *lenp = sizeof(LATIN_SMALL_LETTER_DOTLESS_I_UTF8) - 1;
3206 Copy(LATIN_SMALL_LETTER_DOTLESS_I_UTF8, ustrp, *lenp, U8);
3207 return LATIN_SMALL_LETTER_DOTLESS_I;
3214 * Returns a "swash" which is a hash described in utf8.c:Perl_swash_fetch().
3215 * C<pkg> is a pointer to a package name for SWASHNEW, should be "utf8".
3216 * For other parameters, see utf8::SWASHNEW in lib/utf8_heavy.pl.
3220 Perl_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv, I32 minbits, I32 none)
3222 PERL_ARGS_ASSERT_SWASH_INIT;
3224 /* Returns a copy of a swash initiated by the called function. This is the
3225 * public interface, and returning a copy prevents others from doing
3226 * mischief on the original */
3228 return newSVsv(_core_swash_init(pkg, name, listsv, minbits, none, NULL, NULL));
3232 Perl__core_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv, I32 minbits, I32 none, SV* invlist, U8* const flags_p)
3235 /*NOTE NOTE NOTE - If you want to use "return" in this routine you MUST
3236 * use the following define */
3238 #define CORE_SWASH_INIT_RETURN(x) \
3239 PL_curpm= old_PL_curpm; \
3242 /* Initialize and return a swash, creating it if necessary. It does this
3243 * by calling utf8_heavy.pl in the general case. The returned value may be
3244 * the swash's inversion list instead if the input parameters allow it.
3245 * Which is returned should be immaterial to callers, as the only
3246 * operations permitted on a swash, swash_fetch(), _get_swash_invlist(),
3247 * and swash_to_invlist() handle both these transparently.
3249 * This interface should only be used by functions that won't destroy or
3250 * adversely change the swash, as doing so affects all other uses of the
3251 * swash in the program; the general public should use 'Perl_swash_init'
3254 * pkg is the name of the package that <name> should be in.
3255 * name is the name of the swash to find. Typically it is a Unicode
3256 * property name, including user-defined ones
3257 * listsv is a string to initialize the swash with. It must be of the form
3258 * documented as the subroutine return value in
3259 * L<perlunicode/User-Defined Character Properties>
3260 * minbits is the number of bits required to represent each data element.
3261 * It is '1' for binary properties.
3262 * none I (khw) do not understand this one, but it is used only in tr///.
3263 * invlist is an inversion list to initialize the swash with (or NULL)
3264 * flags_p if non-NULL is the address of various input and output flag bits
3265 * to the routine, as follows: ('I' means is input to the routine;
3266 * 'O' means output from the routine. Only flags marked O are
3267 * meaningful on return.)
3268 * _CORE_SWASH_INIT_USER_DEFINED_PROPERTY indicates if the swash
3269 * came from a user-defined property. (I O)
3270 * _CORE_SWASH_INIT_RETURN_IF_UNDEF indicates that instead of croaking
3271 * when the swash cannot be located, to simply return NULL. (I)
3272 * _CORE_SWASH_INIT_ACCEPT_INVLIST indicates that the caller will accept a
3273 * return of an inversion list instead of a swash hash if this routine
3274 * thinks that would result in faster execution of swash_fetch() later
3277 * Thus there are three possible inputs to find the swash: <name>,
3278 * <listsv>, and <invlist>. At least one must be specified. The result
3279 * will be the union of the specified ones, although <listsv>'s various
3280 * actions can intersect, etc. what <name> gives. To avoid going out to
3281 * disk at all, <invlist> should specify completely what the swash should
3282 * have, and <listsv> should be &PL_sv_undef and <name> should be "".
3284 * <invlist> is only valid for binary properties */
3286 PMOP *old_PL_curpm= PL_curpm; /* save away the old PL_curpm */
3288 SV* retval = &PL_sv_undef;
3289 HV* swash_hv = NULL;
3290 const int invlist_swash_boundary =
3291 (flags_p && *flags_p & _CORE_SWASH_INIT_ACCEPT_INVLIST)
3292 ? 512 /* Based on some benchmarking, but not extensive, see commit
3294 : -1; /* Never return just an inversion list */
3296 assert(listsv != &PL_sv_undef || strNE(name, "") || invlist);
3297 assert(! invlist || minbits == 1);
3299 PL_curpm= NULL; /* reset PL_curpm so that we dont get confused between the regex
3300 that triggered the swash init and the swash init perl logic itself.
3303 /* If data was passed in to go out to utf8_heavy to find the swash of, do
3305 if (listsv != &PL_sv_undef || strNE(name, "")) {
3307 const size_t pkg_len = strlen(pkg);
3308 const size_t name_len = strlen(name);
3309 HV * const stash = gv_stashpvn(pkg, pkg_len, 0);
3313 PERL_ARGS_ASSERT__CORE_SWASH_INIT;
3315 PUSHSTACKi(PERLSI_MAGIC);
3319 /* We might get here via a subroutine signature which uses a utf8
3320 * parameter name, at which point PL_subname will have been set
3321 * but not yet used. */
3322 save_item(PL_subname);
3323 if (PL_parser && PL_parser->error_count)
3324 SAVEI8(PL_parser->error_count), PL_parser->error_count = 0;
3325 method = gv_fetchmeth(stash, "SWASHNEW", 8, -1);
3326 if (!method) { /* demand load UTF-8 */
3328 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
3329 GvSV(PL_errgv) = NULL;
3330 #ifndef NO_TAINT_SUPPORT
3331 /* It is assumed that callers of this routine are not passing in
3332 * any user derived data. */
3333 /* Need to do this after save_re_context() as it will set
3334 * PL_tainted to 1 while saving $1 etc (see the code after getrx:
3335 * in Perl_magic_get). Even line to create errsv_save can turn on
3337 SAVEBOOL(TAINT_get);
3340 Perl_load_module(aTHX_ PERL_LOADMOD_NOIMPORT, newSVpvn(pkg,pkg_len),
3343 /* Not ERRSV, as there is no need to vivify a scalar we are
3344 about to discard. */
3345 SV * const errsv = GvSV(PL_errgv);
3346 if (!SvTRUE(errsv)) {
3347 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
3348 SvREFCNT_dec(errsv);
3356 mPUSHp(pkg, pkg_len);
3357 mPUSHp(name, name_len);
3362 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
3363 GvSV(PL_errgv) = NULL;
3364 /* If we already have a pointer to the method, no need to use
3365 * call_method() to repeat the lookup. */
3367 ? call_sv(MUTABLE_SV(method), G_SCALAR)
3368 : call_sv(newSVpvs_flags("SWASHNEW", SVs_TEMP), G_SCALAR | G_METHOD))
3370 retval = *PL_stack_sp--;
3371 SvREFCNT_inc(retval);
3374 /* Not ERRSV. See above. */
3375 SV * const errsv = GvSV(PL_errgv);
3376 if (!SvTRUE(errsv)) {
3377 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
3378 SvREFCNT_dec(errsv);
3383 if (IN_PERL_COMPILETIME) {
3384 CopHINTS_set(PL_curcop, PL_hints);
3386 if (!SvROK(retval) || SvTYPE(SvRV(retval)) != SVt_PVHV) {
3387 if (SvPOK(retval)) {
3389 /* If caller wants to handle missing properties, let them */
3390 if (flags_p && *flags_p & _CORE_SWASH_INIT_RETURN_IF_UNDEF) {
3391 CORE_SWASH_INIT_RETURN(NULL);
3394 "Can't find Unicode property definition \"%" SVf "\"",
3396 NOT_REACHED; /* NOTREACHED */
3399 } /* End of calling the module to find the swash */
3401 /* If this operation fetched a swash, and we will need it later, get it */
3402 if (retval != &PL_sv_undef
3403 && (minbits == 1 || (flags_p
3405 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY))))
3407 swash_hv = MUTABLE_HV(SvRV(retval));
3409 /* If we don't already know that there is a user-defined component to
3410 * this swash, and the user has indicated they wish to know if there is
3411 * one (by passing <flags_p>), find out */
3412 if (flags_p && ! (*flags_p & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)) {
3413 SV** user_defined = hv_fetchs(swash_hv, "USER_DEFINED", FALSE);
3414 if (user_defined && SvUV(*user_defined)) {
3415 *flags_p |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
3420 /* Make sure there is an inversion list for binary properties */
3422 SV** swash_invlistsvp = NULL;
3423 SV* swash_invlist = NULL;
3424 bool invlist_in_swash_is_valid = FALSE;
3425 bool swash_invlist_unclaimed = FALSE; /* whether swash_invlist has
3426 an unclaimed reference count */
3428 /* If this operation fetched a swash, get its already existing
3429 * inversion list, or create one for it */
3432 swash_invlistsvp = hv_fetchs(swash_hv, "V", FALSE);
3433 if (swash_invlistsvp) {
3434 swash_invlist = *swash_invlistsvp;
3435 invlist_in_swash_is_valid = TRUE;
3438 swash_invlist = _swash_to_invlist(retval);
3439 swash_invlist_unclaimed = TRUE;
3443 /* If an inversion list was passed in, have to include it */
3446 /* Any fetched swash will by now have an inversion list in it;
3447 * otherwise <swash_invlist> will be NULL, indicating that we
3448 * didn't fetch a swash */
3449 if (swash_invlist) {
3451 /* Add the passed-in inversion list, which invalidates the one
3452 * already stored in the swash */
3453 invlist_in_swash_is_valid = FALSE;
3454 SvREADONLY_off(swash_invlist); /* Turned on again below */
3455 _invlist_union(invlist, swash_invlist, &swash_invlist);
3459 /* Here, there is no swash already. Set up a minimal one, if
3460 * we are going to return a swash */
3461 if ((int) _invlist_len(invlist) > invlist_swash_boundary) {
3463 retval = newRV_noinc(MUTABLE_SV(swash_hv));
3465 swash_invlist = invlist;
3469 /* Here, we have computed the union of all the passed-in data. It may
3470 * be that there was an inversion list in the swash which didn't get
3471 * touched; otherwise save the computed one */
3472 if (! invlist_in_swash_is_valid
3473 && (int) _invlist_len(swash_invlist) > invlist_swash_boundary)
3475 if (! hv_stores(MUTABLE_HV(SvRV(retval)), "V", swash_invlist))
3477 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3479 /* We just stole a reference count. */
3480 if (swash_invlist_unclaimed) swash_invlist_unclaimed = FALSE;
3481 else SvREFCNT_inc_simple_void_NN(swash_invlist);
3484 /* The result is immutable. Forbid attempts to change it. */
3485 SvREADONLY_on(swash_invlist);
3487 /* Use the inversion list stand-alone if small enough */
3488 if ((int) _invlist_len(swash_invlist) <= invlist_swash_boundary) {
3489 SvREFCNT_dec(retval);
3490 if (!swash_invlist_unclaimed)
3491 SvREFCNT_inc_simple_void_NN(swash_invlist);
3492 retval = newRV_noinc(swash_invlist);
3496 CORE_SWASH_INIT_RETURN(retval);
3497 #undef CORE_SWASH_INIT_RETURN
3501 /* This API is wrong for special case conversions since we may need to
3502 * return several Unicode characters for a single Unicode character
3503 * (see lib/unicore/SpecCase.txt) The SWASHGET in lib/utf8_heavy.pl is
3504 * the lower-level routine, and it is similarly broken for returning
3505 * multiple values. --jhi
3506 * For those, you should use S__to_utf8_case() instead */
3507 /* Now SWASHGET is recasted into S_swatch_get in this file. */
3510 * Returns the value of property/mapping C<swash> for the first character
3511 * of the string C<ptr>. If C<do_utf8> is true, the string C<ptr> is
3512 * assumed to be in well-formed UTF-8. If C<do_utf8> is false, the string C<ptr>
3513 * is assumed to be in native 8-bit encoding. Caches the swatch in C<swash>.
3515 * A "swash" is a hash which contains initially the keys/values set up by
3516 * SWASHNEW. The purpose is to be able to completely represent a Unicode
3517 * property for all possible code points. Things are stored in a compact form
3518 * (see utf8_heavy.pl) so that calculation is required to find the actual
3519 * property value for a given code point. As code points are looked up, new
3520 * key/value pairs are added to the hash, so that the calculation doesn't have
3521 * to ever be re-done. Further, each calculation is done, not just for the
3522 * desired one, but for a whole block of code points adjacent to that one.
3523 * For binary properties on ASCII machines, the block is usually for 64 code
3524 * points, starting with a code point evenly divisible by 64. Thus if the
3525 * property value for code point 257 is requested, the code goes out and
3526 * calculates the property values for all 64 code points between 256 and 319,
3527 * and stores these as a single 64-bit long bit vector, called a "swatch",
3528 * under the key for code point 256. The key is the UTF-8 encoding for code
3529 * point 256, minus the final byte. Thus, if the length of the UTF-8 encoding
3530 * for a code point is 13 bytes, the key will be 12 bytes long. If the value
3531 * for code point 258 is then requested, this code realizes that it would be
3532 * stored under the key for 256, and would find that value and extract the
3533 * relevant bit, offset from 256.
3535 * Non-binary properties are stored in as many bits as necessary to represent
3536 * their values (32 currently, though the code is more general than that), not
3537 * as single bits, but the principle is the same: the value for each key is a
3538 * vector that encompasses the property values for all code points whose UTF-8
3539 * representations are represented by the key. That is, for all code points
3540 * whose UTF-8 representations are length N bytes, and the key is the first N-1
3544 Perl_swash_fetch(pTHX_ SV *swash, const U8 *ptr, bool do_utf8)
3546 HV *const hv = MUTABLE_HV(SvRV(swash));
3551 const U8 *tmps = NULL;
3555 PERL_ARGS_ASSERT_SWASH_FETCH;
3557 /* If it really isn't a hash, it isn't really swash; must be an inversion
3559 if (SvTYPE(hv) != SVt_PVHV) {
3560 return _invlist_contains_cp((SV*)hv,
3562 ? valid_utf8_to_uvchr(ptr, NULL)
3566 /* We store the values in a "swatch" which is a vec() value in a swash
3567 * hash. Code points 0-255 are a single vec() stored with key length
3568 * (klen) 0. All other code points have a UTF-8 representation
3569 * 0xAA..0xYY,0xZZ. A vec() is constructed containing all of them which
3570 * share 0xAA..0xYY, which is the key in the hash to that vec. So the key
3571 * length for them is the length of the encoded char - 1. ptr[klen] is the
3572 * final byte in the sequence representing the character */
3573 if (!do_utf8 || UTF8_IS_INVARIANT(c)) {
3578 else if (UTF8_IS_DOWNGRADEABLE_START(c)) {
3581 off = EIGHT_BIT_UTF8_TO_NATIVE(c, *(ptr + 1));
3584 klen = UTF8SKIP(ptr) - 1;
3586 /* Each vec() stores 2**UTF_ACCUMULATION_SHIFT values. The offset into
3587 * the vec is the final byte in the sequence. (In EBCDIC this is
3588 * converted to I8 to get consecutive values.) To help you visualize
3590 * Straight 1047 After final byte
3591 * UTF-8 UTF-EBCDIC I8 transform
3592 * U+0400: \xD0\x80 \xB8\x41\x41 \xB8\x41\xA0
3593 * U+0401: \xD0\x81 \xB8\x41\x42 \xB8\x41\xA1
3595 * U+0409: \xD0\x89 \xB8\x41\x4A \xB8\x41\xA9
3596 * U+040A: \xD0\x8A \xB8\x41\x51 \xB8\x41\xAA
3598 * U+0412: \xD0\x92 \xB8\x41\x59 \xB8\x41\xB2
3599 * U+0413: \xD0\x93 \xB8\x41\x62 \xB8\x41\xB3
3601 * U+041B: \xD0\x9B \xB8\x41\x6A \xB8\x41\xBB
3602 * U+041C: \xD0\x9C \xB8\x41\x70 \xB8\x41\xBC
3604 * U+041F: \xD0\x9F \xB8\x41\x73 \xB8\x41\xBF
3605 * U+0420: \xD0\xA0 \xB8\x42\x41 \xB8\x42\x41
3607 * (There are no discontinuities in the elided (...) entries.)
3608 * The UTF-8 key for these 33 code points is '\xD0' (which also is the
3609 * key for the next 31, up through U+043F, whose UTF-8 final byte is
3610 * \xBF). Thus in UTF-8, each key is for a vec() for 64 code points.
3611 * The final UTF-8 byte, which ranges between \x80 and \xBF, is an
3612 * index into the vec() swatch (after subtracting 0x80, which we
3613 * actually do with an '&').
3614 * In UTF-EBCDIC, each key is for a 32 code point vec(). The first 32
3615 * code points above have key '\xB8\x41'. The final UTF-EBCDIC byte has
3616 * dicontinuities which go away by transforming it into I8, and we
3617 * effectively subtract 0xA0 to get the index. */
3618 needents = (1 << UTF_ACCUMULATION_SHIFT);
3619 off = NATIVE_UTF8_TO_I8(ptr[klen]) & UTF_CONTINUATION_MASK;
3623 * This single-entry cache saves about 1/3 of the UTF-8 overhead in test
3624 * suite. (That is, only 7-8% overall over just a hash cache. Still,
3625 * it's nothing to sniff at.) Pity we usually come through at least
3626 * two function calls to get here...
3628 * NB: this code assumes that swatches are never modified, once generated!
3631 if (hv == PL_last_swash_hv &&
3632 klen == PL_last_swash_klen &&
3633 (!klen || memEQ((char *)ptr, (char *)PL_last_swash_key, klen)) )
3635 tmps = PL_last_swash_tmps;
3636 slen = PL_last_swash_slen;
3639 /* Try our second-level swatch cache, kept in a hash. */
3640 SV** svp = hv_fetch(hv, (const char*)ptr, klen, FALSE);
3642 /* If not cached, generate it via swatch_get */
3643 if (!svp || !SvPOK(*svp)
3644 || !(tmps = (const U8*)SvPV_const(*svp, slen)))
3647 const UV code_point = valid_utf8_to_uvchr(ptr, NULL);
3648 swatch = swatch_get(swash,
3649 code_point & ~((UV)needents - 1),
3652 else { /* For the first 256 code points, the swatch has a key of
3654 swatch = swatch_get(swash, 0, needents);
3657 if (IN_PERL_COMPILETIME)
3658 CopHINTS_set(PL_curcop, PL_hints);
3660 svp = hv_store(hv, (const char *)ptr, klen, swatch, 0);
3662 if (!svp || !(tmps = (U8*)SvPV(*svp, slen))
3663 || (slen << 3) < needents)
3664 Perl_croak(aTHX_ "panic: swash_fetch got improper swatch, "
3665 "svp=%p, tmps=%p, slen=%" UVuf ", needents=%" UVuf,
3666 svp, tmps, (UV)slen, (UV)needents);
3669 PL_last_swash_hv = hv;
3670 assert(klen <= sizeof(PL_last_swash_key));
3671 PL_last_swash_klen = (U8)klen;
3672 /* FIXME change interpvar.h? */
3673 PL_last_swash_tmps = (U8 *) tmps;
3674 PL_last_swash_slen = slen;
3676 Copy(ptr, PL_last_swash_key, klen, U8);
3679 switch ((int)((slen << 3) / needents)) {
3681 return ((UV) tmps[off >> 3] & (1 << (off & 7))) != 0;
3683 return ((UV) tmps[off]);
3687 ((UV) tmps[off ] << 8) +
3688 ((UV) tmps[off + 1]);
3692 ((UV) tmps[off ] << 24) +
3693 ((UV) tmps[off + 1] << 16) +
3694 ((UV) tmps[off + 2] << 8) +
3695 ((UV) tmps[off + 3]);
3697 Perl_croak(aTHX_ "panic: swash_fetch got swatch of unexpected bit width, "
3698 "slen=%" UVuf ", needents=%" UVuf, (UV)slen, (UV)needents);
3699 NORETURN_FUNCTION_END;
3702 /* Read a single line of the main body of the swash input text. These are of
3705 * where each number is hex. The first two numbers form the minimum and
3706 * maximum of a range, and the third is the value associated with the range.
3707 * Not all swashes should have a third number
3709 * On input: l points to the beginning of the line to be examined; it points
3710 * to somewhere in the string of the whole input text, and is
3711 * terminated by a \n or the null string terminator.
3712 * lend points to the null terminator of that string
3713 * wants_value is non-zero if the swash expects a third number
3714 * typestr is the name of the swash's mapping, like 'ToLower'
3715 * On output: *min, *max, and *val are set to the values read from the line.
3716 * returns a pointer just beyond the line examined. If there was no
3717 * valid min number on the line, returns lend+1
3721 S_swash_scan_list_line(pTHX_ U8* l, U8* const lend, UV* min, UV* max, UV* val,
3722 const bool wants_value, const U8* const typestr)
3724 const int typeto = typestr[0] == 'T' && typestr[1] == 'o';
3725 STRLEN numlen; /* Length of the number */
3726 I32 flags = PERL_SCAN_SILENT_ILLDIGIT
3727 | PERL_SCAN_DISALLOW_PREFIX
3728 | PERL_SCAN_SILENT_NON_PORTABLE;
3730 /* nl points to the next \n in the scan */
3731 U8* const nl = (U8*)memchr(l, '\n', lend - l);
3733 PERL_ARGS_ASSERT_SWASH_SCAN_LIST_LINE;
3735 /* Get the first number on the line: the range minimum */
3737 *min = grok_hex((char *)l, &numlen, &flags, NULL);
3738 *max = *min; /* So can never return without setting max */
3739 if (numlen) /* If found a hex number, position past it */
3741 else if (nl) { /* Else, go handle next line, if any */
3742 return nl + 1; /* 1 is length of "\n" */
3744 else { /* Else, no next line */
3745 return lend + 1; /* to LIST's end at which \n is not found */
3748 /* The max range value follows, separated by a BLANK */
3751 flags = PERL_SCAN_SILENT_ILLDIGIT
3752 | PERL_SCAN_DISALLOW_PREFIX
3753 | PERL_SCAN_SILENT_NON_PORTABLE;
3755 *max = grok_hex((char *)l, &numlen, &flags, NULL);
3758 else /* If no value here, it is a single element range */
3761 /* Non-binary tables have a third entry: what the first element of the
3762 * range maps to. The map for those currently read here is in hex */
3766 flags = PERL_SCAN_SILENT_ILLDIGIT
3767 | PERL_SCAN_DISALLOW_PREFIX
3768 | PERL_SCAN_SILENT_NON_PORTABLE;
3770 *val = grok_hex((char *)l, &numlen, &flags, NULL);
3779 /* diag_listed_as: To%s: illegal mapping '%s' */
3780 Perl_croak(aTHX_ "%s: illegal mapping '%s'",
3786 *val = 0; /* bits == 1, then any val should be ignored */
3788 else { /* Nothing following range min, should be single element with no
3793 /* diag_listed_as: To%s: illegal mapping '%s' */
3794 Perl_croak(aTHX_ "%s: illegal mapping '%s'", typestr, l);
3798 *val = 0; /* bits == 1, then val should be ignored */
3801 /* Position to next line if any, or EOF */
3811 * Returns a swatch (a bit vector string) for a code point sequence
3812 * that starts from the value C<start> and comprises the number C<span>.
3813 * A C<swash> must be an object created by SWASHNEW (see lib/utf8_heavy.pl).
3814 * Should be used via swash_fetch, which will cache the swatch in C<swash>.
3817 S_swatch_get(pTHX_ SV* swash, UV start, UV span)
3820 U8 *l, *lend, *x, *xend, *s, *send;
3821 STRLEN lcur, xcur, scur;
3822 HV *const hv = MUTABLE_HV(SvRV(swash));
3823 SV** const invlistsvp = hv_fetchs(hv, "V", FALSE);
3825 SV** listsvp = NULL; /* The string containing the main body of the table */
3826 SV** extssvp = NULL;
3827 SV** invert_it_svp = NULL;
3830 STRLEN octets; /* if bits == 1, then octets == 0 */
3832 UV end = start + span;
3834 if (invlistsvp == NULL) {
3835 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
3836 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
3837 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
3838 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
3839 listsvp = hv_fetchs(hv, "LIST", FALSE);
3840 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
3842 bits = SvUV(*bitssvp);
3843 none = SvUV(*nonesvp);
3844 typestr = (U8*)SvPV_nolen(*typesvp);
3850 octets = bits >> 3; /* if bits == 1, then octets == 0 */
3852 PERL_ARGS_ASSERT_SWATCH_GET;
3854 if (bits != 1 && bits != 8 && bits != 16 && bits != 32) {
3855 Perl_croak(aTHX_ "panic: swatch_get doesn't expect bits %" UVuf,
3859 /* If overflowed, use the max possible */
3865 /* create and initialize $swatch */
3866 scur = octets ? (span * octets) : (span + 7) / 8;
3867 swatch = newSV(scur);
3869 s = (U8*)SvPVX(swatch);
3870 if (octets && none) {
3871 const U8* const e = s + scur;
3874 *s++ = (U8)(none & 0xff);
3875 else if (bits == 16) {
3876 *s++ = (U8)((none >> 8) & 0xff);
3877 *s++ = (U8)( none & 0xff);
3879 else if (bits == 32) {
3880 *s++ = (U8)((none >> 24) & 0xff);
3881 *s++ = (U8)((none >> 16) & 0xff);
3882 *s++ = (U8)((none >> 8) & 0xff);
3883 *s++ = (U8)( none & 0xff);
3889 (void)memzero((U8*)s, scur + 1);
3891 SvCUR_set(swatch, scur);
3892 s = (U8*)SvPVX(swatch);
3894 if (invlistsvp) { /* If has an inversion list set up use that */
3895 _invlist_populate_swatch(*invlistsvp, start, end, s);
3899 /* read $swash->{LIST} */
3900 l = (U8*)SvPV(*listsvp, lcur);
3903 UV min, max, val, upper;
3904 l = swash_scan_list_line(l, lend, &min, &max, &val,
3905 cBOOL(octets), typestr);
3910 /* If looking for something beyond this range, go try the next one */
3914 /* <end> is generally 1 beyond where we want to set things, but at the
3915 * platform's infinity, where we can't go any higher, we want to
3916 * include the code point at <end> */
3919 : (max != UV_MAX || end != UV_MAX)
3926 if (!none || val < none) {
3931 for (key = min; key <= upper; key++) {
3933 /* offset must be non-negative (start <= min <= key < end) */
3934 offset = octets * (key - start);
3936 s[offset] = (U8)(val & 0xff);
3937 else if (bits == 16) {
3938 s[offset ] = (U8)((val >> 8) & 0xff);
3939 s[offset + 1] = (U8)( val & 0xff);
3941 else if (bits == 32) {
3942 s[offset ] = (U8)((val >> 24) & 0xff);
3943 s[offset + 1] = (U8)((val >> 16) & 0xff);
3944 s[offset + 2] = (U8)((val >> 8) & 0xff);
3945 s[offset + 3] = (U8)( val & 0xff);
3948 if (!none || val < none)
3952 else { /* bits == 1, then val should be ignored */
3957 for (key = min; key <= upper; key++) {
3958 const STRLEN offset = (STRLEN)(key - start);
3959 s[offset >> 3] |= 1 << (offset & 7);
3964 /* Invert if the data says it should be. Assumes that bits == 1 */
3965 if (invert_it_svp && SvUV(*invert_it_svp)) {
3967 /* Unicode properties should come with all bits above PERL_UNICODE_MAX
3968 * be 0, and their inversion should also be 0, as we don't succeed any
3969 * Unicode property matches for non-Unicode code points */
3970 if (start <= PERL_UNICODE_MAX) {
3972 /* The code below assumes that we never cross the
3973 * Unicode/above-Unicode boundary in a range, as otherwise we would
3974 * have to figure out where to stop flipping the bits. Since this
3975 * boundary is divisible by a large power of 2, and swatches comes
3976 * in small powers of 2, this should be a valid assumption */
3977 assert(start + span - 1 <= PERL_UNICODE_MAX);
3987 /* read $swash->{EXTRAS}
3988 * This code also copied to swash_to_invlist() below */
3989 x = (U8*)SvPV(*extssvp, xcur);
3997 SV **otherbitssvp, *other;
4001 const U8 opc = *x++;
4005 nl = (U8*)memchr(x, '\n', xend - x);
4007 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
4009 x = nl + 1; /* 1 is length of "\n" */
4013 x = xend; /* to EXTRAS' end at which \n is not found */
4020 namelen = nl - namestr;
4024 namelen = xend - namestr;
4028 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
4029 otherhv = MUTABLE_HV(SvRV(*othersvp));
4030 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
4031 otherbits = (STRLEN)SvUV(*otherbitssvp);
4032 if (bits < otherbits)
4033 Perl_croak(aTHX_ "panic: swatch_get found swatch size mismatch, "
4034 "bits=%" UVuf ", otherbits=%" UVuf, (UV)bits, (UV)otherbits);
4036 /* The "other" swatch must be destroyed after. */
4037 other = swatch_get(*othersvp, start, span);
4038 o = (U8*)SvPV(other, olen);
4041 Perl_croak(aTHX_ "panic: swatch_get got improper swatch");
4043 s = (U8*)SvPV(swatch, slen);
4044 if (bits == 1 && otherbits == 1) {
4046 Perl_croak(aTHX_ "panic: swatch_get found swatch length "
4047 "mismatch, slen=%" UVuf ", olen=%" UVuf,
4048 (UV)slen, (UV)olen);
4072 STRLEN otheroctets = otherbits >> 3;
4074 U8* const send = s + slen;
4079 if (otherbits == 1) {
4080 otherval = (o[offset >> 3] >> (offset & 7)) & 1;
4084 STRLEN vlen = otheroctets;
4092 if (opc == '+' && otherval)
4093 NOOP; /* replace with otherval */
4094 else if (opc == '!' && !otherval)
4096 else if (opc == '-' && otherval)
4098 else if (opc == '&' && !otherval)
4101 s += octets; /* no replacement */
4106 *s++ = (U8)( otherval & 0xff);
4107 else if (bits == 16) {
4108 *s++ = (U8)((otherval >> 8) & 0xff);
4109 *s++ = (U8)( otherval & 0xff);
4111 else if (bits == 32) {
4112 *s++ = (U8)((otherval >> 24) & 0xff);
4113 *s++ = (U8)((otherval >> 16) & 0xff);
4114 *s++ = (U8)((otherval >> 8) & 0xff);
4115 *s++ = (U8)( otherval & 0xff);
4119 sv_free(other); /* through with it! */
4125 Perl__swash_inversion_hash(pTHX_ SV* const swash)
4128 /* Subject to change or removal. For use only in regcomp.c and regexec.c
4129 * Can't be used on a property that is subject to user override, as it
4130 * relies on the value of SPECIALS in the swash which would be set by
4131 * utf8_heavy.pl to the hash in the non-overriden file, and hence is not set
4132 * for overridden properties
4134 * Returns a hash which is the inversion and closure of a swash mapping.
4135 * For example, consider the input lines:
4140 * The returned hash would have two keys, the UTF-8 for 006B and the UTF-8 for
4141 * 006C. The value for each key is an array. For 006C, the array would
4142 * have two elements, the UTF-8 for itself, and for 004C. For 006B, there
4143 * would be three elements in its array, the UTF-8 for 006B, 004B and 212A.
4145 * Note that there are no elements in the hash for 004B, 004C, 212A. The
4146 * keys are only code points that are folded-to, so it isn't a full closure.
4148 * Essentially, for any code point, it gives all the code points that map to
4149 * it, or the list of 'froms' for that point.
4151 * Currently it ignores any additions or deletions from other swashes,
4152 * looking at just the main body of the swash, and if there are SPECIALS
4153 * in the swash, at that hash
4155 * The specials hash can be extra code points, and most likely consists of
4156 * maps from single code points to multiple ones (each expressed as a string
4157 * of UTF-8 characters). This function currently returns only 1-1 mappings.
4158 * However consider this possible input in the specials hash:
4159 * "\xEF\xAC\x85" => "\x{0073}\x{0074}", # U+FB05 => 0073 0074
4160 * "\xEF\xAC\x86" => "\x{0073}\x{0074}", # U+FB06 => 0073 0074
4162 * Both FB05 and FB06 map to the same multi-char sequence, which we don't
4163 * currently handle. But it also means that FB05 and FB06 are equivalent in
4164 * a 1-1 mapping which we should handle, and this relationship may not be in
4165 * the main table. Therefore this function examines all the multi-char
4166 * sequences and adds the 1-1 mappings that come out of that.
4168 * XXX This function was originally intended to be multipurpose, but its
4169 * only use is quite likely to remain for constructing the inversion of
4170 * the CaseFolding (//i) property. If it were more general purpose for
4171 * regex patterns, it would have to do the FB05/FB06 game for simple folds,
4172 * because certain folds are prohibited under /iaa and /il. As an example,
4173 * in Unicode 3.0.1 both U+0130 and U+0131 fold to 'i', and hence are both
4174 * equivalent under /i. But under /iaa and /il, the folds to 'i' are
4175 * prohibited, so we would not figure out that they fold to each other.
4176 * Code could be written to automatically figure this out, similar to the
4177 * code that does this for multi-character folds, but this is the only case
4178 * where something like this is ever likely to happen, as all the single
4179 * char folds to the 0-255 range are now quite settled. Instead there is a
4180 * little special code that is compiled only for this Unicode version. This
4181 * is smaller and didn't require much coding time to do. But this makes
4182 * this routine strongly tied to being used just for CaseFolding. If ever
4183 * it should be generalized, this would have to be fixed */
4187 HV *const hv = MUTABLE_HV(SvRV(swash));
4189 /* The string containing the main body of the table. This will have its
4190 * assertion fail if the swash has been converted to its inversion list */
4191 SV** const listsvp = hv_fetchs(hv, "LIST", FALSE);
4193 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
4194 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
4195 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
4196 /*SV** const extssvp = hv_fetchs(hv, "EXTRAS", FALSE);*/
4197 const U8* const typestr = (U8*)SvPV_nolen(*typesvp);
4198 const STRLEN bits = SvUV(*bitssvp);
4199 const STRLEN octets = bits >> 3; /* if bits == 1, then octets == 0 */
4200 const UV none = SvUV(*nonesvp);
4201 SV **specials_p = hv_fetchs(hv, "SPECIALS", 0);
4205 PERL_ARGS_ASSERT__SWASH_INVERSION_HASH;
4207 /* Must have at least 8 bits to get the mappings */
4208 if (bits != 8 && bits != 16 && bits != 32) {
4209 Perl_croak(aTHX_ "panic: swash_inversion_hash doesn't expect bits %" UVuf,
4213 if (specials_p) { /* It might be "special" (sometimes, but not always, a
4214 mapping to more than one character */
4216 /* Construct an inverse mapping hash for the specials */
4217 HV * const specials_hv = MUTABLE_HV(SvRV(*specials_p));
4218 HV * specials_inverse = newHV();
4219 char *char_from; /* the lhs of the map */
4220 I32 from_len; /* its byte length */
4221 char *char_to; /* the rhs of the map */
4222 I32 to_len; /* its byte length */
4223 SV *sv_to; /* and in a sv */
4224 AV* from_list; /* list of things that map to each 'to' */
4226 hv_iterinit(specials_hv);
4228 /* The keys are the characters (in UTF-8) that map to the corresponding
4229 * UTF-8 string value. Iterate through the list creating the inverse
4231 while ((sv_to = hv_iternextsv(specials_hv, &char_from, &from_len))) {
4233 if (! SvPOK(sv_to)) {
4234 Perl_croak(aTHX_ "panic: value returned from hv_iternextsv() "
4235 "unexpectedly is not a string, flags=%lu",
4236 (unsigned long)SvFLAGS(sv_to));
4238 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "Found mapping from %" UVXf ", First char of to is %" UVXf "\n", valid_utf8_to_uvchr((U8*) char_from, 0), valid_utf8_to_uvchr((U8*) SvPVX(sv_to), 0)));*/
4240 /* Each key in the inverse list is a mapped-to value, and the key's
4241 * hash value is a list of the strings (each in UTF-8) that map to
4242 * it. Those strings are all one character long */
4243 if ((listp = hv_fetch(specials_inverse,
4247 from_list = (AV*) *listp;
4249 else { /* No entry yet for it: create one */
4250 from_list = newAV();
4251 if (! hv_store(specials_inverse,
4254 (SV*) from_list, 0))
4256 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
4260 /* Here have the list associated with this 'to' (perhaps newly
4261 * created and empty). Just add to it. Note that we ASSUME that
4262 * the input is guaranteed to not have duplications, so we don't
4263 * check for that. Duplications just slow down execution time. */
4264 av_push(from_list, newSVpvn_utf8(char_from, from_len, TRUE));
4267 /* Here, 'specials_inverse' contains the inverse mapping. Go through
4268 * it looking for cases like the FB05/FB06 examples above. There would
4269 * be an entry in the hash like
4270 * 'st' => [ FB05, FB06 ]
4271 * In this example we will create two lists that get stored in the
4272 * returned hash, 'ret':
4273 * FB05 => [ FB05, FB06 ]
4274 * FB06 => [ FB05, FB06 ]
4276 * Note that there is nothing to do if the array only has one element.
4277 * (In the normal 1-1 case handled below, we don't have to worry about
4278 * two lists, as everything gets tied to the single list that is
4279 * generated for the single character 'to'. But here, we are omitting
4280 * that list, ('st' in the example), so must have multiple lists.) */
4281 while ((from_list = (AV *) hv_iternextsv(specials_inverse,
4282 &char_to, &to_len)))
4284 if (av_tindex_nomg(from_list) > 0) {
4287 /* We iterate over all combinations of i,j to place each code
4288 * point on each list */
4289 for (i = 0; i <= av_tindex_nomg(from_list); i++) {
4291 AV* i_list = newAV();
4292 SV** entryp = av_fetch(from_list, i, FALSE);
4293 if (entryp == NULL) {
4294 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
4296 if (hv_fetch(ret, SvPVX(*entryp), SvCUR(*entryp), FALSE)) {
4297 Perl_croak(aTHX_ "panic: unexpected entry for %s", SvPVX(*entryp));
4299 if (! hv_store(ret, SvPVX(*entryp), SvCUR(*entryp),
4300 (SV*) i_list, FALSE))
4302 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
4305 /* For DEBUG_U: UV u = valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0);*/
4306 for (j = 0; j <= av_tindex_nomg(from_list); j++) {
4307 entryp = av_fetch(from_list, j, FALSE);
4308 if (entryp == NULL) {
4309 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
4312 /* When i==j this adds itself to the list */