3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 * 2000, 2001, 2002, 2003, 2004, 2005, 2006, by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
9 * "I wonder what the Entish is for 'yes' and 'no'," he thought.
12 * This file contains the code that creates, manipulates and destroys
13 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
14 * structure of an SV, so their creation and destruction is handled
15 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
16 * level functions (eg. substr, split, join) for each of the types are
28 /* Missing proto on LynxOS */
29 char *gconvert(double, int, int, char *);
32 #ifdef PERL_UTF8_CACHE_ASSERT
33 /* The cache element 0 is the Unicode offset;
34 * the cache element 1 is the byte offset of the element 0;
35 * the cache element 2 is the Unicode length of the substring;
36 * the cache element 3 is the byte length of the substring;
37 * The checking of the substring side would be good
38 * but substr() has enough code paths to make my head spin;
39 * if adding more checks watch out for the following tests:
40 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
41 * lib/utf8.t lib/Unicode/Collate/t/index.t
44 #define ASSERT_UTF8_CACHE(cache) \
45 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); } } STMT_END
47 #define ASSERT_UTF8_CACHE(cache) NOOP
50 #ifdef PERL_OLD_COPY_ON_WRITE
51 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
52 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
53 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
57 /* ============================================================================
59 =head1 Allocation and deallocation of SVs.
61 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
62 sv, av, hv...) contains type and reference count information, and for
63 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
64 contains fields specific to each type. Some types store all they need
65 in the head, so don't have a body.
67 In all but the most memory-paranoid configuations (ex: PURIFY), heads
68 and bodies are allocated out of arenas, which by default are
69 approximately 4K chunks of memory parcelled up into N heads or bodies.
70 Sv-bodies are allocated by their sv-type, guaranteeing size
71 consistency needed to allocate safely from arrays.
73 For SV-heads, the first slot in each arena is reserved, and holds a
74 link to the next arena, some flags, and a note of the number of slots.
75 Snaked through each arena chain is a linked list of free items; when
76 this becomes empty, an extra arena is allocated and divided up into N
77 items which are threaded into the free list.
79 SV-bodies are similar, but they use arena-sets by default, which
80 separate the link and info from the arena itself, and reclaim the 1st
81 slot in the arena. SV-bodies are further described later.
83 The following global variables are associated with arenas:
85 PL_sv_arenaroot pointer to list of SV arenas
86 PL_sv_root pointer to list of free SV structures
88 PL_body_arenas head of linked-list of body arenas
89 PL_body_roots[] array of pointers to list of free bodies of svtype
90 arrays are indexed by the svtype needed
92 A few special SV heads are not allocated from an arena, but are
93 instead directly created in the interpreter structure, eg PL_sv_undef.
94 The size of arenas can be changed from the default by setting
95 PERL_ARENA_SIZE appropriately at compile time.
97 The SV arena serves the secondary purpose of allowing still-live SVs
98 to be located and destroyed during final cleanup.
100 At the lowest level, the macros new_SV() and del_SV() grab and free
101 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
102 to return the SV to the free list with error checking.) new_SV() calls
103 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
104 SVs in the free list have their SvTYPE field set to all ones.
106 At the time of very final cleanup, sv_free_arenas() is called from
107 perl_destruct() to physically free all the arenas allocated since the
108 start of the interpreter.
110 Manipulation of any of the PL_*root pointers is protected by enclosing
111 LOCK_SV_MUTEX; ... UNLOCK_SV_MUTEX calls which should Do the Right Thing
112 if threads are enabled.
114 The function visit() scans the SV arenas list, and calls a specified
115 function for each SV it finds which is still live - ie which has an SvTYPE
116 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
117 following functions (specified as [function that calls visit()] / [function
118 called by visit() for each SV]):
120 sv_report_used() / do_report_used()
121 dump all remaining SVs (debugging aid)
123 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
124 Attempt to free all objects pointed to by RVs,
125 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
126 try to do the same for all objects indirectly
127 referenced by typeglobs too. Called once from
128 perl_destruct(), prior to calling sv_clean_all()
131 sv_clean_all() / do_clean_all()
132 SvREFCNT_dec(sv) each remaining SV, possibly
133 triggering an sv_free(). It also sets the
134 SVf_BREAK flag on the SV to indicate that the
135 refcnt has been artificially lowered, and thus
136 stopping sv_free() from giving spurious warnings
137 about SVs which unexpectedly have a refcnt
138 of zero. called repeatedly from perl_destruct()
139 until there are no SVs left.
141 =head2 Arena allocator API Summary
143 Private API to rest of sv.c
147 new_XIV(), del_XIV(),
148 new_XNV(), del_XNV(),
153 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
157 ============================================================================ */
160 * "A time to plant, and a time to uproot what was planted..."
164 * nice_chunk and nice_chunk size need to be set
165 * and queried under the protection of sv_mutex
168 Perl_offer_nice_chunk(pTHX_ void *chunk, U32 chunk_size)
174 new_chunk = (void *)(chunk);
175 new_chunk_size = (chunk_size);
176 if (new_chunk_size > PL_nice_chunk_size) {
177 Safefree(PL_nice_chunk);
178 PL_nice_chunk = (char *) new_chunk;
179 PL_nice_chunk_size = new_chunk_size;
186 #ifdef DEBUG_LEAKING_SCALARS
187 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
189 # define FREE_SV_DEBUG_FILE(sv)
193 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
194 /* Whilst I'd love to do this, it seems that things like to check on
196 # define POSION_SV_HEAD(sv) Poison(sv, 1, struct STRUCT_SV)
198 # define POSION_SV_HEAD(sv) Poison(&SvANY(sv), 1, void *), \
199 Poison(&SvREFCNT(sv), 1, U32)
201 # define SvARENA_CHAIN(sv) SvANY(sv)
202 # define POSION_SV_HEAD(sv)
205 #define plant_SV(p) \
207 FREE_SV_DEBUG_FILE(p); \
209 SvARENA_CHAIN(p) = (void *)PL_sv_root; \
210 SvFLAGS(p) = SVTYPEMASK; \
215 /* sv_mutex must be held while calling uproot_SV() */
216 #define uproot_SV(p) \
219 PL_sv_root = (SV*)SvARENA_CHAIN(p); \
224 /* make some more SVs by adding another arena */
226 /* sv_mutex must be held while calling more_sv() */
234 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
235 PL_nice_chunk = NULL;
236 PL_nice_chunk_size = 0;
239 char *chunk; /* must use New here to match call to */
240 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
241 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
247 /* new_SV(): return a new, empty SV head */
249 #ifdef DEBUG_LEAKING_SCALARS
250 /* provide a real function for a debugger to play with */
260 sv = S_more_sv(aTHX);
265 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
266 sv->sv_debug_line = (U16) ((PL_copline == NOLINE) ?
267 (PL_curcop ? CopLINE(PL_curcop) : 0) : PL_copline);
268 sv->sv_debug_inpad = 0;
269 sv->sv_debug_cloned = 0;
270 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
274 # define new_SV(p) (p)=S_new_SV(aTHX)
283 (p) = S_more_sv(aTHX); \
292 /* del_SV(): return an empty SV head to the free list */
307 S_del_sv(pTHX_ SV *p)
313 for (sva = PL_sv_arenaroot; sva; sva = (SV *) SvANY(sva)) {
314 const SV * const sv = sva + 1;
315 const SV * const svend = &sva[SvREFCNT(sva)];
316 if (p >= sv && p < svend) {
322 if (ckWARN_d(WARN_INTERNAL))
323 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
324 "Attempt to free non-arena SV: 0x%"UVxf
325 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
332 #else /* ! DEBUGGING */
334 #define del_SV(p) plant_SV(p)
336 #endif /* DEBUGGING */
340 =head1 SV Manipulation Functions
342 =for apidoc sv_add_arena
344 Given a chunk of memory, link it to the head of the list of arenas,
345 and split it into a list of free SVs.
351 Perl_sv_add_arena(pTHX_ char *ptr, U32 size, U32 flags)
354 SV* const sva = (SV*)ptr;
358 /* The first SV in an arena isn't an SV. */
359 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
360 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
361 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
363 PL_sv_arenaroot = sva;
364 PL_sv_root = sva + 1;
366 svend = &sva[SvREFCNT(sva) - 1];
369 SvARENA_CHAIN(sv) = (void *)(SV*)(sv + 1);
373 /* Must always set typemask because it's awlays checked in on cleanup
374 when the arenas are walked looking for objects. */
375 SvFLAGS(sv) = SVTYPEMASK;
378 SvARENA_CHAIN(sv) = 0;
382 SvFLAGS(sv) = SVTYPEMASK;
385 /* visit(): call the named function for each non-free SV in the arenas
386 * whose flags field matches the flags/mask args. */
389 S_visit(pTHX_ SVFUNC_t f, U32 flags, U32 mask)
395 for (sva = PL_sv_arenaroot; sva; sva = (SV*)SvANY(sva)) {
396 register const SV * const svend = &sva[SvREFCNT(sva)];
398 for (sv = sva + 1; sv < svend; ++sv) {
399 if (SvTYPE(sv) != SVTYPEMASK
400 && (sv->sv_flags & mask) == flags
413 /* called by sv_report_used() for each live SV */
416 do_report_used(pTHX_ SV *sv)
418 if (SvTYPE(sv) != SVTYPEMASK) {
419 PerlIO_printf(Perl_debug_log, "****\n");
426 =for apidoc sv_report_used
428 Dump the contents of all SVs not yet freed. (Debugging aid).
434 Perl_sv_report_used(pTHX)
437 visit(do_report_used, 0, 0);
443 /* called by sv_clean_objs() for each live SV */
446 do_clean_objs(pTHX_ SV *ref)
450 SV * const target = SvRV(ref);
451 if (SvOBJECT(target)) {
452 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
453 if (SvWEAKREF(ref)) {
454 sv_del_backref(target, ref);
460 SvREFCNT_dec(target);
465 /* XXX Might want to check arrays, etc. */
468 /* called by sv_clean_objs() for each live SV */
470 #ifndef DISABLE_DESTRUCTOR_KLUDGE
472 do_clean_named_objs(pTHX_ SV *sv)
475 if (SvTYPE(sv) == SVt_PVGV && isGV_with_GP(sv) && GvGP(sv)) {
477 #ifdef PERL_DONT_CREATE_GVSV
480 SvOBJECT(GvSV(sv))) ||
481 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
482 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
483 (GvIO(sv) && SvOBJECT(GvIO(sv))) ||
484 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
486 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
487 SvFLAGS(sv) |= SVf_BREAK;
495 =for apidoc sv_clean_objs
497 Attempt to destroy all objects not yet freed
503 Perl_sv_clean_objs(pTHX)
506 PL_in_clean_objs = TRUE;
507 visit(do_clean_objs, SVf_ROK, SVf_ROK);
508 #ifndef DISABLE_DESTRUCTOR_KLUDGE
509 /* some barnacles may yet remain, clinging to typeglobs */
510 visit(do_clean_named_objs, SVt_PVGV, SVTYPEMASK);
512 PL_in_clean_objs = FALSE;
515 /* called by sv_clean_all() for each live SV */
518 do_clean_all(pTHX_ SV *sv)
521 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
522 SvFLAGS(sv) |= SVf_BREAK;
523 if (PL_comppad == (AV*)sv) {
531 =for apidoc sv_clean_all
533 Decrement the refcnt of each remaining SV, possibly triggering a
534 cleanup. This function may have to be called multiple times to free
535 SVs which are in complex self-referential hierarchies.
541 Perl_sv_clean_all(pTHX)
545 PL_in_clean_all = TRUE;
546 cleaned = visit(do_clean_all, 0,0);
547 PL_in_clean_all = FALSE;
552 ARENASETS: a meta-arena implementation which separates arena-info
553 into struct arena_set, which contains an array of struct
554 arena_descs, each holding info for a single arena. By separating
555 the meta-info from the arena, we recover the 1st slot, formerly
556 borrowed for list management. The arena_set is about the size of an
557 arena, avoiding the needless malloc overhead of a naive linked-list
559 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
560 memory in the last arena-set (1/2 on average). In trade, we get
561 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
562 smaller types). The recovery of the wasted space allows use of
563 small arenas for large, rare body types,
566 char *arena; /* the raw storage, allocated aligned */
567 size_t size; /* its size ~4k typ */
568 int unit_type; /* useful for arena audits */
569 /* info for sv-heads (eventually)
576 /* Get the maximum number of elements in set[] such that struct arena_set
577 will fit within PERL_ARENA_SIZE, which is probabably just under 4K, and
578 therefore likely to be 1 aligned memory page. */
580 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
581 - 2 * sizeof(int)) / sizeof (struct arena_desc))
584 struct arena_set* next;
585 int set_size; /* ie ARENAS_PER_SET */
586 int curr; /* index of next available arena-desc */
587 struct arena_desc set[ARENAS_PER_SET];
591 =for apidoc sv_free_arenas
593 Deallocate the memory used by all arenas. Note that all the individual SV
594 heads and bodies within the arenas must already have been freed.
599 Perl_sv_free_arenas(pTHX)
606 /* Free arenas here, but be careful about fake ones. (We assume
607 contiguity of the fake ones with the corresponding real ones.) */
609 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
610 svanext = (SV*) SvANY(sva);
611 while (svanext && SvFAKE(svanext))
612 svanext = (SV*) SvANY(svanext);
619 struct arena_set *next, *aroot = (struct arena_set*) PL_body_arenas;
621 for (; aroot; aroot = next) {
622 const int max = aroot->curr;
623 for (i=0; i<max; i++) {
624 assert(aroot->set[i].arena);
625 Safefree(aroot->set[i].arena);
633 for (i=0; i<PERL_ARENA_ROOTS_SIZE; i++)
634 PL_body_roots[i] = 0;
636 Safefree(PL_nice_chunk);
637 PL_nice_chunk = NULL;
638 PL_nice_chunk_size = 0;
644 Here are mid-level routines that manage the allocation of bodies out
645 of the various arenas. There are 5 kinds of arenas:
647 1. SV-head arenas, which are discussed and handled above
648 2. regular body arenas
649 3. arenas for reduced-size bodies
651 5. pte arenas (thread related)
653 Arena types 2 & 3 are chained by body-type off an array of
654 arena-root pointers, which is indexed by svtype. Some of the
655 larger/less used body types are malloced singly, since a large
656 unused block of them is wasteful. Also, several svtypes dont have
657 bodies; the data fits into the sv-head itself. The arena-root
658 pointer thus has a few unused root-pointers (which may be hijacked
659 later for arena types 4,5)
661 3 differs from 2 as an optimization; some body types have several
662 unused fields in the front of the structure (which are kept in-place
663 for consistency). These bodies can be allocated in smaller chunks,
664 because the leading fields arent accessed. Pointers to such bodies
665 are decremented to point at the unused 'ghost' memory, knowing that
666 the pointers are used with offsets to the real memory.
668 HE, HEK arenas are managed separately, with separate code, but may
669 be merge-able later..
671 PTE arenas are not sv-bodies, but they share these mid-level
672 mechanics, so are considered here. The new mid-level mechanics rely
673 on the sv_type of the body being allocated, so we just reserve one
674 of the unused body-slots for PTEs, then use it in those (2) PTE
675 contexts below (line ~10k)
678 /* get_arena(size): this creates custom-sized arenas
679 TBD: export properly for hv.c: S_more_he().
682 Perl_get_arena(pTHX_ int arena_size)
684 struct arena_desc* adesc;
685 struct arena_set *newroot, **aroot = (struct arena_set**) &PL_body_arenas;
688 /* shouldnt need this
689 if (!arena_size) arena_size = PERL_ARENA_SIZE;
692 /* may need new arena-set to hold new arena */
693 if (!*aroot || (*aroot)->curr >= (*aroot)->set_size) {
694 Newxz(newroot, 1, struct arena_set);
695 newroot->set_size = ARENAS_PER_SET;
696 newroot->next = *aroot;
698 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", *aroot));
701 /* ok, now have arena-set with at least 1 empty/available arena-desc */
702 curr = (*aroot)->curr++;
703 adesc = &((*aroot)->set[curr]);
704 assert(!adesc->arena);
706 Newxz(adesc->arena, arena_size, char);
707 adesc->size = arena_size;
708 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %d\n",
709 curr, adesc->arena, arena_size));
715 /* return a thing to the free list */
717 #define del_body(thing, root) \
719 void ** const thing_copy = (void **)thing;\
721 *thing_copy = *root; \
722 *root = (void*)thing_copy; \
728 =head1 SV-Body Allocation
730 Allocation of SV-bodies is similar to SV-heads, differing as follows;
731 the allocation mechanism is used for many body types, so is somewhat
732 more complicated, it uses arena-sets, and has no need for still-live
735 At the outermost level, (new|del)_X*V macros return bodies of the
736 appropriate type. These macros call either (new|del)_body_type or
737 (new|del)_body_allocated macro pairs, depending on specifics of the
738 type. Most body types use the former pair, the latter pair is used to
739 allocate body types with "ghost fields".
741 "ghost fields" are fields that are unused in certain types, and
742 consequently dont need to actually exist. They are declared because
743 they're part of a "base type", which allows use of functions as
744 methods. The simplest examples are AVs and HVs, 2 aggregate types
745 which don't use the fields which support SCALAR semantics.
747 For these types, the arenas are carved up into *_allocated size
748 chunks, we thus avoid wasted memory for those unaccessed members.
749 When bodies are allocated, we adjust the pointer back in memory by the
750 size of the bit not allocated, so it's as if we allocated the full
751 structure. (But things will all go boom if you write to the part that
752 is "not there", because you'll be overwriting the last members of the
753 preceding structure in memory.)
755 We calculate the correction using the STRUCT_OFFSET macro. For
756 example, if xpv_allocated is the same structure as XPV then the two
757 OFFSETs sum to zero, and the pointer is unchanged. If the allocated
758 structure is smaller (no initial NV actually allocated) then the net
759 effect is to subtract the size of the NV from the pointer, to return a
760 new pointer as if an initial NV were actually allocated.
762 This is the same trick as was used for NV and IV bodies. Ironically it
763 doesn't need to be used for NV bodies any more, because NV is now at
764 the start of the structure. IV bodies don't need it either, because
765 they are no longer allocated.
767 In turn, the new_body_* allocators call S_new_body(), which invokes
768 new_body_inline macro, which takes a lock, and takes a body off the
769 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
770 necessary to refresh an empty list. Then the lock is released, and
771 the body is returned.
773 S_more_bodies calls get_arena(), and carves it up into an array of N
774 bodies, which it strings into a linked list. It looks up arena-size
775 and body-size from the body_details table described below, thus
776 supporting the multiple body-types.
778 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
779 the (new|del)_X*V macros are mapped directly to malloc/free.
785 For each sv-type, struct body_details bodies_by_type[] carries
786 parameters which control these aspects of SV handling:
788 Arena_size determines whether arenas are used for this body type, and if
789 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
790 zero, forcing individual mallocs and frees.
792 Body_size determines how big a body is, and therefore how many fit into
793 each arena. Offset carries the body-pointer adjustment needed for
794 *_allocated body types, and is used in *_allocated macros.
796 But its main purpose is to parameterize info needed in
797 Perl_sv_upgrade(). The info here dramatically simplifies the function
798 vs the implementation in 5.8.7, making it table-driven. All fields
799 are used for this, except for arena_size.
801 For the sv-types that have no bodies, arenas are not used, so those
802 PL_body_roots[sv_type] are unused, and can be overloaded. In
803 something of a special case, SVt_NULL is borrowed for HE arenas;
804 PL_body_roots[SVt_NULL] is filled by S_more_he, but the
805 bodies_by_type[SVt_NULL] slot is not used, as the table is not
808 PTEs also use arenas, but are never seen in Perl_sv_upgrade.
809 Nonetheless, they get their own slot in bodies_by_type[SVt_NULL], so
810 they can just use the same allocation semantics. At first, PTEs were
811 also overloaded to a non-body sv-type, but this yielded hard-to-find
812 malloc bugs, so was simplified by claiming a new slot. This choice
813 has no consequence at this time.
817 struct body_details {
818 U8 body_size; /* Size to allocate */
819 U8 copy; /* Size of structure to copy (may be shorter) */
821 unsigned int type : 4; /* We have space for a sanity check. */
822 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
823 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
824 unsigned int arena : 1; /* Allocated from an arena */
825 size_t arena_size; /* Size of arena to allocate */
833 /* With -DPURFIY we allocate everything directly, and don't use arenas.
834 This seems a rather elegant way to simplify some of the code below. */
835 #define HASARENA FALSE
837 #define HASARENA TRUE
839 #define NOARENA FALSE
841 /* Size the arenas to exactly fit a given number of bodies. A count
842 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
843 simplifying the default. If count > 0, the arena is sized to fit
844 only that many bodies, allowing arenas to be used for large, rare
845 bodies (XPVFM, XPVIO) without undue waste. The arena size is
846 limited by PERL_ARENA_SIZE, so we can safely oversize the
849 #define FIT_ARENA0(body_size) \
850 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
851 #define FIT_ARENAn(count,body_size) \
852 ( count * body_size <= PERL_ARENA_SIZE) \
853 ? count * body_size \
854 : FIT_ARENA0 (body_size)
855 #define FIT_ARENA(count,body_size) \
857 ? FIT_ARENAn (count, body_size) \
858 : FIT_ARENA0 (body_size)
860 /* A macro to work out the offset needed to subtract from a pointer to (say)
867 to make its members accessible via a pointer to (say)
877 #define relative_STRUCT_OFFSET(longer, shorter, member) \
878 (STRUCT_OFFSET(shorter, member) - STRUCT_OFFSET(longer, member))
880 /* Calculate the length to copy. Specifically work out the length less any
881 final padding the compiler needed to add. See the comment in sv_upgrade
882 for why copying the padding proved to be a bug. */
884 #define copy_length(type, last_member) \
885 STRUCT_OFFSET(type, last_member) \
886 + sizeof (((type*)SvANY((SV*)0))->last_member)
888 static const struct body_details bodies_by_type[] = {
889 { sizeof(HE), 0, 0, SVt_NULL,
890 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
892 /* IVs are in the head, so the allocation size is 0.
893 However, the slot is overloaded for PTEs. */
894 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
895 sizeof(IV), /* This is used to copy out the IV body. */
896 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
897 NOARENA /* IVS don't need an arena */,
898 /* But PTEs need to know the size of their arena */
899 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
902 /* 8 bytes on most ILP32 with IEEE doubles */
903 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
904 FIT_ARENA(0, sizeof(NV)) },
906 /* RVs are in the head now. */
907 { 0, 0, 0, SVt_RV, FALSE, NONV, NOARENA, 0 },
909 /* 8 bytes on most ILP32 with IEEE doubles */
910 { sizeof(xpv_allocated),
911 copy_length(XPV, xpv_len)
912 - relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
913 + relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
914 SVt_PV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpv_allocated)) },
917 { sizeof(xpviv_allocated),
918 copy_length(XPVIV, xiv_u)
919 - relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
920 + relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
921 SVt_PVIV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpviv_allocated)) },
924 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
925 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
928 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
929 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
932 { sizeof(XPVBM), sizeof(XPVBM), 0, SVt_PVBM, TRUE, HADNV,
933 HASARENA, FIT_ARENA(0, sizeof(XPVBM)) },
936 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
937 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
940 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
941 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
943 { sizeof(xpvav_allocated),
944 copy_length(XPVAV, xmg_stash)
945 - relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
946 + relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
947 SVt_PVAV, TRUE, HADNV, HASARENA, FIT_ARENA(0, sizeof(xpvav_allocated)) },
949 { sizeof(xpvhv_allocated),
950 copy_length(XPVHV, xmg_stash)
951 - relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
952 + relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
953 SVt_PVHV, TRUE, HADNV, HASARENA, FIT_ARENA(0, sizeof(xpvhv_allocated)) },
956 { sizeof(xpvcv_allocated), sizeof(xpvcv_allocated),
957 + relative_STRUCT_OFFSET(xpvcv_allocated, XPVCV, xpv_cur),
958 SVt_PVCV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvcv_allocated)) },
960 { sizeof(xpvfm_allocated), sizeof(xpvfm_allocated),
961 + relative_STRUCT_OFFSET(xpvfm_allocated, XPVFM, xpv_cur),
962 SVt_PVFM, TRUE, NONV, NOARENA, FIT_ARENA(20, sizeof(xpvfm_allocated)) },
964 /* XPVIO is 84 bytes, fits 48x */
965 { sizeof(XPVIO), sizeof(XPVIO), 0, SVt_PVIO, TRUE, HADNV,
966 HASARENA, FIT_ARENA(24, sizeof(XPVIO)) },
969 #define new_body_type(sv_type) \
970 (void *)((char *)S_new_body(aTHX_ sv_type))
972 #define del_body_type(p, sv_type) \
973 del_body(p, &PL_body_roots[sv_type])
976 #define new_body_allocated(sv_type) \
977 (void *)((char *)S_new_body(aTHX_ sv_type) \
978 - bodies_by_type[sv_type].offset)
980 #define del_body_allocated(p, sv_type) \
981 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
984 #define my_safemalloc(s) (void*)safemalloc(s)
985 #define my_safecalloc(s) (void*)safecalloc(s, 1)
986 #define my_safefree(p) safefree((char*)p)
990 #define new_XNV() my_safemalloc(sizeof(XPVNV))
991 #define del_XNV(p) my_safefree(p)
993 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
994 #define del_XPVNV(p) my_safefree(p)
996 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
997 #define del_XPVAV(p) my_safefree(p)
999 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
1000 #define del_XPVHV(p) my_safefree(p)
1002 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1003 #define del_XPVMG(p) my_safefree(p)
1005 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1006 #define del_XPVGV(p) my_safefree(p)
1010 #define new_XNV() new_body_type(SVt_NV)
1011 #define del_XNV(p) del_body_type(p, SVt_NV)
1013 #define new_XPVNV() new_body_type(SVt_PVNV)
1014 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1016 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1017 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1019 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1020 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1022 #define new_XPVMG() new_body_type(SVt_PVMG)
1023 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1025 #define new_XPVGV() new_body_type(SVt_PVGV)
1026 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1030 /* no arena for you! */
1032 #define new_NOARENA(details) \
1033 my_safemalloc((details)->body_size + (details)->offset)
1034 #define new_NOARENAZ(details) \
1035 my_safecalloc((details)->body_size + (details)->offset)
1038 static bool done_sanity_check;
1042 S_more_bodies (pTHX_ svtype sv_type)
1045 void ** const root = &PL_body_roots[sv_type];
1046 const struct body_details * const bdp = &bodies_by_type[sv_type];
1047 const size_t body_size = bdp->body_size;
1051 assert(bdp->arena_size);
1054 if (!done_sanity_check) {
1055 unsigned int i = SVt_LAST;
1057 done_sanity_check = TRUE;
1060 assert (bodies_by_type[i].type == i);
1064 start = (char*) Perl_get_arena(aTHX_ bdp->arena_size);
1066 end = start + bdp->arena_size - body_size;
1068 /* computed count doesnt reflect the 1st slot reservation */
1069 DEBUG_m(PerlIO_printf(Perl_debug_log,
1070 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1071 start, end, bdp->arena_size, sv_type, body_size,
1072 bdp->arena_size / body_size));
1074 *root = (void *)start;
1076 while (start < end) {
1077 char * const next = start + body_size;
1078 *(void**) start = (void *)next;
1081 *(void **)start = 0;
1086 /* grab a new thing from the free list, allocating more if necessary.
1087 The inline version is used for speed in hot routines, and the
1088 function using it serves the rest (unless PURIFY).
1090 #define new_body_inline(xpv, sv_type) \
1092 void ** const r3wt = &PL_body_roots[sv_type]; \
1094 xpv = *((void **)(r3wt)) \
1095 ? *((void **)(r3wt)) : S_more_bodies(aTHX_ sv_type); \
1096 *(r3wt) = *(void**)(xpv); \
1103 S_new_body(pTHX_ svtype sv_type)
1107 new_body_inline(xpv, sv_type);
1114 =for apidoc sv_upgrade
1116 Upgrade an SV to a more complex form. Generally adds a new body type to the
1117 SV, then copies across as much information as possible from the old body.
1118 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1124 Perl_sv_upgrade(pTHX_ register SV *sv, U32 new_type)
1129 const U32 old_type = SvTYPE(sv);
1130 const struct body_details *new_type_details;
1131 const struct body_details *const old_type_details
1132 = bodies_by_type + old_type;
1134 if (new_type != SVt_PV && SvIsCOW(sv)) {
1135 sv_force_normal_flags(sv, 0);
1138 if (old_type == new_type)
1141 if (old_type > new_type)
1142 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1143 (int)old_type, (int)new_type);
1146 old_body = SvANY(sv);
1148 /* Copying structures onto other structures that have been neatly zeroed
1149 has a subtle gotcha. Consider XPVMG
1151 +------+------+------+------+------+-------+-------+
1152 | NV | CUR | LEN | IV | MAGIC | STASH |
1153 +------+------+------+------+------+-------+-------+
1154 0 4 8 12 16 20 24 28
1156 where NVs are aligned to 8 bytes, so that sizeof that structure is
1157 actually 32 bytes long, with 4 bytes of padding at the end:
1159 +------+------+------+------+------+-------+-------+------+
1160 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1161 +------+------+------+------+------+-------+-------+------+
1162 0 4 8 12 16 20 24 28 32
1164 so what happens if you allocate memory for this structure:
1166 +------+------+------+------+------+-------+-------+------+------+...
1167 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1168 +------+------+------+------+------+-------+-------+------+------+...
1169 0 4 8 12 16 20 24 28 32 36
1171 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1172 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1173 started out as zero once, but it's quite possible that it isn't. So now,
1174 rather than a nicely zeroed GP, you have it pointing somewhere random.
1177 (In fact, GP ends up pointing at a previous GP structure, because the
1178 principle cause of the padding in XPVMG getting garbage is a copy of
1179 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob)
1181 So we are careful and work out the size of used parts of all the
1188 if (new_type < SVt_PVIV) {
1189 new_type = (new_type == SVt_NV)
1190 ? SVt_PVNV : SVt_PVIV;
1194 if (new_type < SVt_PVNV) {
1195 new_type = SVt_PVNV;
1201 assert(new_type > SVt_PV);
1202 assert(SVt_IV < SVt_PV);
1203 assert(SVt_NV < SVt_PV);
1210 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1211 there's no way that it can be safely upgraded, because perl.c
1212 expects to Safefree(SvANY(PL_mess_sv)) */
1213 assert(sv != PL_mess_sv);
1214 /* This flag bit is used to mean other things in other scalar types.
1215 Given that it only has meaning inside the pad, it shouldn't be set
1216 on anything that can get upgraded. */
1217 assert(!SvPAD_TYPED(sv));
1220 if (old_type_details->cant_upgrade)
1221 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1222 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1224 new_type_details = bodies_by_type + new_type;
1226 SvFLAGS(sv) &= ~SVTYPEMASK;
1227 SvFLAGS(sv) |= new_type;
1229 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1230 the return statements above will have triggered. */
1231 assert (new_type != SVt_NULL);
1234 assert(old_type == SVt_NULL);
1235 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1239 assert(old_type == SVt_NULL);
1240 SvANY(sv) = new_XNV();
1244 assert(old_type == SVt_NULL);
1245 SvANY(sv) = &sv->sv_u.svu_rv;
1250 assert(new_type_details->body_size);
1253 assert(new_type_details->arena);
1254 assert(new_type_details->arena_size);
1255 /* This points to the start of the allocated area. */
1256 new_body_inline(new_body, new_type);
1257 Zero(new_body, new_type_details->body_size, char);
1258 new_body = ((char *)new_body) - new_type_details->offset;
1260 /* We always allocated the full length item with PURIFY. To do this
1261 we fake things so that arena is false for all 16 types.. */
1262 new_body = new_NOARENAZ(new_type_details);
1264 SvANY(sv) = new_body;
1265 if (new_type == SVt_PVAV) {
1271 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1272 The target created by newSVrv also is, and it can have magic.
1273 However, it never has SvPVX set.
1275 if (old_type >= SVt_RV) {
1276 assert(SvPVX_const(sv) == 0);
1279 /* Could put this in the else clause below, as PVMG must have SvPVX
1280 0 already (the assertion above) */
1283 if (old_type >= SVt_PVMG) {
1284 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1285 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1291 /* XXX Is this still needed? Was it ever needed? Surely as there is
1292 no route from NV to PVIV, NOK can never be true */
1293 assert(!SvNOKp(sv));
1305 assert(new_type_details->body_size);
1306 /* We always allocated the full length item with PURIFY. To do this
1307 we fake things so that arena is false for all 16 types.. */
1308 if(new_type_details->arena) {
1309 /* This points to the start of the allocated area. */
1310 new_body_inline(new_body, new_type);
1311 Zero(new_body, new_type_details->body_size, char);
1312 new_body = ((char *)new_body) - new_type_details->offset;
1314 new_body = new_NOARENAZ(new_type_details);
1316 SvANY(sv) = new_body;
1318 if (old_type_details->copy) {
1319 /* There is now the potential for an upgrade from something without
1320 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1321 int offset = old_type_details->offset;
1322 int length = old_type_details->copy;
1324 if (new_type_details->offset > old_type_details->offset) {
1326 = new_type_details->offset - old_type_details->offset;
1327 offset += difference;
1328 length -= difference;
1330 assert (length >= 0);
1332 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1336 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1337 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1338 * correct 0.0 for us. Otherwise, if the old body didn't have an
1339 * NV slot, but the new one does, then we need to initialise the
1340 * freshly created NV slot with whatever the correct bit pattern is
1342 if (old_type_details->zero_nv && !new_type_details->zero_nv)
1346 if (new_type == SVt_PVIO)
1347 IoPAGE_LEN(sv) = 60;
1348 if (old_type < SVt_RV)
1352 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1353 (unsigned long)new_type);
1356 if (old_type_details->arena) {
1357 /* If there was an old body, then we need to free it.
1358 Note that there is an assumption that all bodies of types that
1359 can be upgraded came from arenas. Only the more complex non-
1360 upgradable types are allowed to be directly malloc()ed. */
1362 my_safefree(old_body);
1364 del_body((void*)((char*)old_body + old_type_details->offset),
1365 &PL_body_roots[old_type]);
1371 =for apidoc sv_backoff
1373 Remove any string offset. You should normally use the C<SvOOK_off> macro
1380 Perl_sv_backoff(pTHX_ register SV *sv)
1382 PERL_UNUSED_CONTEXT;
1384 assert(SvTYPE(sv) != SVt_PVHV);
1385 assert(SvTYPE(sv) != SVt_PVAV);
1387 const char * const s = SvPVX_const(sv);
1388 SvLEN_set(sv, SvLEN(sv) + SvIVX(sv));
1389 SvPV_set(sv, SvPVX(sv) - SvIVX(sv));
1391 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1393 SvFLAGS(sv) &= ~SVf_OOK;
1400 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1401 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1402 Use the C<SvGROW> wrapper instead.
1408 Perl_sv_grow(pTHX_ register SV *sv, register STRLEN newlen)
1412 if (PL_madskills && newlen >= 0x100000) {
1413 PerlIO_printf(Perl_debug_log,
1414 "Allocation too large: %"UVxf"\n", (UV)newlen);
1416 #ifdef HAS_64K_LIMIT
1417 if (newlen >= 0x10000) {
1418 PerlIO_printf(Perl_debug_log,
1419 "Allocation too large: %"UVxf"\n", (UV)newlen);
1422 #endif /* HAS_64K_LIMIT */
1425 if (SvTYPE(sv) < SVt_PV) {
1426 sv_upgrade(sv, SVt_PV);
1427 s = SvPVX_mutable(sv);
1429 else if (SvOOK(sv)) { /* pv is offset? */
1431 s = SvPVX_mutable(sv);
1432 if (newlen > SvLEN(sv))
1433 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1434 #ifdef HAS_64K_LIMIT
1435 if (newlen >= 0x10000)
1440 s = SvPVX_mutable(sv);
1442 if (newlen > SvLEN(sv)) { /* need more room? */
1443 newlen = PERL_STRLEN_ROUNDUP(newlen);
1444 if (SvLEN(sv) && s) {
1446 const STRLEN l = malloced_size((void*)SvPVX_const(sv));
1452 s = saferealloc(s, newlen);
1455 s = safemalloc(newlen);
1456 if (SvPVX_const(sv) && SvCUR(sv)) {
1457 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1461 SvLEN_set(sv, newlen);
1467 =for apidoc sv_setiv
1469 Copies an integer into the given SV, upgrading first if necessary.
1470 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1476 Perl_sv_setiv(pTHX_ register SV *sv, IV i)
1479 SV_CHECK_THINKFIRST_COW_DROP(sv);
1480 switch (SvTYPE(sv)) {
1482 sv_upgrade(sv, SVt_IV);
1485 sv_upgrade(sv, SVt_PVNV);
1489 sv_upgrade(sv, SVt_PVIV);
1498 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1501 (void)SvIOK_only(sv); /* validate number */
1507 =for apidoc sv_setiv_mg
1509 Like C<sv_setiv>, but also handles 'set' magic.
1515 Perl_sv_setiv_mg(pTHX_ register SV *sv, IV i)
1522 =for apidoc sv_setuv
1524 Copies an unsigned integer into the given SV, upgrading first if necessary.
1525 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1531 Perl_sv_setuv(pTHX_ register SV *sv, UV u)
1533 /* With these two if statements:
1534 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1537 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1539 If you wish to remove them, please benchmark to see what the effect is
1541 if (u <= (UV)IV_MAX) {
1542 sv_setiv(sv, (IV)u);
1551 =for apidoc sv_setuv_mg
1553 Like C<sv_setuv>, but also handles 'set' magic.
1559 Perl_sv_setuv_mg(pTHX_ register SV *sv, UV u)
1568 =for apidoc sv_setnv
1570 Copies a double into the given SV, upgrading first if necessary.
1571 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1577 Perl_sv_setnv(pTHX_ register SV *sv, NV num)
1580 SV_CHECK_THINKFIRST_COW_DROP(sv);
1581 switch (SvTYPE(sv)) {
1584 sv_upgrade(sv, SVt_NV);
1589 sv_upgrade(sv, SVt_PVNV);
1598 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1602 (void)SvNOK_only(sv); /* validate number */
1607 =for apidoc sv_setnv_mg
1609 Like C<sv_setnv>, but also handles 'set' magic.
1615 Perl_sv_setnv_mg(pTHX_ register SV *sv, NV num)
1621 /* Print an "isn't numeric" warning, using a cleaned-up,
1622 * printable version of the offending string
1626 S_not_a_number(pTHX_ SV *sv)
1634 dsv = sv_2mortal(newSVpvs(""));
1635 pv = sv_uni_display(dsv, sv, 10, 0);
1638 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1639 /* each *s can expand to 4 chars + "...\0",
1640 i.e. need room for 8 chars */
1642 const char *s = SvPVX_const(sv);
1643 const char * const end = s + SvCUR(sv);
1644 for ( ; s < end && d < limit; s++ ) {
1646 if (ch & 128 && !isPRINT_LC(ch)) {
1655 else if (ch == '\r') {
1659 else if (ch == '\f') {
1663 else if (ch == '\\') {
1667 else if (ch == '\0') {
1671 else if (isPRINT_LC(ch))
1688 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1689 "Argument \"%s\" isn't numeric in %s", pv,
1692 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1693 "Argument \"%s\" isn't numeric", pv);
1697 =for apidoc looks_like_number
1699 Test if the content of an SV looks like a number (or is a number).
1700 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1701 non-numeric warning), even if your atof() doesn't grok them.
1707 Perl_looks_like_number(pTHX_ SV *sv)
1709 register const char *sbegin;
1713 sbegin = SvPVX_const(sv);
1716 else if (SvPOKp(sv))
1717 sbegin = SvPV_const(sv, len);
1719 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1720 return grok_number(sbegin, len, NULL);
1724 S_glob_2inpuv(pTHX_ GV *gv, STRLEN *len, bool want_number)
1726 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1727 SV *const buffer = sv_newmortal();
1729 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1732 gv_efullname3(buffer, gv, "*");
1733 SvFLAGS(gv) |= wasfake;
1736 /* We know that all GVs stringify to something that is not-a-number,
1737 so no need to test that. */
1738 if (ckWARN(WARN_NUMERIC))
1739 not_a_number(buffer);
1740 /* We just want something true to return, so that S_sv_2iuv_common
1741 can tail call us and return true. */
1744 return SvPV(buffer, *len);
1748 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1749 until proven guilty, assume that things are not that bad... */
1754 As 64 bit platforms often have an NV that doesn't preserve all bits of
1755 an IV (an assumption perl has been based on to date) it becomes necessary
1756 to remove the assumption that the NV always carries enough precision to
1757 recreate the IV whenever needed, and that the NV is the canonical form.
1758 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1759 precision as a side effect of conversion (which would lead to insanity
1760 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1761 1) to distinguish between IV/UV/NV slots that have cached a valid
1762 conversion where precision was lost and IV/UV/NV slots that have a
1763 valid conversion which has lost no precision
1764 2) to ensure that if a numeric conversion to one form is requested that
1765 would lose precision, the precise conversion (or differently
1766 imprecise conversion) is also performed and cached, to prevent
1767 requests for different numeric formats on the same SV causing
1768 lossy conversion chains. (lossless conversion chains are perfectly
1773 SvIOKp is true if the IV slot contains a valid value
1774 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1775 SvNOKp is true if the NV slot contains a valid value
1776 SvNOK is true only if the NV value is accurate
1779 while converting from PV to NV, check to see if converting that NV to an
1780 IV(or UV) would lose accuracy over a direct conversion from PV to
1781 IV(or UV). If it would, cache both conversions, return NV, but mark
1782 SV as IOK NOKp (ie not NOK).
1784 While converting from PV to IV, check to see if converting that IV to an
1785 NV would lose accuracy over a direct conversion from PV to NV. If it
1786 would, cache both conversions, flag similarly.
1788 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1789 correctly because if IV & NV were set NV *always* overruled.
1790 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1791 changes - now IV and NV together means that the two are interchangeable:
1792 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1794 The benefit of this is that operations such as pp_add know that if
1795 SvIOK is true for both left and right operands, then integer addition
1796 can be used instead of floating point (for cases where the result won't
1797 overflow). Before, floating point was always used, which could lead to
1798 loss of precision compared with integer addition.
1800 * making IV and NV equal status should make maths accurate on 64 bit
1802 * may speed up maths somewhat if pp_add and friends start to use
1803 integers when possible instead of fp. (Hopefully the overhead in
1804 looking for SvIOK and checking for overflow will not outweigh the
1805 fp to integer speedup)
1806 * will slow down integer operations (callers of SvIV) on "inaccurate"
1807 values, as the change from SvIOK to SvIOKp will cause a call into
1808 sv_2iv each time rather than a macro access direct to the IV slot
1809 * should speed up number->string conversion on integers as IV is
1810 favoured when IV and NV are equally accurate
1812 ####################################################################
1813 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1814 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1815 On the other hand, SvUOK is true iff UV.
1816 ####################################################################
1818 Your mileage will vary depending your CPU's relative fp to integer
1822 #ifndef NV_PRESERVES_UV
1823 # define IS_NUMBER_UNDERFLOW_IV 1
1824 # define IS_NUMBER_UNDERFLOW_UV 2
1825 # define IS_NUMBER_IV_AND_UV 2
1826 # define IS_NUMBER_OVERFLOW_IV 4
1827 # define IS_NUMBER_OVERFLOW_UV 5
1829 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1831 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1833 S_sv_2iuv_non_preserve(pTHX_ register SV *sv, I32 numtype)
1836 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1837 if (SvNVX(sv) < (NV)IV_MIN) {
1838 (void)SvIOKp_on(sv);
1840 SvIV_set(sv, IV_MIN);
1841 return IS_NUMBER_UNDERFLOW_IV;
1843 if (SvNVX(sv) > (NV)UV_MAX) {
1844 (void)SvIOKp_on(sv);
1847 SvUV_set(sv, UV_MAX);
1848 return IS_NUMBER_OVERFLOW_UV;
1850 (void)SvIOKp_on(sv);
1852 /* Can't use strtol etc to convert this string. (See truth table in
1854 if (SvNVX(sv) <= (UV)IV_MAX) {
1855 SvIV_set(sv, I_V(SvNVX(sv)));
1856 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1857 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1859 /* Integer is imprecise. NOK, IOKp */
1861 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1864 SvUV_set(sv, U_V(SvNVX(sv)));
1865 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1866 if (SvUVX(sv) == UV_MAX) {
1867 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1868 possibly be preserved by NV. Hence, it must be overflow.
1870 return IS_NUMBER_OVERFLOW_UV;
1872 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1874 /* Integer is imprecise. NOK, IOKp */
1876 return IS_NUMBER_OVERFLOW_IV;
1878 #endif /* !NV_PRESERVES_UV*/
1881 S_sv_2iuv_common(pTHX_ SV *sv) {
1884 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1885 * without also getting a cached IV/UV from it at the same time
1886 * (ie PV->NV conversion should detect loss of accuracy and cache
1887 * IV or UV at same time to avoid this. */
1888 /* IV-over-UV optimisation - choose to cache IV if possible */
1890 if (SvTYPE(sv) == SVt_NV)
1891 sv_upgrade(sv, SVt_PVNV);
1893 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1894 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1895 certainly cast into the IV range at IV_MAX, whereas the correct
1896 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1898 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1899 if (Perl_isnan(SvNVX(sv))) {
1905 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
1906 SvIV_set(sv, I_V(SvNVX(sv)));
1907 if (SvNVX(sv) == (NV) SvIVX(sv)
1908 #ifndef NV_PRESERVES_UV
1909 && (((UV)1 << NV_PRESERVES_UV_BITS) >
1910 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
1911 /* Don't flag it as "accurately an integer" if the number
1912 came from a (by definition imprecise) NV operation, and
1913 we're outside the range of NV integer precision */
1916 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
1917 DEBUG_c(PerlIO_printf(Perl_debug_log,
1918 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
1924 /* IV not precise. No need to convert from PV, as NV
1925 conversion would already have cached IV if it detected
1926 that PV->IV would be better than PV->NV->IV
1927 flags already correct - don't set public IOK. */
1928 DEBUG_c(PerlIO_printf(Perl_debug_log,
1929 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
1934 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
1935 but the cast (NV)IV_MIN rounds to a the value less (more
1936 negative) than IV_MIN which happens to be equal to SvNVX ??
1937 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
1938 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
1939 (NV)UVX == NVX are both true, but the values differ. :-(
1940 Hopefully for 2s complement IV_MIN is something like
1941 0x8000000000000000 which will be exact. NWC */
1944 SvUV_set(sv, U_V(SvNVX(sv)));
1946 (SvNVX(sv) == (NV) SvUVX(sv))
1947 #ifndef NV_PRESERVES_UV
1948 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
1949 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
1950 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
1951 /* Don't flag it as "accurately an integer" if the number
1952 came from a (by definition imprecise) NV operation, and
1953 we're outside the range of NV integer precision */
1958 DEBUG_c(PerlIO_printf(Perl_debug_log,
1959 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
1965 else if (SvPOKp(sv) && SvLEN(sv)) {
1967 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
1968 /* We want to avoid a possible problem when we cache an IV/ a UV which
1969 may be later translated to an NV, and the resulting NV is not
1970 the same as the direct translation of the initial string
1971 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
1972 be careful to ensure that the value with the .456 is around if the
1973 NV value is requested in the future).
1975 This means that if we cache such an IV/a UV, we need to cache the
1976 NV as well. Moreover, we trade speed for space, and do not
1977 cache the NV if we are sure it's not needed.
1980 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
1981 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
1982 == IS_NUMBER_IN_UV) {
1983 /* It's definitely an integer, only upgrade to PVIV */
1984 if (SvTYPE(sv) < SVt_PVIV)
1985 sv_upgrade(sv, SVt_PVIV);
1987 } else if (SvTYPE(sv) < SVt_PVNV)
1988 sv_upgrade(sv, SVt_PVNV);
1990 /* If NVs preserve UVs then we only use the UV value if we know that
1991 we aren't going to call atof() below. If NVs don't preserve UVs
1992 then the value returned may have more precision than atof() will
1993 return, even though value isn't perfectly accurate. */
1994 if ((numtype & (IS_NUMBER_IN_UV
1995 #ifdef NV_PRESERVES_UV
1998 )) == IS_NUMBER_IN_UV) {
1999 /* This won't turn off the public IOK flag if it was set above */
2000 (void)SvIOKp_on(sv);
2002 if (!(numtype & IS_NUMBER_NEG)) {
2004 if (value <= (UV)IV_MAX) {
2005 SvIV_set(sv, (IV)value);
2007 /* it didn't overflow, and it was positive. */
2008 SvUV_set(sv, value);
2012 /* 2s complement assumption */
2013 if (value <= (UV)IV_MIN) {
2014 SvIV_set(sv, -(IV)value);
2016 /* Too negative for an IV. This is a double upgrade, but
2017 I'm assuming it will be rare. */
2018 if (SvTYPE(sv) < SVt_PVNV)
2019 sv_upgrade(sv, SVt_PVNV);
2023 SvNV_set(sv, -(NV)value);
2024 SvIV_set(sv, IV_MIN);
2028 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2029 will be in the previous block to set the IV slot, and the next
2030 block to set the NV slot. So no else here. */
2032 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2033 != IS_NUMBER_IN_UV) {
2034 /* It wasn't an (integer that doesn't overflow the UV). */
2035 SvNV_set(sv, Atof(SvPVX_const(sv)));
2037 if (! numtype && ckWARN(WARN_NUMERIC))
2040 #if defined(USE_LONG_DOUBLE)
2041 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2042 PTR2UV(sv), SvNVX(sv)));
2044 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2045 PTR2UV(sv), SvNVX(sv)));
2048 #ifdef NV_PRESERVES_UV
2049 (void)SvIOKp_on(sv);
2051 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2052 SvIV_set(sv, I_V(SvNVX(sv)));
2053 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2056 /*EMPTY*/; /* Integer is imprecise. NOK, IOKp */
2058 /* UV will not work better than IV */
2060 if (SvNVX(sv) > (NV)UV_MAX) {
2062 /* Integer is inaccurate. NOK, IOKp, is UV */
2063 SvUV_set(sv, UV_MAX);
2065 SvUV_set(sv, U_V(SvNVX(sv)));
2066 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2067 NV preservse UV so can do correct comparison. */
2068 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2071 /*EMPTY*/; /* Integer is imprecise. NOK, IOKp, is UV */
2076 #else /* NV_PRESERVES_UV */
2077 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2078 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2079 /* The IV/UV slot will have been set from value returned by
2080 grok_number above. The NV slot has just been set using
2083 assert (SvIOKp(sv));
2085 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2086 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2087 /* Small enough to preserve all bits. */
2088 (void)SvIOKp_on(sv);
2090 SvIV_set(sv, I_V(SvNVX(sv)));
2091 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2093 /* Assumption: first non-preserved integer is < IV_MAX,
2094 this NV is in the preserved range, therefore: */
2095 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2097 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2101 0 0 already failed to read UV.
2102 0 1 already failed to read UV.
2103 1 0 you won't get here in this case. IV/UV
2104 slot set, public IOK, Atof() unneeded.
2105 1 1 already read UV.
2106 so there's no point in sv_2iuv_non_preserve() attempting
2107 to use atol, strtol, strtoul etc. */
2108 sv_2iuv_non_preserve (sv, numtype);
2111 #endif /* NV_PRESERVES_UV */
2115 if (isGV_with_GP(sv)) {
2116 return (bool)PTR2IV(glob_2inpuv((GV *)sv, NULL, TRUE));
2119 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2120 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2123 if (SvTYPE(sv) < SVt_IV)
2124 /* Typically the caller expects that sv_any is not NULL now. */
2125 sv_upgrade(sv, SVt_IV);
2126 /* Return 0 from the caller. */
2133 =for apidoc sv_2iv_flags
2135 Return the integer value of an SV, doing any necessary string
2136 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2137 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2143 Perl_sv_2iv_flags(pTHX_ register SV *sv, I32 flags)
2148 if (SvGMAGICAL(sv)) {
2149 if (flags & SV_GMAGIC)
2154 return I_V(SvNVX(sv));
2156 if (SvPOKp(sv) && SvLEN(sv)) {
2159 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2161 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2162 == IS_NUMBER_IN_UV) {
2163 /* It's definitely an integer */
2164 if (numtype & IS_NUMBER_NEG) {
2165 if (value < (UV)IV_MIN)
2168 if (value < (UV)IV_MAX)
2173 if (ckWARN(WARN_NUMERIC))
2176 return I_V(Atof(SvPVX_const(sv)));
2181 assert(SvTYPE(sv) >= SVt_PVMG);
2182 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2183 } else if (SvTHINKFIRST(sv)) {
2187 SV * const tmpstr=AMG_CALLun(sv,numer);
2188 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2189 return SvIV(tmpstr);
2192 return PTR2IV(SvRV(sv));
2195 sv_force_normal_flags(sv, 0);
2197 if (SvREADONLY(sv) && !SvOK(sv)) {
2198 if (ckWARN(WARN_UNINITIALIZED))
2204 if (S_sv_2iuv_common(aTHX_ sv))
2207 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2208 PTR2UV(sv),SvIVX(sv)));
2209 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2213 =for apidoc sv_2uv_flags
2215 Return the unsigned integer value of an SV, doing any necessary string
2216 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2217 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2223 Perl_sv_2uv_flags(pTHX_ register SV *sv, I32 flags)
2228 if (SvGMAGICAL(sv)) {
2229 if (flags & SV_GMAGIC)
2234 return U_V(SvNVX(sv));
2235 if (SvPOKp(sv) && SvLEN(sv)) {
2238 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2240 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2241 == IS_NUMBER_IN_UV) {
2242 /* It's definitely an integer */
2243 if (!(numtype & IS_NUMBER_NEG))
2247 if (ckWARN(WARN_NUMERIC))
2250 return U_V(Atof(SvPVX_const(sv)));
2255 assert(SvTYPE(sv) >= SVt_PVMG);
2256 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2257 } else if (SvTHINKFIRST(sv)) {
2261 SV *const tmpstr = AMG_CALLun(sv,numer);
2262 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2263 return SvUV(tmpstr);
2266 return PTR2UV(SvRV(sv));
2269 sv_force_normal_flags(sv, 0);
2271 if (SvREADONLY(sv) && !SvOK(sv)) {
2272 if (ckWARN(WARN_UNINITIALIZED))
2278 if (S_sv_2iuv_common(aTHX_ sv))
2282 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2283 PTR2UV(sv),SvUVX(sv)));
2284 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2290 Return the num value of an SV, doing any necessary string or integer
2291 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2298 Perl_sv_2nv(pTHX_ register SV *sv)
2303 if (SvGMAGICAL(sv)) {
2307 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2308 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2309 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2311 return Atof(SvPVX_const(sv));
2315 return (NV)SvUVX(sv);
2317 return (NV)SvIVX(sv);
2322 assert(SvTYPE(sv) >= SVt_PVMG);
2323 /* This falls through to the report_uninit near the end of the
2325 } else if (SvTHINKFIRST(sv)) {
2329 SV *const tmpstr = AMG_CALLun(sv,numer);
2330 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2331 return SvNV(tmpstr);
2334 return PTR2NV(SvRV(sv));
2337 sv_force_normal_flags(sv, 0);
2339 if (SvREADONLY(sv) && !SvOK(sv)) {
2340 if (ckWARN(WARN_UNINITIALIZED))
2345 if (SvTYPE(sv) < SVt_NV) {
2346 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2347 sv_upgrade(sv, SVt_NV);
2348 #ifdef USE_LONG_DOUBLE
2350 STORE_NUMERIC_LOCAL_SET_STANDARD();
2351 PerlIO_printf(Perl_debug_log,
2352 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2353 PTR2UV(sv), SvNVX(sv));
2354 RESTORE_NUMERIC_LOCAL();
2358 STORE_NUMERIC_LOCAL_SET_STANDARD();
2359 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2360 PTR2UV(sv), SvNVX(sv));
2361 RESTORE_NUMERIC_LOCAL();
2365 else if (SvTYPE(sv) < SVt_PVNV)
2366 sv_upgrade(sv, SVt_PVNV);
2371 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2372 #ifdef NV_PRESERVES_UV
2375 /* Only set the public NV OK flag if this NV preserves the IV */
2376 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2377 if (SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2378 : (SvIVX(sv) == I_V(SvNVX(sv))))
2384 else if (SvPOKp(sv) && SvLEN(sv)) {
2386 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2387 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2389 #ifdef NV_PRESERVES_UV
2390 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2391 == IS_NUMBER_IN_UV) {
2392 /* It's definitely an integer */
2393 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2395 SvNV_set(sv, Atof(SvPVX_const(sv)));
2398 SvNV_set(sv, Atof(SvPVX_const(sv)));
2399 /* Only set the public NV OK flag if this NV preserves the value in
2400 the PV at least as well as an IV/UV would.
2401 Not sure how to do this 100% reliably. */
2402 /* if that shift count is out of range then Configure's test is
2403 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2405 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2406 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2407 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2408 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2409 /* Can't use strtol etc to convert this string, so don't try.
2410 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2413 /* value has been set. It may not be precise. */
2414 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2415 /* 2s complement assumption for (UV)IV_MIN */
2416 SvNOK_on(sv); /* Integer is too negative. */
2421 if (numtype & IS_NUMBER_NEG) {
2422 SvIV_set(sv, -(IV)value);
2423 } else if (value <= (UV)IV_MAX) {
2424 SvIV_set(sv, (IV)value);
2426 SvUV_set(sv, value);
2430 if (numtype & IS_NUMBER_NOT_INT) {
2431 /* I believe that even if the original PV had decimals,
2432 they are lost beyond the limit of the FP precision.
2433 However, neither is canonical, so both only get p
2434 flags. NWC, 2000/11/25 */
2435 /* Both already have p flags, so do nothing */
2437 const NV nv = SvNVX(sv);
2438 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2439 if (SvIVX(sv) == I_V(nv)) {
2442 /* It had no "." so it must be integer. */
2446 /* between IV_MAX and NV(UV_MAX).
2447 Could be slightly > UV_MAX */
2449 if (numtype & IS_NUMBER_NOT_INT) {
2450 /* UV and NV both imprecise. */
2452 const UV nv_as_uv = U_V(nv);
2454 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2463 #endif /* NV_PRESERVES_UV */
2466 if (isGV_with_GP(sv)) {
2467 glob_2inpuv((GV *)sv, NULL, TRUE);
2471 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2473 assert (SvTYPE(sv) >= SVt_NV);
2474 /* Typically the caller expects that sv_any is not NULL now. */
2475 /* XXX Ilya implies that this is a bug in callers that assume this
2476 and ideally should be fixed. */
2479 #if defined(USE_LONG_DOUBLE)
2481 STORE_NUMERIC_LOCAL_SET_STANDARD();
2482 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2483 PTR2UV(sv), SvNVX(sv));
2484 RESTORE_NUMERIC_LOCAL();
2488 STORE_NUMERIC_LOCAL_SET_STANDARD();
2489 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2490 PTR2UV(sv), SvNVX(sv));
2491 RESTORE_NUMERIC_LOCAL();
2497 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2498 * UV as a string towards the end of buf, and return pointers to start and
2501 * We assume that buf is at least TYPE_CHARS(UV) long.
2505 S_uiv_2buf(char *buf, IV iv, UV uv, int is_uv, char **peob)
2507 char *ptr = buf + TYPE_CHARS(UV);
2508 char * const ebuf = ptr;
2521 *--ptr = '0' + (char)(uv % 10);
2529 /* stringify_regexp(): private routine for use by sv_2pv_flags(): converts
2530 * a regexp to its stringified form.
2534 S_stringify_regexp(pTHX_ SV *sv, MAGIC *mg, STRLEN *lp) {
2536 const regexp * const re = (regexp *)mg->mg_obj;
2539 const char *fptr = "msix";
2544 bool need_newline = 0;
2545 U16 reganch = (U16)((re->reganch & PMf_COMPILETIME) >> 12);
2547 while((ch = *fptr++)) {
2549 reflags[left++] = ch;
2552 reflags[right--] = ch;
2557 reflags[left] = '-';
2561 mg->mg_len = re->prelen + 4 + left;
2563 * If /x was used, we have to worry about a regex ending with a
2564 * comment later being embedded within another regex. If so, we don't
2565 * want this regex's "commentization" to leak out to the right part of
2566 * the enclosing regex, we must cap it with a newline.
2568 * So, if /x was used, we scan backwards from the end of the regex. If
2569 * we find a '#' before we find a newline, we need to add a newline
2570 * ourself. If we find a '\n' first (or if we don't find '#' or '\n'),
2571 * we don't need to add anything. -jfriedl
2573 if (PMf_EXTENDED & re->reganch) {
2574 const char *endptr = re->precomp + re->prelen;
2575 while (endptr >= re->precomp) {
2576 const char c = *(endptr--);
2578 break; /* don't need another */
2580 /* we end while in a comment, so we need a newline */
2581 mg->mg_len++; /* save space for it */
2582 need_newline = 1; /* note to add it */
2588 Newx(mg->mg_ptr, mg->mg_len + 1 + left, char);
2589 mg->mg_ptr[0] = '(';
2590 mg->mg_ptr[1] = '?';
2591 Copy(reflags, mg->mg_ptr+2, left, char);
2592 *(mg->mg_ptr+left+2) = ':';
2593 Copy(re->precomp, mg->mg_ptr+3+left, re->prelen, char);
2595 mg->mg_ptr[mg->mg_len - 2] = '\n';
2596 mg->mg_ptr[mg->mg_len - 1] = ')';
2597 mg->mg_ptr[mg->mg_len] = 0;
2599 PL_reginterp_cnt += re->program[0].next_off;
2601 if (re->reganch & ROPT_UTF8)
2611 =for apidoc sv_2pv_flags
2613 Returns a pointer to the string value of an SV, and sets *lp to its length.
2614 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2616 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2617 usually end up here too.
2623 Perl_sv_2pv_flags(pTHX_ register SV *sv, STRLEN *lp, I32 flags)
2633 if (SvGMAGICAL(sv)) {
2634 if (flags & SV_GMAGIC)
2639 if (flags & SV_MUTABLE_RETURN)
2640 return SvPVX_mutable(sv);
2641 if (flags & SV_CONST_RETURN)
2642 return (char *)SvPVX_const(sv);
2645 if (SvIOKp(sv) || SvNOKp(sv)) {
2646 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2650 len = SvIsUV(sv) ? my_sprintf(tbuf,"%"UVuf, (UV)SvUVX(sv))
2651 : my_sprintf(tbuf,"%"IVdf, (IV)SvIVX(sv));
2653 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2660 #ifdef FIXNEGATIVEZERO
2661 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2667 SvUPGRADE(sv, SVt_PV);
2670 s = SvGROW_mutable(sv, len + 1);
2673 return memcpy(s, tbuf, len + 1);
2679 assert(SvTYPE(sv) >= SVt_PVMG);
2680 /* This falls through to the report_uninit near the end of the
2682 } else if (SvTHINKFIRST(sv)) {
2686 SV *const tmpstr = AMG_CALLun(sv,string);
2687 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2689 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2693 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2694 if (flags & SV_CONST_RETURN) {
2695 pv = (char *) SvPVX_const(tmpstr);
2697 pv = (flags & SV_MUTABLE_RETURN)
2698 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2701 *lp = SvCUR(tmpstr);
2703 pv = sv_2pv_flags(tmpstr, lp, flags);
2715 const SV *const referent = (SV*)SvRV(sv);
2718 tsv = sv_2mortal(newSVpvs("NULLREF"));
2719 } else if (SvTYPE(referent) == SVt_PVMG
2720 && ((SvFLAGS(referent) &
2721 (SVs_OBJECT|SVf_OK|SVs_GMG|SVs_SMG|SVs_RMG))
2722 == (SVs_OBJECT|SVs_SMG))
2723 && (mg = mg_find(referent, PERL_MAGIC_qr))) {
2724 return stringify_regexp(sv, mg, lp);
2726 const char *const typestr = sv_reftype(referent, 0);
2728 tsv = sv_newmortal();
2729 if (SvOBJECT(referent)) {
2730 const char *const name = HvNAME_get(SvSTASH(referent));
2731 Perl_sv_setpvf(aTHX_ tsv, "%s=%s(0x%"UVxf")",
2732 name ? name : "__ANON__" , typestr,
2736 Perl_sv_setpvf(aTHX_ tsv, "%s(0x%"UVxf")", typestr,
2744 if (SvREADONLY(sv) && !SvOK(sv)) {
2745 if (ckWARN(WARN_UNINITIALIZED))
2752 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2753 /* I'm assuming that if both IV and NV are equally valid then
2754 converting the IV is going to be more efficient */
2755 const U32 isIOK = SvIOK(sv);
2756 const U32 isUIOK = SvIsUV(sv);
2757 char buf[TYPE_CHARS(UV)];
2760 if (SvTYPE(sv) < SVt_PVIV)
2761 sv_upgrade(sv, SVt_PVIV);
2762 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2763 /* inlined from sv_setpvn */
2764 SvGROW_mutable(sv, (STRLEN)(ebuf - ptr + 1));
2765 Move(ptr,SvPVX_mutable(sv),ebuf - ptr,char);
2766 SvCUR_set(sv, ebuf - ptr);
2776 else if (SvNOKp(sv)) {
2777 const int olderrno = errno;
2778 if (SvTYPE(sv) < SVt_PVNV)
2779 sv_upgrade(sv, SVt_PVNV);
2780 /* The +20 is pure guesswork. Configure test needed. --jhi */
2781 s = SvGROW_mutable(sv, NV_DIG + 20);
2782 /* some Xenix systems wipe out errno here */
2784 if (SvNVX(sv) == 0.0)
2785 (void)strcpy(s,"0");
2789 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2792 #ifdef FIXNEGATIVEZERO
2793 if (*s == '-' && s[1] == '0' && !s[2])
2803 if (isGV_with_GP(sv)) {
2804 return glob_2inpuv((GV *)sv, lp, FALSE);
2807 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2811 if (SvTYPE(sv) < SVt_PV)
2812 /* Typically the caller expects that sv_any is not NULL now. */
2813 sv_upgrade(sv, SVt_PV);
2817 const STRLEN len = s - SvPVX_const(sv);
2823 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2824 PTR2UV(sv),SvPVX_const(sv)));
2825 if (flags & SV_CONST_RETURN)
2826 return (char *)SvPVX_const(sv);
2827 if (flags & SV_MUTABLE_RETURN)
2828 return SvPVX_mutable(sv);
2833 =for apidoc sv_copypv
2835 Copies a stringified representation of the source SV into the
2836 destination SV. Automatically performs any necessary mg_get and
2837 coercion of numeric values into strings. Guaranteed to preserve
2838 UTF-8 flag even from overloaded objects. Similar in nature to
2839 sv_2pv[_flags] but operates directly on an SV instead of just the
2840 string. Mostly uses sv_2pv_flags to do its work, except when that
2841 would lose the UTF-8'ness of the PV.
2847 Perl_sv_copypv(pTHX_ SV *dsv, register SV *ssv)
2850 const char * const s = SvPV_const(ssv,len);
2851 sv_setpvn(dsv,s,len);
2859 =for apidoc sv_2pvbyte
2861 Return a pointer to the byte-encoded representation of the SV, and set *lp
2862 to its length. May cause the SV to be downgraded from UTF-8 as a
2865 Usually accessed via the C<SvPVbyte> macro.
2871 Perl_sv_2pvbyte(pTHX_ register SV *sv, STRLEN *lp)
2873 sv_utf8_downgrade(sv,0);
2874 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2878 =for apidoc sv_2pvutf8
2880 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
2881 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
2883 Usually accessed via the C<SvPVutf8> macro.
2889 Perl_sv_2pvutf8(pTHX_ register SV *sv, STRLEN *lp)
2891 sv_utf8_upgrade(sv);
2892 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2897 =for apidoc sv_2bool
2899 This function is only called on magical items, and is only used by
2900 sv_true() or its macro equivalent.
2906 Perl_sv_2bool(pTHX_ register SV *sv)
2915 SV * const tmpsv = AMG_CALLun(sv,bool_);
2916 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2917 return (bool)SvTRUE(tmpsv);
2919 return SvRV(sv) != 0;
2922 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
2924 (*sv->sv_u.svu_pv > '0' ||
2925 Xpvtmp->xpv_cur > 1 ||
2926 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
2933 return SvIVX(sv) != 0;
2936 return SvNVX(sv) != 0.0;
2938 if (isGV_with_GP(sv))
2948 =for apidoc sv_utf8_upgrade
2950 Converts the PV of an SV to its UTF-8-encoded form.
2951 Forces the SV to string form if it is not already.
2952 Always sets the SvUTF8 flag to avoid future validity checks even
2953 if all the bytes have hibit clear.
2955 This is not as a general purpose byte encoding to Unicode interface:
2956 use the Encode extension for that.
2958 =for apidoc sv_utf8_upgrade_flags
2960 Converts the PV of an SV to its UTF-8-encoded form.
2961 Forces the SV to string form if it is not already.
2962 Always sets the SvUTF8 flag to avoid future validity checks even
2963 if all the bytes have hibit clear. If C<flags> has C<SV_GMAGIC> bit set,
2964 will C<mg_get> on C<sv> if appropriate, else not. C<sv_utf8_upgrade> and
2965 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
2967 This is not as a general purpose byte encoding to Unicode interface:
2968 use the Encode extension for that.
2974 Perl_sv_utf8_upgrade_flags(pTHX_ register SV *sv, I32 flags)
2977 if (sv == &PL_sv_undef)
2981 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
2982 (void) sv_2pv_flags(sv,&len, flags);
2986 (void) SvPV_force(sv,len);
2995 sv_force_normal_flags(sv, 0);
2998 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING))
2999 sv_recode_to_utf8(sv, PL_encoding);
3000 else { /* Assume Latin-1/EBCDIC */
3001 /* This function could be much more efficient if we
3002 * had a FLAG in SVs to signal if there are any hibit
3003 * chars in the PV. Given that there isn't such a flag
3004 * make the loop as fast as possible. */
3005 const U8 * const s = (U8 *) SvPVX_const(sv);
3006 const U8 * const e = (U8 *) SvEND(sv);
3011 /* Check for hi bit */
3012 if (!NATIVE_IS_INVARIANT(ch)) {
3013 STRLEN len = SvCUR(sv) + 1; /* Plus the \0 */
3014 U8 * const recoded = bytes_to_utf8((U8*)s, &len);
3016 SvPV_free(sv); /* No longer using what was there before. */
3017 SvPV_set(sv, (char*)recoded);
3018 SvCUR_set(sv, len - 1);
3019 SvLEN_set(sv, len); /* No longer know the real size. */
3023 /* Mark as UTF-8 even if no hibit - saves scanning loop */
3030 =for apidoc sv_utf8_downgrade
3032 Attempts to convert the PV of an SV from characters to bytes.
3033 If the PV contains a character beyond byte, this conversion will fail;
3034 in this case, either returns false or, if C<fail_ok> is not
3037 This is not as a general purpose Unicode to byte encoding interface:
3038 use the Encode extension for that.
3044 Perl_sv_utf8_downgrade(pTHX_ register SV* sv, bool fail_ok)
3047 if (SvPOKp(sv) && SvUTF8(sv)) {
3053 sv_force_normal_flags(sv, 0);
3055 s = (U8 *) SvPV(sv, len);
3056 if (!utf8_to_bytes(s, &len)) {
3061 Perl_croak(aTHX_ "Wide character in %s",
3064 Perl_croak(aTHX_ "Wide character");
3075 =for apidoc sv_utf8_encode
3077 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3078 flag off so that it looks like octets again.
3084 Perl_sv_utf8_encode(pTHX_ register SV *sv)
3086 (void) sv_utf8_upgrade(sv);
3088 sv_force_normal_flags(sv, 0);
3090 if (SvREADONLY(sv)) {
3091 Perl_croak(aTHX_ PL_no_modify);
3097 =for apidoc sv_utf8_decode
3099 If the PV of the SV is an octet sequence in UTF-8
3100 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3101 so that it looks like a character. If the PV contains only single-byte
3102 characters, the C<SvUTF8> flag stays being off.
3103 Scans PV for validity and returns false if the PV is invalid UTF-8.
3109 Perl_sv_utf8_decode(pTHX_ register SV *sv)
3115 /* The octets may have got themselves encoded - get them back as
3118 if (!sv_utf8_downgrade(sv, TRUE))
3121 /* it is actually just a matter of turning the utf8 flag on, but
3122 * we want to make sure everything inside is valid utf8 first.
3124 c = (const U8 *) SvPVX_const(sv);
3125 if (!is_utf8_string(c, SvCUR(sv)+1))
3127 e = (const U8 *) SvEND(sv);
3130 if (!UTF8_IS_INVARIANT(ch)) {
3140 =for apidoc sv_setsv
3142 Copies the contents of the source SV C<ssv> into the destination SV
3143 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3144 function if the source SV needs to be reused. Does not handle 'set' magic.
3145 Loosely speaking, it performs a copy-by-value, obliterating any previous
3146 content of the destination.
3148 You probably want to use one of the assortment of wrappers, such as
3149 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3150 C<SvSetMagicSV_nosteal>.
3152 =for apidoc sv_setsv_flags
3154 Copies the contents of the source SV C<ssv> into the destination SV
3155 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3156 function if the source SV needs to be reused. Does not handle 'set' magic.
3157 Loosely speaking, it performs a copy-by-value, obliterating any previous
3158 content of the destination.
3159 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3160 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3161 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3162 and C<sv_setsv_nomg> are implemented in terms of this function.
3164 You probably want to use one of the assortment of wrappers, such as
3165 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3166 C<SvSetMagicSV_nosteal>.
3168 This is the primary function for copying scalars, and most other
3169 copy-ish functions and macros use this underneath.
3175 S_glob_assign_glob(pTHX_ SV *dstr, SV *sstr, const int dtype)
3177 if (dtype != SVt_PVGV) {
3178 const char * const name = GvNAME(sstr);
3179 const STRLEN len = GvNAMELEN(sstr);
3180 /* don't upgrade SVt_PVLV: it can hold a glob */
3181 if (dtype != SVt_PVLV) {
3182 if (dtype >= SVt_PV) {
3188 sv_upgrade(dstr, SVt_PVGV);
3189 (void)SvOK_off(dstr);
3192 GvSTASH(dstr) = GvSTASH(sstr);
3194 Perl_sv_add_backref(aTHX_ (SV*)GvSTASH(dstr), dstr);
3195 gv_name_set((GV *)dstr, name, len, GV_ADD);
3196 SvFAKE_on(dstr); /* can coerce to non-glob */
3199 #ifdef GV_UNIQUE_CHECK
3200 if (GvUNIQUE((GV*)dstr)) {
3201 Perl_croak(aTHX_ PL_no_modify);
3207 (void)SvOK_off(dstr);
3209 GvINTRO_off(dstr); /* one-shot flag */
3210 GvGP(dstr) = gp_ref(GvGP(sstr));
3211 if (SvTAINTED(sstr))
3213 if (GvIMPORTED(dstr) != GVf_IMPORTED
3214 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3216 GvIMPORTED_on(dstr);
3223 S_glob_assign_ref(pTHX_ SV *dstr, SV *sstr) {
3224 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3226 const int intro = GvINTRO(dstr);
3229 const U32 stype = SvTYPE(sref);
3232 #ifdef GV_UNIQUE_CHECK
3233 if (GvUNIQUE((GV*)dstr)) {
3234 Perl_croak(aTHX_ PL_no_modify);
3239 GvINTRO_off(dstr); /* one-shot flag */
3240 GvLINE(dstr) = CopLINE(PL_curcop);
3241 GvEGV(dstr) = (GV*)dstr;
3246 location = (SV **) &GvCV(dstr);
3247 import_flag = GVf_IMPORTED_CV;
3250 location = (SV **) &GvHV(dstr);
3251 import_flag = GVf_IMPORTED_HV;
3254 location = (SV **) &GvAV(dstr);
3255 import_flag = GVf_IMPORTED_AV;
3258 location = (SV **) &GvIOp(dstr);
3261 location = (SV **) &GvFORM(dstr);
3263 location = &GvSV(dstr);
3264 import_flag = GVf_IMPORTED_SV;
3267 if (stype == SVt_PVCV) {
3268 if (GvCVGEN(dstr) && GvCV(dstr) != (CV*)sref) {
3269 SvREFCNT_dec(GvCV(dstr));
3271 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3272 PL_sub_generation++;
3275 SAVEGENERICSV(*location);
3279 if (stype == SVt_PVCV && *location != sref) {
3280 CV* const cv = (CV*)*location;
3282 if (!GvCVGEN((GV*)dstr) &&
3283 (CvROOT(cv) || CvXSUB(cv)))
3285 /* Redefining a sub - warning is mandatory if
3286 it was a const and its value changed. */
3287 if (CvCONST(cv) && CvCONST((CV*)sref)
3288 && cv_const_sv(cv) == cv_const_sv((CV*)sref)) {
3290 /* They are 2 constant subroutines generated from
3291 the same constant. This probably means that
3292 they are really the "same" proxy subroutine
3293 instantiated in 2 places. Most likely this is
3294 when a constant is exported twice. Don't warn.
3297 else if (ckWARN(WARN_REDEFINE)
3299 && (!CvCONST((CV*)sref)
3300 || sv_cmp(cv_const_sv(cv),
3301 cv_const_sv((CV*)sref))))) {
3302 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3304 ? "Constant subroutine %s::%s redefined"
3305 : "Subroutine %s::%s redefined",
3306 HvNAME_get(GvSTASH((GV*)dstr)),
3307 GvENAME((GV*)dstr));
3311 cv_ckproto(cv, (GV*)dstr,
3312 SvPOK(sref) ? SvPVX_const(sref) : NULL);
3314 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3315 GvASSUMECV_on(dstr);
3316 PL_sub_generation++;
3319 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3320 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3321 GvFLAGS(dstr) |= import_flag;
3326 if (SvTAINTED(sstr))
3332 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV *sstr, I32 flags)
3335 register U32 sflags;
3341 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3343 sstr = &PL_sv_undef;
3344 stype = SvTYPE(sstr);
3345 dtype = SvTYPE(dstr);
3350 /* need to nuke the magic */
3352 SvRMAGICAL_off(dstr);
3355 /* There's a lot of redundancy below but we're going for speed here */
3360 if (dtype != SVt_PVGV) {
3361 (void)SvOK_off(dstr);
3369 sv_upgrade(dstr, SVt_IV);
3374 sv_upgrade(dstr, SVt_PVIV);
3377 (void)SvIOK_only(dstr);
3378 SvIV_set(dstr, SvIVX(sstr));
3381 /* SvTAINTED can only be true if the SV has taint magic, which in
3382 turn means that the SV type is PVMG (or greater). This is the
3383 case statement for SVt_IV, so this cannot be true (whatever gcov
3385 assert(!SvTAINTED(sstr));
3395 sv_upgrade(dstr, SVt_NV);
3400 sv_upgrade(dstr, SVt_PVNV);
3403 SvNV_set(dstr, SvNVX(sstr));
3404 (void)SvNOK_only(dstr);
3405 /* SvTAINTED can only be true if the SV has taint magic, which in
3406 turn means that the SV type is PVMG (or greater). This is the
3407 case statement for SVt_NV, so this cannot be true (whatever gcov
3409 assert(!SvTAINTED(sstr));
3416 sv_upgrade(dstr, SVt_RV);
3419 #ifdef PERL_OLD_COPY_ON_WRITE
3420 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3421 if (dtype < SVt_PVIV)
3422 sv_upgrade(dstr, SVt_PVIV);
3429 sv_upgrade(dstr, SVt_PV);
3432 if (dtype < SVt_PVIV)
3433 sv_upgrade(dstr, SVt_PVIV);
3436 if (dtype < SVt_PVNV)
3437 sv_upgrade(dstr, SVt_PVNV);
3441 const char * const type = sv_reftype(sstr,0);
3443 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3445 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3450 if (dtype <= SVt_PVGV) {
3451 S_glob_assign_glob(aTHX_ dstr, sstr, dtype);
3459 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3461 if ((int)SvTYPE(sstr) != stype) {
3462 stype = SvTYPE(sstr);
3463 if (stype == SVt_PVGV && dtype <= SVt_PVGV) {
3464 S_glob_assign_glob(aTHX_ dstr, sstr, dtype);
3469 if (stype == SVt_PVLV)
3470 SvUPGRADE(dstr, SVt_PVNV);
3472 SvUPGRADE(dstr, (U32)stype);
3475 /* dstr may have been upgraded. */
3476 dtype = SvTYPE(dstr);
3477 sflags = SvFLAGS(sstr);
3479 if (sflags & SVf_ROK) {
3480 if (dtype == SVt_PVGV &&
3481 SvROK(sstr) && SvTYPE(SvRV(sstr)) == SVt_PVGV) {
3484 if (GvIMPORTED(dstr) != GVf_IMPORTED
3485 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3487 GvIMPORTED_on(dstr);
3492 S_glob_assign_glob(aTHX_ dstr, sstr, dtype);
3496 if (dtype >= SVt_PV) {
3497 if (dtype == SVt_PVGV) {
3498 S_glob_assign_ref(aTHX_ dstr, sstr);
3501 if (SvPVX_const(dstr)) {
3507 (void)SvOK_off(dstr);
3508 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
3509 SvFLAGS(dstr) |= sflags & (SVf_ROK|SVf_AMAGIC);
3510 assert(!(sflags & SVp_NOK));
3511 assert(!(sflags & SVp_IOK));
3512 assert(!(sflags & SVf_NOK));
3513 assert(!(sflags & SVf_IOK));
3515 else if (dtype == SVt_PVGV) {
3516 if (!(sflags & SVf_OK)) {
3517 if (ckWARN(WARN_MISC))
3518 Perl_warner(aTHX_ packWARN(WARN_MISC),
3519 "Undefined value assigned to typeglob");
3522 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
3523 if (dstr != (SV*)gv) {
3526 GvGP(dstr) = gp_ref(GvGP(gv));
3530 else if (sflags & SVp_POK) {
3534 * Check to see if we can just swipe the string. If so, it's a
3535 * possible small lose on short strings, but a big win on long ones.
3536 * It might even be a win on short strings if SvPVX_const(dstr)
3537 * has to be allocated and SvPVX_const(sstr) has to be freed.
3540 /* Whichever path we take through the next code, we want this true,
3541 and doing it now facilitates the COW check. */
3542 (void)SvPOK_only(dstr);
3545 /* We're not already COW */
3546 ((sflags & (SVf_FAKE | SVf_READONLY)) != (SVf_FAKE | SVf_READONLY)
3547 #ifndef PERL_OLD_COPY_ON_WRITE
3548 /* or we are, but dstr isn't a suitable target. */
3549 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
3554 (sflags & SVs_TEMP) && /* slated for free anyway? */
3555 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
3556 (!(flags & SV_NOSTEAL)) &&
3557 /* and we're allowed to steal temps */
3558 SvREFCNT(sstr) == 1 && /* and no other references to it? */
3559 SvLEN(sstr) && /* and really is a string */
3560 /* and won't be needed again, potentially */
3561 !(PL_op && PL_op->op_type == OP_AASSIGN))
3562 #ifdef PERL_OLD_COPY_ON_WRITE
3563 && !((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
3564 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
3565 && SvTYPE(sstr) >= SVt_PVIV)
3568 /* Failed the swipe test, and it's not a shared hash key either.
3569 Have to copy the string. */
3570 STRLEN len = SvCUR(sstr);
3571 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
3572 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
3573 SvCUR_set(dstr, len);
3574 *SvEND(dstr) = '\0';
3576 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
3578 /* Either it's a shared hash key, or it's suitable for
3579 copy-on-write or we can swipe the string. */
3581 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
3585 #ifdef PERL_OLD_COPY_ON_WRITE
3587 /* I believe I should acquire a global SV mutex if
3588 it's a COW sv (not a shared hash key) to stop
3589 it going un copy-on-write.
3590 If the source SV has gone un copy on write between up there
3591 and down here, then (assert() that) it is of the correct
3592 form to make it copy on write again */
3593 if ((sflags & (SVf_FAKE | SVf_READONLY))
3594 != (SVf_FAKE | SVf_READONLY)) {
3595 SvREADONLY_on(sstr);
3597 /* Make the source SV into a loop of 1.
3598 (about to become 2) */
3599 SV_COW_NEXT_SV_SET(sstr, sstr);
3603 /* Initial code is common. */
3604 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
3609 /* making another shared SV. */
3610 STRLEN cur = SvCUR(sstr);
3611 STRLEN len = SvLEN(sstr);
3612 #ifdef PERL_OLD_COPY_ON_WRITE
3614 assert (SvTYPE(dstr) >= SVt_PVIV);
3615 /* SvIsCOW_normal */
3616 /* splice us in between source and next-after-source. */
3617 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3618 SV_COW_NEXT_SV_SET(sstr, dstr);
3619 SvPV_set(dstr, SvPVX_mutable(sstr));
3623 /* SvIsCOW_shared_hash */
3624 DEBUG_C(PerlIO_printf(Perl_debug_log,
3625 "Copy on write: Sharing hash\n"));
3627 assert (SvTYPE(dstr) >= SVt_PV);
3629 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
3631 SvLEN_set(dstr, len);
3632 SvCUR_set(dstr, cur);
3633 SvREADONLY_on(dstr);
3635 /* Relesase a global SV mutex. */
3638 { /* Passes the swipe test. */
3639 SvPV_set(dstr, SvPVX_mutable(sstr));
3640 SvLEN_set(dstr, SvLEN(sstr));
3641 SvCUR_set(dstr, SvCUR(sstr));
3644 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
3645 SvPV_set(sstr, NULL);
3651 if (sflags & SVp_NOK) {
3652 SvNV_set(dstr, SvNVX(sstr));
3654 if (sflags & SVp_IOK) {
3655 SvRELEASE_IVX(dstr);
3656 SvIV_set(dstr, SvIVX(sstr));
3657 /* Must do this otherwise some other overloaded use of 0x80000000
3658 gets confused. I guess SVpbm_VALID */
3659 if (sflags & SVf_IVisUV)
3662 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8
3665 const MAGIC * const smg = SvVOK(sstr);
3667 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
3668 smg->mg_ptr, smg->mg_len);
3669 SvRMAGICAL_on(dstr);
3673 else if (sflags & (SVp_IOK|SVp_NOK)) {
3674 (void)SvOK_off(dstr);
3675 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK
3677 if (sflags & SVp_IOK) {
3678 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
3679 SvIV_set(dstr, SvIVX(sstr));
3681 if (sflags & SVp_NOK) {
3682 SvNV_set(dstr, SvNVX(sstr));
3686 if (isGV_with_GP(sstr)) {
3687 /* This stringification rule for globs is spread in 3 places.
3688 This feels bad. FIXME. */
3689 const U32 wasfake = sflags & SVf_FAKE;
3691 /* FAKE globs can get coerced, so need to turn this off
3692 temporarily if it is on. */
3694 gv_efullname3(dstr, (GV *)sstr, "*");
3695 SvFLAGS(sstr) |= wasfake;
3696 SvFLAGS(dstr) |= sflags & SVf_AMAGIC;
3699 (void)SvOK_off(dstr);
3701 if (SvTAINTED(sstr))
3706 =for apidoc sv_setsv_mg
3708 Like C<sv_setsv>, but also handles 'set' magic.
3714 Perl_sv_setsv_mg(pTHX_ SV *dstr, register SV *sstr)
3716 sv_setsv(dstr,sstr);
3720 #ifdef PERL_OLD_COPY_ON_WRITE
3722 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
3724 STRLEN cur = SvCUR(sstr);
3725 STRLEN len = SvLEN(sstr);
3726 register char *new_pv;
3729 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
3737 if (SvTHINKFIRST(dstr))
3738 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
3739 else if (SvPVX_const(dstr))
3740 Safefree(SvPVX_const(dstr));
3744 SvUPGRADE(dstr, SVt_PVIV);
3746 assert (SvPOK(sstr));
3747 assert (SvPOKp(sstr));
3748 assert (!SvIOK(sstr));
3749 assert (!SvIOKp(sstr));
3750 assert (!SvNOK(sstr));
3751 assert (!SvNOKp(sstr));
3753 if (SvIsCOW(sstr)) {
3755 if (SvLEN(sstr) == 0) {
3756 /* source is a COW shared hash key. */
3757 DEBUG_C(PerlIO_printf(Perl_debug_log,
3758 "Fast copy on write: Sharing hash\n"));
3759 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
3762 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3764 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
3765 SvUPGRADE(sstr, SVt_PVIV);
3766 SvREADONLY_on(sstr);
3768 DEBUG_C(PerlIO_printf(Perl_debug_log,
3769 "Fast copy on write: Converting sstr to COW\n"));
3770 SV_COW_NEXT_SV_SET(dstr, sstr);
3772 SV_COW_NEXT_SV_SET(sstr, dstr);
3773 new_pv = SvPVX_mutable(sstr);
3776 SvPV_set(dstr, new_pv);
3777 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
3780 SvLEN_set(dstr, len);
3781 SvCUR_set(dstr, cur);
3790 =for apidoc sv_setpvn
3792 Copies a string into an SV. The C<len> parameter indicates the number of
3793 bytes to be copied. If the C<ptr> argument is NULL the SV will become
3794 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
3800 Perl_sv_setpvn(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3803 register char *dptr;
3805 SV_CHECK_THINKFIRST_COW_DROP(sv);
3811 /* len is STRLEN which is unsigned, need to copy to signed */
3814 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
3816 SvUPGRADE(sv, SVt_PV);
3818 dptr = SvGROW(sv, len + 1);
3819 Move(ptr,dptr,len,char);
3822 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3827 =for apidoc sv_setpvn_mg
3829 Like C<sv_setpvn>, but also handles 'set' magic.
3835 Perl_sv_setpvn_mg(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3837 sv_setpvn(sv,ptr,len);
3842 =for apidoc sv_setpv
3844 Copies a string into an SV. The string must be null-terminated. Does not
3845 handle 'set' magic. See C<sv_setpv_mg>.
3851 Perl_sv_setpv(pTHX_ register SV *sv, register const char *ptr)
3854 register STRLEN len;
3856 SV_CHECK_THINKFIRST_COW_DROP(sv);
3862 SvUPGRADE(sv, SVt_PV);
3864 SvGROW(sv, len + 1);
3865 Move(ptr,SvPVX(sv),len+1,char);
3867 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3872 =for apidoc sv_setpv_mg
3874 Like C<sv_setpv>, but also handles 'set' magic.
3880 Perl_sv_setpv_mg(pTHX_ register SV *sv, register const char *ptr)
3887 =for apidoc sv_usepvn
3889 Tells an SV to use C<ptr> to find its string value. Normally the string is
3890 stored inside the SV but sv_usepvn allows the SV to use an outside string.
3891 The C<ptr> should point to memory that was allocated by C<malloc>. The
3892 string length, C<len>, must be supplied. This function will realloc the
3893 memory pointed to by C<ptr>, so that pointer should not be freed or used by
3894 the programmer after giving it to sv_usepvn. Does not handle 'set' magic.
3895 See C<sv_usepvn_mg>.
3901 Perl_sv_usepvn(pTHX_ register SV *sv, register char *ptr, register STRLEN len)
3905 SV_CHECK_THINKFIRST_COW_DROP(sv);
3906 SvUPGRADE(sv, SVt_PV);
3911 if (SvPVX_const(sv))
3914 allocate = PERL_STRLEN_ROUNDUP(len + 1);
3915 ptr = saferealloc (ptr, allocate);
3918 SvLEN_set(sv, allocate);
3920 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3925 =for apidoc sv_usepvn_mg
3927 Like C<sv_usepvn>, but also handles 'set' magic.
3933 Perl_sv_usepvn_mg(pTHX_ register SV *sv, register char *ptr, register STRLEN len)
3935 sv_usepvn(sv,ptr,len);
3939 #ifdef PERL_OLD_COPY_ON_WRITE
3940 /* Need to do this *after* making the SV normal, as we need the buffer
3941 pointer to remain valid until after we've copied it. If we let go too early,
3942 another thread could invalidate it by unsharing last of the same hash key
3943 (which it can do by means other than releasing copy-on-write Svs)
3944 or by changing the other copy-on-write SVs in the loop. */
3946 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, STRLEN len, SV *after)
3948 if (len) { /* this SV was SvIsCOW_normal(sv) */
3949 /* we need to find the SV pointing to us. */
3950 SV *current = SV_COW_NEXT_SV(after);
3952 if (current == sv) {
3953 /* The SV we point to points back to us (there were only two of us
3955 Hence other SV is no longer copy on write either. */
3957 SvREADONLY_off(after);
3959 /* We need to follow the pointers around the loop. */
3961 while ((next = SV_COW_NEXT_SV(current)) != sv) {
3964 /* don't loop forever if the structure is bust, and we have
3965 a pointer into a closed loop. */
3966 assert (current != after);
3967 assert (SvPVX_const(current) == pvx);
3969 /* Make the SV before us point to the SV after us. */
3970 SV_COW_NEXT_SV_SET(current, after);
3973 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
3978 Perl_sv_release_IVX(pTHX_ register SV *sv)
3981 sv_force_normal_flags(sv, 0);
3987 =for apidoc sv_force_normal_flags
3989 Undo various types of fakery on an SV: if the PV is a shared string, make
3990 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
3991 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
3992 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
3993 then a copy-on-write scalar drops its PV buffer (if any) and becomes
3994 SvPOK_off rather than making a copy. (Used where this scalar is about to be
3995 set to some other value.) In addition, the C<flags> parameter gets passed to
3996 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
3997 with flags set to 0.
4003 Perl_sv_force_normal_flags(pTHX_ register SV *sv, U32 flags)
4006 #ifdef PERL_OLD_COPY_ON_WRITE
4007 if (SvREADONLY(sv)) {
4008 /* At this point I believe I should acquire a global SV mutex. */
4010 const char * const pvx = SvPVX_const(sv);
4011 const STRLEN len = SvLEN(sv);
4012 const STRLEN cur = SvCUR(sv);
4013 SV * const next = SV_COW_NEXT_SV(sv); /* next COW sv in the loop. */
4015 PerlIO_printf(Perl_debug_log,
4016 "Copy on write: Force normal %ld\n",
4022 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4025 if (flags & SV_COW_DROP_PV) {
4026 /* OK, so we don't need to copy our buffer. */
4029 SvGROW(sv, cur + 1);
4030 Move(pvx,SvPVX(sv),cur,char);
4034 sv_release_COW(sv, pvx, len, next);
4039 else if (IN_PERL_RUNTIME)
4040 Perl_croak(aTHX_ PL_no_modify);
4041 /* At this point I believe that I can drop the global SV mutex. */
4044 if (SvREADONLY(sv)) {
4046 const char * const pvx = SvPVX_const(sv);
4047 const STRLEN len = SvCUR(sv);
4052 SvGROW(sv, len + 1);
4053 Move(pvx,SvPVX(sv),len,char);
4055 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4057 else if (IN_PERL_RUNTIME)
4058 Perl_croak(aTHX_ PL_no_modify);
4062 sv_unref_flags(sv, flags);
4063 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4070 Efficient removal of characters from the beginning of the string buffer.
4071 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4072 the string buffer. The C<ptr> becomes the first character of the adjusted
4073 string. Uses the "OOK hack".
4074 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4075 refer to the same chunk of data.
4081 Perl_sv_chop(pTHX_ register SV *sv, register const char *ptr)
4083 register STRLEN delta;
4084 if (!ptr || !SvPOKp(sv))
4086 delta = ptr - SvPVX_const(sv);
4087 SV_CHECK_THINKFIRST(sv);
4088 if (SvTYPE(sv) < SVt_PVIV)
4089 sv_upgrade(sv,SVt_PVIV);
4092 if (!SvLEN(sv)) { /* make copy of shared string */
4093 const char *pvx = SvPVX_const(sv);
4094 const STRLEN len = SvCUR(sv);
4095 SvGROW(sv, len + 1);
4096 Move(pvx,SvPVX(sv),len,char);
4100 /* Same SvOOK_on but SvOOK_on does a SvIOK_off
4101 and we do that anyway inside the SvNIOK_off
4103 SvFLAGS(sv) |= SVf_OOK;
4106 SvLEN_set(sv, SvLEN(sv) - delta);
4107 SvCUR_set(sv, SvCUR(sv) - delta);
4108 SvPV_set(sv, SvPVX(sv) + delta);
4109 SvIV_set(sv, SvIVX(sv) + delta);
4113 =for apidoc sv_catpvn
4115 Concatenates the string onto the end of the string which is in the SV. The
4116 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4117 status set, then the bytes appended should be valid UTF-8.
4118 Handles 'get' magic, but not 'set' magic. See C<sv_catpvn_mg>.
4120 =for apidoc sv_catpvn_flags
4122 Concatenates the string onto the end of the string which is in the SV. The
4123 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4124 status set, then the bytes appended should be valid UTF-8.
4125 If C<flags> has C<SV_GMAGIC> bit set, will C<mg_get> on C<dsv> if
4126 appropriate, else not. C<sv_catpvn> and C<sv_catpvn_nomg> are implemented
4127 in terms of this function.
4133 Perl_sv_catpvn_flags(pTHX_ register SV *dsv, register const char *sstr, register STRLEN slen, I32 flags)
4137 const char * const dstr = SvPV_force_flags(dsv, dlen, flags);
4139 SvGROW(dsv, dlen + slen + 1);
4141 sstr = SvPVX_const(dsv);
4142 Move(sstr, SvPVX(dsv) + dlen, slen, char);
4143 SvCUR_set(dsv, SvCUR(dsv) + slen);
4145 (void)SvPOK_only_UTF8(dsv); /* validate pointer */
4147 if (flags & SV_SMAGIC)
4152 =for apidoc sv_catsv
4154 Concatenates the string from SV C<ssv> onto the end of the string in
4155 SV C<dsv>. Modifies C<dsv> but not C<ssv>. Handles 'get' magic, but
4156 not 'set' magic. See C<sv_catsv_mg>.
4158 =for apidoc sv_catsv_flags
4160 Concatenates the string from SV C<ssv> onto the end of the string in
4161 SV C<dsv>. Modifies C<dsv> but not C<ssv>. If C<flags> has C<SV_GMAGIC>
4162 bit set, will C<mg_get> on the SVs if appropriate, else not. C<sv_catsv>
4163 and C<sv_catsv_nomg> are implemented in terms of this function.
4168 Perl_sv_catsv_flags(pTHX_ SV *dsv, register SV *ssv, I32 flags)
4173 const char *spv = SvPV_const(ssv, slen);
4175 /* sutf8 and dutf8 were type bool, but under USE_ITHREADS,
4176 gcc version 2.95.2 20000220 (Debian GNU/Linux) for
4177 Linux xxx 2.2.17 on sparc64 with gcc -O2, we erroneously
4178 get dutf8 = 0x20000000, (i.e. SVf_UTF8) even though
4179 dsv->sv_flags doesn't have that bit set.
4180 Andy Dougherty 12 Oct 2001
4182 const I32 sutf8 = DO_UTF8(ssv);
4185 if (SvGMAGICAL(dsv) && (flags & SV_GMAGIC))
4187 dutf8 = DO_UTF8(dsv);
4189 if (dutf8 != sutf8) {
4191 /* Not modifying source SV, so taking a temporary copy. */
4192 SV* const csv = sv_2mortal(newSVpvn(spv, slen));
4194 sv_utf8_upgrade(csv);
4195 spv = SvPV_const(csv, slen);
4198 sv_utf8_upgrade_nomg(dsv);
4200 sv_catpvn_nomg(dsv, spv, slen);
4203 if (flags & SV_SMAGIC)
4208 =for apidoc sv_catpv
4210 Concatenates the string onto the end of the string which is in the SV.
4211 If the SV has the UTF-8 status set, then the bytes appended should be
4212 valid UTF-8. Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
4217 Perl_sv_catpv(pTHX_ register SV *sv, register const char *ptr)
4220 register STRLEN len;
4226 junk = SvPV_force(sv, tlen);
4228 SvGROW(sv, tlen + len + 1);
4230 ptr = SvPVX_const(sv);
4231 Move(ptr,SvPVX(sv)+tlen,len+1,char);
4232 SvCUR_set(sv, SvCUR(sv) + len);
4233 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4238 =for apidoc sv_catpv_mg
4240 Like C<sv_catpv>, but also handles 'set' magic.
4246 Perl_sv_catpv_mg(pTHX_ register SV *sv, register const char *ptr)
4255 Creates a new SV. A non-zero C<len> parameter indicates the number of
4256 bytes of preallocated string space the SV should have. An extra byte for a
4257 trailing NUL is also reserved. (SvPOK is not set for the SV even if string
4258 space is allocated.) The reference count for the new SV is set to 1.
4260 In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
4261 parameter, I<x>, a debug aid which allowed callers to identify themselves.
4262 This aid has been superseded by a new build option, PERL_MEM_LOG (see
4263 L<perlhack/PERL_MEM_LOG>). The older API is still there for use in XS
4264 modules supporting older perls.
4270 Perl_newSV(pTHX_ STRLEN len)
4277 sv_upgrade(sv, SVt_PV);
4278 SvGROW(sv, len + 1);
4283 =for apidoc sv_magicext
4285 Adds magic to an SV, upgrading it if necessary. Applies the
4286 supplied vtable and returns a pointer to the magic added.
4288 Note that C<sv_magicext> will allow things that C<sv_magic> will not.
4289 In particular, you can add magic to SvREADONLY SVs, and add more than
4290 one instance of the same 'how'.
4292 If C<namlen> is greater than zero then a C<savepvn> I<copy> of C<name> is
4293 stored, if C<namlen> is zero then C<name> is stored as-is and - as another
4294 special case - if C<(name && namlen == HEf_SVKEY)> then C<name> is assumed
4295 to contain an C<SV*> and is stored as-is with its REFCNT incremented.
4297 (This is now used as a subroutine by C<sv_magic>.)
4302 Perl_sv_magicext(pTHX_ SV* sv, SV* obj, int how, MGVTBL *vtable,
4303 const char* name, I32 namlen)
4308 if (SvTYPE(sv) < SVt_PVMG) {
4309 SvUPGRADE(sv, SVt_PVMG);
4311 Newxz(mg, 1, MAGIC);
4312 mg->mg_moremagic = SvMAGIC(sv);
4313 SvMAGIC_set(sv, mg);
4315 /* Sometimes a magic contains a reference loop, where the sv and
4316 object refer to each other. To prevent a reference loop that
4317 would prevent such objects being freed, we look for such loops
4318 and if we find one we avoid incrementing the object refcount.
4320 Note we cannot do this to avoid self-tie loops as intervening RV must
4321 have its REFCNT incremented to keep it in existence.
4324 if (!obj || obj == sv ||
4325 how == PERL_MAGIC_arylen ||
4326 how == PERL_MAGIC_qr ||
4327 how == PERL_MAGIC_symtab ||
4328 (SvTYPE(obj) == SVt_PVGV &&
4329 (GvSV(obj) == sv || GvHV(obj) == (HV*)sv || GvAV(obj) == (AV*)sv ||
4330 GvCV(obj) == (CV*)sv || GvIOp(obj) == (IO*)sv ||
4331 GvFORM(obj) == (CV*)sv)))
4336 mg->mg_obj = SvREFCNT_inc_simple(obj);
4337 mg->mg_flags |= MGf_REFCOUNTED;
4340 /* Normal self-ties simply pass a null object, and instead of
4341 using mg_obj directly, use the SvTIED_obj macro to produce a
4342 new RV as needed. For glob "self-ties", we are tieing the PVIO
4343 with an RV obj pointing to the glob containing the PVIO. In
4344 this case, to avoid a reference loop, we need to weaken the
4348 if (how == PERL_MAGIC_tiedscalar && SvTYPE(sv) == SVt_PVIO &&
4349 obj && SvROK(obj) && GvIO(SvRV(obj)) == (IO*)sv)
4355 mg->mg_len = namlen;
4358 mg->mg_ptr = savepvn(name, namlen);
4359 else if (namlen == HEf_SVKEY)
4360 mg->mg_ptr = (char*)SvREFCNT_inc_simple_NN((SV*)name);
4362 mg->mg_ptr = (char *) name;
4364 mg->mg_virtual = vtable;
4368 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4373 =for apidoc sv_magic
4375 Adds magic to an SV. First upgrades C<sv> to type C<SVt_PVMG> if necessary,
4376 then adds a new magic item of type C<how> to the head of the magic list.
4378 See C<sv_magicext> (which C<sv_magic> now calls) for a description of the
4379 handling of the C<name> and C<namlen> arguments.
4381 You need to use C<sv_magicext> to add magic to SvREADONLY SVs and also
4382 to add more than one instance of the same 'how'.
4388 Perl_sv_magic(pTHX_ register SV *sv, SV *obj, int how, const char *name, I32 namlen)
4394 #ifdef PERL_OLD_COPY_ON_WRITE
4396 sv_force_normal_flags(sv, 0);
4398 if (SvREADONLY(sv)) {
4400 /* its okay to attach magic to shared strings; the subsequent
4401 * upgrade to PVMG will unshare the string */
4402 !(SvFAKE(sv) && SvTYPE(sv) < SVt_PVMG)
4405 && how != PERL_MAGIC_regex_global
4406 && how != PERL_MAGIC_bm
4407 && how != PERL_MAGIC_fm
4408 && how != PERL_MAGIC_sv
4409 && how != PERL_MAGIC_backref
4412 Perl_croak(aTHX_ PL_no_modify);
4415 if (SvMAGICAL(sv) || (how == PERL_MAGIC_taint && SvTYPE(sv) >= SVt_PVMG)) {
4416 if (SvMAGIC(sv) && (mg = mg_find(sv, how))) {
4417 /* sv_magic() refuses to add a magic of the same 'how' as an
4420 if (how == PERL_MAGIC_taint) {
4422 /* Any scalar which already had taint magic on which someone
4423 (erroneously?) did SvIOK_on() or similar will now be
4424 incorrectly sporting public "OK" flags. */
4425 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4433 vtable = &PL_vtbl_sv;
4435 case PERL_MAGIC_overload:
4436 vtable = &PL_vtbl_amagic;
4438 case PERL_MAGIC_overload_elem:
4439 vtable = &PL_vtbl_amagicelem;
4441 case PERL_MAGIC_overload_table:
4442 vtable = &PL_vtbl_ovrld;
4445 vtable = &PL_vtbl_bm;
4447 case PERL_MAGIC_regdata:
4448 vtable = &PL_vtbl_regdata;
4450 case PERL_MAGIC_regdatum:
4451 vtable = &PL_vtbl_regdatum;
4453 case PERL_MAGIC_env:
4454 vtable = &PL_vtbl_env;
4457 vtable = &PL_vtbl_fm;
4459 case PERL_MAGIC_envelem:
4460 vtable = &PL_vtbl_envelem;
4462 case PERL_MAGIC_regex_global:
4463 vtable = &PL_vtbl_mglob;
4465 case PERL_MAGIC_isa:
4466 vtable = &PL_vtbl_isa;
4468 case PERL_MAGIC_isaelem:
4469 vtable = &PL_vtbl_isaelem;
4471 case PERL_MAGIC_nkeys:
4472 vtable = &PL_vtbl_nkeys;
4474 case PERL_MAGIC_dbfile:
4477 case PERL_MAGIC_dbline:
4478 vtable = &PL_vtbl_dbline;
4480 #ifdef USE_LOCALE_COLLATE
4481 case PERL_MAGIC_collxfrm:
4482 vtable = &PL_vtbl_collxfrm;
4484 #endif /* USE_LOCALE_COLLATE */
4485 case PERL_MAGIC_tied:
4486 vtable = &PL_vtbl_pack;
4488 case PERL_MAGIC_tiedelem:
4489 case PERL_MAGIC_tiedscalar:
4490 vtable = &PL_vtbl_packelem;
4493 vtable = &PL_vtbl_regexp;
4495 case PERL_MAGIC_sig:
4496 vtable = &PL_vtbl_sig;
4498 case PERL_MAGIC_sigelem:
4499 vtable = &PL_vtbl_sigelem;
4501 case PERL_MAGIC_taint:
4502 vtable = &PL_vtbl_taint;
4504 case PERL_MAGIC_uvar:
4505 vtable = &PL_vtbl_uvar;
4507 case PERL_MAGIC_vec:
4508 vtable = &PL_vtbl_vec;
4510 case PERL_MAGIC_arylen_p:
4511 case PERL_MAGIC_rhash:
4512 case PERL_MAGIC_symtab:
4513 case PERL_MAGIC_vstring:
4516 case PERL_MAGIC_utf8:
4517 vtable = &PL_vtbl_utf8;
4519 case PERL_MAGIC_substr:
4520 vtable = &PL_vtbl_substr;
4522 case PERL_MAGIC_defelem:
4523 vtable = &PL_vtbl_defelem;
4525 case PERL_MAGIC_arylen:
4526 vtable = &PL_vtbl_arylen;
4528 case PERL_MAGIC_pos:
4529 vtable = &PL_vtbl_pos;
4531 case PERL_MAGIC_backref:
4532 vtable = &PL_vtbl_backref;
4534 case PERL_MAGIC_ext:
4535 /* Reserved for use by extensions not perl internals. */
4536 /* Useful for attaching extension internal data to perl vars. */
4537 /* Note that multiple extensions may clash if magical scalars */
4538 /* etc holding private data from one are passed to another. */
4542 Perl_croak(aTHX_ "Don't know how to handle magic of type \\%o", how);
4545 /* Rest of work is done else where */
4546 mg = sv_magicext(sv,obj,how,vtable,name,namlen);
4549 case PERL_MAGIC_taint:
4552 case PERL_MAGIC_ext:
4553 case PERL_MAGIC_dbfile:
4560 =for apidoc sv_unmagic
4562 Removes all magic of type C<type> from an SV.
4568 Perl_sv_unmagic(pTHX_ SV *sv, int type)
4572 if (SvTYPE(sv) < SVt_PVMG || !SvMAGIC(sv))
4574 mgp = &(((XPVMG*) SvANY(sv))->xmg_u.xmg_magic);
4575 for (mg = *mgp; mg; mg = *mgp) {
4576 if (mg->mg_type == type) {
4577 const MGVTBL* const vtbl = mg->mg_virtual;
4578 *mgp = mg->mg_moremagic;
4579 if (vtbl && vtbl->svt_free)
4580 CALL_FPTR(vtbl->svt_free)(aTHX_ sv, mg);
4581 if (mg->mg_ptr && mg->mg_type != PERL_MAGIC_regex_global) {
4583 Safefree(mg->mg_ptr);
4584 else if (mg->mg_len == HEf_SVKEY)
4585 SvREFCNT_dec((SV*)mg->mg_ptr);
4586 else if (mg->mg_type == PERL_MAGIC_utf8)
4587 Safefree(mg->mg_ptr);
4589 if (mg->mg_flags & MGf_REFCOUNTED)
4590 SvREFCNT_dec(mg->mg_obj);
4594 mgp = &mg->mg_moremagic;
4598 SvFLAGS(sv) |= (SvFLAGS(sv) & (SVp_IOK|SVp_NOK|SVp_POK)) >> PRIVSHIFT;
4599 SvMAGIC_set(sv, NULL);
4606 =for apidoc sv_rvweaken
4608 Weaken a reference: set the C<SvWEAKREF> flag on this RV; give the
4609 referred-to SV C<PERL_MAGIC_backref> magic if it hasn't already; and
4610 push a back-reference to this RV onto the array of backreferences
4611 associated with that magic.
4617 Perl_sv_rvweaken(pTHX_ SV *sv)
4620 if (!SvOK(sv)) /* let undefs pass */
4623 Perl_croak(aTHX_ "Can't weaken a nonreference");
4624 else if (SvWEAKREF(sv)) {
4625 if (ckWARN(WARN_MISC))
4626 Perl_warner(aTHX_ packWARN(WARN_MISC), "Reference is already weak");
4630 Perl_sv_add_backref(aTHX_ tsv, sv);
4636 /* Give tsv backref magic if it hasn't already got it, then push a
4637 * back-reference to sv onto the array associated with the backref magic.
4641 Perl_sv_add_backref(pTHX_ SV *tsv, SV *sv)
4646 if (SvTYPE(tsv) == SVt_PVHV) {
4647 AV **const avp = Perl_hv_backreferences_p(aTHX_ (HV*)tsv);
4651 /* There is no AV in the offical place - try a fixup. */
4652 MAGIC *const mg = mg_find(tsv, PERL_MAGIC_backref);
4655 /* Aha. They've got it stowed in magic. Bring it back. */
4656 av = (AV*)mg->mg_obj;
4657 /* Stop mg_free decreasing the refernce count. */
4659 /* Stop mg_free even calling the destructor, given that
4660 there's no AV to free up. */
4662 sv_unmagic(tsv, PERL_MAGIC_backref);
4666 SvREFCNT_inc_simple_void(av);
4671 const MAGIC *const mg
4672 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
4674 av = (AV*)mg->mg_obj;
4678 sv_magic(tsv, (SV*)av, PERL_MAGIC_backref, NULL, 0);
4679 /* av now has a refcnt of 2, which avoids it getting freed
4680 * before us during global cleanup. The extra ref is removed
4681 * by magic_killbackrefs() when tsv is being freed */
4684 if (AvFILLp(av) >= AvMAX(av)) {
4685 av_extend(av, AvFILLp(av)+1);
4687 AvARRAY(av)[++AvFILLp(av)] = sv; /* av_push() */
4690 /* delete a back-reference to ourselves from the backref magic associated
4691 * with the SV we point to.
4695 S_sv_del_backref(pTHX_ SV *tsv, SV *sv)
4702 if (SvTYPE(tsv) == SVt_PVHV && SvOOK(tsv)) {
4703 av = *Perl_hv_backreferences_p(aTHX_ (HV*)tsv);
4704 /* We mustn't attempt to "fix up" the hash here by moving the
4705 backreference array back to the hv_aux structure, as that is stored
4706 in the main HvARRAY(), and hfreentries assumes that no-one
4707 reallocates HvARRAY() while it is running. */
4710 const MAGIC *const mg
4711 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
4713 av = (AV *)mg->mg_obj;
4716 if (PL_in_clean_all)
4718 Perl_croak(aTHX_ "panic: del_backref");
4725 /* We shouldn't be in here more than once, but for paranoia reasons lets
4727 for (i = AvFILLp(av); i >= 0; i--) {
4729 const SSize_t fill = AvFILLp(av);
4731 /* We weren't the last entry.
4732 An unordered list has this property that you can take the
4733 last element off the end to fill the hole, and it's still
4734 an unordered list :-)
4739 AvFILLp(av) = fill - 1;
4745 Perl_sv_kill_backrefs(pTHX_ SV *sv, AV *av)
4747 SV **svp = AvARRAY(av);
4749 PERL_UNUSED_ARG(sv);
4751 /* Not sure why the av can get freed ahead of its sv, but somehow it does
4752 in ext/B/t/bytecode.t test 15 (involving print <DATA>) */
4753 if (svp && !SvIS_FREED(av)) {
4754 SV *const *const last = svp + AvFILLp(av);
4756 while (svp <= last) {
4758 SV *const referrer = *svp;
4759 if (SvWEAKREF(referrer)) {
4760 /* XXX Should we check that it hasn't changed? */
4761 SvRV_set(referrer, 0);
4763 SvWEAKREF_off(referrer);
4764 } else if (SvTYPE(referrer) == SVt_PVGV ||
4765 SvTYPE(referrer) == SVt_PVLV) {
4766 /* You lookin' at me? */
4767 assert(GvSTASH(referrer));
4768 assert(GvSTASH(referrer) == (HV*)sv);
4769 GvSTASH(referrer) = 0;
4772 "panic: magic_killbackrefs (flags=%"UVxf")",
4773 (UV)SvFLAGS(referrer));