3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 * 2000, 2001, 2002, 2003, 2004, 2005, 2006, by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
9 * "I wonder what the Entish is for 'yes' and 'no'," he thought.
12 * This file contains the code that creates, manipulates and destroys
13 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
14 * structure of an SV, so their creation and destruction is handled
15 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
16 * level functions (eg. substr, split, join) for each of the types are
28 /* Missing proto on LynxOS */
29 char *gconvert(double, int, int, char *);
32 #ifdef PERL_UTF8_CACHE_ASSERT
33 /* if adding more checks watch out for the following tests:
34 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
35 * lib/utf8.t lib/Unicode/Collate/t/index.t
38 # define ASSERT_UTF8_CACHE(cache) \
39 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
40 assert((cache)[2] <= (cache)[3]); \
41 assert((cache)[3] <= (cache)[1]);} \
44 # define ASSERT_UTF8_CACHE(cache) NOOP
47 #ifdef PERL_OLD_COPY_ON_WRITE
48 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
49 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
50 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
54 /* ============================================================================
56 =head1 Allocation and deallocation of SVs.
58 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
59 sv, av, hv...) contains type and reference count information, and for
60 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
61 contains fields specific to each type. Some types store all they need
62 in the head, so don't have a body.
64 In all but the most memory-paranoid configuations (ex: PURIFY), heads
65 and bodies are allocated out of arenas, which by default are
66 approximately 4K chunks of memory parcelled up into N heads or bodies.
67 Sv-bodies are allocated by their sv-type, guaranteeing size
68 consistency needed to allocate safely from arrays.
70 For SV-heads, the first slot in each arena is reserved, and holds a
71 link to the next arena, some flags, and a note of the number of slots.
72 Snaked through each arena chain is a linked list of free items; when
73 this becomes empty, an extra arena is allocated and divided up into N
74 items which are threaded into the free list.
76 SV-bodies are similar, but they use arena-sets by default, which
77 separate the link and info from the arena itself, and reclaim the 1st
78 slot in the arena. SV-bodies are further described later.
80 The following global variables are associated with arenas:
82 PL_sv_arenaroot pointer to list of SV arenas
83 PL_sv_root pointer to list of free SV structures
85 PL_body_arenas head of linked-list of body arenas
86 PL_body_roots[] array of pointers to list of free bodies of svtype
87 arrays are indexed by the svtype needed
89 A few special SV heads are not allocated from an arena, but are
90 instead directly created in the interpreter structure, eg PL_sv_undef.
91 The size of arenas can be changed from the default by setting
92 PERL_ARENA_SIZE appropriately at compile time.
94 The SV arena serves the secondary purpose of allowing still-live SVs
95 to be located and destroyed during final cleanup.
97 At the lowest level, the macros new_SV() and del_SV() grab and free
98 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
99 to return the SV to the free list with error checking.) new_SV() calls
100 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
101 SVs in the free list have their SvTYPE field set to all ones.
103 At the time of very final cleanup, sv_free_arenas() is called from
104 perl_destruct() to physically free all the arenas allocated since the
105 start of the interpreter.
107 Manipulation of any of the PL_*root pointers is protected by enclosing
108 LOCK_SV_MUTEX; ... UNLOCK_SV_MUTEX calls which should Do the Right Thing
109 if threads are enabled.
111 The function visit() scans the SV arenas list, and calls a specified
112 function for each SV it finds which is still live - ie which has an SvTYPE
113 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
114 following functions (specified as [function that calls visit()] / [function
115 called by visit() for each SV]):
117 sv_report_used() / do_report_used()
118 dump all remaining SVs (debugging aid)
120 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
121 Attempt to free all objects pointed to by RVs,
122 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
123 try to do the same for all objects indirectly
124 referenced by typeglobs too. Called once from
125 perl_destruct(), prior to calling sv_clean_all()
128 sv_clean_all() / do_clean_all()
129 SvREFCNT_dec(sv) each remaining SV, possibly
130 triggering an sv_free(). It also sets the
131 SVf_BREAK flag on the SV to indicate that the
132 refcnt has been artificially lowered, and thus
133 stopping sv_free() from giving spurious warnings
134 about SVs which unexpectedly have a refcnt
135 of zero. called repeatedly from perl_destruct()
136 until there are no SVs left.
138 =head2 Arena allocator API Summary
140 Private API to rest of sv.c
144 new_XIV(), del_XIV(),
145 new_XNV(), del_XNV(),
150 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
154 ============================================================================ */
157 * "A time to plant, and a time to uproot what was planted..."
161 * nice_chunk and nice_chunk size need to be set
162 * and queried under the protection of sv_mutex
165 Perl_offer_nice_chunk(pTHX_ void *chunk, U32 chunk_size)
171 new_chunk = (void *)(chunk);
172 new_chunk_size = (chunk_size);
173 if (new_chunk_size > PL_nice_chunk_size) {
174 Safefree(PL_nice_chunk);
175 PL_nice_chunk = (char *) new_chunk;
176 PL_nice_chunk_size = new_chunk_size;
183 #ifdef DEBUG_LEAKING_SCALARS
184 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
186 # define FREE_SV_DEBUG_FILE(sv)
190 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
191 /* Whilst I'd love to do this, it seems that things like to check on
193 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
195 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
196 PoisonNew(&SvREFCNT(sv), 1, U32)
198 # define SvARENA_CHAIN(sv) SvANY(sv)
199 # define POSION_SV_HEAD(sv)
202 #define plant_SV(p) \
204 FREE_SV_DEBUG_FILE(p); \
206 SvARENA_CHAIN(p) = (void *)PL_sv_root; \
207 SvFLAGS(p) = SVTYPEMASK; \
212 /* sv_mutex must be held while calling uproot_SV() */
213 #define uproot_SV(p) \
216 PL_sv_root = (SV*)SvARENA_CHAIN(p); \
221 /* make some more SVs by adding another arena */
223 /* sv_mutex must be held while calling more_sv() */
231 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
232 PL_nice_chunk = NULL;
233 PL_nice_chunk_size = 0;
236 char *chunk; /* must use New here to match call to */
237 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
238 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
244 /* new_SV(): return a new, empty SV head */
246 #ifdef DEBUG_LEAKING_SCALARS
247 /* provide a real function for a debugger to play with */
257 sv = S_more_sv(aTHX);
262 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
263 sv->sv_debug_line = (U16) ((PL_copline == NOLINE) ?
264 (PL_curcop ? CopLINE(PL_curcop) : 0) : PL_copline);
265 sv->sv_debug_inpad = 0;
266 sv->sv_debug_cloned = 0;
267 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
271 # define new_SV(p) (p)=S_new_SV(aTHX)
280 (p) = S_more_sv(aTHX); \
289 /* del_SV(): return an empty SV head to the free list */
304 S_del_sv(pTHX_ SV *p)
310 for (sva = PL_sv_arenaroot; sva; sva = (SV *) SvANY(sva)) {
311 const SV * const sv = sva + 1;
312 const SV * const svend = &sva[SvREFCNT(sva)];
313 if (p >= sv && p < svend) {
319 if (ckWARN_d(WARN_INTERNAL))
320 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
321 "Attempt to free non-arena SV: 0x%"UVxf
322 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
329 #else /* ! DEBUGGING */
331 #define del_SV(p) plant_SV(p)
333 #endif /* DEBUGGING */
337 =head1 SV Manipulation Functions
339 =for apidoc sv_add_arena
341 Given a chunk of memory, link it to the head of the list of arenas,
342 and split it into a list of free SVs.
348 Perl_sv_add_arena(pTHX_ char *ptr, U32 size, U32 flags)
351 SV* const sva = (SV*)ptr;
355 /* The first SV in an arena isn't an SV. */
356 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
357 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
358 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
360 PL_sv_arenaroot = sva;
361 PL_sv_root = sva + 1;
363 svend = &sva[SvREFCNT(sva) - 1];
366 SvARENA_CHAIN(sv) = (void *)(SV*)(sv + 1);
370 /* Must always set typemask because it's awlays checked in on cleanup
371 when the arenas are walked looking for objects. */
372 SvFLAGS(sv) = SVTYPEMASK;
375 SvARENA_CHAIN(sv) = 0;
379 SvFLAGS(sv) = SVTYPEMASK;
382 /* visit(): call the named function for each non-free SV in the arenas
383 * whose flags field matches the flags/mask args. */
386 S_visit(pTHX_ SVFUNC_t f, U32 flags, U32 mask)
392 for (sva = PL_sv_arenaroot; sva; sva = (SV*)SvANY(sva)) {
393 register const SV * const svend = &sva[SvREFCNT(sva)];
395 for (sv = sva + 1; sv < svend; ++sv) {
396 if (SvTYPE(sv) != SVTYPEMASK
397 && (sv->sv_flags & mask) == flags
410 /* called by sv_report_used() for each live SV */
413 do_report_used(pTHX_ SV *sv)
415 if (SvTYPE(sv) != SVTYPEMASK) {
416 PerlIO_printf(Perl_debug_log, "****\n");
423 =for apidoc sv_report_used
425 Dump the contents of all SVs not yet freed. (Debugging aid).
431 Perl_sv_report_used(pTHX)
434 visit(do_report_used, 0, 0);
440 /* called by sv_clean_objs() for each live SV */
443 do_clean_objs(pTHX_ SV *ref)
447 SV * const target = SvRV(ref);
448 if (SvOBJECT(target)) {
449 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
450 if (SvWEAKREF(ref)) {
451 sv_del_backref(target, ref);
457 SvREFCNT_dec(target);
462 /* XXX Might want to check arrays, etc. */
465 /* called by sv_clean_objs() for each live SV */
467 #ifndef DISABLE_DESTRUCTOR_KLUDGE
469 do_clean_named_objs(pTHX_ SV *sv)
472 if (SvTYPE(sv) == SVt_PVGV && isGV_with_GP(sv) && GvGP(sv)) {
474 #ifdef PERL_DONT_CREATE_GVSV
477 SvOBJECT(GvSV(sv))) ||
478 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
479 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
480 (GvIO(sv) && SvOBJECT(GvIO(sv))) ||
481 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
483 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
484 SvFLAGS(sv) |= SVf_BREAK;
492 =for apidoc sv_clean_objs
494 Attempt to destroy all objects not yet freed
500 Perl_sv_clean_objs(pTHX)
503 PL_in_clean_objs = TRUE;
504 visit(do_clean_objs, SVf_ROK, SVf_ROK);
505 #ifndef DISABLE_DESTRUCTOR_KLUDGE
506 /* some barnacles may yet remain, clinging to typeglobs */
507 visit(do_clean_named_objs, SVt_PVGV, SVTYPEMASK);
509 PL_in_clean_objs = FALSE;
512 /* called by sv_clean_all() for each live SV */
515 do_clean_all(pTHX_ SV *sv)
518 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
519 SvFLAGS(sv) |= SVf_BREAK;
520 if (PL_comppad == (AV*)sv) {
528 =for apidoc sv_clean_all
530 Decrement the refcnt of each remaining SV, possibly triggering a
531 cleanup. This function may have to be called multiple times to free
532 SVs which are in complex self-referential hierarchies.
538 Perl_sv_clean_all(pTHX)
542 PL_in_clean_all = TRUE;
543 cleaned = visit(do_clean_all, 0,0);
544 PL_in_clean_all = FALSE;
549 ARENASETS: a meta-arena implementation which separates arena-info
550 into struct arena_set, which contains an array of struct
551 arena_descs, each holding info for a single arena. By separating
552 the meta-info from the arena, we recover the 1st slot, formerly
553 borrowed for list management. The arena_set is about the size of an
554 arena, avoiding the needless malloc overhead of a naive linked-list
556 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
557 memory in the last arena-set (1/2 on average). In trade, we get
558 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
559 smaller types). The recovery of the wasted space allows use of
560 small arenas for large, rare body types,
563 char *arena; /* the raw storage, allocated aligned */
564 size_t size; /* its size ~4k typ */
565 int unit_type; /* useful for arena audits */
566 /* info for sv-heads (eventually)
573 /* Get the maximum number of elements in set[] such that struct arena_set
574 will fit within PERL_ARENA_SIZE, which is probabably just under 4K, and
575 therefore likely to be 1 aligned memory page. */
577 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
578 - 2 * sizeof(int)) / sizeof (struct arena_desc))
581 struct arena_set* next;
582 int set_size; /* ie ARENAS_PER_SET */
583 int curr; /* index of next available arena-desc */
584 struct arena_desc set[ARENAS_PER_SET];
588 =for apidoc sv_free_arenas
590 Deallocate the memory used by all arenas. Note that all the individual SV
591 heads and bodies within the arenas must already have been freed.
596 Perl_sv_free_arenas(pTHX)
603 /* Free arenas here, but be careful about fake ones. (We assume
604 contiguity of the fake ones with the corresponding real ones.) */
606 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
607 svanext = (SV*) SvANY(sva);
608 while (svanext && SvFAKE(svanext))
609 svanext = (SV*) SvANY(svanext);
616 struct arena_set *next, *aroot = (struct arena_set*) PL_body_arenas;
618 for (; aroot; aroot = next) {
619 const int max = aroot->curr;
620 for (i=0; i<max; i++) {
621 assert(aroot->set[i].arena);
622 Safefree(aroot->set[i].arena);
630 for (i=0; i<PERL_ARENA_ROOTS_SIZE; i++)
631 PL_body_roots[i] = 0;
633 Safefree(PL_nice_chunk);
634 PL_nice_chunk = NULL;
635 PL_nice_chunk_size = 0;
641 Here are mid-level routines that manage the allocation of bodies out
642 of the various arenas. There are 5 kinds of arenas:
644 1. SV-head arenas, which are discussed and handled above
645 2. regular body arenas
646 3. arenas for reduced-size bodies
648 5. pte arenas (thread related)
650 Arena types 2 & 3 are chained by body-type off an array of
651 arena-root pointers, which is indexed by svtype. Some of the
652 larger/less used body types are malloced singly, since a large
653 unused block of them is wasteful. Also, several svtypes dont have
654 bodies; the data fits into the sv-head itself. The arena-root
655 pointer thus has a few unused root-pointers (which may be hijacked
656 later for arena types 4,5)
658 3 differs from 2 as an optimization; some body types have several
659 unused fields in the front of the structure (which are kept in-place
660 for consistency). These bodies can be allocated in smaller chunks,
661 because the leading fields arent accessed. Pointers to such bodies
662 are decremented to point at the unused 'ghost' memory, knowing that
663 the pointers are used with offsets to the real memory.
665 HE, HEK arenas are managed separately, with separate code, but may
666 be merge-able later..
668 PTE arenas are not sv-bodies, but they share these mid-level
669 mechanics, so are considered here. The new mid-level mechanics rely
670 on the sv_type of the body being allocated, so we just reserve one
671 of the unused body-slots for PTEs, then use it in those (2) PTE
672 contexts below (line ~10k)
675 /* get_arena(size): this creates custom-sized arenas
676 TBD: export properly for hv.c: S_more_he().
679 Perl_get_arena(pTHX_ int arena_size)
682 struct arena_desc* adesc;
683 struct arena_set *newroot, **aroot = (struct arena_set**) &PL_body_arenas;
686 /* shouldnt need this
687 if (!arena_size) arena_size = PERL_ARENA_SIZE;
690 /* may need new arena-set to hold new arena */
691 if (!*aroot || (*aroot)->curr >= (*aroot)->set_size) {
692 Newxz(newroot, 1, struct arena_set);
693 newroot->set_size = ARENAS_PER_SET;
694 newroot->next = *aroot;
696 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)*aroot));
699 /* ok, now have arena-set with at least 1 empty/available arena-desc */
700 curr = (*aroot)->curr++;
701 adesc = &((*aroot)->set[curr]);
702 assert(!adesc->arena);
704 Newxz(adesc->arena, arena_size, char);
705 adesc->size = arena_size;
706 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %d\n",
707 curr, adesc->arena, arena_size));
713 /* return a thing to the free list */
715 #define del_body(thing, root) \
717 void ** const thing_copy = (void **)thing;\
719 *thing_copy = *root; \
720 *root = (void*)thing_copy; \
726 =head1 SV-Body Allocation
728 Allocation of SV-bodies is similar to SV-heads, differing as follows;
729 the allocation mechanism is used for many body types, so is somewhat
730 more complicated, it uses arena-sets, and has no need for still-live
733 At the outermost level, (new|del)_X*V macros return bodies of the
734 appropriate type. These macros call either (new|del)_body_type or
735 (new|del)_body_allocated macro pairs, depending on specifics of the
736 type. Most body types use the former pair, the latter pair is used to
737 allocate body types with "ghost fields".
739 "ghost fields" are fields that are unused in certain types, and
740 consequently dont need to actually exist. They are declared because
741 they're part of a "base type", which allows use of functions as
742 methods. The simplest examples are AVs and HVs, 2 aggregate types
743 which don't use the fields which support SCALAR semantics.
745 For these types, the arenas are carved up into *_allocated size
746 chunks, we thus avoid wasted memory for those unaccessed members.
747 When bodies are allocated, we adjust the pointer back in memory by the
748 size of the bit not allocated, so it's as if we allocated the full
749 structure. (But things will all go boom if you write to the part that
750 is "not there", because you'll be overwriting the last members of the
751 preceding structure in memory.)
753 We calculate the correction using the STRUCT_OFFSET macro. For
754 example, if xpv_allocated is the same structure as XPV then the two
755 OFFSETs sum to zero, and the pointer is unchanged. If the allocated
756 structure is smaller (no initial NV actually allocated) then the net
757 effect is to subtract the size of the NV from the pointer, to return a
758 new pointer as if an initial NV were actually allocated.
760 This is the same trick as was used for NV and IV bodies. Ironically it
761 doesn't need to be used for NV bodies any more, because NV is now at
762 the start of the structure. IV bodies don't need it either, because
763 they are no longer allocated.
765 In turn, the new_body_* allocators call S_new_body(), which invokes
766 new_body_inline macro, which takes a lock, and takes a body off the
767 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
768 necessary to refresh an empty list. Then the lock is released, and
769 the body is returned.
771 S_more_bodies calls get_arena(), and carves it up into an array of N
772 bodies, which it strings into a linked list. It looks up arena-size
773 and body-size from the body_details table described below, thus
774 supporting the multiple body-types.
776 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
777 the (new|del)_X*V macros are mapped directly to malloc/free.
783 For each sv-type, struct body_details bodies_by_type[] carries
784 parameters which control these aspects of SV handling:
786 Arena_size determines whether arenas are used for this body type, and if
787 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
788 zero, forcing individual mallocs and frees.
790 Body_size determines how big a body is, and therefore how many fit into
791 each arena. Offset carries the body-pointer adjustment needed for
792 *_allocated body types, and is used in *_allocated macros.
794 But its main purpose is to parameterize info needed in
795 Perl_sv_upgrade(). The info here dramatically simplifies the function
796 vs the implementation in 5.8.7, making it table-driven. All fields
797 are used for this, except for arena_size.
799 For the sv-types that have no bodies, arenas are not used, so those
800 PL_body_roots[sv_type] are unused, and can be overloaded. In
801 something of a special case, SVt_NULL is borrowed for HE arenas;
802 PL_body_roots[SVt_NULL] is filled by S_more_he, but the
803 bodies_by_type[SVt_NULL] slot is not used, as the table is not
806 PTEs also use arenas, but are never seen in Perl_sv_upgrade.
807 Nonetheless, they get their own slot in bodies_by_type[SVt_NULL], so
808 they can just use the same allocation semantics. At first, PTEs were
809 also overloaded to a non-body sv-type, but this yielded hard-to-find
810 malloc bugs, so was simplified by claiming a new slot. This choice
811 has no consequence at this time.
815 struct body_details {
816 U8 body_size; /* Size to allocate */
817 U8 copy; /* Size of structure to copy (may be shorter) */
819 unsigned int type : 4; /* We have space for a sanity check. */
820 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
821 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
822 unsigned int arena : 1; /* Allocated from an arena */
823 size_t arena_size; /* Size of arena to allocate */
831 /* With -DPURFIY we allocate everything directly, and don't use arenas.
832 This seems a rather elegant way to simplify some of the code below. */
833 #define HASARENA FALSE
835 #define HASARENA TRUE
837 #define NOARENA FALSE
839 /* Size the arenas to exactly fit a given number of bodies. A count
840 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
841 simplifying the default. If count > 0, the arena is sized to fit
842 only that many bodies, allowing arenas to be used for large, rare
843 bodies (XPVFM, XPVIO) without undue waste. The arena size is
844 limited by PERL_ARENA_SIZE, so we can safely oversize the
847 #define FIT_ARENA0(body_size) \
848 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
849 #define FIT_ARENAn(count,body_size) \
850 ( count * body_size <= PERL_ARENA_SIZE) \
851 ? count * body_size \
852 : FIT_ARENA0 (body_size)
853 #define FIT_ARENA(count,body_size) \
855 ? FIT_ARENAn (count, body_size) \
856 : FIT_ARENA0 (body_size)
858 /* A macro to work out the offset needed to subtract from a pointer to (say)
865 to make its members accessible via a pointer to (say)
875 #define relative_STRUCT_OFFSET(longer, shorter, member) \
876 (STRUCT_OFFSET(shorter, member) - STRUCT_OFFSET(longer, member))
878 /* Calculate the length to copy. Specifically work out the length less any
879 final padding the compiler needed to add. See the comment in sv_upgrade
880 for why copying the padding proved to be a bug. */
882 #define copy_length(type, last_member) \
883 STRUCT_OFFSET(type, last_member) \
884 + sizeof (((type*)SvANY((SV*)0))->last_member)
886 static const struct body_details bodies_by_type[] = {
887 { sizeof(HE), 0, 0, SVt_NULL,
888 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
890 /* IVs are in the head, so the allocation size is 0.
891 However, the slot is overloaded for PTEs. */
892 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
893 sizeof(IV), /* This is used to copy out the IV body. */
894 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
895 NOARENA /* IVS don't need an arena */,
896 /* But PTEs need to know the size of their arena */
897 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
900 /* 8 bytes on most ILP32 with IEEE doubles */
901 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
902 FIT_ARENA(0, sizeof(NV)) },
904 /* RVs are in the head now. */
905 { 0, 0, 0, SVt_RV, FALSE, NONV, NOARENA, 0 },
907 /* 8 bytes on most ILP32 with IEEE doubles */
908 { sizeof(xpv_allocated),
909 copy_length(XPV, xpv_len)
910 - relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
911 + relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
912 SVt_PV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpv_allocated)) },
915 { sizeof(xpviv_allocated),
916 copy_length(XPVIV, xiv_u)
917 - relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
918 + relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
919 SVt_PVIV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpviv_allocated)) },
922 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
923 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
926 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
927 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
930 { sizeof(XPVBM), sizeof(XPVBM), 0, SVt_PVBM, TRUE, HADNV,
931 HASARENA, FIT_ARENA(0, sizeof(XPVBM)) },
934 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
935 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
938 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
939 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
941 { sizeof(xpvav_allocated),
942 copy_length(XPVAV, xmg_stash)
943 - relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
944 + relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
945 SVt_PVAV, TRUE, HADNV, HASARENA, FIT_ARENA(0, sizeof(xpvav_allocated)) },
947 { sizeof(xpvhv_allocated),
948 copy_length(XPVHV, xmg_stash)
949 - relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
950 + relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
951 SVt_PVHV, TRUE, HADNV, HASARENA, FIT_ARENA(0, sizeof(xpvhv_allocated)) },
954 { sizeof(xpvcv_allocated), sizeof(xpvcv_allocated),
955 + relative_STRUCT_OFFSET(xpvcv_allocated, XPVCV, xpv_cur),
956 SVt_PVCV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvcv_allocated)) },
958 { sizeof(xpvfm_allocated), sizeof(xpvfm_allocated),
959 + relative_STRUCT_OFFSET(xpvfm_allocated, XPVFM, xpv_cur),
960 SVt_PVFM, TRUE, NONV, NOARENA, FIT_ARENA(20, sizeof(xpvfm_allocated)) },
962 /* XPVIO is 84 bytes, fits 48x */
963 { sizeof(XPVIO), sizeof(XPVIO), 0, SVt_PVIO, TRUE, HADNV,
964 HASARENA, FIT_ARENA(24, sizeof(XPVIO)) },
967 #define new_body_type(sv_type) \
968 (void *)((char *)S_new_body(aTHX_ sv_type))
970 #define del_body_type(p, sv_type) \
971 del_body(p, &PL_body_roots[sv_type])
974 #define new_body_allocated(sv_type) \
975 (void *)((char *)S_new_body(aTHX_ sv_type) \
976 - bodies_by_type[sv_type].offset)
978 #define del_body_allocated(p, sv_type) \
979 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
982 #define my_safemalloc(s) (void*)safemalloc(s)
983 #define my_safecalloc(s) (void*)safecalloc(s, 1)
984 #define my_safefree(p) safefree((char*)p)
988 #define new_XNV() my_safemalloc(sizeof(XPVNV))
989 #define del_XNV(p) my_safefree(p)
991 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
992 #define del_XPVNV(p) my_safefree(p)
994 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
995 #define del_XPVAV(p) my_safefree(p)
997 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
998 #define del_XPVHV(p) my_safefree(p)
1000 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1001 #define del_XPVMG(p) my_safefree(p)
1003 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1004 #define del_XPVGV(p) my_safefree(p)
1008 #define new_XNV() new_body_type(SVt_NV)
1009 #define del_XNV(p) del_body_type(p, SVt_NV)
1011 #define new_XPVNV() new_body_type(SVt_PVNV)
1012 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1014 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1015 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1017 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1018 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1020 #define new_XPVMG() new_body_type(SVt_PVMG)
1021 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1023 #define new_XPVGV() new_body_type(SVt_PVGV)
1024 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1028 /* no arena for you! */
1030 #define new_NOARENA(details) \
1031 my_safemalloc((details)->body_size + (details)->offset)
1032 #define new_NOARENAZ(details) \
1033 my_safecalloc((details)->body_size + (details)->offset)
1035 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1036 static bool done_sanity_check;
1040 S_more_bodies (pTHX_ svtype sv_type)
1043 void ** const root = &PL_body_roots[sv_type];
1044 const struct body_details * const bdp = &bodies_by_type[sv_type];
1045 const size_t body_size = bdp->body_size;
1049 assert(bdp->arena_size);
1051 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1052 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1053 * variables like done_sanity_check. */
1054 if (!done_sanity_check) {
1055 unsigned int i = SVt_LAST;
1057 done_sanity_check = TRUE;
1060 assert (bodies_by_type[i].type == i);
1064 start = (char*) Perl_get_arena(aTHX_ bdp->arena_size);
1066 end = start + bdp->arena_size - body_size;
1068 /* computed count doesnt reflect the 1st slot reservation */
1069 DEBUG_m(PerlIO_printf(Perl_debug_log,
1070 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1072 (int)bdp->arena_size, sv_type, (int)body_size,
1073 (int)bdp->arena_size / (int)body_size));
1075 *root = (void *)start;
1077 while (start < end) {
1078 char * const next = start + body_size;
1079 *(void**) start = (void *)next;
1082 *(void **)start = 0;
1087 /* grab a new thing from the free list, allocating more if necessary.
1088 The inline version is used for speed in hot routines, and the
1089 function using it serves the rest (unless PURIFY).
1091 #define new_body_inline(xpv, sv_type) \
1093 void ** const r3wt = &PL_body_roots[sv_type]; \
1095 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1096 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1097 *(r3wt) = *(void**)(xpv); \
1104 S_new_body(pTHX_ svtype sv_type)
1108 new_body_inline(xpv, sv_type);
1115 =for apidoc sv_upgrade
1117 Upgrade an SV to a more complex form. Generally adds a new body type to the
1118 SV, then copies across as much information as possible from the old body.
1119 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1125 Perl_sv_upgrade(pTHX_ register SV *sv, svtype new_type)
1130 const svtype old_type = SvTYPE(sv);
1131 const struct body_details *new_type_details;
1132 const struct body_details *const old_type_details
1133 = bodies_by_type + old_type;
1135 if (new_type != SVt_PV && SvIsCOW(sv)) {
1136 sv_force_normal_flags(sv, 0);
1139 if (old_type == new_type)
1142 if (old_type > new_type)
1143 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1144 (int)old_type, (int)new_type);
1147 old_body = SvANY(sv);
1149 /* Copying structures onto other structures that have been neatly zeroed
1150 has a subtle gotcha. Consider XPVMG
1152 +------+------+------+------+------+-------+-------+
1153 | NV | CUR | LEN | IV | MAGIC | STASH |
1154 +------+------+------+------+------+-------+-------+
1155 0 4 8 12 16 20 24 28
1157 where NVs are aligned to 8 bytes, so that sizeof that structure is
1158 actually 32 bytes long, with 4 bytes of padding at the end:
1160 +------+------+------+------+------+-------+-------+------+
1161 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1162 +------+------+------+------+------+-------+-------+------+
1163 0 4 8 12 16 20 24 28 32
1165 so what happens if you allocate memory for this structure:
1167 +------+------+------+------+------+-------+-------+------+------+...
1168 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1169 +------+------+------+------+------+-------+-------+------+------+...
1170 0 4 8 12 16 20 24 28 32 36
1172 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1173 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1174 started out as zero once, but it's quite possible that it isn't. So now,
1175 rather than a nicely zeroed GP, you have it pointing somewhere random.
1178 (In fact, GP ends up pointing at a previous GP structure, because the
1179 principle cause of the padding in XPVMG getting garbage is a copy of
1180 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob)
1182 So we are careful and work out the size of used parts of all the
1189 if (new_type < SVt_PVIV) {
1190 new_type = (new_type == SVt_NV)
1191 ? SVt_PVNV : SVt_PVIV;
1195 if (new_type < SVt_PVNV) {
1196 new_type = SVt_PVNV;
1202 assert(new_type > SVt_PV);
1203 assert(SVt_IV < SVt_PV);
1204 assert(SVt_NV < SVt_PV);
1211 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1212 there's no way that it can be safely upgraded, because perl.c
1213 expects to Safefree(SvANY(PL_mess_sv)) */
1214 assert(sv != PL_mess_sv);
1215 /* This flag bit is used to mean other things in other scalar types.
1216 Given that it only has meaning inside the pad, it shouldn't be set
1217 on anything that can get upgraded. */
1218 assert(!SvPAD_TYPED(sv));
1221 if (old_type_details->cant_upgrade)
1222 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1223 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1225 new_type_details = bodies_by_type + new_type;
1227 SvFLAGS(sv) &= ~SVTYPEMASK;
1228 SvFLAGS(sv) |= new_type;
1230 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1231 the return statements above will have triggered. */
1232 assert (new_type != SVt_NULL);
1235 assert(old_type == SVt_NULL);
1236 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1240 assert(old_type == SVt_NULL);
1241 SvANY(sv) = new_XNV();
1245 assert(old_type == SVt_NULL);
1246 SvANY(sv) = &sv->sv_u.svu_rv;
1251 assert(new_type_details->body_size);
1254 assert(new_type_details->arena);
1255 assert(new_type_details->arena_size);
1256 /* This points to the start of the allocated area. */
1257 new_body_inline(new_body, new_type);
1258 Zero(new_body, new_type_details->body_size, char);
1259 new_body = ((char *)new_body) - new_type_details->offset;
1261 /* We always allocated the full length item with PURIFY. To do this
1262 we fake things so that arena is false for all 16 types.. */
1263 new_body = new_NOARENAZ(new_type_details);
1265 SvANY(sv) = new_body;
1266 if (new_type == SVt_PVAV) {
1272 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1273 The target created by newSVrv also is, and it can have magic.
1274 However, it never has SvPVX set.
1276 if (old_type >= SVt_RV) {
1277 assert(SvPVX_const(sv) == 0);
1280 if (old_type >= SVt_PVMG) {
1281 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1282 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1284 sv->sv_u.svu_array = NULL; /* or svu_hash */
1290 /* XXX Is this still needed? Was it ever needed? Surely as there is
1291 no route from NV to PVIV, NOK can never be true */
1292 assert(!SvNOKp(sv));
1304 assert(new_type_details->body_size);
1305 /* We always allocated the full length item with PURIFY. To do this
1306 we fake things so that arena is false for all 16 types.. */
1307 if(new_type_details->arena) {
1308 /* This points to the start of the allocated area. */
1309 new_body_inline(new_body, new_type);
1310 Zero(new_body, new_type_details->body_size, char);
1311 new_body = ((char *)new_body) - new_type_details->offset;
1313 new_body = new_NOARENAZ(new_type_details);
1315 SvANY(sv) = new_body;
1317 if (old_type_details->copy) {
1318 /* There is now the potential for an upgrade from something without
1319 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1320 int offset = old_type_details->offset;
1321 int length = old_type_details->copy;
1323 if (new_type_details->offset > old_type_details->offset) {
1324 const int difference
1325 = new_type_details->offset - old_type_details->offset;
1326 offset += difference;
1327 length -= difference;
1329 assert (length >= 0);
1331 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1335 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1336 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1337 * correct 0.0 for us. Otherwise, if the old body didn't have an
1338 * NV slot, but the new one does, then we need to initialise the
1339 * freshly created NV slot with whatever the correct bit pattern is
1341 if (old_type_details->zero_nv && !new_type_details->zero_nv)
1345 if (new_type == SVt_PVIO)
1346 IoPAGE_LEN(sv) = 60;
1347 if (old_type < SVt_RV)
1351 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1352 (unsigned long)new_type);
1355 if (old_type_details->arena) {
1356 /* If there was an old body, then we need to free it.
1357 Note that there is an assumption that all bodies of types that
1358 can be upgraded came from arenas. Only the more complex non-
1359 upgradable types are allowed to be directly malloc()ed. */
1361 my_safefree(old_body);
1363 del_body((void*)((char*)old_body + old_type_details->offset),
1364 &PL_body_roots[old_type]);
1370 =for apidoc sv_backoff
1372 Remove any string offset. You should normally use the C<SvOOK_off> macro
1379 Perl_sv_backoff(pTHX_ register SV *sv)
1381 PERL_UNUSED_CONTEXT;
1383 assert(SvTYPE(sv) != SVt_PVHV);
1384 assert(SvTYPE(sv) != SVt_PVAV);
1386 const char * const s = SvPVX_const(sv);
1387 SvLEN_set(sv, SvLEN(sv) + SvIVX(sv));
1388 SvPV_set(sv, SvPVX(sv) - SvIVX(sv));
1390 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1392 SvFLAGS(sv) &= ~SVf_OOK;
1399 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1400 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1401 Use the C<SvGROW> wrapper instead.
1407 Perl_sv_grow(pTHX_ register SV *sv, register STRLEN newlen)
1411 if (PL_madskills && newlen >= 0x100000) {
1412 PerlIO_printf(Perl_debug_log,
1413 "Allocation too large: %"UVxf"\n", (UV)newlen);
1415 #ifdef HAS_64K_LIMIT
1416 if (newlen >= 0x10000) {
1417 PerlIO_printf(Perl_debug_log,
1418 "Allocation too large: %"UVxf"\n", (UV)newlen);
1421 #endif /* HAS_64K_LIMIT */
1424 if (SvTYPE(sv) < SVt_PV) {
1425 sv_upgrade(sv, SVt_PV);
1426 s = SvPVX_mutable(sv);
1428 else if (SvOOK(sv)) { /* pv is offset? */
1430 s = SvPVX_mutable(sv);
1431 if (newlen > SvLEN(sv))
1432 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1433 #ifdef HAS_64K_LIMIT
1434 if (newlen >= 0x10000)
1439 s = SvPVX_mutable(sv);
1441 if (newlen > SvLEN(sv)) { /* need more room? */
1442 newlen = PERL_STRLEN_ROUNDUP(newlen);
1443 if (SvLEN(sv) && s) {
1445 const STRLEN l = malloced_size((void*)SvPVX_const(sv));
1451 s = (char*)saferealloc(s, newlen);
1454 s = (char*)safemalloc(newlen);
1455 if (SvPVX_const(sv) && SvCUR(sv)) {
1456 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1460 SvLEN_set(sv, newlen);
1466 =for apidoc sv_setiv
1468 Copies an integer into the given SV, upgrading first if necessary.
1469 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1475 Perl_sv_setiv(pTHX_ register SV *sv, IV i)
1478 SV_CHECK_THINKFIRST_COW_DROP(sv);
1479 switch (SvTYPE(sv)) {
1481 sv_upgrade(sv, SVt_IV);
1484 sv_upgrade(sv, SVt_PVNV);
1488 sv_upgrade(sv, SVt_PVIV);
1497 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1501 (void)SvIOK_only(sv); /* validate number */
1507 =for apidoc sv_setiv_mg
1509 Like C<sv_setiv>, but also handles 'set' magic.
1515 Perl_sv_setiv_mg(pTHX_ register SV *sv, IV i)
1522 =for apidoc sv_setuv
1524 Copies an unsigned integer into the given SV, upgrading first if necessary.
1525 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1531 Perl_sv_setuv(pTHX_ register SV *sv, UV u)
1533 /* With these two if statements:
1534 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1537 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1539 If you wish to remove them, please benchmark to see what the effect is
1541 if (u <= (UV)IV_MAX) {
1542 sv_setiv(sv, (IV)u);
1551 =for apidoc sv_setuv_mg
1553 Like C<sv_setuv>, but also handles 'set' magic.
1559 Perl_sv_setuv_mg(pTHX_ register SV *sv, UV u)
1566 =for apidoc sv_setnv
1568 Copies a double into the given SV, upgrading first if necessary.
1569 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1575 Perl_sv_setnv(pTHX_ register SV *sv, NV num)
1578 SV_CHECK_THINKFIRST_COW_DROP(sv);
1579 switch (SvTYPE(sv)) {
1582 sv_upgrade(sv, SVt_NV);
1587 sv_upgrade(sv, SVt_PVNV);
1596 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1601 (void)SvNOK_only(sv); /* validate number */
1606 =for apidoc sv_setnv_mg
1608 Like C<sv_setnv>, but also handles 'set' magic.
1614 Perl_sv_setnv_mg(pTHX_ register SV *sv, NV num)
1620 /* Print an "isn't numeric" warning, using a cleaned-up,
1621 * printable version of the offending string
1625 S_not_a_number(pTHX_ SV *sv)
1633 dsv = sv_2mortal(newSVpvs(""));
1634 pv = sv_uni_display(dsv, sv, 10, 0);
1637 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1638 /* each *s can expand to 4 chars + "...\0",
1639 i.e. need room for 8 chars */
1641 const char *s = SvPVX_const(sv);
1642 const char * const end = s + SvCUR(sv);
1643 for ( ; s < end && d < limit; s++ ) {
1645 if (ch & 128 && !isPRINT_LC(ch)) {
1654 else if (ch == '\r') {
1658 else if (ch == '\f') {
1662 else if (ch == '\\') {
1666 else if (ch == '\0') {
1670 else if (isPRINT_LC(ch))
1687 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1688 "Argument \"%s\" isn't numeric in %s", pv,
1691 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1692 "Argument \"%s\" isn't numeric", pv);
1696 =for apidoc looks_like_number
1698 Test if the content of an SV looks like a number (or is a number).
1699 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1700 non-numeric warning), even if your atof() doesn't grok them.
1706 Perl_looks_like_number(pTHX_ SV *sv)
1708 register const char *sbegin;
1712 sbegin = SvPVX_const(sv);
1715 else if (SvPOKp(sv))
1716 sbegin = SvPV_const(sv, len);
1718 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1719 return grok_number(sbegin, len, NULL);
1723 S_glob_2number(pTHX_ GV * const gv)
1725 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1726 SV *const buffer = sv_newmortal();
1728 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1731 gv_efullname3(buffer, gv, "*");
1732 SvFLAGS(gv) |= wasfake;
1734 /* We know that all GVs stringify to something that is not-a-number,
1735 so no need to test that. */
1736 if (ckWARN(WARN_NUMERIC))
1737 not_a_number(buffer);
1738 /* We just want something true to return, so that S_sv_2iuv_common
1739 can tail call us and return true. */
1744 S_glob_2pv(pTHX_ GV * const gv, STRLEN * const len)
1746 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1747 SV *const buffer = sv_newmortal();
1749 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1752 gv_efullname3(buffer, gv, "*");
1753 SvFLAGS(gv) |= wasfake;
1755 assert(SvPOK(buffer));
1757 *len = SvCUR(buffer);
1759 return SvPVX(buffer);
1762 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1763 until proven guilty, assume that things are not that bad... */
1768 As 64 bit platforms often have an NV that doesn't preserve all bits of
1769 an IV (an assumption perl has been based on to date) it becomes necessary
1770 to remove the assumption that the NV always carries enough precision to
1771 recreate the IV whenever needed, and that the NV is the canonical form.
1772 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1773 precision as a side effect of conversion (which would lead to insanity
1774 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1775 1) to distinguish between IV/UV/NV slots that have cached a valid
1776 conversion where precision was lost and IV/UV/NV slots that have a
1777 valid conversion which has lost no precision
1778 2) to ensure that if a numeric conversion to one form is requested that
1779 would lose precision, the precise conversion (or differently
1780 imprecise conversion) is also performed and cached, to prevent
1781 requests for different numeric formats on the same SV causing
1782 lossy conversion chains. (lossless conversion chains are perfectly
1787 SvIOKp is true if the IV slot contains a valid value
1788 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1789 SvNOKp is true if the NV slot contains a valid value
1790 SvNOK is true only if the NV value is accurate
1793 while converting from PV to NV, check to see if converting that NV to an
1794 IV(or UV) would lose accuracy over a direct conversion from PV to
1795 IV(or UV). If it would, cache both conversions, return NV, but mark
1796 SV as IOK NOKp (ie not NOK).
1798 While converting from PV to IV, check to see if converting that IV to an
1799 NV would lose accuracy over a direct conversion from PV to NV. If it
1800 would, cache both conversions, flag similarly.
1802 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1803 correctly because if IV & NV were set NV *always* overruled.
1804 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1805 changes - now IV and NV together means that the two are interchangeable:
1806 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1808 The benefit of this is that operations such as pp_add know that if
1809 SvIOK is true for both left and right operands, then integer addition
1810 can be used instead of floating point (for cases where the result won't
1811 overflow). Before, floating point was always used, which could lead to
1812 loss of precision compared with integer addition.
1814 * making IV and NV equal status should make maths accurate on 64 bit
1816 * may speed up maths somewhat if pp_add and friends start to use
1817 integers when possible instead of fp. (Hopefully the overhead in
1818 looking for SvIOK and checking for overflow will not outweigh the
1819 fp to integer speedup)
1820 * will slow down integer operations (callers of SvIV) on "inaccurate"
1821 values, as the change from SvIOK to SvIOKp will cause a call into
1822 sv_2iv each time rather than a macro access direct to the IV slot
1823 * should speed up number->string conversion on integers as IV is
1824 favoured when IV and NV are equally accurate
1826 ####################################################################
1827 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1828 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1829 On the other hand, SvUOK is true iff UV.
1830 ####################################################################
1832 Your mileage will vary depending your CPU's relative fp to integer
1836 #ifndef NV_PRESERVES_UV
1837 # define IS_NUMBER_UNDERFLOW_IV 1
1838 # define IS_NUMBER_UNDERFLOW_UV 2
1839 # define IS_NUMBER_IV_AND_UV 2
1840 # define IS_NUMBER_OVERFLOW_IV 4
1841 # define IS_NUMBER_OVERFLOW_UV 5
1843 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1845 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1847 S_sv_2iuv_non_preserve(pTHX_ register SV *sv, I32 numtype)
1850 PERL_UNUSED_ARG(numtype); /* Used only under DEBUGGING? */
1851 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1852 if (SvNVX(sv) < (NV)IV_MIN) {
1853 (void)SvIOKp_on(sv);
1855 SvIV_set(sv, IV_MIN);
1856 return IS_NUMBER_UNDERFLOW_IV;
1858 if (SvNVX(sv) > (NV)UV_MAX) {
1859 (void)SvIOKp_on(sv);
1862 SvUV_set(sv, UV_MAX);
1863 return IS_NUMBER_OVERFLOW_UV;
1865 (void)SvIOKp_on(sv);
1867 /* Can't use strtol etc to convert this string. (See truth table in
1869 if (SvNVX(sv) <= (UV)IV_MAX) {
1870 SvIV_set(sv, I_V(SvNVX(sv)));
1871 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1872 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1874 /* Integer is imprecise. NOK, IOKp */
1876 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1879 SvUV_set(sv, U_V(SvNVX(sv)));
1880 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1881 if (SvUVX(sv) == UV_MAX) {
1882 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1883 possibly be preserved by NV. Hence, it must be overflow.
1885 return IS_NUMBER_OVERFLOW_UV;
1887 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1889 /* Integer is imprecise. NOK, IOKp */
1891 return IS_NUMBER_OVERFLOW_IV;
1893 #endif /* !NV_PRESERVES_UV*/
1896 S_sv_2iuv_common(pTHX_ SV *sv) {
1899 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1900 * without also getting a cached IV/UV from it at the same time
1901 * (ie PV->NV conversion should detect loss of accuracy and cache
1902 * IV or UV at same time to avoid this. */
1903 /* IV-over-UV optimisation - choose to cache IV if possible */
1905 if (SvTYPE(sv) == SVt_NV)
1906 sv_upgrade(sv, SVt_PVNV);
1908 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1909 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1910 certainly cast into the IV range at IV_MAX, whereas the correct
1911 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1913 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1914 if (Perl_isnan(SvNVX(sv))) {
1920 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
1921 SvIV_set(sv, I_V(SvNVX(sv)));
1922 if (SvNVX(sv) == (NV) SvIVX(sv)
1923 #ifndef NV_PRESERVES_UV
1924 && (((UV)1 << NV_PRESERVES_UV_BITS) >
1925 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
1926 /* Don't flag it as "accurately an integer" if the number
1927 came from a (by definition imprecise) NV operation, and
1928 we're outside the range of NV integer precision */
1931 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
1932 DEBUG_c(PerlIO_printf(Perl_debug_log,
1933 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
1939 /* IV not precise. No need to convert from PV, as NV
1940 conversion would already have cached IV if it detected
1941 that PV->IV would be better than PV->NV->IV
1942 flags already correct - don't set public IOK. */
1943 DEBUG_c(PerlIO_printf(Perl_debug_log,
1944 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
1949 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
1950 but the cast (NV)IV_MIN rounds to a the value less (more
1951 negative) than IV_MIN which happens to be equal to SvNVX ??
1952 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
1953 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
1954 (NV)UVX == NVX are both true, but the values differ. :-(
1955 Hopefully for 2s complement IV_MIN is something like
1956 0x8000000000000000 which will be exact. NWC */
1959 SvUV_set(sv, U_V(SvNVX(sv)));
1961 (SvNVX(sv) == (NV) SvUVX(sv))
1962 #ifndef NV_PRESERVES_UV
1963 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
1964 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
1965 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
1966 /* Don't flag it as "accurately an integer" if the number
1967 came from a (by definition imprecise) NV operation, and
1968 we're outside the range of NV integer precision */
1973 DEBUG_c(PerlIO_printf(Perl_debug_log,
1974 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
1980 else if (SvPOKp(sv) && SvLEN(sv)) {
1982 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
1983 /* We want to avoid a possible problem when we cache an IV/ a UV which
1984 may be later translated to an NV, and the resulting NV is not
1985 the same as the direct translation of the initial string
1986 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
1987 be careful to ensure that the value with the .456 is around if the
1988 NV value is requested in the future).
1990 This means that if we cache such an IV/a UV, we need to cache the
1991 NV as well. Moreover, we trade speed for space, and do not
1992 cache the NV if we are sure it's not needed.
1995 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
1996 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
1997 == IS_NUMBER_IN_UV) {
1998 /* It's definitely an integer, only upgrade to PVIV */
1999 if (SvTYPE(sv) < SVt_PVIV)
2000 sv_upgrade(sv, SVt_PVIV);
2002 } else if (SvTYPE(sv) < SVt_PVNV)
2003 sv_upgrade(sv, SVt_PVNV);
2005 /* If NVs preserve UVs then we only use the UV value if we know that
2006 we aren't going to call atof() below. If NVs don't preserve UVs
2007 then the value returned may have more precision than atof() will
2008 return, even though value isn't perfectly accurate. */
2009 if ((numtype & (IS_NUMBER_IN_UV
2010 #ifdef NV_PRESERVES_UV
2013 )) == IS_NUMBER_IN_UV) {
2014 /* This won't turn off the public IOK flag if it was set above */
2015 (void)SvIOKp_on(sv);
2017 if (!(numtype & IS_NUMBER_NEG)) {
2019 if (value <= (UV)IV_MAX) {
2020 SvIV_set(sv, (IV)value);
2022 /* it didn't overflow, and it was positive. */
2023 SvUV_set(sv, value);
2027 /* 2s complement assumption */
2028 if (value <= (UV)IV_MIN) {
2029 SvIV_set(sv, -(IV)value);
2031 /* Too negative for an IV. This is a double upgrade, but
2032 I'm assuming it will be rare. */
2033 if (SvTYPE(sv) < SVt_PVNV)
2034 sv_upgrade(sv, SVt_PVNV);
2038 SvNV_set(sv, -(NV)value);
2039 SvIV_set(sv, IV_MIN);
2043 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2044 will be in the previous block to set the IV slot, and the next
2045 block to set the NV slot. So no else here. */
2047 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2048 != IS_NUMBER_IN_UV) {
2049 /* It wasn't an (integer that doesn't overflow the UV). */
2050 SvNV_set(sv, Atof(SvPVX_const(sv)));
2052 if (! numtype && ckWARN(WARN_NUMERIC))
2055 #if defined(USE_LONG_DOUBLE)
2056 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2057 PTR2UV(sv), SvNVX(sv)));
2059 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2060 PTR2UV(sv), SvNVX(sv)));
2063 #ifdef NV_PRESERVES_UV
2064 (void)SvIOKp_on(sv);
2066 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2067 SvIV_set(sv, I_V(SvNVX(sv)));
2068 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2071 NOOP; /* Integer is imprecise. NOK, IOKp */
2073 /* UV will not work better than IV */
2075 if (SvNVX(sv) > (NV)UV_MAX) {
2077 /* Integer is inaccurate. NOK, IOKp, is UV */
2078 SvUV_set(sv, UV_MAX);
2080 SvUV_set(sv, U_V(SvNVX(sv)));
2081 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2082 NV preservse UV so can do correct comparison. */
2083 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2086 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2091 #else /* NV_PRESERVES_UV */
2092 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2093 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2094 /* The IV/UV slot will have been set from value returned by
2095 grok_number above. The NV slot has just been set using
2098 assert (SvIOKp(sv));
2100 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2101 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2102 /* Small enough to preserve all bits. */
2103 (void)SvIOKp_on(sv);
2105 SvIV_set(sv, I_V(SvNVX(sv)));
2106 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2108 /* Assumption: first non-preserved integer is < IV_MAX,
2109 this NV is in the preserved range, therefore: */
2110 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2112 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2116 0 0 already failed to read UV.
2117 0 1 already failed to read UV.
2118 1 0 you won't get here in this case. IV/UV
2119 slot set, public IOK, Atof() unneeded.
2120 1 1 already read UV.
2121 so there's no point in sv_2iuv_non_preserve() attempting
2122 to use atol, strtol, strtoul etc. */
2123 sv_2iuv_non_preserve (sv, numtype);
2126 #endif /* NV_PRESERVES_UV */
2130 if (isGV_with_GP(sv))
2131 return glob_2number((GV *)sv);
2133 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2134 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2137 if (SvTYPE(sv) < SVt_IV)
2138 /* Typically the caller expects that sv_any is not NULL now. */
2139 sv_upgrade(sv, SVt_IV);
2140 /* Return 0 from the caller. */
2147 =for apidoc sv_2iv_flags
2149 Return the integer value of an SV, doing any necessary string
2150 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2151 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2157 Perl_sv_2iv_flags(pTHX_ register SV *sv, I32 flags)
2162 if (SvGMAGICAL(sv) || SvTYPE(sv) == SVt_PVBM) {
2163 /* PVBMs use the same flag bit as SVf_IVisUV, so must let them
2164 cache IVs just in case. In practice it seems that they never
2165 actually anywhere accessible by user Perl code, let alone get used
2166 in anything other than a string context. */
2167 if (flags & SV_GMAGIC)
2172 return I_V(SvNVX(sv));
2174 if (SvPOKp(sv) && SvLEN(sv)) {
2177 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2179 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2180 == IS_NUMBER_IN_UV) {
2181 /* It's definitely an integer */
2182 if (numtype & IS_NUMBER_NEG) {
2183 if (value < (UV)IV_MIN)
2186 if (value < (UV)IV_MAX)
2191 if (ckWARN(WARN_NUMERIC))
2194 return I_V(Atof(SvPVX_const(sv)));
2199 assert(SvTYPE(sv) >= SVt_PVMG);
2200 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2201 } else if (SvTHINKFIRST(sv)) {
2205 SV * const tmpstr=AMG_CALLun(sv,numer);
2206 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2207 return SvIV(tmpstr);
2210 return PTR2IV(SvRV(sv));
2213 sv_force_normal_flags(sv, 0);
2215 if (SvREADONLY(sv) && !SvOK(sv)) {
2216 if (ckWARN(WARN_UNINITIALIZED))
2222 if (S_sv_2iuv_common(aTHX_ sv))
2225 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2226 PTR2UV(sv),SvIVX(sv)));
2227 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2231 =for apidoc sv_2uv_flags
2233 Return the unsigned integer value of an SV, doing any necessary string
2234 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2235 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2241 Perl_sv_2uv_flags(pTHX_ register SV *sv, I32 flags)
2246 if (SvGMAGICAL(sv) || SvTYPE(sv) == SVt_PVBM) {
2247 /* PVBMs use the same flag bit as SVf_IVisUV, so must let them
2248 cache IVs just in case. */
2249 if (flags & SV_GMAGIC)
2254 return U_V(SvNVX(sv));
2255 if (SvPOKp(sv) && SvLEN(sv)) {
2258 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2260 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2261 == IS_NUMBER_IN_UV) {
2262 /* It's definitely an integer */
2263 if (!(numtype & IS_NUMBER_NEG))
2267 if (ckWARN(WARN_NUMERIC))
2270 return U_V(Atof(SvPVX_const(sv)));
2275 assert(SvTYPE(sv) >= SVt_PVMG);
2276 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2277 } else if (SvTHINKFIRST(sv)) {
2281 SV *const tmpstr = AMG_CALLun(sv,numer);
2282 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2283 return SvUV(tmpstr);
2286 return PTR2UV(SvRV(sv));
2289 sv_force_normal_flags(sv, 0);
2291 if (SvREADONLY(sv) && !SvOK(sv)) {
2292 if (ckWARN(WARN_UNINITIALIZED))
2298 if (S_sv_2iuv_common(aTHX_ sv))
2302 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2303 PTR2UV(sv),SvUVX(sv)));
2304 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2310 Return the num value of an SV, doing any necessary string or integer
2311 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2318 Perl_sv_2nv(pTHX_ register SV *sv)
2323 if (SvGMAGICAL(sv) || SvTYPE(sv) == SVt_PVBM) {
2324 /* PVBMs use the same flag bit as SVf_IVisUV, so must let them
2325 cache IVs just in case. */
2329 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2330 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2331 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2333 return Atof(SvPVX_const(sv));
2337 return (NV)SvUVX(sv);
2339 return (NV)SvIVX(sv);
2344 assert(SvTYPE(sv) >= SVt_PVMG);
2345 /* This falls through to the report_uninit near the end of the
2347 } else if (SvTHINKFIRST(sv)) {
2351 SV *const tmpstr = AMG_CALLun(sv,numer);
2352 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2353 return SvNV(tmpstr);
2356 return PTR2NV(SvRV(sv));
2359 sv_force_normal_flags(sv, 0);
2361 if (SvREADONLY(sv) && !SvOK(sv)) {
2362 if (ckWARN(WARN_UNINITIALIZED))
2367 if (SvTYPE(sv) < SVt_NV) {
2368 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2369 sv_upgrade(sv, SVt_NV);
2370 #ifdef USE_LONG_DOUBLE
2372 STORE_NUMERIC_LOCAL_SET_STANDARD();
2373 PerlIO_printf(Perl_debug_log,
2374 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2375 PTR2UV(sv), SvNVX(sv));
2376 RESTORE_NUMERIC_LOCAL();
2380 STORE_NUMERIC_LOCAL_SET_STANDARD();
2381 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2382 PTR2UV(sv), SvNVX(sv));
2383 RESTORE_NUMERIC_LOCAL();
2387 else if (SvTYPE(sv) < SVt_PVNV)
2388 sv_upgrade(sv, SVt_PVNV);
2393 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2394 #ifdef NV_PRESERVES_UV
2397 /* Only set the public NV OK flag if this NV preserves the IV */
2398 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2399 if (SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2400 : (SvIVX(sv) == I_V(SvNVX(sv))))
2406 else if (SvPOKp(sv) && SvLEN(sv)) {
2408 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2409 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2411 #ifdef NV_PRESERVES_UV
2412 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2413 == IS_NUMBER_IN_UV) {
2414 /* It's definitely an integer */
2415 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2417 SvNV_set(sv, Atof(SvPVX_const(sv)));
2420 SvNV_set(sv, Atof(SvPVX_const(sv)));
2421 /* Only set the public NV OK flag if this NV preserves the value in
2422 the PV at least as well as an IV/UV would.
2423 Not sure how to do this 100% reliably. */
2424 /* if that shift count is out of range then Configure's test is
2425 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2427 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2428 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2429 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2430 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2431 /* Can't use strtol etc to convert this string, so don't try.
2432 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2435 /* value has been set. It may not be precise. */
2436 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2437 /* 2s complement assumption for (UV)IV_MIN */
2438 SvNOK_on(sv); /* Integer is too negative. */
2443 if (numtype & IS_NUMBER_NEG) {
2444 SvIV_set(sv, -(IV)value);
2445 } else if (value <= (UV)IV_MAX) {
2446 SvIV_set(sv, (IV)value);
2448 SvUV_set(sv, value);
2452 if (numtype & IS_NUMBER_NOT_INT) {
2453 /* I believe that even if the original PV had decimals,
2454 they are lost beyond the limit of the FP precision.
2455 However, neither is canonical, so both only get p
2456 flags. NWC, 2000/11/25 */
2457 /* Both already have p flags, so do nothing */
2459 const NV nv = SvNVX(sv);
2460 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2461 if (SvIVX(sv) == I_V(nv)) {
2464 /* It had no "." so it must be integer. */
2468 /* between IV_MAX and NV(UV_MAX).
2469 Could be slightly > UV_MAX */
2471 if (numtype & IS_NUMBER_NOT_INT) {
2472 /* UV and NV both imprecise. */
2474 const UV nv_as_uv = U_V(nv);
2476 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2485 #endif /* NV_PRESERVES_UV */
2488 if (isGV_with_GP(sv)) {
2489 glob_2number((GV *)sv);
2493 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2495 assert (SvTYPE(sv) >= SVt_NV);
2496 /* Typically the caller expects that sv_any is not NULL now. */
2497 /* XXX Ilya implies that this is a bug in callers that assume this
2498 and ideally should be fixed. */
2501 #if defined(USE_LONG_DOUBLE)
2503 STORE_NUMERIC_LOCAL_SET_STANDARD();
2504 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2505 PTR2UV(sv), SvNVX(sv));
2506 RESTORE_NUMERIC_LOCAL();
2510 STORE_NUMERIC_LOCAL_SET_STANDARD();
2511 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2512 PTR2UV(sv), SvNVX(sv));
2513 RESTORE_NUMERIC_LOCAL();
2519 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2520 * UV as a string towards the end of buf, and return pointers to start and
2523 * We assume that buf is at least TYPE_CHARS(UV) long.
2527 S_uiv_2buf(char *buf, IV iv, UV uv, int is_uv, char **peob)
2529 char *ptr = buf + TYPE_CHARS(UV);
2530 char * const ebuf = ptr;
2543 *--ptr = '0' + (char)(uv % 10);
2552 =for apidoc sv_2pv_flags
2554 Returns a pointer to the string value of an SV, and sets *lp to its length.
2555 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2557 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2558 usually end up here too.
2564 Perl_sv_2pv_flags(pTHX_ register SV *sv, STRLEN *lp, I32 flags)
2574 if (SvGMAGICAL(sv)) {
2575 if (flags & SV_GMAGIC)
2580 if (flags & SV_MUTABLE_RETURN)
2581 return SvPVX_mutable(sv);
2582 if (flags & SV_CONST_RETURN)
2583 return (char *)SvPVX_const(sv);
2586 if (SvIOKp(sv) || SvNOKp(sv)) {
2587 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2592 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2593 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2595 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2602 #ifdef FIXNEGATIVEZERO
2603 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2609 SvUPGRADE(sv, SVt_PV);
2612 s = SvGROW_mutable(sv, len + 1);
2615 return (char*)memcpy(s, tbuf, len + 1);
2621 assert(SvTYPE(sv) >= SVt_PVMG);
2622 /* This falls through to the report_uninit near the end of the
2624 } else if (SvTHINKFIRST(sv)) {
2628 SV *const tmpstr = AMG_CALLun(sv,string);
2629 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2631 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2635 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2636 if (flags & SV_CONST_RETURN) {
2637 pv = (char *) SvPVX_const(tmpstr);
2639 pv = (flags & SV_MUTABLE_RETURN)
2640 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2643 *lp = SvCUR(tmpstr);
2645 pv = sv_2pv_flags(tmpstr, lp, flags);
2659 const SV *const referent = (SV*)SvRV(sv);
2663 retval = buffer = savepvn("NULLREF", len);
2664 } else if (SvTYPE(referent) == SVt_PVMG
2665 && ((SvFLAGS(referent) &
2666 (SVs_OBJECT|SVf_OK|SVs_GMG|SVs_SMG|SVs_RMG))
2667 == (SVs_OBJECT|SVs_SMG))
2668 && (mg = mg_find(referent, PERL_MAGIC_qr)))
2673 (str) = CALLREG_AS_STR(mg,lp,&flags,&haseval);
2678 PL_reginterp_cnt += haseval;
2681 const char *const typestr = sv_reftype(referent, 0);
2682 const STRLEN typelen = strlen(typestr);
2683 UV addr = PTR2UV(referent);
2684 const char *stashname = NULL;
2685 STRLEN stashnamelen = 0; /* hush, gcc */
2686 const char *buffer_end;
2688 if (SvOBJECT(referent)) {
2689 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2692 stashname = HEK_KEY(name);
2693 stashnamelen = HEK_LEN(name);
2695 if (HEK_UTF8(name)) {
2701 stashname = "__ANON__";
2704 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2705 + 2 * sizeof(UV) + 2 /* )\0 */;
2707 len = typelen + 3 /* (0x */
2708 + 2 * sizeof(UV) + 2 /* )\0 */;
2711 Newx(buffer, len, char);
2712 buffer_end = retval = buffer + len;
2714 /* Working backwards */
2718 *--retval = PL_hexdigit[addr & 15];
2719 } while (addr >>= 4);
2725 memcpy(retval, typestr, typelen);
2729 retval -= stashnamelen;
2730 memcpy(retval, stashname, stashnamelen);
2732 /* retval may not neccesarily have reached the start of the
2734 assert (retval >= buffer);
2736 len = buffer_end - retval - 1; /* -1 for that \0 */
2744 if (SvREADONLY(sv) && !SvOK(sv)) {
2745 if (ckWARN(WARN_UNINITIALIZED))
2752 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2753 /* I'm assuming that if both IV and NV are equally valid then
2754 converting the IV is going to be more efficient */
2755 const U32 isUIOK = SvIsUV(sv);
2756 char buf[TYPE_CHARS(UV)];
2759 if (SvTYPE(sv) < SVt_PVIV)
2760 sv_upgrade(sv, SVt_PVIV);
2761 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2762 /* inlined from sv_setpvn */
2763 SvGROW_mutable(sv, (STRLEN)(ebuf - ptr + 1));
2764 Move(ptr,SvPVX_mutable(sv),ebuf - ptr,char);
2765 SvCUR_set(sv, ebuf - ptr);
2769 else if (SvNOKp(sv)) {
2770 const int olderrno = errno;
2771 if (SvTYPE(sv) < SVt_PVNV)
2772 sv_upgrade(sv, SVt_PVNV);
2773 /* The +20 is pure guesswork. Configure test needed. --jhi */
2774 s = SvGROW_mutable(sv, NV_DIG + 20);
2775 /* some Xenix systems wipe out errno here */
2777 if (SvNVX(sv) == 0.0)
2778 my_strlcpy(s, "0", SvLEN(sv));
2782 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2785 #ifdef FIXNEGATIVEZERO
2786 if (*s == '-' && s[1] == '0' && !s[2])
2787 my_strlcpy(s, "0", SvLEN(s));
2796 if (isGV_with_GP(sv))
2797 return glob_2pv((GV *)sv, lp);
2799 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2803 if (SvTYPE(sv) < SVt_PV)
2804 /* Typically the caller expects that sv_any is not NULL now. */
2805 sv_upgrade(sv, SVt_PV);
2809 const STRLEN len = s - SvPVX_const(sv);
2815 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2816 PTR2UV(sv),SvPVX_const(sv)));
2817 if (flags & SV_CONST_RETURN)
2818 return (char *)SvPVX_const(sv);
2819 if (flags & SV_MUTABLE_RETURN)
2820 return SvPVX_mutable(sv);
2825 =for apidoc sv_copypv
2827 Copies a stringified representation of the source SV into the
2828 destination SV. Automatically performs any necessary mg_get and
2829 coercion of numeric values into strings. Guaranteed to preserve
2830 UTF-8 flag even from overloaded objects. Similar in nature to
2831 sv_2pv[_flags] but operates directly on an SV instead of just the
2832 string. Mostly uses sv_2pv_flags to do its work, except when that
2833 would lose the UTF-8'ness of the PV.
2839 Perl_sv_copypv(pTHX_ SV *dsv, register SV *ssv)
2842 const char * const s = SvPV_const(ssv,len);
2843 sv_setpvn(dsv,s,len);
2851 =for apidoc sv_2pvbyte
2853 Return a pointer to the byte-encoded representation of the SV, and set *lp
2854 to its length. May cause the SV to be downgraded from UTF-8 as a
2857 Usually accessed via the C<SvPVbyte> macro.
2863 Perl_sv_2pvbyte(pTHX_ register SV *sv, STRLEN *lp)
2865 sv_utf8_downgrade(sv,0);
2866 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2870 =for apidoc sv_2pvutf8
2872 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
2873 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
2875 Usually accessed via the C<SvPVutf8> macro.
2881 Perl_sv_2pvutf8(pTHX_ register SV *sv, STRLEN *lp)
2883 sv_utf8_upgrade(sv);
2884 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2889 =for apidoc sv_2bool
2891 This function is only called on magical items, and is only used by
2892 sv_true() or its macro equivalent.
2898 Perl_sv_2bool(pTHX_ register SV *sv)
2907 SV * const tmpsv = AMG_CALLun(sv,bool_);
2908 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2909 return (bool)SvTRUE(tmpsv);
2911 return SvRV(sv) != 0;
2914 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
2916 (*sv->sv_u.svu_pv > '0' ||
2917 Xpvtmp->xpv_cur > 1 ||
2918 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
2925 return SvIVX(sv) != 0;
2928 return SvNVX(sv) != 0.0;
2930 if (isGV_with_GP(sv))
2940 =for apidoc sv_utf8_upgrade
2942 Converts the PV of an SV to its UTF-8-encoded form.
2943 Forces the SV to string form if it is not already.
2944 Always sets the SvUTF8 flag to avoid future validity checks even
2945 if all the bytes have hibit clear.
2947 This is not as a general purpose byte encoding to Unicode interface:
2948 use the Encode extension for that.
2950 =for apidoc sv_utf8_upgrade_flags
2952 Converts the PV of an SV to its UTF-8-encoded form.
2953 Forces the SV to string form if it is not already.
2954 Always sets the SvUTF8 flag to avoid future validity checks even
2955 if all the bytes have hibit clear. If C<flags> has C<SV_GMAGIC> bit set,
2956 will C<mg_get> on C<sv> if appropriate, else not. C<sv_utf8_upgrade> and
2957 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
2959 This is not as a general purpose byte encoding to Unicode interface:
2960 use the Encode extension for that.
2966 Perl_sv_utf8_upgrade_flags(pTHX_ register SV *sv, I32 flags)
2969 if (sv == &PL_sv_undef)
2973 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
2974 (void) sv_2pv_flags(sv,&len, flags);
2978 (void) SvPV_force(sv,len);
2987 sv_force_normal_flags(sv, 0);
2990 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING))
2991 sv_recode_to_utf8(sv, PL_encoding);
2992 else { /* Assume Latin-1/EBCDIC */
2993 /* This function could be much more efficient if we
2994 * had a FLAG in SVs to signal if there are any hibit
2995 * chars in the PV. Given that there isn't such a flag
2996 * make the loop as fast as possible. */
2997 const U8 * const s = (U8 *) SvPVX_const(sv);
2998 const U8 * const e = (U8 *) SvEND(sv);
3003 /* Check for hi bit */
3004 if (!NATIVE_IS_INVARIANT(ch)) {
3005 STRLEN len = SvCUR(sv) + 1; /* Plus the \0 */
3006 U8 * const recoded = bytes_to_utf8((U8*)s, &len);
3008 SvPV_free(sv); /* No longer using what was there before. */
3009 SvPV_set(sv, (char*)recoded);
3010 SvCUR_set(sv, len - 1);
3011 SvLEN_set(sv, len); /* No longer know the real size. */
3015 /* Mark as UTF-8 even if no hibit - saves scanning loop */
3022 =for apidoc sv_utf8_downgrade
3024 Attempts to convert the PV of an SV from characters to bytes.
3025 If the PV contains a character beyond byte, this conversion will fail;
3026 in this case, either returns false or, if C<fail_ok> is not
3029 This is not as a general purpose Unicode to byte encoding interface:
3030 use the Encode extension for that.
3036 Perl_sv_utf8_downgrade(pTHX_ register SV* sv, bool fail_ok)
3039 if (SvPOKp(sv) && SvUTF8(sv)) {
3045 sv_force_normal_flags(sv, 0);
3047 s = (U8 *) SvPV(sv, len);
3048 if (!utf8_to_bytes(s, &len)) {
3053 Perl_croak(aTHX_ "Wide character in %s",
3056 Perl_croak(aTHX_ "Wide character");
3067 =for apidoc sv_utf8_encode
3069 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3070 flag off so that it looks like octets again.
3076 Perl_sv_utf8_encode(pTHX_ register SV *sv)
3079 sv_force_normal_flags(sv, 0);
3081 if (SvREADONLY(sv)) {
3082 Perl_croak(aTHX_ PL_no_modify);
3084 (void) sv_utf8_upgrade(sv);
3089 =for apidoc sv_utf8_decode
3091 If the PV of the SV is an octet sequence in UTF-8
3092 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3093 so that it looks like a character. If the PV contains only single-byte
3094 characters, the C<SvUTF8> flag stays being off.
3095 Scans PV for validity and returns false if the PV is invalid UTF-8.
3101 Perl_sv_utf8_decode(pTHX_ register SV *sv)
3107 /* The octets may have got themselves encoded - get them back as
3110 if (!sv_utf8_downgrade(sv, TRUE))
3113 /* it is actually just a matter of turning the utf8 flag on, but
3114 * we want to make sure everything inside is valid utf8 first.
3116 c = (const U8 *) SvPVX_const(sv);
3117 if (!is_utf8_string(c, SvCUR(sv)+1))
3119 e = (const U8 *) SvEND(sv);
3122 if (!UTF8_IS_INVARIANT(ch)) {
3132 =for apidoc sv_setsv
3134 Copies the contents of the source SV C<ssv> into the destination SV
3135 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3136 function if the source SV needs to be reused. Does not handle 'set' magic.
3137 Loosely speaking, it performs a copy-by-value, obliterating any previous
3138 content of the destination.
3140 You probably want to use one of the assortment of wrappers, such as
3141 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3142 C<SvSetMagicSV_nosteal>.
3144 =for apidoc sv_setsv_flags
3146 Copies the contents of the source SV C<ssv> into the destination SV
3147 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3148 function if the source SV needs to be reused. Does not handle 'set' magic.
3149 Loosely speaking, it performs a copy-by-value, obliterating any previous
3150 content of the destination.
3151 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3152 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3153 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3154 and C<sv_setsv_nomg> are implemented in terms of this function.
3156 You probably want to use one of the assortment of wrappers, such as
3157 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3158 C<SvSetMagicSV_nosteal>.
3160 This is the primary function for copying scalars, and most other
3161 copy-ish functions and macros use this underneath.
3167 S_glob_assign_glob(pTHX_ SV *dstr, SV *sstr, const int dtype)
3169 if (dtype != SVt_PVGV) {
3170 const char * const name = GvNAME(sstr);
3171 const STRLEN len = GvNAMELEN(sstr);
3172 /* don't upgrade SVt_PVLV: it can hold a glob */
3173 if (dtype != SVt_PVLV) {
3174 if (dtype >= SVt_PV) {
3180 sv_upgrade(dstr, SVt_PVGV);
3181 (void)SvOK_off(dstr);
3184 GvSTASH(dstr) = GvSTASH(sstr);
3186 Perl_sv_add_backref(aTHX_ (SV*)GvSTASH(dstr), dstr);
3187 gv_name_set((GV *)dstr, name, len, GV_ADD);
3188 SvFAKE_on(dstr); /* can coerce to non-glob */
3191 #ifdef GV_UNIQUE_CHECK
3192 if (GvUNIQUE((GV*)dstr)) {
3193 Perl_croak(aTHX_ PL_no_modify);
3199 (void)SvOK_off(dstr);
3201 GvINTRO_off(dstr); /* one-shot flag */
3202 GvGP(dstr) = gp_ref(GvGP(sstr));
3203 if (SvTAINTED(sstr))
3205 if (GvIMPORTED(dstr) != GVf_IMPORTED
3206 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3208 GvIMPORTED_on(dstr);
3215 S_glob_assign_ref(pTHX_ SV *dstr, SV *sstr) {
3216 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3218 const int intro = GvINTRO(dstr);
3221 const U32 stype = SvTYPE(sref);
3224 #ifdef GV_UNIQUE_CHECK
3225 if (GvUNIQUE((GV*)dstr)) {
3226 Perl_croak(aTHX_ PL_no_modify);
3231 GvINTRO_off(dstr); /* one-shot flag */
3232 GvLINE(dstr) = CopLINE(PL_curcop);
3233 GvEGV(dstr) = (GV*)dstr;
3238 location = (SV **) &GvCV(dstr);
3239 import_flag = GVf_IMPORTED_CV;
3242 location = (SV **) &GvHV(dstr);
3243 import_flag = GVf_IMPORTED_HV;
3246 location = (SV **) &GvAV(dstr);
3247 import_flag = GVf_IMPORTED_AV;
3250 location = (SV **) &GvIOp(dstr);
3253 location = (SV **) &GvFORM(dstr);
3255 location = &GvSV(dstr);
3256 import_flag = GVf_IMPORTED_SV;
3259 if (stype == SVt_PVCV) {
3260 if (GvCVGEN(dstr) && GvCV(dstr) != (CV*)sref) {
3261 SvREFCNT_dec(GvCV(dstr));
3263 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3264 PL_sub_generation++;
3267 SAVEGENERICSV(*location);
3271 if (stype == SVt_PVCV && *location != sref) {
3272 CV* const cv = (CV*)*location;
3274 if (!GvCVGEN((GV*)dstr) &&
3275 (CvROOT(cv) || CvXSUB(cv)))
3277 /* Redefining a sub - warning is mandatory if
3278 it was a const and its value changed. */
3279 if (CvCONST(cv) && CvCONST((CV*)sref)
3280 && cv_const_sv(cv) == cv_const_sv((CV*)sref)) {
3282 /* They are 2 constant subroutines generated from
3283 the same constant. This probably means that
3284 they are really the "same" proxy subroutine
3285 instantiated in 2 places. Most likely this is
3286 when a constant is exported twice. Don't warn.
3289 else if (ckWARN(WARN_REDEFINE)
3291 && (!CvCONST((CV*)sref)
3292 || sv_cmp(cv_const_sv(cv),
3293 cv_const_sv((CV*)sref))))) {
3294 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3297 ? "Constant subroutine %s::%s redefined"
3298 : "Subroutine %s::%s redefined"),
3299 HvNAME_get(GvSTASH((GV*)dstr)),
3300 GvENAME((GV*)dstr));
3304 cv_ckproto_len(cv, (GV*)dstr,
3305 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3306 SvPOK(sref) ? SvCUR(sref) : 0);
3308 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3309 GvASSUMECV_on(dstr);
3310 PL_sub_generation++;
3313 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3314 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3315 GvFLAGS(dstr) |= import_flag;
3320 if (SvTAINTED(sstr))
3326 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV *sstr, I32 flags)
3329 register U32 sflags;
3331 register svtype stype;
3336 if (SvIS_FREED(dstr)) {
3337 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3338 " to a freed scalar %p", sstr, dstr);
3340 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3342 sstr = &PL_sv_undef;
3343 if (SvIS_FREED(sstr)) {
3344 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p", sstr,
3347 stype = SvTYPE(sstr);
3348 dtype = SvTYPE(dstr);
3353 /* need to nuke the magic */
3355 SvRMAGICAL_off(dstr);
3358 /* There's a lot of redundancy below but we're going for speed here */
3363 if (dtype != SVt_PVGV) {
3364 (void)SvOK_off(dstr);
3372 sv_upgrade(dstr, SVt_IV);
3377 sv_upgrade(dstr, SVt_PVIV);
3380 (void)SvIOK_only(dstr);
3381 SvIV_set(dstr, SvIVX(sstr));
3384 /* SvTAINTED can only be true if the SV has taint magic, which in
3385 turn means that the SV type is PVMG (or greater). This is the
3386 case statement for SVt_IV, so this cannot be true (whatever gcov
3388 assert(!SvTAINTED(sstr));
3398 sv_upgrade(dstr, SVt_NV);
3403 sv_upgrade(dstr, SVt_PVNV);
3406 SvNV_set(dstr, SvNVX(sstr));
3407 (void)SvNOK_only(dstr);
3408 /* SvTAINTED can only be true if the SV has taint magic, which in
3409 turn means that the SV type is PVMG (or greater). This is the
3410 case statement for SVt_NV, so this cannot be true (whatever gcov
3412 assert(!SvTAINTED(sstr));
3419 sv_upgrade(dstr, SVt_RV);
3422 #ifdef PERL_OLD_COPY_ON_WRITE
3423 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3424 if (dtype < SVt_PVIV)
3425 sv_upgrade(dstr, SVt_PVIV);
3432 sv_upgrade(dstr, SVt_PV);
3435 if (dtype < SVt_PVIV)
3436 sv_upgrade(dstr, SVt_PVIV);
3439 if (dtype < SVt_PVNV)
3440 sv_upgrade(dstr, SVt_PVNV);
3444 const char * const type = sv_reftype(sstr,0);
3446 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3448 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3453 if (dtype <= SVt_PVGV) {
3454 glob_assign_glob(dstr, sstr, dtype);
3462 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3464 if (SvTYPE(sstr) != stype) {
3465 stype = SvTYPE(sstr);
3466 if (stype == SVt_PVGV && dtype <= SVt_PVGV) {
3467 glob_assign_glob(dstr, sstr, dtype);
3472 if (stype == SVt_PVLV)
3473 SvUPGRADE(dstr, SVt_PVNV);
3475 SvUPGRADE(dstr, (svtype)stype);
3478 /* dstr may have been upgraded. */
3479 dtype = SvTYPE(dstr);
3480 sflags = SvFLAGS(sstr);
3482 if (dtype == SVt_PVCV) {
3483 /* Assigning to a subroutine sets the prototype. */
3486 const char *const ptr = SvPV_const(sstr, len);
3488 SvGROW(dstr, len + 1);
3489 Copy(ptr, SvPVX(dstr), len + 1, char);
3490 SvCUR_set(dstr, len);
3495 } else if (sflags & SVf_ROK) {
3496 if (dtype == SVt_PVGV && SvTYPE(SvRV(sstr)) == SVt_PVGV) {
3499 if (GvIMPORTED(dstr) != GVf_IMPORTED
3500 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3502 GvIMPORTED_on(dstr);
3507 glob_assign_glob(dstr, sstr, dtype);
3511 if (dtype >= SVt_PV) {
3512 if (dtype == SVt_PVGV) {
3513 glob_assign_ref(dstr, sstr);
3516 if (SvPVX_const(dstr)) {
3522 (void)SvOK_off(dstr);
3523 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
3524 SvFLAGS(dstr) |= sflags & SVf_ROK;
3525 assert(!(sflags & SVp_NOK));
3526 assert(!(sflags & SVp_IOK));
3527 assert(!(sflags & SVf_NOK));
3528 assert(!(sflags & SVf_IOK));
3530 else if (dtype == SVt_PVGV) {
3531 if (!(sflags & SVf_OK)) {
3532 if (ckWARN(WARN_MISC))
3533 Perl_warner(aTHX_ packWARN(WARN_MISC),
3534 "Undefined value assigned to typeglob");
3537 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
3538 if (dstr != (SV*)gv) {
3541 GvGP(dstr) = gp_ref(GvGP(gv));
3545 else if (sflags & SVp_POK) {
3549 * Check to see if we can just swipe the string. If so, it's a
3550 * possible small lose on short strings, but a big win on long ones.
3551 * It might even be a win on short strings if SvPVX_const(dstr)
3552 * has to be allocated and SvPVX_const(sstr) has to be freed.
3553 * Likewise if we can set up COW rather than doing an actual copy, we
3554 * drop to the else clause, as the swipe code and the COW setup code
3555 * have much in common.
3558 /* Whichever path we take through the next code, we want this true,
3559 and doing it now facilitates the COW check. */
3560 (void)SvPOK_only(dstr);
3563 /* If we're already COW then this clause is not true, and if COW
3564 is allowed then we drop down to the else and make dest COW
3565 with us. If caller hasn't said that we're allowed to COW
3566 shared hash keys then we don't do the COW setup, even if the
3567 source scalar is a shared hash key scalar. */
3568 (((flags & SV_COW_SHARED_HASH_KEYS)
3569 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
3570 : 1 /* If making a COW copy is forbidden then the behaviour we
3571 desire is as if the source SV isn't actually already
3572 COW, even if it is. So we act as if the source flags
3573 are not COW, rather than actually testing them. */
3575 #ifndef PERL_OLD_COPY_ON_WRITE
3576 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
3577 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
3578 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
3579 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
3580 but in turn, it's somewhat dead code, never expected to go
3581 live, but more kept as a placeholder on how to do it better
3582 in a newer implementation. */
3583 /* If we are COW and dstr is a suitable target then we drop down
3584 into the else and make dest a COW of us. */
3585 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
3590 (sflags & SVs_TEMP) && /* slated for free anyway? */
3591 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
3592 (!(flags & SV_NOSTEAL)) &&
3593 /* and we're allowed to steal temps */
3594 SvREFCNT(sstr) == 1 && /* and no other references to it? */
3595 SvLEN(sstr) && /* and really is a string */
3596 /* and won't be needed again, potentially */
3597 !(PL_op && PL_op->op_type == OP_AASSIGN))
3598 #ifdef PERL_OLD_COPY_ON_WRITE
3599 && !((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
3600 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
3601 && SvTYPE(sstr) >= SVt_PVIV)
3604 /* Failed the swipe test, and it's not a shared hash key either.
3605 Have to copy the string. */
3606 STRLEN len = SvCUR(sstr);
3607 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
3608 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
3609 SvCUR_set(dstr, len);
3610 *SvEND(dstr) = '\0';
3612 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
3614 /* Either it's a shared hash key, or it's suitable for
3615 copy-on-write or we can swipe the string. */
3617 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
3621 #ifdef PERL_OLD_COPY_ON_WRITE
3623 /* I believe I should acquire a global SV mutex if
3624 it's a COW sv (not a shared hash key) to stop
3625 it going un copy-on-write.
3626 If the source SV has gone un copy on write between up there
3627 and down here, then (assert() that) it is of the correct
3628 form to make it copy on write again */
3629 if ((sflags & (SVf_FAKE | SVf_READONLY))
3630 != (SVf_FAKE | SVf_READONLY)) {
3631 SvREADONLY_on(sstr);
3633 /* Make the source SV into a loop of 1.
3634 (about to become 2) */
3635 SV_COW_NEXT_SV_SET(sstr, sstr);
3639 /* Initial code is common. */
3640 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
3645 /* making another shared SV. */
3646 STRLEN cur = SvCUR(sstr);
3647 STRLEN len = SvLEN(sstr);
3648 #ifdef PERL_OLD_COPY_ON_WRITE
3650 assert (SvTYPE(dstr) >= SVt_PVIV);
3651 /* SvIsCOW_normal */
3652 /* splice us in between source and next-after-source. */
3653 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3654 SV_COW_NEXT_SV_SET(sstr, dstr);
3655 SvPV_set(dstr, SvPVX_mutable(sstr));
3659 /* SvIsCOW_shared_hash */
3660 DEBUG_C(PerlIO_printf(Perl_debug_log,
3661 "Copy on write: Sharing hash\n"));
3663 assert (SvTYPE(dstr) >= SVt_PV);
3665 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
3667 SvLEN_set(dstr, len);
3668 SvCUR_set(dstr, cur);
3669 SvREADONLY_on(dstr);
3671 /* Relesase a global SV mutex. */
3674 { /* Passes the swipe test. */
3675 SvPV_set(dstr, SvPVX_mutable(sstr));
3676 SvLEN_set(dstr, SvLEN(sstr));
3677 SvCUR_set(dstr, SvCUR(sstr));
3680 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
3681 SvPV_set(sstr, NULL);
3687 if (sflags & SVp_NOK) {
3688 SvNV_set(dstr, SvNVX(sstr));
3690 if (sflags & SVp_IOK) {
3691 SvRELEASE_IVX(dstr);
3692 SvIV_set(dstr, SvIVX(sstr));
3693 /* Must do this otherwise some other overloaded use of 0x80000000
3694 gets confused. I guess SVpbm_VALID */
3695 if (sflags & SVf_IVisUV)
3698 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
3700 const MAGIC * const smg = SvVSTRING_mg(sstr);
3702 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
3703 smg->mg_ptr, smg->mg_len);
3704 SvRMAGICAL_on(dstr);
3708 else if (sflags & (SVp_IOK|SVp_NOK)) {
3709 (void)SvOK_off(dstr);
3710 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
3711 if (sflags & SVp_IOK) {
3712 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
3713 SvIV_set(dstr, SvIVX(sstr));
3715 if (sflags & SVp_NOK) {
3716 SvNV_set(dstr, SvNVX(sstr));
3720 if (isGV_with_GP(sstr)) {
3721 /* This stringification rule for globs is spread in 3 places.
3722 This feels bad. FIXME. */
3723 const U32 wasfake = sflags & SVf_FAKE;
3725 /* FAKE globs can get coerced, so need to turn this off
3726 temporarily if it is on. */
3728 gv_efullname3(dstr, (GV *)sstr, "*");
3729 SvFLAGS(sstr) |= wasfake;
3732 (void)SvOK_off(dstr);
3734 if (SvTAINTED(sstr))
3739 =for apidoc sv_setsv_mg
3741 Like C<sv_setsv>, but also handles 'set' magic.
3747 Perl_sv_setsv_mg(pTHX_ SV *dstr, register SV *sstr)
3749 sv_setsv(dstr,sstr);
3753 #ifdef PERL_OLD_COPY_ON_WRITE
3755 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
3757 STRLEN cur = SvCUR(sstr);
3758 STRLEN len = SvLEN(sstr);
3759 register char *new_pv;
3762 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
3770 if (SvTHINKFIRST(dstr))
3771 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
3772 else if (SvPVX_const(dstr))
3773 Safefree(SvPVX_const(dstr));
3777 SvUPGRADE(dstr, SVt_PVIV);
3779 assert (SvPOK(sstr));
3780 assert (SvPOKp(sstr));
3781 assert (!SvIOK(sstr));
3782 assert (!SvIOKp(sstr));
3783 assert (!SvNOK(sstr));
3784 assert (!SvNOKp(sstr));
3786 if (SvIsCOW(sstr)) {
3788 if (SvLEN(sstr) == 0) {
3789 /* source is a COW shared hash key. */
3790 DEBUG_C(PerlIO_printf(Perl_debug_log,
3791 "Fast copy on write: Sharing hash\n"));
3792 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
3795 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3797 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
3798 SvUPGRADE(sstr, SVt_PVIV);
3799 SvREADONLY_on(sstr);
3801 DEBUG_C(PerlIO_printf(Perl_debug_log,
3802 "Fast copy on write: Converting sstr to COW\n"));
3803 SV_COW_NEXT_SV_SET(dstr, sstr);
3805 SV_COW_NEXT_SV_SET(sstr, dstr);
3806 new_pv = SvPVX_mutable(sstr);
3809 SvPV_set(dstr, new_pv);
3810 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
3813 SvLEN_set(dstr, len);
3814 SvCUR_set(dstr, cur);
3823 =for apidoc sv_setpvn
3825 Copies a string into an SV. The C<len> parameter indicates the number of
3826 bytes to be copied. If the C<ptr> argument is NULL the SV will become
3827 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
3833 Perl_sv_setpvn(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3836 register char *dptr;
3838 SV_CHECK_THINKFIRST_COW_DROP(sv);
3844 /* len is STRLEN which is unsigned, need to copy to signed */
3847 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
3849 SvUPGRADE(sv, SVt_PV);
3851 dptr = SvGROW(sv, len + 1);
3852 Move(ptr,dptr,len,char);
3855 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3860 =for apidoc sv_setpvn_mg
3862 Like C<sv_setpvn>, but also handles 'set' magic.
3868 Perl_sv_setpvn_mg(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3870 sv_setpvn(sv,ptr,len);
3875 =for apidoc sv_setpv
3877 Copies a string into an SV. The string must be null-terminated. Does not
3878 handle 'set' magic. See C<sv_setpv_mg>.
3884 Perl_sv_setpv(pTHX_ register SV *sv, register const char *ptr)
3887 register STRLEN len;
3889 SV_CHECK_THINKFIRST_COW_DROP(sv);
3895 SvUPGRADE(sv, SVt_PV);
3897 SvGROW(sv, len + 1);
3898 Move(ptr,SvPVX(sv),len+1,char);
3900 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3905 =for apidoc sv_setpv_mg
3907 Like C<sv_setpv>, but also handles 'set' magic.
3913 Perl_sv_setpv_mg(pTHX_ register SV *sv, register const char *ptr)
3920 =for apidoc sv_usepvn_flags
3922 Tells an SV to use C<ptr> to find its string value. Normally the
3923 string is stored inside the SV but sv_usepvn allows the SV to use an
3924 outside string. The C<ptr> should point to memory that was allocated
3925 by C<malloc>. The string length, C<len>, must be supplied. By default
3926 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
3927 so that pointer should not be freed or used by the programmer after
3928 giving it to sv_usepvn, and neither should any pointers from "behind"
3929 that pointer (e.g. ptr + 1) be used.
3931 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
3932 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
3933 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
3934 C<len>, and already meets the requirements for storing in C<SvPVX>)
3940 Perl_sv_usepvn_flags(pTHX_ SV *sv, char *ptr, STRLEN len, U32 flags)
3944 SV_CHECK_THINKFIRST_COW_DROP(sv);
3945 SvUPGRADE(sv, SVt_PV);
3948 if (flags & SV_SMAGIC)
3952 if (SvPVX_const(sv))
3956 if (flags & SV_HAS_TRAILING_NUL)
3957 assert(ptr[len] == '\0');
3960 allocate = (flags & SV_HAS_TRAILING_NUL)
3961 ? len + 1: PERL_STRLEN_ROUNDUP(len + 1);
3962 if (flags & SV_HAS_TRAILING_NUL) {
3963 /* It's long enough - do nothing.
3964 Specfically Perl_newCONSTSUB is relying on this. */
3967 /* Force a move to shake out bugs in callers. */
3968 char *new_ptr = (char*)safemalloc(allocate);
3969 Copy(ptr, new_ptr, len, char);
3970 PoisonFree(ptr,len,char);
3974 ptr = (char*) saferealloc (ptr, allocate);
3979 SvLEN_set(sv, allocate);
3980 if (!(flags & SV_HAS_TRAILING_NUL)) {
3983 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3985 if (flags & SV_SMAGIC)
3989 #ifdef PERL_OLD_COPY_ON_WRITE
3990 /* Need to do this *after* making the SV normal, as we need the buffer
3991 pointer to remain valid until after we've copied it. If we let go too early,
3992 another thread could invalidate it by unsharing last of the same hash key
3993 (which it can do by means other than releasing copy-on-write Svs)
3994 or by changing the other copy-on-write SVs in the loop. */
3996 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, STRLEN len, SV *after)
3998 if (len) { /* this SV was SvIsCOW_normal(sv) */
3999 /* we need to find the SV pointing to us. */
4000 SV *current = SV_COW_NEXT_SV(after);
4002 if (current == sv) {
4003 /* The SV we point to points back to us (there were only two of us
4005 Hence other SV is no longer copy on write either. */
4007 SvREADONLY_off(after);
4009 /* We need to follow the pointers around the loop. */
4011 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4014 /* don't loop forever if the structure is bust, and we have
4015 a pointer into a closed loop. */
4016 assert (current != after);
4017 assert (SvPVX_const(current) == pvx);
4019 /* Make the SV before us point to the SV after us. */
4020 SV_COW_NEXT_SV_SET(current, after);
4023 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4028 Perl_sv_release_IVX(pTHX_ register SV *sv)
4031 sv_force_normal_flags(sv, 0);
4037 =for apidoc sv_force_normal_flags
4039 Undo various types of fakery on an SV: if the PV is a shared string, make
4040 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4041 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4042 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4043 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4044 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4045 set to some other value.) In addition, the C<flags> parameter gets passed to
4046 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4047 with flags set to 0.
4053 Perl_sv_force_normal_flags(pTHX_ register SV *sv, U32 flags)
4056 #ifdef PERL_OLD_COPY_ON_WRITE
4057 if (SvREADONLY(sv)) {
4058 /* At this point I believe I should acquire a global SV mutex. */
4060 const char * const pvx = SvPVX_const(sv);
4061 const STRLEN len = SvLEN(sv);
4062 const STRLEN cur = SvCUR(sv);
4063 SV * const next = SV_COW_NEXT_SV(sv); /* next COW sv in the loop. */
4065 PerlIO_printf(Perl_debug_log,
4066 "Copy on write: Force normal %ld\n",
4072 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4075 if (flags & SV_COW_DROP_PV) {
4076 /* OK, so we don't need to copy our buffer. */
4079 SvGROW(sv, cur + 1);
4080 Move(pvx,SvPVX(sv),cur,char);
4084 sv_release_COW(sv, pvx, len, next);
4089 else if (IN_PERL_RUNTIME)
4090 Perl_croak(aTHX_ PL_no_modify);
4091 /* At this point I believe that I can drop the global SV mutex. */
4094 if (SvREADONLY(sv)) {
4096 const char * const pvx = SvPVX_const(sv);
4097 const STRLEN len = SvCUR(sv);
4102 SvGROW(sv, len + 1);
4103 Move(pvx,SvPVX(sv),len,char);
4105 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4107 else if (IN_PERL_RUNTIME)
4108 Perl_croak(aTHX_ PL_no_modify);
4112 sv_unref_flags(sv, flags);
4113 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4120 Efficient removal of characters from the beginning of the string buffer.
4121 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4122 the string buffer. The C<ptr> becomes the first character of the adjusted
4123 string. Uses the "OOK hack".
4124 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4125 refer to the same chunk of data.
4131 Perl_sv_chop(pTHX_ register SV *sv, register const char *ptr)
4133 register STRLEN delta;
4134 if (!ptr || !SvPOKp(sv))
4136 delta = ptr - SvPVX_const(sv);
4137 SV_CHECK_THINKFIRST(sv);
4138 if (SvTYPE(sv) < SVt_PVIV)
4139 sv_upgrade(sv,SVt_PVIV);
4142 if (!SvLEN(sv)) { /* make copy of shared string */
4143 const char *pvx = SvPVX_const(sv);
4144 const STRLEN len = SvCUR(sv);
4145 SvGROW(sv, len + 1);
4146 Move(pvx,SvPVX(sv),len,char);
4150 /* Same SvOOK_on but SvOOK_on does a SvIOK_off
4151 and we do that anyway inside the SvNIOK_off
4153 SvFLAGS(sv) |= SVf_OOK;
4156 SvLEN_set(sv, SvLEN(sv) - delta);
4157 SvCUR_set(sv, SvCUR(sv) - delta);
4158 SvPV_set(sv, SvPVX(sv) + delta);
4159 SvIV_set(sv, SvIVX(sv) + delta);
4163 =for apidoc sv_catpvn
4165 Concatenates the string onto the end of the string which is in the SV. The
4166 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4167 status set, then the bytes appended should be valid UTF-8.
4168 Handles 'get' magic, but not 'set' magic. See C<sv_catpvn_mg>.
4170 =for apidoc sv_catpvn_flags
4172 Concatenates the string onto the end of the string which is in the SV. The
4173 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4174 status set, then the bytes appended should be valid UTF-8.
4175 If C<flags> has C<SV_GMAGIC> bit set, will C<mg_get> on C<dsv> if
4176 appropriate, else not. C<sv_catpvn> and C<sv_catpvn_nomg> are implemented
4177 in terms of this function.
4183 Perl_sv_catpvn_flags(pTHX_ register SV *dsv, register const char *sstr, register STRLEN slen, I32 flags)
4187 const char * const dstr = SvPV_force_flags(dsv, dlen, flags);
4189 SvGROW(dsv, dlen + slen + 1);
4191 sstr = SvPVX_const(dsv);
4192 Move(sstr, SvPVX(dsv) + dlen, slen, char);
4193 SvCUR_set(dsv, SvCUR(dsv) + slen);
4195 (void)SvPOK_only_UTF8(dsv); /* validate pointer */
4197 if (flags & SV_SMAGIC)
4202 =for apidoc sv_catsv
4204 Concatenates the string from SV C<ssv> onto the end of the string in
4205 SV C<dsv>. Modifies C<dsv> but not C<ssv>. Handles 'get' magic, but
4206 not 'set' magic. See C<sv_catsv_mg>.
4208 =for apidoc sv_catsv_flags
4210 Concatenates the string from SV C<ssv> onto the end of the string in
4211 SV C<dsv>. Modifies C<dsv> but not C<ssv>. If C<flags> has C<SV_GMAGIC>
4212 bit set, will C<mg_get> on the SVs if appropriate, else not. C<sv_catsv>
4213 and C<sv_catsv_nomg> are implemented in terms of this function.
4218 Perl_sv_catsv_flags(pTHX_ SV *dsv, register SV *ssv, I32 flags)
4223 const char *spv = SvPV_const(ssv, slen);
4225 /* sutf8 and dutf8 were type bool, but under USE_ITHREADS,
4226 gcc version 2.95.2 20000220 (Debian GNU/Linux) for
4227 Linux xxx 2.2.17 on sparc64 with gcc -O2, we erroneously
4228 get dutf8 = 0x20000000, (i.e. SVf_UTF8) even though
4229 dsv->sv_flags doesn't have that bit set.
4230 Andy Dougherty 12 Oct 2001
4232 const I32 sutf8 = DO_UTF8(ssv);
4235 if (SvGMAGICAL(dsv) && (flags & SV_GMAGIC))
4237 dutf8 = DO_UTF8(dsv);
4239 if (dutf8 != sutf8) {
4241 /* Not modifying source SV, so taking a temporary copy. */
4242 SV* const csv = sv_2mortal(newSVpvn(spv, slen));
4244 sv_utf8_upgrade(csv);
4245 spv = SvPV_const(csv, slen);
4248 sv_utf8_upgrade_nomg(dsv);
4250 sv_catpvn_nomg(dsv, spv, slen);
4253 if (flags & SV_SMAGIC)
4258 =for apidoc sv_catpv
4260 Concatenates the string onto the end of the string which is in the SV.
4261 If the SV has the UTF-8 status set, then the bytes appended should be
4262 valid UTF-8. Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
4267 Perl_sv_catpv(pTHX_ register SV *sv, register const char *ptr)
4270 register STRLEN len;
4276 junk = SvPV_force(sv, tlen);
4278 SvGROW(sv, tlen + len + 1);
4280 ptr = SvPVX_const(sv);
4281 Move(ptr,SvPVX(sv)+tlen,len+1,char);
4282 SvCUR_set(sv, SvCUR(sv) + len);
4283 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4288 =for apidoc sv_catpv_mg
4290 Like C<sv_catpv>, but also handles 'set' magic.
4296 Perl_sv_catpv_mg(pTHX_ register SV *sv, register const char *ptr)
4305 Creates a new SV. A non-zero C<len> parameter indicates the number of
4306 bytes of preallocated string space the SV should have. An extra byte for a
4307 trailing NUL is also reserved. (SvPOK is not set for the SV even if string
4308 space is allocated.) The reference count for the new SV is set to 1.
4310 In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
4311 parameter, I<x>, a debug aid which allowed callers to identify themselves.
4312 This aid has been superseded by a new build option, PERL_MEM_LOG (see
4313 L<perlhack/PERL_MEM_LOG>). The older API is still there for use in XS
4314 modules supporting older perls.
4320 Perl_newSV(pTHX_ STRLEN len)
4327 sv_upgrade(sv, SVt_PV);
4328 SvGROW(sv, len + 1);
4333 =for apidoc sv_magicext
4335 Adds magic to an SV, upgrading it if necessary. Applies the
4336 supplied vtable and returns a pointer to the magic added.
4338 Note that C<sv_magicext> will allow things that C<sv_magic> will not.
4339 In particular, you can add magic to SvREADONLY SVs, and add more than
4340 one instance of the same 'how'.
4342 If C<namlen> is greater than zero then a C<savepvn> I<copy> of C<name> is
4343 stored, if C<namlen> is zero then C<name> is stored as-is and - as another
4344 special case - if C<(name && namlen == HEf_SVKEY)> then C<name> is assumed
4345 to contain an C<SV*> and is stored as-is with its REFCNT incremented.
4347 (This is now used as a subroutine by C<sv_magic>.)
4352 Perl_sv_magicext(pTHX_ SV* sv, SV* obj, int how, MGVTBL *vtable,
4353 const char* name, I32 namlen)
4358 if (SvTYPE(sv) < SVt_PVMG) {
4359 SvUPGRADE(sv, SVt_PVMG);
4361 Newxz(mg, 1, MAGIC);
4362 mg->mg_moremagic = SvMAGIC(sv);
4363 SvMAGIC_set(sv, mg);
4365 /* Sometimes a magic contains a reference loop, where the sv and
4366 object refer to each other. To prevent a reference loop that
4367 would prevent such objects being freed, we look for such loops
4368 and if we find one we avoid incrementing the object refcount.
4370 Note we cannot do this to avoid self-tie loops as intervening RV must
4371 have its REFCNT incremented to keep it in existence.
4374 if (!obj || obj == sv ||
4375 how == PERL_MAGIC_arylen ||
4376 how == PERL_MAGIC_qr ||
4377 how == PERL_MAGIC_symtab ||
4378 (SvTYPE(obj) == SVt_PVGV &&
4379 (GvSV(obj) == sv || GvHV(obj) == (HV*)sv || GvAV(obj) == (AV*)sv ||
4380 GvCV(obj) == (CV*)sv || GvIOp(obj) == (IO*)sv ||
4381 GvFORM(obj) == (CV*)sv)))
4386 mg->mg_obj = SvREFCNT_inc_simple(obj);
4387 mg->mg_flags |= MGf_REFCOUNTED;
4390 /* Normal self-ties simply pass a null object, and instead of
4391 using mg_obj directly, use the SvTIED_obj macro to produce a
4392 new RV as needed. For glob "self-ties", we are tieing the PVIO
4393 with an RV obj pointing to the glob containing the PVIO. In
4394 this case, to avoid a reference loop, we need to weaken the
4398 if (how == PERL_MAGIC_tiedscalar && SvTYPE(sv) == SVt_PVIO &&
4399 obj && SvROK(obj) && GvIO(SvRV(obj)) == (IO*)sv)
4405 mg->mg_len = namlen;
4408 mg->mg_ptr = savepvn(name, namlen);
4409 else if (namlen == HEf_SVKEY)
4410 mg->mg_ptr = (char*)SvREFCNT_inc_simple_NN((SV*)name);
4412 mg->mg_ptr = (char *) name;
4414 mg->mg_virtual = vtable;
4418 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4423 =for apidoc sv_magic
4425 Adds magic to an SV. First upgrades C<sv> to type C<SVt_PVMG> if necessary,
4426 then adds a new magic item of type C<how> to the head of the magic list.
4428 See C<sv_magicext> (which C<sv_magic> now calls) for a description of the
4429 handling of the C<name> and C<namlen> arguments.
4431 You need to use C<sv_magicext> to add magic to SvREADONLY SVs and also
4432 to add more than one instance of the same 'how'.
4438 Perl_sv_magic(pTHX_ register SV *sv, SV *obj, int how, const char *name, I32 namlen)
4444 #ifdef PERL_OLD_COPY_ON_WRITE
4446 sv_force_normal_flags(sv, 0);
4448 if (SvREADONLY(sv)) {
4450 /* its okay to attach magic to shared strings; the subsequent
4451 * upgrade to PVMG will unshare the string */
4452 !(SvFAKE(sv) && SvTYPE(sv) < SVt_PVMG)
4455 && how != PERL_MAGIC_regex_global
4456 && how != PERL_MAGIC_bm
4457 && how != PERL_MAGIC_fm
4458 && how != PERL_MAGIC_sv
4459 && how != PERL_MAGIC_backref
4462 Perl_croak(aTHX_ PL_no_modify);
4465 if (SvMAGICAL(sv) || (how == PERL_MAGIC_taint && SvTYPE(sv) >= SVt_PVMG)) {
4466 if (SvMAGIC(sv) && (mg = mg_find(sv, how))) {
4467 /* sv_magic() refuses to add a magic of the same 'how' as an
4470 if (how == PERL_MAGIC_taint) {
4472 /* Any scalar which already had taint magic on which someone
4473 (erroneously?) did SvIOK_on() or similar will now be
4474 incorrectly sporting public "OK" flags. */
4475 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4483 vtable = &PL_vtbl_sv;
4485 case PERL_MAGIC_overload:
4486 vtable = &PL_vtbl_amagic;
4488 case PERL_MAGIC_overload_elem:
4489 vtable = &PL_vtbl_amagicelem;
4491 case PERL_MAGIC_overload_table:
4492 vtable = &PL_vtbl_ovrld;
4495 vtable = &PL_vtbl_bm;
4497 case PERL_MAGIC_regdata:
4498 vtable = &PL_vtbl_regdata;
4500 case PERL_MAGIC_regdata_names:
4501 vtable = &PL_vtbl_regdata_names;
4503 case PERL_MAGIC_regdatum:
4504 vtable = &PL_vtbl_regdatum;
4506 case PERL_MAGIC_env:
4507 vtable = &PL_vtbl_env;
4510 vtable = &PL_vtbl_fm;
4512 case PERL_MAGIC_envelem:
4513 vtable = &PL_vtbl_envelem;
4515 case PERL_MAGIC_regex_global:
4516 vtable = &PL_vtbl_mglob;
4518 case PERL_MAGIC_isa:
4519 vtable = &PL_vtbl_isa;
4521 case PERL_MAGIC_isaelem:
4522 vtable = &PL_vtbl_isaelem;
4524 case PERL_MAGIC_nkeys:
4525 vtable = &PL_vtbl_nkeys;
4527 case PERL_MAGIC_dbfile:
4530 case PERL_MAGIC_dbline:
4531 vtable = &PL_vtbl_dbline;
4533 #ifdef USE_LOCALE_COLLATE
4534 case PERL_MAGIC_collxfrm:
4535 vtable = &PL_vtbl_collxfrm;
4537 #endif /* USE_LOCALE_COLLATE */
4538 case PERL_MAGIC_tied:
4539 vtable = &PL_vtbl_pack;
4541 case PERL_MAGIC_tiedelem:
4542 case PERL_MAGIC_tiedscalar:
4543 vtable = &PL_vtbl_packelem;
4546 vtable = &PL_vtbl_regexp;
4548 case PERL_MAGIC_hints:
4549 /* As this vtable is all NULL, we can reuse it. */
4550 case PERL_MAGIC_sig:
4551 vtable = &PL_vtbl_sig;
4553 case PERL_MAGIC_sigelem:
4554 vtable = &PL_vtbl_sigelem;
4556 case PERL_MAGIC_taint:
4557 vtable = &PL_vtbl_taint;
4559 case PERL_MAGIC_uvar:
4560 vtable = &PL_vtbl_uvar;
4562 case PERL_MAGIC_vec:
4563 vtable = &PL_vtbl_vec;
4565 case PERL_MAGIC_arylen_p:
4566 case PERL_MAGIC_rhash:
4567 case PERL_MAGIC_symtab:
4568 case PERL_MAGIC_vstring:
4571 case PERL_MAGIC_utf8:
4572 vtable = &PL_vtbl_utf8;
4574 case PERL_MAGIC_substr:
4575 vtable = &PL_vtbl_substr;
4577 case PERL_MAGIC_defelem:
4578 vtable = &PL_vtbl_defelem;
4580 case PERL_MAGIC_arylen:
4581 vtable = &PL_vtbl_arylen;
4583 case PERL_MAGIC_pos:
4584 vtable = &PL_vtbl_pos;
4586 case PERL_MAGIC_backref:
4587 vtable = &PL_vtbl_backref;
4589 case PERL_MAGIC_hintselem:
4590 vtable = &PL_vtbl_hintselem;
4592 case PERL_MAGIC_ext:
4593 /* Reserved for use by extensions not perl internals. */
4594 /* Useful for attaching extension internal data to perl vars. */
4595 /* Note that multiple extensions may clash if magical scalars */
4596 /* etc holding private data from one are passed to another. */
4600 Perl_croak(aTHX_ "Don't know how to handle magic of type \\%o", how);
4603 /* Rest of work is done else where */
4604 mg = sv_magicext(sv,obj,how,vtable,name,namlen);
4607 case PERL_MAGIC_taint:
4610 case PERL_MAGIC_ext:
4611 case PERL_MAGIC_dbfile:
4618 =for apidoc sv_unmagic
4620 Removes all magic of type C<type> from an SV.
4626 Perl_sv_unmagic(pTHX_ SV *sv, int type)
4630 if (SvTYPE(sv) < SVt_PVMG || !SvMAGIC(sv))
4632 mgp = &(((XPVMG*) SvANY(sv))->xmg_u.xmg_magic);
4633 for (mg = *mgp; mg; mg = *mgp) {
4634 if (mg->mg_type == type) {
4635 const MGVTBL* const vtbl = mg->mg_virtual;
4636 *mgp = mg->mg_moremagic;
4637 if (vtbl && vtbl->svt_free)
4638 CALL_FPTR(vtbl->svt_free)(aTHX_ sv, mg);
4639 if (mg->mg_ptr && mg->mg_type != PERL_MAGIC_regex_global) {
4641 Safefree(mg->mg_ptr);
4642 else if (mg->mg_len == HEf_SVKEY)
4643 SvREFCNT_dec((SV*)mg->mg_ptr);
4644 else if (mg->mg_type == PERL_MAGIC_utf8)
4645 Safefree(mg->mg_ptr);
4647 if (mg->mg_flags & MGf_REFCOUNTED)
4648 SvREFCNT_dec(mg->mg_obj);
4652 mgp = &mg->mg_moremagic;
4656 SvFLAGS(sv) |= (SvFLAGS(sv) & (SVp_IOK|SVp_NOK|SVp_POK)) >> PRIVSHIFT;
4657 SvMAGIC_set(sv, NULL);
4664 =for apidoc sv_rvweaken
4666 Weaken a reference: set the C<SvWEAKREF> flag on this RV; give the
4667 referred-to SV C<PERL_MAGIC_backref> magic if it hasn't already; and
4668 push a back-reference to this RV onto the array of backreferences
4669 associated with that magic. If the RV is magical, set magic will be
4670 called after the RV is cleared.
4676 Perl_sv_rvweaken(pTHX_ SV *sv)
4679 if (!SvOK(sv)) /* let undefs pass */
4682 Perl_croak(aTHX_ "Can't weaken a nonreference");
4683 else if (SvWEAKREF(sv)) {
4684 if (ckWARN(WARN_MISC))
4685 Perl_warner(aTHX_ packWARN(WARN_MISC), "Reference is already weak");
4689 Perl_sv_add_backref(aTHX_ tsv, sv);
4695 /* Give tsv backref magic if it hasn't already got it, then push a
4696 * back-reference to sv onto the array associated with the backref magic.
4700 Perl_sv_add_backref(pTHX_ SV *tsv, SV *sv)
4705 if (SvTYPE(tsv) == SVt_PVHV) {
4706 AV **const avp = Perl_hv_backreferences_p(aTHX_ (HV*)tsv);
4710 /* There is no AV in the offical place - try a fixup. */
4711 MAGIC *const mg = mg_find(tsv, PERL_MAGIC_backref);
4714 /* Aha. They've got it stowed in magic. Bring it back. */
4715 av = (AV*)mg->mg_obj;
4716 /* Stop mg_free decreasing the refernce count. */
4718 /* Stop mg_free even calling the destructor, given that
4719 there's no AV to free up. */
4721 sv_unmagic(tsv, PERL_MAGIC_backref);
4725 SvREFCNT_inc_simple_void(av);
4730 const MAGIC *const mg
4731 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
4733 av = (AV*)mg->mg_obj;
4737 sv_magic(tsv, (SV*)av, PERL_MAGIC_backref, NULL, 0);
4738 /* av now has a refcnt of 2, which avoids it getting freed
4739 * before us during global cleanup. The extra ref is removed
4740 * by magic_killbackrefs() when tsv is being freed */
4743 if (AvFILLp(av) >= AvMAX(av)) {
4744 av_extend(av, AvFILLp(av)+1);
4746 AvARRAY(av)[++AvFILLp(av)] = sv; /* av_push() */
4749 /* delete a back-reference to ourselves from the backref magic associated
4750 * with the SV we point to.
4754 S_sv_del_backref(pTHX_ SV *tsv, SV *sv)