3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 * 2000, 2001, 2002, 2003, 2004, 2005, 2006, by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
9 * "I wonder what the Entish is for 'yes' and 'no'," he thought.
12 * This file contains the code that creates, manipulates and destroys
13 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
14 * structure of an SV, so their creation and destruction is handled
15 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
16 * level functions (eg. substr, split, join) for each of the types are
28 /* Missing proto on LynxOS */
29 char *gconvert(double, int, int, char *);
32 #ifdef PERL_UTF8_CACHE_ASSERT
33 /* if adding more checks watch out for the following tests:
34 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
35 * lib/utf8.t lib/Unicode/Collate/t/index.t
38 #define ASSERT_UTF8_CACHE(cache) \
39 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
40 assert((cache)[2] <= (cache)[3]); \
41 assert((cache)[3] <= (cache)[1]);} \
44 #define ASSERT_UTF8_CACHE(cache) NOOP
47 #ifdef PERL_OLD_COPY_ON_WRITE
48 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
49 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
50 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
54 /* ============================================================================
56 =head1 Allocation and deallocation of SVs.
58 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
59 sv, av, hv...) contains type and reference count information, and for
60 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
61 contains fields specific to each type. Some types store all they need
62 in the head, so don't have a body.
64 In all but the most memory-paranoid configuations (ex: PURIFY), heads
65 and bodies are allocated out of arenas, which by default are
66 approximately 4K chunks of memory parcelled up into N heads or bodies.
67 Sv-bodies are allocated by their sv-type, guaranteeing size
68 consistency needed to allocate safely from arrays.
70 For SV-heads, the first slot in each arena is reserved, and holds a
71 link to the next arena, some flags, and a note of the number of slots.
72 Snaked through each arena chain is a linked list of free items; when
73 this becomes empty, an extra arena is allocated and divided up into N
74 items which are threaded into the free list.
76 SV-bodies are similar, but they use arena-sets by default, which
77 separate the link and info from the arena itself, and reclaim the 1st
78 slot in the arena. SV-bodies are further described later.
80 The following global variables are associated with arenas:
82 PL_sv_arenaroot pointer to list of SV arenas
83 PL_sv_root pointer to list of free SV structures
85 PL_body_arenas head of linked-list of body arenas
86 PL_body_roots[] array of pointers to list of free bodies of svtype
87 arrays are indexed by the svtype needed
89 A few special SV heads are not allocated from an arena, but are
90 instead directly created in the interpreter structure, eg PL_sv_undef.
91 The size of arenas can be changed from the default by setting
92 PERL_ARENA_SIZE appropriately at compile time.
94 The SV arena serves the secondary purpose of allowing still-live SVs
95 to be located and destroyed during final cleanup.
97 At the lowest level, the macros new_SV() and del_SV() grab and free
98 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
99 to return the SV to the free list with error checking.) new_SV() calls
100 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
101 SVs in the free list have their SvTYPE field set to all ones.
103 At the time of very final cleanup, sv_free_arenas() is called from
104 perl_destruct() to physically free all the arenas allocated since the
105 start of the interpreter.
107 Manipulation of any of the PL_*root pointers is protected by enclosing
108 LOCK_SV_MUTEX; ... UNLOCK_SV_MUTEX calls which should Do the Right Thing
109 if threads are enabled.
111 The function visit() scans the SV arenas list, and calls a specified
112 function for each SV it finds which is still live - ie which has an SvTYPE
113 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
114 following functions (specified as [function that calls visit()] / [function
115 called by visit() for each SV]):
117 sv_report_used() / do_report_used()
118 dump all remaining SVs (debugging aid)
120 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
121 Attempt to free all objects pointed to by RVs,
122 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
123 try to do the same for all objects indirectly
124 referenced by typeglobs too. Called once from
125 perl_destruct(), prior to calling sv_clean_all()
128 sv_clean_all() / do_clean_all()
129 SvREFCNT_dec(sv) each remaining SV, possibly
130 triggering an sv_free(). It also sets the
131 SVf_BREAK flag on the SV to indicate that the
132 refcnt has been artificially lowered, and thus
133 stopping sv_free() from giving spurious warnings
134 about SVs which unexpectedly have a refcnt
135 of zero. called repeatedly from perl_destruct()
136 until there are no SVs left.
138 =head2 Arena allocator API Summary
140 Private API to rest of sv.c
144 new_XIV(), del_XIV(),
145 new_XNV(), del_XNV(),
150 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
154 ============================================================================ */
157 * "A time to plant, and a time to uproot what was planted..."
161 * nice_chunk and nice_chunk size need to be set
162 * and queried under the protection of sv_mutex
165 Perl_offer_nice_chunk(pTHX_ void *chunk, U32 chunk_size)
171 new_chunk = (void *)(chunk);
172 new_chunk_size = (chunk_size);
173 if (new_chunk_size > PL_nice_chunk_size) {
174 Safefree(PL_nice_chunk);
175 PL_nice_chunk = (char *) new_chunk;
176 PL_nice_chunk_size = new_chunk_size;
183 #ifdef DEBUG_LEAKING_SCALARS
184 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
186 # define FREE_SV_DEBUG_FILE(sv)
190 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
191 /* Whilst I'd love to do this, it seems that things like to check on
193 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
195 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
196 PoisonNew(&SvREFCNT(sv), 1, U32)
198 # define SvARENA_CHAIN(sv) SvANY(sv)
199 # define POSION_SV_HEAD(sv)
202 #define plant_SV(p) \
204 FREE_SV_DEBUG_FILE(p); \
206 SvARENA_CHAIN(p) = (void *)PL_sv_root; \
207 SvFLAGS(p) = SVTYPEMASK; \
212 /* sv_mutex must be held while calling uproot_SV() */
213 #define uproot_SV(p) \
216 PL_sv_root = (SV*)SvARENA_CHAIN(p); \
221 /* make some more SVs by adding another arena */
223 /* sv_mutex must be held while calling more_sv() */
231 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
232 PL_nice_chunk = NULL;
233 PL_nice_chunk_size = 0;
236 char *chunk; /* must use New here to match call to */
237 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
238 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
244 /* new_SV(): return a new, empty SV head */
246 #ifdef DEBUG_LEAKING_SCALARS
247 /* provide a real function for a debugger to play with */
257 sv = S_more_sv(aTHX);
262 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
263 sv->sv_debug_line = (U16) ((PL_copline == NOLINE) ?
264 (PL_curcop ? CopLINE(PL_curcop) : 0) : PL_copline);
265 sv->sv_debug_inpad = 0;
266 sv->sv_debug_cloned = 0;
267 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
271 # define new_SV(p) (p)=S_new_SV(aTHX)
280 (p) = S_more_sv(aTHX); \
289 /* del_SV(): return an empty SV head to the free list */
304 S_del_sv(pTHX_ SV *p)
310 for (sva = PL_sv_arenaroot; sva; sva = (SV *) SvANY(sva)) {
311 const SV * const sv = sva + 1;
312 const SV * const svend = &sva[SvREFCNT(sva)];
313 if (p >= sv && p < svend) {
319 if (ckWARN_d(WARN_INTERNAL))
320 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
321 "Attempt to free non-arena SV: 0x%"UVxf
322 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
329 #else /* ! DEBUGGING */
331 #define del_SV(p) plant_SV(p)
333 #endif /* DEBUGGING */
337 =head1 SV Manipulation Functions
339 =for apidoc sv_add_arena
341 Given a chunk of memory, link it to the head of the list of arenas,
342 and split it into a list of free SVs.
348 Perl_sv_add_arena(pTHX_ char *ptr, U32 size, U32 flags)
351 SV* const sva = (SV*)ptr;
355 /* The first SV in an arena isn't an SV. */
356 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
357 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
358 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
360 PL_sv_arenaroot = sva;
361 PL_sv_root = sva + 1;
363 svend = &sva[SvREFCNT(sva) - 1];
366 SvARENA_CHAIN(sv) = (void *)(SV*)(sv + 1);
370 /* Must always set typemask because it's awlays checked in on cleanup
371 when the arenas are walked looking for objects. */
372 SvFLAGS(sv) = SVTYPEMASK;
375 SvARENA_CHAIN(sv) = 0;
379 SvFLAGS(sv) = SVTYPEMASK;
382 /* visit(): call the named function for each non-free SV in the arenas
383 * whose flags field matches the flags/mask args. */
386 S_visit(pTHX_ SVFUNC_t f, U32 flags, U32 mask)
392 for (sva = PL_sv_arenaroot; sva; sva = (SV*)SvANY(sva)) {
393 register const SV * const svend = &sva[SvREFCNT(sva)];
395 for (sv = sva + 1; sv < svend; ++sv) {
396 if (SvTYPE(sv) != SVTYPEMASK
397 && (sv->sv_flags & mask) == flags
410 /* called by sv_report_used() for each live SV */
413 do_report_used(pTHX_ SV *sv)
415 if (SvTYPE(sv) != SVTYPEMASK) {
416 PerlIO_printf(Perl_debug_log, "****\n");
423 =for apidoc sv_report_used
425 Dump the contents of all SVs not yet freed. (Debugging aid).
431 Perl_sv_report_used(pTHX)
434 visit(do_report_used, 0, 0);
440 /* called by sv_clean_objs() for each live SV */
443 do_clean_objs(pTHX_ SV *ref)
447 SV * const target = SvRV(ref);
448 if (SvOBJECT(target)) {
449 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
450 if (SvWEAKREF(ref)) {
451 sv_del_backref(target, ref);
457 SvREFCNT_dec(target);
462 /* XXX Might want to check arrays, etc. */
465 /* called by sv_clean_objs() for each live SV */
467 #ifndef DISABLE_DESTRUCTOR_KLUDGE
469 do_clean_named_objs(pTHX_ SV *sv)
472 if (SvTYPE(sv) == SVt_PVGV && isGV_with_GP(sv) && GvGP(sv)) {
474 #ifdef PERL_DONT_CREATE_GVSV
477 SvOBJECT(GvSV(sv))) ||
478 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
479 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
480 (GvIO(sv) && SvOBJECT(GvIO(sv))) ||
481 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
483 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
484 SvFLAGS(sv) |= SVf_BREAK;
492 =for apidoc sv_clean_objs
494 Attempt to destroy all objects not yet freed
500 Perl_sv_clean_objs(pTHX)
503 PL_in_clean_objs = TRUE;
504 visit(do_clean_objs, SVf_ROK, SVf_ROK);
505 #ifndef DISABLE_DESTRUCTOR_KLUDGE
506 /* some barnacles may yet remain, clinging to typeglobs */
507 visit(do_clean_named_objs, SVt_PVGV, SVTYPEMASK);
509 PL_in_clean_objs = FALSE;
512 /* called by sv_clean_all() for each live SV */
515 do_clean_all(pTHX_ SV *sv)
518 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
519 SvFLAGS(sv) |= SVf_BREAK;
520 if (PL_comppad == (AV*)sv) {
528 =for apidoc sv_clean_all
530 Decrement the refcnt of each remaining SV, possibly triggering a
531 cleanup. This function may have to be called multiple times to free
532 SVs which are in complex self-referential hierarchies.
538 Perl_sv_clean_all(pTHX)
542 PL_in_clean_all = TRUE;
543 cleaned = visit(do_clean_all, 0,0);
544 PL_in_clean_all = FALSE;
549 ARENASETS: a meta-arena implementation which separates arena-info
550 into struct arena_set, which contains an array of struct
551 arena_descs, each holding info for a single arena. By separating
552 the meta-info from the arena, we recover the 1st slot, formerly
553 borrowed for list management. The arena_set is about the size of an
554 arena, avoiding the needless malloc overhead of a naive linked-list
556 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
557 memory in the last arena-set (1/2 on average). In trade, we get
558 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
559 smaller types). The recovery of the wasted space allows use of
560 small arenas for large, rare body types,
563 char *arena; /* the raw storage, allocated aligned */
564 size_t size; /* its size ~4k typ */
565 int unit_type; /* useful for arena audits */
566 /* info for sv-heads (eventually)
573 /* Get the maximum number of elements in set[] such that struct arena_set
574 will fit within PERL_ARENA_SIZE, which is probabably just under 4K, and
575 therefore likely to be 1 aligned memory page. */
577 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
578 - 2 * sizeof(int)) / sizeof (struct arena_desc))
581 struct arena_set* next;
582 int set_size; /* ie ARENAS_PER_SET */
583 int curr; /* index of next available arena-desc */
584 struct arena_desc set[ARENAS_PER_SET];
588 =for apidoc sv_free_arenas
590 Deallocate the memory used by all arenas. Note that all the individual SV
591 heads and bodies within the arenas must already have been freed.
596 Perl_sv_free_arenas(pTHX)
603 /* Free arenas here, but be careful about fake ones. (We assume
604 contiguity of the fake ones with the corresponding real ones.) */
606 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
607 svanext = (SV*) SvANY(sva);
608 while (svanext && SvFAKE(svanext))
609 svanext = (SV*) SvANY(svanext);
616 struct arena_set *next, *aroot = (struct arena_set*) PL_body_arenas;
618 for (; aroot; aroot = next) {
619 const int max = aroot->curr;
620 for (i=0; i<max; i++) {
621 assert(aroot->set[i].arena);
622 Safefree(aroot->set[i].arena);
630 for (i=0; i<PERL_ARENA_ROOTS_SIZE; i++)
631 PL_body_roots[i] = 0;
633 Safefree(PL_nice_chunk);
634 PL_nice_chunk = NULL;
635 PL_nice_chunk_size = 0;
641 Here are mid-level routines that manage the allocation of bodies out
642 of the various arenas. There are 5 kinds of arenas:
644 1. SV-head arenas, which are discussed and handled above
645 2. regular body arenas
646 3. arenas for reduced-size bodies
648 5. pte arenas (thread related)
650 Arena types 2 & 3 are chained by body-type off an array of
651 arena-root pointers, which is indexed by svtype. Some of the
652 larger/less used body types are malloced singly, since a large
653 unused block of them is wasteful. Also, several svtypes dont have
654 bodies; the data fits into the sv-head itself. The arena-root
655 pointer thus has a few unused root-pointers (which may be hijacked
656 later for arena types 4,5)
658 3 differs from 2 as an optimization; some body types have several
659 unused fields in the front of the structure (which are kept in-place
660 for consistency). These bodies can be allocated in smaller chunks,
661 because the leading fields arent accessed. Pointers to such bodies
662 are decremented to point at the unused 'ghost' memory, knowing that
663 the pointers are used with offsets to the real memory.
665 HE, HEK arenas are managed separately, with separate code, but may
666 be merge-able later..
668 PTE arenas are not sv-bodies, but they share these mid-level
669 mechanics, so are considered here. The new mid-level mechanics rely
670 on the sv_type of the body being allocated, so we just reserve one
671 of the unused body-slots for PTEs, then use it in those (2) PTE
672 contexts below (line ~10k)
675 /* get_arena(size): this creates custom-sized arenas
676 TBD: export properly for hv.c: S_more_he().
679 Perl_get_arena(pTHX_ int arena_size)
681 struct arena_desc* adesc;
682 struct arena_set *newroot, **aroot = (struct arena_set**) &PL_body_arenas;
685 /* shouldnt need this
686 if (!arena_size) arena_size = PERL_ARENA_SIZE;
689 /* may need new arena-set to hold new arena */
690 if (!*aroot || (*aroot)->curr >= (*aroot)->set_size) {
691 Newxz(newroot, 1, struct arena_set);
692 newroot->set_size = ARENAS_PER_SET;
693 newroot->next = *aroot;
695 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", *aroot));
698 /* ok, now have arena-set with at least 1 empty/available arena-desc */
699 curr = (*aroot)->curr++;
700 adesc = &((*aroot)->set[curr]);
701 assert(!adesc->arena);
703 Newxz(adesc->arena, arena_size, char);
704 adesc->size = arena_size;
705 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %d\n",
706 curr, adesc->arena, arena_size));
712 /* return a thing to the free list */
714 #define del_body(thing, root) \
716 void ** const thing_copy = (void **)thing;\
718 *thing_copy = *root; \
719 *root = (void*)thing_copy; \
725 =head1 SV-Body Allocation
727 Allocation of SV-bodies is similar to SV-heads, differing as follows;
728 the allocation mechanism is used for many body types, so is somewhat
729 more complicated, it uses arena-sets, and has no need for still-live
732 At the outermost level, (new|del)_X*V macros return bodies of the
733 appropriate type. These macros call either (new|del)_body_type or
734 (new|del)_body_allocated macro pairs, depending on specifics of the
735 type. Most body types use the former pair, the latter pair is used to
736 allocate body types with "ghost fields".
738 "ghost fields" are fields that are unused in certain types, and
739 consequently dont need to actually exist. They are declared because
740 they're part of a "base type", which allows use of functions as
741 methods. The simplest examples are AVs and HVs, 2 aggregate types
742 which don't use the fields which support SCALAR semantics.
744 For these types, the arenas are carved up into *_allocated size
745 chunks, we thus avoid wasted memory for those unaccessed members.
746 When bodies are allocated, we adjust the pointer back in memory by the
747 size of the bit not allocated, so it's as if we allocated the full
748 structure. (But things will all go boom if you write to the part that
749 is "not there", because you'll be overwriting the last members of the
750 preceding structure in memory.)
752 We calculate the correction using the STRUCT_OFFSET macro. For
753 example, if xpv_allocated is the same structure as XPV then the two
754 OFFSETs sum to zero, and the pointer is unchanged. If the allocated
755 structure is smaller (no initial NV actually allocated) then the net
756 effect is to subtract the size of the NV from the pointer, to return a
757 new pointer as if an initial NV were actually allocated.
759 This is the same trick as was used for NV and IV bodies. Ironically it
760 doesn't need to be used for NV bodies any more, because NV is now at
761 the start of the structure. IV bodies don't need it either, because
762 they are no longer allocated.
764 In turn, the new_body_* allocators call S_new_body(), which invokes
765 new_body_inline macro, which takes a lock, and takes a body off the
766 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
767 necessary to refresh an empty list. Then the lock is released, and
768 the body is returned.
770 S_more_bodies calls get_arena(), and carves it up into an array of N
771 bodies, which it strings into a linked list. It looks up arena-size
772 and body-size from the body_details table described below, thus
773 supporting the multiple body-types.
775 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
776 the (new|del)_X*V macros are mapped directly to malloc/free.
782 For each sv-type, struct body_details bodies_by_type[] carries
783 parameters which control these aspects of SV handling:
785 Arena_size determines whether arenas are used for this body type, and if
786 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
787 zero, forcing individual mallocs and frees.
789 Body_size determines how big a body is, and therefore how many fit into
790 each arena. Offset carries the body-pointer adjustment needed for
791 *_allocated body types, and is used in *_allocated macros.
793 But its main purpose is to parameterize info needed in
794 Perl_sv_upgrade(). The info here dramatically simplifies the function
795 vs the implementation in 5.8.7, making it table-driven. All fields
796 are used for this, except for arena_size.
798 For the sv-types that have no bodies, arenas are not used, so those
799 PL_body_roots[sv_type] are unused, and can be overloaded. In
800 something of a special case, SVt_NULL is borrowed for HE arenas;
801 PL_body_roots[SVt_NULL] is filled by S_more_he, but the
802 bodies_by_type[SVt_NULL] slot is not used, as the table is not
805 PTEs also use arenas, but are never seen in Perl_sv_upgrade.
806 Nonetheless, they get their own slot in bodies_by_type[SVt_NULL], so
807 they can just use the same allocation semantics. At first, PTEs were
808 also overloaded to a non-body sv-type, but this yielded hard-to-find
809 malloc bugs, so was simplified by claiming a new slot. This choice
810 has no consequence at this time.
814 struct body_details {
815 U8 body_size; /* Size to allocate */
816 U8 copy; /* Size of structure to copy (may be shorter) */
818 unsigned int type : 4; /* We have space for a sanity check. */
819 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
820 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
821 unsigned int arena : 1; /* Allocated from an arena */
822 size_t arena_size; /* Size of arena to allocate */
830 /* With -DPURFIY we allocate everything directly, and don't use arenas.
831 This seems a rather elegant way to simplify some of the code below. */
832 #define HASARENA FALSE
834 #define HASARENA TRUE
836 #define NOARENA FALSE
838 /* Size the arenas to exactly fit a given number of bodies. A count
839 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
840 simplifying the default. If count > 0, the arena is sized to fit
841 only that many bodies, allowing arenas to be used for large, rare
842 bodies (XPVFM, XPVIO) without undue waste. The arena size is
843 limited by PERL_ARENA_SIZE, so we can safely oversize the
846 #define FIT_ARENA0(body_size) \
847 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
848 #define FIT_ARENAn(count,body_size) \
849 ( count * body_size <= PERL_ARENA_SIZE) \
850 ? count * body_size \
851 : FIT_ARENA0 (body_size)
852 #define FIT_ARENA(count,body_size) \
854 ? FIT_ARENAn (count, body_size) \
855 : FIT_ARENA0 (body_size)
857 /* A macro to work out the offset needed to subtract from a pointer to (say)
864 to make its members accessible via a pointer to (say)
874 #define relative_STRUCT_OFFSET(longer, shorter, member) \
875 (STRUCT_OFFSET(shorter, member) - STRUCT_OFFSET(longer, member))
877 /* Calculate the length to copy. Specifically work out the length less any
878 final padding the compiler needed to add. See the comment in sv_upgrade
879 for why copying the padding proved to be a bug. */
881 #define copy_length(type, last_member) \
882 STRUCT_OFFSET(type, last_member) \
883 + sizeof (((type*)SvANY((SV*)0))->last_member)
885 static const struct body_details bodies_by_type[] = {
886 { sizeof(HE), 0, 0, SVt_NULL,
887 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
889 /* IVs are in the head, so the allocation size is 0.
890 However, the slot is overloaded for PTEs. */
891 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
892 sizeof(IV), /* This is used to copy out the IV body. */
893 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
894 NOARENA /* IVS don't need an arena */,
895 /* But PTEs need to know the size of their arena */
896 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
899 /* 8 bytes on most ILP32 with IEEE doubles */
900 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
901 FIT_ARENA(0, sizeof(NV)) },
903 /* RVs are in the head now. */
904 { 0, 0, 0, SVt_RV, FALSE, NONV, NOARENA, 0 },
906 /* 8 bytes on most ILP32 with IEEE doubles */
907 { sizeof(xpv_allocated),
908 copy_length(XPV, xpv_len)
909 - relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
910 + relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
911 SVt_PV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpv_allocated)) },
914 { sizeof(xpviv_allocated),
915 copy_length(XPVIV, xiv_u)
916 - relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
917 + relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
918 SVt_PVIV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpviv_allocated)) },
921 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
922 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
925 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
926 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
929 { sizeof(XPVBM), sizeof(XPVBM), 0, SVt_PVBM, TRUE, HADNV,
930 HASARENA, FIT_ARENA(0, sizeof(XPVBM)) },
933 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
934 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
937 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
938 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
940 { sizeof(xpvav_allocated),
941 copy_length(XPVAV, xmg_stash)
942 - relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
943 + relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
944 SVt_PVAV, TRUE, HADNV, HASARENA, FIT_ARENA(0, sizeof(xpvav_allocated)) },
946 { sizeof(xpvhv_allocated),
947 copy_length(XPVHV, xmg_stash)
948 - relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
949 + relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
950 SVt_PVHV, TRUE, HADNV, HASARENA, FIT_ARENA(0, sizeof(xpvhv_allocated)) },
953 { sizeof(xpvcv_allocated), sizeof(xpvcv_allocated),
954 + relative_STRUCT_OFFSET(xpvcv_allocated, XPVCV, xpv_cur),
955 SVt_PVCV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvcv_allocated)) },
957 { sizeof(xpvfm_allocated), sizeof(xpvfm_allocated),
958 + relative_STRUCT_OFFSET(xpvfm_allocated, XPVFM, xpv_cur),
959 SVt_PVFM, TRUE, NONV, NOARENA, FIT_ARENA(20, sizeof(xpvfm_allocated)) },
961 /* XPVIO is 84 bytes, fits 48x */
962 { sizeof(XPVIO), sizeof(XPVIO), 0, SVt_PVIO, TRUE, HADNV,
963 HASARENA, FIT_ARENA(24, sizeof(XPVIO)) },
966 #define new_body_type(sv_type) \
967 (void *)((char *)S_new_body(aTHX_ sv_type))
969 #define del_body_type(p, sv_type) \
970 del_body(p, &PL_body_roots[sv_type])
973 #define new_body_allocated(sv_type) \
974 (void *)((char *)S_new_body(aTHX_ sv_type) \
975 - bodies_by_type[sv_type].offset)
977 #define del_body_allocated(p, sv_type) \
978 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
981 #define my_safemalloc(s) (void*)safemalloc(s)
982 #define my_safecalloc(s) (void*)safecalloc(s, 1)
983 #define my_safefree(p) safefree((char*)p)
987 #define new_XNV() my_safemalloc(sizeof(XPVNV))
988 #define del_XNV(p) my_safefree(p)
990 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
991 #define del_XPVNV(p) my_safefree(p)
993 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
994 #define del_XPVAV(p) my_safefree(p)
996 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
997 #define del_XPVHV(p) my_safefree(p)
999 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1000 #define del_XPVMG(p) my_safefree(p)
1002 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1003 #define del_XPVGV(p) my_safefree(p)
1007 #define new_XNV() new_body_type(SVt_NV)
1008 #define del_XNV(p) del_body_type(p, SVt_NV)
1010 #define new_XPVNV() new_body_type(SVt_PVNV)
1011 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1013 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1014 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1016 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1017 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1019 #define new_XPVMG() new_body_type(SVt_PVMG)
1020 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1022 #define new_XPVGV() new_body_type(SVt_PVGV)
1023 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1027 /* no arena for you! */
1029 #define new_NOARENA(details) \
1030 my_safemalloc((details)->body_size + (details)->offset)
1031 #define new_NOARENAZ(details) \
1032 my_safecalloc((details)->body_size + (details)->offset)
1035 static bool done_sanity_check;
1039 S_more_bodies (pTHX_ svtype sv_type)
1042 void ** const root = &PL_body_roots[sv_type];
1043 const struct body_details * const bdp = &bodies_by_type[sv_type];
1044 const size_t body_size = bdp->body_size;
1048 assert(bdp->arena_size);
1051 if (!done_sanity_check) {
1052 unsigned int i = SVt_LAST;
1054 done_sanity_check = TRUE;
1057 assert (bodies_by_type[i].type == i);
1061 start = (char*) Perl_get_arena(aTHX_ bdp->arena_size);
1063 end = start + bdp->arena_size - body_size;
1065 /* computed count doesnt reflect the 1st slot reservation */
1066 DEBUG_m(PerlIO_printf(Perl_debug_log,
1067 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1068 start, end, bdp->arena_size, sv_type, body_size,
1069 bdp->arena_size / body_size));
1071 *root = (void *)start;
1073 while (start < end) {
1074 char * const next = start + body_size;
1075 *(void**) start = (void *)next;
1078 *(void **)start = 0;
1083 /* grab a new thing from the free list, allocating more if necessary.
1084 The inline version is used for speed in hot routines, and the
1085 function using it serves the rest (unless PURIFY).
1087 #define new_body_inline(xpv, sv_type) \
1089 void ** const r3wt = &PL_body_roots[sv_type]; \
1091 xpv = *((void **)(r3wt)) \
1092 ? *((void **)(r3wt)) : more_bodies(sv_type); \
1093 *(r3wt) = *(void**)(xpv); \
1100 S_new_body(pTHX_ svtype sv_type)
1104 new_body_inline(xpv, sv_type);
1111 =for apidoc sv_upgrade
1113 Upgrade an SV to a more complex form. Generally adds a new body type to the
1114 SV, then copies across as much information as possible from the old body.
1115 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1121 Perl_sv_upgrade(pTHX_ register SV *sv, U32 new_type)
1126 const U32 old_type = SvTYPE(sv);
1127 const struct body_details *new_type_details;
1128 const struct body_details *const old_type_details
1129 = bodies_by_type + old_type;
1131 if (new_type != SVt_PV && SvIsCOW(sv)) {
1132 sv_force_normal_flags(sv, 0);
1135 if (old_type == new_type)
1138 if (old_type > new_type)
1139 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1140 (int)old_type, (int)new_type);
1143 old_body = SvANY(sv);
1145 /* Copying structures onto other structures that have been neatly zeroed
1146 has a subtle gotcha. Consider XPVMG
1148 +------+------+------+------+------+-------+-------+
1149 | NV | CUR | LEN | IV | MAGIC | STASH |
1150 +------+------+------+------+------+-------+-------+
1151 0 4 8 12 16 20 24 28
1153 where NVs are aligned to 8 bytes, so that sizeof that structure is
1154 actually 32 bytes long, with 4 bytes of padding at the end:
1156 +------+------+------+------+------+-------+-------+------+
1157 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1158 +------+------+------+------+------+-------+-------+------+
1159 0 4 8 12 16 20 24 28 32
1161 so what happens if you allocate memory for this structure:
1163 +------+------+------+------+------+-------+-------+------+------+...
1164 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1165 +------+------+------+------+------+-------+-------+------+------+...
1166 0 4 8 12 16 20 24 28 32 36
1168 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1169 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1170 started out as zero once, but it's quite possible that it isn't. So now,
1171 rather than a nicely zeroed GP, you have it pointing somewhere random.
1174 (In fact, GP ends up pointing at a previous GP structure, because the
1175 principle cause of the padding in XPVMG getting garbage is a copy of
1176 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob)
1178 So we are careful and work out the size of used parts of all the
1185 if (new_type < SVt_PVIV) {
1186 new_type = (new_type == SVt_NV)
1187 ? SVt_PVNV : SVt_PVIV;
1191 if (new_type < SVt_PVNV) {
1192 new_type = SVt_PVNV;
1198 assert(new_type > SVt_PV);
1199 assert(SVt_IV < SVt_PV);
1200 assert(SVt_NV < SVt_PV);
1207 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1208 there's no way that it can be safely upgraded, because perl.c
1209 expects to Safefree(SvANY(PL_mess_sv)) */
1210 assert(sv != PL_mess_sv);
1211 /* This flag bit is used to mean other things in other scalar types.
1212 Given that it only has meaning inside the pad, it shouldn't be set
1213 on anything that can get upgraded. */
1214 assert(!SvPAD_TYPED(sv));
1217 if (old_type_details->cant_upgrade)
1218 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1219 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1221 new_type_details = bodies_by_type + new_type;
1223 SvFLAGS(sv) &= ~SVTYPEMASK;
1224 SvFLAGS(sv) |= new_type;
1226 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1227 the return statements above will have triggered. */
1228 assert (new_type != SVt_NULL);
1231 assert(old_type == SVt_NULL);
1232 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1236 assert(old_type == SVt_NULL);
1237 SvANY(sv) = new_XNV();
1241 assert(old_type == SVt_NULL);
1242 SvANY(sv) = &sv->sv_u.svu_rv;
1247 assert(new_type_details->body_size);
1250 assert(new_type_details->arena);
1251 assert(new_type_details->arena_size);
1252 /* This points to the start of the allocated area. */
1253 new_body_inline(new_body, new_type);
1254 Zero(new_body, new_type_details->body_size, char);
1255 new_body = ((char *)new_body) - new_type_details->offset;
1257 /* We always allocated the full length item with PURIFY. To do this
1258 we fake things so that arena is false for all 16 types.. */
1259 new_body = new_NOARENAZ(new_type_details);
1261 SvANY(sv) = new_body;
1262 if (new_type == SVt_PVAV) {
1268 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1269 The target created by newSVrv also is, and it can have magic.
1270 However, it never has SvPVX set.
1272 if (old_type >= SVt_RV) {
1273 assert(SvPVX_const(sv) == 0);
1276 /* Could put this in the else clause below, as PVMG must have SvPVX
1277 0 already (the assertion above) */
1280 if (old_type >= SVt_PVMG) {
1281 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1282 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1288 /* XXX Is this still needed? Was it ever needed? Surely as there is
1289 no route from NV to PVIV, NOK can never be true */
1290 assert(!SvNOKp(sv));
1302 assert(new_type_details->body_size);
1303 /* We always allocated the full length item with PURIFY. To do this
1304 we fake things so that arena is false for all 16 types.. */
1305 if(new_type_details->arena) {
1306 /* This points to the start of the allocated area. */
1307 new_body_inline(new_body, new_type);
1308 Zero(new_body, new_type_details->body_size, char);
1309 new_body = ((char *)new_body) - new_type_details->offset;
1311 new_body = new_NOARENAZ(new_type_details);
1313 SvANY(sv) = new_body;
1315 if (old_type_details->copy) {
1316 /* There is now the potential for an upgrade from something without
1317 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1318 int offset = old_type_details->offset;
1319 int length = old_type_details->copy;
1321 if (new_type_details->offset > old_type_details->offset) {
1322 const int difference
1323 = new_type_details->offset - old_type_details->offset;
1324 offset += difference;
1325 length -= difference;
1327 assert (length >= 0);
1329 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1333 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1334 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1335 * correct 0.0 for us. Otherwise, if the old body didn't have an
1336 * NV slot, but the new one does, then we need to initialise the
1337 * freshly created NV slot with whatever the correct bit pattern is
1339 if (old_type_details->zero_nv && !new_type_details->zero_nv)
1343 if (new_type == SVt_PVIO)
1344 IoPAGE_LEN(sv) = 60;
1345 if (old_type < SVt_RV)
1349 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1350 (unsigned long)new_type);
1353 if (old_type_details->arena) {
1354 /* If there was an old body, then we need to free it.
1355 Note that there is an assumption that all bodies of types that
1356 can be upgraded came from arenas. Only the more complex non-
1357 upgradable types are allowed to be directly malloc()ed. */
1359 my_safefree(old_body);
1361 del_body((void*)((char*)old_body + old_type_details->offset),
1362 &PL_body_roots[old_type]);
1368 =for apidoc sv_backoff
1370 Remove any string offset. You should normally use the C<SvOOK_off> macro
1377 Perl_sv_backoff(pTHX_ register SV *sv)
1379 PERL_UNUSED_CONTEXT;
1381 assert(SvTYPE(sv) != SVt_PVHV);
1382 assert(SvTYPE(sv) != SVt_PVAV);
1384 const char * const s = SvPVX_const(sv);
1385 SvLEN_set(sv, SvLEN(sv) + SvIVX(sv));
1386 SvPV_set(sv, SvPVX(sv) - SvIVX(sv));
1388 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1390 SvFLAGS(sv) &= ~SVf_OOK;
1397 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1398 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1399 Use the C<SvGROW> wrapper instead.
1405 Perl_sv_grow(pTHX_ register SV *sv, register STRLEN newlen)
1409 if (PL_madskills && newlen >= 0x100000) {
1410 PerlIO_printf(Perl_debug_log,
1411 "Allocation too large: %"UVxf"\n", (UV)newlen);
1413 #ifdef HAS_64K_LIMIT
1414 if (newlen >= 0x10000) {
1415 PerlIO_printf(Perl_debug_log,
1416 "Allocation too large: %"UVxf"\n", (UV)newlen);
1419 #endif /* HAS_64K_LIMIT */
1422 if (SvTYPE(sv) < SVt_PV) {
1423 sv_upgrade(sv, SVt_PV);
1424 s = SvPVX_mutable(sv);
1426 else if (SvOOK(sv)) { /* pv is offset? */
1428 s = SvPVX_mutable(sv);
1429 if (newlen > SvLEN(sv))
1430 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1431 #ifdef HAS_64K_LIMIT
1432 if (newlen >= 0x10000)
1437 s = SvPVX_mutable(sv);
1439 if (newlen > SvLEN(sv)) { /* need more room? */
1440 newlen = PERL_STRLEN_ROUNDUP(newlen);
1441 if (SvLEN(sv) && s) {
1443 const STRLEN l = malloced_size((void*)SvPVX_const(sv));
1449 s = saferealloc(s, newlen);
1452 s = safemalloc(newlen);
1453 if (SvPVX_const(sv) && SvCUR(sv)) {
1454 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1458 SvLEN_set(sv, newlen);
1464 =for apidoc sv_setiv
1466 Copies an integer into the given SV, upgrading first if necessary.
1467 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1473 Perl_sv_setiv(pTHX_ register SV *sv, IV i)
1476 SV_CHECK_THINKFIRST_COW_DROP(sv);
1477 switch (SvTYPE(sv)) {
1479 sv_upgrade(sv, SVt_IV);
1482 sv_upgrade(sv, SVt_PVNV);
1486 sv_upgrade(sv, SVt_PVIV);
1495 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1498 (void)SvIOK_only(sv); /* validate number */
1504 =for apidoc sv_setiv_mg
1506 Like C<sv_setiv>, but also handles 'set' magic.
1512 Perl_sv_setiv_mg(pTHX_ register SV *sv, IV i)
1519 =for apidoc sv_setuv
1521 Copies an unsigned integer into the given SV, upgrading first if necessary.
1522 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1528 Perl_sv_setuv(pTHX_ register SV *sv, UV u)
1530 /* With these two if statements:
1531 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1534 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1536 If you wish to remove them, please benchmark to see what the effect is
1538 if (u <= (UV)IV_MAX) {
1539 sv_setiv(sv, (IV)u);
1548 =for apidoc sv_setuv_mg
1550 Like C<sv_setuv>, but also handles 'set' magic.
1556 Perl_sv_setuv_mg(pTHX_ register SV *sv, UV u)
1565 =for apidoc sv_setnv
1567 Copies a double into the given SV, upgrading first if necessary.
1568 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1574 Perl_sv_setnv(pTHX_ register SV *sv, NV num)
1577 SV_CHECK_THINKFIRST_COW_DROP(sv);
1578 switch (SvTYPE(sv)) {
1581 sv_upgrade(sv, SVt_NV);
1586 sv_upgrade(sv, SVt_PVNV);
1595 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1599 (void)SvNOK_only(sv); /* validate number */
1604 =for apidoc sv_setnv_mg
1606 Like C<sv_setnv>, but also handles 'set' magic.
1612 Perl_sv_setnv_mg(pTHX_ register SV *sv, NV num)
1618 /* Print an "isn't numeric" warning, using a cleaned-up,
1619 * printable version of the offending string
1623 S_not_a_number(pTHX_ SV *sv)
1631 dsv = sv_2mortal(newSVpvs(""));
1632 pv = sv_uni_display(dsv, sv, 10, 0);
1635 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1636 /* each *s can expand to 4 chars + "...\0",
1637 i.e. need room for 8 chars */
1639 const char *s = SvPVX_const(sv);
1640 const char * const end = s + SvCUR(sv);
1641 for ( ; s < end && d < limit; s++ ) {
1643 if (ch & 128 && !isPRINT_LC(ch)) {
1652 else if (ch == '\r') {
1656 else if (ch == '\f') {
1660 else if (ch == '\\') {
1664 else if (ch == '\0') {
1668 else if (isPRINT_LC(ch))
1685 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1686 "Argument \"%s\" isn't numeric in %s", pv,
1689 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1690 "Argument \"%s\" isn't numeric", pv);
1694 =for apidoc looks_like_number
1696 Test if the content of an SV looks like a number (or is a number).
1697 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1698 non-numeric warning), even if your atof() doesn't grok them.
1704 Perl_looks_like_number(pTHX_ SV *sv)
1706 register const char *sbegin;
1710 sbegin = SvPVX_const(sv);
1713 else if (SvPOKp(sv))
1714 sbegin = SvPV_const(sv, len);
1716 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1717 return grok_number(sbegin, len, NULL);
1721 S_glob_2inpuv(pTHX_ GV *gv, STRLEN *len, bool want_number)
1723 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1724 SV *const buffer = sv_newmortal();
1726 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1729 gv_efullname3(buffer, gv, "*");
1730 SvFLAGS(gv) |= wasfake;
1733 /* We know that all GVs stringify to something that is not-a-number,
1734 so no need to test that. */
1735 if (ckWARN(WARN_NUMERIC))
1736 not_a_number(buffer);
1737 /* We just want something true to return, so that S_sv_2iuv_common
1738 can tail call us and return true. */
1741 return SvPV(buffer, *len);
1745 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1746 until proven guilty, assume that things are not that bad... */
1751 As 64 bit platforms often have an NV that doesn't preserve all bits of
1752 an IV (an assumption perl has been based on to date) it becomes necessary
1753 to remove the assumption that the NV always carries enough precision to
1754 recreate the IV whenever needed, and that the NV is the canonical form.
1755 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1756 precision as a side effect of conversion (which would lead to insanity
1757 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1758 1) to distinguish between IV/UV/NV slots that have cached a valid
1759 conversion where precision was lost and IV/UV/NV slots that have a
1760 valid conversion which has lost no precision
1761 2) to ensure that if a numeric conversion to one form is requested that
1762 would lose precision, the precise conversion (or differently
1763 imprecise conversion) is also performed and cached, to prevent
1764 requests for different numeric formats on the same SV causing
1765 lossy conversion chains. (lossless conversion chains are perfectly
1770 SvIOKp is true if the IV slot contains a valid value
1771 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1772 SvNOKp is true if the NV slot contains a valid value
1773 SvNOK is true only if the NV value is accurate
1776 while converting from PV to NV, check to see if converting that NV to an
1777 IV(or UV) would lose accuracy over a direct conversion from PV to
1778 IV(or UV). If it would, cache both conversions, return NV, but mark
1779 SV as IOK NOKp (ie not NOK).
1781 While converting from PV to IV, check to see if converting that IV to an
1782 NV would lose accuracy over a direct conversion from PV to NV. If it
1783 would, cache both conversions, flag similarly.
1785 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1786 correctly because if IV & NV were set NV *always* overruled.
1787 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1788 changes - now IV and NV together means that the two are interchangeable:
1789 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1791 The benefit of this is that operations such as pp_add know that if
1792 SvIOK is true for both left and right operands, then integer addition
1793 can be used instead of floating point (for cases where the result won't
1794 overflow). Before, floating point was always used, which could lead to
1795 loss of precision compared with integer addition.
1797 * making IV and NV equal status should make maths accurate on 64 bit
1799 * may speed up maths somewhat if pp_add and friends start to use
1800 integers when possible instead of fp. (Hopefully the overhead in
1801 looking for SvIOK and checking for overflow will not outweigh the
1802 fp to integer speedup)
1803 * will slow down integer operations (callers of SvIV) on "inaccurate"
1804 values, as the change from SvIOK to SvIOKp will cause a call into
1805 sv_2iv each time rather than a macro access direct to the IV slot
1806 * should speed up number->string conversion on integers as IV is
1807 favoured when IV and NV are equally accurate
1809 ####################################################################
1810 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1811 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1812 On the other hand, SvUOK is true iff UV.
1813 ####################################################################
1815 Your mileage will vary depending your CPU's relative fp to integer
1819 #ifndef NV_PRESERVES_UV
1820 # define IS_NUMBER_UNDERFLOW_IV 1
1821 # define IS_NUMBER_UNDERFLOW_UV 2
1822 # define IS_NUMBER_IV_AND_UV 2
1823 # define IS_NUMBER_OVERFLOW_IV 4
1824 # define IS_NUMBER_OVERFLOW_UV 5
1826 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1828 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1830 S_sv_2iuv_non_preserve(pTHX_ register SV *sv, I32 numtype)
1833 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1834 if (SvNVX(sv) < (NV)IV_MIN) {
1835 (void)SvIOKp_on(sv);
1837 SvIV_set(sv, IV_MIN);
1838 return IS_NUMBER_UNDERFLOW_IV;
1840 if (SvNVX(sv) > (NV)UV_MAX) {
1841 (void)SvIOKp_on(sv);
1844 SvUV_set(sv, UV_MAX);
1845 return IS_NUMBER_OVERFLOW_UV;
1847 (void)SvIOKp_on(sv);
1849 /* Can't use strtol etc to convert this string. (See truth table in
1851 if (SvNVX(sv) <= (UV)IV_MAX) {
1852 SvIV_set(sv, I_V(SvNVX(sv)));
1853 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1854 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1856 /* Integer is imprecise. NOK, IOKp */
1858 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1861 SvUV_set(sv, U_V(SvNVX(sv)));
1862 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1863 if (SvUVX(sv) == UV_MAX) {
1864 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1865 possibly be preserved by NV. Hence, it must be overflow.
1867 return IS_NUMBER_OVERFLOW_UV;
1869 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1871 /* Integer is imprecise. NOK, IOKp */
1873 return IS_NUMBER_OVERFLOW_IV;
1875 #endif /* !NV_PRESERVES_UV*/
1878 S_sv_2iuv_common(pTHX_ SV *sv) {
1881 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1882 * without also getting a cached IV/UV from it at the same time
1883 * (ie PV->NV conversion should detect loss of accuracy and cache
1884 * IV or UV at same time to avoid this. */
1885 /* IV-over-UV optimisation - choose to cache IV if possible */
1887 if (SvTYPE(sv) == SVt_NV)
1888 sv_upgrade(sv, SVt_PVNV);
1890 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1891 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1892 certainly cast into the IV range at IV_MAX, whereas the correct
1893 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1895 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1896 if (Perl_isnan(SvNVX(sv))) {
1902 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
1903 SvIV_set(sv, I_V(SvNVX(sv)));
1904 if (SvNVX(sv) == (NV) SvIVX(sv)
1905 #ifndef NV_PRESERVES_UV
1906 && (((UV)1 << NV_PRESERVES_UV_BITS) >
1907 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
1908 /* Don't flag it as "accurately an integer" if the number
1909 came from a (by definition imprecise) NV operation, and
1910 we're outside the range of NV integer precision */
1913 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
1914 DEBUG_c(PerlIO_printf(Perl_debug_log,
1915 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
1921 /* IV not precise. No need to convert from PV, as NV
1922 conversion would already have cached IV if it detected
1923 that PV->IV would be better than PV->NV->IV
1924 flags already correct - don't set public IOK. */
1925 DEBUG_c(PerlIO_printf(Perl_debug_log,
1926 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
1931 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
1932 but the cast (NV)IV_MIN rounds to a the value less (more
1933 negative) than IV_MIN which happens to be equal to SvNVX ??
1934 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
1935 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
1936 (NV)UVX == NVX are both true, but the values differ. :-(
1937 Hopefully for 2s complement IV_MIN is something like
1938 0x8000000000000000 which will be exact. NWC */
1941 SvUV_set(sv, U_V(SvNVX(sv)));
1943 (SvNVX(sv) == (NV) SvUVX(sv))
1944 #ifndef NV_PRESERVES_UV
1945 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
1946 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
1947 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
1948 /* Don't flag it as "accurately an integer" if the number
1949 came from a (by definition imprecise) NV operation, and
1950 we're outside the range of NV integer precision */
1955 DEBUG_c(PerlIO_printf(Perl_debug_log,
1956 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
1962 else if (SvPOKp(sv) && SvLEN(sv)) {
1964 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
1965 /* We want to avoid a possible problem when we cache an IV/ a UV which
1966 may be later translated to an NV, and the resulting NV is not
1967 the same as the direct translation of the initial string
1968 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
1969 be careful to ensure that the value with the .456 is around if the
1970 NV value is requested in the future).
1972 This means that if we cache such an IV/a UV, we need to cache the
1973 NV as well. Moreover, we trade speed for space, and do not
1974 cache the NV if we are sure it's not needed.
1977 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
1978 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
1979 == IS_NUMBER_IN_UV) {
1980 /* It's definitely an integer, only upgrade to PVIV */
1981 if (SvTYPE(sv) < SVt_PVIV)
1982 sv_upgrade(sv, SVt_PVIV);
1984 } else if (SvTYPE(sv) < SVt_PVNV)
1985 sv_upgrade(sv, SVt_PVNV);
1987 /* If NVs preserve UVs then we only use the UV value if we know that
1988 we aren't going to call atof() below. If NVs don't preserve UVs
1989 then the value returned may have more precision than atof() will
1990 return, even though value isn't perfectly accurate. */
1991 if ((numtype & (IS_NUMBER_IN_UV
1992 #ifdef NV_PRESERVES_UV
1995 )) == IS_NUMBER_IN_UV) {
1996 /* This won't turn off the public IOK flag if it was set above */
1997 (void)SvIOKp_on(sv);
1999 if (!(numtype & IS_NUMBER_NEG)) {
2001 if (value <= (UV)IV_MAX) {
2002 SvIV_set(sv, (IV)value);
2004 /* it didn't overflow, and it was positive. */
2005 SvUV_set(sv, value);
2009 /* 2s complement assumption */
2010 if (value <= (UV)IV_MIN) {
2011 SvIV_set(sv, -(IV)value);
2013 /* Too negative for an IV. This is a double upgrade, but
2014 I'm assuming it will be rare. */
2015 if (SvTYPE(sv) < SVt_PVNV)
2016 sv_upgrade(sv, SVt_PVNV);
2020 SvNV_set(sv, -(NV)value);
2021 SvIV_set(sv, IV_MIN);
2025 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2026 will be in the previous block to set the IV slot, and the next
2027 block to set the NV slot. So no else here. */
2029 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2030 != IS_NUMBER_IN_UV) {
2031 /* It wasn't an (integer that doesn't overflow the UV). */
2032 SvNV_set(sv, Atof(SvPVX_const(sv)));
2034 if (! numtype && ckWARN(WARN_NUMERIC))
2037 #if defined(USE_LONG_DOUBLE)
2038 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2039 PTR2UV(sv), SvNVX(sv)));
2041 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2042 PTR2UV(sv), SvNVX(sv)));
2045 #ifdef NV_PRESERVES_UV
2046 (void)SvIOKp_on(sv);
2048 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2049 SvIV_set(sv, I_V(SvNVX(sv)));
2050 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2053 /*EMPTY*/; /* Integer is imprecise. NOK, IOKp */
2055 /* UV will not work better than IV */
2057 if (SvNVX(sv) > (NV)UV_MAX) {
2059 /* Integer is inaccurate. NOK, IOKp, is UV */
2060 SvUV_set(sv, UV_MAX);
2062 SvUV_set(sv, U_V(SvNVX(sv)));
2063 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2064 NV preservse UV so can do correct comparison. */
2065 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2068 /*EMPTY*/; /* Integer is imprecise. NOK, IOKp, is UV */
2073 #else /* NV_PRESERVES_UV */
2074 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2075 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2076 /* The IV/UV slot will have been set from value returned by
2077 grok_number above. The NV slot has just been set using
2080 assert (SvIOKp(sv));
2082 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2083 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2084 /* Small enough to preserve all bits. */
2085 (void)SvIOKp_on(sv);
2087 SvIV_set(sv, I_V(SvNVX(sv)));
2088 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2090 /* Assumption: first non-preserved integer is < IV_MAX,
2091 this NV is in the preserved range, therefore: */
2092 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2094 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2098 0 0 already failed to read UV.
2099 0 1 already failed to read UV.
2100 1 0 you won't get here in this case. IV/UV
2101 slot set, public IOK, Atof() unneeded.
2102 1 1 already read UV.
2103 so there's no point in sv_2iuv_non_preserve() attempting
2104 to use atol, strtol, strtoul etc. */
2105 sv_2iuv_non_preserve (sv, numtype);
2108 #endif /* NV_PRESERVES_UV */
2112 if (isGV_with_GP(sv)) {
2113 return (bool)PTR2IV(glob_2inpuv((GV *)sv, NULL, TRUE));
2116 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2117 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2120 if (SvTYPE(sv) < SVt_IV)
2121 /* Typically the caller expects that sv_any is not NULL now. */
2122 sv_upgrade(sv, SVt_IV);
2123 /* Return 0 from the caller. */
2130 =for apidoc sv_2iv_flags
2132 Return the integer value of an SV, doing any necessary string
2133 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2134 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2140 Perl_sv_2iv_flags(pTHX_ register SV *sv, I32 flags)
2145 if (SvGMAGICAL(sv)) {
2146 if (flags & SV_GMAGIC)
2151 return I_V(SvNVX(sv));
2153 if (SvPOKp(sv) && SvLEN(sv)) {
2156 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2158 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2159 == IS_NUMBER_IN_UV) {
2160 /* It's definitely an integer */
2161 if (numtype & IS_NUMBER_NEG) {
2162 if (value < (UV)IV_MIN)
2165 if (value < (UV)IV_MAX)
2170 if (ckWARN(WARN_NUMERIC))
2173 return I_V(Atof(SvPVX_const(sv)));
2178 assert(SvTYPE(sv) >= SVt_PVMG);
2179 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2180 } else if (SvTHINKFIRST(sv)) {
2184 SV * const tmpstr=AMG_CALLun(sv,numer);
2185 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2186 return SvIV(tmpstr);
2189 return PTR2IV(SvRV(sv));
2192 sv_force_normal_flags(sv, 0);
2194 if (SvREADONLY(sv) && !SvOK(sv)) {
2195 if (ckWARN(WARN_UNINITIALIZED))
2201 if (S_sv_2iuv_common(aTHX_ sv))
2204 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2205 PTR2UV(sv),SvIVX(sv)));
2206 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2210 =for apidoc sv_2uv_flags
2212 Return the unsigned integer value of an SV, doing any necessary string
2213 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2214 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2220 Perl_sv_2uv_flags(pTHX_ register SV *sv, I32 flags)
2225 if (SvGMAGICAL(sv)) {
2226 if (flags & SV_GMAGIC)
2231 return U_V(SvNVX(sv));
2232 if (SvPOKp(sv) && SvLEN(sv)) {
2235 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2237 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2238 == IS_NUMBER_IN_UV) {
2239 /* It's definitely an integer */
2240 if (!(numtype & IS_NUMBER_NEG))
2244 if (ckWARN(WARN_NUMERIC))
2247 return U_V(Atof(SvPVX_const(sv)));
2252 assert(SvTYPE(sv) >= SVt_PVMG);
2253 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2254 } else if (SvTHINKFIRST(sv)) {
2258 SV *const tmpstr = AMG_CALLun(sv,numer);
2259 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2260 return SvUV(tmpstr);
2263 return PTR2UV(SvRV(sv));
2266 sv_force_normal_flags(sv, 0);
2268 if (SvREADONLY(sv) && !SvOK(sv)) {
2269 if (ckWARN(WARN_UNINITIALIZED))
2275 if (S_sv_2iuv_common(aTHX_ sv))
2279 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2280 PTR2UV(sv),SvUVX(sv)));
2281 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2287 Return the num value of an SV, doing any necessary string or integer
2288 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2295 Perl_sv_2nv(pTHX_ register SV *sv)
2300 if (SvGMAGICAL(sv)) {
2304 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2305 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2306 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2308 return Atof(SvPVX_const(sv));
2312 return (NV)SvUVX(sv);
2314 return (NV)SvIVX(sv);
2319 assert(SvTYPE(sv) >= SVt_PVMG);
2320 /* This falls through to the report_uninit near the end of the
2322 } else if (SvTHINKFIRST(sv)) {
2326 SV *const tmpstr = AMG_CALLun(sv,numer);
2327 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2328 return SvNV(tmpstr);
2331 return PTR2NV(SvRV(sv));
2334 sv_force_normal_flags(sv, 0);
2336 if (SvREADONLY(sv) && !SvOK(sv)) {
2337 if (ckWARN(WARN_UNINITIALIZED))
2342 if (SvTYPE(sv) < SVt_NV) {
2343 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2344 sv_upgrade(sv, SVt_NV);
2345 #ifdef USE_LONG_DOUBLE
2347 STORE_NUMERIC_LOCAL_SET_STANDARD();
2348 PerlIO_printf(Perl_debug_log,
2349 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2350 PTR2UV(sv), SvNVX(sv));
2351 RESTORE_NUMERIC_LOCAL();
2355 STORE_NUMERIC_LOCAL_SET_STANDARD();
2356 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2357 PTR2UV(sv), SvNVX(sv));
2358 RESTORE_NUMERIC_LOCAL();
2362 else if (SvTYPE(sv) < SVt_PVNV)
2363 sv_upgrade(sv, SVt_PVNV);
2368 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2369 #ifdef NV_PRESERVES_UV
2372 /* Only set the public NV OK flag if this NV preserves the IV */
2373 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2374 if (SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2375 : (SvIVX(sv) == I_V(SvNVX(sv))))
2381 else if (SvPOKp(sv) && SvLEN(sv)) {
2383 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2384 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2386 #ifdef NV_PRESERVES_UV
2387 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2388 == IS_NUMBER_IN_UV) {
2389 /* It's definitely an integer */
2390 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2392 SvNV_set(sv, Atof(SvPVX_const(sv)));
2395 SvNV_set(sv, Atof(SvPVX_const(sv)));
2396 /* Only set the public NV OK flag if this NV preserves the value in
2397 the PV at least as well as an IV/UV would.
2398 Not sure how to do this 100% reliably. */
2399 /* if that shift count is out of range then Configure's test is
2400 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2402 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2403 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2404 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2405 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2406 /* Can't use strtol etc to convert this string, so don't try.
2407 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2410 /* value has been set. It may not be precise. */
2411 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2412 /* 2s complement assumption for (UV)IV_MIN */
2413 SvNOK_on(sv); /* Integer is too negative. */
2418 if (numtype & IS_NUMBER_NEG) {
2419 SvIV_set(sv, -(IV)value);
2420 } else if (value <= (UV)IV_MAX) {
2421 SvIV_set(sv, (IV)value);
2423 SvUV_set(sv, value);
2427 if (numtype & IS_NUMBER_NOT_INT) {
2428 /* I believe that even if the original PV had decimals,
2429 they are lost beyond the limit of the FP precision.
2430 However, neither is canonical, so both only get p
2431 flags. NWC, 2000/11/25 */
2432 /* Both already have p flags, so do nothing */
2434 const NV nv = SvNVX(sv);
2435 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2436 if (SvIVX(sv) == I_V(nv)) {
2439 /* It had no "." so it must be integer. */
2443 /* between IV_MAX and NV(UV_MAX).
2444 Could be slightly > UV_MAX */
2446 if (numtype & IS_NUMBER_NOT_INT) {
2447 /* UV and NV both imprecise. */
2449 const UV nv_as_uv = U_V(nv);
2451 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2460 #endif /* NV_PRESERVES_UV */
2463 if (isGV_with_GP(sv)) {
2464 glob_2inpuv((GV *)sv, NULL, TRUE);
2468 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2470 assert (SvTYPE(sv) >= SVt_NV);
2471 /* Typically the caller expects that sv_any is not NULL now. */
2472 /* XXX Ilya implies that this is a bug in callers that assume this
2473 and ideally should be fixed. */
2476 #if defined(USE_LONG_DOUBLE)
2478 STORE_NUMERIC_LOCAL_SET_STANDARD();
2479 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2480 PTR2UV(sv), SvNVX(sv));
2481 RESTORE_NUMERIC_LOCAL();
2485 STORE_NUMERIC_LOCAL_SET_STANDARD();
2486 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2487 PTR2UV(sv), SvNVX(sv));
2488 RESTORE_NUMERIC_LOCAL();
2494 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2495 * UV as a string towards the end of buf, and return pointers to start and
2498 * We assume that buf is at least TYPE_CHARS(UV) long.
2502 S_uiv_2buf(char *buf, IV iv, UV uv, int is_uv, char **peob)
2504 char *ptr = buf + TYPE_CHARS(UV);
2505 char * const ebuf = ptr;
2518 *--ptr = '0' + (char)(uv % 10);
2526 /* stringify_regexp(): private routine for use by sv_2pv_flags(): converts
2527 * a regexp to its stringified form.
2531 S_stringify_regexp(pTHX_ SV *sv, MAGIC *mg, STRLEN *lp) {
2533 const regexp * const re = (regexp *)mg->mg_obj;
2536 const char *fptr = "msix";
2541 bool need_newline = 0;
2542 U16 reganch = (U16)((re->reganch & PMf_COMPILETIME) >> 12);
2544 while((ch = *fptr++)) {
2546 reflags[left++] = ch;
2549 reflags[right--] = ch;
2554 reflags[left] = '-';
2558 mg->mg_len = re->prelen + 4 + left;
2560 * If /x was used, we have to worry about a regex ending with a
2561 * comment later being embedded within another regex. If so, we don't
2562 * want this regex's "commentization" to leak out to the right part of
2563 * the enclosing regex, we must cap it with a newline.
2565 * So, if /x was used, we scan backwards from the end of the regex. If
2566 * we find a '#' before we find a newline, we need to add a newline
2567 * ourself. If we find a '\n' first (or if we don't find '#' or '\n'),
2568 * we don't need to add anything. -jfriedl
2570 if (PMf_EXTENDED & re->reganch) {
2571 const char *endptr = re->precomp + re->prelen;
2572 while (endptr >= re->precomp) {
2573 const char c = *(endptr--);
2575 break; /* don't need another */
2577 /* we end while in a comment, so we need a newline */
2578 mg->mg_len++; /* save space for it */
2579 need_newline = 1; /* note to add it */
2585 Newx(mg->mg_ptr, mg->mg_len + 1 + left, char);
2586 mg->mg_ptr[0] = '(';
2587 mg->mg_ptr[1] = '?';
2588 Copy(reflags, mg->mg_ptr+2, left, char);
2589 *(mg->mg_ptr+left+2) = ':';
2590 Copy(re->precomp, mg->mg_ptr+3+left, re->prelen, char);
2592 mg->mg_ptr[mg->mg_len - 2] = '\n';
2593 mg->mg_ptr[mg->mg_len - 1] = ')';
2594 mg->mg_ptr[mg->mg_len] = 0;
2596 PL_reginterp_cnt += re->program[0].next_off;
2598 if (re->reganch & ROPT_UTF8)
2608 =for apidoc sv_2pv_flags
2610 Returns a pointer to the string value of an SV, and sets *lp to its length.
2611 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2613 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2614 usually end up here too.
2620 Perl_sv_2pv_flags(pTHX_ register SV *sv, STRLEN *lp, I32 flags)
2630 if (SvGMAGICAL(sv)) {
2631 if (flags & SV_GMAGIC)
2636 if (flags & SV_MUTABLE_RETURN)
2637 return SvPVX_mutable(sv);
2638 if (flags & SV_CONST_RETURN)
2639 return (char *)SvPVX_const(sv);
2642 if (SvIOKp(sv) || SvNOKp(sv)) {
2643 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2647 len = SvIsUV(sv) ? my_sprintf(tbuf,"%"UVuf, (UV)SvUVX(sv))
2648 : my_sprintf(tbuf,"%"IVdf, (IV)SvIVX(sv));
2650 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2657 #ifdef FIXNEGATIVEZERO
2658 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2664 SvUPGRADE(sv, SVt_PV);
2667 s = SvGROW_mutable(sv, len + 1);
2670 return memcpy(s, tbuf, len + 1);
2676 assert(SvTYPE(sv) >= SVt_PVMG);
2677 /* This falls through to the report_uninit near the end of the
2679 } else if (SvTHINKFIRST(sv)) {
2683 SV *const tmpstr = AMG_CALLun(sv,string);
2684 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2686 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2690 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2691 if (flags & SV_CONST_RETURN) {
2692 pv = (char *) SvPVX_const(tmpstr);
2694 pv = (flags & SV_MUTABLE_RETURN)
2695 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2698 *lp = SvCUR(tmpstr);
2700 pv = sv_2pv_flags(tmpstr, lp, flags);
2712 const SV *const referent = (SV*)SvRV(sv);
2715 tsv = sv_2mortal(newSVpvs("NULLREF"));
2716 } else if (SvTYPE(referent) == SVt_PVMG
2717 && ((SvFLAGS(referent) &
2718 (SVs_OBJECT|SVf_OK|SVs_GMG|SVs_SMG|SVs_RMG))
2719 == (SVs_OBJECT|SVs_SMG))
2720 && (mg = mg_find(referent, PERL_MAGIC_qr))) {
2721 return stringify_regexp(sv, mg, lp);
2723 const char *const typestr = sv_reftype(referent, 0);
2725 tsv = sv_newmortal();
2726 if (SvOBJECT(referent)) {
2727 const char *const name = HvNAME_get(SvSTASH(referent));
2728 Perl_sv_setpvf(aTHX_ tsv, "%s=%s(0x%"UVxf")",
2729 name ? name : "__ANON__" , typestr,
2733 Perl_sv_setpvf(aTHX_ tsv, "%s(0x%"UVxf")", typestr,
2741 if (SvREADONLY(sv) && !SvOK(sv)) {
2742 if (ckWARN(WARN_UNINITIALIZED))
2749 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2750 /* I'm assuming that if both IV and NV are equally valid then
2751 converting the IV is going to be more efficient */
2752 const U32 isIOK = SvIOK(sv);
2753 const U32 isUIOK = SvIsUV(sv);
2754 char buf[TYPE_CHARS(UV)];
2757 if (SvTYPE(sv) < SVt_PVIV)
2758 sv_upgrade(sv, SVt_PVIV);
2759 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2760 /* inlined from sv_setpvn */
2761 SvGROW_mutable(sv, (STRLEN)(ebuf - ptr + 1));
2762 Move(ptr,SvPVX_mutable(sv),ebuf - ptr,char);
2763 SvCUR_set(sv, ebuf - ptr);
2773 else if (SvNOKp(sv)) {
2774 const int olderrno = errno;
2775 if (SvTYPE(sv) < SVt_PVNV)
2776 sv_upgrade(sv, SVt_PVNV);
2777 /* The +20 is pure guesswork. Configure test needed. --jhi */
2778 s = SvGROW_mutable(sv, NV_DIG + 20);
2779 /* some Xenix systems wipe out errno here */
2781 if (SvNVX(sv) == 0.0)
2782 (void)strcpy(s,"0");
2786 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2789 #ifdef FIXNEGATIVEZERO
2790 if (*s == '-' && s[1] == '0' && !s[2])
2800 if (isGV_with_GP(sv)) {
2801 return glob_2inpuv((GV *)sv, lp, FALSE);
2804 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2808 if (SvTYPE(sv) < SVt_PV)
2809 /* Typically the caller expects that sv_any is not NULL now. */
2810 sv_upgrade(sv, SVt_PV);
2814 const STRLEN len = s - SvPVX_const(sv);
2820 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2821 PTR2UV(sv),SvPVX_const(sv)));
2822 if (flags & SV_CONST_RETURN)
2823 return (char *)SvPVX_const(sv);
2824 if (flags & SV_MUTABLE_RETURN)
2825 return SvPVX_mutable(sv);
2830 =for apidoc sv_copypv
2832 Copies a stringified representation of the source SV into the
2833 destination SV. Automatically performs any necessary mg_get and
2834 coercion of numeric values into strings. Guaranteed to preserve
2835 UTF-8 flag even from overloaded objects. Similar in nature to
2836 sv_2pv[_flags] but operates directly on an SV instead of just the
2837 string. Mostly uses sv_2pv_flags to do its work, except when that
2838 would lose the UTF-8'ness of the PV.
2844 Perl_sv_copypv(pTHX_ SV *dsv, register SV *ssv)
2847 const char * const s = SvPV_const(ssv,len);
2848 sv_setpvn(dsv,s,len);
2856 =for apidoc sv_2pvbyte
2858 Return a pointer to the byte-encoded representation of the SV, and set *lp
2859 to its length. May cause the SV to be downgraded from UTF-8 as a
2862 Usually accessed via the C<SvPVbyte> macro.
2868 Perl_sv_2pvbyte(pTHX_ register SV *sv, STRLEN *lp)
2870 sv_utf8_downgrade(sv,0);
2871 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2875 =for apidoc sv_2pvutf8
2877 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
2878 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
2880 Usually accessed via the C<SvPVutf8> macro.
2886 Perl_sv_2pvutf8(pTHX_ register SV *sv, STRLEN *lp)
2888 sv_utf8_upgrade(sv);
2889 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2894 =for apidoc sv_2bool
2896 This function is only called on magical items, and is only used by
2897 sv_true() or its macro equivalent.
2903 Perl_sv_2bool(pTHX_ register SV *sv)
2912 SV * const tmpsv = AMG_CALLun(sv,bool_);
2913 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2914 return (bool)SvTRUE(tmpsv);
2916 return SvRV(sv) != 0;
2919 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
2921 (*sv->sv_u.svu_pv > '0' ||
2922 Xpvtmp->xpv_cur > 1 ||
2923 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
2930 return SvIVX(sv) != 0;
2933 return SvNVX(sv) != 0.0;
2935 if (isGV_with_GP(sv))
2945 =for apidoc sv_utf8_upgrade
2947 Converts the PV of an SV to its UTF-8-encoded form.
2948 Forces the SV to string form if it is not already.
2949 Always sets the SvUTF8 flag to avoid future validity checks even
2950 if all the bytes have hibit clear.
2952 This is not as a general purpose byte encoding to Unicode interface:
2953 use the Encode extension for that.
2955 =for apidoc sv_utf8_upgrade_flags
2957 Converts the PV of an SV to its UTF-8-encoded form.
2958 Forces the SV to string form if it is not already.
2959 Always sets the SvUTF8 flag to avoid future validity checks even
2960 if all the bytes have hibit clear. If C<flags> has C<SV_GMAGIC> bit set,
2961 will C<mg_get> on C<sv> if appropriate, else not. C<sv_utf8_upgrade> and
2962 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
2964 This is not as a general purpose byte encoding to Unicode interface:
2965 use the Encode extension for that.
2971 Perl_sv_utf8_upgrade_flags(pTHX_ register SV *sv, I32 flags)
2974 if (sv == &PL_sv_undef)
2978 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
2979 (void) sv_2pv_flags(sv,&len, flags);
2983 (void) SvPV_force(sv,len);
2992 sv_force_normal_flags(sv, 0);
2995 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING))
2996 sv_recode_to_utf8(sv, PL_encoding);
2997 else { /* Assume Latin-1/EBCDIC */
2998 /* This function could be much more efficient if we
2999 * had a FLAG in SVs to signal if there are any hibit
3000 * chars in the PV. Given that there isn't such a flag
3001 * make the loop as fast as possible. */
3002 const U8 * const s = (U8 *) SvPVX_const(sv);
3003 const U8 * const e = (U8 *) SvEND(sv);
3008 /* Check for hi bit */
3009 if (!NATIVE_IS_INVARIANT(ch)) {
3010 STRLEN len = SvCUR(sv) + 1; /* Plus the \0 */
3011 U8 * const recoded = bytes_to_utf8((U8*)s, &len);
3013 SvPV_free(sv); /* No longer using what was there before. */
3014 SvPV_set(sv, (char*)recoded);
3015 SvCUR_set(sv, len - 1);
3016 SvLEN_set(sv, len); /* No longer know the real size. */
3020 /* Mark as UTF-8 even if no hibit - saves scanning loop */
3027 =for apidoc sv_utf8_downgrade
3029 Attempts to convert the PV of an SV from characters to bytes.
3030 If the PV contains a character beyond byte, this conversion will fail;
3031 in this case, either returns false or, if C<fail_ok> is not
3034 This is not as a general purpose Unicode to byte encoding interface:
3035 use the Encode extension for that.
3041 Perl_sv_utf8_downgrade(pTHX_ register SV* sv, bool fail_ok)
3044 if (SvPOKp(sv) && SvUTF8(sv)) {
3050 sv_force_normal_flags(sv, 0);
3052 s = (U8 *) SvPV(sv, len);
3053 if (!utf8_to_bytes(s, &len)) {
3058 Perl_croak(aTHX_ "Wide character in %s",
3061 Perl_croak(aTHX_ "Wide character");
3072 =for apidoc sv_utf8_encode
3074 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3075 flag off so that it looks like octets again.
3081 Perl_sv_utf8_encode(pTHX_ register SV *sv)
3083 (void) sv_utf8_upgrade(sv);
3085 sv_force_normal_flags(sv, 0);
3087 if (SvREADONLY(sv)) {
3088 Perl_croak(aTHX_ PL_no_modify);
3094 =for apidoc sv_utf8_decode
3096 If the PV of the SV is an octet sequence in UTF-8
3097 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3098 so that it looks like a character. If the PV contains only single-byte
3099 characters, the C<SvUTF8> flag stays being off.
3100 Scans PV for validity and returns false if the PV is invalid UTF-8.
3106 Perl_sv_utf8_decode(pTHX_ register SV *sv)
3112 /* The octets may have got themselves encoded - get them back as
3115 if (!sv_utf8_downgrade(sv, TRUE))
3118 /* it is actually just a matter of turning the utf8 flag on, but
3119 * we want to make sure everything inside is valid utf8 first.
3121 c = (const U8 *) SvPVX_const(sv);
3122 if (!is_utf8_string(c, SvCUR(sv)+1))
3124 e = (const U8 *) SvEND(sv);
3127 if (!UTF8_IS_INVARIANT(ch)) {
3137 =for apidoc sv_setsv
3139 Copies the contents of the source SV C<ssv> into the destination SV
3140 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3141 function if the source SV needs to be reused. Does not handle 'set' magic.
3142 Loosely speaking, it performs a copy-by-value, obliterating any previous
3143 content of the destination.
3145 You probably want to use one of the assortment of wrappers, such as
3146 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3147 C<SvSetMagicSV_nosteal>.
3149 =for apidoc sv_setsv_flags
3151 Copies the contents of the source SV C<ssv> into the destination SV
3152 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3153 function if the source SV needs to be reused. Does not handle 'set' magic.
3154 Loosely speaking, it performs a copy-by-value, obliterating any previous
3155 content of the destination.
3156 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3157 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3158 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3159 and C<sv_setsv_nomg> are implemented in terms of this function.
3161 You probably want to use one of the assortment of wrappers, such as
3162 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3163 C<SvSetMagicSV_nosteal>.
3165 This is the primary function for copying scalars, and most other
3166 copy-ish functions and macros use this underneath.
3172 S_glob_assign_glob(pTHX_ SV *dstr, SV *sstr, const int dtype)
3174 if (dtype != SVt_PVGV) {
3175 const char * const name = GvNAME(sstr);
3176 const STRLEN len = GvNAMELEN(sstr);
3177 /* don't upgrade SVt_PVLV: it can hold a glob */
3178 if (dtype != SVt_PVLV) {
3179 if (dtype >= SVt_PV) {
3185 sv_upgrade(dstr, SVt_PVGV);
3186 (void)SvOK_off(dstr);
3189 GvSTASH(dstr) = GvSTASH(sstr);
3191 Perl_sv_add_backref(aTHX_ (SV*)GvSTASH(dstr), dstr);
3192 gv_name_set((GV *)dstr, name, len, GV_ADD);
3193 SvFAKE_on(dstr); /* can coerce to non-glob */
3196 #ifdef GV_UNIQUE_CHECK
3197 if (GvUNIQUE((GV*)dstr)) {
3198 Perl_croak(aTHX_ PL_no_modify);
3204 (void)SvOK_off(dstr);
3206 GvINTRO_off(dstr); /* one-shot flag */
3207 GvGP(dstr) = gp_ref(GvGP(sstr));
3208 if (SvTAINTED(sstr))
3210 if (GvIMPORTED(dstr) != GVf_IMPORTED
3211 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3213 GvIMPORTED_on(dstr);
3220 S_glob_assign_ref(pTHX_ SV *dstr, SV *sstr) {
3221 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3223 const int intro = GvINTRO(dstr);
3226 const U32 stype = SvTYPE(sref);
3229 #ifdef GV_UNIQUE_CHECK
3230 if (GvUNIQUE((GV*)dstr)) {
3231 Perl_croak(aTHX_ PL_no_modify);
3236 GvINTRO_off(dstr); /* one-shot flag */
3237 GvLINE(dstr) = CopLINE(PL_curcop);
3238 GvEGV(dstr) = (GV*)dstr;
3243 location = (SV **) &GvCV(dstr);
3244 import_flag = GVf_IMPORTED_CV;
3247 location = (SV **) &GvHV(dstr);
3248 import_flag = GVf_IMPORTED_HV;
3251 location = (SV **) &GvAV(dstr);
3252 import_flag = GVf_IMPORTED_AV;
3255 location = (SV **) &GvIOp(dstr);
3258 location = (SV **) &GvFORM(dstr);
3260 location = &GvSV(dstr);
3261 import_flag = GVf_IMPORTED_SV;
3264 if (stype == SVt_PVCV) {
3265 if (GvCVGEN(dstr) && GvCV(dstr) != (CV*)sref) {
3266 SvREFCNT_dec(GvCV(dstr));
3268 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3269 PL_sub_generation++;
3272 SAVEGENERICSV(*location);
3276 if (stype == SVt_PVCV && *location != sref) {
3277 CV* const cv = (CV*)*location;
3279 if (!GvCVGEN((GV*)dstr) &&
3280 (CvROOT(cv) || CvXSUB(cv)))
3282 /* Redefining a sub - warning is mandatory if
3283 it was a const and its value changed. */
3284 if (CvCONST(cv) && CvCONST((CV*)sref)
3285 && cv_const_sv(cv) == cv_const_sv((CV*)sref)) {
3287 /* They are 2 constant subroutines generated from
3288 the same constant. This probably means that
3289 they are really the "same" proxy subroutine
3290 instantiated in 2 places. Most likely this is
3291 when a constant is exported twice. Don't warn.
3294 else if (ckWARN(WARN_REDEFINE)
3296 && (!CvCONST((CV*)sref)
3297 || sv_cmp(cv_const_sv(cv),
3298 cv_const_sv((CV*)sref))))) {
3299 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3301 ? "Constant subroutine %s::%s redefined"
3302 : "Subroutine %s::%s redefined",
3303 HvNAME_get(GvSTASH((GV*)dstr)),
3304 GvENAME((GV*)dstr));
3308 cv_ckproto(cv, (GV*)dstr,
3309 SvPOK(sref) ? SvPVX_const(sref) : NULL);
3311 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3312 GvASSUMECV_on(dstr);
3313 PL_sub_generation++;
3316 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3317 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3318 GvFLAGS(dstr) |= import_flag;
3323 if (SvTAINTED(sstr))
3329 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV *sstr, I32 flags)
3332 register U32 sflags;
3338 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3340 sstr = &PL_sv_undef;
3341 stype = SvTYPE(sstr);
3342 dtype = SvTYPE(dstr);
3347 /* need to nuke the magic */
3349 SvRMAGICAL_off(dstr);
3352 /* There's a lot of redundancy below but we're going for speed here */
3357 if (dtype != SVt_PVGV) {
3358 (void)SvOK_off(dstr);
3366 sv_upgrade(dstr, SVt_IV);
3371 sv_upgrade(dstr, SVt_PVIV);
3374 (void)SvIOK_only(dstr);
3375 SvIV_set(dstr, SvIVX(sstr));
3378 /* SvTAINTED can only be true if the SV has taint magic, which in
3379 turn means that the SV type is PVMG (or greater). This is the
3380 case statement for SVt_IV, so this cannot be true (whatever gcov
3382 assert(!SvTAINTED(sstr));
3392 sv_upgrade(dstr, SVt_NV);
3397 sv_upgrade(dstr, SVt_PVNV);
3400 SvNV_set(dstr, SvNVX(sstr));
3401 (void)SvNOK_only(dstr);
3402 /* SvTAINTED can only be true if the SV has taint magic, which in
3403 turn means that the SV type is PVMG (or greater). This is the
3404 case statement for SVt_NV, so this cannot be true (whatever gcov
3406 assert(!SvTAINTED(sstr));
3413 sv_upgrade(dstr, SVt_RV);
3416 #ifdef PERL_OLD_COPY_ON_WRITE
3417 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3418 if (dtype < SVt_PVIV)
3419 sv_upgrade(dstr, SVt_PVIV);
3426 sv_upgrade(dstr, SVt_PV);
3429 if (dtype < SVt_PVIV)
3430 sv_upgrade(dstr, SVt_PVIV);
3433 if (dtype < SVt_PVNV)
3434 sv_upgrade(dstr, SVt_PVNV);
3438 const char * const type = sv_reftype(sstr,0);
3440 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3442 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3447 if (dtype <= SVt_PVGV) {
3448 glob_assign_glob(dstr, sstr, dtype);
3456 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3458 if ((int)SvTYPE(sstr) != stype) {
3459 stype = SvTYPE(sstr);
3460 if (stype == SVt_PVGV && dtype <= SVt_PVGV) {
3461 glob_assign_glob(dstr, sstr, dtype);
3466 if (stype == SVt_PVLV)
3467 SvUPGRADE(dstr, SVt_PVNV);
3469 SvUPGRADE(dstr, (U32)stype);
3472 /* dstr may have been upgraded. */
3473 dtype = SvTYPE(dstr);
3474 sflags = SvFLAGS(sstr);
3476 if (sflags & SVf_ROK) {
3477 if (dtype == SVt_PVGV &&
3478 SvROK(sstr) && SvTYPE(SvRV(sstr)) == SVt_PVGV) {
3481 if (GvIMPORTED(dstr) != GVf_IMPORTED
3482 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3484 GvIMPORTED_on(dstr);
3489 glob_assign_glob(dstr, sstr, dtype);
3493 if (dtype >= SVt_PV) {
3494 if (dtype == SVt_PVGV) {
3495 glob_assign_ref(dstr, sstr);
3498 if (SvPVX_const(dstr)) {
3504 (void)SvOK_off(dstr);
3505 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
3506 SvFLAGS(dstr) |= sflags & (SVf_ROK|SVf_AMAGIC);
3507 assert(!(sflags & SVp_NOK));
3508 assert(!(sflags & SVp_IOK));
3509 assert(!(sflags & SVf_NOK));
3510 assert(!(sflags & SVf_IOK));
3512 else if (dtype == SVt_PVGV) {
3513 if (!(sflags & SVf_OK)) {
3514 if (ckWARN(WARN_MISC))
3515 Perl_warner(aTHX_ packWARN(WARN_MISC),
3516 "Undefined value assigned to typeglob");
3519 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
3520 if (dstr != (SV*)gv) {
3523 GvGP(dstr) = gp_ref(GvGP(gv));
3527 else if (sflags & SVp_POK) {
3531 * Check to see if we can just swipe the string. If so, it's a
3532 * possible small lose on short strings, but a big win on long ones.
3533 * It might even be a win on short strings if SvPVX_const(dstr)
3534 * has to be allocated and SvPVX_const(sstr) has to be freed.
3537 /* Whichever path we take through the next code, we want this true,
3538 and doing it now facilitates the COW check. */
3539 (void)SvPOK_only(dstr);
3542 /* We're not already COW */
3543 ((sflags & (SVf_FAKE | SVf_READONLY)) != (SVf_FAKE | SVf_READONLY)
3544 #ifndef PERL_OLD_COPY_ON_WRITE
3545 /* or we are, but dstr isn't a suitable target. */
3546 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
3551 (sflags & SVs_TEMP) && /* slated for free anyway? */
3552 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
3553 (!(flags & SV_NOSTEAL)) &&
3554 /* and we're allowed to steal temps */
3555 SvREFCNT(sstr) == 1 && /* and no other references to it? */
3556 SvLEN(sstr) && /* and really is a string */
3557 /* and won't be needed again, potentially */
3558 !(PL_op && PL_op->op_type == OP_AASSIGN))
3559 #ifdef PERL_OLD_COPY_ON_WRITE
3560 && !((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
3561 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
3562 && SvTYPE(sstr) >= SVt_PVIV)
3565 /* Failed the swipe test, and it's not a shared hash key either.
3566 Have to copy the string. */
3567 STRLEN len = SvCUR(sstr);
3568 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
3569 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
3570 SvCUR_set(dstr, len);
3571 *SvEND(dstr) = '\0';
3573 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
3575 /* Either it's a shared hash key, or it's suitable for
3576 copy-on-write or we can swipe the string. */
3578 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
3582 #ifdef PERL_OLD_COPY_ON_WRITE
3584 /* I believe I should acquire a global SV mutex if
3585 it's a COW sv (not a shared hash key) to stop
3586 it going un copy-on-write.
3587 If the source SV has gone un copy on write between up there
3588 and down here, then (assert() that) it is of the correct
3589 form to make it copy on write again */
3590 if ((sflags & (SVf_FAKE | SVf_READONLY))
3591 != (SVf_FAKE | SVf_READONLY)) {
3592 SvREADONLY_on(sstr);
3594 /* Make the source SV into a loop of 1.
3595 (about to become 2) */
3596 SV_COW_NEXT_SV_SET(sstr, sstr);
3600 /* Initial code is common. */
3601 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
3606 /* making another shared SV. */
3607 STRLEN cur = SvCUR(sstr);
3608 STRLEN len = SvLEN(sstr);
3609 #ifdef PERL_OLD_COPY_ON_WRITE
3611 assert (SvTYPE(dstr) >= SVt_PVIV);
3612 /* SvIsCOW_normal */
3613 /* splice us in between source and next-after-source. */
3614 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3615 SV_COW_NEXT_SV_SET(sstr, dstr);
3616 SvPV_set(dstr, SvPVX_mutable(sstr));
3620 /* SvIsCOW_shared_hash */
3621 DEBUG_C(PerlIO_printf(Perl_debug_log,
3622 "Copy on write: Sharing hash\n"));
3624 assert (SvTYPE(dstr) >= SVt_PV);
3626 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
3628 SvLEN_set(dstr, len);
3629 SvCUR_set(dstr, cur);
3630 SvREADONLY_on(dstr);
3632 /* Relesase a global SV mutex. */
3635 { /* Passes the swipe test. */
3636 SvPV_set(dstr, SvPVX_mutable(sstr));
3637 SvLEN_set(dstr, SvLEN(sstr));
3638 SvCUR_set(dstr, SvCUR(sstr));
3641 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
3642 SvPV_set(sstr, NULL);
3648 if (sflags & SVp_NOK) {
3649 SvNV_set(dstr, SvNVX(sstr));
3651 if (sflags & SVp_IOK) {
3652 SvRELEASE_IVX(dstr);
3653 SvIV_set(dstr, SvIVX(sstr));
3654 /* Must do this otherwise some other overloaded use of 0x80000000
3655 gets confused. I guess SVpbm_VALID */
3656 if (sflags & SVf_IVisUV)
3659 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8
3662 const MAGIC * const smg = SvVOK(sstr);
3664 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
3665 smg->mg_ptr, smg->mg_len);
3666 SvRMAGICAL_on(dstr);
3670 else if (sflags & (SVp_IOK|SVp_NOK)) {
3671 (void)SvOK_off(dstr);
3672 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK
3674 if (sflags & SVp_IOK) {
3675 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
3676 SvIV_set(dstr, SvIVX(sstr));
3678 if (sflags & SVp_NOK) {
3679 SvNV_set(dstr, SvNVX(sstr));
3683 if (isGV_with_GP(sstr)) {
3684 /* This stringification rule for globs is spread in 3 places.
3685 This feels bad. FIXME. */
3686 const U32 wasfake = sflags & SVf_FAKE;
3688 /* FAKE globs can get coerced, so need to turn this off
3689 temporarily if it is on. */
3691 gv_efullname3(dstr, (GV *)sstr, "*");
3692 SvFLAGS(sstr) |= wasfake;
3693 SvFLAGS(dstr) |= sflags & SVf_AMAGIC;
3696 (void)SvOK_off(dstr);
3698 if (SvTAINTED(sstr))
3703 =for apidoc sv_setsv_mg
3705 Like C<sv_setsv>, but also handles 'set' magic.
3711 Perl_sv_setsv_mg(pTHX_ SV *dstr, register SV *sstr)
3713 sv_setsv(dstr,sstr);
3717 #ifdef PERL_OLD_COPY_ON_WRITE
3719 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
3721 STRLEN cur = SvCUR(sstr);
3722 STRLEN len = SvLEN(sstr);
3723 register char *new_pv;
3726 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
3734 if (SvTHINKFIRST(dstr))
3735 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
3736 else if (SvPVX_const(dstr))
3737 Safefree(SvPVX_const(dstr));
3741 SvUPGRADE(dstr, SVt_PVIV);
3743 assert (SvPOK(sstr));
3744 assert (SvPOKp(sstr));
3745 assert (!SvIOK(sstr));
3746 assert (!SvIOKp(sstr));
3747 assert (!SvNOK(sstr));
3748 assert (!SvNOKp(sstr));
3750 if (SvIsCOW(sstr)) {
3752 if (SvLEN(sstr) == 0) {
3753 /* source is a COW shared hash key. */
3754 DEBUG_C(PerlIO_printf(Perl_debug_log,
3755 "Fast copy on write: Sharing hash\n"));
3756 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
3759 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3761 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
3762 SvUPGRADE(sstr, SVt_PVIV);
3763 SvREADONLY_on(sstr);
3765 DEBUG_C(PerlIO_printf(Perl_debug_log,
3766 "Fast copy on write: Converting sstr to COW\n"));
3767 SV_COW_NEXT_SV_SET(dstr, sstr);
3769 SV_COW_NEXT_SV_SET(sstr, dstr);
3770 new_pv = SvPVX_mutable(sstr);
3773 SvPV_set(dstr, new_pv);
3774 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
3777 SvLEN_set(dstr, len);
3778 SvCUR_set(dstr, cur);
3787 =for apidoc sv_setpvn
3789 Copies a string into an SV. The C<len> parameter indicates the number of
3790 bytes to be copied. If the C<ptr> argument is NULL the SV will become
3791 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
3797 Perl_sv_setpvn(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3800 register char *dptr;
3802 SV_CHECK_THINKFIRST_COW_DROP(sv);
3808 /* len is STRLEN which is unsigned, need to copy to signed */
3811 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
3813 SvUPGRADE(sv, SVt_PV);
3815 dptr = SvGROW(sv, len + 1);
3816 Move(ptr,dptr,len,char);
3819 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3824 =for apidoc sv_setpvn_mg
3826 Like C<sv_setpvn>, but also handles 'set' magic.
3832 Perl_sv_setpvn_mg(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3834 sv_setpvn(sv,ptr,len);
3839 =for apidoc sv_setpv
3841 Copies a string into an SV. The string must be null-terminated. Does not
3842 handle 'set' magic. See C<sv_setpv_mg>.
3848 Perl_sv_setpv(pTHX_ register SV *sv, register const char *ptr)
3851 register STRLEN len;
3853 SV_CHECK_THINKFIRST_COW_DROP(sv);
3859 SvUPGRADE(sv, SVt_PV);
3861 SvGROW(sv, len + 1);
3862 Move(ptr,SvPVX(sv),len+1,char);
3864 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3869 =for apidoc sv_setpv_mg
3871 Like C<sv_setpv>, but also handles 'set' magic.
3877 Perl_sv_setpv_mg(pTHX_ register SV *sv, register const char *ptr)
3884 =for apidoc sv_usepvn
3886 Tells an SV to use C<ptr> to find its string value. Normally the string is
3887 stored inside the SV but sv_usepvn allows the SV to use an outside string.
3888 The C<ptr> should point to memory that was allocated by C<malloc>. The
3889 string length, C<len>, must be supplied. This function will realloc the
3890 memory pointed to by C<ptr>, so that pointer should not be freed or used by
3891 the programmer after giving it to sv_usepvn. Does not handle 'set' magic.
3892 See C<sv_usepvn_mg>.
3898 Perl_sv_usepvn(pTHX_ register SV *sv, register char *ptr, register STRLEN len)
3902 SV_CHECK_THINKFIRST_COW_DROP(sv);
3903 SvUPGRADE(sv, SVt_PV);
3908 if (SvPVX_const(sv))
3911 allocate = PERL_STRLEN_ROUNDUP(len + 1);
3912 ptr = saferealloc (ptr, allocate);
3915 SvLEN_set(sv, allocate);
3917 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3922 =for apidoc sv_usepvn_mg
3924 Like C<sv_usepvn>, but also handles 'set' magic.
3930 Perl_sv_usepvn_mg(pTHX_ register SV *sv, register char *ptr, register STRLEN len)
3932 sv_usepvn(sv,ptr,len);
3936 #ifdef PERL_OLD_COPY_ON_WRITE
3937 /* Need to do this *after* making the SV normal, as we need the buffer
3938 pointer to remain valid until after we've copied it. If we let go too early,
3939 another thread could invalidate it by unsharing last of the same hash key
3940 (which it can do by means other than releasing copy-on-write Svs)
3941 or by changing the other copy-on-write SVs in the loop. */
3943 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, STRLEN len, SV *after)
3945 if (len) { /* this SV was SvIsCOW_normal(sv) */
3946 /* we need to find the SV pointing to us. */
3947 SV *current = SV_COW_NEXT_SV(after);
3949 if (current == sv) {
3950 /* The SV we point to points back to us (there were only two of us
3952 Hence other SV is no longer copy on write either. */
3954 SvREADONLY_off(after);
3956 /* We need to follow the pointers around the loop. */
3958 while ((next = SV_COW_NEXT_SV(current)) != sv) {
3961 /* don't loop forever if the structure is bust, and we have
3962 a pointer into a closed loop. */
3963 assert (current != after);
3964 assert (SvPVX_const(current) == pvx);
3966 /* Make the SV before us point to the SV after us. */
3967 SV_COW_NEXT_SV_SET(current, after);
3970 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
3975 Perl_sv_release_IVX(pTHX_ register SV *sv)
3978 sv_force_normal_flags(sv, 0);
3984 =for apidoc sv_force_normal_flags
3986 Undo various types of fakery on an SV: if the PV is a shared string, make
3987 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
3988 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
3989 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
3990 then a copy-on-write scalar drops its PV buffer (if any) and becomes
3991 SvPOK_off rather than making a copy. (Used where this scalar is about to be
3992 set to some other value.) In addition, the C<flags> parameter gets passed to
3993 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
3994 with flags set to 0.
4000 Perl_sv_force_normal_flags(pTHX_ register SV *sv, U32 flags)
4003 #ifdef PERL_OLD_COPY_ON_WRITE
4004 if (SvREADONLY(sv)) {
4005 /* At this point I believe I should acquire a global SV mutex. */
4007 const char * const pvx = SvPVX_const(sv);
4008 const STRLEN len = SvLEN(sv);
4009 const STRLEN cur = SvCUR(sv);
4010 SV * const next = SV_COW_NEXT_SV(sv); /* next COW sv in the loop. */
4012 PerlIO_printf(Perl_debug_log,
4013 "Copy on write: Force normal %ld\n",
4019 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4022 if (flags & SV_COW_DROP_PV) {
4023 /* OK, so we don't need to copy our buffer. */
4026 SvGROW(sv, cur + 1);
4027 Move(pvx,SvPVX(sv),cur,char);
4031 sv_release_COW(sv, pvx, len, next);
4036 else if (IN_PERL_RUNTIME)
4037 Perl_croak(aTHX_ PL_no_modify);
4038 /* At this point I believe that I can drop the global SV mutex. */
4041 if (SvREADONLY(sv)) {
4043 const char * const pvx = SvPVX_const(sv);
4044 const STRLEN len = SvCUR(sv);
4049 SvGROW(sv, len + 1);
4050 Move(pvx,SvPVX(sv),len,char);
4052 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4054 else if (IN_PERL_RUNTIME)
4055 Perl_croak(aTHX_ PL_no_modify);
4059 sv_unref_flags(sv, flags);
4060 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4067 Efficient removal of characters from the beginning of the string buffer.
4068 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4069 the string buffer. The C<ptr> becomes the first character of the adjusted
4070 string. Uses the "OOK hack".
4071 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4072 refer to the same chunk of data.
4078 Perl_sv_chop(pTHX_ register SV *sv, register const char *ptr)
4080 register STRLEN delta;
4081 if (!ptr || !SvPOKp(sv))
4083 delta = ptr - SvPVX_const(sv);
4084 SV_CHECK_THINKFIRST(sv);
4085 if (SvTYPE(sv) < SVt_PVIV)
4086 sv_upgrade(sv,SVt_PVIV);
4089 if (!SvLEN(sv)) { /* make copy of shared string */
4090 const char *pvx = SvPVX_const(sv);
4091 const STRLEN len = SvCUR(sv);
4092 SvGROW(sv, len + 1);
4093 Move(pvx,SvPVX(sv),len,char);
4097 /* Same SvOOK_on but SvOOK_on does a SvIOK_off
4098 and we do that anyway inside the SvNIOK_off
4100 SvFLAGS(sv) |= SVf_OOK;
4103 SvLEN_set(sv, SvLEN(sv) - delta);
4104 SvCUR_set(sv, SvCUR(sv) - delta);
4105 SvPV_set(sv, SvPVX(sv) + delta);
4106 SvIV_set(sv, SvIVX(sv) + delta);
4110 =for apidoc sv_catpvn
4112 Concatenates the string onto the end of the string which is in the SV. The
4113 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4114 status set, then the bytes appended should be valid UTF-8.
4115 Handles 'get' magic, but not 'set' magic. See C<sv_catpvn_mg>.
4117 =for apidoc sv_catpvn_flags
4119 Concatenates the string onto the end of the string which is in the SV. The
4120 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4121 status set, then the bytes appended should be valid UTF-8.
4122 If C<flags> has C<SV_GMAGIC> bit set, will C<mg_get> on C<dsv> if
4123 appropriate, else not. C<sv_catpvn> and C<sv_catpvn_nomg> are implemented
4124 in terms of this function.
4130 Perl_sv_catpvn_flags(pTHX_ register SV *dsv, register const char *sstr, register STRLEN slen, I32 flags)
4134 const char * const dstr = SvPV_force_flags(dsv, dlen, flags);
4136 SvGROW(dsv, dlen + slen + 1);
4138 sstr = SvPVX_const(dsv);
4139 Move(sstr, SvPVX(dsv) + dlen, slen, char);
4140 SvCUR_set(dsv, SvCUR(dsv) + slen);
4142 (void)SvPOK_only_UTF8(dsv); /* validate pointer */
4144 if (flags & SV_SMAGIC)
4149 =for apidoc sv_catsv
4151 Concatenates the string from SV C<ssv> onto the end of the string in
4152 SV C<dsv>. Modifies C<dsv> but not C<ssv>. Handles 'get' magic, but
4153 not 'set' magic. See C<sv_catsv_mg>.
4155 =for apidoc sv_catsv_flags
4157 Concatenates the string from SV C<ssv> onto the end of the string in
4158 SV C<dsv>. Modifies C<dsv> but not C<ssv>. If C<flags> has C<SV_GMAGIC>
4159 bit set, will C<mg_get> on the SVs if appropriate, else not. C<sv_catsv>
4160 and C<sv_catsv_nomg> are implemented in terms of this function.
4165 Perl_sv_catsv_flags(pTHX_ SV *dsv, register SV *ssv, I32 flags)
4170 const char *spv = SvPV_const(ssv, slen);
4172 /* sutf8 and dutf8 were type bool, but under USE_ITHREADS,
4173 gcc version 2.95.2 20000220 (Debian GNU/Linux) for
4174 Linux xxx 2.2.17 on sparc64 with gcc -O2, we erroneously
4175 get dutf8 = 0x20000000, (i.e. SVf_UTF8) even though
4176 dsv->sv_flags doesn't have that bit set.
4177 Andy Dougherty 12 Oct 2001
4179 const I32 sutf8 = DO_UTF8(ssv);
4182 if (SvGMAGICAL(dsv) && (flags & SV_GMAGIC))
4184 dutf8 = DO_UTF8(dsv);
4186 if (dutf8 != sutf8) {
4188 /* Not modifying source SV, so taking a temporary copy. */
4189 SV* const csv = sv_2mortal(newSVpvn(spv, slen));
4191 sv_utf8_upgrade(csv);
4192 spv = SvPV_const(csv, slen);
4195 sv_utf8_upgrade_nomg(dsv);
4197 sv_catpvn_nomg(dsv, spv, slen);
4200 if (flags & SV_SMAGIC)
4205 =for apidoc sv_catpv
4207 Concatenates the string onto the end of the string which is in the SV.
4208 If the SV has the UTF-8 status set, then the bytes appended should be
4209 valid UTF-8. Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
4214 Perl_sv_catpv(pTHX_ register SV *sv, register const char *ptr)
4217 register STRLEN len;
4223 junk = SvPV_force(sv, tlen);
4225 SvGROW(sv, tlen + len + 1);
4227 ptr = SvPVX_const(sv);
4228 Move(ptr,SvPVX(sv)+tlen,len+1,char);
4229 SvCUR_set(sv, SvCUR(sv) + len);
4230 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4235 =for apidoc sv_catpv_mg
4237 Like C<sv_catpv>, but also handles 'set' magic.
4243 Perl_sv_catpv_mg(pTHX_ register SV *sv, register const char *ptr)
4252 Creates a new SV. A non-zero C<len> parameter indicates the number of
4253 bytes of preallocated string space the SV should have. An extra byte for a
4254 trailing NUL is also reserved. (SvPOK is not set for the SV even if string
4255 space is allocated.) The reference count for the new SV is set to 1.
4257 In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
4258 parameter, I<x>, a debug aid which allowed callers to identify themselves.
4259 This aid has been superseded by a new build option, PERL_MEM_LOG (see
4260 L<perlhack/PERL_MEM_LOG>). The older API is still there for use in XS
4261 modules supporting older perls.
4267 Perl_newSV(pTHX_ STRLEN len)
4274 sv_upgrade(sv, SVt_PV);
4275 SvGROW(sv, len + 1);
4280 =for apidoc sv_magicext
4282 Adds magic to an SV, upgrading it if necessary. Applies the
4283 supplied vtable and returns a pointer to the magic added.
4285 Note that C<sv_magicext> will allow things that C<sv_magic> will not.
4286 In particular, you can add magic to SvREADONLY SVs, and add more than
4287 one instance of the same 'how'.
4289 If C<namlen> is greater than zero then a C<savepvn> I<copy> of C<name> is
4290 stored, if C<namlen> is zero then C<name> is stored as-is and - as another
4291 special case - if C<(name && namlen == HEf_SVKEY)> then C<name> is assumed
4292 to contain an C<SV*> and is stored as-is with its REFCNT incremented.
4294 (This is now used as a subroutine by C<sv_magic>.)
4299 Perl_sv_magicext(pTHX_ SV* sv, SV* obj, int how, MGVTBL *vtable,
4300 const char* name, I32 namlen)
4305 if (SvTYPE(sv) < SVt_PVMG) {
4306 SvUPGRADE(sv, SVt_PVMG);
4308 Newxz(mg, 1, MAGIC);
4309 mg->mg_moremagic = SvMAGIC(sv);
4310 SvMAGIC_set(sv, mg);
4312 /* Sometimes a magic contains a reference loop, where the sv and
4313 object refer to each other. To prevent a reference loop that
4314 would prevent such objects being freed, we look for such loops
4315 and if we find one we avoid incrementing the object refcount.
4317 Note we cannot do this to avoid self-tie loops as intervening RV must
4318 have its REFCNT incremented to keep it in existence.
4321 if (!obj || obj == sv ||
4322 how == PERL_MAGIC_arylen ||
4323 how == PERL_MAGIC_qr ||
4324 how == PERL_MAGIC_symtab ||
4325 (SvTYPE(obj) == SVt_PVGV &&
4326 (GvSV(obj) == sv || GvHV(obj) == (HV*)sv || GvAV(obj) == (AV*)sv ||
4327 GvCV(obj) == (CV*)sv || GvIOp(obj) == (IO*)sv ||
4328 GvFORM(obj) == (CV*)sv)))
4333 mg->mg_obj = SvREFCNT_inc_simple(obj);
4334 mg->mg_flags |= MGf_REFCOUNTED;
4337 /* Normal self-ties simply pass a null object, and instead of
4338 using mg_obj directly, use the SvTIED_obj macro to produce a
4339 new RV as needed. For glob "self-ties", we are tieing the PVIO
4340 with an RV obj pointing to the glob containing the PVIO. In
4341 this case, to avoid a reference loop, we need to weaken the
4345 if (how == PERL_MAGIC_tiedscalar && SvTYPE(sv) == SVt_PVIO &&
4346 obj && SvROK(obj) && GvIO(SvRV(obj)) == (IO*)sv)
4352 mg->mg_len = namlen;
4355 mg->mg_ptr = savepvn(name, namlen);
4356 else if (namlen == HEf_SVKEY)
4357 mg->mg_ptr = (char*)SvREFCNT_inc_simple_NN((SV*)name);
4359 mg->mg_ptr = (char *) name;
4361 mg->mg_virtual = vtable;
4365 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4370 =for apidoc sv_magic
4372 Adds magic to an SV. First upgrades C<sv> to type C<SVt_PVMG> if necessary,
4373 then adds a new magic item of type C<how> to the head of the magic list.
4375 See C<sv_magicext> (which C<sv_magic> now calls) for a description of the
4376 handling of the C<name> and C<namlen> arguments.
4378 You need to use C<sv_magicext> to add magic to SvREADONLY SVs and also
4379 to add more than one instance of the same 'how'.
4385 Perl_sv_magic(pTHX_ register SV *sv, SV *obj, int how, const char *name, I32 namlen)
4391 #ifdef PERL_OLD_COPY_ON_WRITE
4393 sv_force_normal_flags(sv, 0);
4395 if (SvREADONLY(sv)) {
4397 /* its okay to attach magic to shared strings; the subsequent
4398 * upgrade to PVMG will unshare the string */
4399 !(SvFAKE(sv) && SvTYPE(sv) < SVt_PVMG)
4402 && how != PERL_MAGIC_regex_global
4403 && how != PERL_MAGIC_bm
4404 && how != PERL_MAGIC_fm
4405 && how != PERL_MAGIC_sv
4406 && how != PERL_MAGIC_backref
4409 Perl_croak(aTHX_ PL_no_modify);
4412 if (SvMAGICAL(sv) || (how == PERL_MAGIC_taint && SvTYPE(sv) >= SVt_PVMG)) {
4413 if (SvMAGIC(sv) && (mg = mg_find(sv, how))) {
4414 /* sv_magic() refuses to add a magic of the same 'how' as an
4417 if (how == PERL_MAGIC_taint) {
4419 /* Any scalar which already had taint magic on which someone
4420 (erroneously?) did SvIOK_on() or similar will now be
4421 incorrectly sporting public "OK" flags. */
4422 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4430 vtable = &PL_vtbl_sv;
4432 case PERL_MAGIC_overload:
4433 vtable = &PL_vtbl_amagic;
4435 case PERL_MAGIC_overload_elem:
4436 vtable = &PL_vtbl_amagicelem;
4438 case PERL_MAGIC_overload_table:
4439 vtable = &PL_vtbl_ovrld;
4442 vtable = &PL_vtbl_bm;
4444 case PERL_MAGIC_regdata:
4445 vtable = &PL_vtbl_regdata;
4447 case PERL_MAGIC_regdatum:
4448 vtable = &PL_vtbl_regdatum;
4450 case PERL_MAGIC_env:
4451 vtable = &PL_vtbl_env;
4454 vtable = &PL_vtbl_fm;
4456 case PERL_MAGIC_envelem:
4457 vtable = &PL_vtbl_envelem;
4459 case PERL_MAGIC_regex_global:
4460 vtable = &PL_vtbl_mglob;
4462 case PERL_MAGIC_isa:
4463 vtable = &PL_vtbl_isa;
4465 case PERL_MAGIC_isaelem:
4466 vtable = &PL_vtbl_isaelem;
4468 case PERL_MAGIC_nkeys:
4469 vtable = &PL_vtbl_nkeys;
4471 case PERL_MAGIC_dbfile:
4474 case PERL_MAGIC_dbline:
4475 vtable = &PL_vtbl_dbline;
4477 #ifdef USE_LOCALE_COLLATE
4478 case PERL_MAGIC_collxfrm:
4479 vtable = &PL_vtbl_collxfrm;
4481 #endif /* USE_LOCALE_COLLATE */
4482 case PERL_MAGIC_tied:
4483 vtable = &PL_vtbl_pack;
4485 case PERL_MAGIC_tiedelem:
4486 case PERL_MAGIC_tiedscalar:
4487 vtable = &PL_vtbl_packelem;
4490 vtable = &PL_vtbl_regexp;
4492 case PERL_MAGIC_hints:
4493 /* As this vtable is all NULL, we can reuse it. */
4494 case PERL_MAGIC_sig:
4495 vtable = &PL_vtbl_sig;
4497 case PERL_MAGIC_sigelem:
4498 vtable = &PL_vtbl_sigelem;
4500 case PERL_MAGIC_taint:
4501 vtable = &PL_vtbl_taint;
4503 case PERL_MAGIC_uvar:
4504 vtable = &PL_vtbl_uvar;
4506 case PERL_MAGIC_vec:
4507 vtable = &PL_vtbl_vec;
4509 case PERL_MAGIC_arylen_p:
4510 case PERL_MAGIC_rhash:
4511 case PERL_MAGIC_symtab:
4512 case PERL_MAGIC_vstring:
4515 case PERL_MAGIC_utf8:
4516 vtable = &PL_vtbl_utf8;
4518 case PERL_MAGIC_substr:
4519 vtable = &PL_vtbl_substr;
4521 case PERL_MAGIC_defelem:
4522 vtable = &PL_vtbl_defelem;
4524 case PERL_MAGIC_arylen:
4525 vtable = &PL_vtbl_arylen;
4527 case PERL_MAGIC_pos:
4528 vtable = &PL_vtbl_pos;
4530 case PERL_MAGIC_backref:
4531 vtable = &PL_vtbl_backref;
4533 case PERL_MAGIC_hintselem:
4534 vtable = &PL_vtbl_hintselem;
4536 case PERL_MAGIC_ext:
4537 /* Reserved for use by extensions not perl internals. */
4538 /* Useful for attaching extension internal data to perl vars. */
4539 /* Note that multiple extensions may clash if magical scalars */
4540 /* etc holding private data from one are passed to another. */
4544 Perl_croak(aTHX_ "Don't know how to handle magic of type \\%o", how);
4547 /* Rest of work is done else where */
4548 mg = sv_magicext(sv,obj,how,vtable,name,namlen);
4551 case PERL_MAGIC_taint:
4554 case PERL_MAGIC_ext:
4555 case PERL_MAGIC_dbfile:
4562 =for apidoc sv_unmagic
4564 Removes all magic of type C<type> from an SV.
4570 Perl_sv_unmagic(pTHX_ SV *sv, int type)
4574 if (SvTYPE(sv) < SVt_PVMG || !SvMAGIC(sv))
4576 mgp = &(((XPVMG*) SvANY(sv))->xmg_u.xmg_magic);
4577 for (mg = *mgp; mg; mg = *mgp) {
4578 if (mg->mg_type == type) {
4579 const MGVTBL* const vtbl = mg->mg_virtual;
4580 *mgp = mg->mg_moremagic;
4581 if (vtbl && vtbl->svt_free)
4582 CALL_FPTR(vtbl->svt_free)(aTHX_ sv, mg);
4583 if (mg->mg_ptr && mg->mg_type != PERL_MAGIC_regex_global) {
4585 Safefree(mg->mg_ptr);
4586 else if (mg->mg_len == HEf_SVKEY)
4587 SvREFCNT_dec((SV*)mg->mg_ptr);
4588 else if (mg->mg_type == PERL_MAGIC_utf8)
4589 Safefree(mg->mg_ptr);
4591 if (mg->mg_flags & MGf_REFCOUNTED)
4592 SvREFCNT_dec(mg->mg_obj);
4596 mgp = &mg->mg_moremagic;
4600 SvFLAGS(sv) |= (SvFLAGS(sv) & (SVp_IOK|SVp_NOK|SVp_POK)) >> PRIVSHIFT;
4601 SvMAGIC_set(sv, NULL);
4608 =for apidoc sv_rvweaken
4610 Weaken a reference: set the C<SvWEAKREF> flag on this RV; give the
4611 referred-to SV C<PERL_MAGIC_backref> magic if it hasn't already; and
4612 push a back-reference to this RV onto the array of backreferences
4613 associated with that magic.
4619 Perl_sv_rvweaken(pTHX_ SV *sv)
4622 if (!SvOK(sv)) /* let undefs pass */
4625 Perl_croak(aTHX_ "Can't weaken a nonreference");
4626 else if (SvWEAKREF(sv)) {
4627 if (ckWARN(WARN_MISC))
4628 Perl_warner(aTHX_ packWARN(WARN_MISC), "Reference is already weak");
4632 Perl_sv_add_backref(aTHX_ tsv, sv);
4638 /* Give tsv backref magic if it hasn't already got it, then push a
4639 * back-reference to sv onto the array associated with the backref magic.
4643 Perl_sv_add_backref(pTHX_ SV *tsv, SV *sv)
4648 if (SvTYPE(tsv) == SVt_PVHV) {
4649 AV **const avp = Perl_hv_backreferences_p(aTHX_ (HV*)tsv);
4653 /* There is no AV in the offical place - try a fixup. */
4654 MAGIC *const mg = mg_find(tsv, PERL_MAGIC_backref);
4657 /* Aha. They've got it stowed in magic. Bring it back. */
4658 av = (AV*)mg->mg_obj;
4659 /* Stop mg_free decreasing the refernce count. */
4661 /* Stop mg_free even calling the destructor, given that
4662 there's no AV to free up. */
4664 sv_unmagic(tsv, PERL_MAGIC_backref);
4668 SvREFCNT_inc_simple_void(av);
4673 const MAGIC *const mg
4674 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
4676 av = (AV*)mg->mg_obj;
4680 sv_magic(tsv, (SV*)av, PERL_MAGIC_backref, NULL, 0);
4681 /* av now has a refcnt of 2, which avoids it getting freed
4682 * before us during global cleanup. The extra ref is removed
4683 * by magic_killbackrefs() when tsv is being freed */
4686 if (AvFILLp(av) >= AvMAX(av)) {
4687 av_extend(av, AvFILLp(av)+1);
4689 AvARRAY(av)[++AvFILLp(av)] = sv; /* av_push() */
4692 /* delete a back-reference to ourselves from the backref magic associated
4693 * with the SV we point to.
4697 S_sv_del_backref(pTHX_ SV *tsv, SV *sv)
4704 if (SvTYPE(tsv) == SVt_PVHV && SvOOK(tsv)) {
4705 av = *Perl_hv_backreferences_p(aTHX_ (HV*)tsv);
4706 /* We mustn't attempt to "fix up" the hash here by moving the
4707 backreference array back to the hv_aux structure, as that is stored
4708 in the main HvARRAY(), and hfreentries assumes that no-one
4709 reallocates HvARRAY() while it is running. */
4712 const MAGIC *const mg
4713 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
4715 av = (AV *)mg->mg_obj;
4718 if (PL_in_clean_all)
4720 Perl_croak(aTHX_ "panic: del_backref");
4727 /* We shouldn't be in here more than once, but for paranoia reasons lets
4729 for (i = AvFILLp(av); i >= 0; i--) {
4731 const SSize_t fill = AvFILLp(av);
4733 /* We weren't the last entry.
4734 An unordered list has this property that you can take the
4735 last element off the end to fill the hole, and it's still
4736 an unordered list :-)
4741 AvFILLp(av) = fill - 1;
4747 Perl_sv_kill_backrefs(pTHX_ SV *sv, AV *av)
4749 SV **svp = AvARRAY(av);
4751 PERL_UNUSED_ARG(sv);
4753 /* Not sure why the av can get freed ahead of its sv, but somehow it does
4754 in ext/B/t/bytecode.t test 15 (involving print <DATA>) */
4755 if (svp && !SvIS_FREED(av)) {
4756 SV *const *const last = svp + AvFILLp(av);
4758 while (svp <= last) {
4760 SV *const referrer = *svp;
4761 if (SvWEAKREF(referrer)) {
4762 /* XXX Should we check that it hasn't changed? */
4763 SvRV_set(referrer, 0);
4765 SvWEAKREF_off(referrer);
4766 } else if (SvTYPE(referrer) == SVt_PVGV ||
4767 SvTYPE(referrer) == SVt_PVLV) {
4768 /* You lookin' at me? */
4769 assert(GvSTASH(referrer));
4770 assert(GvSTASH(referrer) == (HV*)sv);
4771 GvSTASH(referrer) = 0;
4774 "panic: magic_killbackrefs (flags=%"UVxf")",
4775 (UV)SvFLAGS(referrer));
4783 SvREFCNT_dec(av); /* remove extra count added by sv_add_backref() */
4788 =for apidoc sv_insert
4790 Inserts a string at the specified offset/length within the SV. Similar to
4791 the Perl substr() function.
4797 Perl_sv_insert(pTHX_ SV *bigstr, STRLEN offset, STRLEN len, const char *little, STRLEN littlelen)