5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 EXTERN_C const struct regexp_engine my_reg_engine;
89 #include "dquote_inline.h"
90 #include "invlist_inline.h"
91 #include "unicode_constants.h"
93 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
94 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
96 _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
97 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
98 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
101 #define STATIC static
104 /* this is a chain of data about sub patterns we are processing that
105 need to be handled separately/specially in study_chunk. Its so
106 we can simulate recursion without losing state. */
108 typedef struct scan_frame {
109 regnode *last_regnode; /* last node to process in this frame */
110 regnode *next_regnode; /* next node to process when last is reached */
111 U32 prev_recursed_depth;
112 I32 stopparen; /* what stopparen do we use */
114 struct scan_frame *this_prev_frame; /* this previous frame */
115 struct scan_frame *prev_frame; /* previous frame */
116 struct scan_frame *next_frame; /* next frame */
119 /* Certain characters are output as a sequence with the first being a
121 #define isBACKSLASHED_PUNCT(c) strchr("-[]\\^", c)
124 struct RExC_state_t {
125 U32 flags; /* RXf_* are we folding, multilining? */
126 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
127 char *precomp; /* uncompiled string. */
128 char *precomp_end; /* pointer to end of uncompiled string. */
129 REGEXP *rx_sv; /* The SV that is the regexp. */
130 regexp *rx; /* perl core regexp structure */
131 regexp_internal *rxi; /* internal data for regexp object
133 char *start; /* Start of input for compile */
134 char *end; /* End of input for compile */
135 char *parse; /* Input-scan pointer. */
136 char *adjusted_start; /* 'start', adjusted. See code use */
137 STRLEN precomp_adj; /* an offset beyond precomp. See code use */
138 SSize_t whilem_seen; /* number of WHILEM in this expr */
139 regnode *emit_start; /* Start of emitted-code area */
140 regnode *emit_bound; /* First regnode outside of the
142 regnode *emit; /* Code-emit pointer; if = &emit_dummy,
143 implies compiling, so don't emit */
144 regnode_ssc emit_dummy; /* placeholder for emit to point to;
145 large enough for the largest
146 non-EXACTish node, so can use it as
148 I32 naughty; /* How bad is this pattern? */
149 I32 sawback; /* Did we see \1, ...? */
151 SSize_t size; /* Code size. */
152 I32 npar; /* Capture buffer count, (OPEN) plus
153 one. ("par" 0 is the whole
155 I32 nestroot; /* root parens we are in - used by
159 regnode **open_parens; /* pointers to open parens */
160 regnode **close_parens; /* pointers to close parens */
161 regnode *end_op; /* END node in program */
162 I32 utf8; /* whether the pattern is utf8 or not */
163 I32 orig_utf8; /* whether the pattern was originally in utf8 */
164 /* XXX use this for future optimisation of case
165 * where pattern must be upgraded to utf8. */
166 I32 uni_semantics; /* If a d charset modifier should use unicode
167 rules, even if the pattern is not in
169 HV *paren_names; /* Paren names */
171 regnode **recurse; /* Recurse regops */
172 I32 recurse_count; /* Number of recurse regops we have generated */
173 U8 *study_chunk_recursed; /* bitmap of which subs we have moved
175 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
178 I32 override_recoding;
180 I32 recode_x_to_native;
182 I32 in_multi_char_class;
183 struct reg_code_blocks *code_blocks;/* positions of literal (?{})
185 int code_index; /* next code_blocks[] slot */
186 SSize_t maxlen; /* mininum possible number of chars in string to match */
187 scan_frame *frame_head;
188 scan_frame *frame_last;
191 #ifdef ADD_TO_REGEXEC
192 char *starttry; /* -Dr: where regtry was called. */
193 #define RExC_starttry (pRExC_state->starttry)
195 SV *runtime_code_qr; /* qr with the runtime code blocks */
197 const char *lastparse;
199 AV *paren_name_list; /* idx -> name */
200 U32 study_chunk_recursed_count;
203 #define RExC_lastparse (pRExC_state->lastparse)
204 #define RExC_lastnum (pRExC_state->lastnum)
205 #define RExC_paren_name_list (pRExC_state->paren_name_list)
206 #define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
207 #define RExC_mysv (pRExC_state->mysv1)
208 #define RExC_mysv1 (pRExC_state->mysv1)
209 #define RExC_mysv2 (pRExC_state->mysv2)
212 bool seen_unfolded_sharp_s;
218 #define RExC_flags (pRExC_state->flags)
219 #define RExC_pm_flags (pRExC_state->pm_flags)
220 #define RExC_precomp (pRExC_state->precomp)
221 #define RExC_precomp_adj (pRExC_state->precomp_adj)
222 #define RExC_adjusted_start (pRExC_state->adjusted_start)
223 #define RExC_precomp_end (pRExC_state->precomp_end)
224 #define RExC_rx_sv (pRExC_state->rx_sv)
225 #define RExC_rx (pRExC_state->rx)
226 #define RExC_rxi (pRExC_state->rxi)
227 #define RExC_start (pRExC_state->start)
228 #define RExC_end (pRExC_state->end)
229 #define RExC_parse (pRExC_state->parse)
230 #define RExC_whilem_seen (pRExC_state->whilem_seen)
232 /* Set during the sizing pass when there is a LATIN SMALL LETTER SHARP S in any
233 * EXACTF node, hence was parsed under /di rules. If later in the parse,
234 * something forces the pattern into using /ui rules, the sharp s should be
235 * folded into the sequence 'ss', which takes up more space than previously
236 * calculated. This means that the sizing pass needs to be restarted. (The
237 * node also becomes an EXACTFU_SS.) For all other characters, an EXACTF node
238 * that gets converted to /ui (and EXACTFU) occupies the same amount of space,
239 * so there is no need to resize [perl #125990]. */
240 #define RExC_seen_unfolded_sharp_s (pRExC_state->seen_unfolded_sharp_s)
242 #ifdef RE_TRACK_PATTERN_OFFSETS
243 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
246 #define RExC_emit (pRExC_state->emit)
247 #define RExC_emit_dummy (pRExC_state->emit_dummy)
248 #define RExC_emit_start (pRExC_state->emit_start)
249 #define RExC_emit_bound (pRExC_state->emit_bound)
250 #define RExC_sawback (pRExC_state->sawback)
251 #define RExC_seen (pRExC_state->seen)
252 #define RExC_size (pRExC_state->size)
253 #define RExC_maxlen (pRExC_state->maxlen)
254 #define RExC_npar (pRExC_state->npar)
255 #define RExC_nestroot (pRExC_state->nestroot)
256 #define RExC_extralen (pRExC_state->extralen)
257 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
258 #define RExC_utf8 (pRExC_state->utf8)
259 #define RExC_uni_semantics (pRExC_state->uni_semantics)
260 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
261 #define RExC_open_parens (pRExC_state->open_parens)
262 #define RExC_close_parens (pRExC_state->close_parens)
263 #define RExC_end_op (pRExC_state->end_op)
264 #define RExC_paren_names (pRExC_state->paren_names)
265 #define RExC_recurse (pRExC_state->recurse)
266 #define RExC_recurse_count (pRExC_state->recurse_count)
267 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
268 #define RExC_study_chunk_recursed_bytes \
269 (pRExC_state->study_chunk_recursed_bytes)
270 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
271 #define RExC_contains_locale (pRExC_state->contains_locale)
273 # define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
275 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
276 #define RExC_frame_head (pRExC_state->frame_head)
277 #define RExC_frame_last (pRExC_state->frame_last)
278 #define RExC_frame_count (pRExC_state->frame_count)
279 #define RExC_strict (pRExC_state->strict)
280 #define RExC_study_started (pRExC_state->study_started)
281 #define RExC_warn_text (pRExC_state->warn_text)
282 #define RExC_in_script_run (pRExC_state->in_script_run)
284 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
285 * a flag to disable back-off on the fixed/floating substrings - if it's
286 * a high complexity pattern we assume the benefit of avoiding a full match
287 * is worth the cost of checking for the substrings even if they rarely help.
289 #define RExC_naughty (pRExC_state->naughty)
290 #define TOO_NAUGHTY (10)
291 #define MARK_NAUGHTY(add) \
292 if (RExC_naughty < TOO_NAUGHTY) \
293 RExC_naughty += (add)
294 #define MARK_NAUGHTY_EXP(exp, add) \
295 if (RExC_naughty < TOO_NAUGHTY) \
296 RExC_naughty += RExC_naughty / (exp) + (add)
298 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
299 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
300 ((*s) == '{' && regcurly(s)))
303 * Flags to be passed up and down.
305 #define WORST 0 /* Worst case. */
306 #define HASWIDTH 0x01 /* Known to match non-null strings. */
308 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
309 * character. (There needs to be a case: in the switch statement in regexec.c
310 * for any node marked SIMPLE.) Note that this is not the same thing as
313 #define SPSTART 0x04 /* Starts with * or + */
314 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
315 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
316 #define RESTART_PASS1 0x20 /* Need to restart sizing pass */
317 #define NEED_UTF8 0x40 /* In conjunction with RESTART_PASS1, need to
318 calcuate sizes as UTF-8 */
320 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
322 /* whether trie related optimizations are enabled */
323 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
324 #define TRIE_STUDY_OPT
325 #define FULL_TRIE_STUDY
331 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
332 #define PBITVAL(paren) (1 << ((paren) & 7))
333 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
334 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
335 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
337 #define REQUIRE_UTF8(flagp) STMT_START { \
340 *flagp = RESTART_PASS1|NEED_UTF8; \
345 /* Change from /d into /u rules, and restart the parse if we've already seen
346 * something whose size would increase as a result, by setting *flagp and
347 * returning 'restart_retval'. RExC_uni_semantics is a flag that indicates
348 * we've changed to /u during the parse. */
349 #define REQUIRE_UNI_RULES(flagp, restart_retval) \
351 if (DEPENDS_SEMANTICS) { \
353 set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET); \
354 RExC_uni_semantics = 1; \
355 if (RExC_seen_unfolded_sharp_s) { \
356 *flagp |= RESTART_PASS1; \
357 return restart_retval; \
362 /* Executes a return statement with the value 'X', if 'flags' contains any of
363 * 'RESTART_PASS1', 'NEED_UTF8', or 'extra'. If so, *flagp is set to those
365 #define RETURN_X_ON_RESTART_OR_FLAGS(X, flags, flagp, extra) \
367 if ((flags) & (RESTART_PASS1|NEED_UTF8|(extra))) { \
368 *(flagp) = (flags) & (RESTART_PASS1|NEED_UTF8|(extra)); \
373 #define RETURN_NULL_ON_RESTART_OR_FLAGS(flags,flagp,extra) \
374 RETURN_X_ON_RESTART_OR_FLAGS(NULL,flags,flagp,extra)
376 #define RETURN_X_ON_RESTART(X, flags,flagp) \
377 RETURN_X_ON_RESTART_OR_FLAGS( X, flags, flagp, 0)
380 #define RETURN_NULL_ON_RESTART_FLAGP_OR_FLAGS(flagp,extra) \
381 if (*(flagp) & (RESTART_PASS1|(extra))) return NULL
383 #define MUST_RESTART(flags) ((flags) & (RESTART_PASS1))
385 #define RETURN_NULL_ON_RESTART(flags,flagp) \
386 RETURN_X_ON_RESTART(NULL, flags,flagp)
387 #define RETURN_NULL_ON_RESTART_FLAGP(flagp) \
388 RETURN_NULL_ON_RESTART_FLAGP_OR_FLAGS(flagp,0)
390 /* This converts the named class defined in regcomp.h to its equivalent class
391 * number defined in handy.h. */
392 #define namedclass_to_classnum(class) ((int) ((class) / 2))
393 #define classnum_to_namedclass(classnum) ((classnum) * 2)
395 #define _invlist_union_complement_2nd(a, b, output) \
396 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
397 #define _invlist_intersection_complement_2nd(a, b, output) \
398 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
400 /* About scan_data_t.
402 During optimisation we recurse through the regexp program performing
403 various inplace (keyhole style) optimisations. In addition study_chunk
404 and scan_commit populate this data structure with information about
405 what strings MUST appear in the pattern. We look for the longest
406 string that must appear at a fixed location, and we look for the
407 longest string that may appear at a floating location. So for instance
412 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
413 strings (because they follow a .* construct). study_chunk will identify
414 both FOO and BAR as being the longest fixed and floating strings respectively.
416 The strings can be composites, for instance
420 will result in a composite fixed substring 'foo'.
422 For each string some basic information is maintained:
425 This is the position the string must appear at, or not before.
426 It also implicitly (when combined with minlenp) tells us how many
427 characters must match before the string we are searching for.
428 Likewise when combined with minlenp and the length of the string it
429 tells us how many characters must appear after the string we have
433 Only used for floating strings. This is the rightmost point that
434 the string can appear at. If set to SSize_t_MAX it indicates that the
435 string can occur infinitely far to the right.
436 For fixed strings, it is equal to min_offset.
439 A pointer to the minimum number of characters of the pattern that the
440 string was found inside. This is important as in the case of positive
441 lookahead or positive lookbehind we can have multiple patterns
446 The minimum length of the pattern overall is 3, the minimum length
447 of the lookahead part is 3, but the minimum length of the part that
448 will actually match is 1. So 'FOO's minimum length is 3, but the
449 minimum length for the F is 1. This is important as the minimum length
450 is used to determine offsets in front of and behind the string being
451 looked for. Since strings can be composites this is the length of the
452 pattern at the time it was committed with a scan_commit. Note that
453 the length is calculated by study_chunk, so that the minimum lengths
454 are not known until the full pattern has been compiled, thus the
455 pointer to the value.
459 In the case of lookbehind the string being searched for can be
460 offset past the start point of the final matching string.
461 If this value was just blithely removed from the min_offset it would
462 invalidate some of the calculations for how many chars must match
463 before or after (as they are derived from min_offset and minlen and
464 the length of the string being searched for).
465 When the final pattern is compiled and the data is moved from the
466 scan_data_t structure into the regexp structure the information
467 about lookbehind is factored in, with the information that would
468 have been lost precalculated in the end_shift field for the
471 The fields pos_min and pos_delta are used to store the minimum offset
472 and the delta to the maximum offset at the current point in the pattern.
476 struct scan_data_substrs {
477 SV *str; /* longest substring found in pattern */
478 SSize_t min_offset; /* earliest point in string it can appear */
479 SSize_t max_offset; /* latest point in string it can appear */
480 SSize_t *minlenp; /* pointer to the minlen relevant to the string */
481 SSize_t lookbehind; /* is the pos of the string modified by LB */
482 I32 flags; /* per substring SF_* and SCF_* flags */
485 typedef struct scan_data_t {
486 /*I32 len_min; unused */
487 /*I32 len_delta; unused */
491 SSize_t last_end; /* min value, <0 unless valid. */
492 SSize_t last_start_min;
493 SSize_t last_start_max;
494 U8 cur_is_floating; /* whether the last_* values should be set as
495 * the next fixed (0) or floating (1)
498 /* [0] is longest fixed substring so far, [1] is longest float so far */
499 struct scan_data_substrs substrs[2];
501 I32 flags; /* common SF_* and SCF_* flags */
503 SSize_t *last_closep;
504 regnode_ssc *start_class;
508 * Forward declarations for pregcomp()'s friends.
511 static const scan_data_t zero_scan_data = {
512 0, 0, NULL, 0, 0, 0, 0,
514 { NULL, 0, 0, 0, 0, 0 },
515 { NULL, 0, 0, 0, 0, 0 },
522 #define SF_BEFORE_SEOL 0x0001
523 #define SF_BEFORE_MEOL 0x0002
524 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
526 #define SF_IS_INF 0x0040
527 #define SF_HAS_PAR 0x0080
528 #define SF_IN_PAR 0x0100
529 #define SF_HAS_EVAL 0x0200
532 /* SCF_DO_SUBSTR is the flag that tells the regexp analyzer to track the
533 * longest substring in the pattern. When it is not set the optimiser keeps
534 * track of position, but does not keep track of the actual strings seen,
536 * So for instance /foo/ will be parsed with SCF_DO_SUBSTR being true, but
539 * Similarly, /foo.*(blah|erm|huh).*fnorble/ will have "foo" and "fnorble"
540 * parsed with SCF_DO_SUBSTR on, but while processing the (...) it will be
541 * turned off because of the alternation (BRANCH). */
542 #define SCF_DO_SUBSTR 0x0400
544 #define SCF_DO_STCLASS_AND 0x0800
545 #define SCF_DO_STCLASS_OR 0x1000
546 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
547 #define SCF_WHILEM_VISITED_POS 0x2000
549 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
550 #define SCF_SEEN_ACCEPT 0x8000
551 #define SCF_TRIE_DOING_RESTUDY 0x10000
552 #define SCF_IN_DEFINE 0x20000
557 #define UTF cBOOL(RExC_utf8)
559 /* The enums for all these are ordered so things work out correctly */
560 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
561 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
562 == REGEX_DEPENDS_CHARSET)
563 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
564 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
565 >= REGEX_UNICODE_CHARSET)
566 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
567 == REGEX_ASCII_RESTRICTED_CHARSET)
568 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
569 >= REGEX_ASCII_RESTRICTED_CHARSET)
570 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
571 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
573 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
575 /* For programs that want to be strictly Unicode compatible by dying if any
576 * attempt is made to match a non-Unicode code point against a Unicode
578 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
580 #define OOB_NAMEDCLASS -1
582 /* There is no code point that is out-of-bounds, so this is problematic. But
583 * its only current use is to initialize a variable that is always set before
585 #define OOB_UNICODE 0xDEADBEEF
587 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
590 /* length of regex to show in messages that don't mark a position within */
591 #define RegexLengthToShowInErrorMessages 127
594 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
595 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
596 * op/pragma/warn/regcomp.
598 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
599 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
601 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
602 " in m/%" UTF8f MARKER2 "%" UTF8f "/"
604 /* The code in this file in places uses one level of recursion with parsing
605 * rebased to an alternate string constructed by us in memory. This can take
606 * the form of something that is completely different from the input, or
607 * something that uses the input as part of the alternate. In the first case,
608 * there should be no possibility of an error, as we are in complete control of
609 * the alternate string. But in the second case we don't control the input
610 * portion, so there may be errors in that. Here's an example:
612 * is handled specially because \x{df} folds to a sequence of more than one
613 * character, 'ss'. What is done is to create and parse an alternate string,
614 * which looks like this:
615 * /(?:\x{DF}|[abc\x{DF}def])/ui
616 * where it uses the input unchanged in the middle of something it constructs,
617 * which is a branch for the DF outside the character class, and clustering
618 * parens around the whole thing. (It knows enough to skip the DF inside the
619 * class while in this substitute parse.) 'abc' and 'def' may have errors that
620 * need to be reported. The general situation looks like this:
623 * Input: ----------------------------------------------------
624 * Constructed: ---------------------------------------------------
627 * The input string sI..eI is the input pattern. The string sC..EC is the
628 * constructed substitute parse string. The portions sC..tC and eC..EC are
629 * constructed by us. The portion tC..eC is an exact duplicate of the input
630 * pattern tI..eI. In the diagram, these are vertically aligned. Suppose that
631 * while parsing, we find an error at xC. We want to display a message showing
632 * the real input string. Thus we need to find the point xI in it which
633 * corresponds to xC. xC >= tC, since the portion of the string sC..tC has
634 * been constructed by us, and so shouldn't have errors. We get:
636 * xI = sI + (tI - sI) + (xC - tC)
638 * and, the offset into sI is:
640 * (xI - sI) = (tI - sI) + (xC - tC)
642 * When the substitute is constructed, we save (tI -sI) as RExC_precomp_adj,
643 * and we save tC as RExC_adjusted_start.
645 * During normal processing of the input pattern, everything points to that,
646 * with RExC_precomp_adj set to 0, and RExC_adjusted_start set to sI.
649 #define tI_sI RExC_precomp_adj
650 #define tC RExC_adjusted_start
651 #define sC RExC_precomp
652 #define xI_offset(xC) ((IV) (tI_sI + (xC - tC)))
653 #define xI(xC) (sC + xI_offset(xC))
654 #define eC RExC_precomp_end
656 #define REPORT_LOCATION_ARGS(xC) \
658 (xI(xC) > eC) /* Don't run off end */ \
659 ? eC - sC /* Length before the <--HERE */ \
660 : ( __ASSERT_(xI_offset(xC) >= 0) xI_offset(xC) ), \
661 sC), /* The input pattern printed up to the <--HERE */ \
663 (xI(xC) > eC) ? 0 : eC - xI(xC), /* Length after <--HERE */ \
664 (xI(xC) > eC) ? eC : xI(xC)) /* pattern after <--HERE */
666 /* Used to point after bad bytes for an error message, but avoid skipping
667 * past a nul byte. */
668 #define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
671 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
672 * arg. Show regex, up to a maximum length. If it's too long, chop and add
675 #define _FAIL(code) STMT_START { \
676 const char *ellipses = ""; \
677 IV len = RExC_precomp_end - RExC_precomp; \
680 SAVEFREESV(RExC_rx_sv); \
681 if (len > RegexLengthToShowInErrorMessages) { \
682 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
683 len = RegexLengthToShowInErrorMessages - 10; \
689 #define FAIL(msg) _FAIL( \
690 Perl_croak(aTHX_ "%s in regex m/%" UTF8f "%s/", \
691 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
693 #define FAIL2(msg,arg) _FAIL( \
694 Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/", \
695 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
698 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
700 #define Simple_vFAIL(m) STMT_START { \
701 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
702 m, REPORT_LOCATION_ARGS(RExC_parse)); \
706 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
708 #define vFAIL(m) STMT_START { \
710 SAVEFREESV(RExC_rx_sv); \
715 * Like Simple_vFAIL(), but accepts two arguments.
717 #define Simple_vFAIL2(m,a1) STMT_START { \
718 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
719 REPORT_LOCATION_ARGS(RExC_parse)); \
723 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
725 #define vFAIL2(m,a1) STMT_START { \
727 SAVEFREESV(RExC_rx_sv); \
728 Simple_vFAIL2(m, a1); \
733 * Like Simple_vFAIL(), but accepts three arguments.
735 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
736 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
737 REPORT_LOCATION_ARGS(RExC_parse)); \
741 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
743 #define vFAIL3(m,a1,a2) STMT_START { \
745 SAVEFREESV(RExC_rx_sv); \
746 Simple_vFAIL3(m, a1, a2); \
750 * Like Simple_vFAIL(), but accepts four arguments.
752 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
753 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
754 REPORT_LOCATION_ARGS(RExC_parse)); \
757 #define vFAIL4(m,a1,a2,a3) STMT_START { \
759 SAVEFREESV(RExC_rx_sv); \
760 Simple_vFAIL4(m, a1, a2, a3); \
763 /* A specialized version of vFAIL2 that works with UTF8f */
764 #define vFAIL2utf8f(m, a1) STMT_START { \
766 SAVEFREESV(RExC_rx_sv); \
767 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
768 REPORT_LOCATION_ARGS(RExC_parse)); \
771 #define vFAIL3utf8f(m, a1, a2) STMT_START { \
773 SAVEFREESV(RExC_rx_sv); \
774 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
775 REPORT_LOCATION_ARGS(RExC_parse)); \
778 /* These have asserts in them because of [perl #122671] Many warnings in
779 * regcomp.c can occur twice. If they get output in pass1 and later in that
780 * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
781 * would get output again. So they should be output in pass2, and these
782 * asserts make sure new warnings follow that paradigm. */
784 /* m is not necessarily a "literal string", in this macro */
785 #define reg_warn_non_literal_string(loc, m) STMT_START { \
786 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
787 "%s" REPORT_LOCATION, \
788 m, REPORT_LOCATION_ARGS(loc)); \
791 #define ckWARNreg(loc,m) STMT_START { \
792 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
794 REPORT_LOCATION_ARGS(loc)); \
797 #define vWARN(loc, m) STMT_START { \
798 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
800 REPORT_LOCATION_ARGS(loc)); \
803 #define vWARN_dep(loc, m) STMT_START { \
804 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), \
806 REPORT_LOCATION_ARGS(loc)); \
809 #define ckWARNdep(loc,m) STMT_START { \
810 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
812 REPORT_LOCATION_ARGS(loc)); \
815 #define ckWARNregdep(loc,m) STMT_START { \
816 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, \
819 REPORT_LOCATION_ARGS(loc)); \
822 #define ckWARN2reg_d(loc,m, a1) STMT_START { \
823 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
825 a1, REPORT_LOCATION_ARGS(loc)); \
828 #define ckWARN2reg(loc, m, a1) STMT_START { \
829 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
831 a1, REPORT_LOCATION_ARGS(loc)); \
834 #define vWARN3(loc, m, a1, a2) STMT_START { \
835 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
837 a1, a2, REPORT_LOCATION_ARGS(loc)); \
840 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
841 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
844 REPORT_LOCATION_ARGS(loc)); \
847 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
848 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
851 REPORT_LOCATION_ARGS(loc)); \
854 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
855 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
858 REPORT_LOCATION_ARGS(loc)); \
861 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
862 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
865 REPORT_LOCATION_ARGS(loc)); \
868 /* Macros for recording node offsets. 20001227 mjd@plover.com
869 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
870 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
871 * Element 0 holds the number n.
872 * Position is 1 indexed.
874 #ifndef RE_TRACK_PATTERN_OFFSETS
875 #define Set_Node_Offset_To_R(node,byte)
876 #define Set_Node_Offset(node,byte)
877 #define Set_Cur_Node_Offset
878 #define Set_Node_Length_To_R(node,len)
879 #define Set_Node_Length(node,len)
880 #define Set_Node_Cur_Length(node,start)
881 #define Node_Offset(n)
882 #define Node_Length(n)
883 #define Set_Node_Offset_Length(node,offset,len)
884 #define ProgLen(ri) ri->u.proglen
885 #define SetProgLen(ri,x) ri->u.proglen = x
887 #define ProgLen(ri) ri->u.offsets[0]
888 #define SetProgLen(ri,x) ri->u.offsets[0] = x
889 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
891 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
892 __LINE__, (int)(node), (int)(byte))); \
894 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
897 RExC_offsets[2*(node)-1] = (byte); \
902 #define Set_Node_Offset(node,byte) \
903 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
904 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
906 #define Set_Node_Length_To_R(node,len) STMT_START { \
908 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
909 __LINE__, (int)(node), (int)(len))); \
911 Perl_croak(aTHX_ "value of node is %d in Length macro", \
914 RExC_offsets[2*(node)] = (len); \
919 #define Set_Node_Length(node,len) \
920 Set_Node_Length_To_R((node)-RExC_emit_start, len)
921 #define Set_Node_Cur_Length(node, start) \
922 Set_Node_Length(node, RExC_parse - start)
924 /* Get offsets and lengths */
925 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
926 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
928 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
929 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
930 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
934 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
935 #define EXPERIMENTAL_INPLACESCAN
936 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
940 Perl_re_printf(pTHX_ const char *fmt, ...)
944 PerlIO *f= Perl_debug_log;
945 PERL_ARGS_ASSERT_RE_PRINTF;
947 result = PerlIO_vprintf(f, fmt, ap);
953 Perl_re_indentf(pTHX_ const char *fmt, U32 depth, ...)
957 PerlIO *f= Perl_debug_log;
958 PERL_ARGS_ASSERT_RE_INDENTF;
960 PerlIO_printf(f, "%*s", ( (int)depth % 20 ) * 2, "");
961 result = PerlIO_vprintf(f, fmt, ap);
965 #endif /* DEBUGGING */
967 #define DEBUG_RExC_seen() \
968 DEBUG_OPTIMISE_MORE_r({ \
969 Perl_re_printf( aTHX_ "RExC_seen: "); \
971 if (RExC_seen & REG_ZERO_LEN_SEEN) \
972 Perl_re_printf( aTHX_ "REG_ZERO_LEN_SEEN "); \
974 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
975 Perl_re_printf( aTHX_ "REG_LOOKBEHIND_SEEN "); \
977 if (RExC_seen & REG_GPOS_SEEN) \
978 Perl_re_printf( aTHX_ "REG_GPOS_SEEN "); \
980 if (RExC_seen & REG_RECURSE_SEEN) \
981 Perl_re_printf( aTHX_ "REG_RECURSE_SEEN "); \
983 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
984 Perl_re_printf( aTHX_ "REG_TOP_LEVEL_BRANCHES_SEEN "); \
986 if (RExC_seen & REG_VERBARG_SEEN) \
987 Perl_re_printf( aTHX_ "REG_VERBARG_SEEN "); \
989 if (RExC_seen & REG_CUTGROUP_SEEN) \
990 Perl_re_printf( aTHX_ "REG_CUTGROUP_SEEN "); \
992 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
993 Perl_re_printf( aTHX_ "REG_RUN_ON_COMMENT_SEEN "); \
995 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
996 Perl_re_printf( aTHX_ "REG_UNFOLDED_MULTI_SEEN "); \
998 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
999 Perl_re_printf( aTHX_ "REG_UNBOUNDED_QUANTIFIER_SEEN "); \
1001 Perl_re_printf( aTHX_ "\n"); \
1004 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
1005 if ((flags) & flag) Perl_re_printf( aTHX_ "%s ", #flag)
1010 S_debug_show_study_flags(pTHX_ U32 flags, const char *open_str,
1011 const char *close_str)
1016 Perl_re_printf( aTHX_ "%s", open_str);
1017 DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_SEOL);
1018 DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_MEOL);
1019 DEBUG_SHOW_STUDY_FLAG(flags, SF_IS_INF);
1020 DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_PAR);
1021 DEBUG_SHOW_STUDY_FLAG(flags, SF_IN_PAR);
1022 DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_EVAL);
1023 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_SUBSTR);
1024 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_AND);
1025 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_OR);
1026 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS);
1027 DEBUG_SHOW_STUDY_FLAG(flags, SCF_WHILEM_VISITED_POS);
1028 DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_RESTUDY);
1029 DEBUG_SHOW_STUDY_FLAG(flags, SCF_SEEN_ACCEPT);
1030 DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_DOING_RESTUDY);
1031 DEBUG_SHOW_STUDY_FLAG(flags, SCF_IN_DEFINE);
1032 Perl_re_printf( aTHX_ "%s", close_str);
1037 S_debug_studydata(pTHX_ const char *where, scan_data_t *data,
1038 U32 depth, int is_inf)
1040 GET_RE_DEBUG_FLAGS_DECL;
1042 DEBUG_OPTIMISE_MORE_r({
1045 Perl_re_indentf(aTHX_ "%s: Pos:%" IVdf "/%" IVdf " Flags: 0x%" UVXf,
1049 (IV)data->pos_delta,
1053 S_debug_show_study_flags(aTHX_ data->flags," [","]");
1055 Perl_re_printf( aTHX_
1056 " Whilem_c: %" IVdf " Lcp: %" IVdf " %s",
1058 (IV)(data->last_closep ? *((data)->last_closep) : -1),
1059 is_inf ? "INF " : ""
1062 if (data->last_found) {
1064 Perl_re_printf(aTHX_
1065 "Last:'%s' %" IVdf ":%" IVdf "/%" IVdf,
1066 SvPVX_const(data->last_found),
1068 (IV)data->last_start_min,
1069 (IV)data->last_start_max
1072 for (i = 0; i < 2; i++) {
1073 Perl_re_printf(aTHX_
1074 " %s%s: '%s' @ %" IVdf "/%" IVdf,
1075 data->cur_is_floating == i ? "*" : "",
1076 i ? "Float" : "Fixed",
1077 SvPVX_const(data->substrs[i].str),
1078 (IV)data->substrs[i].min_offset,
1079 (IV)data->substrs[i].max_offset
1081 S_debug_show_study_flags(aTHX_ data->substrs[i].flags," [","]");
1085 Perl_re_printf( aTHX_ "\n");
1091 S_debug_peep(pTHX_ const char *str, const RExC_state_t *pRExC_state,
1092 regnode *scan, U32 depth, U32 flags)
1094 GET_RE_DEBUG_FLAGS_DECL;
1101 Next = regnext(scan);
1102 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
1103 Perl_re_indentf( aTHX_ "%s>%3d: %s (%d)",
1106 REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),
1107 Next ? (REG_NODE_NUM(Next)) : 0 );
1108 S_debug_show_study_flags(aTHX_ flags," [ ","]");
1109 Perl_re_printf( aTHX_ "\n");
1114 # define DEBUG_STUDYDATA(where, data, depth, is_inf) \
1115 S_debug_studydata(aTHX_ where, data, depth, is_inf)
1117 # define DEBUG_PEEP(str, scan, depth, flags) \
1118 S_debug_peep(aTHX_ str, pRExC_state, scan, depth, flags)
1121 # define DEBUG_STUDYDATA(where, data, depth, is_inf) NOOP
1122 # define DEBUG_PEEP(str, scan, depth, flags) NOOP
1126 /* =========================================================
1127 * BEGIN edit_distance stuff.
1129 * This calculates how many single character changes of any type are needed to
1130 * transform a string into another one. It is taken from version 3.1 of
1132 * https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
1135 /* Our unsorted dictionary linked list. */
1136 /* Note we use UVs, not chars. */
1141 struct dictionary* next;
1143 typedef struct dictionary item;
1146 PERL_STATIC_INLINE item*
1147 push(UV key,item* curr)
1150 Newx(head, 1, item);
1158 PERL_STATIC_INLINE item*
1159 find(item* head, UV key)
1161 item* iterator = head;
1163 if (iterator->key == key){
1166 iterator = iterator->next;
1172 PERL_STATIC_INLINE item*
1173 uniquePush(item* head,UV key)
1175 item* iterator = head;
1178 if (iterator->key == key) {
1181 iterator = iterator->next;
1184 return push(key,head);
1187 PERL_STATIC_INLINE void
1188 dict_free(item* head)
1190 item* iterator = head;
1193 item* temp = iterator;
1194 iterator = iterator->next;
1201 /* End of Dictionary Stuff */
1203 /* All calculations/work are done here */
1205 S_edit_distance(const UV* src,
1207 const STRLEN x, /* length of src[] */
1208 const STRLEN y, /* length of tgt[] */
1209 const SSize_t maxDistance
1213 UV swapCount,swapScore,targetCharCount,i,j;
1215 UV score_ceil = x + y;
1217 PERL_ARGS_ASSERT_EDIT_DISTANCE;
1219 /* intialize matrix start values */
1220 Newx(scores, ( (x + 2) * (y + 2)), UV);
1221 scores[0] = score_ceil;
1222 scores[1 * (y + 2) + 0] = score_ceil;
1223 scores[0 * (y + 2) + 1] = score_ceil;
1224 scores[1 * (y + 2) + 1] = 0;
1225 head = uniquePush(uniquePush(head,src[0]),tgt[0]);
1230 for (i=1;i<=x;i++) {
1232 head = uniquePush(head,src[i]);
1233 scores[(i+1) * (y + 2) + 1] = i;
1234 scores[(i+1) * (y + 2) + 0] = score_ceil;
1237 for (j=1;j<=y;j++) {
1240 head = uniquePush(head,tgt[j]);
1241 scores[1 * (y + 2) + (j + 1)] = j;
1242 scores[0 * (y + 2) + (j + 1)] = score_ceil;
1245 targetCharCount = find(head,tgt[j-1])->value;
1246 swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;
1248 if (src[i-1] != tgt[j-1]){
1249 scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
1253 scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
1257 find(head,src[i-1])->value = i;
1261 IV score = scores[(x+1) * (y + 2) + (y + 1)];
1264 return (maxDistance != 0 && maxDistance < score)?(-1):score;
1268 /* END of edit_distance() stuff
1269 * ========================================================= */
1271 /* is c a control character for which we have a mnemonic? */
1272 #define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
1275 S_cntrl_to_mnemonic(const U8 c)
1277 /* Returns the mnemonic string that represents character 'c', if one
1278 * exists; NULL otherwise. The only ones that exist for the purposes of
1279 * this routine are a few control characters */
1282 case '\a': return "\\a";
1283 case '\b': return "\\b";
1284 case ESC_NATIVE: return "\\e";
1285 case '\f': return "\\f";
1286 case '\n': return "\\n";
1287 case '\r': return "\\r";
1288 case '\t': return "\\t";
1294 /* Mark that we cannot extend a found fixed substring at this point.
1295 Update the longest found anchored substring or the longest found
1296 floating substrings if needed. */
1299 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
1300 SSize_t *minlenp, int is_inf)
1302 const STRLEN l = CHR_SVLEN(data->last_found);
1303 SV * const longest_sv = data->substrs[data->cur_is_floating].str;
1304 const STRLEN old_l = CHR_SVLEN(longest_sv);
1305 GET_RE_DEBUG_FLAGS_DECL;
1307 PERL_ARGS_ASSERT_SCAN_COMMIT;
1309 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
1310 const U8 i = data->cur_is_floating;
1311 SvSetMagicSV(longest_sv, data->last_found);
1312 data->substrs[i].min_offset = l ? data->last_start_min : data->pos_min;
1315 data->substrs[0].max_offset = data->substrs[0].min_offset;
1317 data->substrs[1].max_offset = (l
1318 ? data->last_start_max
1319 : (data->pos_delta > SSize_t_MAX - data->pos_min
1321 : data->pos_min + data->pos_delta));
1323 || (STRLEN)data->substrs[1].max_offset > (STRLEN)SSize_t_MAX)
1324 data->substrs[1].max_offset = SSize_t_MAX;
1327 if (data->flags & SF_BEFORE_EOL)
1328 data->substrs[i].flags |= (data->flags & SF_BEFORE_EOL);
1330 data->substrs[i].flags &= ~SF_BEFORE_EOL;
1331 data->substrs[i].minlenp = minlenp;
1332 data->substrs[i].lookbehind = 0;
1335 SvCUR_set(data->last_found, 0);
1337 SV * const sv = data->last_found;
1338 if (SvUTF8(sv) && SvMAGICAL(sv)) {
1339 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
1344 data->last_end = -1;
1345 data->flags &= ~SF_BEFORE_EOL;
1346 DEBUG_STUDYDATA("commit", data, 0, is_inf);
1349 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
1350 * list that describes which code points it matches */
1353 S_ssc_anything(pTHX_ regnode_ssc *ssc)
1355 /* Set the SSC 'ssc' to match an empty string or any code point */
1357 PERL_ARGS_ASSERT_SSC_ANYTHING;
1359 assert(is_ANYOF_SYNTHETIC(ssc));
1361 /* mortalize so won't leak */
1362 ssc->invlist = sv_2mortal(_add_range_to_invlist(NULL, 0, UV_MAX));
1363 ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
1367 S_ssc_is_anything(const regnode_ssc *ssc)
1369 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1370 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
1371 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1372 * in any way, so there's no point in using it */
1377 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1379 assert(is_ANYOF_SYNTHETIC(ssc));
1381 if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1385 /* See if the list consists solely of the range 0 - Infinity */
1386 invlist_iterinit(ssc->invlist);
1387 ret = invlist_iternext(ssc->invlist, &start, &end)
1391 invlist_iterfinish(ssc->invlist);
1397 /* If e.g., both \w and \W are set, matches everything */
1398 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1400 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1401 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1411 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1413 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
1414 * string, any code point, or any posix class under locale */
1416 PERL_ARGS_ASSERT_SSC_INIT;
1418 Zero(ssc, 1, regnode_ssc);
1419 set_ANYOF_SYNTHETIC(ssc);
1420 ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1423 /* If any portion of the regex is to operate under locale rules that aren't
1424 * fully known at compile time, initialization includes it. The reason
1425 * this isn't done for all regexes is that the optimizer was written under
1426 * the assumption that locale was all-or-nothing. Given the complexity and
1427 * lack of documentation in the optimizer, and that there are inadequate
1428 * test cases for locale, many parts of it may not work properly, it is
1429 * safest to avoid locale unless necessary. */
1430 if (RExC_contains_locale) {
1431 ANYOF_POSIXL_SETALL(ssc);
1434 ANYOF_POSIXL_ZERO(ssc);
1439 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1440 const regnode_ssc *ssc)
1442 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1443 * to the list of code points matched, and locale posix classes; hence does
1444 * not check its flags) */
1449 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1451 assert(is_ANYOF_SYNTHETIC(ssc));
1453 invlist_iterinit(ssc->invlist);
1454 ret = invlist_iternext(ssc->invlist, &start, &end)
1458 invlist_iterfinish(ssc->invlist);
1464 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1472 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1473 const regnode_charclass* const node)
1475 /* Returns a mortal inversion list defining which code points are matched
1476 * by 'node', which is of type ANYOF. Handles complementing the result if
1477 * appropriate. If some code points aren't knowable at this time, the
1478 * returned list must, and will, contain every code point that is a
1482 SV* only_utf8_locale_invlist = NULL;
1484 const U32 n = ARG(node);
1485 bool new_node_has_latin1 = FALSE;
1487 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1489 /* Look at the data structure created by S_set_ANYOF_arg() */
1490 if (n != ANYOF_ONLY_HAS_BITMAP) {
1491 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1492 AV * const av = MUTABLE_AV(SvRV(rv));
1493 SV **const ary = AvARRAY(av);
1494 assert(RExC_rxi->data->what[n] == 's');
1496 if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
1497 invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
1499 else if (ary[0] && ary[0] != &PL_sv_undef) {
1501 /* Here, no compile-time swash, and there are things that won't be
1502 * known until runtime -- we have to assume it could be anything */
1503 invlist = sv_2mortal(_new_invlist(1));
1504 return _add_range_to_invlist(invlist, 0, UV_MAX);
1506 else if (ary[3] && ary[3] != &PL_sv_undef) {
1508 /* Here no compile-time swash, and no run-time only data. Use the
1509 * node's inversion list */
1510 invlist = sv_2mortal(invlist_clone(ary[3]));
1513 /* Get the code points valid only under UTF-8 locales */
1514 if ((ANYOF_FLAGS(node) & ANYOFL_FOLD)
1515 && ary[2] && ary[2] != &PL_sv_undef)
1517 only_utf8_locale_invlist = ary[2];
1522 invlist = sv_2mortal(_new_invlist(0));
1525 /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1526 * code points, and an inversion list for the others, but if there are code
1527 * points that should match only conditionally on the target string being
1528 * UTF-8, those are placed in the inversion list, and not the bitmap.
1529 * Since there are circumstances under which they could match, they are
1530 * included in the SSC. But if the ANYOF node is to be inverted, we have
1531 * to exclude them here, so that when we invert below, the end result
1532 * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
1533 * have to do this here before we add the unconditionally matched code
1535 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1536 _invlist_intersection_complement_2nd(invlist,
1541 /* Add in the points from the bit map */
1542 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1543 if (ANYOF_BITMAP_TEST(node, i)) {
1544 unsigned int start = i++;
1546 for (; i < NUM_ANYOF_CODE_POINTS && ANYOF_BITMAP_TEST(node, i); ++i) {
1549 invlist = _add_range_to_invlist(invlist, start, i-1);
1550 new_node_has_latin1 = TRUE;
1554 /* If this can match all upper Latin1 code points, have to add them
1555 * as well. But don't add them if inverting, as when that gets done below,
1556 * it would exclude all these characters, including the ones it shouldn't
1557 * that were added just above */
1558 if (! (ANYOF_FLAGS(node) & ANYOF_INVERT) && OP(node) == ANYOFD
1559 && (ANYOF_FLAGS(node) & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
1561 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1564 /* Similarly for these */
1565 if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1566 _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1569 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1570 _invlist_invert(invlist);
1572 else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOFL_FOLD) {
1574 /* Under /li, any 0-255 could fold to any other 0-255, depending on the
1575 * locale. We can skip this if there are no 0-255 at all. */
1576 _invlist_union(invlist, PL_Latin1, &invlist);
1579 /* Similarly add the UTF-8 locale possible matches. These have to be
1580 * deferred until after the non-UTF-8 locale ones are taken care of just
1581 * above, or it leads to wrong results under ANYOF_INVERT */
1582 if (only_utf8_locale_invlist) {
1583 _invlist_union_maybe_complement_2nd(invlist,
1584 only_utf8_locale_invlist,
1585 ANYOF_FLAGS(node) & ANYOF_INVERT,
1592 /* These two functions currently do the exact same thing */
1593 #define ssc_init_zero ssc_init
1595 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1596 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1598 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1599 * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1600 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1603 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1604 const regnode_charclass *and_with)
1606 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1607 * another SSC or a regular ANYOF class. Can create false positives. */
1612 PERL_ARGS_ASSERT_SSC_AND;
1614 assert(is_ANYOF_SYNTHETIC(ssc));
1616 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1617 * the code point inversion list and just the relevant flags */
1618 if (is_ANYOF_SYNTHETIC(and_with)) {
1619 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1620 anded_flags = ANYOF_FLAGS(and_with);
1622 /* XXX This is a kludge around what appears to be deficiencies in the
1623 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1624 * there are paths through the optimizer where it doesn't get weeded
1625 * out when it should. And if we don't make some extra provision for
1626 * it like the code just below, it doesn't get added when it should.
1627 * This solution is to add it only when AND'ing, which is here, and
1628 * only when what is being AND'ed is the pristine, original node
1629 * matching anything. Thus it is like adding it to ssc_anything() but
1630 * only when the result is to be AND'ed. Probably the same solution
1631 * could be adopted for the same problem we have with /l matching,
1632 * which is solved differently in S_ssc_init(), and that would lead to
1633 * fewer false positives than that solution has. But if this solution
1634 * creates bugs, the consequences are only that a warning isn't raised
1635 * that should be; while the consequences for having /l bugs is
1636 * incorrect matches */
1637 if (ssc_is_anything((regnode_ssc *)and_with)) {
1638 anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1642 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1643 if (OP(and_with) == ANYOFD) {
1644 anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
1647 anded_flags = ANYOF_FLAGS(and_with)
1648 &( ANYOF_COMMON_FLAGS
1649 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1650 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1651 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(and_with))) {
1653 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1658 ANYOF_FLAGS(ssc) &= anded_flags;
1660 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1661 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1662 * 'and_with' may be inverted. When not inverted, we have the situation of
1664 * (C1 | P1) & (C2 | P2)
1665 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1666 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1667 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1668 * <= ((C1 & C2) | P1 | P2)
1669 * Alternatively, the last few steps could be:
1670 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1671 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1672 * <= (C1 | C2 | (P1 & P2))
1673 * We favor the second approach if either P1 or P2 is non-empty. This is
1674 * because these components are a barrier to doing optimizations, as what
1675 * they match cannot be known until the moment of matching as they are
1676 * dependent on the current locale, 'AND"ing them likely will reduce or
1678 * But we can do better if we know that C1,P1 are in their initial state (a
1679 * frequent occurrence), each matching everything:
1680 * (<everything>) & (C2 | P2) = C2 | P2
1681 * Similarly, if C2,P2 are in their initial state (again a frequent
1682 * occurrence), the result is a no-op
1683 * (C1 | P1) & (<everything>) = C1 | P1
1686 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1687 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1688 * <= (C1 & ~C2) | (P1 & ~P2)
1691 if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
1692 && ! is_ANYOF_SYNTHETIC(and_with))
1696 ssc_intersection(ssc,
1698 FALSE /* Has already been inverted */
1701 /* If either P1 or P2 is empty, the intersection will be also; can skip
1703 if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
1704 ANYOF_POSIXL_ZERO(ssc);
1706 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1708 /* Note that the Posix class component P from 'and_with' actually
1710 * P = Pa | Pb | ... | Pn
1711 * where each component is one posix class, such as in [\w\s].
1713 * ~P = ~(Pa | Pb | ... | Pn)
1714 * = ~Pa & ~Pb & ... & ~Pn
1715 * <= ~Pa | ~Pb | ... | ~Pn
1716 * The last is something we can easily calculate, but unfortunately
1717 * is likely to have many false positives. We could do better
1718 * in some (but certainly not all) instances if two classes in
1719 * P have known relationships. For example
1720 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1722 * :lower: & :print: = :lower:
1723 * And similarly for classes that must be disjoint. For example,
1724 * since \s and \w can have no elements in common based on rules in
1725 * the POSIX standard,
1726 * \w & ^\S = nothing
1727 * Unfortunately, some vendor locales do not meet the Posix
1728 * standard, in particular almost everything by Microsoft.
1729 * The loop below just changes e.g., \w into \W and vice versa */
1731 regnode_charclass_posixl temp;
1732 int add = 1; /* To calculate the index of the complement */
1734 Zero(&temp, 1, regnode_charclass_posixl);
1735 ANYOF_POSIXL_ZERO(&temp);
1736 for (i = 0; i < ANYOF_MAX; i++) {
1738 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1739 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1741 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1742 ANYOF_POSIXL_SET(&temp, i + add);
1744 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1746 ANYOF_POSIXL_AND(&temp, ssc);
1748 } /* else ssc already has no posixes */
1749 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1750 in its initial state */
1751 else if (! is_ANYOF_SYNTHETIC(and_with)
1752 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1754 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1755 * copy it over 'ssc' */
1756 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1757 if (is_ANYOF_SYNTHETIC(and_with)) {
1758 StructCopy(and_with, ssc, regnode_ssc);
1761 ssc->invlist = anded_cp_list;
1762 ANYOF_POSIXL_ZERO(ssc);
1763 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1764 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1768 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1769 || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
1771 /* One or the other of P1, P2 is non-empty. */
1772 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1773 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1775 ssc_union(ssc, anded_cp_list, FALSE);
1777 else { /* P1 = P2 = empty */
1778 ssc_intersection(ssc, anded_cp_list, FALSE);
1784 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1785 const regnode_charclass *or_with)
1787 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1788 * another SSC or a regular ANYOF class. Can create false positives if
1789 * 'or_with' is to be inverted. */
1794 PERL_ARGS_ASSERT_SSC_OR;
1796 assert(is_ANYOF_SYNTHETIC(ssc));
1798 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1799 * the code point inversion list and just the relevant flags */
1800 if (is_ANYOF_SYNTHETIC(or_with)) {
1801 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1802 ored_flags = ANYOF_FLAGS(or_with);
1805 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1806 ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
1807 if (OP(or_with) != ANYOFD) {
1809 |= ANYOF_FLAGS(or_with)
1810 & ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1811 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1812 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(or_with))) {
1814 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1819 ANYOF_FLAGS(ssc) |= ored_flags;
1821 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1822 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1823 * 'or_with' may be inverted. When not inverted, we have the simple
1824 * situation of computing:
1825 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1826 * If P1|P2 yields a situation with both a class and its complement are
1827 * set, like having both \w and \W, this matches all code points, and we
1828 * can delete these from the P component of the ssc going forward. XXX We
1829 * might be able to delete all the P components, but I (khw) am not certain
1830 * about this, and it is better to be safe.
1833 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1834 * <= (C1 | P1) | ~C2
1835 * <= (C1 | ~C2) | P1
1836 * (which results in actually simpler code than the non-inverted case)
1839 if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
1840 && ! is_ANYOF_SYNTHETIC(or_with))
1842 /* We ignore P2, leaving P1 going forward */
1843 } /* else Not inverted */
1844 else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
1845 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1846 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1848 for (i = 0; i < ANYOF_MAX; i += 2) {
1849 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1851 ssc_match_all_cp(ssc);
1852 ANYOF_POSIXL_CLEAR(ssc, i);
1853 ANYOF_POSIXL_CLEAR(ssc, i+1);
1861 FALSE /* Already has been inverted */
1865 PERL_STATIC_INLINE void
1866 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1868 PERL_ARGS_ASSERT_SSC_UNION;
1870 assert(is_ANYOF_SYNTHETIC(ssc));
1872 _invlist_union_maybe_complement_2nd(ssc->invlist,
1878 PERL_STATIC_INLINE void
1879 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
1881 const bool invert2nd)
1883 PERL_ARGS_ASSERT_SSC_INTERSECTION;
1885 assert(is_ANYOF_SYNTHETIC(ssc));
1887 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
1893 PERL_STATIC_INLINE void
1894 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
1896 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
1898 assert(is_ANYOF_SYNTHETIC(ssc));
1900 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
1903 PERL_STATIC_INLINE void
1904 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
1906 /* AND just the single code point 'cp' into the SSC 'ssc' */
1908 SV* cp_list = _new_invlist(2);
1910 PERL_ARGS_ASSERT_SSC_CP_AND;
1912 assert(is_ANYOF_SYNTHETIC(ssc));
1914 cp_list = add_cp_to_invlist(cp_list, cp);
1915 ssc_intersection(ssc, cp_list,
1916 FALSE /* Not inverted */
1918 SvREFCNT_dec_NN(cp_list);
1921 PERL_STATIC_INLINE void
1922 S_ssc_clear_locale(regnode_ssc *ssc)
1924 /* Set the SSC 'ssc' to not match any locale things */
1925 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
1927 assert(is_ANYOF_SYNTHETIC(ssc));
1929 ANYOF_POSIXL_ZERO(ssc);
1930 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
1933 #define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
1936 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
1938 /* The synthetic start class is used to hopefully quickly winnow down
1939 * places where a pattern could start a match in the target string. If it
1940 * doesn't really narrow things down that much, there isn't much point to
1941 * having the overhead of using it. This function uses some very crude
1942 * heuristics to decide if to use the ssc or not.
1944 * It returns TRUE if 'ssc' rules out more than half what it considers to
1945 * be the "likely" possible matches, but of course it doesn't know what the
1946 * actual things being matched are going to be; these are only guesses
1948 * For /l matches, it assumes that the only likely matches are going to be
1949 * in the 0-255 range, uniformly distributed, so half of that is 127
1950 * For /a and /d matches, it assumes that the likely matches will be just
1951 * the ASCII range, so half of that is 63
1952 * For /u and there isn't anything matching above the Latin1 range, it
1953 * assumes that that is the only range likely to be matched, and uses
1954 * half that as the cut-off: 127. If anything matches above Latin1,
1955 * it assumes that all of Unicode could match (uniformly), except for
1956 * non-Unicode code points and things in the General Category "Other"
1957 * (unassigned, private use, surrogates, controls and formats). This
1958 * is a much large number. */
1960 U32 count = 0; /* Running total of number of code points matched by
1962 UV start, end; /* Start and end points of current range in inversion
1964 const U32 max_code_points = (LOC)
1966 : (( ! UNI_SEMANTICS
1967 || invlist_highest(ssc->invlist) < 256)
1970 const U32 max_match = max_code_points / 2;
1972 PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
1974 invlist_iterinit(ssc->invlist);
1975 while (invlist_iternext(ssc->invlist, &start, &end)) {
1976 if (start >= max_code_points) {
1979 end = MIN(end, max_code_points - 1);
1980 count += end - start + 1;
1981 if (count >= max_match) {
1982 invlist_iterfinish(ssc->invlist);
1992 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
1994 /* The inversion list in the SSC is marked mortal; now we need a more
1995 * permanent copy, which is stored the same way that is done in a regular
1996 * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
1999 SV* invlist = invlist_clone(ssc->invlist);
2001 PERL_ARGS_ASSERT_SSC_FINALIZE;
2003 assert(is_ANYOF_SYNTHETIC(ssc));
2005 /* The code in this file assumes that all but these flags aren't relevant
2006 * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
2007 * by the time we reach here */
2008 assert(! (ANYOF_FLAGS(ssc)
2009 & ~( ANYOF_COMMON_FLAGS
2010 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
2011 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));
2013 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
2015 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
2016 NULL, NULL, NULL, FALSE);
2018 /* Make sure is clone-safe */
2019 ssc->invlist = NULL;
2021 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
2022 ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
2025 if (RExC_contains_locale) {
2029 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
2032 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
2033 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
2034 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
2035 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
2036 ? (TRIE_LIST_CUR( idx ) - 1) \
2042 dump_trie(trie,widecharmap,revcharmap)
2043 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
2044 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
2046 These routines dump out a trie in a somewhat readable format.
2047 The _interim_ variants are used for debugging the interim
2048 tables that are used to generate the final compressed
2049 representation which is what dump_trie expects.
2051 Part of the reason for their existence is to provide a form
2052 of documentation as to how the different representations function.
2057 Dumps the final compressed table form of the trie to Perl_debug_log.
2058 Used for debugging make_trie().
2062 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
2063 AV *revcharmap, U32 depth)
2066 SV *sv=sv_newmortal();
2067 int colwidth= widecharmap ? 6 : 4;
2069 GET_RE_DEBUG_FLAGS_DECL;
2071 PERL_ARGS_ASSERT_DUMP_TRIE;
2073 Perl_re_indentf( aTHX_ "Char : %-6s%-6s%-4s ",
2074 depth+1, "Match","Base","Ofs" );
2076 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
2077 SV ** const tmp = av_fetch( revcharmap, state, 0);
2079 Perl_re_printf( aTHX_ "%*s",
2081 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2082 PL_colors[0], PL_colors[1],
2083 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2084 PERL_PV_ESCAPE_FIRSTCHAR
2089 Perl_re_printf( aTHX_ "\n");
2090 Perl_re_indentf( aTHX_ "State|-----------------------", depth+1);
2092 for( state = 0 ; state < trie->uniquecharcount ; state++ )
2093 Perl_re_printf( aTHX_ "%.*s", colwidth, "--------");
2094 Perl_re_printf( aTHX_ "\n");
2096 for( state = 1 ; state < trie->statecount ; state++ ) {
2097 const U32 base = trie->states[ state ].trans.base;
2099 Perl_re_indentf( aTHX_ "#%4" UVXf "|", depth+1, (UV)state);
2101 if ( trie->states[ state ].wordnum ) {
2102 Perl_re_printf( aTHX_ " W%4X", trie->states[ state ].wordnum );
2104 Perl_re_printf( aTHX_ "%6s", "" );
2107 Perl_re_printf( aTHX_ " @%4" UVXf " ", (UV)base );
2112 while( ( base + ofs < trie->uniquecharcount ) ||
2113 ( base + ofs - trie->uniquecharcount < trie->lasttrans
2114 && trie->trans[ base + ofs - trie->uniquecharcount ].check
2118 Perl_re_printf( aTHX_ "+%2" UVXf "[ ", (UV)ofs);
2120 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2121 if ( ( base + ofs >= trie->uniquecharcount )
2122 && ( base + ofs - trie->uniquecharcount
2124 && trie->trans[ base + ofs
2125 - trie->uniquecharcount ].check == state )
2127 Perl_re_printf( aTHX_ "%*" UVXf, colwidth,
2128 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next
2131 Perl_re_printf( aTHX_ "%*s",colwidth," ." );
2135 Perl_re_printf( aTHX_ "]");
2138 Perl_re_printf( aTHX_ "\n" );
2140 Perl_re_indentf( aTHX_ "word_info N:(prev,len)=",
2142 for (word=1; word <= trie->wordcount; word++) {
2143 Perl_re_printf( aTHX_ " %d:(%d,%d)",
2144 (int)word, (int)(trie->wordinfo[word].prev),
2145 (int)(trie->wordinfo[word].len));
2147 Perl_re_printf( aTHX_ "\n" );
2150 Dumps a fully constructed but uncompressed trie in list form.
2151 List tries normally only are used for construction when the number of
2152 possible chars (trie->uniquecharcount) is very high.
2153 Used for debugging make_trie().
2156 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
2157 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2161 SV *sv=sv_newmortal();
2162 int colwidth= widecharmap ? 6 : 4;
2163 GET_RE_DEBUG_FLAGS_DECL;
2165 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
2167 /* print out the table precompression. */
2168 Perl_re_indentf( aTHX_ "State :Word | Transition Data\n",
2170 Perl_re_indentf( aTHX_ "%s",
2171 depth+1, "------:-----+-----------------\n" );
2173 for( state=1 ; state < next_alloc ; state ++ ) {
2176 Perl_re_indentf( aTHX_ " %4" UVXf " :",
2177 depth+1, (UV)state );
2178 if ( ! trie->states[ state ].wordnum ) {
2179 Perl_re_printf( aTHX_ "%5s| ","");
2181 Perl_re_printf( aTHX_ "W%4x| ",
2182 trie->states[ state ].wordnum
2185 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
2186 SV ** const tmp = av_fetch( revcharmap,
2187 TRIE_LIST_ITEM(state,charid).forid, 0);
2189 Perl_re_printf( aTHX_ "%*s:%3X=%4" UVXf " | ",
2191 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
2193 PL_colors[0], PL_colors[1],
2194 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
2195 | PERL_PV_ESCAPE_FIRSTCHAR
2197 TRIE_LIST_ITEM(state,charid).forid,
2198 (UV)TRIE_LIST_ITEM(state,charid).newstate
2201 Perl_re_printf( aTHX_ "\n%*s| ",
2202 (int)((depth * 2) + 14), "");
2205 Perl_re_printf( aTHX_ "\n");
2210 Dumps a fully constructed but uncompressed trie in table form.
2211 This is the normal DFA style state transition table, with a few
2212 twists to facilitate compression later.
2213 Used for debugging make_trie().
2216 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
2217 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2222 SV *sv=sv_newmortal();
2223 int colwidth= widecharmap ? 6 : 4;
2224 GET_RE_DEBUG_FLAGS_DECL;
2226 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
2229 print out the table precompression so that we can do a visual check
2230 that they are identical.
2233 Perl_re_indentf( aTHX_ "Char : ", depth+1 );
2235 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2236 SV ** const tmp = av_fetch( revcharmap, charid, 0);
2238 Perl_re_printf( aTHX_ "%*s",
2240 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2241 PL_colors[0], PL_colors[1],
2242 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2243 PERL_PV_ESCAPE_FIRSTCHAR
2249 Perl_re_printf( aTHX_ "\n");
2250 Perl_re_indentf( aTHX_ "State+-", depth+1 );
2252 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
2253 Perl_re_printf( aTHX_ "%.*s", colwidth,"--------");
2256 Perl_re_printf( aTHX_ "\n" );
2258 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
2260 Perl_re_indentf( aTHX_ "%4" UVXf " : ",
2262 (UV)TRIE_NODENUM( state ) );
2264 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2265 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
2267 Perl_re_printf( aTHX_ "%*" UVXf, colwidth, v );
2269 Perl_re_printf( aTHX_ "%*s", colwidth, "." );
2271 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
2272 Perl_re_printf( aTHX_ " (%4" UVXf ")\n",
2273 (UV)trie->trans[ state ].check );
2275 Perl_re_printf( aTHX_ " (%4" UVXf ") W%4X\n",
2276 (UV)trie->trans[ state ].check,
2277 trie->states[ TRIE_NODENUM( state ) ].wordnum );
2285 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
2286 startbranch: the first branch in the whole branch sequence
2287 first : start branch of sequence of branch-exact nodes.
2288 May be the same as startbranch
2289 last : Thing following the last branch.
2290 May be the same as tail.
2291 tail : item following the branch sequence
2292 count : words in the sequence
2293 flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
2294 depth : indent depth
2296 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
2298 A trie is an N'ary tree where the branches are determined by digital
2299 decomposition of the key. IE, at the root node you look up the 1st character and
2300 follow that branch repeat until you find the end of the branches. Nodes can be
2301 marked as "accepting" meaning they represent a complete word. Eg:
2305 would convert into the following structure. Numbers represent states, letters
2306 following numbers represent valid transitions on the letter from that state, if
2307 the number is in square brackets it represents an accepting state, otherwise it
2308 will be in parenthesis.
2310 +-h->+-e->[3]-+-r->(8)-+-s->[9]
2314 (1) +-i->(6)-+-s->[7]
2316 +-s->(3)-+-h->(4)-+-e->[5]
2318 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
2320 This shows that when matching against the string 'hers' we will begin at state 1
2321 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
2322 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
2323 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
2324 single traverse. We store a mapping from accepting to state to which word was
2325 matched, and then when we have multiple possibilities we try to complete the
2326 rest of the regex in the order in which they occurred in the alternation.
2328 The only prior NFA like behaviour that would be changed by the TRIE support is
2329 the silent ignoring of duplicate alternations which are of the form:
2331 / (DUPE|DUPE) X? (?{ ... }) Y /x
2333 Thus EVAL blocks following a trie may be called a different number of times with
2334 and without the optimisation. With the optimisations dupes will be silently
2335 ignored. This inconsistent behaviour of EVAL type nodes is well established as
2336 the following demonstrates:
2338 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
2340 which prints out 'word' three times, but
2342 'words'=~/(word|word|word)(?{ print $1 })S/
2344 which doesnt print it out at all. This is due to other optimisations kicking in.
2346 Example of what happens on a structural level:
2348 The regexp /(ac|ad|ab)+/ will produce the following debug output:
2350 1: CURLYM[1] {1,32767}(18)
2361 This would be optimizable with startbranch=5, first=5, last=16, tail=16
2362 and should turn into:
2364 1: CURLYM[1] {1,32767}(18)
2366 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
2374 Cases where tail != last would be like /(?foo|bar)baz/:
2384 which would be optimizable with startbranch=1, first=1, last=7, tail=8
2385 and would end up looking like:
2388 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
2395 d = uvchr_to_utf8_flags(d, uv, 0);
2397 is the recommended Unicode-aware way of saying
2402 #define TRIE_STORE_REVCHAR(val) \
2405 SV *zlopp = newSV(UTF8_MAXBYTES); \
2406 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
2407 unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
2408 SvCUR_set(zlopp, kapow - flrbbbbb); \
2411 av_push(revcharmap, zlopp); \
2413 char ooooff = (char)val; \
2414 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
2418 /* This gets the next character from the input, folding it if not already
2420 #define TRIE_READ_CHAR STMT_START { \
2423 /* if it is UTF then it is either already folded, or does not need \
2425 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
2427 else if (folder == PL_fold_latin1) { \
2428 /* This folder implies Unicode rules, which in the range expressible \
2429 * by not UTF is the lower case, with the two exceptions, one of \
2430 * which should have been taken care of before calling this */ \
2431 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
2432 uvc = toLOWER_L1(*uc); \
2433 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
2436 /* raw data, will be folded later if needed */ \
2444 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
2445 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
2446 U32 ging = TRIE_LIST_LEN( state ) * 2; \
2447 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2448 TRIE_LIST_LEN( state ) = ging; \
2450 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
2451 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
2452 TRIE_LIST_CUR( state )++; \
2455 #define TRIE_LIST_NEW(state) STMT_START { \
2456 Newx( trie->states[ state ].trans.list, \
2457 4, reg_trie_trans_le ); \
2458 TRIE_LIST_CUR( state ) = 1; \
2459 TRIE_LIST_LEN( state ) = 4; \
2462 #define TRIE_HANDLE_WORD(state) STMT_START { \
2463 U16 dupe= trie->states[ state ].wordnum; \
2464 regnode * const noper_next = regnext( noper ); \
2467 /* store the word for dumping */ \
2469 if (OP(noper) != NOTHING) \
2470 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
2472 tmp = newSVpvn_utf8( "", 0, UTF ); \
2473 av_push( trie_words, tmp ); \
2477 trie->wordinfo[curword].prev = 0; \
2478 trie->wordinfo[curword].len = wordlen; \
2479 trie->wordinfo[curword].accept = state; \
2481 if ( noper_next < tail ) { \
2483 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2485 trie->jump[curword] = (U16)(noper_next - convert); \
2487 jumper = noper_next; \
2489 nextbranch= regnext(cur); \
2493 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
2494 /* chain, so that when the bits of chain are later */\
2495 /* linked together, the dups appear in the chain */\
2496 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2497 trie->wordinfo[dupe].prev = curword; \
2499 /* we haven't inserted this word yet. */ \
2500 trie->states[ state ].wordnum = curword; \
2505 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
2506 ( ( base + charid >= ucharcount \
2507 && base + charid < ubound \
2508 && state == trie->trans[ base - ucharcount + charid ].check \
2509 && trie->trans[ base - ucharcount + charid ].next ) \
2510 ? trie->trans[ base - ucharcount + charid ].next \
2511 : ( state==1 ? special : 0 ) \
2514 #define TRIE_BITMAP_SET_FOLDED(trie, uvc, folder) \
2516 TRIE_BITMAP_SET(trie, uvc); \
2517 /* store the folded codepoint */ \
2519 TRIE_BITMAP_SET(trie, folder[(U8) uvc ]); \
2522 /* store first byte of utf8 representation of */ \
2523 /* variant codepoints */ \
2524 if (! UVCHR_IS_INVARIANT(uvc)) { \
2525 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc)); \
2530 #define MADE_JUMP_TRIE 2
2531 #define MADE_EXACT_TRIE 4
2534 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2535 regnode *first, regnode *last, regnode *tail,
2536 U32 word_count, U32 flags, U32 depth)
2538 /* first pass, loop through and scan words */
2539 reg_trie_data *trie;
2540 HV *widecharmap = NULL;
2541 AV *revcharmap = newAV();
2547 regnode *jumper = NULL;
2548 regnode *nextbranch = NULL;
2549 regnode *convert = NULL;
2550 U32 *prev_states; /* temp array mapping each state to previous one */
2551 /* we just use folder as a flag in utf8 */
2552 const U8 * folder = NULL;
2554 /* in the below add_data call we are storing either 'tu' or 'tuaa'
2555 * which stands for one trie structure, one hash, optionally followed
2558 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuaa"));
2559 AV *trie_words = NULL;
2560 /* along with revcharmap, this only used during construction but both are
2561 * useful during debugging so we store them in the struct when debugging.
2564 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2565 STRLEN trie_charcount=0;
2567 SV *re_trie_maxbuff;
2568 GET_RE_DEBUG_FLAGS_DECL;
2570 PERL_ARGS_ASSERT_MAKE_TRIE;
2572 PERL_UNUSED_ARG(depth);
2576 case EXACT: case EXACTL: break;
2580 case EXACTFLU8: folder = PL_fold_latin1; break;
2581 case EXACTF: folder = PL_fold; break;
2582 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2585 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2587 trie->startstate = 1;
2588 trie->wordcount = word_count;
2589 RExC_rxi->data->data[ data_slot ] = (void*)trie;
2590 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2591 if (flags == EXACT || flags == EXACTL)
2592 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2593 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2594 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2597 trie_words = newAV();
2600 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2601 assert(re_trie_maxbuff);
2602 if (!SvIOK(re_trie_maxbuff)) {
2603 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2605 DEBUG_TRIE_COMPILE_r({
2606 Perl_re_indentf( aTHX_
2607 "make_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2609 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
2610 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2613 /* Find the node we are going to overwrite */
2614 if ( first == startbranch && OP( last ) != BRANCH ) {
2615 /* whole branch chain */
2618 /* branch sub-chain */
2619 convert = NEXTOPER( first );
2622 /* -- First loop and Setup --
2624 We first traverse the branches and scan each word to determine if it
2625 contains widechars, and how many unique chars there are, this is
2626 important as we have to build a table with at least as many columns as we
2629 We use an array of integers to represent the character codes 0..255
2630 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2631 the native representation of the character value as the key and IV's for
2634 *TODO* If we keep track of how many times each character is used we can
2635 remap the columns so that the table compression later on is more
2636 efficient in terms of memory by ensuring the most common value is in the
2637 middle and the least common are on the outside. IMO this would be better
2638 than a most to least common mapping as theres a decent chance the most
2639 common letter will share a node with the least common, meaning the node
2640 will not be compressible. With a middle is most common approach the worst
2641 case is when we have the least common nodes twice.
2645 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2646 regnode *noper = NEXTOPER( cur );
2650 U32 wordlen = 0; /* required init */
2651 STRLEN minchars = 0;
2652 STRLEN maxchars = 0;
2653 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2656 if (OP(noper) == NOTHING) {
2657 /* skip past a NOTHING at the start of an alternation
2658 * eg, /(?:)a|(?:b)/ should be the same as /a|b/
2660 regnode *noper_next= regnext(noper);
2661 if (noper_next < tail)
2665 if ( noper < tail &&
2667 OP(noper) == flags ||
2670 OP(noper) == EXACTFU_SS
2674 uc= (U8*)STRING(noper);
2675 e= uc + STR_LEN(noper);
2682 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2683 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2684 regardless of encoding */
2685 if (OP( noper ) == EXACTFU_SS) {
2686 /* false positives are ok, so just set this */
2687 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2691 for ( ; uc < e ; uc += len ) { /* Look at each char in the current
2693 TRIE_CHARCOUNT(trie)++;
2696 /* TRIE_READ_CHAR returns the current character, or its fold if /i
2697 * is in effect. Under /i, this character can match itself, or
2698 * anything that folds to it. If not under /i, it can match just
2699 * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
2700 * all fold to k, and all are single characters. But some folds
2701 * expand to more than one character, so for example LATIN SMALL
2702 * LIGATURE FFI folds to the three character sequence 'ffi'. If
2703 * the string beginning at 'uc' is 'ffi', it could be matched by
2704 * three characters, or just by the one ligature character. (It
2705 * could also be matched by two characters: LATIN SMALL LIGATURE FF
2706 * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2707 * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2708 * match.) The trie needs to know the minimum and maximum number
2709 * of characters that could match so that it can use size alone to
2710 * quickly reject many match attempts. The max is simple: it is
2711 * the number of folded characters in this branch (since a fold is
2712 * never shorter than what folds to it. */
2716 /* And the min is equal to the max if not under /i (indicated by
2717 * 'folder' being NULL), or there are no multi-character folds. If
2718 * there is a multi-character fold, the min is incremented just
2719 * once, for the character that folds to the sequence. Each
2720 * character in the sequence needs to be added to the list below of
2721 * characters in the trie, but we count only the first towards the
2722 * min number of characters needed. This is done through the
2723 * variable 'foldlen', which is returned by the macros that look
2724 * for these sequences as the number of bytes the sequence
2725 * occupies. Each time through the loop, we decrement 'foldlen' by
2726 * how many bytes the current char occupies. Only when it reaches
2727 * 0 do we increment 'minchars' or look for another multi-character
2729 if (folder == NULL) {
2732 else if (foldlen > 0) {
2733 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2738 /* See if *uc is the beginning of a multi-character fold. If
2739 * so, we decrement the length remaining to look at, to account
2740 * for the current character this iteration. (We can use 'uc'
2741 * instead of the fold returned by TRIE_READ_CHAR because for
2742 * non-UTF, the latin1_safe macro is smart enough to account
2743 * for all the unfolded characters, and because for UTF, the
2744 * string will already have been folded earlier in the
2745 * compilation process */
2747 if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2748 foldlen -= UTF8SKIP(uc);
2751 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2756 /* The current character (and any potential folds) should be added
2757 * to the possible matching characters for this position in this
2761 U8 folded= folder[ (U8) uvc ];
2762 if ( !trie->charmap[ folded ] ) {
2763 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2764 TRIE_STORE_REVCHAR( folded );
2767 if ( !trie->charmap[ uvc ] ) {
2768 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2769 TRIE_STORE_REVCHAR( uvc );
2772 /* store the codepoint in the bitmap, and its folded
2774 TRIE_BITMAP_SET_FOLDED(trie, uvc, folder);
2775 set_bit = 0; /* We've done our bit :-) */
2779 /* XXX We could come up with the list of code points that fold
2780 * to this using PL_utf8_foldclosures, except not for
2781 * multi-char folds, as there may be multiple combinations
2782 * there that could work, which needs to wait until runtime to
2783 * resolve (The comment about LIGATURE FFI above is such an
2788 widecharmap = newHV();
2790 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2793 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%" UVXf, uvc );
2795 if ( !SvTRUE( *svpp ) ) {
2796 sv_setiv( *svpp, ++trie->uniquecharcount );
2797 TRIE_STORE_REVCHAR(uvc);
2800 } /* end loop through characters in this branch of the trie */
2802 /* We take the min and max for this branch and combine to find the min
2803 * and max for all branches processed so far */
2804 if( cur == first ) {
2805 trie->minlen = minchars;
2806 trie->maxlen = maxchars;
2807 } else if (minchars < trie->minlen) {
2808 trie->minlen = minchars;
2809 } else if (maxchars > trie->maxlen) {
2810 trie->maxlen = maxchars;
2812 } /* end first pass */
2813 DEBUG_TRIE_COMPILE_r(
2814 Perl_re_indentf( aTHX_
2815 "TRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2817 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2818 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2819 (int)trie->minlen, (int)trie->maxlen )
2823 We now know what we are dealing with in terms of unique chars and
2824 string sizes so we can calculate how much memory a naive
2825 representation using a flat table will take. If it's over a reasonable
2826 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2827 conservative but potentially much slower representation using an array
2830 At the end we convert both representations into the same compressed
2831 form that will be used in regexec.c for matching with. The latter
2832 is a form that cannot be used to construct with but has memory
2833 properties similar to the list form and access properties similar
2834 to the table form making it both suitable for fast searches and
2835 small enough that its feasable to store for the duration of a program.
2837 See the comment in the code where the compressed table is produced
2838 inplace from the flat tabe representation for an explanation of how
2839 the compression works.
2844 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2847 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2848 > SvIV(re_trie_maxbuff) )
2851 Second Pass -- Array Of Lists Representation
2853 Each state will be represented by a list of charid:state records
2854 (reg_trie_trans_le) the first such element holds the CUR and LEN
2855 points of the allocated array. (See defines above).
2857 We build the initial structure using the lists, and then convert
2858 it into the compressed table form which allows faster lookups
2859 (but cant be modified once converted).
2862 STRLEN transcount = 1;
2864 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using list compiler\n",
2867 trie->states = (reg_trie_state *)
2868 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2869 sizeof(reg_trie_state) );
2873 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2875 regnode *noper = NEXTOPER( cur );
2876 U32 state = 1; /* required init */
2877 U16 charid = 0; /* sanity init */
2878 U32 wordlen = 0; /* required init */
2880 if (OP(noper) == NOTHING) {
2881 regnode *noper_next= regnext(noper);
2882 if (noper_next < tail)
2886 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
2887 const U8 *uc= (U8*)STRING(noper);
2888 const U8 *e= uc + STR_LEN(noper);
2890 for ( ; uc < e ; uc += len ) {
2895 charid = trie->charmap[ uvc ];
2897 SV** const svpp = hv_fetch( widecharmap,
2904 charid=(U16)SvIV( *svpp );
2907 /* charid is now 0 if we dont know the char read, or
2908 * nonzero if we do */
2915 if ( !trie->states[ state ].trans.list ) {
2916 TRIE_LIST_NEW( state );
2919 check <= TRIE_LIST_USED( state );
2922 if ( TRIE_LIST_ITEM( state, check ).forid
2925 newstate = TRIE_LIST_ITEM( state, check ).newstate;
2930 newstate = next_alloc++;
2931 prev_states[newstate] = state;
2932 TRIE_LIST_PUSH( state, charid, newstate );
2937 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
2941 TRIE_HANDLE_WORD(state);
2943 } /* end second pass */
2945 /* next alloc is the NEXT state to be allocated */
2946 trie->statecount = next_alloc;
2947 trie->states = (reg_trie_state *)
2948 PerlMemShared_realloc( trie->states,
2950 * sizeof(reg_trie_state) );
2952 /* and now dump it out before we compress it */
2953 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
2954 revcharmap, next_alloc,
2958 trie->trans = (reg_trie_trans *)
2959 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
2966 for( state=1 ; state < next_alloc ; state ++ ) {
2970 DEBUG_TRIE_COMPILE_MORE_r(
2971 Perl_re_printf( aTHX_ "tp: %d zp: %d ",tp,zp)
2975 if (trie->states[state].trans.list) {
2976 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
2980 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2981 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
2982 if ( forid < minid ) {
2984 } else if ( forid > maxid ) {
2988 if ( transcount < tp + maxid - minid + 1) {
2990 trie->trans = (reg_trie_trans *)
2991 PerlMemShared_realloc( trie->trans,
2993 * sizeof(reg_trie_trans) );
2994 Zero( trie->trans + (transcount / 2),
2998 base = trie->uniquecharcount + tp - minid;
2999 if ( maxid == minid ) {
3001 for ( ; zp < tp ; zp++ ) {
3002 if ( ! trie->trans[ zp ].next ) {
3003 base = trie->uniquecharcount + zp - minid;
3004 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
3006 trie->trans[ zp ].check = state;
3012 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
3014 trie->trans[ tp ].check = state;
3019 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
3020 const U32 tid = base
3021 - trie->uniquecharcount
3022 + TRIE_LIST_ITEM( state, idx ).forid;
3023 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
3025 trie->trans[ tid ].check = state;
3027 tp += ( maxid - minid + 1 );
3029 Safefree(trie->states[ state ].trans.list);
3032 DEBUG_TRIE_COMPILE_MORE_r(
3033 Perl_re_printf( aTHX_ " base: %d\n",base);
3036 trie->states[ state ].trans.base=base;
3038 trie->lasttrans = tp + 1;
3042 Second Pass -- Flat Table Representation.
3044 we dont use the 0 slot of either trans[] or states[] so we add 1 to
3045 each. We know that we will need Charcount+1 trans at most to store
3046 the data (one row per char at worst case) So we preallocate both
3047 structures assuming worst case.
3049 We then construct the trie using only the .next slots of the entry
3052 We use the .check field of the first entry of the node temporarily
3053 to make compression both faster and easier by keeping track of how
3054 many non zero fields are in the node.
3056 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
3059 There are two terms at use here: state as a TRIE_NODEIDX() which is
3060 a number representing the first entry of the node, and state as a
3061 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
3062 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
3063 if there are 2 entrys per node. eg:
3071 The table is internally in the right hand, idx form. However as we
3072 also have to deal with the states array which is indexed by nodenum
3073 we have to use TRIE_NODENUM() to convert.
3076 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using table compiler\n",
3079 trie->trans = (reg_trie_trans *)
3080 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
3081 * trie->uniquecharcount + 1,
3082 sizeof(reg_trie_trans) );
3083 trie->states = (reg_trie_state *)
3084 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
3085 sizeof(reg_trie_state) );
3086 next_alloc = trie->uniquecharcount + 1;
3089 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
3091 regnode *noper = NEXTOPER( cur );
3093 U32 state = 1; /* required init */
3095 U16 charid = 0; /* sanity init */
3096 U32 accept_state = 0; /* sanity init */
3098 U32 wordlen = 0; /* required init */
3100 if (OP(noper) == NOTHING) {
3101 regnode *noper_next= regnext(noper);
3102 if (noper_next < tail)
3106 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
3107 const U8 *uc= (U8*)STRING(noper);
3108 const U8 *e= uc + STR_LEN(noper);
3110 for ( ; uc < e ; uc += len ) {
3115 charid = trie->charmap[ uvc ];
3117 SV* const * const svpp = hv_fetch( widecharmap,
3121 charid = svpp ? (U16)SvIV(*svpp) : 0;
3125 if ( !trie->trans[ state + charid ].next ) {
3126 trie->trans[ state + charid ].next = next_alloc;
3127 trie->trans[ state ].check++;
3128 prev_states[TRIE_NODENUM(next_alloc)]
3129 = TRIE_NODENUM(state);
3130 next_alloc += trie->uniquecharcount;
3132 state = trie->trans[ state + charid ].next;
3134 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3136 /* charid is now 0 if we dont know the char read, or
3137 * nonzero if we do */
3140 accept_state = TRIE_NODENUM( state );
3141 TRIE_HANDLE_WORD(accept_state);
3143 } /* end second pass */
3145 /* and now dump it out before we compress it */
3146 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
3148 next_alloc, depth+1));
3152 * Inplace compress the table.*
3154 For sparse data sets the table constructed by the trie algorithm will
3155 be mostly 0/FAIL transitions or to put it another way mostly empty.
3156 (Note that leaf nodes will not contain any transitions.)
3158 This algorithm compresses the tables by eliminating most such
3159 transitions, at the cost of a modest bit of extra work during lookup:
3161 - Each states[] entry contains a .base field which indicates the
3162 index in the state[] array wheres its transition data is stored.
3164 - If .base is 0 there are no valid transitions from that node.
3166 - If .base is nonzero then charid is added to it to find an entry in
3169 -If trans[states[state].base+charid].check!=state then the
3170 transition is taken to be a 0/Fail transition. Thus if there are fail
3171 transitions at the front of the node then the .base offset will point
3172 somewhere inside the previous nodes data (or maybe even into a node
3173 even earlier), but the .check field determines if the transition is
3177 The following process inplace converts the table to the compressed
3178 table: We first do not compress the root node 1,and mark all its
3179 .check pointers as 1 and set its .base pointer as 1 as well. This
3180 allows us to do a DFA construction from the compressed table later,
3181 and ensures that any .base pointers we calculate later are greater
3184 - We set 'pos' to indicate the first entry of the second node.
3186 - We then iterate over the columns of the node, finding the first and
3187 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
3188 and set the .check pointers accordingly, and advance pos
3189 appropriately and repreat for the next node. Note that when we copy
3190 the next pointers we have to convert them from the original
3191 NODEIDX form to NODENUM form as the former is not valid post
3194 - If a node has no transitions used we mark its base as 0 and do not
3195 advance the pos pointer.
3197 - If a node only has one transition we use a second pointer into the
3198 structure to fill in allocated fail transitions from other states.
3199 This pointer is independent of the main pointer and scans forward
3200 looking for null transitions that are allocated to a state. When it
3201 finds one it writes the single transition into the "hole". If the
3202 pointer doesnt find one the single transition is appended as normal.
3204 - Once compressed we can Renew/realloc the structures to release the
3207 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
3208 specifically Fig 3.47 and the associated pseudocode.
3212 const U32 laststate = TRIE_NODENUM( next_alloc );
3215 trie->statecount = laststate;
3217 for ( state = 1 ; state < laststate ; state++ ) {
3219 const U32 stateidx = TRIE_NODEIDX( state );
3220 const U32 o_used = trie->trans[ stateidx ].check;
3221 U32 used = trie->trans[ stateidx ].check;
3222 trie->trans[ stateidx ].check = 0;
3225 used && charid < trie->uniquecharcount;
3228 if ( flag || trie->trans[ stateidx + charid ].next ) {
3229 if ( trie->trans[ stateidx + charid ].next ) {
3231 for ( ; zp < pos ; zp++ ) {
3232 if ( ! trie->trans[ zp ].next ) {
3236 trie->states[ state ].trans.base
3238 + trie->uniquecharcount
3240 trie->trans[ zp ].next
3241 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
3243 trie->trans[ zp ].check = state;
3244 if ( ++zp > pos ) pos = zp;
3251 trie->states[ state ].trans.base
3252 = pos + trie->uniquecharcount - charid ;
3254 trie->trans[ pos ].next
3255 = SAFE_TRIE_NODENUM(
3256 trie->trans[ stateidx + charid ].next );
3257 trie->trans[ pos ].check = state;
3262 trie->lasttrans = pos + 1;
3263 trie->states = (reg_trie_state *)
3264 PerlMemShared_realloc( trie->states, laststate
3265 * sizeof(reg_trie_state) );
3266 DEBUG_TRIE_COMPILE_MORE_r(
3267 Perl_re_indentf( aTHX_ "Alloc: %d Orig: %" IVdf " elements, Final:%" IVdf ". Savings of %%%5.2f\n",
3269 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
3273 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
3276 } /* end table compress */
3278 DEBUG_TRIE_COMPILE_MORE_r(
3279 Perl_re_indentf( aTHX_ "Statecount:%" UVxf " Lasttrans:%" UVxf "\n",
3281 (UV)trie->statecount,
3282 (UV)trie->lasttrans)
3284 /* resize the trans array to remove unused space */
3285 trie->trans = (reg_trie_trans *)
3286 PerlMemShared_realloc( trie->trans, trie->lasttrans
3287 * sizeof(reg_trie_trans) );
3289 { /* Modify the program and insert the new TRIE node */
3290 U8 nodetype =(U8)(flags & 0xFF);
3294 regnode *optimize = NULL;
3295 #ifdef RE_TRACK_PATTERN_OFFSETS
3298 U32 mjd_nodelen = 0;
3299 #endif /* RE_TRACK_PATTERN_OFFSETS */
3300 #endif /* DEBUGGING */
3302 This means we convert either the first branch or the first Exact,
3303 depending on whether the thing following (in 'last') is a branch
3304 or not and whther first is the startbranch (ie is it a sub part of
3305 the alternation or is it the whole thing.)
3306 Assuming its a sub part we convert the EXACT otherwise we convert
3307 the whole branch sequence, including the first.
3309 /* Find the node we are going to overwrite */
3310 if ( first != startbranch || OP( last ) == BRANCH ) {
3311 /* branch sub-chain */
3312 NEXT_OFF( first ) = (U16)(last - first);
3313 #ifdef RE_TRACK_PATTERN_OFFSETS
3315 mjd_offset= Node_Offset((convert));
3316 mjd_nodelen= Node_Length((convert));
3319 /* whole branch chain */
3321 #ifdef RE_TRACK_PATTERN_OFFSETS
3324 const regnode *nop = NEXTOPER( convert );
3325 mjd_offset= Node_Offset((nop));
3326 mjd_nodelen= Node_Length((nop));
3330 Perl_re_indentf( aTHX_ "MJD offset:%" UVuf " MJD length:%" UVuf "\n",
3332 (UV)mjd_offset, (UV)mjd_nodelen)
3335 /* But first we check to see if there is a common prefix we can
3336 split out as an EXACT and put in front of the TRIE node. */
3337 trie->startstate= 1;
3338 if ( trie->bitmap && !widecharmap && !trie->jump ) {
3339 /* we want to find the first state that has more than
3340 * one transition, if that state is not the first state
3341 * then we have a common prefix which we can remove.
3344 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
3346 I32 first_ofs = -1; /* keeps track of the ofs of the first
3347 transition, -1 means none */
3349 const U32 base = trie->states[ state ].trans.base;
3351 /* does this state terminate an alternation? */
3352 if ( trie->states[state].wordnum )
3355 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
3356 if ( ( base + ofs >= trie->uniquecharcount ) &&
3357 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
3358 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
3360 if ( ++count > 1 ) {
3361 /* we have more than one transition */
3364 /* if this is the first state there is no common prefix
3365 * to extract, so we can exit */
3366 if ( state == 1 ) break;
3367 tmp = av_fetch( revcharmap, ofs, 0);
3368 ch = (U8*)SvPV_nolen_const( *tmp );
3370 /* if we are on count 2 then we need to initialize the
3371 * bitmap, and store the previous char if there was one
3374 /* clear the bitmap */
3375 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
3377 Perl_re_indentf( aTHX_ "New Start State=%" UVuf " Class: [",
3380 if (first_ofs >= 0) {
3381 SV ** const tmp = av_fetch( revcharmap, first_ofs, 0);
3382 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
3384 TRIE_BITMAP_SET_FOLDED(trie,*ch,folder);
3386 Perl_re_printf( aTHX_ "%s", (char*)ch)
3390 /* store the current firstchar in the bitmap */
3391 TRIE_BITMAP_SET_FOLDED(trie,*ch,folder);
3392 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "%s", ch));
3398 /* This state has only one transition, its transition is part
3399 * of a common prefix - we need to concatenate the char it
3400 * represents to what we have so far. */
3401 SV **tmp = av_fetch( revcharmap, first_ofs, 0);
3403 char *ch = SvPV( *tmp, len );
3405 SV *sv=sv_newmortal();
3406 Perl_re_indentf( aTHX_ "Prefix State: %" UVuf " Ofs:%" UVuf " Char='%s'\n",
3408 (UV)state, (UV)first_ofs,
3409 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
3410 PL_colors[0], PL_colors[1],
3411 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
3412 PERL_PV_ESCAPE_FIRSTCHAR
3417 OP( convert ) = nodetype;
3418 str=STRING(convert);
3421 STR_LEN(convert) += len;
3427 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "]\n"));
3432 trie->prefixlen = (state-1);
3434 regnode *n = convert+NODE_SZ_STR(convert);
3435 NEXT_OFF(convert) = NODE_SZ_STR(convert);
3436 trie->startstate = state;
3437 trie->minlen -= (state - 1);
3438 trie->maxlen -= (state - 1);
3440 /* At least the UNICOS C compiler choked on this
3441 * being argument to DEBUG_r(), so let's just have
3444 #ifdef PERL_EXT_RE_BUILD
3450 regnode *fix = convert;
3451 U32 word = trie->wordcount;
3453 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3454 while( ++fix < n ) {
3455 Set_Node_Offset_Length(fix, 0, 0);
3458 SV ** const tmp = av_fetch( trie_words, word, 0 );
3460 if ( STR_LEN(convert) <= SvCUR(*tmp) )
3461 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3463 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3471 NEXT_OFF(convert) = (U16)(tail - convert);
3472 DEBUG_r(optimize= n);
3478 if ( trie->maxlen ) {
3479 NEXT_OFF( convert ) = (U16)(tail - convert);
3480 ARG_SET( convert, data_slot );
3481 /* Store the offset to the first unabsorbed branch in
3482 jump[0], which is otherwise unused by the jump logic.
3483 We use this when dumping a trie and during optimisation. */
3485 trie->jump[0] = (U16)(nextbranch - convert);
3487 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3488 * and there is a bitmap
3489 * and the first "jump target" node we found leaves enough room
3490 * then convert the TRIE node into a TRIEC node, with the bitmap
3491 * embedded inline in the opcode - this is hypothetically faster.
3493 if ( !trie->states[trie->startstate].wordnum
3495 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3497 OP( convert ) = TRIEC;
3498 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3499 PerlMemShared_free(trie->bitmap);
3502 OP( convert ) = TRIE;
3504 /* store the type in the flags */
3505 convert->flags = nodetype;
3509 + regarglen[ OP( convert ) ];
3511 /* XXX We really should free up the resource in trie now,
3512 as we won't use them - (which resources?) dmq */
3514 /* needed for dumping*/
3515 DEBUG_r(if (optimize) {
3516 regnode *opt = convert;
3518 while ( ++opt < optimize) {
3519 Set_Node_Offset_Length(opt,0,0);
3522 Try to clean up some of the debris left after the
3525 while( optimize < jumper ) {
3526 mjd_nodelen += Node_Length((optimize));
3527 OP( optimize ) = OPTIMIZED;
3528 Set_Node_Offset_Length(optimize,0,0);
3531 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
3533 } /* end node insert */
3535 /* Finish populating the prev field of the wordinfo array. Walk back
3536 * from each accept state until we find another accept state, and if
3537 * so, point the first word's .prev field at the second word. If the
3538 * second already has a .prev field set, stop now. This will be the
3539 * case either if we've already processed that word's accept state,
3540 * or that state had multiple words, and the overspill words were
3541 * already linked up earlier.
3548 for (word=1; word <= trie->wordcount; word++) {
3550 if (trie->wordinfo[word].prev)
3552 state = trie->wordinfo[word].accept;
3554 state = prev_states[state];
3557 prev = trie->states[state].wordnum;
3561 trie->wordinfo[word].prev = prev;
3563 Safefree(prev_states);
3567 /* and now dump out the compressed format */
3568 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3570 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3572 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3573 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3575 SvREFCNT_dec_NN(revcharmap);
3579 : trie->startstate>1
3585 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3587 /* The Trie is constructed and compressed now so we can build a fail array if
3590 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3592 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3596 We find the fail state for each state in the trie, this state is the longest
3597 proper suffix of the current state's 'word' that is also a proper prefix of
3598 another word in our trie. State 1 represents the word '' and is thus the
3599 default fail state. This allows the DFA not to have to restart after its
3600 tried and failed a word at a given point, it simply continues as though it
3601 had been matching the other word in the first place.
3603 'abcdgu'=~/abcdefg|cdgu/
3604 When we get to 'd' we are still matching the first word, we would encounter
3605 'g' which would fail, which would bring us to the state representing 'd' in
3606 the second word where we would try 'g' and succeed, proceeding to match
3609 /* add a fail transition */
3610 const U32 trie_offset = ARG(source);
3611 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3613 const U32 ucharcount = trie->uniquecharcount;
3614 const U32 numstates = trie->statecount;
3615 const U32 ubound = trie->lasttrans + ucharcount;
3619 U32 base = trie->states[ 1 ].trans.base;
3622 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3624 GET_RE_DEBUG_FLAGS_DECL;
3626 PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3627 PERL_UNUSED_CONTEXT;
3629 PERL_UNUSED_ARG(depth);
3632 if ( OP(source) == TRIE ) {
3633 struct regnode_1 *op = (struct regnode_1 *)
3634 PerlMemShared_calloc(1, sizeof(struct regnode_1));
3635 StructCopy(source,op,struct regnode_1);
3636 stclass = (regnode *)op;
3638 struct regnode_charclass *op = (struct regnode_charclass *)
3639 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3640 StructCopy(source,op,struct regnode_charclass);
3641 stclass = (regnode *)op;
3643 OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3645 ARG_SET( stclass, data_slot );
3646 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3647 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3648 aho->trie=trie_offset;
3649 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3650 Copy( trie->states, aho->states, numstates, reg_trie_state );
3651 Newx( q, numstates, U32);
3652 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3655 /* initialize fail[0..1] to be 1 so that we always have
3656 a valid final fail state */
3657 fail[ 0 ] = fail[ 1 ] = 1;
3659 for ( charid = 0; charid < ucharcount ; charid++ ) {
3660 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3662 q[ q_write ] = newstate;
3663 /* set to point at the root */
3664 fail[ q[ q_write++ ] ]=1;
3667 while ( q_read < q_write) {
3668 const U32 cur = q[ q_read++ % numstates ];
3669 base = trie->states[ cur ].trans.base;
3671 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3672 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3674 U32 fail_state = cur;
3677 fail_state = fail[ fail_state ];
3678 fail_base = aho->states[ fail_state ].trans.base;
3679 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3681 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3682 fail[ ch_state ] = fail_state;
3683 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3685 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3687 q[ q_write++ % numstates] = ch_state;
3691 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3692 when we fail in state 1, this allows us to use the
3693 charclass scan to find a valid start char. This is based on the principle
3694 that theres a good chance the string being searched contains lots of stuff
3695 that cant be a start char.
3697 fail[ 0 ] = fail[ 1 ] = 0;
3698 DEBUG_TRIE_COMPILE_r({
3699 Perl_re_indentf( aTHX_ "Stclass Failtable (%" UVuf " states): 0",
3700 depth, (UV)numstates
3702 for( q_read=1; q_read<numstates; q_read++ ) {
3703 Perl_re_printf( aTHX_ ", %" UVuf, (UV)fail[q_read]);
3705 Perl_re_printf( aTHX_ "\n");
3708 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3713 /* The below joins as many adjacent EXACTish nodes as possible into a single
3714 * one. The regop may be changed if the node(s) contain certain sequences that
3715 * require special handling. The joining is only done if:
3716 * 1) there is room in the current conglomerated node to entirely contain the
3718 * 2) they are the exact same node type
3720 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3721 * these get optimized out
3723 * XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
3724 * as possible, even if that means splitting an existing node so that its first
3725 * part is moved to the preceeding node. This would maximise the efficiency of
3726 * memEQ during matching.
3728 * If a node is to match under /i (folded), the number of characters it matches
3729 * can be different than its character length if it contains a multi-character
3730 * fold. *min_subtract is set to the total delta number of characters of the
3733 * And *unfolded_multi_char is set to indicate whether or not the node contains
3734 * an unfolded multi-char fold. This happens when it won't be known until
3735 * runtime whether the fold is valid or not; namely
3736 * 1) for EXACTF nodes that contain LATIN SMALL LETTER SHARP S, as only if the
3737 * target string being matched against turns out to be UTF-8 is that fold
3739 * 2) for EXACTFL nodes whose folding rules depend on the locale in force at
3741 * (Multi-char folds whose components are all above the Latin1 range are not
3742 * run-time locale dependent, and have already been folded by the time this
3743 * function is called.)
3745 * This is as good a place as any to discuss the design of handling these
3746 * multi-character fold sequences. It's been wrong in Perl for a very long
3747 * time. There are three code points in Unicode whose multi-character folds
3748 * were long ago discovered to mess things up. The previous designs for
3749 * dealing with these involved assigning a special node for them. This
3750 * approach doesn't always work, as evidenced by this example:
3751 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3752 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3753 * would match just the \xDF, it won't be able to handle the case where a
3754 * successful match would have to cross the node's boundary. The new approach
3755 * that hopefully generally solves the problem generates an EXACTFU_SS node
3756 * that is "sss" in this case.
3758 * It turns out that there are problems with all multi-character folds, and not
3759 * just these three. Now the code is general, for all such cases. The
3760 * approach taken is:
3761 * 1) This routine examines each EXACTFish node that could contain multi-
3762 * character folded sequences. Since a single character can fold into
3763 * such a sequence, the minimum match length for this node is less than
3764 * the number of characters in the node. This routine returns in
3765 * *min_subtract how many characters to subtract from the the actual
3766 * length of the string to get a real minimum match length; it is 0 if
3767 * there are no multi-char foldeds. This delta is used by the caller to
3768 * adjust the min length of the match, and the delta between min and max,
3769 * so that the optimizer doesn't reject these possibilities based on size
3771 * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
3772 * is used for an EXACTFU node that contains at least one "ss" sequence in
3773 * it. For non-UTF-8 patterns and strings, this is the only case where
3774 * there is a possible fold length change. That means that a regular
3775 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
3776 * with length changes, and so can be processed faster. regexec.c takes
3777 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
3778 * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
3779 * known until runtime). This saves effort in regex matching. However,
3780 * the pre-folding isn't done for non-UTF8 patterns because the fold of
3781 * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
3782 * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
3783 * again, EXACTFL) nodes fold to isn't known until runtime. The fold
3784 * possibilities for the non-UTF8 patterns are quite simple, except for
3785 * the sharp s. All the ones that don't involve a UTF-8 target string are
3786 * members of a fold-pair, and arrays are set up for all of them so that
3787 * the other member of the pair can be found quickly. Code elsewhere in
3788 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
3789 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
3790 * described in the next item.
3791 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3792 * validity of the fold won't be known until runtime, and so must remain
3793 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFAA
3794 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3795 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3796 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3797 * The reason this is a problem is that the optimizer part of regexec.c
3798 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3799 * that a character in the pattern corresponds to at most a single
3800 * character in the target string. (And I do mean character, and not byte
3801 * here, unlike other parts of the documentation that have never been
3802 * updated to account for multibyte Unicode.) sharp s in EXACTF and
3803 * EXACTFL nodes can match the two character string 'ss'; in EXACTFAA
3804 * nodes it can match "\x{17F}\x{17F}". These, along with other ones in
3805 * EXACTFL nodes, violate the assumption, and they are the only instances
3806 * where it is violated. I'm reluctant to try to change the assumption,
3807 * as the code involved is impenetrable to me (khw), so instead the code
3808 * here punts. This routine examines EXACTFL nodes, and (when the pattern
3809 * isn't UTF-8) EXACTF and EXACTFAA for such unfolded folds, and returns a
3810 * boolean indicating whether or not the node contains such a fold. When
3811 * it is true, the caller sets a flag that later causes the optimizer in
3812 * this file to not set values for the floating and fixed string lengths,
3813 * and thus avoids the optimizer code in regexec.c that makes the invalid
3814 * assumption. Thus, there is no optimization based on string lengths for
3815 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3816 * EXACTF and EXACTFAA nodes that contain the sharp s. (The reason the
3817 * assumption is wrong only in these cases is that all other non-UTF-8
3818 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
3819 * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
3820 * EXACTF nodes because we don't know at compile time if it actually
3821 * matches 'ss' or not. For EXACTF nodes it will match iff the target
3822 * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
3823 * always matches; and EXACTFAA where it never does. In an EXACTFAA node
3824 * in a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
3825 * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
3826 * string would require the pattern to be forced into UTF-8, the overhead
3827 * of which we want to avoid. Similarly the unfolded multi-char folds in
3828 * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
3831 * Similarly, the code that generates tries doesn't currently handle
3832 * not-already-folded multi-char folds, and it looks like a pain to change
3833 * that. Therefore, trie generation of EXACTFAA nodes with the sharp s
3834 * doesn't work. Instead, such an EXACTFAA is turned into a new regnode,
3835 * EXACTFAA_NO_TRIE, which the trie code knows not to handle. Most people
3836 * using /iaa matching will be doing so almost entirely with ASCII
3837 * strings, so this should rarely be encountered in practice */
3839 #define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
3840 if (PL_regkind[OP(scan)] == EXACT) \
3841 join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
3844 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
3845 UV *min_subtract, bool *unfolded_multi_char,
3846 U32 flags,regnode *val, U32 depth)
3848 /* Merge several consecutive EXACTish nodes into one. */
3849 regnode *n = regnext(scan);
3851 regnode *next = scan + NODE_SZ_STR(scan);
3855 regnode *stop = scan;
3856 GET_RE_DEBUG_FLAGS_DECL;
3858 PERL_UNUSED_ARG(depth);
3861 PERL_ARGS_ASSERT_JOIN_EXACT;
3862 #ifndef EXPERIMENTAL_INPLACESCAN
3863 PERL_UNUSED_ARG(flags);
3864 PERL_UNUSED_ARG(val);
3866 DEBUG_PEEP("join", scan, depth, 0);
3868 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
3869 * EXACT ones that are mergeable to the current one. */
3871 && (PL_regkind[OP(n)] == NOTHING
3872 || (stringok && OP(n) == OP(scan)))
3874 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
3877 if (OP(n) == TAIL || n > next)
3879 if (PL_regkind[OP(n)] == NOTHING) {
3880 DEBUG_PEEP("skip:", n, depth, 0);
3881 NEXT_OFF(scan) += NEXT_OFF(n);
3882 next = n + NODE_STEP_REGNODE;
3889 else if (stringok) {
3890 const unsigned int oldl = STR_LEN(scan);
3891 regnode * const nnext = regnext(n);
3893 /* XXX I (khw) kind of doubt that this works on platforms (should
3894 * Perl ever run on one) where U8_MAX is above 255 because of lots
3895 * of other assumptions */
3896 /* Don't join if the sum can't fit into a single node */
3897 if (oldl + STR_LEN(n) > U8_MAX)
3900 DEBUG_PEEP("merg", n, depth, 0);
3903 NEXT_OFF(scan) += NEXT_OFF(n);
3904 STR_LEN(scan) += STR_LEN(n);
3905 next = n + NODE_SZ_STR(n);
3906 /* Now we can overwrite *n : */
3907 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
3915 #ifdef EXPERIMENTAL_INPLACESCAN
3916 if (flags && !NEXT_OFF(n)) {
3917 DEBUG_PEEP("atch", val, depth, 0);
3918 if (reg_off_by_arg[OP(n)]) {
3919 ARG_SET(n, val - n);
3922 NEXT_OFF(n) = val - n;
3930 *unfolded_multi_char = FALSE;
3932 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
3933 * can now analyze for sequences of problematic code points. (Prior to
3934 * this final joining, sequences could have been split over boundaries, and
3935 * hence missed). The sequences only happen in folding, hence for any
3936 * non-EXACT EXACTish node */
3937 if (OP(scan) != EXACT && OP(scan) != EXACTL) {
3938 U8* s0 = (U8*) STRING(scan);
3940 U8* s_end = s0 + STR_LEN(scan);
3942 int total_count_delta = 0; /* Total delta number of characters that
3943 multi-char folds expand to */
3945 /* One pass is made over the node's string looking for all the
3946 * possibilities. To avoid some tests in the loop, there are two main
3947 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
3952 if (OP(scan) == EXACTFL) {
3955 /* An EXACTFL node would already have been changed to another
3956 * node type unless there is at least one character in it that
3957 * is problematic; likely a character whose fold definition
3958 * won't be known until runtime, and so has yet to be folded.
3959 * For all but the UTF-8 locale, folds are 1-1 in length, but
3960 * to handle the UTF-8 case, we need to create a temporary
3961 * folded copy using UTF-8 locale rules in order to analyze it.
3962 * This is because our macros that look to see if a sequence is
3963 * a multi-char fold assume everything is folded (otherwise the
3964 * tests in those macros would be too complicated and slow).
3965 * Note that here, the non-problematic folds will have already
3966 * been done, so we can just copy such characters. We actually
3967 * don't completely fold the EXACTFL string. We skip the
3968 * unfolded multi-char folds, as that would just create work
3969 * below to figure out the size they already are */
3971 Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
3974 STRLEN s_len = UTF8SKIP(s);
3975 if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
3976 Copy(s, d, s_len, U8);
3979 else if (is_FOLDS_TO_MULTI_utf8(s)) {
3980 *unfolded_multi_char = TRUE;
3981 Copy(s, d, s_len, U8);
3984 else if (isASCII(*s)) {
3985 *(d++) = toFOLD(*s);
3989 _toFOLD_utf8_flags(s, s_end, d, &len, FOLD_FLAGS_FULL);
3995 /* Point the remainder of the routine to look at our temporary
3999 } /* End of creating folded copy of EXACTFL string */
4001 /* Examine the string for a multi-character fold sequence. UTF-8
4002 * patterns have all characters pre-folded by the time this code is
4004 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
4005 length sequence we are looking for is 2 */
4007 int count = 0; /* How many characters in a multi-char fold */
4008 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
4009 if (! len) { /* Not a multi-char fold: get next char */
4014 /* Nodes with 'ss' require special handling, except for
4015 * EXACTFAA-ish for which there is no multi-char fold to this */
4016 if (len == 2 && *s == 's' && *(s+1) == 's'
4017 && OP(scan) != EXACTFAA
4018 && OP(scan) != EXACTFAA_NO_TRIE)
4021 if (OP(scan) != EXACTFL) {
4022 OP(scan) = EXACTFU_SS;