3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * 'It all comes from here, the stench and the peril.' --Frodo
14 * [p.719 of _The Lord of the Rings_, IV/ix: "Shelob's Lair"]
18 * This file is the lexer for Perl. It's closely linked to the
21 * The main routine is yylex(), which returns the next token.
25 =head1 Lexer interface
26 This is the lower layer of the Perl parser, managing characters and tokens.
28 =for apidoc AmU|yy_parser *|PL_parser
30 Pointer to a structure encapsulating the state of the parsing operation
31 currently in progress. The pointer can be locally changed to perform
32 a nested parse without interfering with the state of an outer parse.
33 Individual members of C<PL_parser> have their own documentation.
39 #define PERL_IN_TOKE_C
41 #include "dquote_inline.h"
43 #define new_constant(a,b,c,d,e,f,g) \
44 S_new_constant(aTHX_ a,b,STR_WITH_LEN(c),d,e,f, g)
46 #define pl_yylval (PL_parser->yylval)
48 /* XXX temporary backwards compatibility */
49 #define PL_lex_brackets (PL_parser->lex_brackets)
50 #define PL_lex_allbrackets (PL_parser->lex_allbrackets)
51 #define PL_lex_fakeeof (PL_parser->lex_fakeeof)
52 #define PL_lex_brackstack (PL_parser->lex_brackstack)
53 #define PL_lex_casemods (PL_parser->lex_casemods)
54 #define PL_lex_casestack (PL_parser->lex_casestack)
55 #define PL_lex_dojoin (PL_parser->lex_dojoin)
56 #define PL_lex_formbrack (PL_parser->lex_formbrack)
57 #define PL_lex_inpat (PL_parser->lex_inpat)
58 #define PL_lex_inwhat (PL_parser->lex_inwhat)
59 #define PL_lex_op (PL_parser->lex_op)
60 #define PL_lex_repl (PL_parser->lex_repl)
61 #define PL_lex_starts (PL_parser->lex_starts)
62 #define PL_lex_stuff (PL_parser->lex_stuff)
63 #define PL_multi_start (PL_parser->multi_start)
64 #define PL_multi_open (PL_parser->multi_open)
65 #define PL_multi_close (PL_parser->multi_close)
66 #define PL_preambled (PL_parser->preambled)
67 #define PL_linestr (PL_parser->linestr)
68 #define PL_expect (PL_parser->expect)
69 #define PL_copline (PL_parser->copline)
70 #define PL_bufptr (PL_parser->bufptr)
71 #define PL_oldbufptr (PL_parser->oldbufptr)
72 #define PL_oldoldbufptr (PL_parser->oldoldbufptr)
73 #define PL_linestart (PL_parser->linestart)
74 #define PL_bufend (PL_parser->bufend)
75 #define PL_last_uni (PL_parser->last_uni)
76 #define PL_last_lop (PL_parser->last_lop)
77 #define PL_last_lop_op (PL_parser->last_lop_op)
78 #define PL_lex_state (PL_parser->lex_state)
79 #define PL_rsfp (PL_parser->rsfp)
80 #define PL_rsfp_filters (PL_parser->rsfp_filters)
81 #define PL_in_my (PL_parser->in_my)
82 #define PL_in_my_stash (PL_parser->in_my_stash)
83 #define PL_tokenbuf (PL_parser->tokenbuf)
84 #define PL_multi_end (PL_parser->multi_end)
85 #define PL_error_count (PL_parser->error_count)
87 # define PL_nexttoke (PL_parser->nexttoke)
88 # define PL_nexttype (PL_parser->nexttype)
89 # define PL_nextval (PL_parser->nextval)
92 #define SvEVALED(sv) \
93 (SvTYPE(sv) >= SVt_PVNV \
94 && ((XPVIV*)SvANY(sv))->xiv_u.xivu_eval_seen)
96 static const char* const ident_too_long = "Identifier too long";
98 # define NEXTVAL_NEXTTOKE PL_nextval[PL_nexttoke]
100 #define XENUMMASK 0x3f
101 #define XFAKEEOF 0x40
102 #define XFAKEBRACK 0x80
104 #ifdef USE_UTF8_SCRIPTS
105 # define UTF cBOOL(!IN_BYTES)
107 # define UTF cBOOL((PL_linestr && DO_UTF8(PL_linestr)) || ( !(PL_parser->lex_flags & LEX_IGNORE_UTF8_HINTS) && (PL_hints & HINT_UTF8)))
110 /* The maximum number of characters preceding the unrecognized one to display */
111 #define UNRECOGNIZED_PRECEDE_COUNT 10
113 /* In variables named $^X, these are the legal values for X.
114 * 1999-02-27 mjd-perl-patch@plover.com */
115 #define isCONTROLVAR(x) (isUPPER(x) || strchr("[\\]^_?", (x)))
117 #define SPACE_OR_TAB(c) isBLANK_A(c)
119 #define HEXFP_PEEK(s) \
121 (isXDIGIT(s[1]) || isALPHA_FOLD_EQ(s[1], 'p'))) || \
122 isALPHA_FOLD_EQ(s[0], 'p'))
124 /* LEX_* are values for PL_lex_state, the state of the lexer.
125 * They are arranged oddly so that the guard on the switch statement
126 * can get by with a single comparison (if the compiler is smart enough).
128 * These values refer to the various states within a sublex parse,
129 * i.e. within a double quotish string
132 /* #define LEX_NOTPARSING 11 is done in perl.h. */
134 #define LEX_NORMAL 10 /* normal code (ie not within "...") */
135 #define LEX_INTERPNORMAL 9 /* code within a string, eg "$foo[$x+1]" */
136 #define LEX_INTERPCASEMOD 8 /* expecting a \U, \Q or \E etc */
137 #define LEX_INTERPPUSH 7 /* starting a new sublex parse level */
138 #define LEX_INTERPSTART 6 /* expecting the start of a $var */
140 /* at end of code, eg "$x" followed by: */
141 #define LEX_INTERPEND 5 /* ... eg not one of [, { or -> */
142 #define LEX_INTERPENDMAYBE 4 /* ... eg one of [, { or -> */
144 #define LEX_INTERPCONCAT 3 /* expecting anything, eg at start of
145 string or after \E, $foo, etc */
146 #define LEX_INTERPCONST 2 /* NOT USED */
147 #define LEX_FORMLINE 1 /* expecting a format line */
151 static const char* const lex_state_names[] = {
166 #include "keywords.h"
168 /* CLINE is a macro that ensures PL_copline has a sane value */
170 #define CLINE (PL_copline = (CopLINE(PL_curcop) < PL_copline ? CopLINE(PL_curcop) : PL_copline))
173 * Convenience functions to return different tokens and prime the
174 * lexer for the next token. They all take an argument.
176 * TOKEN : generic token (used for '(', DOLSHARP, etc)
177 * OPERATOR : generic operator
178 * AOPERATOR : assignment operator
179 * PREBLOCK : beginning the block after an if, while, foreach, ...
180 * PRETERMBLOCK : beginning a non-code-defining {} block (eg, hash ref)
181 * PREREF : *EXPR where EXPR is not a simple identifier
182 * TERM : expression term
183 * POSTDEREF : postfix dereference (->$* ->@[...] etc.)
184 * LOOPX : loop exiting command (goto, last, dump, etc)
185 * FTST : file test operator
186 * FUN0 : zero-argument function
187 * FUN0OP : zero-argument function, with its op created in this file
188 * FUN1 : not used, except for not, which isn't a UNIOP
189 * BOop : bitwise or or xor
191 * BCop : bitwise complement
192 * SHop : shift operator
193 * PWop : power operator
194 * PMop : pattern-matching operator
195 * Aop : addition-level operator
196 * AopNOASSIGN : addition-level operator that is never part of .=
197 * Mop : multiplication-level operator
198 * Eop : equality-testing operator
199 * Rop : relational operator <= != gt
201 * Also see LOP and lop() below.
204 #ifdef DEBUGGING /* Serve -DT. */
205 # define REPORT(retval) tokereport((I32)retval, &pl_yylval)
207 # define REPORT(retval) (retval)
210 #define TOKEN(retval) return ( PL_bufptr = s, REPORT(retval))
211 #define OPERATOR(retval) return (PL_expect = XTERM, PL_bufptr = s, REPORT(retval))
212 #define AOPERATOR(retval) return ao((PL_expect = XTERM, PL_bufptr = s, retval))
213 #define PREBLOCK(retval) return (PL_expect = XBLOCK,PL_bufptr = s, REPORT(retval))
214 #define PRETERMBLOCK(retval) return (PL_expect = XTERMBLOCK,PL_bufptr = s, REPORT(retval))
215 #define PREREF(retval) return (PL_expect = XREF,PL_bufptr = s, REPORT(retval))
216 #define TERM(retval) return (CLINE, PL_expect = XOPERATOR, PL_bufptr = s, REPORT(retval))
217 #define POSTDEREF(f) return (PL_bufptr = s, S_postderef(aTHX_ REPORT(f),s[1]))
218 #define LOOPX(f) return (PL_bufptr = force_word(s,BAREWORD,TRUE,FALSE), \
220 PL_expect = PL_nexttoke ? XOPERATOR : XTERM, \
222 #define FTST(f) return (pl_yylval.ival=f, PL_expect=XTERMORDORDOR, PL_bufptr=s, REPORT((int)UNIOP))
223 #define FUN0(f) return (pl_yylval.ival=f, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC0))
224 #define FUN0OP(f) return (pl_yylval.opval=f, CLINE, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC0OP))
225 #define FUN1(f) return (pl_yylval.ival=f, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC1))
226 #define BOop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)BITOROP))
227 #define BAop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)BITANDOP))
228 #define BCop(f) return pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr = s, \
230 #define SHop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)SHIFTOP))
231 #define PWop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)POWOP))
232 #define PMop(f) return(pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)MATCHOP))
233 #define Aop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)ADDOP))
234 #define AopNOASSIGN(f) return (pl_yylval.ival=f, PL_bufptr=s, REPORT((int)ADDOP))
235 #define Mop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)MULOP))
236 #define Eop(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)EQOP))
237 #define Rop(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)RELOP))
239 /* This bit of chicanery makes a unary function followed by
240 * a parenthesis into a function with one argument, highest precedence.
241 * The UNIDOR macro is for unary functions that can be followed by the //
242 * operator (such as C<shift // 0>).
244 #define UNI3(f,x,have_x) { \
245 pl_yylval.ival = f; \
246 if (have_x) PL_expect = x; \
248 PL_last_uni = PL_oldbufptr; \
249 PL_last_lop_op = (f) < 0 ? -(f) : (f); \
251 return REPORT( (int)FUNC1 ); \
253 return REPORT( *s=='(' ? (int)FUNC1 : (int)UNIOP ); \
255 #define UNI(f) UNI3(f,XTERM,1)
256 #define UNIDOR(f) UNI3(f,XTERMORDORDOR,1)
257 #define UNIPROTO(f,optional) { \
258 if (optional) PL_last_uni = PL_oldbufptr; \
262 #define UNIBRACK(f) UNI3(f,0,0)
264 /* grandfather return to old style */
267 if (!PL_lex_allbrackets && PL_lex_fakeeof > LEX_FAKEEOF_LOWLOGIC) \
268 PL_lex_fakeeof = LEX_FAKEEOF_LOWLOGIC; \
269 pl_yylval.ival = (f); \
275 #define COPLINE_INC_WITH_HERELINES \
277 CopLINE_inc(PL_curcop); \
278 if (PL_parser->herelines) \
279 CopLINE(PL_curcop) += PL_parser->herelines, \
280 PL_parser->herelines = 0; \
282 /* Called after scan_str to update CopLINE(PL_curcop), but only when there
283 * is no sublex_push to follow. */
284 #define COPLINE_SET_FROM_MULTI_END \
286 CopLINE_set(PL_curcop, PL_multi_end); \
287 if (PL_multi_end != PL_multi_start) \
288 PL_parser->herelines = 0; \
294 /* how to interpret the pl_yylval associated with the token */
298 TOKENTYPE_OPNUM, /* pl_yylval.ival contains an opcode number */
303 static struct debug_tokens {
305 enum token_type type;
307 } const debug_tokens[] =
309 { ADDOP, TOKENTYPE_OPNUM, "ADDOP" },
310 { ANDAND, TOKENTYPE_NONE, "ANDAND" },
311 { ANDOP, TOKENTYPE_NONE, "ANDOP" },
312 { ANONSUB, TOKENTYPE_IVAL, "ANONSUB" },
313 { ARROW, TOKENTYPE_NONE, "ARROW" },
314 { ASSIGNOP, TOKENTYPE_OPNUM, "ASSIGNOP" },
315 { BITANDOP, TOKENTYPE_OPNUM, "BITANDOP" },
316 { BITOROP, TOKENTYPE_OPNUM, "BITOROP" },
317 { COLONATTR, TOKENTYPE_NONE, "COLONATTR" },
318 { CONTINUE, TOKENTYPE_NONE, "CONTINUE" },
319 { DEFAULT, TOKENTYPE_NONE, "DEFAULT" },
320 { DO, TOKENTYPE_NONE, "DO" },
321 { DOLSHARP, TOKENTYPE_NONE, "DOLSHARP" },
322 { DORDOR, TOKENTYPE_NONE, "DORDOR" },
323 { DOROP, TOKENTYPE_OPNUM, "DOROP" },
324 { DOTDOT, TOKENTYPE_IVAL, "DOTDOT" },
325 { ELSE, TOKENTYPE_NONE, "ELSE" },
326 { ELSIF, TOKENTYPE_IVAL, "ELSIF" },
327 { EQOP, TOKENTYPE_OPNUM, "EQOP" },
328 { FOR, TOKENTYPE_IVAL, "FOR" },
329 { FORMAT, TOKENTYPE_NONE, "FORMAT" },
330 { FORMLBRACK, TOKENTYPE_NONE, "FORMLBRACK" },
331 { FORMRBRACK, TOKENTYPE_NONE, "FORMRBRACK" },
332 { FUNC, TOKENTYPE_OPNUM, "FUNC" },
333 { FUNC0, TOKENTYPE_OPNUM, "FUNC0" },
334 { FUNC0OP, TOKENTYPE_OPVAL, "FUNC0OP" },
335 { FUNC0SUB, TOKENTYPE_OPVAL, "FUNC0SUB" },
336 { FUNC1, TOKENTYPE_OPNUM, "FUNC1" },
337 { FUNCMETH, TOKENTYPE_OPVAL, "FUNCMETH" },
338 { GIVEN, TOKENTYPE_IVAL, "GIVEN" },
339 { HASHBRACK, TOKENTYPE_NONE, "HASHBRACK" },
340 { IF, TOKENTYPE_IVAL, "IF" },
341 { LABEL, TOKENTYPE_PVAL, "LABEL" },
342 { LOCAL, TOKENTYPE_IVAL, "LOCAL" },
343 { LOOPEX, TOKENTYPE_OPNUM, "LOOPEX" },
344 { LSTOP, TOKENTYPE_OPNUM, "LSTOP" },
345 { LSTOPSUB, TOKENTYPE_OPVAL, "LSTOPSUB" },
346 { MATCHOP, TOKENTYPE_OPNUM, "MATCHOP" },
347 { METHOD, TOKENTYPE_OPVAL, "METHOD" },
348 { MULOP, TOKENTYPE_OPNUM, "MULOP" },
349 { MY, TOKENTYPE_IVAL, "MY" },
350 { NOAMP, TOKENTYPE_NONE, "NOAMP" },
351 { NOTOP, TOKENTYPE_NONE, "NOTOP" },
352 { OROP, TOKENTYPE_IVAL, "OROP" },
353 { OROR, TOKENTYPE_NONE, "OROR" },
354 { PACKAGE, TOKENTYPE_NONE, "PACKAGE" },
355 { PLUGEXPR, TOKENTYPE_OPVAL, "PLUGEXPR" },
356 { PLUGSTMT, TOKENTYPE_OPVAL, "PLUGSTMT" },
357 { PMFUNC, TOKENTYPE_OPVAL, "PMFUNC" },
358 { POSTJOIN, TOKENTYPE_NONE, "POSTJOIN" },
359 { POSTDEC, TOKENTYPE_NONE, "POSTDEC" },
360 { POSTINC, TOKENTYPE_NONE, "POSTINC" },
361 { POWOP, TOKENTYPE_OPNUM, "POWOP" },
362 { PREDEC, TOKENTYPE_NONE, "PREDEC" },
363 { PREINC, TOKENTYPE_NONE, "PREINC" },
364 { PRIVATEREF, TOKENTYPE_OPVAL, "PRIVATEREF" },
365 { QWLIST, TOKENTYPE_OPVAL, "QWLIST" },
366 { REFGEN, TOKENTYPE_NONE, "REFGEN" },
367 { RELOP, TOKENTYPE_OPNUM, "RELOP" },
368 { REQUIRE, TOKENTYPE_NONE, "REQUIRE" },
369 { SHIFTOP, TOKENTYPE_OPNUM, "SHIFTOP" },
370 { SUB, TOKENTYPE_NONE, "SUB" },
371 { THING, TOKENTYPE_OPVAL, "THING" },
372 { UMINUS, TOKENTYPE_NONE, "UMINUS" },
373 { UNIOP, TOKENTYPE_OPNUM, "UNIOP" },
374 { UNIOPSUB, TOKENTYPE_OPVAL, "UNIOPSUB" },
375 { UNLESS, TOKENTYPE_IVAL, "UNLESS" },
376 { UNTIL, TOKENTYPE_IVAL, "UNTIL" },
377 { USE, TOKENTYPE_IVAL, "USE" },
378 { WHEN, TOKENTYPE_IVAL, "WHEN" },
379 { WHILE, TOKENTYPE_IVAL, "WHILE" },
380 { BAREWORD, TOKENTYPE_OPVAL, "BAREWORD" },
381 { YADAYADA, TOKENTYPE_IVAL, "YADAYADA" },
382 { 0, TOKENTYPE_NONE, NULL }
385 /* dump the returned token in rv, plus any optional arg in pl_yylval */
388 S_tokereport(pTHX_ I32 rv, const YYSTYPE* lvalp)
390 PERL_ARGS_ASSERT_TOKEREPORT;
393 const char *name = NULL;
394 enum token_type type = TOKENTYPE_NONE;
395 const struct debug_tokens *p;
396 SV* const report = newSVpvs("<== ");
398 for (p = debug_tokens; p->token; p++) {
399 if (p->token == (int)rv) {
406 Perl_sv_catpv(aTHX_ report, name);
407 else if (isGRAPH(rv))
409 Perl_sv_catpvf(aTHX_ report, "'%c'", (char)rv);
411 sv_catpvs(report, " (pending identifier)");
414 sv_catpvs(report, "EOF");
416 Perl_sv_catpvf(aTHX_ report, "?? %" IVdf, (IV)rv);
421 Perl_sv_catpvf(aTHX_ report, "(ival=%" IVdf ")", (IV)lvalp->ival);
423 case TOKENTYPE_OPNUM:
424 Perl_sv_catpvf(aTHX_ report, "(ival=op_%s)",
425 PL_op_name[lvalp->ival]);
428 Perl_sv_catpvf(aTHX_ report, "(pval=\"%s\")", lvalp->pval);
430 case TOKENTYPE_OPVAL:
432 Perl_sv_catpvf(aTHX_ report, "(opval=op_%s)",
433 PL_op_name[lvalp->opval->op_type]);
434 if (lvalp->opval->op_type == OP_CONST) {
435 Perl_sv_catpvf(aTHX_ report, " %s",
436 SvPEEK(cSVOPx_sv(lvalp->opval)));
441 sv_catpvs(report, "(opval=null)");
444 PerlIO_printf(Perl_debug_log, "### %s\n\n", SvPV_nolen_const(report));
450 /* print the buffer with suitable escapes */
453 S_printbuf(pTHX_ const char *const fmt, const char *const s)
455 SV* const tmp = newSVpvs("");
457 PERL_ARGS_ASSERT_PRINTBUF;
459 GCC_DIAG_IGNORE(-Wformat-nonliteral); /* fmt checked by caller */
460 PerlIO_printf(Perl_debug_log, fmt, pv_display(tmp, s, strlen(s), 0, 60));
470 * This subroutine looks for an '=' next to the operator that has just been
471 * parsed and turns it into an ASSIGNOP if it finds one.
475 S_ao(pTHX_ int toketype)
477 if (*PL_bufptr == '=') {
479 if (toketype == ANDAND)
480 pl_yylval.ival = OP_ANDASSIGN;
481 else if (toketype == OROR)
482 pl_yylval.ival = OP_ORASSIGN;
483 else if (toketype == DORDOR)
484 pl_yylval.ival = OP_DORASSIGN;
487 return REPORT(toketype);
492 * When Perl expects an operator and finds something else, no_op
493 * prints the warning. It always prints "<something> found where
494 * operator expected. It prints "Missing semicolon on previous line?"
495 * if the surprise occurs at the start of the line. "do you need to
496 * predeclare ..." is printed out for code like "sub bar; foo bar $x"
497 * where the compiler doesn't know if foo is a method call or a function.
498 * It prints "Missing operator before end of line" if there's nothing
499 * after the missing operator, or "... before <...>" if there is something
500 * after the missing operator.
502 * PL_bufptr is expected to point to the start of the thing that was found,
503 * and s after the next token or partial token.
507 S_no_op(pTHX_ const char *const what, char *s)
509 char * const oldbp = PL_bufptr;
510 const bool is_first = (PL_oldbufptr == PL_linestart);
512 PERL_ARGS_ASSERT_NO_OP;
518 yywarn(Perl_form(aTHX_ "%s found where operator expected", what), UTF ? SVf_UTF8 : 0);
519 if (ckWARN_d(WARN_SYNTAX)) {
521 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
522 "\t(Missing semicolon on previous line?)\n");
523 else if (PL_oldoldbufptr && isIDFIRST_lazy_if_safe(PL_oldoldbufptr,
528 for (t = PL_oldoldbufptr;
529 (isWORDCHAR_lazy_if_safe(t, PL_bufend, UTF) || *t == ':');
530 t += UTF ? UTF8SKIP(t) : 1)
534 if (t < PL_bufptr && isSPACE(*t))
535 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
536 "\t(Do you need to predeclare %" UTF8f "?)\n",
537 UTF8fARG(UTF, t - PL_oldoldbufptr, PL_oldoldbufptr));
541 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
542 "\t(Missing operator before %" UTF8f "?)\n",
543 UTF8fARG(UTF, s - oldbp, oldbp));
551 * Complain about missing quote/regexp/heredoc terminator.
552 * If it's called with NULL then it cauterizes the line buffer.
553 * If we're in a delimited string and the delimiter is a control
554 * character, it's reformatted into a two-char sequence like ^C.
559 S_missingterm(pTHX_ char *s)
561 char tmpbuf[UTF8_MAXBYTES + 1];
566 char * const nl = strrchr(s,'\n');
571 else if (PL_multi_close < 32) {
573 tmpbuf[1] = (char)toCTRL(PL_multi_close);
578 if (LIKELY(PL_multi_close < 256)) {
579 *tmpbuf = (char)PL_multi_close;
584 *uvchr_to_utf8((U8 *)tmpbuf, PL_multi_close) = 0;
588 q = strchr(s,'"') ? '\'' : '"';
589 sv = sv_2mortal(newSVpv(s,0));
592 Perl_croak(aTHX_ "Can't find string terminator %c%" SVf
593 "%c anywhere before EOF",q,SVfARG(sv),q);
599 * Check whether the named feature is enabled.
602 Perl_feature_is_enabled(pTHX_ const char *const name, STRLEN namelen)
604 char he_name[8 + MAX_FEATURE_LEN] = "feature_";
606 PERL_ARGS_ASSERT_FEATURE_IS_ENABLED;
608 assert(CURRENT_FEATURE_BUNDLE == FEATURE_BUNDLE_CUSTOM);
610 if (namelen > MAX_FEATURE_LEN)
612 memcpy(&he_name[8], name, namelen);
614 return cBOOL(cop_hints_fetch_pvn(PL_curcop, he_name, 8 + namelen, 0,
615 REFCOUNTED_HE_EXISTS));
619 * experimental text filters for win32 carriage-returns, utf16-to-utf8 and
620 * utf16-to-utf8-reversed.
623 #ifdef PERL_CR_FILTER
627 const char *s = SvPVX_const(sv);
628 const char * const e = s + SvCUR(sv);
630 PERL_ARGS_ASSERT_STRIP_RETURN;
632 /* outer loop optimized to do nothing if there are no CR-LFs */
634 if (*s++ == '\r' && *s == '\n') {
635 /* hit a CR-LF, need to copy the rest */
639 if (*s == '\r' && s[1] == '\n')
650 S_cr_textfilter(pTHX_ int idx, SV *sv, int maxlen)
652 const I32 count = FILTER_READ(idx+1, sv, maxlen);
653 if (count > 0 && !maxlen)
660 =for apidoc Amx|void|lex_start|SV *line|PerlIO *rsfp|U32 flags
662 Creates and initialises a new lexer/parser state object, supplying
663 a context in which to lex and parse from a new source of Perl code.
664 A pointer to the new state object is placed in L</PL_parser>. An entry
665 is made on the save stack so that upon unwinding, the new state object
666 will be destroyed and the former value of L</PL_parser> will be restored.
667 Nothing else need be done to clean up the parsing context.
669 The code to be parsed comes from C<line> and C<rsfp>. C<line>, if
670 non-null, provides a string (in SV form) containing code to be parsed.
671 A copy of the string is made, so subsequent modification of C<line>
672 does not affect parsing. C<rsfp>, if non-null, provides an input stream
673 from which code will be read to be parsed. If both are non-null, the
674 code in C<line> comes first and must consist of complete lines of input,
675 and C<rsfp> supplies the remainder of the source.
677 The C<flags> parameter is reserved for future use. Currently it is only
678 used by perl internally, so extensions should always pass zero.
683 /* LEX_START_SAME_FILTER indicates that this is not a new file, so it
684 can share filters with the current parser.
685 LEX_START_DONT_CLOSE indicates that the file handle wasn't opened by the
686 caller, hence isn't owned by the parser, so shouldn't be closed on parser
687 destruction. This is used to handle the case of defaulting to reading the
688 script from the standard input because no filename was given on the command
689 line (without getting confused by situation where STDIN has been closed, so
690 the script handle is opened on fd 0) */
693 Perl_lex_start(pTHX_ SV *line, PerlIO *rsfp, U32 flags)
695 const char *s = NULL;
696 yy_parser *parser, *oparser;
698 if (flags && flags & ~LEX_START_FLAGS)
699 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_start");
701 /* create and initialise a parser */
703 Newxz(parser, 1, yy_parser);
704 parser->old_parser = oparser = PL_parser;
707 parser->stack = NULL;
708 parser->stack_max1 = NULL;
711 /* on scope exit, free this parser and restore any outer one */
713 parser->saved_curcop = PL_curcop;
715 /* initialise lexer state */
717 parser->nexttoke = 0;
718 parser->error_count = oparser ? oparser->error_count : 0;
719 parser->copline = parser->preambling = NOLINE;
720 parser->lex_state = LEX_NORMAL;
721 parser->expect = XSTATE;
723 parser->recheck_utf8_validity = FALSE;
724 parser->rsfp_filters =
725 !(flags & LEX_START_SAME_FILTER) || !oparser
727 : MUTABLE_AV(SvREFCNT_inc(
728 oparser->rsfp_filters
729 ? oparser->rsfp_filters
730 : (oparser->rsfp_filters = newAV())
733 Newx(parser->lex_brackstack, 120, char);
734 Newx(parser->lex_casestack, 12, char);
735 *parser->lex_casestack = '\0';
736 Newxz(parser->lex_shared, 1, LEXSHARED);
740 const U8* first_bad_char_loc;
742 s = SvPV_const(line, len);
745 && UNLIKELY(! is_utf8_string_loc((U8 *) s,
747 &first_bad_char_loc)))
749 _force_out_malformed_utf8_message(first_bad_char_loc,
750 (U8 *) s + SvCUR(line),
752 1 /* 1 means die */ );
753 NOT_REACHED; /* NOTREACHED */
756 parser->linestr = flags & LEX_START_COPIED
757 ? SvREFCNT_inc_simple_NN(line)
758 : newSVpvn_flags(s, len, SvUTF8(line));
760 sv_catpvs(parser->linestr, "\n;");
762 parser->linestr = newSVpvn("\n;", rsfp ? 1 : 2);
765 parser->oldoldbufptr =
768 parser->linestart = SvPVX(parser->linestr);
769 parser->bufend = parser->bufptr + SvCUR(parser->linestr);
770 parser->last_lop = parser->last_uni = NULL;
772 STATIC_ASSERT_STMT(FITS_IN_8_BITS(LEX_IGNORE_UTF8_HINTS|LEX_EVALBYTES
773 |LEX_DONT_CLOSE_RSFP));
774 parser->lex_flags = (U8) (flags & (LEX_IGNORE_UTF8_HINTS|LEX_EVALBYTES
775 |LEX_DONT_CLOSE_RSFP));
777 parser->in_pod = parser->filtered = 0;
781 /* delete a parser object */
784 Perl_parser_free(pTHX_ const yy_parser *parser)
786 PERL_ARGS_ASSERT_PARSER_FREE;
788 PL_curcop = parser->saved_curcop;
789 SvREFCNT_dec(parser->linestr);
791 if (PL_parser->lex_flags & LEX_DONT_CLOSE_RSFP)
792 PerlIO_clearerr(parser->rsfp);
793 else if (parser->rsfp && (!parser->old_parser
794 || (parser->old_parser && parser->rsfp != parser->old_parser->rsfp)))
795 PerlIO_close(parser->rsfp);
796 SvREFCNT_dec(parser->rsfp_filters);
797 SvREFCNT_dec(parser->lex_stuff);
798 SvREFCNT_dec(parser->lex_sub_repl);
800 Safefree(parser->lex_brackstack);
801 Safefree(parser->lex_casestack);
802 Safefree(parser->lex_shared);
803 PL_parser = parser->old_parser;
808 Perl_parser_free_nexttoke_ops(pTHX_ yy_parser *parser, OPSLAB *slab)
810 I32 nexttoke = parser->nexttoke;
811 PERL_ARGS_ASSERT_PARSER_FREE_NEXTTOKE_OPS;
813 if (S_is_opval_token(parser->nexttype[nexttoke] & 0xffff)
814 && parser->nextval[nexttoke].opval
815 && parser->nextval[nexttoke].opval->op_slabbed
816 && OpSLAB(parser->nextval[nexttoke].opval) == slab) {
817 op_free(parser->nextval[nexttoke].opval);
818 parser->nextval[nexttoke].opval = NULL;
825 =for apidoc AmxU|SV *|PL_parser-E<gt>linestr
827 Buffer scalar containing the chunk currently under consideration of the
828 text currently being lexed. This is always a plain string scalar (for
829 which C<SvPOK> is true). It is not intended to be used as a scalar by
830 normal scalar means; instead refer to the buffer directly by the pointer
831 variables described below.
833 The lexer maintains various C<char*> pointers to things in the
834 C<PL_parser-E<gt>linestr> buffer. If C<PL_parser-E<gt>linestr> is ever
835 reallocated, all of these pointers must be updated. Don't attempt to
836 do this manually, but rather use L</lex_grow_linestr> if you need to
837 reallocate the buffer.
839 The content of the text chunk in the buffer is commonly exactly one
840 complete line of input, up to and including a newline terminator,
841 but there are situations where it is otherwise. The octets of the
842 buffer may be intended to be interpreted as either UTF-8 or Latin-1.
843 The function L</lex_bufutf8> tells you which. Do not use the C<SvUTF8>
844 flag on this scalar, which may disagree with it.
846 For direct examination of the buffer, the variable
847 L</PL_parser-E<gt>bufend> points to the end of the buffer. The current
848 lexing position is pointed to by L</PL_parser-E<gt>bufptr>. Direct use
849 of these pointers is usually preferable to examination of the scalar
850 through normal scalar means.
852 =for apidoc AmxU|char *|PL_parser-E<gt>bufend
854 Direct pointer to the end of the chunk of text currently being lexed, the
855 end of the lexer buffer. This is equal to C<SvPVX(PL_parser-E<gt>linestr)
856 + SvCUR(PL_parser-E<gt>linestr)>. A C<NUL> character (zero octet) is
857 always located at the end of the buffer, and does not count as part of
858 the buffer's contents.
860 =for apidoc AmxU|char *|PL_parser-E<gt>bufptr
862 Points to the current position of lexing inside the lexer buffer.
863 Characters around this point may be freely examined, within
864 the range delimited by C<SvPVX(L</PL_parser-E<gt>linestr>)> and
865 L</PL_parser-E<gt>bufend>. The octets of the buffer may be intended to be
866 interpreted as either UTF-8 or Latin-1, as indicated by L</lex_bufutf8>.
868 Lexing code (whether in the Perl core or not) moves this pointer past
869 the characters that it consumes. It is also expected to perform some
870 bookkeeping whenever a newline character is consumed. This movement
871 can be more conveniently performed by the function L</lex_read_to>,
872 which handles newlines appropriately.
874 Interpretation of the buffer's octets can be abstracted out by
875 using the slightly higher-level functions L</lex_peek_unichar> and
876 L</lex_read_unichar>.
878 =for apidoc AmxU|char *|PL_parser-E<gt>linestart
880 Points to the start of the current line inside the lexer buffer.
881 This is useful for indicating at which column an error occurred, and
882 not much else. This must be updated by any lexing code that consumes
883 a newline; the function L</lex_read_to> handles this detail.
889 =for apidoc Amx|bool|lex_bufutf8
891 Indicates whether the octets in the lexer buffer
892 (L</PL_parser-E<gt>linestr>) should be interpreted as the UTF-8 encoding
893 of Unicode characters. If not, they should be interpreted as Latin-1
894 characters. This is analogous to the C<SvUTF8> flag for scalars.
896 In UTF-8 mode, it is not guaranteed that the lexer buffer actually
897 contains valid UTF-8. Lexing code must be robust in the face of invalid
900 The actual C<SvUTF8> flag of the L</PL_parser-E<gt>linestr> scalar
901 is significant, but not the whole story regarding the input character
902 encoding. Normally, when a file is being read, the scalar contains octets
903 and its C<SvUTF8> flag is off, but the octets should be interpreted as
904 UTF-8 if the C<use utf8> pragma is in effect. During a string eval,
905 however, the scalar may have the C<SvUTF8> flag on, and in this case its
906 octets should be interpreted as UTF-8 unless the C<use bytes> pragma
907 is in effect. This logic may change in the future; use this function
908 instead of implementing the logic yourself.
914 Perl_lex_bufutf8(pTHX)
920 =for apidoc Amx|char *|lex_grow_linestr|STRLEN len
922 Reallocates the lexer buffer (L</PL_parser-E<gt>linestr>) to accommodate
923 at least C<len> octets (including terminating C<NUL>). Returns a
924 pointer to the reallocated buffer. This is necessary before making
925 any direct modification of the buffer that would increase its length.
926 L</lex_stuff_pvn> provides a more convenient way to insert text into
929 Do not use C<SvGROW> or C<sv_grow> directly on C<PL_parser-E<gt>linestr>;
930 this function updates all of the lexer's variables that point directly
937 Perl_lex_grow_linestr(pTHX_ STRLEN len)
941 STRLEN bufend_pos, bufptr_pos, oldbufptr_pos, oldoldbufptr_pos;
942 STRLEN linestart_pos, last_uni_pos, last_lop_pos, re_eval_start_pos;
945 linestr = PL_parser->linestr;
946 buf = SvPVX(linestr);
947 if (len <= SvLEN(linestr))
950 /* Is the lex_shared linestr SV the same as the current linestr SV?
951 * Only in this case does re_eval_start need adjusting, since it
952 * points within lex_shared->ls_linestr's buffer */
953 current = ( !PL_parser->lex_shared->ls_linestr
954 || linestr == PL_parser->lex_shared->ls_linestr);
956 bufend_pos = PL_parser->bufend - buf;
957 bufptr_pos = PL_parser->bufptr - buf;
958 oldbufptr_pos = PL_parser->oldbufptr - buf;
959 oldoldbufptr_pos = PL_parser->oldoldbufptr - buf;
960 linestart_pos = PL_parser->linestart - buf;
961 last_uni_pos = PL_parser->last_uni ? PL_parser->last_uni - buf : 0;
962 last_lop_pos = PL_parser->last_lop ? PL_parser->last_lop - buf : 0;
963 re_eval_start_pos = (current && PL_parser->lex_shared->re_eval_start) ?
964 PL_parser->lex_shared->re_eval_start - buf : 0;
966 buf = sv_grow(linestr, len);
968 PL_parser->bufend = buf + bufend_pos;
969 PL_parser->bufptr = buf + bufptr_pos;
970 PL_parser->oldbufptr = buf + oldbufptr_pos;
971 PL_parser->oldoldbufptr = buf + oldoldbufptr_pos;
972 PL_parser->linestart = buf + linestart_pos;
973 if (PL_parser->last_uni)
974 PL_parser->last_uni = buf + last_uni_pos;
975 if (PL_parser->last_lop)
976 PL_parser->last_lop = buf + last_lop_pos;
977 if (current && PL_parser->lex_shared->re_eval_start)
978 PL_parser->lex_shared->re_eval_start = buf + re_eval_start_pos;
983 =for apidoc Amx|void|lex_stuff_pvn|const char *pv|STRLEN len|U32 flags
985 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
986 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
987 reallocating the buffer if necessary. This means that lexing code that
988 runs later will see the characters as if they had appeared in the input.
989 It is not recommended to do this as part of normal parsing, and most
990 uses of this facility run the risk of the inserted characters being
991 interpreted in an unintended manner.
993 The string to be inserted is represented by C<len> octets starting
994 at C<pv>. These octets are interpreted as either UTF-8 or Latin-1,
995 according to whether the C<LEX_STUFF_UTF8> flag is set in C<flags>.
996 The characters are recoded for the lexer buffer, according to how the
997 buffer is currently being interpreted (L</lex_bufutf8>). If a string
998 to be inserted is available as a Perl scalar, the L</lex_stuff_sv>
999 function is more convenient.
1005 Perl_lex_stuff_pvn(pTHX_ const char *pv, STRLEN len, U32 flags)
1009 PERL_ARGS_ASSERT_LEX_STUFF_PVN;
1010 if (flags & ~(LEX_STUFF_UTF8))
1011 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_stuff_pvn");
1013 if (flags & LEX_STUFF_UTF8) {
1016 STRLEN highhalf = 0; /* Count of variants */
1017 const char *p, *e = pv+len;
1018 for (p = pv; p != e; p++) {
1019 if (! UTF8_IS_INVARIANT(*p)) {
1025 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len+highhalf);
1026 bufptr = PL_parser->bufptr;
1027 Move(bufptr, bufptr+len+highhalf, PL_parser->bufend+1-bufptr, char);
1028 SvCUR_set(PL_parser->linestr,
1029 SvCUR(PL_parser->linestr) + len+highhalf);
1030 PL_parser->bufend += len+highhalf;
1031 for (p = pv; p != e; p++) {
1033 if (! UTF8_IS_INVARIANT(c)) {
1034 *bufptr++ = UTF8_TWO_BYTE_HI(c);
1035 *bufptr++ = UTF8_TWO_BYTE_LO(c);
1037 *bufptr++ = (char)c;
1042 if (flags & LEX_STUFF_UTF8) {
1043 STRLEN highhalf = 0;
1044 const char *p, *e = pv+len;
1045 for (p = pv; p != e; p++) {
1047 if (UTF8_IS_ABOVE_LATIN1(c)) {
1048 Perl_croak(aTHX_ "Lexing code attempted to stuff "
1049 "non-Latin-1 character into Latin-1 input");
1050 } else if (UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, e)) {
1053 } else assert(UTF8_IS_INVARIANT(c));
1057 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len-highhalf);
1058 bufptr = PL_parser->bufptr;
1059 Move(bufptr, bufptr+len-highhalf, PL_parser->bufend+1-bufptr, char);
1060 SvCUR_set(PL_parser->linestr,
1061 SvCUR(PL_parser->linestr) + len-highhalf);
1062 PL_parser->bufend += len-highhalf;
1065 if (UTF8_IS_INVARIANT(*p)) {
1071 *bufptr++ = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
1077 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len);
1078 bufptr = PL_parser->bufptr;
1079 Move(bufptr, bufptr+len, PL_parser->bufend+1-bufptr, char);
1080 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) + len);
1081 PL_parser->bufend += len;
1082 Copy(pv, bufptr, len, char);
1088 =for apidoc Amx|void|lex_stuff_pv|const char *pv|U32 flags
1090 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
1091 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
1092 reallocating the buffer if necessary. This means that lexing code that
1093 runs later will see the characters as if they had appeared in the input.
1094 It is not recommended to do this as part of normal parsing, and most
1095 uses of this facility run the risk of the inserted characters being
1096 interpreted in an unintended manner.
1098 The string to be inserted is represented by octets starting at C<pv>
1099 and continuing to the first nul. These octets are interpreted as either
1100 UTF-8 or Latin-1, according to whether the C<LEX_STUFF_UTF8> flag is set
1101 in C<flags>. The characters are recoded for the lexer buffer, according
1102 to how the buffer is currently being interpreted (L</lex_bufutf8>).
1103 If it is not convenient to nul-terminate a string to be inserted, the
1104 L</lex_stuff_pvn> function is more appropriate.
1110 Perl_lex_stuff_pv(pTHX_ const char *pv, U32 flags)
1112 PERL_ARGS_ASSERT_LEX_STUFF_PV;
1113 lex_stuff_pvn(pv, strlen(pv), flags);
1117 =for apidoc Amx|void|lex_stuff_sv|SV *sv|U32 flags
1119 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
1120 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
1121 reallocating the buffer if necessary. This means that lexing code that
1122 runs later will see the characters as if they had appeared in the input.
1123 It is not recommended to do this as part of normal parsing, and most
1124 uses of this facility run the risk of the inserted characters being
1125 interpreted in an unintended manner.
1127 The string to be inserted is the string value of C<sv>. The characters
1128 are recoded for the lexer buffer, according to how the buffer is currently
1129 being interpreted (L</lex_bufutf8>). If a string to be inserted is
1130 not already a Perl scalar, the L</lex_stuff_pvn> function avoids the
1131 need to construct a scalar.
1137 Perl_lex_stuff_sv(pTHX_ SV *sv, U32 flags)
1141 PERL_ARGS_ASSERT_LEX_STUFF_SV;
1143 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_stuff_sv");
1145 lex_stuff_pvn(pv, len, flags | (SvUTF8(sv) ? LEX_STUFF_UTF8 : 0));
1149 =for apidoc Amx|void|lex_unstuff|char *ptr
1151 Discards text about to be lexed, from L</PL_parser-E<gt>bufptr> up to
1152 C<ptr>. Text following C<ptr> will be moved, and the buffer shortened.
1153 This hides the discarded text from any lexing code that runs later,
1154 as if the text had never appeared.
1156 This is not the normal way to consume lexed text. For that, use
1163 Perl_lex_unstuff(pTHX_ char *ptr)
1167 PERL_ARGS_ASSERT_LEX_UNSTUFF;
1168 buf = PL_parser->bufptr;
1170 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_unstuff");
1173 bufend = PL_parser->bufend;
1175 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_unstuff");
1176 unstuff_len = ptr - buf;
1177 Move(ptr, buf, bufend+1-ptr, char);
1178 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) - unstuff_len);
1179 PL_parser->bufend = bufend - unstuff_len;
1183 =for apidoc Amx|void|lex_read_to|char *ptr
1185 Consume text in the lexer buffer, from L</PL_parser-E<gt>bufptr> up
1186 to C<ptr>. This advances L</PL_parser-E<gt>bufptr> to match C<ptr>,
1187 performing the correct bookkeeping whenever a newline character is passed.
1188 This is the normal way to consume lexed text.
1190 Interpretation of the buffer's octets can be abstracted out by
1191 using the slightly higher-level functions L</lex_peek_unichar> and
1192 L</lex_read_unichar>.
1198 Perl_lex_read_to(pTHX_ char *ptr)
1201 PERL_ARGS_ASSERT_LEX_READ_TO;
1202 s = PL_parser->bufptr;
1203 if (ptr < s || ptr > PL_parser->bufend)
1204 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_to");
1205 for (; s != ptr; s++)
1207 COPLINE_INC_WITH_HERELINES;
1208 PL_parser->linestart = s+1;
1210 PL_parser->bufptr = ptr;
1214 =for apidoc Amx|void|lex_discard_to|char *ptr
1216 Discards the first part of the L</PL_parser-E<gt>linestr> buffer,
1217 up to C<ptr>. The remaining content of the buffer will be moved, and
1218 all pointers into the buffer updated appropriately. C<ptr> must not
1219 be later in the buffer than the position of L</PL_parser-E<gt>bufptr>:
1220 it is not permitted to discard text that has yet to be lexed.
1222 Normally it is not necessarily to do this directly, because it suffices to
1223 use the implicit discarding behaviour of L</lex_next_chunk> and things
1224 based on it. However, if a token stretches across multiple lines,
1225 and the lexing code has kept multiple lines of text in the buffer for
1226 that purpose, then after completion of the token it would be wise to
1227 explicitly discard the now-unneeded earlier lines, to avoid future
1228 multi-line tokens growing the buffer without bound.
1234 Perl_lex_discard_to(pTHX_ char *ptr)
1238 PERL_ARGS_ASSERT_LEX_DISCARD_TO;
1239 buf = SvPVX(PL_parser->linestr);
1241 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_discard_to");
1244 if (ptr > PL_parser->bufptr)
1245 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_discard_to");
1246 discard_len = ptr - buf;
1247 if (PL_parser->oldbufptr < ptr)
1248 PL_parser->oldbufptr = ptr;
1249 if (PL_parser->oldoldbufptr < ptr)
1250 PL_parser->oldoldbufptr = ptr;
1251 if (PL_parser->last_uni && PL_parser->last_uni < ptr)
1252 PL_parser->last_uni = NULL;
1253 if (PL_parser->last_lop && PL_parser->last_lop < ptr)
1254 PL_parser->last_lop = NULL;
1255 Move(ptr, buf, PL_parser->bufend+1-ptr, char);
1256 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) - discard_len);
1257 PL_parser->bufend -= discard_len;
1258 PL_parser->bufptr -= discard_len;
1259 PL_parser->oldbufptr -= discard_len;
1260 PL_parser->oldoldbufptr -= discard_len;
1261 if (PL_parser->last_uni)
1262 PL_parser->last_uni -= discard_len;
1263 if (PL_parser->last_lop)
1264 PL_parser->last_lop -= discard_len;
1268 Perl_notify_parser_that_changed_to_utf8(pTHX)
1270 /* Called when $^H is changed to indicate that HINT_UTF8 has changed from
1271 * off to on. At compile time, this has the effect of entering a 'use
1272 * utf8' section. This means that any input was not previously checked for
1273 * UTF-8 (because it was off), but now we do need to check it, or our
1274 * assumptions about the input being sane could be wrong, and we could
1275 * segfault. This routine just sets a flag so that the next time we look
1276 * at the input we do the well-formed UTF-8 check. If we aren't in the
1277 * proper phase, there may not be a parser object, but if there is, setting
1278 * the flag is harmless */
1281 PL_parser->recheck_utf8_validity = TRUE;
1286 =for apidoc Amx|bool|lex_next_chunk|U32 flags
1288 Reads in the next chunk of text to be lexed, appending it to
1289 L</PL_parser-E<gt>linestr>. This should be called when lexing code has
1290 looked to the end of the current chunk and wants to know more. It is
1291 usual, but not necessary, for lexing to have consumed the entirety of
1292 the current chunk at this time.
1294 If L</PL_parser-E<gt>bufptr> is pointing to the very end of the current
1295 chunk (i.e., the current chunk has been entirely consumed), normally the
1296 current chunk will be discarded at the same time that the new chunk is
1297 read in. If C<flags> has the C<LEX_KEEP_PREVIOUS> bit set, the current chunk
1298 will not be discarded. If the current chunk has not been entirely
1299 consumed, then it will not be discarded regardless of the flag.
1301 Returns true if some new text was added to the buffer, or false if the
1302 buffer has reached the end of the input text.
1307 #define LEX_FAKE_EOF 0x80000000
1308 #define LEX_NO_TERM 0x40000000 /* here-doc */
1311 Perl_lex_next_chunk(pTHX_ U32 flags)
1315 STRLEN old_bufend_pos, new_bufend_pos;
1316 STRLEN bufptr_pos, oldbufptr_pos, oldoldbufptr_pos;
1317 STRLEN linestart_pos, last_uni_pos, last_lop_pos;
1318 bool got_some_for_debugger = 0;
1321 if (flags & ~(LEX_KEEP_PREVIOUS|LEX_FAKE_EOF|LEX_NO_TERM))
1322 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_next_chunk");
1323 if (!(flags & LEX_NO_TERM) && PL_lex_inwhat)
1325 linestr = PL_parser->linestr;
1326 buf = SvPVX(linestr);
1327 if (!(flags & LEX_KEEP_PREVIOUS)
1328 && PL_parser->bufptr == PL_parser->bufend)
1330 old_bufend_pos = bufptr_pos = oldbufptr_pos = oldoldbufptr_pos = 0;
1332 if (PL_parser->last_uni != PL_parser->bufend)
1333 PL_parser->last_uni = NULL;
1334 if (PL_parser->last_lop != PL_parser->bufend)
1335 PL_parser->last_lop = NULL;
1336 last_uni_pos = last_lop_pos = 0;
1340 old_bufend_pos = PL_parser->bufend - buf;
1341 bufptr_pos = PL_parser->bufptr - buf;
1342 oldbufptr_pos = PL_parser->oldbufptr - buf;
1343 oldoldbufptr_pos = PL_parser->oldoldbufptr - buf;
1344 linestart_pos = PL_parser->linestart - buf;
1345 last_uni_pos = PL_parser->last_uni ? PL_parser->last_uni - buf : 0;
1346 last_lop_pos = PL_parser->last_lop ? PL_parser->last_lop - buf : 0;
1348 if (flags & LEX_FAKE_EOF) {
1350 } else if (!PL_parser->rsfp && !PL_parser->filtered) {
1352 } else if (filter_gets(linestr, old_bufend_pos)) {
1354 got_some_for_debugger = 1;
1355 } else if (flags & LEX_NO_TERM) {
1358 if (!SvPOK(linestr)) /* can get undefined by filter_gets */
1361 /* End of real input. Close filehandle (unless it was STDIN),
1362 * then add implicit termination.
1364 if (PL_parser->lex_flags & LEX_DONT_CLOSE_RSFP)
1365 PerlIO_clearerr(PL_parser->rsfp);
1366 else if (PL_parser->rsfp)
1367 (void)PerlIO_close(PL_parser->rsfp);
1368 PL_parser->rsfp = NULL;
1369 PL_parser->in_pod = PL_parser->filtered = 0;
1370 if (!PL_in_eval && PL_minus_p) {
1372 /*{*/";}continue{print or die qq(-p destination: $!\\n);}");
1373 PL_minus_n = PL_minus_p = 0;
1374 } else if (!PL_in_eval && PL_minus_n) {
1375 sv_catpvs(linestr, /*{*/";}");
1378 sv_catpvs(linestr, ";");
1381 buf = SvPVX(linestr);
1382 new_bufend_pos = SvCUR(linestr);
1383 PL_parser->bufend = buf + new_bufend_pos;
1384 PL_parser->bufptr = buf + bufptr_pos;
1387 const U8* first_bad_char_loc;
1388 if (UNLIKELY(! is_utf8_string_loc(
1389 (U8 *) PL_parser->bufptr,
1390 PL_parser->bufend - PL_parser->bufptr,
1391 &first_bad_char_loc)))
1393 _force_out_malformed_utf8_message(first_bad_char_loc,
1394 (U8 *) PL_parser->bufend,
1396 1 /* 1 means die */ );
1397 NOT_REACHED; /* NOTREACHED */
1401 PL_parser->oldbufptr = buf + oldbufptr_pos;
1402 PL_parser->oldoldbufptr = buf + oldoldbufptr_pos;
1403 PL_parser->linestart = buf + linestart_pos;
1404 if (PL_parser->last_uni)
1405 PL_parser->last_uni = buf + last_uni_pos;
1406 if (PL_parser->last_lop)
1407 PL_parser->last_lop = buf + last_lop_pos;
1408 if (PL_parser->preambling != NOLINE) {
1409 CopLINE_set(PL_curcop, PL_parser->preambling + 1);
1410 PL_parser->preambling = NOLINE;
1412 if ( got_some_for_debugger
1413 && PERLDB_LINE_OR_SAVESRC
1414 && PL_curstash != PL_debstash)
1416 /* debugger active and we're not compiling the debugger code,
1417 * so store the line into the debugger's array of lines
1419 update_debugger_info(NULL, buf+old_bufend_pos,
1420 new_bufend_pos-old_bufend_pos);
1426 =for apidoc Amx|I32|lex_peek_unichar|U32 flags
1428 Looks ahead one (Unicode) character in the text currently being lexed.
1429 Returns the codepoint (unsigned integer value) of the next character,
1430 or -1 if lexing has reached the end of the input text. To consume the
1431 peeked character, use L</lex_read_unichar>.
1433 If the next character is in (or extends into) the next chunk of input
1434 text, the next chunk will be read in. Normally the current chunk will be
1435 discarded at the same time, but if C<flags> has the C<LEX_KEEP_PREVIOUS>
1436 bit set, then the current chunk will not be discarded.
1438 If the input is being interpreted as UTF-8 and a UTF-8 encoding error
1439 is encountered, an exception is generated.
1445 Perl_lex_peek_unichar(pTHX_ U32 flags)
1449 if (flags & ~(LEX_KEEP_PREVIOUS))
1450 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_peek_unichar");
1451 s = PL_parser->bufptr;
1452 bufend = PL_parser->bufend;
1458 if (!lex_next_chunk(flags))
1460 s = PL_parser->bufptr;
1461 bufend = PL_parser->bufend;
1464 if (UTF8_IS_INVARIANT(head))
1466 if (UTF8_IS_START(head)) {
1467 len = UTF8SKIP(&head);
1468 while ((STRLEN)(bufend-s) < len) {
1469 if (!lex_next_chunk(flags | LEX_KEEP_PREVIOUS))
1471 s = PL_parser->bufptr;
1472 bufend = PL_parser->bufend;
1475 unichar = utf8n_to_uvchr((U8*)s, bufend-s, &retlen, UTF8_CHECK_ONLY);
1476 if (retlen == (STRLEN)-1) {
1477 _force_out_malformed_utf8_message((U8 *) s,
1480 1 /* 1 means die */ );
1481 NOT_REACHED; /* NOTREACHED */
1486 if (!lex_next_chunk(flags))
1488 s = PL_parser->bufptr;
1495 =for apidoc Amx|I32|lex_read_unichar|U32 flags
1497 Reads the next (Unicode) character in the text currently being lexed.
1498 Returns the codepoint (unsigned integer value) of the character read,
1499 and moves L</PL_parser-E<gt>bufptr> past the character, or returns -1
1500 if lexing has reached the end of the input text. To non-destructively
1501 examine the next character, use L</lex_peek_unichar> instead.
1503 If the next character is in (or extends into) the next chunk of input
1504 text, the next chunk will be read in. Normally the current chunk will be
1505 discarded at the same time, but if C<flags> has the C<LEX_KEEP_PREVIOUS>
1506 bit set, then the current chunk will not be discarded.
1508 If the input is being interpreted as UTF-8 and a UTF-8 encoding error
1509 is encountered, an exception is generated.
1515 Perl_lex_read_unichar(pTHX_ U32 flags)
1518 if (flags & ~(LEX_KEEP_PREVIOUS))
1519 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_unichar");
1520 c = lex_peek_unichar(flags);
1523 COPLINE_INC_WITH_HERELINES;
1525 PL_parser->bufptr += UTF8SKIP(PL_parser->bufptr);
1527 ++(PL_parser->bufptr);
1533 =for apidoc Amx|void|lex_read_space|U32 flags
1535 Reads optional spaces, in Perl style, in the text currently being
1536 lexed. The spaces may include ordinary whitespace characters and
1537 Perl-style comments. C<#line> directives are processed if encountered.
1538 L</PL_parser-E<gt>bufptr> is moved past the spaces, so that it points
1539 at a non-space character (or the end of the input text).
1541 If spaces extend into the next chunk of input text, the next chunk will
1542 be read in. Normally the current chunk will be discarded at the same
1543 time, but if C<flags> has the C<LEX_KEEP_PREVIOUS> bit set, then the current
1544 chunk will not be discarded.
1549 #define LEX_NO_INCLINE 0x40000000
1550 #define LEX_NO_NEXT_CHUNK 0x80000000
1553 Perl_lex_read_space(pTHX_ U32 flags)
1556 const bool can_incline = !(flags & LEX_NO_INCLINE);
1557 bool need_incline = 0;
1558 if (flags & ~(LEX_KEEP_PREVIOUS|LEX_NO_NEXT_CHUNK|LEX_NO_INCLINE))
1559 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_space");
1560 s = PL_parser->bufptr;
1561 bufend = PL_parser->bufend;
1567 } while (!(c == '\n' || (c == 0 && s == bufend)));
1568 } else if (c == '\n') {
1571 PL_parser->linestart = s;
1577 } else if (isSPACE(c)) {
1579 } else if (c == 0 && s == bufend) {
1582 if (flags & LEX_NO_NEXT_CHUNK)
1584 PL_parser->bufptr = s;
1585 l = CopLINE(PL_curcop);
1586 CopLINE(PL_curcop) += PL_parser->herelines + 1;
1587 got_more = lex_next_chunk(flags);
1588 CopLINE_set(PL_curcop, l);
1589 s = PL_parser->bufptr;
1590 bufend = PL_parser->bufend;
1593 if (can_incline && need_incline && PL_parser->rsfp) {
1603 PL_parser->bufptr = s;
1608 =for apidoc EXMp|bool|validate_proto|SV *name|SV *proto|bool warn
1610 This function performs syntax checking on a prototype, C<proto>.
1611 If C<warn> is true, any illegal characters or mismatched brackets
1612 will trigger illegalproto warnings, declaring that they were
1613 detected in the prototype for C<name>.
1615 The return value is C<true> if this is a valid prototype, and
1616 C<false> if it is not, regardless of whether C<warn> was C<true> or
1619 Note that C<NULL> is a valid C<proto> and will always return C<true>.
1626 Perl_validate_proto(pTHX_ SV *name, SV *proto, bool warn, bool curstash)
1628 STRLEN len, origlen;
1630 bool bad_proto = FALSE;
1631 bool in_brackets = FALSE;
1632 bool after_slash = FALSE;
1633 char greedy_proto = ' ';
1634 bool proto_after_greedy_proto = FALSE;
1635 bool must_be_last = FALSE;
1636 bool underscore = FALSE;
1637 bool bad_proto_after_underscore = FALSE;
1639 PERL_ARGS_ASSERT_VALIDATE_PROTO;
1644 p = SvPV(proto, len);
1646 for (; len--; p++) {
1649 proto_after_greedy_proto = TRUE;
1651 if (!strchr(";@%", *p))
1652 bad_proto_after_underscore = TRUE;
1655 if (!strchr("$@%*;[]&\\_+", *p) || *p == '\0') {
1662 in_brackets = FALSE;
1663 else if ((*p == '@' || *p == '%')
1667 must_be_last = TRUE;
1676 after_slash = FALSE;
1681 SV *tmpsv = newSVpvs_flags("", SVs_TEMP);
1684 ? sv_uni_display(tmpsv, newSVpvn_flags(p, origlen, SVs_TEMP | SVf_UTF8),
1685 origlen, UNI_DISPLAY_ISPRINT)
1686 : pv_pretty(tmpsv, p, origlen, 60, NULL, NULL, PERL_PV_ESCAPE_NONASCII);
1688 if (curstash && !memchr(SvPVX(name), ':', SvCUR(name))) {
1689 SV *name2 = sv_2mortal(newSVsv(PL_curstname));
1690 sv_catpvs(name2, "::");
1691 sv_catsv(name2, (SV *)name);
1695 if (proto_after_greedy_proto)
1696 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1697 "Prototype after '%c' for %" SVf " : %s",
1698 greedy_proto, SVfARG(name), p);
1700 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1701 "Missing ']' in prototype for %" SVf " : %s",
1704 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1705 "Illegal character in prototype for %" SVf " : %s",
1707 if (bad_proto_after_underscore)
1708 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1709 "Illegal character after '_' in prototype for %" SVf " : %s",
1713 return (! (proto_after_greedy_proto || bad_proto) );
1718 * This subroutine has nothing to do with tilting, whether at windmills
1719 * or pinball tables. Its name is short for "increment line". It
1720 * increments the current line number in CopLINE(PL_curcop) and checks
1721 * to see whether the line starts with a comment of the form
1722 * # line 500 "foo.pm"
1723 * If so, it sets the current line number and file to the values in the comment.
1727 S_incline(pTHX_ const char *s)
1735 PERL_ARGS_ASSERT_INCLINE;
1737 COPLINE_INC_WITH_HERELINES;
1738 if (!PL_rsfp && !PL_parser->filtered && PL_lex_state == LEX_NORMAL
1739 && s+1 == PL_bufend && *s == ';') {
1740 /* fake newline in string eval */
1741 CopLINE_dec(PL_curcop);
1746 while (SPACE_OR_TAB(*s))
1748 if (strBEGINs(s, "line"))
1752 if (SPACE_OR_TAB(*s))
1756 while (SPACE_OR_TAB(*s))
1764 if (!SPACE_OR_TAB(*s) && *s != '\r' && *s != '\n' && *s != '\0')
1766 while (SPACE_OR_TAB(*s))
1768 if (*s == '"' && (t = strchr(s+1, '"'))) {
1774 while (*t && !isSPACE(*t))
1778 while (SPACE_OR_TAB(*e) || *e == '\r' || *e == '\f')
1780 if (*e != '\n' && *e != '\0')
1781 return; /* false alarm */
1783 if (!grok_atoUV(n, &uv, &e))
1785 line_num = ((line_t)uv) - 1;
1788 const STRLEN len = t - s;
1790 if (!PL_rsfp && !PL_parser->filtered) {
1791 /* must copy *{"::_<(eval N)[oldfilename:L]"}
1792 * to *{"::_<newfilename"} */
1793 /* However, the long form of evals is only turned on by the
1794 debugger - usually they're "(eval %lu)" */
1795 GV * const cfgv = CopFILEGV(PL_curcop);
1798 STRLEN tmplen2 = len;
1802 if (tmplen2 + 2 <= sizeof smallbuf)
1805 Newx(tmpbuf2, tmplen2 + 2, char);
1810 memcpy(tmpbuf2 + 2, s, tmplen2);
1813 gv2 = *(GV**)hv_fetch(PL_defstash, tmpbuf2, tmplen2, TRUE);
1815 gv_init(gv2, PL_defstash, tmpbuf2, tmplen2, FALSE);
1816 /* adjust ${"::_<newfilename"} to store the new file name */
1817 GvSV(gv2) = newSVpvn(tmpbuf2 + 2, tmplen2 - 2);
1818 /* The line number may differ. If that is the case,
1819 alias the saved lines that are in the array.
1820 Otherwise alias the whole array. */
1821 if (CopLINE(PL_curcop) == line_num) {
1822 GvHV(gv2) = MUTABLE_HV(SvREFCNT_inc(GvHV(cfgv)));
1823 GvAV(gv2) = MUTABLE_AV(SvREFCNT_inc(GvAV(cfgv)));
1825 else if (GvAV(cfgv)) {
1826 AV * const av = GvAV(cfgv);
1827 const I32 start = CopLINE(PL_curcop)+1;
1828 I32 items = AvFILLp(av) - start;
1830 AV * const av2 = GvAVn(gv2);
1831 SV **svp = AvARRAY(av) + start;
1832 I32 l = (I32)line_num+1;
1834 av_store(av2, l++, SvREFCNT_inc(*svp++));
1839 if (tmpbuf2 != smallbuf) Safefree(tmpbuf2);
1842 CopFILE_free(PL_curcop);
1843 CopFILE_setn(PL_curcop, s, len);
1845 CopLINE_set(PL_curcop, line_num);
1849 S_update_debugger_info(pTHX_ SV *orig_sv, const char *const buf, STRLEN len)
1851 AV *av = CopFILEAVx(PL_curcop);
1854 if (PL_parser->preambling == NOLINE) sv = newSV_type(SVt_PVMG);
1856 sv = *av_fetch(av, 0, 1);
1857 SvUPGRADE(sv, SVt_PVMG);
1859 if (!SvPOK(sv)) SvPVCLEAR(sv);
1861 sv_catsv(sv, orig_sv);
1863 sv_catpvn(sv, buf, len);
1868 if (PL_parser->preambling == NOLINE)
1869 av_store(av, CopLINE(PL_curcop), sv);
1875 * Called to gobble the appropriate amount and type of whitespace.
1876 * Skips comments as well.
1877 * Returns the next character after the whitespace that is skipped.
1880 * Same thing, but look ahead without incrementing line numbers or
1881 * adjusting PL_linestart.
1884 #define skipspace(s) skipspace_flags(s, 0)
1885 #define peekspace(s) skipspace_flags(s, LEX_NO_INCLINE)
1888 S_skipspace_flags(pTHX_ char *s, U32 flags)
1890 PERL_ARGS_ASSERT_SKIPSPACE_FLAGS;
1891 if (PL_lex_formbrack && PL_lex_brackets <= PL_lex_formbrack) {
1892 while (s < PL_bufend && (SPACE_OR_TAB(*s) || !*s))
1895 STRLEN bufptr_pos = PL_bufptr - SvPVX(PL_linestr);
1897 lex_read_space(flags | LEX_KEEP_PREVIOUS |
1898 (PL_lex_inwhat || PL_lex_state == LEX_FORMLINE ?
1899 LEX_NO_NEXT_CHUNK : 0));
1901 PL_bufptr = SvPVX(PL_linestr) + bufptr_pos;
1902 if (PL_linestart > PL_bufptr)
1903 PL_bufptr = PL_linestart;
1911 * Check the unary operators to ensure there's no ambiguity in how they're
1912 * used. An ambiguous piece of code would be:
1914 * This doesn't mean rand() + 5. Because rand() is a unary operator,
1915 * the +5 is its argument.
1924 if (PL_oldoldbufptr != PL_last_uni)
1926 while (isSPACE(*PL_last_uni))
1929 while (isWORDCHAR_lazy_if_safe(s, PL_bufend, UTF) || *s == '-')
1930 s += UTF ? UTF8SKIP(s) : 1;
1931 if ((t = strchr(s, '(')) && t < PL_bufptr)
1934 Perl_ck_warner_d(aTHX_ packWARN(WARN_AMBIGUOUS),
1935 "Warning: Use of \"%" UTF8f "\" without parentheses is ambiguous",
1936 UTF8fARG(UTF, (int)(s - PL_last_uni), PL_last_uni));
1940 * LOP : macro to build a list operator. Its behaviour has been replaced
1941 * with a subroutine, S_lop() for which LOP is just another name.
1944 #define LOP(f,x) return lop(f,x,s)
1948 * Build a list operator (or something that might be one). The rules:
1949 * - if we have a next token, then it's a list operator (no parens) for
1950 * which the next token has already been parsed; e.g.,
1953 * - if the next thing is an opening paren, then it's a function
1954 * - else it's a list operator
1958 S_lop(pTHX_ I32 f, U8 x, char *s)
1960 PERL_ARGS_ASSERT_LOP;
1965 PL_last_lop = PL_oldbufptr;
1966 PL_last_lop_op = (OPCODE)f;
1971 return REPORT(FUNC);
1974 return REPORT(FUNC);
1977 if (!PL_lex_allbrackets && PL_lex_fakeeof > LEX_FAKEEOF_LOWLOGIC)
1978 PL_lex_fakeeof = LEX_FAKEEOF_LOWLOGIC;
1979 return REPORT(LSTOP);
1985 * When the lexer realizes it knows the next token (for instance,
1986 * it is reordering tokens for the parser) then it can call S_force_next
1987 * to know what token to return the next time the lexer is called. Caller
1988 * will need to set PL_nextval[] and possibly PL_expect to ensure
1989 * the lexer handles the token correctly.
1993 S_force_next(pTHX_ I32 type)
1997 PerlIO_printf(Perl_debug_log, "### forced token:\n");
1998 tokereport(type, &NEXTVAL_NEXTTOKE);
2001 assert(PL_nexttoke < C_ARRAY_LENGTH(PL_nexttype));
2002 PL_nexttype[PL_nexttoke] = type;
2009 * This subroutine handles postfix deref syntax after the arrow has already
2010 * been emitted. @* $* etc. are emitted as two separate token right here.
2011 * @[ @{ %[ %{ *{ are emitted also as two tokens, but this function emits
2012 * only the first, leaving yylex to find the next.
2016 S_postderef(pTHX_ int const funny, char const next)
2018 assert(funny == DOLSHARP || strchr("$@%&*", funny));
2020 PL_expect = XOPERATOR;
2021 if (PL_lex_state == LEX_INTERPNORMAL && !PL_lex_brackets) {
2022 assert('@' == funny || '$' == funny || DOLSHARP == funny);
2023 PL_lex_state = LEX_INTERPEND;
2025 force_next(POSTJOIN);
2031 if ('@' == funny && PL_lex_state == LEX_INTERPNORMAL
2032 && !PL_lex_brackets)
2034 PL_expect = XOPERATOR;
2043 int yyc = PL_parser->yychar;
2044 if (yyc != YYEMPTY) {
2046 NEXTVAL_NEXTTOKE = PL_parser->yylval;
2047 if (yyc == '{'/*}*/ || yyc == HASHBRACK || yyc == '['/*]*/) {
2048 PL_lex_allbrackets--;
2050 yyc |= (3<<24) | (PL_lex_brackstack[PL_lex_brackets] << 16);
2051 } else if (yyc == '('/*)*/) {
2052 PL_lex_allbrackets--;
2057 PL_parser->yychar = YYEMPTY;
2062 S_newSV_maybe_utf8(pTHX_ const char *const start, STRLEN len)
2064 SV * const sv = newSVpvn_utf8(start, len,
2067 && !is_utf8_invariant_string((const U8*)start, len)
2068 && is_utf8_string((const U8*)start, len));
2074 * When the lexer knows the next thing is a word (for instance, it has
2075 * just seen -> and it knows that the next char is a word char, then
2076 * it calls S_force_word to stick the next word into the PL_nexttoke/val
2080 * char *start : buffer position (must be within PL_linestr)
2081 * int token : PL_next* will be this type of bare word
2082 * (e.g., METHOD,BAREWORD)
2083 * int check_keyword : if true, Perl checks to make sure the word isn't
2084 * a keyword (do this if the word is a label, e.g. goto FOO)
2085 * int allow_pack : if true, : characters will also be allowed (require,
2086 * use, etc. do this)
2090 S_force_word(pTHX_ char *start, int token, int check_keyword, int allow_pack)
2095 PERL_ARGS_ASSERT_FORCE_WORD;
2097 start = skipspace(start);
2099 if ( isIDFIRST_lazy_if_safe(s, PL_bufend, UTF)
2100 || (allow_pack && *s == ':' && s[1] == ':') )
2102 s = scan_word(s, PL_tokenbuf, sizeof PL_tokenbuf, allow_pack, &len);
2103 if (check_keyword) {
2104 char *s2 = PL_tokenbuf;
2106 if (allow_pack && len > 6 && strBEGINs(s2, "CORE::"))
2108 if (keyword(s2, len2, 0))
2111 if (token == METHOD) {
2116 PL_expect = XOPERATOR;
2119 NEXTVAL_NEXTTOKE.opval
2120 = newSVOP(OP_CONST,0,
2121 S_newSV_maybe_utf8(aTHX_ PL_tokenbuf, len));
2122 NEXTVAL_NEXTTOKE.opval->op_private |= OPpCONST_BARE;
2130 * Called when the lexer wants $foo *foo &foo etc, but the program
2131 * text only contains the "foo" portion. The first argument is a pointer
2132 * to the "foo", and the second argument is the type symbol to prefix.
2133 * Forces the next token to be a "BAREWORD".
2134 * Creates the symbol if it didn't already exist (via gv_fetchpv()).
2138 S_force_ident(pTHX_ const char *s, int kind)
2140 PERL_ARGS_ASSERT_FORCE_IDENT;
2143 const STRLEN len = s[1] ? strlen(s) : 1; /* s = "\"" see yylex */
2144 OP* const o = newSVOP(OP_CONST, 0, newSVpvn_flags(s, len,
2145 UTF ? SVf_UTF8 : 0));
2146 NEXTVAL_NEXTTOKE.opval = o;
2147 force_next(BAREWORD);
2149 o->op_private = OPpCONST_ENTERED;
2150 /* XXX see note in pp_entereval() for why we forgo typo
2151 warnings if the symbol must be introduced in an eval.
2153 gv_fetchpvn_flags(s, len,
2154 (PL_in_eval ? GV_ADDMULTI
2155 : GV_ADD) | ( UTF ? SVf_UTF8 : 0 ),
2156 kind == '$' ? SVt_PV :
2157 kind == '@' ? SVt_PVAV :
2158 kind == '%' ? SVt_PVHV :
2166 S_force_ident_maybe_lex(pTHX_ char pit)
2168 NEXTVAL_NEXTTOKE.ival = pit;
2173 Perl_str_to_version(pTHX_ SV *sv)
2178 const char *start = SvPV_const(sv,len);
2179 const char * const end = start + len;
2180 const bool utf = cBOOL(SvUTF8(sv));
2182 PERL_ARGS_ASSERT_STR_TO_VERSION;
2184 while (start < end) {
2188 n = utf8n_to_uvchr((U8*)start, len, &skip, 0);
2193 retval += ((NV)n)/nshift;
2202 * Forces the next token to be a version number.
2203 * If the next token appears to be an invalid version number, (e.g. "v2b"),
2204 * and if "guessing" is TRUE, then no new token is created (and the caller
2205 * must use an alternative parsing method).
2209 S_force_version(pTHX_ char *s, int guessing)
2214 PERL_ARGS_ASSERT_FORCE_VERSION;
2222 while (isDIGIT(*d) || *d == '_' || *d == '.')
2224 if (*d == ';' || isSPACE(*d) || *d == '{' || *d == '}' || !*d) {
2226 s = scan_num(s, &pl_yylval);
2227 version = pl_yylval.opval;
2228 ver = cSVOPx(version)->op_sv;
2229 if (SvPOK(ver) && !SvNIOK(ver)) {
2230 SvUPGRADE(ver, SVt_PVNV);
2231 SvNV_set(ver, str_to_version(ver));
2232 SvNOK_on(ver); /* hint that it is a version */
2235 else if (guessing) {
2240 /* NOTE: The parser sees the package name and the VERSION swapped */
2241 NEXTVAL_NEXTTOKE.opval = version;
2242 force_next(BAREWORD);
2248 * S_force_strict_version
2249 * Forces the next token to be a version number using strict syntax rules.
2253 S_force_strict_version(pTHX_ char *s)
2256 const char *errstr = NULL;
2258 PERL_ARGS_ASSERT_FORCE_STRICT_VERSION;
2260 while (isSPACE(*s)) /* leading whitespace */
2263 if (is_STRICT_VERSION(s,&errstr)) {
2265 s = (char *)scan_version(s, ver, 0);
2266 version = newSVOP(OP_CONST, 0, ver);
2268 else if ((*s != ';' && *s != '{' && *s != '}' )
2269 && (s = skipspace(s), (*s != ';' && *s != '{' && *s != '}' )))
2273 yyerror(errstr); /* version required */
2277 /* NOTE: The parser sees the package name and the VERSION swapped */
2278 NEXTVAL_NEXTTOKE.opval = version;
2279 force_next(BAREWORD);
2286 * Turns any \\ into \ in a quoted string passed in in 'sv', returning 'sv',
2287 * modified as necessary. However, if HINT_NEW_STRING is on, 'sv' is
2288 * unchanged, and a new SV containing the modified input is returned.
2292 S_tokeq(pTHX_ SV *sv)
2299 PERL_ARGS_ASSERT_TOKEQ;
2303 assert (!SvIsCOW(sv));
2304 if (SvTYPE(sv) >= SVt_PVIV && SvIVX(sv) == -1) /* <<'heredoc' */
2308 /* This is relying on the SV being "well formed" with a trailing '\0' */
2309 while (s < send && !(*s == '\\' && s[1] == '\\'))
2314 if ( PL_hints & HINT_NEW_STRING ) {
2315 pv = newSVpvn_flags(SvPVX_const(pv), SvCUR(sv),
2316 SVs_TEMP | SvUTF8(sv));
2320 if (s + 1 < send && (s[1] == '\\'))
2321 s++; /* all that, just for this */
2326 SvCUR_set(sv, d - SvPVX_const(sv));
2328 if ( PL_hints & HINT_NEW_STRING )
2329 return new_constant(NULL, 0, "q", sv, pv, "q", 1);
2334 * Now come three functions related to double-quote context,
2335 * S_sublex_start, S_sublex_push, and S_sublex_done. They're used when
2336 * converting things like "\u\Lgnat" into ucfirst(lc("gnat")). They
2337 * interact with PL_lex_state, and create fake ( ... ) argument lists
2338 * to handle functions and concatenation.
2342 * stringify ( const[foo] concat lcfirst ( const[bar] ) )
2347 * Assumes that pl_yylval.ival is the op we're creating (e.g. OP_LCFIRST).
2349 * Pattern matching will set PL_lex_op to the pattern-matching op to
2350 * make (we return THING if pl_yylval.ival is OP_NULL, PMFUNC otherwise).
2352 * OP_CONST is easy--just make the new op and return.
2354 * Everything else becomes a FUNC.
2356 * Sets PL_lex_state to LEX_INTERPPUSH unless ival was OP_NULL or we
2357 * had an OP_CONST. This just sets us up for a
2358 * call to S_sublex_push().
2362 S_sublex_start(pTHX)
2364 const I32 op_type = pl_yylval.ival;
2366 if (op_type == OP_NULL) {
2367 pl_yylval.opval = PL_lex_op;
2371 if (op_type == OP_CONST) {
2372 SV *sv = PL_lex_stuff;
2373 PL_lex_stuff = NULL;
2376 if (SvTYPE(sv) == SVt_PVIV) {
2377 /* Overloaded constants, nothing fancy: Convert to SVt_PV: */
2379 const char * const p = SvPV_const(sv, len);
2380 SV * const nsv = newSVpvn_flags(p, len, SvUTF8(sv));
2384 pl_yylval.opval = newSVOP(op_type, 0, sv);
2388 PL_parser->lex_super_state = PL_lex_state;
2389 PL_parser->lex_sub_inwhat = (U16)op_type;
2390 PL_parser->lex_sub_op = PL_lex_op;
2391 PL_lex_state = LEX_INTERPPUSH;
2395 pl_yylval.opval = PL_lex_op;
2405 * Create a new scope to save the lexing state. The scope will be
2406 * ended in S_sublex_done. Returns a '(', starting the function arguments
2407 * to the uc, lc, etc. found before.
2408 * Sets PL_lex_state to LEX_INTERPCONCAT.
2415 const bool is_heredoc = PL_multi_close == '<';
2418 PL_lex_state = PL_parser->lex_super_state;
2419 SAVEI8(PL_lex_dojoin);
2420 SAVEI32(PL_lex_brackets);
2421 SAVEI32(PL_lex_allbrackets);
2422 SAVEI32(PL_lex_formbrack);
2423 SAVEI8(PL_lex_fakeeof);
2424 SAVEI32(PL_lex_casemods);
2425 SAVEI32(PL_lex_starts);
2426 SAVEI8(PL_lex_state);
2427 SAVESPTR(PL_lex_repl);
2428 SAVEVPTR(PL_lex_inpat);
2429 SAVEI16(PL_lex_inwhat);
2432 SAVECOPLINE(PL_curcop);
2433 SAVEI32(PL_multi_end);
2434 SAVEI32(PL_parser->herelines);
2435 PL_parser->herelines = 0;
2437 SAVEIV(PL_multi_close);
2438 SAVEPPTR(PL_bufptr);
2439 SAVEPPTR(PL_bufend);
2440 SAVEPPTR(PL_oldbufptr);
2441 SAVEPPTR(PL_oldoldbufptr);
2442 SAVEPPTR(PL_last_lop);
2443 SAVEPPTR(PL_last_uni);
2444 SAVEPPTR(PL_linestart);
2445 SAVESPTR(PL_linestr);
2446 SAVEGENERICPV(PL_lex_brackstack);
2447 SAVEGENERICPV(PL_lex_casestack);
2448 SAVEGENERICPV(PL_parser->lex_shared);
2449 SAVEBOOL(PL_parser->lex_re_reparsing);
2450 SAVEI32(PL_copline);
2452 /* The here-doc parser needs to be able to peek into outer lexing
2453 scopes to find the body of the here-doc. So we put PL_linestr and
2454 PL_bufptr into lex_shared, to ‘share’ those values.
2456 PL_parser->lex_shared->ls_linestr = PL_linestr;
2457 PL_parser->lex_shared->ls_bufptr = PL_bufptr;
2459 PL_linestr = PL_lex_stuff;
2460 PL_lex_repl = PL_parser->lex_sub_repl;
2461 PL_lex_stuff = NULL;
2462 PL_parser->lex_sub_repl = NULL;
2464 /* Arrange for PL_lex_stuff to be freed on scope exit, in case it gets
2465 set for an inner quote-like operator and then an error causes scope-
2466 popping. We must not have a PL_lex_stuff value left dangling, as
2467 that breaks assumptions elsewhere. See bug #123617. */
2468 SAVEGENERICSV(PL_lex_stuff);
2469 SAVEGENERICSV(PL_parser->lex_sub_repl);
2471 PL_bufend = PL_bufptr = PL_oldbufptr = PL_oldoldbufptr = PL_linestart
2472 = SvPVX(PL_linestr);
2473 PL_bufend += SvCUR(PL_linestr);
2474 PL_last_lop = PL_last_uni = NULL;
2475 SAVEFREESV(PL_linestr);
2476 if (PL_lex_repl) SAVEFREESV(PL_lex_repl);
2478 PL_lex_dojoin = FALSE;
2479 PL_lex_brackets = PL_lex_formbrack = 0;
2480 PL_lex_allbrackets = 0;
2481 PL_lex_fakeeof = LEX_FAKEEOF_NEVER;
2482 Newx(PL_lex_brackstack, 120, char);
2483 Newx(PL_lex_casestack, 12, char);
2484 PL_lex_casemods = 0;
2485 *PL_lex_casestack = '\0';
2487 PL_lex_state = LEX_INTERPCONCAT;
2489 CopLINE_set(PL_curcop, (line_t)PL_multi_start);
2490 PL_copline = NOLINE;
2492 Newxz(shared, 1, LEXSHARED);
2493 shared->ls_prev = PL_parser->lex_shared;
2494 PL_parser->lex_shared = shared;
2496 PL_lex_inwhat = PL_parser->lex_sub_inwhat;
2497 if (PL_lex_inwhat == OP_TRANSR) PL_lex_inwhat = OP_TRANS;
2498 if (PL_lex_inwhat == OP_MATCH || PL_lex_inwhat == OP_QR || PL_lex_inwhat == OP_SUBST)
2499 PL_lex_inpat = PL_parser->lex_sub_op;
2501 PL_lex_inpat = NULL;
2503 PL_parser->lex_re_reparsing = cBOOL(PL_in_eval & EVAL_RE_REPARSING);
2504 PL_in_eval &= ~EVAL_RE_REPARSING;
2511 * Restores lexer state after a S_sublex_push.
2517 if (!PL_lex_starts++) {
2518 SV * const sv = newSVpvs("");
2519 if (SvUTF8(PL_linestr))
2521 PL_expect = XOPERATOR;
2522 pl_yylval.opval = newSVOP(OP_CONST, 0, sv);
2526 if (PL_lex_casemods) { /* oops, we've got some unbalanced parens */
2527 PL_lex_state = LEX_INTERPCASEMOD;
2531 /* Is there a right-hand side to take care of? (s//RHS/ or tr//RHS/) */
2532 assert(PL_lex_inwhat != OP_TRANSR);
2534 assert (PL_lex_inwhat == OP_SUBST || PL_lex_inwhat == OP_TRANS);
2535 PL_linestr = PL_lex_repl;
2537 PL_bufend = PL_bufptr = PL_oldbufptr = PL_oldoldbufptr = PL_linestart = SvPVX(PL_linestr);
2538 PL_bufend += SvCUR(PL_linestr);
2539 PL_last_lop = PL_last_uni = NULL;
2540 PL_lex_dojoin = FALSE;
2541 PL_lex_brackets = 0;
2542 PL_lex_allbrackets = 0;
2543 PL_lex_fakeeof = LEX_FAKEEOF_NEVER;
2544 PL_lex_casemods = 0;
2545 *PL_lex_casestack = '\0';
2547 if (SvEVALED(PL_lex_repl)) {
2548 PL_lex_state = LEX_INTERPNORMAL;
2550 /* we don't clear PL_lex_repl here, so that we can check later
2551 whether this is an evalled subst; that means we rely on the
2552 logic to ensure sublex_done() is called again only via the
2553 branch (in yylex()) that clears PL_lex_repl, else we'll loop */
2556 PL_lex_state = LEX_INTERPCONCAT;
2559 if (SvTYPE(PL_linestr) >= SVt_PVNV) {
2560 CopLINE(PL_curcop) +=
2561 ((XPVNV*)SvANY(PL_linestr))->xnv_u.xnv_lines
2562 + PL_parser->herelines;
2563 PL_parser->herelines = 0;
2568 const line_t l = CopLINE(PL_curcop);
2570 if (PL_multi_close == '<')
2571 PL_parser->herelines += l - PL_multi_end;
2572 PL_bufend = SvPVX(PL_linestr);
2573 PL_bufend += SvCUR(PL_linestr);
2574 PL_expect = XOPERATOR;
2580 S_get_and_check_backslash_N_name(pTHX_ const char* s, const char* const e)
2582 /* <s> points to first character of interior of \N{}, <e> to one beyond the
2583 * interior, hence to the "}". Finds what the name resolves to, returning
2584 * an SV* containing it; NULL if no valid one found */
2586 SV* res = newSVpvn_flags(s, e - s, UTF ? SVf_UTF8 : 0);
2593 const char* backslash_ptr = s - 3; /* Points to the <\> of \N{... */
2595 PERL_ARGS_ASSERT_GET_AND_CHECK_BACKSLASH_N_NAME;
2598 SvREFCNT_dec_NN(res);
2599 /* diag_listed_as: Unknown charname '%s' */
2600 yyerror("Unknown charname ''");
2604 res = new_constant( NULL, 0, "charnames", res, NULL, backslash_ptr,
2605 /* include the <}> */
2606 e - backslash_ptr + 1);
2608 SvREFCNT_dec_NN(res);
2612 /* See if the charnames handler is the Perl core's, and if so, we can skip
2613 * the validation needed for a user-supplied one, as Perl's does its own
2615 table = GvHV(PL_hintgv); /* ^H */
2616 cvp = hv_fetchs(table, "charnames", FALSE);
2617 if (cvp && (cv = *cvp) && SvROK(cv) && (rv = SvRV(cv),
2618 SvTYPE(rv) == SVt_PVCV) && ((stash = CvSTASH(rv)) != NULL))
2620 const char * const name = HvNAME(stash);
2621 if (HvNAMELEN(stash) == sizeof("_charnames")-1
2622 && strEQ(name, "_charnames")) {
2627 /* Here, it isn't Perl's charname handler. We can't rely on a
2628 * user-supplied handler to validate the input name. For non-ut8 input,
2629 * look to see that the first character is legal. Then loop through the
2630 * rest checking that each is a continuation */
2632 /* This code makes the reasonable assumption that the only Latin1-range
2633 * characters that begin a character name alias are alphabetic, otherwise
2634 * would have to create a isCHARNAME_BEGIN macro */
2637 if (! isALPHAU(*s)) {
2642 if (! isCHARNAME_CONT(*s)) {
2645 if (*s == ' ' && *(s-1) == ' ') {
2652 /* Similarly for utf8. For invariants can check directly; for other
2653 * Latin1, can calculate their code point and check; otherwise use a
2655 if (UTF8_IS_INVARIANT(*s)) {
2656 if (! isALPHAU(*s)) {
2660 } else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
2661 if (! isALPHAU(EIGHT_BIT_UTF8_TO_NATIVE(*s, *(s+1)))) {
2667 if (! PL_utf8_charname_begin) {
2668 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2669 PL_utf8_charname_begin = _core_swash_init("utf8",
2670 "_Perl_Charname_Begin",
2672 1, 0, NULL, &flags);
2674 if (! swash_fetch(PL_utf8_charname_begin, (U8 *) s, TRUE)) {
2681 if (UTF8_IS_INVARIANT(*s)) {
2682 if (! isCHARNAME_CONT(*s)) {
2685 if (*s == ' ' && *(s-1) == ' ') {
2690 else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
2691 if (! isCHARNAME_CONT(EIGHT_BIT_UTF8_TO_NATIVE(*s, *(s+1))))
2698 if (! PL_utf8_charname_continue) {
2699 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2700 PL_utf8_charname_continue = _core_swash_init("utf8",
2701 "_Perl_Charname_Continue",
2703 1, 0, NULL, &flags);
2705 if (! swash_fetch(PL_utf8_charname_continue, (U8 *) s, TRUE)) {
2712 if (*(s-1) == ' ') {
2713 /* diag_listed_as: charnames alias definitions may not contain
2714 trailing white-space; marked by <-- HERE in %s
2718 "charnames alias definitions may not contain trailing "
2719 "white-space; marked by <-- HERE in %.*s<-- HERE %.*s",
2720 (int)(s - backslash_ptr + 1), backslash_ptr,
2721 (int)(e - s + 1), s + 1
2723 UTF ? SVf_UTF8 : 0);
2727 if (SvUTF8(res)) { /* Don't accept malformed input */
2728 const U8* first_bad_char_loc;
2730 const char* const str = SvPV_const(res, len);
2731 if (UNLIKELY(! is_utf8_string_loc((U8 *) str, len,
2732 &first_bad_char_loc)))
2734 _force_out_malformed_utf8_message(first_bad_char_loc,
2735 (U8 *) PL_parser->bufend,
2737 0 /* 0 means don't die */ );
2738 /* diag_listed_as: Malformed UTF-8 returned by \N{%s}
2739 immediately after '%s' */
2742 "Malformed UTF-8 returned by %.*s immediately after '%.*s'",
2743 (int) (e - backslash_ptr + 1), backslash_ptr,
2744 (int) ((char *) first_bad_char_loc - str), str
2755 /* The final %.*s makes sure that should the trailing NUL be missing
2756 * that this print won't run off the end of the string */
2757 /* diag_listed_as: Invalid character in \N{...}; marked by <-- HERE
2761 "Invalid character in \\N{...}; marked by <-- HERE in %.*s<-- HERE %.*s",
2762 (int)(s - backslash_ptr + 1), backslash_ptr,
2763 (int)(e - s + 1), s + 1
2765 UTF ? SVf_UTF8 : 0);
2770 /* diag_listed_as: charnames alias definitions may not contain a
2771 sequence of multiple spaces; marked by <-- HERE
2775 "charnames alias definitions may not contain a sequence of "
2776 "multiple spaces; marked by <-- HERE in %.*s<-- HERE %.*s",
2777 (int)(s - backslash_ptr + 1), backslash_ptr,
2778 (int)(e - s + 1), s + 1
2780 UTF ? SVf_UTF8 : 0);
2787 Extracts the next constant part of a pattern, double-quoted string,
2788 or transliteration. This is terrifying code.
2790 For example, in parsing the double-quoted string "ab\x63$d", it would
2791 stop at the '$' and return an OP_CONST containing 'abc'.
2793 It looks at PL_lex_inwhat and PL_lex_inpat to find out whether it's
2794 processing a pattern (PL_lex_inpat is true), a transliteration
2795 (PL_lex_inwhat == OP_TRANS is true), or a double-quoted string.
2797 Returns a pointer to the character scanned up to. If this is
2798 advanced from the start pointer supplied (i.e. if anything was
2799 successfully parsed), will leave an OP_CONST for the substring scanned
2800 in pl_yylval. Caller must intuit reason for not parsing further
2801 by looking at the next characters herself.
2805 \N{FOO} => \N{U+hex_for_character_FOO}
2806 (if FOO expands to multiple characters, expands to \N{U+xx.XX.yy ...})
2809 all other \-char, including \N and \N{ apart from \N{ABC}
2812 @ and $ where it appears to be a var, but not for $ as tail anchor
2816 In transliterations:
2817 characters are VERY literal, except for - not at the start or end
2818 of the string, which indicates a range. However some backslash sequences
2819 are recognized: \r, \n, and the like
2820 \007 \o{}, \x{}, \N{}
2821 If all elements in the transliteration are below 256,
2822 scan_const expands the range to the full set of intermediate
2823 characters. If the range is in utf8, the hyphen is replaced with
2824 a certain range mark which will be handled by pmtrans() in op.c.
2826 In double-quoted strings:
2828 all those recognized in transliterations
2829 deprecated backrefs: \1 (in substitution replacements)
2830 case and quoting: \U \Q \E
2833 scan_const does *not* construct ops to handle interpolated strings.
2834 It stops processing as soon as it finds an embedded $ or @ variable
2835 and leaves it to the caller to work out what's going on.
2837 embedded arrays (whether in pattern or not) could be:
2838 @foo, @::foo, @'foo, @{foo}, @$foo, @+, @-.
2840 $ in double-quoted strings must be the symbol of an embedded scalar.
2842 $ in pattern could be $foo or could be tail anchor. Assumption:
2843 it's a tail anchor if $ is the last thing in the string, or if it's
2844 followed by one of "()| \r\n\t"
2846 \1 (backreferences) are turned into $1 in substitutions
2848 The structure of the code is
2849 while (there's a character to process) {
2850 handle transliteration ranges
2851 skip regexp comments /(?#comment)/ and codes /(?{code})/
2852 skip #-initiated comments in //x patterns
2853 check for embedded arrays
2854 check for embedded scalars
2856 deprecate \1 in substitution replacements
2857 handle string-changing backslashes \l \U \Q \E, etc.
2858 switch (what was escaped) {
2859 handle \- in a transliteration (becomes a literal -)
2860 if a pattern and not \N{, go treat as regular character
2861 handle \132 (octal characters)
2862 handle \x15 and \x{1234} (hex characters)
2863 handle \N{name} (named characters, also \N{3,5} in a pattern)
2864 handle \cV (control characters)
2865 handle printf-style backslashes (\f, \r, \n, etc)
2868 } (end if backslash)
2869 handle regular character
2870 } (end while character to read)
2875 S_scan_const(pTHX_ char *start)
2877 char *send = PL_bufend; /* end of the constant */
2878 SV *sv = newSV(send - start); /* sv for the constant. See note below
2880 char *s = start; /* start of the constant */
2881 char *d = SvPVX(sv); /* destination for copies */
2882 bool dorange = FALSE; /* are we in a translit range? */
2883 bool didrange = FALSE; /* did we just finish a range? */
2884 bool in_charclass = FALSE; /* within /[...]/ */
2885 bool has_utf8 = FALSE; /* Output constant is UTF8 */
2886 bool this_utf8 = cBOOL(UTF); /* Is the source string assumed to be
2887 UTF8? But, this can show as true
2888 when the source isn't utf8, as for
2889 example when it is entirely composed
2891 STRLEN utf8_variant_count = 0; /* When not in UTF-8, this counts the
2892 number of characters found so far
2893 that will expand (into 2 bytes)
2894 should we have to convert to
2896 SV *res; /* result from charnames */
2897 STRLEN offset_to_max; /* The offset in the output to where the range
2898 high-end character is temporarily placed */
2900 /* Does something require special handling in tr/// ? This avoids extra
2901 * work in a less likely case. As such, khw didn't feel it was worth
2902 * adding any branches to the more mainline code to handle this, which
2903 * means that this doesn't get set in some circumstances when things like
2904 * \x{100} get expanded out. As a result there needs to be extra testing
2905 * done in the tr code */
2906 bool has_above_latin1 = FALSE;
2908 /* Note on sizing: The scanned constant is placed into sv, which is
2909 * initialized by newSV() assuming one byte of output for every byte of
2910 * input. This routine expects newSV() to allocate an extra byte for a
2911 * trailing NUL, which this routine will append if it gets to the end of
2912 * the input. There may be more bytes of input than output (eg., \N{LATIN
2913 * CAPITAL LETTER A}), or more output than input if the constant ends up
2914 * recoded to utf8, but each time a construct is found that might increase
2915 * the needed size, SvGROW() is called. Its size parameter each time is
2916 * based on the best guess estimate at the time, namely the length used so
2917 * far, plus the length the current construct will occupy, plus room for
2918 * the trailing NUL, plus one byte for every input byte still unscanned */
2920 UV uv = UV_MAX; /* Initialize to weird value to try to catch any uses
2923 int backslash_N = 0; /* ? was the character from \N{} */
2924 int non_portable_endpoint = 0; /* ? In a range is an endpoint
2925 platform-specific like \x65 */
2928 PERL_ARGS_ASSERT_SCAN_CONST;
2930 assert(PL_lex_inwhat != OP_TRANSR);
2931 if (PL_lex_inwhat == OP_TRANS && PL_parser->lex_sub_op) {
2932 /* If we are doing a trans and we know we want UTF8 set expectation */
2933 has_utf8 = PL_parser->lex_sub_op->op_private & (OPpTRANS_FROM_UTF|OPpTRANS_TO_UTF);
2934 this_utf8 = PL_parser->lex_sub_op->op_private & (PL_lex_repl ? OPpTRANS_FROM_UTF : OPpTRANS_TO_UTF);
2937 /* Protect sv from errors and fatal warnings. */
2938 ENTER_with_name("scan_const");
2942 || dorange /* Handle tr/// range at right edge of input */
2945 /* get transliterations out of the way (they're most literal) */
2946 if (PL_lex_inwhat == OP_TRANS) {
2948 /* But there isn't any special handling necessary unless there is a
2949 * range, so for most cases we just drop down and handle the value
2950 * as any other. There are two exceptions.
2952 * 1. A hyphen indicates that we are actually going to have a
2953 * range. In this case, skip the '-', set a flag, then drop
2954 * down to handle what should be the end range value.
2955 * 2. After we've handled that value, the next time through, that
2956 * flag is set and we fix up the range.
2958 * Ranges entirely within Latin1 are expanded out entirely, in
2959 * order to make the transliteration a simple table look-up.
2960 * Ranges that extend above Latin1 have to be done differently, so
2961 * there is no advantage to expanding them here, so they are
2962 * stored here as Min, ILLEGAL_UTF8_BYTE, Max. The illegal byte
2963 * signifies a hyphen without any possible ambiguity. On EBCDIC
2964 * machines, if the range is expressed as Unicode, the Latin1
2965 * portion is expanded out even if the range extends above
2966 * Latin1. This is because each code point in it has to be
2967 * processed here individually to get its native translation */
2971 /* Here, we don't think we're in a range. If the new character
2972 * is not a hyphen; or if it is a hyphen, but it's too close to
2973 * either edge to indicate a range, or if we haven't output any
2974 * characters yet then it's a regular character. */
2975 if (*s != '-' || s >= send - 1 || s == start || d == SvPVX(sv)) {
2977 /* A regular character. Process like any other, but first
2978 * clear any flags */
2982 non_portable_endpoint = 0;
2985 /* The tests here for being above Latin1 and similar ones
2986 * in the following 'else' suffice to find all such
2987 * occurences in the constant, except those added by a
2988 * backslash escape sequence, like \x{100}. Mostly, those
2989 * set 'has_above_latin1' as appropriate */
2990 if (this_utf8 && UTF8_IS_ABOVE_LATIN1(*s)) {
2991 has_above_latin1 = TRUE;
2994 /* Drops down to generic code to process current byte */
2996 else { /* Is a '-' in the context where it means a range */
2997 if (didrange) { /* Something like y/A-C-Z// */
2998 Perl_croak(aTHX_ "Ambiguous range in transliteration"
3004 s++; /* Skip past the hyphen */
3006 /* d now points to where the end-range character will be
3007 * placed. Save it so won't have to go finding it later,
3008 * and drop down to get that character. (Actually we
3009 * instead save the offset, to handle the case where a
3010 * realloc in the meantime could change the actual
3011 * pointer). We'll finish processing the range the next
3012 * time through the loop */
3013 offset_to_max = d - SvPVX_const(sv);
3015 if (this_utf8 && UTF8_IS_ABOVE_LATIN1(*s)) {
3016 has_above_latin1 = TRUE;
3019 /* Drops down to generic code to process current byte */
3021 } /* End of not a range */
3023 /* Here we have parsed a range. Now must handle it. At this
3025 * 'sv' is a SV* that contains the output string we are
3026 * constructing. The final two characters in that string
3027 * are the range start and range end, in order.
3028 * 'd' points to just beyond the range end in the 'sv' string,
3029 * where we would next place something
3030 * 'offset_to_max' is the offset in 'sv' at which the character
3031 * (the range's maximum end point) before 'd' begins.
3033 char * max_ptr = SvPVX(sv) + offset_to_max;
3036 IV range_max; /* last character in range */
3038 Size_t offset_to_min = 0;
3041 bool convert_unicode;
3042 IV real_range_max = 0;
3044 /* Get the code point values of the range ends. */
3046 /* We know the utf8 is valid, because we just constructed
3047 * it ourselves in previous loop iterations */
3048 min_ptr = (char*) utf8_hop( (U8*) max_ptr, -1);
3049 range_min = valid_utf8_to_uvchr( (U8*) min_ptr, NULL);
3050 range_max = valid_utf8_to_uvchr( (U8*) max_ptr, NULL);
3052 /* This compensates for not all code setting
3053 * 'has_above_latin1', so that we don't skip stuff that
3054 * should be executed */
3055 if (range_max > 255) {
3056 has_above_latin1 = TRUE;
3060 min_ptr = max_ptr - 1;
3061 range_min = * (U8*) min_ptr;
3062 range_max = * (U8*) max_ptr;
3065 /* If the range is just a single code point, like tr/a-a/.../,
3066 * that code point is already in the output, twice. We can
3067 * just back up over the second instance and avoid all the rest
3068 * of the work. But if it is a variant character, it's been
3069 * counted twice, so decrement. (This unlikely scenario is
3070 * special cased, like the one for a range of 2 code points
3071 * below, only because the main-line code below needs a range
3072 * of 3 or more to work without special casing. Might as well
3073 * get it out of the way now.) */
3074 if (UNLIKELY(range_max == range_min)) {
3076 if (! has_utf8 && ! UVCHR_IS_INVARIANT(range_max)) {
3077 utf8_variant_count--;
3083 /* On EBCDIC platforms, we may have to deal with portable
3084 * ranges. These happen if at least one range endpoint is a
3085 * Unicode value (\N{...}), or if the range is a subset of
3086 * [A-Z] or [a-z], and both ends are literal characters,
3087 * like 'A', and not like \x{C1} */
3089 cBOOL(backslash_N) /* \N{} forces Unicode,
3090 hence portable range */
3091 || ( ! non_portable_endpoint
3092 && (( isLOWER_A(range_min) && isLOWER_A(range_max))
3093 || (isUPPER_A(range_min) && isUPPER_A(range_max))));
3094 if (convert_unicode) {
3096 /* Special handling is needed for these portable ranges.
3097 * They are defined to be in Unicode terms, which includes
3098 * all the Unicode code points between the end points.
3099 * Convert to Unicode to get the Unicode range. Later we
3100 * will convert each code point in the range back to
3102 range_min = NATIVE_TO_UNI(range_min);
3103 range_max = NATIVE_TO_UNI(range_max);
3107 if (range_min > range_max) {
3109 if (convert_unicode) {
3110 /* Need to convert back to native for meaningful
3111 * messages for this platform */
3112 range_min = UNI_TO_NATIVE(range_min);
3113 range_max = UNI_TO_NATIVE(range_max);
3116 /* Use the characters themselves for the error message if
3117 * ASCII printables; otherwise some visible representation
3119 if (isPRINT_A(range_min) && isPRINT_A(range_max)) {
3121 "Invalid range \"%c-%c\" in transliteration operator",
3122 (char)range_min, (char)range_max);
3125 else if (convert_unicode) {
3126 /* diag_listed_as: Invalid range "%s" in transliteration operator */
3128 "Invalid range \"\\N{U+%04" UVXf "}-\\N{U+%04"
3129 UVXf "}\" in transliteration operator",
3130 range_min, range_max);
3134 /* diag_listed_as: Invalid range "%s" in transliteration operator */
3136 "Invalid range \"\\x{%04" UVXf "}-\\x{%04" UVXf "}\""
3137 " in transliteration operator",
3138 range_min, range_max);
3142 /* If the range is exactly two code points long, they are
3143 * already both in the output */
3144 if (UNLIKELY(range_min + 1 == range_max)) {
3148 /* Here the range contains at least 3 code points */
3152 /* If everything in the transliteration is below 256, we
3153 * can avoid special handling later. A translation table
3154 * for each of those bytes is created by op.c. So we
3155 * expand out all ranges to their constituent code points.
3156 * But if we've encountered something above 255, the
3157 * expanding won't help, so skip doing that. But if it's
3158 * EBCDIC, we may have to look at each character below 256
3159 * if we have to convert to/from Unicode values */
3160 if ( has_above_latin1
3162 && (range_min > 255 || ! convert_unicode)
3165 /* Move the high character one byte to the right; then
3166 * insert between it and the range begin, an illegal
3167 * byte which serves to indicate this is a range (using
3168 * a '-' would be ambiguous). */
3170 while (e-- > max_ptr) {
3173 *(e + 1) = (char) ILLEGAL_UTF8_BYTE;
3177 /* Here, we're going to expand out the range. For EBCDIC
3178 * the range can extend above 255 (not so in ASCII), so
3179 * for EBCDIC, split it into the parts above and below
3182 if (range_max > 255) {
3183 real_range_max = range_max;
3189 /* Here we need to expand out the string to contain each
3190 * character in the range. Grow the output to handle this.
3191 * For non-UTF8, we need a byte for each code point in the
3192 * range, minus the three that we've already allocated for: the
3193 * hyphen, the min, and the max. For UTF-8, we need this
3194 * plus an extra byte for each code point that occupies two
3195 * bytes (is variant) when in UTF-8 (except we've already
3196 * allocated for the end points, including if they are
3197 * variants). For ASCII platforms and Unicode ranges on EBCDIC
3198 * platforms, it's easy to calculate a precise number. To
3199 * start, we count the variants in the range, which we need
3200 * elsewhere in this function anyway. (For the case where it
3201 * isn't easy to calculate, 'extras' has been initialized to 0,
3202 * and the calculation is done in a loop further down.) */
3204 if (convert_unicode)
3207 /* This is executed unconditionally on ASCII, and for
3208 * Unicode ranges on EBCDIC. Under these conditions, all
3209 * code points above a certain value are variant; and none
3210 * under that value are. We just need to find out how much
3211 * of the range is above that value. We don't count the
3212 * end points here, as they will already have been counted
3213 * as they were parsed. */
3214 if (range_min >= UTF_CONTINUATION_MARK) {
3216 /* The whole range is made up of variants */
3217 extras = (range_max - 1) - (range_min + 1) + 1;
3219 else if (range_max >= UTF_CONTINUATION_MARK) {
3221 /* Only the higher portion of the range is variants */
3222 extras = (range_max - 1) - UTF_CONTINUATION_MARK + 1;
3225 utf8_variant_count += extras;
3228 /* The base growth is the number of code points in the range,
3229 * not including the endpoints, which have already been sized
3230 * for (and output). We don't subtract for the hyphen, as it
3231 * has been parsed but not output, and the SvGROW below is
3232 * based only on what's been output plus what's left to parse.
3234 grow = (range_max - 1) - (range_min + 1) + 1;
3238 /* In some cases in EBCDIC, we haven't yet calculated a
3239 * precise amount needed for the UTF-8 variants. Just
3240 * assume the worst case, that everything will expand by a
3242 if (! convert_unicode) {
3248 /* Otherwise we know exactly how many variants there
3249 * are in the range. */
3254 /* Grow, but position the output to overwrite the range min end
3255 * point, because in some cases we overwrite that */
3256 SvCUR_set(sv, d - SvPVX_const(sv));
3257 offset_to_min = min_ptr - SvPVX_const(sv);
3259 /* See Note on sizing above. */
3260 d = offset_to_min + SvGROW(sv, SvCUR(sv)
3263 + 1 /* Trailing NUL */ );
3265 /* Now, we can expand out the range. */
3267 if (convert_unicode) {
3270 /* Recall that the min and max are now in Unicode terms, so
3271 * we have to convert each character to its native
3274 for (i = range_min; i <= range_max; i++) {
3275 append_utf8_from_native_byte(
3276 LATIN1_TO_NATIVE((U8) i),
3281 for (i = range_min; i <= range_max; i++) {
3282 *d++ = (char)LATIN1_TO_NATIVE((U8) i);
3288 /* Always gets run for ASCII, and sometimes for EBCDIC. */
3290 /* Here, no conversions are necessary, which means that the
3291 * first character in the range is already in 'd' and
3292 * valid, so we can skip overwriting it */
3296 for (i = range_min + 1; i <= range_max; i++) {
3297 append_utf8_from_native_byte((U8) i, (U8 **) &d);
3303 assert(range_min + 1 <= range_max);
3304 for (i = range_min + 1; i < range_max; i++) {
3306 /* In this case on EBCDIC, we haven't calculated
3307 * the variants. Do it here, as we go along */
3308 if (! UVCHR_IS_INVARIANT(i)) {
3309 utf8_variant_count++;
3315 /* The range_max is done outside the loop so as to
3316 * avoid having to special case not incrementing
3317 * 'utf8_variant_count' on EBCDIC (it's already been
3318 * counted when originally parsed) */
3319 *d++ = (char) range_max;
3324 /* If the original range extended above 255, add in that
3326 if (real_range_max) {
3327 *d++ = (char) UTF8_TWO_BYTE_HI(0x100);
3328 *d++ = (char) UTF8_TWO_BYTE_LO(0x100);
3329 if (real_range_max > 0x100) {
3330 if (real_range_max > 0x101) {
3331 *d++ = (char) ILLEGAL_UTF8_BYTE;
3333 d = (char*)uvchr_to_utf8((U8*)d, real_range_max);
3339 /* mark the range as done, and continue */
3343 non_portable_endpoint = 0;
3347 } /* End of is a range */
3348 } /* End of transliteration. Joins main code after these else's */
3349 else if (*s == '[' && PL_lex_inpat && !in_charclass) {
3352 while (s1 >= start && *s1-- == '\\')
3355 in_charclass = TRUE;
3357 else if (*s == ']' && PL_lex_inpat && in_charclass) {
3360 while (s1 >= start && *s1-- == '\\')
3363 in_charclass = FALSE;
3365 /* skip for regexp comments /(?#comment)/, except for the last
3366 * char, which will be done separately. Stop on (?{..}) and
3368 else if (*s == '(' && PL_lex_inpat && s[1] == '?' && !in_charclass) {
3370 while (s+1 < send && *s != ')')
3373 else if (!PL_lex_casemods
3374 && ( s[2] == '{' /* This should match regcomp.c */
3375 || (s[2] == '?' && s[3] == '{')))
3380 /* likewise skip #-initiated comments in //x patterns */
3384 && ((PMOP*)PL_lex_inpat)->op_pmflags & RXf_PMf_EXTENDED)
3386 while (s < send && *s != '\n')
3389 /* no further processing of single-quoted regex */
3390 else if (PL_lex_inpat && SvIVX(PL_linestr) == '\'')
3391 goto default_action;
3393 /* check for embedded arrays
3394 * (@foo, @::foo, @'foo, @{foo}, @$foo, @+, @-)
3396 else if (*s == '@' && s[1]) {
3398 ? isIDFIRST_utf8_safe(s+1, send)
3399 : isWORDCHAR_A(s[1]))
3403 if (strchr(":'{$", s[1]))
3405 if (!PL_lex_inpat && (s[1] == '+' || s[1] == '-'))
3406 break; /* in regexp, neither @+ nor @- are interpolated */
3408 /* check for embedded scalars. only stop if we're sure it's a
3410 else if (*s == '$') {
3411 if (!PL_lex_inpat) /* not a regexp, so $ must be var */
3413 if (s + 1 < send && !strchr("()| \r\n\t", s[1])) {
3415 Perl_ck_warner(aTHX_ packWARN(WARN_AMBIGUOUS),
3416 "Possible unintended interpolation of $\\ in regex");
3418 break; /* in regexp, $ might be tail anchor */
3422 /* End of else if chain - OP_TRANS rejoin rest */
3424 if (UNLIKELY(s >= send)) {
3430 if (*s == '\\' && s+1 < send) {
3431 char* e; /* Can be used for ending '}', etc. */
3435 /* warn on \1 - \9 in substitution replacements, but note that \11
3436 * is an octal; and \19 is \1 followed by '9' */
3437 if (PL_lex_inwhat == OP_SUBST
3443 /* diag_listed_as: \%d better written as $%d */
3444 Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX), "\\%c better written as $%c", *s, *s);
3449 /* string-change backslash escapes */
3450 if (PL_lex_inwhat != OP_TRANS && *s && strchr("lLuUEQF", *s)) {
3454 /* In a pattern, process \N, but skip any other backslash escapes.
3455 * This is because we don't want to translate an escape sequence
3456 * into a meta symbol and have the regex compiler use the meta
3457 * symbol meaning, e.g. \x{2E} would be confused with a dot. But
3458 * in spite of this, we do have to process \N here while the proper
3459 * charnames handler is in scope. See bugs #56444 and #62056.
3461 * There is a complication because \N in a pattern may also stand
3462 * for 'match a non-nl', and not mean a charname, in which case its
3463 * processing should be deferred to the regex compiler. To be a
3464 * charname it must be followed immediately by a '{', and not look
3465 * like \N followed by a curly quantifier, i.e., not something like
3466 * \N{3,}. regcurly returns a boolean indicating if it is a legal
3468 else if (PL_lex_inpat
3471 || regcurly(s + 1)))
3474 goto default_action;
3480 if ((isALPHANUMERIC(*s)))
3481 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
3482 "Unrecognized escape \\%c passed through",
3484 /* default action is to copy the quoted character */
3485 goto default_action;
3488 /* eg. \132 indicates the octal constant 0132 */
3489 case '0': case '1': case '2': case '3':
3490 case '4': case '5': case '6': case '7':
3492 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
3494 uv = grok_oct(s, &len, &flags, NULL);
3496 if (len < 3 && s < send && isDIGIT(*s)
3497 && ckWARN(WARN_MISC))
3499 Perl_warner(aTHX_ packWARN(WARN_MISC),
3500 "%s", form_short_octal_warning(s, len));
3503 goto NUM_ESCAPE_INSERT;
3505 /* eg. \o{24} indicates the octal constant \024 */
3510 bool valid = grok_bslash_o(&s, &uv, &error,
3511 TRUE, /* Output warning */
3512 FALSE, /* Not strict */
3513 TRUE, /* Output warnings for
3518 uv = 0; /* drop through to ensure range ends are set */
3520 goto NUM_ESCAPE_INSERT;
3523 /* eg. \x24 indicates the hex constant 0x24 */
3528 bool valid = grok_bslash_x(&s, &uv, &error,
3529 TRUE, /* Output warning */
3530 FALSE, /* Not strict */
3531 TRUE, /* Output warnings for
3536 uv = 0; /* drop through to ensure range ends are set */
3541 /* Insert oct or hex escaped character. */
3543 /* Here uv is the ordinal of the next character being added */
3544 if (UVCHR_IS_INVARIANT(uv)) {
3548 if (!has_utf8 && uv > 255) {
3550 /* Here, 'uv' won't fit unless we convert to UTF-8.
3551 * If we've only seen invariants so far, all we have to
3552 * do is turn on the flag */
3553 if (utf8_variant_count == 0) {
3557 SvCUR_set(sv, d - SvPVX_const(sv));
3561 sv_utf8_upgrade_flags_grow(
3563 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3565 /* Since we're having to grow here,
3566 * make sure we have enough room for
3567 * this escape and a NUL, so the
3568 * code immediately below won't have
3569 * to actually grow again */
3571 + (STRLEN)(send - s) + 1);
3572 d = SvPVX(sv) + SvCUR(sv);
3575 has_above_latin1 = TRUE;
3581 utf8_variant_count++;
3584 /* Usually, there will already be enough room in 'sv'
3585 * since such escapes are likely longer than any UTF-8
3586 * sequence they can end up as. This isn't the case on
3587 * EBCDIC where \x{40000000} contains 12 bytes, and the
3588 * UTF-8 for it contains 14. And, we have to allow for
3589 * a trailing NUL. It probably can't happen on ASCII
3590 * platforms, but be safe. See Note on sizing above. */
3591 const STRLEN needed = d - SvPVX(sv)
3595 if (UNLIKELY(needed > SvLEN(sv))) {
3596 SvCUR_set(sv, d - SvPVX_const(sv));
3597 d = SvCUR(sv) + SvGROW(sv, needed);
3600 d = (char*)uvchr_to_utf8((U8*)d, uv);
3601 if (PL_lex_inwhat == OP_TRANS
3602 && PL_parser->lex_sub_op)
3604 PL_parser->lex_sub_op->op_private |=
3605 (PL_lex_repl ? OPpTRANS_FROM_UTF
3611 non_portable_endpoint++;
3616 /* In a non-pattern \N must be like \N{U+0041}, or it can be a
3617 * named character, like \N{LATIN SMALL LETTER A}, or a named
3618 * sequence, like \N{LATIN CAPITAL LETTER A WITH MACRON AND
3619 * GRAVE} (except y/// can't handle the latter, croaking). For
3620 * convenience all three forms are referred to as "named
3621 * characters" below.
3623 * For patterns, \N also can mean to match a non-newline. Code
3624 * before this 'switch' statement should already have handled
3625 * this situation, and hence this code only has to deal with
3626 * the named character cases.
3628 * For non-patterns, the named characters are converted to
3629 * their string equivalents. In patterns, named characters are
3630 * not converted to their ultimate forms for the same reasons
3631 * that other escapes aren't (mainly that the ultimate
3632 * character could be considered a meta-symbol by the regex
3633 * compiler). Instead, they are converted to the \N{U+...}
3634 * form to get the value from the charnames that is in effect
3635 * right now, while preserving the fact that it was a named
3636 * character, so that the regex compiler knows this.
3638 * The structure of this section of code (besides checking for
3639 * errors and upgrading to utf8) is:
3640 * If the named character is of the form \N{U+...}, pass it
3641 * through if a pattern; otherwise convert the code point
3643 * Otherwise must be some \N{NAME}: convert to
3644 * \N{U+c1.c2...} if a pattern; otherwise convert to utf8
3646 * Transliteration is an exception. The conversion to utf8 is
3647 * only done if the code point requires it to be representable.
3649 * Here, 's' points to the 'N'; the test below is guaranteed to
3650 * succeed if we are being called on a pattern, as we already
3651 * know from a test above that the next character is a '{'. A
3652 * non-pattern \N must mean 'named character', which requires
3656 yyerror("Missing braces on \\N{}");
3662 /* If there is no matching '}', it is an error. */
3663 if (! (e = strchr(s, '}'))) {
3664 if (! PL_lex_inpat) {
3665 yyerror("Missing right brace on \\N{}");
3667 yyerror("Missing right brace on \\N{} or unescaped left brace after \\N");
3669 yyquit(); /* Have exhausted the input. */
3672 /* Here it looks like a named character */
3674 if (*s == 'U' && s[1] == '+') { /* \N{U+...} */
3675 s += 2; /* Skip to next char after the 'U+' */
3678 /* In patterns, we can have \N{U+xxxx.yyyy.zzzz...} */
3679 /* Check the syntax. */
3682 if (!isXDIGIT(*s)) {
3685 "Invalid hexadecimal number in \\N{U+...}"
3694 else if ((*s == '.' || *s == '_')
3700 /* Pass everything through unchanged.
3701 * +1 is for the '}' */
3702 Copy(orig_s, d, e - orig_s + 1, char);
3703 d += e - orig_s + 1;
3705 else { /* Not a pattern: convert the hex to string */
3706 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
3707 | PERL_SCAN_SILENT_ILLDIGIT
3708 | PERL_SCAN_DISALLOW_PREFIX;
3710 uv = grok_hex(s, &len, &flags, NULL);
3711 if (len == 0 || (len != (STRLEN)(e - s)))
3714 /* For non-tr///, if the destination is not in utf8,
3715 * unconditionally recode it to be so. This is
3716 * because \N{} implies Unicode semantics, and scalars
3717 * have to be in utf8 to guarantee those semantics.
3718 * tr/// doesn't care about Unicode rules, so no need
3719 * there to upgrade to UTF-8 for small enough code
3721 if (! has_utf8 && ( uv > 0xFF
3722 || PL_lex_inwhat != OP_TRANS))
3724 /* See Note on sizing above. */
3725 const STRLEN extra = OFFUNISKIP(uv) + (send - e) + 1;
3727 SvCUR_set(sv, d - SvPVX_const(sv));
3731 if (utf8_variant_count == 0) {
3733 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + extra);
3736 sv_utf8_upgrade_flags_grow(
3738 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3740 d = SvPVX(sv) + SvCUR(sv);
3744 has_above_latin1 = TRUE;
3747 /* Add the (Unicode) code point to the output. */
3748 if (! has_utf8 || OFFUNI_IS_INVARIANT(uv)) {
3749 *d++ = (char) LATIN1_TO_NATIVE(uv);
3752 d = (char*) uvoffuni_to_utf8_flags((U8*)d, uv, 0);
3756 else /* Here is \N{NAME} but not \N{U+...}. */
3757 if ((res = get_and_check_backslash_N_name(s, e)))
3760 const char *str = SvPV_const(res, len);
3763 if (! len) { /* The name resolved to an empty string */
3764 Copy("\\N{}", d, 4, char);
3768 /* In order to not lose information for the regex
3769 * compiler, pass the result in the specially made
3770 * syntax: \N{U+c1.c2.c3...}, where c1 etc. are
3771 * the code points in hex of each character
3772 * returned by charnames */
3774 const char *str_end = str + len;
3775 const STRLEN off = d - SvPVX_const(sv);
3777 if (! SvUTF8(res)) {
3778 /* For the non-UTF-8 case, we can determine the
3779 * exact length needed without having to parse
3780 * through the string. Each character takes up
3781 * 2 hex digits plus either a trailing dot or
3783 const char initial_text[] = "\\N{U+";
3784 const STRLEN initial_len = sizeof(initial_text)
3786 d = off + SvGROW(sv, off
3789 /* +1 for trailing NUL */
3792 + (STRLEN)(send - e));
3793 Copy(initial_text, d, initial_len, char);
3795 while (str < str_end) {
3798 my_snprintf(hex_string,
3802 /* The regex compiler is
3803 * expecting Unicode, not
3805 NATIVE_TO_LATIN1(*str));
3806 PERL_MY_SNPRINTF_POST_GUARD(len,
3807 sizeof(hex_string));
3808 Copy(hex_string, d, 3, char);
3812 d--; /* Below, we will overwrite the final
3813 dot with a right brace */
3816 STRLEN char_length; /* cur char's byte length */
3818 /* and the number of bytes after this is
3819 * translated into hex digits */
3820 STRLEN output_length;
3822 /* 2 hex per byte; 2 chars for '\N'; 2 chars
3823 * for max('U+', '.'); and 1 for NUL */
3824 char hex_string[2 * UTF8_MAXBYTES + 5];
3826 /* Get the first character of the result. */
3827 U32 uv = utf8n_to_uvchr((U8 *) str,
3831 /* Convert first code point to Unicode hex,
3832 * including the boiler plate before it. */
3834 my_snprintf(hex_string, sizeof(hex_string),
3836 (unsigned int) NATIVE_TO_UNI(uv));
3838 /* Make sure there is enough space to hold it */
3839 d = off + SvGROW(sv, off
3841 + (STRLEN)(send - e)
3842 + 2); /* '}' + NUL */
3844 Copy(hex_string, d, output_length, char);
3847 /* For each subsequent character, append dot and
3848 * its Unicode code point in hex */
3849 while ((str += char_length) < str_end) {
3850 const STRLEN off = d - SvPVX_const(sv);
3851 U32 uv = utf8n_to_uvchr((U8 *) str,
3856 my_snprintf(hex_string,
3859 (unsigned int) NATIVE_TO_UNI(uv));
3861 d = off + SvGROW(sv, off
3863 + (STRLEN)(send - e)
3864 + 2); /* '}' + NUL */
3865 Copy(hex_string, d, output_length, char);
3870 *d++ = '}'; /* Done. Add the trailing brace */
3873 else { /* Here, not in a pattern. Convert the name to a
3876 if (PL_lex_inwhat == OP_TRANS) {
3877 str = SvPV_const(res, len);
3878 if (len > ((SvUTF8(res))
3882 yyerror(Perl_form(aTHX_
3883 "%.*s must not be a named sequence"
3884 " in transliteration operator",
3885 /* +1 to include the "}" */
3886 (int) (e + 1 - start), start));
3888 goto end_backslash_N;
3891 if (SvUTF8(res) && UTF8_IS_ABOVE_LATIN1(*str)) {
3892 has_above_latin1 = TRUE;
3896 else if (! SvUTF8(res)) {
3897 /* Make sure \N{} return is UTF-8. This is because
3898 * \N{} implies Unicode semantics, and scalars have
3899 * to be in utf8 to guarantee those semantics; but
3900 * not needed in tr/// */
3901 sv_utf8_upgrade_flags(res, 0);
3902 str = SvPV_const(res, len);
3905 /* Upgrade destination to be utf8 if this new
3907 if (! has_utf8 && SvUTF8(res)) {
3908 /* See Note on sizing above. */
3909 const STRLEN extra = len + (send - s) + 1;
3911 SvCUR_set(sv, d - SvPVX_const(sv));
3915 if (utf8_variant_count == 0) {
3917 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + extra);
3920 sv_utf8_upgrade_flags_grow(sv,
3921 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3923 d = SvPVX(sv) + SvCUR(sv);
3926 } else if (len > (STRLEN)(e - s + 4)) { /* I _guess_ 4 is \N{} --jhi */
3928 /* See Note on sizing above. (NOTE: SvCUR() is not
3929 * set correctly here). */
3930 const STRLEN extra = len + (send - e) + 1;
3931 const STRLEN off = d - SvPVX_const(sv);
3932 d = off + SvGROW(sv, off + extra);
3934 Copy(str, d, len, char);
3940 } /* End \N{NAME} */
3944 backslash_N++; /* \N{} is defined to be Unicode */
3946 s = e + 1; /* Point to just after the '}' */
3949 /* \c is a control character */
3953 *d++ = grok_bslash_c(*s, 1);
3956 yyerror("Missing control char name in \\c");
3957 yyquit(); /* Are at end of input, no sense continuing */
3960 non_portable_endpoint++;
3964 /* printf-style backslashes, formfeeds, newlines, etc */
3990 } /* end if (backslash) */
3993 /* Just copy the input to the output, though we may have to convert
3996 * If the input has the same representation in UTF-8 as not, it will be
3997 * a single byte, and we don't care about UTF8ness; just copy the byte */
3998 if (NATIVE_BYTE_IS_INVARIANT((U8)(*s))) {
4001 else if (! this_utf8 && ! has_utf8) {
4002 /* If neither source nor output is UTF-8, is also a single byte,
4003 * just copy it; but this byte counts should we later have to
4004 * convert to UTF-8 */
4006 utf8_variant_count++;
4008 else if (this_utf8 && has_utf8) { /* Both UTF-8, can just copy */
4009 const STRLEN len = UTF8SKIP(s);
4011 /* We expect the source to have already been checked for
4013 assert(isUTF8_CHAR((U8 *) s, (U8 *) send));
4015 Copy(s, d, len, U8);
4019 else { /* UTF8ness matters and doesn't match, need to convert */
4021 const UV nextuv = (this_utf8)
4022 ? utf8n_to_uvchr((U8*)s, send - s, &len, 0)
4024 STRLEN need = UVCHR_SKIP(nextuv);
4027 SvCUR_set(sv, d - SvPVX_const(sv));
4031 /* See Note on sizing above. */
4032 need += (STRLEN)(send - s) + 1;
4034 if (utf8_variant_count == 0) {
4036 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + need);
4039 sv_utf8_upgrade_flags_grow(sv,
4040 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
4042 d = SvPVX(sv) + SvCUR(sv);
4045 } else if (need > len) {
4046 /* encoded value larger than old, may need extra space (NOTE:
4047 * SvCUR() is not set correctly here). See Note on sizing
4049 const STRLEN extra = need + (send - s) + 1;
4050 const STRLEN off = d - SvPVX_const(sv);
4051 d = off + SvGROW(sv, off + extra);
4055 d = (char*)uvchr_to_utf8((U8*)d, nextuv);
4057 } /* while loop to process each character */
4059 /* terminate the string and set up the sv */
4061 SvCUR_set(sv, d - SvPVX_const(sv));
4062 if (SvCUR(sv) >= SvLEN(sv))
4063 Perl_croak(aTHX_ "panic: constant overflowed allocated space, %" UVuf
4064 " >= %" UVuf, (UV)SvCUR(sv), (UV)SvLEN(sv));
4069 if (PL_lex_inwhat == OP_TRANS && PL_parser->lex_sub_op) {
4070 PL_parser->lex_sub_op->op_private |=
4071 (PL_lex_repl ? OPpTRANS_FROM_UTF : OPpTRANS_TO_UTF);
4075 /* shrink the sv if we allocated more than we used */
4076 if (SvCUR(sv) + 5 < SvLEN(sv)) {
4077 SvPV_shrink_to_cur(sv);
4080 /* return the substring (via pl_yylval) only if we parsed anything */
4083 for (; s2 < s; s2++) {
4085 COPLINE_INC_WITH_HERELINES;
4087 SvREFCNT_inc_simple_void_NN(sv);
4088 if ( (PL_hints & ( PL_lex_inpat ? HINT_NEW_RE : HINT_NEW_STRING ))
4089 && ! PL_parser->lex_re_reparsing)
4091 const char *const key = PL_lex_inpat ? "qr" : "q";
4092 const STRLEN keylen = PL_lex_inpat ? 2 : 1;
4096 if (PL_lex_inwhat == OP_TRANS) {
4099 } else if (PL_lex_inwhat == OP_SUBST && !PL_lex_inpat) {
4102 } else if (PL_lex_inpat && SvIVX(PL_linestr) == '\'') {
4110 sv = S_new_constant(aTHX_ start, s - start, key, keylen, sv, NULL,
4113 pl_yylval.opval = newSVOP(OP_CONST, 0, sv);
4115 LEAVE_with_name("scan_const");
4120 * Returns TRUE if there's more to the expression (e.g., a subscript),
4123 * It deals with "$foo[3]" and /$foo[3]/ and /$foo[0123456789$]+/
4125 * ->[ and ->{ return TRUE
4126 * ->$* ->$#* ->@* ->@[ ->@{ return TRUE if postderef_qq is enabled
4127 * { and [ outside a pattern are always subscripts, so return TRUE
4128 * if we're outside a pattern and it's not { or [, then return FALSE
4129 * if we're in a pattern and the first char is a {
4130 * {4,5} (any digits around the comma) returns FALSE
4131 * if we're in a pattern and the first char is a [
4133 * [SOMETHING] has a funky algorithm to decide whether it's a
4134 * character class or not. It has to deal with things like
4135 * /$foo[-3]/ and /$foo[$bar]/ as well as /$foo[$\d]+/
4136 * anything else returns TRUE
4139 /* This is the one truly awful dwimmer necessary to conflate C and sed. */
4142 S_intuit_more(pTHX_ char *s)
4144 PERL_ARGS_ASSERT_INTUIT_MORE;
4146 if (PL_lex_brackets)
4148 if (*s == '-' && s[1] == '>' && (s[2] == '[' || s[2] == '{'))
4150 if (*s == '-' && s[1] == '>'
4151 && FEATURE_POSTDEREF_QQ_IS_ENABLED
4152 && ( (s[2] == '$' && (s[3] == '*' || (s[3] == '#' && s[4] == '*')))
4153 ||(s[2] == '@' && strchr("*[{",s[3])) ))
4155 if (*s != '{' && *s != '[')
4160 /* In a pattern, so maybe we have {n,m}. */
4168 /* On the other hand, maybe we have a character class */
4171 if (*s == ']' || *s == '^')
4174 /* this is terrifying, and it works */
4177 const char * const send = strchr(s,']');
4178 unsigned char un_char, last_un_char;
4179 char tmpbuf[sizeof PL_tokenbuf * 4];
4181 if (!send) /* has to be an expression */
4183 weight = 2; /* let's weigh the evidence */
4187 else if (isDIGIT(*s)) {
4189 if (isDIGIT(s[1]) && s[2] == ']')
4195 Zero(seen,256,char);
4197 for (; s < send; s++) {
4198 last_un_char = un_char;
4199 un_char = (unsigned char)*s;
4204 weight -= seen[un_char] * 10;
4205 if (isWORDCHAR_lazy_if_safe(s+1, PL_bufend, UTF)) {
4207 scan_ident(s, tmpbuf, sizeof tmpbuf, FALSE);
4208 len = (int)strlen(tmpbuf);
4209 if (len > 1 && gv_fetchpvn_flags(tmpbuf, len,
4210 UTF ? SVf_UTF8 : 0, SVt_PV))
4217 && strchr("[#!%*<>()-=",s[1]))
4219 if (/*{*/ strchr("])} =",s[2]))
4228 if (strchr("wds]",s[1]))
4230 else if (seen[(U8)'\''] || seen[(U8)'"'])
4232 else if (strchr("rnftbxcav",s[1]))
4234 else if (isDIGIT(s[1])) {
4236 while (s[1] && isDIGIT(s[1]))
4246 if (strchr("aA01! ",last_un_char))
4248 if (strchr("zZ79~",s[1]))
4250 if (last_un_char == 255 && (isDIGIT(s[1]) || s[1] == '$'))
4251 weight -= 5; /* cope with negative subscript */
4254 if (!isWORDCHAR(last_un_char)