5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 EXTERN_C const struct regexp_engine my_reg_engine;
89 #include "dquote_inline.h"
90 #include "invlist_inline.h"
91 #include "unicode_constants.h"
93 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
94 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
96 _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
97 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
98 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
101 #define STATIC static
104 /* this is a chain of data about sub patterns we are processing that
105 need to be handled separately/specially in study_chunk. Its so
106 we can simulate recursion without losing state. */
108 typedef struct scan_frame {
109 regnode *last_regnode; /* last node to process in this frame */
110 regnode *next_regnode; /* next node to process when last is reached */
111 U32 prev_recursed_depth;
112 I32 stopparen; /* what stopparen do we use */
114 struct scan_frame *this_prev_frame; /* this previous frame */
115 struct scan_frame *prev_frame; /* previous frame */
116 struct scan_frame *next_frame; /* next frame */
119 /* Certain characters are output as a sequence with the first being a
121 #define isBACKSLASHED_PUNCT(c) strchr("-[]\\^", c)
124 struct RExC_state_t {
125 U32 flags; /* RXf_* are we folding, multilining? */
126 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
127 char *precomp; /* uncompiled string. */
128 char *precomp_end; /* pointer to end of uncompiled string. */
129 REGEXP *rx_sv; /* The SV that is the regexp. */
130 regexp *rx; /* perl core regexp structure */
131 regexp_internal *rxi; /* internal data for regexp object
133 char *start; /* Start of input for compile */
134 char *end; /* End of input for compile */
135 char *parse; /* Input-scan pointer. */
136 char *copy_start; /* start of copy of input within
137 constructed parse string */
138 char *copy_start_in_input; /* Position in input string
139 corresponding to copy_start */
140 SSize_t whilem_seen; /* number of WHILEM in this expr */
141 regnode *emit_start; /* Start of emitted-code area */
142 regnode *emit_bound; /* First regnode outside of the
144 regnode_offset emit; /* Code-emit pointer */
145 I32 naughty; /* How bad is this pattern? */
146 I32 sawback; /* Did we see \1, ...? */
148 SSize_t size; /* Number of regnode equivalents in
150 I32 npar; /* Capture buffer count, (OPEN) plus
151 one. ("par" 0 is the whole
153 I32 nestroot; /* root parens we are in - used by
157 regnode_offset *open_parens; /* offsets to open parens */
158 regnode_offset *close_parens; /* offsets to close parens */
159 regnode *end_op; /* END node in program */
160 I32 utf8; /* whether the pattern is utf8 or not */
161 I32 orig_utf8; /* whether the pattern was originally in utf8 */
162 /* XXX use this for future optimisation of case
163 * where pattern must be upgraded to utf8. */
164 I32 uni_semantics; /* If a d charset modifier should use unicode
165 rules, even if the pattern is not in
167 HV *paren_names; /* Paren names */
169 regnode **recurse; /* Recurse regops */
170 I32 recurse_count; /* Number of recurse regops we have generated */
171 U8 *study_chunk_recursed; /* bitmap of which subs we have moved
173 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
176 I32 override_recoding;
178 I32 recode_x_to_native;
180 I32 in_multi_char_class;
181 struct reg_code_blocks *code_blocks;/* positions of literal (?{})
183 int code_index; /* next code_blocks[] slot */
184 SSize_t maxlen; /* mininum possible number of chars in string to match */
185 scan_frame *frame_head;
186 scan_frame *frame_last;
189 #ifdef ADD_TO_REGEXEC
190 char *starttry; /* -Dr: where regtry was called. */
191 #define RExC_starttry (pRExC_state->starttry)
193 SV *runtime_code_qr; /* qr with the runtime code blocks */
195 const char *lastparse;
197 AV *paren_name_list; /* idx -> name */
198 U32 study_chunk_recursed_count;
202 #define RExC_lastparse (pRExC_state->lastparse)
203 #define RExC_lastnum (pRExC_state->lastnum)
204 #define RExC_paren_name_list (pRExC_state->paren_name_list)
205 #define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
206 #define RExC_mysv (pRExC_state->mysv1)
207 #define RExC_mysv1 (pRExC_state->mysv1)
208 #define RExC_mysv2 (pRExC_state->mysv2)
211 bool seen_unfolded_sharp_s;
218 #define RExC_flags (pRExC_state->flags)
219 #define RExC_pm_flags (pRExC_state->pm_flags)
220 #define RExC_precomp (pRExC_state->precomp)
221 #define RExC_copy_start_in_input (pRExC_state->copy_start_in_input)
222 #define RExC_copy_start_in_constructed (pRExC_state->copy_start)
223 #define RExC_precomp_end (pRExC_state->precomp_end)
224 #define RExC_rx_sv (pRExC_state->rx_sv)
225 #define RExC_rx (pRExC_state->rx)
226 #define RExC_rxi (pRExC_state->rxi)
227 #define RExC_start (pRExC_state->start)
228 #define RExC_end (pRExC_state->end)
229 #define RExC_parse (pRExC_state->parse)
230 #define RExC_whilem_seen (pRExC_state->whilem_seen)
232 /* Set during the sizing pass when there is a LATIN SMALL LETTER SHARP S in any
233 * EXACTF node, hence was parsed under /di rules. If later in the parse,
234 * something forces the pattern into using /ui rules, the sharp s should be
235 * folded into the sequence 'ss', which takes up more space than previously
236 * calculated. This means that the sizing pass needs to be restarted. (The
237 * node also becomes an EXACTFU_SS.) For all other characters, an EXACTF node
238 * that gets converted to /ui (and EXACTFU) occupies the same amount of space,
239 * so there is no need to resize [perl #125990]. */
240 #define RExC_seen_unfolded_sharp_s (pRExC_state->seen_unfolded_sharp_s)
242 #ifdef RE_TRACK_PATTERN_OFFSETS
243 # define RExC_offsets (RExC_rxi->u.offsets) /* I am not like the
246 #define RExC_emit (pRExC_state->emit)
247 #define RExC_pass1 (pRExC_state->pass1)
248 #define RExC_emit_start (pRExC_state->emit_start)
249 #define RExC_emit_bound (pRExC_state->emit_bound)
250 #define RExC_sawback (pRExC_state->sawback)
251 #define RExC_seen (pRExC_state->seen)
252 #define RExC_size (pRExC_state->size)
253 #define RExC_maxlen (pRExC_state->maxlen)
254 #define RExC_npar (pRExC_state->npar)
255 #define RExC_nestroot (pRExC_state->nestroot)
256 #define RExC_extralen (pRExC_state->extralen)
257 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
258 #define RExC_utf8 (pRExC_state->utf8)
259 #define RExC_uni_semantics (pRExC_state->uni_semantics)
260 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
261 #define RExC_open_parens (pRExC_state->open_parens)
262 #define RExC_close_parens (pRExC_state->close_parens)
263 #define RExC_end_op (pRExC_state->end_op)
264 #define RExC_paren_names (pRExC_state->paren_names)
265 #define RExC_recurse (pRExC_state->recurse)
266 #define RExC_recurse_count (pRExC_state->recurse_count)
267 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
268 #define RExC_study_chunk_recursed_bytes \
269 (pRExC_state->study_chunk_recursed_bytes)
270 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
271 #define RExC_contains_locale (pRExC_state->contains_locale)
273 # define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
275 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
276 #define RExC_frame_head (pRExC_state->frame_head)
277 #define RExC_frame_last (pRExC_state->frame_last)
278 #define RExC_frame_count (pRExC_state->frame_count)
279 #define RExC_strict (pRExC_state->strict)
280 #define RExC_study_started (pRExC_state->study_started)
281 #define RExC_warn_text (pRExC_state->warn_text)
282 #define RExC_in_script_run (pRExC_state->in_script_run)
284 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
285 * a flag to disable back-off on the fixed/floating substrings - if it's
286 * a high complexity pattern we assume the benefit of avoiding a full match
287 * is worth the cost of checking for the substrings even if they rarely help.
289 #define RExC_naughty (pRExC_state->naughty)
290 #define TOO_NAUGHTY (10)
291 #define MARK_NAUGHTY(add) \
292 if (RExC_naughty < TOO_NAUGHTY) \
293 RExC_naughty += (add)
294 #define MARK_NAUGHTY_EXP(exp, add) \
295 if (RExC_naughty < TOO_NAUGHTY) \
296 RExC_naughty += RExC_naughty / (exp) + (add)
298 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
299 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
300 ((*s) == '{' && regcurly(s)))
303 * Flags to be passed up and down.
305 #define WORST 0 /* Worst case. */
306 #define HASWIDTH 0x01 /* Known to match non-null strings. */
308 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
309 * character. (There needs to be a case: in the switch statement in regexec.c
310 * for any node marked SIMPLE.) Note that this is not the same thing as
313 #define SPSTART 0x04 /* Starts with * or + */
314 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
315 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
316 #define RESTART_PASS1 0x20 /* Need to restart sizing pass */
317 #define NEED_UTF8 0x40 /* In conjunction with RESTART_PASS1, need to
318 calculate sizes as UTF-8 */
320 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
322 /* whether trie related optimizations are enabled */
323 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
324 #define TRIE_STUDY_OPT
325 #define FULL_TRIE_STUDY
331 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
332 #define PBITVAL(paren) (1 << ((paren) & 7))
333 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
334 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
335 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
337 #define REQUIRE_UTF8(flagp) STMT_START { \
340 *flagp = RESTART_PASS1|NEED_UTF8; \
345 /* Change from /d into /u rules, and restart the parse if we've already seen
346 * something whose size would increase as a result, by setting *flagp and
347 * returning 'restart_retval'. RExC_uni_semantics is a flag that indicates
348 * we've changed to /u during the parse. */
349 #define REQUIRE_UNI_RULES(flagp, restart_retval) \
351 if (DEPENDS_SEMANTICS) { \
353 set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET); \
354 RExC_uni_semantics = 1; \
355 if (RExC_seen_unfolded_sharp_s) { \
356 *flagp |= RESTART_PASS1; \
357 return restart_retval; \
362 /* Executes a return statement with the value 'X', if 'flags' contains any of
363 * 'RESTART_PASS1', 'NEED_UTF8', or 'extra'. If so, *flagp is set to those
365 #define RETURN_X_ON_RESTART_OR_FLAGS(X, flags, flagp, extra) \
367 if ((flags) & (RESTART_PASS1|NEED_UTF8|(extra))) { \
368 *(flagp) = (flags) & (RESTART_PASS1|NEED_UTF8|(extra)); \
373 #define RETURN_FAIL_ON_RESTART_OR_FLAGS(flags,flagp,extra) \
374 RETURN_X_ON_RESTART_OR_FLAGS(0,flags,flagp,extra)
376 #define RETURN_X_ON_RESTART(X, flags,flagp) \
377 RETURN_X_ON_RESTART_OR_FLAGS( X, flags, flagp, 0)
380 #define RETURN_FAIL_ON_RESTART_FLAGP_OR_FLAGS(flagp,extra) \
381 if (*(flagp) & (RESTART_PASS1|(extra))) return 0
383 #define MUST_RESTART(flags) ((flags) & (RESTART_PASS1))
385 #define RETURN_FAIL_ON_RESTART(flags,flagp) \
386 RETURN_X_ON_RESTART(0, flags,flagp)
387 #define RETURN_FAIL_ON_RESTART_FLAGP(flagp) \
388 RETURN_FAIL_ON_RESTART_FLAGP_OR_FLAGS(flagp, 0)
390 /* This converts the named class defined in regcomp.h to its equivalent class
391 * number defined in handy.h. */
392 #define namedclass_to_classnum(class) ((int) ((class) / 2))
393 #define classnum_to_namedclass(classnum) ((classnum) * 2)
395 #define _invlist_union_complement_2nd(a, b, output) \
396 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
397 #define _invlist_intersection_complement_2nd(a, b, output) \
398 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
400 /* About scan_data_t.
402 During optimisation we recurse through the regexp program performing
403 various inplace (keyhole style) optimisations. In addition study_chunk
404 and scan_commit populate this data structure with information about
405 what strings MUST appear in the pattern. We look for the longest
406 string that must appear at a fixed location, and we look for the
407 longest string that may appear at a floating location. So for instance
412 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
413 strings (because they follow a .* construct). study_chunk will identify
414 both FOO and BAR as being the longest fixed and floating strings respectively.
416 The strings can be composites, for instance
420 will result in a composite fixed substring 'foo'.
422 For each string some basic information is maintained:
425 This is the position the string must appear at, or not before.
426 It also implicitly (when combined with minlenp) tells us how many
427 characters must match before the string we are searching for.
428 Likewise when combined with minlenp and the length of the string it
429 tells us how many characters must appear after the string we have
433 Only used for floating strings. This is the rightmost point that
434 the string can appear at. If set to SSize_t_MAX it indicates that the
435 string can occur infinitely far to the right.
436 For fixed strings, it is equal to min_offset.
439 A pointer to the minimum number of characters of the pattern that the
440 string was found inside. This is important as in the case of positive
441 lookahead or positive lookbehind we can have multiple patterns
446 The minimum length of the pattern overall is 3, the minimum length
447 of the lookahead part is 3, but the minimum length of the part that
448 will actually match is 1. So 'FOO's minimum length is 3, but the
449 minimum length for the F is 1. This is important as the minimum length
450 is used to determine offsets in front of and behind the string being
451 looked for. Since strings can be composites this is the length of the
452 pattern at the time it was committed with a scan_commit. Note that
453 the length is calculated by study_chunk, so that the minimum lengths
454 are not known until the full pattern has been compiled, thus the
455 pointer to the value.
459 In the case of lookbehind the string being searched for can be
460 offset past the start point of the final matching string.
461 If this value was just blithely removed from the min_offset it would
462 invalidate some of the calculations for how many chars must match
463 before or after (as they are derived from min_offset and minlen and
464 the length of the string being searched for).
465 When the final pattern is compiled and the data is moved from the
466 scan_data_t structure into the regexp structure the information
467 about lookbehind is factored in, with the information that would
468 have been lost precalculated in the end_shift field for the
471 The fields pos_min and pos_delta are used to store the minimum offset
472 and the delta to the maximum offset at the current point in the pattern.
476 struct scan_data_substrs {
477 SV *str; /* longest substring found in pattern */
478 SSize_t min_offset; /* earliest point in string it can appear */
479 SSize_t max_offset; /* latest point in string it can appear */
480 SSize_t *minlenp; /* pointer to the minlen relevant to the string */
481 SSize_t lookbehind; /* is the pos of the string modified by LB */
482 I32 flags; /* per substring SF_* and SCF_* flags */
485 typedef struct scan_data_t {
486 /*I32 len_min; unused */
487 /*I32 len_delta; unused */
491 SSize_t last_end; /* min value, <0 unless valid. */
492 SSize_t last_start_min;
493 SSize_t last_start_max;
494 U8 cur_is_floating; /* whether the last_* values should be set as
495 * the next fixed (0) or floating (1)
498 /* [0] is longest fixed substring so far, [1] is longest float so far */
499 struct scan_data_substrs substrs[2];
501 I32 flags; /* common SF_* and SCF_* flags */
503 SSize_t *last_closep;
504 regnode_ssc *start_class;
508 * Forward declarations for pregcomp()'s friends.
511 static const scan_data_t zero_scan_data = {
512 0, 0, NULL, 0, 0, 0, 0,
514 { NULL, 0, 0, 0, 0, 0 },
515 { NULL, 0, 0, 0, 0, 0 },
522 #define SF_BEFORE_SEOL 0x0001
523 #define SF_BEFORE_MEOL 0x0002
524 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
526 #define SF_IS_INF 0x0040
527 #define SF_HAS_PAR 0x0080
528 #define SF_IN_PAR 0x0100
529 #define SF_HAS_EVAL 0x0200
532 /* SCF_DO_SUBSTR is the flag that tells the regexp analyzer to track the
533 * longest substring in the pattern. When it is not set the optimiser keeps
534 * track of position, but does not keep track of the actual strings seen,
536 * So for instance /foo/ will be parsed with SCF_DO_SUBSTR being true, but
539 * Similarly, /foo.*(blah|erm|huh).*fnorble/ will have "foo" and "fnorble"
540 * parsed with SCF_DO_SUBSTR on, but while processing the (...) it will be
541 * turned off because of the alternation (BRANCH). */
542 #define SCF_DO_SUBSTR 0x0400
544 #define SCF_DO_STCLASS_AND 0x0800
545 #define SCF_DO_STCLASS_OR 0x1000
546 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
547 #define SCF_WHILEM_VISITED_POS 0x2000
549 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
550 #define SCF_SEEN_ACCEPT 0x8000
551 #define SCF_TRIE_DOING_RESTUDY 0x10000
552 #define SCF_IN_DEFINE 0x20000
557 #define UTF cBOOL(RExC_utf8)
559 /* The enums for all these are ordered so things work out correctly */
560 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
561 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
562 == REGEX_DEPENDS_CHARSET)
563 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
564 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
565 >= REGEX_UNICODE_CHARSET)
566 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
567 == REGEX_ASCII_RESTRICTED_CHARSET)
568 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
569 >= REGEX_ASCII_RESTRICTED_CHARSET)
570 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
571 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
573 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
575 /* For programs that want to be strictly Unicode compatible by dying if any
576 * attempt is made to match a non-Unicode code point against a Unicode
578 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
580 #define OOB_NAMEDCLASS -1
582 /* There is no code point that is out-of-bounds, so this is problematic. But
583 * its only current use is to initialize a variable that is always set before
585 #define OOB_UNICODE 0xDEADBEEF
587 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
590 /* length of regex to show in messages that don't mark a position within */
591 #define RegexLengthToShowInErrorMessages 127
594 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
595 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
596 * op/pragma/warn/regcomp.
598 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
599 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
601 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
602 " in m/%" UTF8f MARKER2 "%" UTF8f "/"
604 /* The code in this file in places uses one level of recursion with parsing
605 * rebased to an alternate string constructed by us in memory. This can take
606 * the form of something that is completely different from the input, or
607 * something that uses the input as part of the alternate. In the first case,
608 * there should be no possibility of an error, as we are in complete control of
609 * the alternate string. But in the second case we don't completely control
610 * the input portion, so there may be errors in that. Here's an example:
612 * is handled specially because \x{df} folds to a sequence of more than one
613 * character: 'ss'. What is done is to create and parse an alternate string,
614 * which looks like this:
615 * /(?:\x{DF}|[abc\x{DF}def])/ui
616 * where it uses the input unchanged in the middle of something it constructs,
617 * which is a branch for the DF outside the character class, and clustering
618 * parens around the whole thing. (It knows enough to skip the DF inside the
619 * class while in this substitute parse.) 'abc' and 'def' may have errors that
620 * need to be reported. The general situation looks like this:
622 * |<------- identical ------>|
624 * Input: ---------------------------------------------------------------
625 * Constructed: ---------------------------------------------------
627 * |<------- identical ------>|
629 * sI..eI is the portion of the input pattern we are concerned with here.
630 * sC..EC is the constructed substitute parse string.
631 * sC..tC is constructed by us
632 * tC..eC is an exact duplicate of the portion of the input pattern tI..eI.
633 * In the diagram, these are vertically aligned.
634 * eC..EC is also constructed by us.
635 * xC is the position in the substitute parse string where we found a
637 * xI is the position in the original pattern corresponding to xC.
639 * We want to display a message showing the real input string. Thus we need to
640 * translate from xC to xI. We know that xC >= tC, since the portion of the
641 * string sC..tC has been constructed by us, and so shouldn't have errors. We
643 * xI = tI + (xC - tC)
645 * When the substitute parse is constructed, the code needs to set:
648 * RExC_copy_start_in_input (tI)
649 * RExC_copy_start_in_constructed (tC)
650 * and restore them when done.
652 * During normal processing of the input pattern, both
653 * 'RExC_copy_start_in_input' and 'RExC_copy_start_in_constructed' are set to
654 * sI, so that xC equals xI.
657 #define sI RExC_precomp
658 #define eI RExC_precomp_end
659 #define sC RExC_start
661 #define tI RExC_copy_start_in_input
662 #define tC RExC_copy_start_in_constructed
663 #define xI(xC) (tI + (xC - tC))
664 #define xI_offset(xC) (xI(xC) - sI)
666 #define REPORT_LOCATION_ARGS(xC) \
668 (xI(xC) > eI) /* Don't run off end */ \
669 ? eC - sC /* Length before the <--HERE */ \
670 : ((xI_offset(xC) >= 0) \
672 : (Perl_croak(aTHX_ "panic: %s: %d: negative offset: %" \
673 IVdf " trying to output message for " \
675 __FILE__, __LINE__, (IV) xI_offset(xC), \
676 ((int) (eC - sC)), sC), 0)), \
677 sI), /* The input pattern printed up to the <--HERE */ \
679 (xI(xC) > eI) ? 0 : eI - xI(xC), /* Length after <--HERE */ \
680 (xI(xC) > eI) ? eI : xI(xC)) /* pattern after <--HERE */
682 /* Used to point after bad bytes for an error message, but avoid skipping
683 * past a nul byte. */
684 #define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
687 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
688 * arg. Show regex, up to a maximum length. If it's too long, chop and add
691 #define _FAIL(code) STMT_START { \
692 const char *ellipses = ""; \
693 IV len = RExC_precomp_end - RExC_precomp; \
696 SAVEFREESV(RExC_rx_sv); \
697 if (len > RegexLengthToShowInErrorMessages) { \
698 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
699 len = RegexLengthToShowInErrorMessages - 10; \
705 #define FAIL(msg) _FAIL( \
706 Perl_croak(aTHX_ "%s in regex m/%" UTF8f "%s/", \
707 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
709 #define FAIL2(msg,arg) _FAIL( \
710 Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/", \
711 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
714 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
716 #define Simple_vFAIL(m) STMT_START { \
717 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
718 m, REPORT_LOCATION_ARGS(RExC_parse)); \
722 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
724 #define vFAIL(m) STMT_START { \
726 SAVEFREESV(RExC_rx_sv); \
731 * Like Simple_vFAIL(), but accepts two arguments.
733 #define Simple_vFAIL2(m,a1) STMT_START { \
734 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
735 REPORT_LOCATION_ARGS(RExC_parse)); \
739 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
741 #define vFAIL2(m,a1) STMT_START { \
743 SAVEFREESV(RExC_rx_sv); \
744 Simple_vFAIL2(m, a1); \
749 * Like Simple_vFAIL(), but accepts three arguments.
751 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
752 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
753 REPORT_LOCATION_ARGS(RExC_parse)); \
757 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
759 #define vFAIL3(m,a1,a2) STMT_START { \
761 SAVEFREESV(RExC_rx_sv); \
762 Simple_vFAIL3(m, a1, a2); \
766 * Like Simple_vFAIL(), but accepts four arguments.
768 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
769 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
770 REPORT_LOCATION_ARGS(RExC_parse)); \
773 #define vFAIL4(m,a1,a2,a3) STMT_START { \
775 SAVEFREESV(RExC_rx_sv); \
776 Simple_vFAIL4(m, a1, a2, a3); \
779 /* A specialized version of vFAIL2 that works with UTF8f */
780 #define vFAIL2utf8f(m, a1) STMT_START { \
782 SAVEFREESV(RExC_rx_sv); \
783 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
784 REPORT_LOCATION_ARGS(RExC_parse)); \
787 #define vFAIL3utf8f(m, a1, a2) STMT_START { \
789 SAVEFREESV(RExC_rx_sv); \
790 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
791 REPORT_LOCATION_ARGS(RExC_parse)); \
794 /* These have asserts in them because of [perl #122671] Many warnings in
795 * regcomp.c can occur twice. If they get output in pass1 and later in that
796 * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
797 * would get output again. So they should be output in pass2, and these
798 * asserts make sure new warnings follow that paradigm. */
800 /* m is not necessarily a "literal string", in this macro */
801 #define reg_warn_non_literal_string(loc, m) STMT_START { \
802 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
803 "%s" REPORT_LOCATION, \
804 m, REPORT_LOCATION_ARGS(loc)); \
807 #define ckWARNreg(loc,m) STMT_START { \
808 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
810 REPORT_LOCATION_ARGS(loc)); \
813 #define vWARN(loc, m) STMT_START { \
814 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
816 REPORT_LOCATION_ARGS(loc)); \
819 #define vWARN_dep(loc, m) STMT_START { \
820 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), \
822 REPORT_LOCATION_ARGS(loc)); \
825 #define ckWARNdep(loc,m) STMT_START { \
826 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
828 REPORT_LOCATION_ARGS(loc)); \
831 #define ckWARNregdep(loc,m) STMT_START { \
832 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, \
835 REPORT_LOCATION_ARGS(loc)); \
838 #define ckWARN2reg_d(loc,m, a1) STMT_START { \
839 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
841 a1, REPORT_LOCATION_ARGS(loc)); \
844 #define ckWARN2reg(loc, m, a1) STMT_START { \
845 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
847 a1, REPORT_LOCATION_ARGS(loc)); \
850 #define vWARN3(loc, m, a1, a2) STMT_START { \
851 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
853 a1, a2, REPORT_LOCATION_ARGS(loc)); \
856 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
857 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
860 REPORT_LOCATION_ARGS(loc)); \
863 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
864 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
867 REPORT_LOCATION_ARGS(loc)); \
870 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
871 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
874 REPORT_LOCATION_ARGS(loc)); \
877 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
878 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
881 REPORT_LOCATION_ARGS(loc)); \
884 /* Convert between a pointer to a node and its offset from the beginning of the
886 #define REGNODE_p(offset) (RExC_emit_start + (offset))
887 #define REGNODE_OFFSET(node) ((node) - RExC_emit_start)
889 /* Macros for recording node offsets. 20001227 mjd@plover.com
890 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
891 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
892 * Element 0 holds the number n.
893 * Position is 1 indexed.
895 #ifndef RE_TRACK_PATTERN_OFFSETS
896 #define Set_Node_Offset_To_R(offset,byte)
897 #define Set_Node_Offset(node,byte)
898 #define Set_Cur_Node_Offset
899 #define Set_Node_Length_To_R(node,len)
900 #define Set_Node_Length(node,len)
901 #define Set_Node_Cur_Length(node,start)
902 #define Node_Offset(n)
903 #define Node_Length(n)
904 #define Set_Node_Offset_Length(node,offset,len)
905 #define ProgLen(ri) ri->u.proglen
906 #define SetProgLen(ri,x) ri->u.proglen = x
908 #define ProgLen(ri) ri->u.offsets[0]
909 #define SetProgLen(ri,x) ri->u.offsets[0] = x
910 #define Set_Node_Offset_To_R(offset,byte) STMT_START { \
912 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
913 __LINE__, (int)(offset), (int)(byte))); \
915 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
918 RExC_offsets[2*(offset)-1] = (byte); \
923 #define Set_Node_Offset(node,byte) \
924 Set_Node_Offset_To_R(REGNODE_OFFSET(node), (byte)-RExC_start)
925 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
927 #define Set_Node_Length_To_R(node,len) STMT_START { \
929 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
930 __LINE__, (int)(node), (int)(len))); \
932 Perl_croak(aTHX_ "value of node is %d in Length macro", \
935 RExC_offsets[2*(node)] = (len); \
940 #define Set_Node_Length(node,len) \
941 Set_Node_Length_To_R(REGNODE_OFFSET(node), len)
942 #define Set_Node_Cur_Length(node, start) \
943 Set_Node_Length(node, RExC_parse - start)
945 /* Get offsets and lengths */
946 #define Node_Offset(n) (RExC_offsets[2*(REGNODE_OFFSET(n))-1])
947 #define Node_Length(n) (RExC_offsets[2*(REGNODE_OFFSET(n))])
949 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
950 Set_Node_Offset_To_R(REGNODE_OFFSET(node), (offset)); \
951 Set_Node_Length_To_R(REGNODE_OFFSET(node), (len)); \
955 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
956 #define EXPERIMENTAL_INPLACESCAN
957 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
961 Perl_re_printf(pTHX_ const char *fmt, ...)
965 PerlIO *f= Perl_debug_log;
966 PERL_ARGS_ASSERT_RE_PRINTF;
968 result = PerlIO_vprintf(f, fmt, ap);
974 Perl_re_indentf(pTHX_ const char *fmt, U32 depth, ...)
978 PerlIO *f= Perl_debug_log;
979 PERL_ARGS_ASSERT_RE_INDENTF;
981 PerlIO_printf(f, "%*s", ( (int)depth % 20 ) * 2, "");
982 result = PerlIO_vprintf(f, fmt, ap);
986 #endif /* DEBUGGING */
988 #define DEBUG_RExC_seen() \
989 DEBUG_OPTIMISE_MORE_r({ \
990 Perl_re_printf( aTHX_ "RExC_seen: "); \
992 if (RExC_seen & REG_ZERO_LEN_SEEN) \
993 Perl_re_printf( aTHX_ "REG_ZERO_LEN_SEEN "); \
995 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
996 Perl_re_printf( aTHX_ "REG_LOOKBEHIND_SEEN "); \
998 if (RExC_seen & REG_GPOS_SEEN) \
999 Perl_re_printf( aTHX_ "REG_GPOS_SEEN "); \
1001 if (RExC_seen & REG_RECURSE_SEEN) \
1002 Perl_re_printf( aTHX_ "REG_RECURSE_SEEN "); \
1004 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
1005 Perl_re_printf( aTHX_ "REG_TOP_LEVEL_BRANCHES_SEEN "); \
1007 if (RExC_seen & REG_VERBARG_SEEN) \
1008 Perl_re_printf( aTHX_ "REG_VERBARG_SEEN "); \
1010 if (RExC_seen & REG_CUTGROUP_SEEN) \
1011 Perl_re_printf( aTHX_ "REG_CUTGROUP_SEEN "); \
1013 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
1014 Perl_re_printf( aTHX_ "REG_RUN_ON_COMMENT_SEEN "); \
1016 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
1017 Perl_re_printf( aTHX_ "REG_UNFOLDED_MULTI_SEEN "); \
1019 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
1020 Perl_re_printf( aTHX_ "REG_UNBOUNDED_QUANTIFIER_SEEN "); \
1022 Perl_re_printf( aTHX_ "\n"); \
1025 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
1026 if ((flags) & flag) Perl_re_printf( aTHX_ "%s ", #flag)
1031 S_debug_show_study_flags(pTHX_ U32 flags, const char *open_str,
1032 const char *close_str)
1037 Perl_re_printf( aTHX_ "%s", open_str);
1038 DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_SEOL);
1039 DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_MEOL);
1040 DEBUG_SHOW_STUDY_FLAG(flags, SF_IS_INF);
1041 DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_PAR);
1042 DEBUG_SHOW_STUDY_FLAG(flags, SF_IN_PAR);
1043 DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_EVAL);
1044 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_SUBSTR);
1045 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_AND);
1046 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_OR);
1047 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS);
1048 DEBUG_SHOW_STUDY_FLAG(flags, SCF_WHILEM_VISITED_POS);
1049 DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_RESTUDY);
1050 DEBUG_SHOW_STUDY_FLAG(flags, SCF_SEEN_ACCEPT);
1051 DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_DOING_RESTUDY);
1052 DEBUG_SHOW_STUDY_FLAG(flags, SCF_IN_DEFINE);
1053 Perl_re_printf( aTHX_ "%s", close_str);
1058 S_debug_studydata(pTHX_ const char *where, scan_data_t *data,
1059 U32 depth, int is_inf)
1061 GET_RE_DEBUG_FLAGS_DECL;
1063 DEBUG_OPTIMISE_MORE_r({
1066 Perl_re_indentf(aTHX_ "%s: Pos:%" IVdf "/%" IVdf " Flags: 0x%" UVXf,
1070 (IV)data->pos_delta,
1074 S_debug_show_study_flags(aTHX_ data->flags," [","]");
1076 Perl_re_printf( aTHX_
1077 " Whilem_c: %" IVdf " Lcp: %" IVdf " %s",
1079 (IV)(data->last_closep ? *((data)->last_closep) : -1),
1080 is_inf ? "INF " : ""
1083 if (data->last_found) {
1085 Perl_re_printf(aTHX_
1086 "Last:'%s' %" IVdf ":%" IVdf "/%" IVdf,
1087 SvPVX_const(data->last_found),
1089 (IV)data->last_start_min,
1090 (IV)data->last_start_max
1093 for (i = 0; i < 2; i++) {
1094 Perl_re_printf(aTHX_
1095 " %s%s: '%s' @ %" IVdf "/%" IVdf,
1096 data->cur_is_floating == i ? "*" : "",
1097 i ? "Float" : "Fixed",
1098 SvPVX_const(data->substrs[i].str),
1099 (IV)data->substrs[i].min_offset,
1100 (IV)data->substrs[i].max_offset
1102 S_debug_show_study_flags(aTHX_ data->substrs[i].flags," [","]");
1106 Perl_re_printf( aTHX_ "\n");
1112 S_debug_peep(pTHX_ const char *str, const RExC_state_t *pRExC_state,
1113 regnode *scan, U32 depth, U32 flags)
1115 GET_RE_DEBUG_FLAGS_DECL;
1122 Next = regnext(scan);
1123 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
1124 Perl_re_indentf( aTHX_ "%s>%3d: %s (%d)",
1127 REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),
1128 Next ? (REG_NODE_NUM(Next)) : 0 );
1129 S_debug_show_study_flags(aTHX_ flags," [ ","]");
1130 Perl_re_printf( aTHX_ "\n");
1135 # define DEBUG_STUDYDATA(where, data, depth, is_inf) \
1136 S_debug_studydata(aTHX_ where, data, depth, is_inf)
1138 # define DEBUG_PEEP(str, scan, depth, flags) \
1139 S_debug_peep(aTHX_ str, pRExC_state, scan, depth, flags)
1142 # define DEBUG_STUDYDATA(where, data, depth, is_inf) NOOP
1143 # define DEBUG_PEEP(str, scan, depth, flags) NOOP
1147 /* =========================================================
1148 * BEGIN edit_distance stuff.
1150 * This calculates how many single character changes of any type are needed to
1151 * transform a string into another one. It is taken from version 3.1 of
1153 * https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
1156 /* Our unsorted dictionary linked list. */
1157 /* Note we use UVs, not chars. */
1162 struct dictionary* next;
1164 typedef struct dictionary item;
1167 PERL_STATIC_INLINE item*
1168 push(UV key, item* curr)
1171 Newx(head, 1, item);
1179 PERL_STATIC_INLINE item*
1180 find(item* head, UV key)
1182 item* iterator = head;
1184 if (iterator->key == key){
1187 iterator = iterator->next;
1193 PERL_STATIC_INLINE item*
1194 uniquePush(item* head, UV key)
1196 item* iterator = head;
1199 if (iterator->key == key) {
1202 iterator = iterator->next;
1205 return push(key, head);
1208 PERL_STATIC_INLINE void
1209 dict_free(item* head)
1211 item* iterator = head;
1214 item* temp = iterator;
1215 iterator = iterator->next;
1222 /* End of Dictionary Stuff */
1224 /* All calculations/work are done here */
1226 S_edit_distance(const UV* src,
1228 const STRLEN x, /* length of src[] */
1229 const STRLEN y, /* length of tgt[] */
1230 const SSize_t maxDistance
1234 UV swapCount, swapScore, targetCharCount, i, j;
1236 UV score_ceil = x + y;
1238 PERL_ARGS_ASSERT_EDIT_DISTANCE;
1240 /* intialize matrix start values */
1241 Newx(scores, ( (x + 2) * (y + 2)), UV);
1242 scores[0] = score_ceil;
1243 scores[1 * (y + 2) + 0] = score_ceil;
1244 scores[0 * (y + 2) + 1] = score_ceil;
1245 scores[1 * (y + 2) + 1] = 0;
1246 head = uniquePush(uniquePush(head, src[0]), tgt[0]);
1251 for (i=1;i<=x;i++) {
1253 head = uniquePush(head, src[i]);
1254 scores[(i+1) * (y + 2) + 1] = i;
1255 scores[(i+1) * (y + 2) + 0] = score_ceil;
1258 for (j=1;j<=y;j++) {
1261 head = uniquePush(head, tgt[j]);
1262 scores[1 * (y + 2) + (j + 1)] = j;
1263 scores[0 * (y + 2) + (j + 1)] = score_ceil;
1266 targetCharCount = find(head, tgt[j-1])->value;
1267 swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;
1269 if (src[i-1] != tgt[j-1]){
1270 scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
1274 scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
1278 find(head, src[i-1])->value = i;
1282 IV score = scores[(x+1) * (y + 2) + (y + 1)];
1285 return (maxDistance != 0 && maxDistance < score)?(-1):score;
1289 /* END of edit_distance() stuff
1290 * ========================================================= */
1292 /* is c a control character for which we have a mnemonic? */
1293 #define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
1296 S_cntrl_to_mnemonic(const U8 c)
1298 /* Returns the mnemonic string that represents character 'c', if one
1299 * exists; NULL otherwise. The only ones that exist for the purposes of
1300 * this routine are a few control characters */
1303 case '\a': return "\\a";
1304 case '\b': return "\\b";
1305 case ESC_NATIVE: return "\\e";
1306 case '\f': return "\\f";
1307 case '\n': return "\\n";
1308 case '\r': return "\\r";
1309 case '\t': return "\\t";
1315 /* Mark that we cannot extend a found fixed substring at this point.
1316 Update the longest found anchored substring or the longest found
1317 floating substrings if needed. */
1320 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
1321 SSize_t *minlenp, int is_inf)
1323 const STRLEN l = CHR_SVLEN(data->last_found);
1324 SV * const longest_sv = data->substrs[data->cur_is_floating].str;
1325 const STRLEN old_l = CHR_SVLEN(longest_sv);
1326 GET_RE_DEBUG_FLAGS_DECL;
1328 PERL_ARGS_ASSERT_SCAN_COMMIT;
1330 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
1331 const U8 i = data->cur_is_floating;
1332 SvSetMagicSV(longest_sv, data->last_found);
1333 data->substrs[i].min_offset = l ? data->last_start_min : data->pos_min;
1336 data->substrs[0].max_offset = data->substrs[0].min_offset;
1338 data->substrs[1].max_offset = (l
1339 ? data->last_start_max
1340 : (data->pos_delta > SSize_t_MAX - data->pos_min
1342 : data->pos_min + data->pos_delta));
1344 || (STRLEN)data->substrs[1].max_offset > (STRLEN)SSize_t_MAX)
1345 data->substrs[1].max_offset = SSize_t_MAX;
1348 if (data->flags & SF_BEFORE_EOL)
1349 data->substrs[i].flags |= (data->flags & SF_BEFORE_EOL);
1351 data->substrs[i].flags &= ~SF_BEFORE_EOL;
1352 data->substrs[i].minlenp = minlenp;
1353 data->substrs[i].lookbehind = 0;
1356 SvCUR_set(data->last_found, 0);
1358 SV * const sv = data->last_found;
1359 if (SvUTF8(sv) && SvMAGICAL(sv)) {
1360 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
1365 data->last_end = -1;
1366 data->flags &= ~SF_BEFORE_EOL;
1367 DEBUG_STUDYDATA("commit", data, 0, is_inf);
1370 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
1371 * list that describes which code points it matches */
1374 S_ssc_anything(pTHX_ regnode_ssc *ssc)
1376 /* Set the SSC 'ssc' to match an empty string or any code point */
1378 PERL_ARGS_ASSERT_SSC_ANYTHING;
1380 assert(is_ANYOF_SYNTHETIC(ssc));
1382 /* mortalize so won't leak */
1383 ssc->invlist = sv_2mortal(_add_range_to_invlist(NULL, 0, UV_MAX));
1384 ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
1388 S_ssc_is_anything(const regnode_ssc *ssc)
1390 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1391 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
1392 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1393 * in any way, so there's no point in using it */
1398 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1400 assert(is_ANYOF_SYNTHETIC(ssc));
1402 if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1406 /* See if the list consists solely of the range 0 - Infinity */
1407 invlist_iterinit(ssc->invlist);
1408 ret = invlist_iternext(ssc->invlist, &start, &end)
1412 invlist_iterfinish(ssc->invlist);
1418 /* If e.g., both \w and \W are set, matches everything */
1419 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1421 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1422 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1432 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1434 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
1435 * string, any code point, or any posix class under locale */
1437 PERL_ARGS_ASSERT_SSC_INIT;
1439 Zero(ssc, 1, regnode_ssc);
1440 set_ANYOF_SYNTHETIC(ssc);
1441 ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1444 /* If any portion of the regex is to operate under locale rules that aren't
1445 * fully known at compile time, initialization includes it. The reason
1446 * this isn't done for all regexes is that the optimizer was written under
1447 * the assumption that locale was all-or-nothing. Given the complexity and
1448 * lack of documentation in the optimizer, and that there are inadequate
1449 * test cases for locale, many parts of it may not work properly, it is
1450 * safest to avoid locale unless necessary. */
1451 if (RExC_contains_locale) {
1452 ANYOF_POSIXL_SETALL(ssc);
1455 ANYOF_POSIXL_ZERO(ssc);
1460 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1461 const regnode_ssc *ssc)
1463 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1464 * to the list of code points matched, and locale posix classes; hence does
1465 * not check its flags) */
1470 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1472 assert(is_ANYOF_SYNTHETIC(ssc));
1474 invlist_iterinit(ssc->invlist);
1475 ret = invlist_iternext(ssc->invlist, &start, &end)
1479 invlist_iterfinish(ssc->invlist);
1485 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1493 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1494 const regnode_charclass* const node)
1496 /* Returns a mortal inversion list defining which code points are matched
1497 * by 'node', which is of type ANYOF. Handles complementing the result if
1498 * appropriate. If some code points aren't knowable at this time, the
1499 * returned list must, and will, contain every code point that is a
1503 SV* only_utf8_locale_invlist = NULL;
1505 const U32 n = ARG(node);
1506 bool new_node_has_latin1 = FALSE;
1508 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1510 /* Look at the data structure created by S_set_ANYOF_arg() */
1511 if (n != ANYOF_ONLY_HAS_BITMAP) {
1512 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1513 AV * const av = MUTABLE_AV(SvRV(rv));
1514 SV **const ary = AvARRAY(av);
1515 assert(RExC_rxi->data->what[n] == 's');
1517 if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
1518 invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1]), NULL));
1520 else if (ary[0] && ary[0] != &PL_sv_undef) {
1522 /* Here, no compile-time swash, and there are things that won't be
1523 * known until runtime -- we have to assume it could be anything */
1524 invlist = sv_2mortal(_new_invlist(1));
1525 return _add_range_to_invlist(invlist, 0, UV_MAX);
1527 else if (ary[3] && ary[3] != &PL_sv_undef) {
1529 /* Here no compile-time swash, and no run-time only data. Use the
1530 * node's inversion list */
1531 invlist = sv_2mortal(invlist_clone(ary[3], NULL));
1534 /* Get the code points valid only under UTF-8 locales */
1535 if ((ANYOF_FLAGS(node) & ANYOFL_FOLD)
1536 && ary[2] && ary[2] != &PL_sv_undef)
1538 only_utf8_locale_invlist = ary[2];
1543 invlist = sv_2mortal(_new_invlist(0));
1546 /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1547 * code points, and an inversion list for the others, but if there are code
1548 * points that should match only conditionally on the target string being
1549 * UTF-8, those are placed in the inversion list, and not the bitmap.
1550 * Since there are circumstances under which they could match, they are
1551 * included in the SSC. But if the ANYOF node is to be inverted, we have
1552 * to exclude them here, so that when we invert below, the end result
1553 * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
1554 * have to do this here before we add the unconditionally matched code
1556 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1557 _invlist_intersection_complement_2nd(invlist,
1562 /* Add in the points from the bit map */
1563 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1564 if (ANYOF_BITMAP_TEST(node, i)) {
1565 unsigned int start = i++;
1567 for (; i < NUM_ANYOF_CODE_POINTS && ANYOF_BITMAP_TEST(node, i); ++i) {
1570 invlist = _add_range_to_invlist(invlist, start, i-1);
1571 new_node_has_latin1 = TRUE;
1575 /* If this can match all upper Latin1 code points, have to add them
1576 * as well. But don't add them if inverting, as when that gets done below,
1577 * it would exclude all these characters, including the ones it shouldn't
1578 * that were added just above */
1579 if (! (ANYOF_FLAGS(node) & ANYOF_INVERT) && OP(node) == ANYOFD
1580 && (ANYOF_FLAGS(node) & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
1582 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1585 /* Similarly for these */
1586 if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1587 _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1590 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1591 _invlist_invert(invlist);
1593 else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOFL_FOLD) {
1595 /* Under /li, any 0-255 could fold to any other 0-255, depending on the
1596 * locale. We can skip this if there are no 0-255 at all. */
1597 _invlist_union(invlist, PL_Latin1, &invlist);
1600 /* Similarly add the UTF-8 locale possible matches. These have to be
1601 * deferred until after the non-UTF-8 locale ones are taken care of just
1602 * above, or it leads to wrong results under ANYOF_INVERT */
1603 if (only_utf8_locale_invlist) {
1604 _invlist_union_maybe_complement_2nd(invlist,
1605 only_utf8_locale_invlist,
1606 ANYOF_FLAGS(node) & ANYOF_INVERT,
1613 /* These two functions currently do the exact same thing */
1614 #define ssc_init_zero ssc_init
1616 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1617 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1619 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1620 * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1621 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1624 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1625 const regnode_charclass *and_with)
1627 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1628 * another SSC or a regular ANYOF class. Can create false positives. */
1633 PERL_ARGS_ASSERT_SSC_AND;
1635 assert(is_ANYOF_SYNTHETIC(ssc));
1637 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1638 * the code point inversion list and just the relevant flags */
1639 if (is_ANYOF_SYNTHETIC(and_with)) {
1640 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1641 anded_flags = ANYOF_FLAGS(and_with);
1643 /* XXX This is a kludge around what appears to be deficiencies in the
1644 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1645 * there are paths through the optimizer where it doesn't get weeded
1646 * out when it should. And if we don't make some extra provision for
1647 * it like the code just below, it doesn't get added when it should.
1648 * This solution is to add it only when AND'ing, which is here, and
1649 * only when what is being AND'ed is the pristine, original node
1650 * matching anything. Thus it is like adding it to ssc_anything() but
1651 * only when the result is to be AND'ed. Probably the same solution
1652 * could be adopted for the same problem we have with /l matching,
1653 * which is solved differently in S_ssc_init(), and that would lead to
1654 * fewer false positives than that solution has. But if this solution
1655 * creates bugs, the consequences are only that a warning isn't raised
1656 * that should be; while the consequences for having /l bugs is
1657 * incorrect matches */
1658 if (ssc_is_anything((regnode_ssc *)and_with)) {
1659 anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1663 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1664 if (OP(and_with) == ANYOFD) {
1665 anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
1668 anded_flags = ANYOF_FLAGS(and_with)
1669 &( ANYOF_COMMON_FLAGS
1670 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1671 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1672 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(and_with))) {
1674 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1679 ANYOF_FLAGS(ssc) &= anded_flags;
1681 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1682 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1683 * 'and_with' may be inverted. When not inverted, we have the situation of
1685 * (C1 | P1) & (C2 | P2)
1686 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1687 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1688 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1689 * <= ((C1 & C2) | P1 | P2)
1690 * Alternatively, the last few steps could be:
1691 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1692 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1693 * <= (C1 | C2 | (P1 & P2))
1694 * We favor the second approach if either P1 or P2 is non-empty. This is
1695 * because these components are a barrier to doing optimizations, as what
1696 * they match cannot be known until the moment of matching as they are
1697 * dependent on the current locale, 'AND"ing them likely will reduce or
1699 * But we can do better if we know that C1,P1 are in their initial state (a
1700 * frequent occurrence), each matching everything:
1701 * (<everything>) & (C2 | P2) = C2 | P2
1702 * Similarly, if C2,P2 are in their initial state (again a frequent
1703 * occurrence), the result is a no-op
1704 * (C1 | P1) & (<everything>) = C1 | P1
1707 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1708 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1709 * <= (C1 & ~C2) | (P1 & ~P2)
1712 if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
1713 && ! is_ANYOF_SYNTHETIC(and_with))
1717 ssc_intersection(ssc,
1719 FALSE /* Has already been inverted */
1722 /* If either P1 or P2 is empty, the intersection will be also; can skip
1724 if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
1725 ANYOF_POSIXL_ZERO(ssc);
1727 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1729 /* Note that the Posix class component P from 'and_with' actually
1731 * P = Pa | Pb | ... | Pn
1732 * where each component is one posix class, such as in [\w\s].
1734 * ~P = ~(Pa | Pb | ... | Pn)
1735 * = ~Pa & ~Pb & ... & ~Pn
1736 * <= ~Pa | ~Pb | ... | ~Pn
1737 * The last is something we can easily calculate, but unfortunately
1738 * is likely to have many false positives. We could do better
1739 * in some (but certainly not all) instances if two classes in
1740 * P have known relationships. For example
1741 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1743 * :lower: & :print: = :lower:
1744 * And similarly for classes that must be disjoint. For example,
1745 * since \s and \w can have no elements in common based on rules in
1746 * the POSIX standard,
1747 * \w & ^\S = nothing
1748 * Unfortunately, some vendor locales do not meet the Posix
1749 * standard, in particular almost everything by Microsoft.
1750 * The loop below just changes e.g., \w into \W and vice versa */
1752 regnode_charclass_posixl temp;
1753 int add = 1; /* To calculate the index of the complement */
1755 Zero(&temp, 1, regnode_charclass_posixl);
1756 ANYOF_POSIXL_ZERO(&temp);
1757 for (i = 0; i < ANYOF_MAX; i++) {
1759 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1760 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1762 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1763 ANYOF_POSIXL_SET(&temp, i + add);
1765 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1767 ANYOF_POSIXL_AND(&temp, ssc);
1769 } /* else ssc already has no posixes */
1770 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1771 in its initial state */
1772 else if (! is_ANYOF_SYNTHETIC(and_with)
1773 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1775 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1776 * copy it over 'ssc' */
1777 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1778 if (is_ANYOF_SYNTHETIC(and_with)) {
1779 StructCopy(and_with, ssc, regnode_ssc);
1782 ssc->invlist = anded_cp_list;
1783 ANYOF_POSIXL_ZERO(ssc);
1784 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1785 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1789 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1790 || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
1792 /* One or the other of P1, P2 is non-empty. */
1793 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1794 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1796 ssc_union(ssc, anded_cp_list, FALSE);
1798 else { /* P1 = P2 = empty */
1799 ssc_intersection(ssc, anded_cp_list, FALSE);
1805 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1806 const regnode_charclass *or_with)
1808 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1809 * another SSC or a regular ANYOF class. Can create false positives if
1810 * 'or_with' is to be inverted. */
1815 PERL_ARGS_ASSERT_SSC_OR;
1817 assert(is_ANYOF_SYNTHETIC(ssc));
1819 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1820 * the code point inversion list and just the relevant flags */
1821 if (is_ANYOF_SYNTHETIC(or_with)) {
1822 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1823 ored_flags = ANYOF_FLAGS(or_with);
1826 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1827 ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
1828 if (OP(or_with) != ANYOFD) {
1830 |= ANYOF_FLAGS(or_with)
1831 & ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1832 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1833 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(or_with))) {
1835 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1840 ANYOF_FLAGS(ssc) |= ored_flags;
1842 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1843 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1844 * 'or_with' may be inverted. When not inverted, we have the simple
1845 * situation of computing:
1846 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1847 * If P1|P2 yields a situation with both a class and its complement are
1848 * set, like having both \w and \W, this matches all code points, and we
1849 * can delete these from the P component of the ssc going forward. XXX We
1850 * might be able to delete all the P components, but I (khw) am not certain
1851 * about this, and it is better to be safe.
1854 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1855 * <= (C1 | P1) | ~C2
1856 * <= (C1 | ~C2) | P1
1857 * (which results in actually simpler code than the non-inverted case)
1860 if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
1861 && ! is_ANYOF_SYNTHETIC(or_with))
1863 /* We ignore P2, leaving P1 going forward */
1864 } /* else Not inverted */
1865 else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
1866 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1867 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1869 for (i = 0; i < ANYOF_MAX; i += 2) {
1870 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1872 ssc_match_all_cp(ssc);
1873 ANYOF_POSIXL_CLEAR(ssc, i);
1874 ANYOF_POSIXL_CLEAR(ssc, i+1);
1882 FALSE /* Already has been inverted */
1886 PERL_STATIC_INLINE void
1887 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1889 PERL_ARGS_ASSERT_SSC_UNION;
1891 assert(is_ANYOF_SYNTHETIC(ssc));
1893 _invlist_union_maybe_complement_2nd(ssc->invlist,
1899 PERL_STATIC_INLINE void
1900 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
1902 const bool invert2nd)
1904 PERL_ARGS_ASSERT_SSC_INTERSECTION;
1906 assert(is_ANYOF_SYNTHETIC(ssc));
1908 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
1914 PERL_STATIC_INLINE void
1915 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
1917 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
1919 assert(is_ANYOF_SYNTHETIC(ssc));
1921 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
1924 PERL_STATIC_INLINE void
1925 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
1927 /* AND just the single code point 'cp' into the SSC 'ssc' */
1929 SV* cp_list = _new_invlist(2);
1931 PERL_ARGS_ASSERT_SSC_CP_AND;
1933 assert(is_ANYOF_SYNTHETIC(ssc));
1935 cp_list = add_cp_to_invlist(cp_list, cp);
1936 ssc_intersection(ssc, cp_list,
1937 FALSE /* Not inverted */
1939 SvREFCNT_dec_NN(cp_list);
1942 PERL_STATIC_INLINE void
1943 S_ssc_clear_locale(regnode_ssc *ssc)
1945 /* Set the SSC 'ssc' to not match any locale things */
1946 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
1948 assert(is_ANYOF_SYNTHETIC(ssc));
1950 ANYOF_POSIXL_ZERO(ssc);
1951 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
1954 #define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
1957 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
1959 /* The synthetic start class is used to hopefully quickly winnow down
1960 * places where a pattern could start a match in the target string. If it
1961 * doesn't really narrow things down that much, there isn't much point to
1962 * having the overhead of using it. This function uses some very crude
1963 * heuristics to decide if to use the ssc or not.
1965 * It returns TRUE if 'ssc' rules out more than half what it considers to
1966 * be the "likely" possible matches, but of course it doesn't know what the
1967 * actual things being matched are going to be; these are only guesses
1969 * For /l matches, it assumes that the only likely matches are going to be
1970 * in the 0-255 range, uniformly distributed, so half of that is 127
1971 * For /a and /d matches, it assumes that the likely matches will be just
1972 * the ASCII range, so half of that is 63
1973 * For /u and there isn't anything matching above the Latin1 range, it
1974 * assumes that that is the only range likely to be matched, and uses
1975 * half that as the cut-off: 127. If anything matches above Latin1,
1976 * it assumes that all of Unicode could match (uniformly), except for
1977 * non-Unicode code points and things in the General Category "Other"
1978 * (unassigned, private use, surrogates, controls and formats). This
1979 * is a much large number. */
1981 U32 count = 0; /* Running total of number of code points matched by
1983 UV start, end; /* Start and end points of current range in inversion
1985 const U32 max_code_points = (LOC)
1987 : (( ! UNI_SEMANTICS
1988 || invlist_highest(ssc->invlist) < 256)
1991 const U32 max_match = max_code_points / 2;
1993 PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
1995 invlist_iterinit(ssc->invlist);
1996 while (invlist_iternext(ssc->invlist, &start, &end)) {
1997 if (start >= max_code_points) {
2000 end = MIN(end, max_code_points - 1);
2001 count += end - start + 1;
2002 if (count >= max_match) {
2003 invlist_iterfinish(ssc->invlist);
2013 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
2015 /* The inversion list in the SSC is marked mortal; now we need a more
2016 * permanent copy, which is stored the same way that is done in a regular
2017 * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
2020 SV* invlist = invlist_clone(ssc->invlist, NULL);
2022 PERL_ARGS_ASSERT_SSC_FINALIZE;
2024 assert(is_ANYOF_SYNTHETIC(ssc));
2026 /* The code in this file assumes that all but these flags aren't relevant
2027 * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
2028 * by the time we reach here */
2029 assert(! (ANYOF_FLAGS(ssc)
2030 & ~( ANYOF_COMMON_FLAGS
2031 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
2032 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));
2034 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
2036 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
2037 NULL, NULL, NULL, FALSE);
2039 /* Make sure is clone-safe */
2040 ssc->invlist = NULL;
2042 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
2043 ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
2044 OP(ssc) = ANYOFPOSIXL;
2046 else if (RExC_contains_locale) {
2050 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
2053 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
2054 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
2055 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
2056 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
2057 ? (TRIE_LIST_CUR( idx ) - 1) \
2063 dump_trie(trie,widecharmap,revcharmap)
2064 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
2065 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
2067 These routines dump out a trie in a somewhat readable format.
2068 The _interim_ variants are used for debugging the interim
2069 tables that are used to generate the final compressed
2070 representation which is what dump_trie expects.
2072 Part of the reason for their existence is to provide a form
2073 of documentation as to how the different representations function.
2078 Dumps the final compressed table form of the trie to Perl_debug_log.
2079 Used for debugging make_trie().
2083 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
2084 AV *revcharmap, U32 depth)
2087 SV *sv=sv_newmortal();
2088 int colwidth= widecharmap ? 6 : 4;
2090 GET_RE_DEBUG_FLAGS_DECL;
2092 PERL_ARGS_ASSERT_DUMP_TRIE;
2094 Perl_re_indentf( aTHX_ "Char : %-6s%-6s%-4s ",
2095 depth+1, "Match","Base","Ofs" );
2097 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
2098 SV ** const tmp = av_fetch( revcharmap, state, 0);
2100 Perl_re_printf( aTHX_ "%*s",
2102 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2103 PL_colors[0], PL_colors[1],
2104 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2105 PERL_PV_ESCAPE_FIRSTCHAR
2110 Perl_re_printf( aTHX_ "\n");
2111 Perl_re_indentf( aTHX_ "State|-----------------------", depth+1);
2113 for( state = 0 ; state < trie->uniquecharcount ; state++ )
2114 Perl_re_printf( aTHX_ "%.*s", colwidth, "--------");
2115 Perl_re_printf( aTHX_ "\n");
2117 for( state = 1 ; state < trie->statecount ; state++ ) {
2118 const U32 base = trie->states[ state ].trans.base;
2120 Perl_re_indentf( aTHX_ "#%4" UVXf "|", depth+1, (UV)state);
2122 if ( trie->states[ state ].wordnum ) {
2123 Perl_re_printf( aTHX_ " W%4X", trie->states[ state ].wordnum );
2125 Perl_re_printf( aTHX_ "%6s", "" );
2128 Perl_re_printf( aTHX_ " @%4" UVXf " ", (UV)base );
2133 while( ( base + ofs < trie->uniquecharcount ) ||
2134 ( base + ofs - trie->uniquecharcount < trie->lasttrans
2135 && trie->trans[ base + ofs - trie->uniquecharcount ].check
2139 Perl_re_printf( aTHX_ "+%2" UVXf "[ ", (UV)ofs);
2141 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2142 if ( ( base + ofs >= trie->uniquecharcount )
2143 && ( base + ofs - trie->uniquecharcount
2145 && trie->trans[ base + ofs
2146 - trie->uniquecharcount ].check == state )
2148 Perl_re_printf( aTHX_ "%*" UVXf, colwidth,
2149 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next
2152 Perl_re_printf( aTHX_ "%*s", colwidth," ." );
2156 Perl_re_printf( aTHX_ "]");
2159 Perl_re_printf( aTHX_ "\n" );
2161 Perl_re_indentf( aTHX_ "word_info N:(prev,len)=",
2163 for (word=1; word <= trie->wordcount; word++) {
2164 Perl_re_printf( aTHX_ " %d:(%d,%d)",
2165 (int)word, (int)(trie->wordinfo[word].prev),
2166 (int)(trie->wordinfo[word].len));
2168 Perl_re_printf( aTHX_ "\n" );
2171 Dumps a fully constructed but uncompressed trie in list form.
2172 List tries normally only are used for construction when the number of
2173 possible chars (trie->uniquecharcount) is very high.
2174 Used for debugging make_trie().
2177 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
2178 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2182 SV *sv=sv_newmortal();
2183 int colwidth= widecharmap ? 6 : 4;
2184 GET_RE_DEBUG_FLAGS_DECL;
2186 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
2188 /* print out the table precompression. */
2189 Perl_re_indentf( aTHX_ "State :Word | Transition Data\n",
2191 Perl_re_indentf( aTHX_ "%s",
2192 depth+1, "------:-----+-----------------\n" );
2194 for( state=1 ; state < next_alloc ; state ++ ) {
2197 Perl_re_indentf( aTHX_ " %4" UVXf " :",
2198 depth+1, (UV)state );
2199 if ( ! trie->states[ state ].wordnum ) {
2200 Perl_re_printf( aTHX_ "%5s| ","");
2202 Perl_re_printf( aTHX_ "W%4x| ",
2203 trie->states[ state ].wordnum
2206 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
2207 SV ** const tmp = av_fetch( revcharmap,
2208 TRIE_LIST_ITEM(state, charid).forid, 0);
2210 Perl_re_printf( aTHX_ "%*s:%3X=%4" UVXf " | ",
2212 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
2214 PL_colors[0], PL_colors[1],
2215 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
2216 | PERL_PV_ESCAPE_FIRSTCHAR
2218 TRIE_LIST_ITEM(state, charid).forid,
2219 (UV)TRIE_LIST_ITEM(state, charid).newstate
2222 Perl_re_printf( aTHX_ "\n%*s| ",
2223 (int)((depth * 2) + 14), "");
2226 Perl_re_printf( aTHX_ "\n");
2231 Dumps a fully constructed but uncompressed trie in table form.
2232 This is the normal DFA style state transition table, with a few
2233 twists to facilitate compression later.
2234 Used for debugging make_trie().
2237 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
2238 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2243 SV *sv=sv_newmortal();
2244 int colwidth= widecharmap ? 6 : 4;
2245 GET_RE_DEBUG_FLAGS_DECL;
2247 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
2250 print out the table precompression so that we can do a visual check
2251 that they are identical.
2254 Perl_re_indentf( aTHX_ "Char : ", depth+1 );
2256 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2257 SV ** const tmp = av_fetch( revcharmap, charid, 0);
2259 Perl_re_printf( aTHX_ "%*s",
2261 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2262 PL_colors[0], PL_colors[1],
2263 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2264 PERL_PV_ESCAPE_FIRSTCHAR
2270 Perl_re_printf( aTHX_ "\n");
2271 Perl_re_indentf( aTHX_ "State+-", depth+1 );
2273 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
2274 Perl_re_printf( aTHX_ "%.*s", colwidth,"--------");
2277 Perl_re_printf( aTHX_ "\n" );
2279 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
2281 Perl_re_indentf( aTHX_ "%4" UVXf " : ",
2283 (UV)TRIE_NODENUM( state ) );
2285 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2286 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
2288 Perl_re_printf( aTHX_ "%*" UVXf, colwidth, v );
2290 Perl_re_printf( aTHX_ "%*s", colwidth, "." );
2292 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
2293 Perl_re_printf( aTHX_ " (%4" UVXf ")\n",
2294 (UV)trie->trans[ state ].check );
2296 Perl_re_printf( aTHX_ " (%4" UVXf ") W%4X\n",
2297 (UV)trie->trans[ state ].check,
2298 trie->states[ TRIE_NODENUM( state ) ].wordnum );
2306 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
2307 startbranch: the first branch in the whole branch sequence
2308 first : start branch of sequence of branch-exact nodes.
2309 May be the same as startbranch
2310 last : Thing following the last branch.
2311 May be the same as tail.
2312 tail : item following the branch sequence
2313 count : words in the sequence
2314 flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
2315 depth : indent depth
2317 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
2319 A trie is an N'ary tree where the branches are determined by digital
2320 decomposition of the key. IE, at the root node you look up the 1st character and
2321 follow that branch repeat until you find the end of the branches. Nodes can be
2322 marked as "accepting" meaning they represent a complete word. Eg:
2326 would convert into the following structure. Numbers represent states, letters
2327 following numbers represent valid transitions on the letter from that state, if
2328 the number is in square brackets it represents an accepting state, otherwise it
2329 will be in parenthesis.
2331 +-h->+-e->[3]-+-r->(8)-+-s->[9]
2335 (1) +-i->(6)-+-s->[7]
2337 +-s->(3)-+-h->(4)-+-e->[5]
2339 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
2341 This shows that when matching against the string 'hers' we will begin at state 1
2342 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
2343 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
2344 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
2345 single traverse. We store a mapping from accepting to state to which word was
2346 matched, and then when we have multiple possibilities we try to complete the
2347 rest of the regex in the order in which they occurred in the alternation.
2349 The only prior NFA like behaviour that would be changed by the TRIE support is
2350 the silent ignoring of duplicate alternations which are of the form:
2352 / (DUPE|DUPE) X? (?{ ... }) Y /x
2354 Thus EVAL blocks following a trie may be called a different number of times with
2355 and without the optimisation. With the optimisations dupes will be silently
2356 ignored. This inconsistent behaviour of EVAL type nodes is well established as
2357 the following demonstrates:
2359 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
2361 which prints out 'word' three times, but
2363 'words'=~/(word|word|word)(?{ print $1 })S/
2365 which doesnt print it out at all. This is due to other optimisations kicking in.
2367 Example of what happens on a structural level:
2369 The regexp /(ac|ad|ab)+/ will produce the following debug output:
2371 1: CURLYM[1] {1,32767}(18)
2382 This would be optimizable with startbranch=5, first=5, last=16, tail=16
2383 and should turn into:
2385 1: CURLYM[1] {1,32767}(18)
2387 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
2395 Cases where tail != last would be like /(?foo|bar)baz/:
2405 which would be optimizable with startbranch=1, first=1, last=7, tail=8
2406 and would end up looking like:
2409 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
2416 d = uvchr_to_utf8_flags(d, uv, 0);
2418 is the recommended Unicode-aware way of saying
2423 #define TRIE_STORE_REVCHAR(val) \
2426 SV *zlopp = newSV(UTF8_MAXBYTES); \
2427 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
2428 unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
2429 SvCUR_set(zlopp, kapow - flrbbbbb); \
2432 av_push(revcharmap, zlopp); \
2434 char ooooff = (char)val; \
2435 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
2439 /* This gets the next character from the input, folding it if not already
2441 #define TRIE_READ_CHAR STMT_START { \
2444 /* if it is UTF then it is either already folded, or does not need \
2446 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
2448 else if (folder == PL_fold_latin1) { \
2449 /* This folder implies Unicode rules, which in the range expressible \
2450 * by not UTF is the lower case, with the two exceptions, one of \
2451 * which should have been taken care of before calling this */ \
2452 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
2453 uvc = toLOWER_L1(*uc); \
2454 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
2457 /* raw data, will be folded later if needed */ \
2465 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
2466 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
2467 U32 ging = TRIE_LIST_LEN( state ) * 2; \
2468 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2469 TRIE_LIST_LEN( state ) = ging; \
2471 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
2472 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
2473 TRIE_LIST_CUR( state )++; \
2476 #define TRIE_LIST_NEW(state) STMT_START { \
2477 Newx( trie->states[ state ].trans.list, \
2478 4, reg_trie_trans_le ); \
2479 TRIE_LIST_CUR( state ) = 1; \
2480 TRIE_LIST_LEN( state ) = 4; \
2483 #define TRIE_HANDLE_WORD(state) STMT_START { \
2484 U16 dupe= trie->states[ state ].wordnum; \
2485 regnode * const noper_next = regnext( noper ); \
2488 /* store the word for dumping */ \
2490 if (OP(noper) != NOTHING) \
2491 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
2493 tmp = newSVpvn_utf8( "", 0, UTF ); \
2494 av_push( trie_words, tmp ); \
2498 trie->wordinfo[curword].prev = 0; \
2499 trie->wordinfo[curword].len = wordlen; \
2500 trie->wordinfo[curword].accept = state; \
2502 if ( noper_next < tail ) { \
2504 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2506 trie->jump[curword] = (U16)(noper_next - convert); \
2508 jumper = noper_next; \
2510 nextbranch= regnext(cur); \
2514 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
2515 /* chain, so that when the bits of chain are later */\
2516 /* linked together, the dups appear in the chain */\
2517 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2518 trie->wordinfo[dupe].prev = curword; \
2520 /* we haven't inserted this word yet. */ \
2521 trie->states[ state ].wordnum = curword; \
2526 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
2527 ( ( base + charid >= ucharcount \
2528 && base + charid < ubound \
2529 && state == trie->trans[ base - ucharcount + charid ].check \
2530 && trie->trans[ base - ucharcount + charid ].next ) \
2531 ? trie->trans[ base - ucharcount + charid ].next \
2532 : ( state==1 ? special : 0 ) \
2535 #define TRIE_BITMAP_SET_FOLDED(trie, uvc, folder) \
2537 TRIE_BITMAP_SET(trie, uvc); \
2538 /* store the folded codepoint */ \
2540 TRIE_BITMAP_SET(trie, folder[(U8) uvc ]); \
2543 /* store first byte of utf8 representation of */ \
2544 /* variant codepoints */ \
2545 if (! UVCHR_IS_INVARIANT(uvc)) { \
2546 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc)); \
2551 #define MADE_JUMP_TRIE 2
2552 #define MADE_EXACT_TRIE 4
2555 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2556 regnode *first, regnode *last, regnode *tail,
2557 U32 word_count, U32 flags, U32 depth)
2559 /* first pass, loop through and scan words */
2560 reg_trie_data *trie;
2561 HV *widecharmap = NULL;
2562 AV *revcharmap = newAV();
2568 regnode *jumper = NULL;
2569 regnode *nextbranch = NULL;
2570 regnode *convert = NULL;
2571 U32 *prev_states; /* temp array mapping each state to previous one */
2572 /* we just use folder as a flag in utf8 */
2573 const U8 * folder = NULL;
2575 /* in the below add_data call we are storing either 'tu' or 'tuaa'
2576 * which stands for one trie structure, one hash, optionally followed
2579 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuaa"));
2580 AV *trie_words = NULL;
2581 /* along with revcharmap, this only used during construction but both are
2582 * useful during debugging so we store them in the struct when debugging.
2585 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2586 STRLEN trie_charcount=0;
2588 SV *re_trie_maxbuff;
2589 GET_RE_DEBUG_FLAGS_DECL;
2591 PERL_ARGS_ASSERT_MAKE_TRIE;
2593 PERL_UNUSED_ARG(depth);
2597 case EXACT: case EXACTL: break;
2601 case EXACTFLU8: folder = PL_fold_latin1; break;
2602 case EXACTF: folder = PL_fold; break;
2603 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2606 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2608 trie->startstate = 1;
2609 trie->wordcount = word_count;
2610 RExC_rxi->data->data[ data_slot ] = (void*)trie;
2611 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2612 if (flags == EXACT || flags == EXACTL)
2613 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2614 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2615 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2618 trie_words = newAV();
2621 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2622 assert(re_trie_maxbuff);
2623 if (!SvIOK(re_trie_maxbuff)) {
2624 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2626 DEBUG_TRIE_COMPILE_r({
2627 Perl_re_indentf( aTHX_
2628 "make_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2630 REG_NODE_NUM(startbranch), REG_NODE_NUM(first),
2631 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2634 /* Find the node we are going to overwrite */
2635 if ( first == startbranch && OP( last ) != BRANCH ) {
2636 /* whole branch chain */
2639 /* branch sub-chain */
2640 convert = NEXTOPER( first );
2643 /* -- First loop and Setup --
2645 We first traverse the branches and scan each word to determine if it
2646 contains widechars, and how many unique chars there are, this is
2647 important as we have to build a table with at least as many columns as we
2650 We use an array of integers to represent the character codes 0..255
2651 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2652 the native representation of the character value as the key and IV's for
2655 *TODO* If we keep track of how many times each character is used we can
2656 remap the columns so that the table compression later on is more
2657 efficient in terms of memory by ensuring the most common value is in the
2658 middle and the least common are on the outside. IMO this would be better
2659 than a most to least common mapping as theres a decent chance the most
2660 common letter will share a node with the least common, meaning the node
2661 will not be compressible. With a middle is most common approach the worst
2662 case is when we have the least common nodes twice.
2666 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2667 regnode *noper = NEXTOPER( cur );
2671 U32 wordlen = 0; /* required init */
2672 STRLEN minchars = 0;
2673 STRLEN maxchars = 0;
2674 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2677 if (OP(noper) == NOTHING) {
2678 /* skip past a NOTHING at the start of an alternation
2679 * eg, /(?:)a|(?:b)/ should be the same as /a|b/
2681 regnode *noper_next= regnext(noper);
2682 if (noper_next < tail)
2686 if ( noper < tail &&
2688 OP(noper) == flags ||
2691 OP(noper) == EXACTFU_SS
2695 uc= (U8*)STRING(noper);
2696 e= uc + STR_LEN(noper);
2703 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2704 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2705 regardless of encoding */
2706 if (OP( noper ) == EXACTFU_SS) {
2707 /* false positives are ok, so just set this */
2708 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2712 for ( ; uc < e ; uc += len ) { /* Look at each char in the current
2714 TRIE_CHARCOUNT(trie)++;
2717 /* TRIE_READ_CHAR returns the current character, or its fold if /i
2718 * is in effect. Under /i, this character can match itself, or
2719 * anything that folds to it. If not under /i, it can match just
2720 * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
2721 * all fold to k, and all are single characters. But some folds
2722 * expand to more than one character, so for example LATIN SMALL
2723 * LIGATURE FFI folds to the three character sequence 'ffi'. If
2724 * the string beginning at 'uc' is 'ffi', it could be matched by
2725 * three characters, or just by the one ligature character. (It
2726 * could also be matched by two characters: LATIN SMALL LIGATURE FF
2727 * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2728 * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2729 * match.) The trie needs to know the minimum and maximum number
2730 * of characters that could match so that it can use size alone to
2731 * quickly reject many match attempts. The max is simple: it is
2732 * the number of folded characters in this branch (since a fold is
2733 * never shorter than what folds to it. */
2737 /* And the min is equal to the max if not under /i (indicated by
2738 * 'folder' being NULL), or there are no multi-character folds. If
2739 * there is a multi-character fold, the min is incremented just
2740 * once, for the character that folds to the sequence. Each
2741 * character in the sequence needs to be added to the list below of
2742 * characters in the trie, but we count only the first towards the
2743 * min number of characters needed. This is done through the
2744 * variable 'foldlen', which is returned by the macros that look
2745 * for these sequences as the number of bytes the sequence
2746 * occupies. Each time through the loop, we decrement 'foldlen' by
2747 * how many bytes the current char occupies. Only when it reaches
2748 * 0 do we increment 'minchars' or look for another multi-character
2750 if (folder == NULL) {
2753 else if (foldlen > 0) {
2754 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2759 /* See if *uc is the beginning of a multi-character fold. If
2760 * so, we decrement the length remaining to look at, to account
2761 * for the current character this iteration. (We can use 'uc'
2762 * instead of the fold returned by TRIE_READ_CHAR because for
2763 * non-UTF, the latin1_safe macro is smart enough to account
2764 * for all the unfolded characters, and because for UTF, the
2765 * string will already have been folded earlier in the
2766 * compilation process */
2768 if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2769 foldlen -= UTF8SKIP(uc);
2772 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2777 /* The current character (and any potential folds) should be added
2778 * to the possible matching characters for this position in this
2782 U8 folded= folder[ (U8) uvc ];
2783 if ( !trie->charmap[ folded ] ) {
2784 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2785 TRIE_STORE_REVCHAR( folded );
2788 if ( !trie->charmap[ uvc ] ) {
2789 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2790 TRIE_STORE_REVCHAR( uvc );
2793 /* store the codepoint in the bitmap, and its folded
2795 TRIE_BITMAP_SET_FOLDED(trie, uvc, folder);
2796 set_bit = 0; /* We've done our bit :-) */
2800 /* XXX We could come up with the list of code points that fold
2801 * to this using PL_utf8_foldclosures, except not for
2802 * multi-char folds, as there may be multiple combinations
2803 * there that could work, which needs to wait until runtime to
2804 * resolve (The comment about LIGATURE FFI above is such an
2809 widecharmap = newHV();
2811 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2814 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%" UVXf, uvc );
2816 if ( !SvTRUE( *svpp ) ) {
2817 sv_setiv( *svpp, ++trie->uniquecharcount );
2818 TRIE_STORE_REVCHAR(uvc);
2821 } /* end loop through characters in this branch of the trie */
2823 /* We take the min and max for this branch and combine to find the min
2824 * and max for all branches processed so far */
2825 if( cur == first ) {
2826 trie->minlen = minchars;
2827 trie->maxlen = maxchars;
2828 } else if (minchars < trie->minlen) {
2829 trie->minlen = minchars;
2830 } else if (maxchars > trie->maxlen) {
2831 trie->maxlen = maxchars;
2833 } /* end first pass */
2834 DEBUG_TRIE_COMPILE_r(
2835 Perl_re_indentf( aTHX_
2836 "TRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2838 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2839 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2840 (int)trie->minlen, (int)trie->maxlen )
2844 We now know what we are dealing with in terms of unique chars and
2845 string sizes so we can calculate how much memory a naive
2846 representation using a flat table will take. If it's over a reasonable
2847 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2848 conservative but potentially much slower representation using an array
2851 At the end we convert both representations into the same compressed
2852 form that will be used in regexec.c for matching with. The latter
2853 is a form that cannot be used to construct with but has memory
2854 properties similar to the list form and access properties similar
2855 to the table form making it both suitable for fast searches and
2856 small enough that its feasable to store for the duration of a program.
2858 See the comment in the code where the compressed table is produced
2859 inplace from the flat tabe representation for an explanation of how
2860 the compression works.
2865 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2868 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2869 > SvIV(re_trie_maxbuff) )
2872 Second Pass -- Array Of Lists Representation
2874 Each state will be represented by a list of charid:state records
2875 (reg_trie_trans_le) the first such element holds the CUR and LEN
2876 points of the allocated array. (See defines above).
2878 We build the initial structure using the lists, and then convert
2879 it into the compressed table form which allows faster lookups
2880 (but cant be modified once converted).
2883 STRLEN transcount = 1;
2885 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using list compiler\n",
2888 trie->states = (reg_trie_state *)
2889 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2890 sizeof(reg_trie_state) );
2894 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2896 regnode *noper = NEXTOPER( cur );
2897 U32 state = 1; /* required init */
2898 U16 charid = 0; /* sanity init */
2899 U32 wordlen = 0; /* required init */
2901 if (OP(noper) == NOTHING) {
2902 regnode *noper_next= regnext(noper);
2903 if (noper_next < tail)
2907 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
2908 const U8 *uc= (U8*)STRING(noper);
2909 const U8 *e= uc + STR_LEN(noper);
2911 for ( ; uc < e ; uc += len ) {
2916 charid = trie->charmap[ uvc ];
2918 SV** const svpp = hv_fetch( widecharmap,
2925 charid=(U16)SvIV( *svpp );
2928 /* charid is now 0 if we dont know the char read, or
2929 * nonzero if we do */
2936 if ( !trie->states[ state ].trans.list ) {
2937 TRIE_LIST_NEW( state );
2940 check <= TRIE_LIST_USED( state );
2943 if ( TRIE_LIST_ITEM( state, check ).forid
2946 newstate = TRIE_LIST_ITEM( state, check ).newstate;
2951 newstate = next_alloc++;
2952 prev_states[newstate] = state;
2953 TRIE_LIST_PUSH( state, charid, newstate );
2958 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
2962 TRIE_HANDLE_WORD(state);
2964 } /* end second pass */
2966 /* next alloc is the NEXT state to be allocated */
2967 trie->statecount = next_alloc;
2968 trie->states = (reg_trie_state *)
2969 PerlMemShared_realloc( trie->states,
2971 * sizeof(reg_trie_state) );
2973 /* and now dump it out before we compress it */
2974 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
2975 revcharmap, next_alloc,
2979 trie->trans = (reg_trie_trans *)
2980 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
2987 for( state=1 ; state < next_alloc ; state ++ ) {
2991 DEBUG_TRIE_COMPILE_MORE_r(
2992 Perl_re_printf( aTHX_ "tp: %d zp: %d ",tp,zp)
2996 if (trie->states[state].trans.list) {
2997 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
3001 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
3002 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
3003 if ( forid < minid ) {
3005 } else if ( forid > maxid ) {
3009 if ( transcount < tp + maxid - minid + 1) {
3011 trie->trans = (reg_trie_trans *)
3012 PerlMemShared_realloc( trie->trans,
3014 * sizeof(reg_trie_trans) );
3015 Zero( trie->trans + (transcount / 2),
3019 base = trie->uniquecharcount + tp - minid;
3020 if ( maxid == minid ) {
3022 for ( ; zp < tp ; zp++ ) {
3023 if ( ! trie->trans[ zp ].next ) {
3024 base = trie->uniquecharcount + zp - minid;
3025 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
3027 trie->trans[ zp ].check = state;
3033 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
3035 trie->trans[ tp ].check = state;
3040 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
3041 const U32 tid = base
3042 - trie->uniquecharcount
3043 + TRIE_LIST_ITEM( state, idx ).forid;
3044 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
3046 trie->trans[ tid ].check = state;
3048 tp += ( maxid - minid + 1 );
3050 Safefree(trie->states[ state ].trans.list);
3053 DEBUG_TRIE_COMPILE_MORE_r(
3054 Perl_re_printf( aTHX_ " base: %d\n",base);
3057 trie->states[ state ].trans.base=base;
3059 trie->lasttrans = tp + 1;
3063 Second Pass -- Flat Table Representation.
3065 we dont use the 0 slot of either trans[] or states[] so we add 1 to
3066 each. We know that we will need Charcount+1 trans at most to store
3067 the data (one row per char at worst case) So we preallocate both
3068 structures assuming worst case.
3070 We then construct the trie using only the .next slots of the entry
3073 We use the .check field of the first entry of the node temporarily
3074 to make compression both faster and easier by keeping track of how
3075 many non zero fields are in the node.
3077 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
3080 There are two terms at use here: state as a TRIE_NODEIDX() which is
3081 a number representing the first entry of the node, and state as a
3082 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
3083 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
3084 if there are 2 entrys per node. eg:
3092 The table is internally in the right hand, idx form. However as we
3093 also have to deal with the states array which is indexed by nodenum
3094 we have to use TRIE_NODENUM() to convert.
3097 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using table compiler\n",
3100 trie->trans = (reg_trie_trans *)
3101 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
3102 * trie->uniquecharcount + 1,
3103 sizeof(reg_trie_trans) );
3104 trie->states = (reg_trie_state *)
3105 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
3106 sizeof(reg_trie_state) );
3107 next_alloc = trie->uniquecharcount + 1;
3110 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
3112 regnode *noper = NEXTOPER( cur );
3114 U32 state = 1; /* required init */
3116 U16 charid = 0; /* sanity init */
3117 U32 accept_state = 0; /* sanity init */
3119 U32 wordlen = 0; /* required init */
3121 if (OP(noper) == NOTHING) {
3122 regnode *noper_next= regnext(noper);
3123 if (noper_next < tail)
3127 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
3128 const U8 *uc= (U8*)STRING(noper);
3129 const U8 *e= uc + STR_LEN(noper);
3131 for ( ; uc < e ; uc += len ) {
3136 charid = trie->charmap[ uvc ];
3138 SV* const * const svpp = hv_fetch( widecharmap,
3142 charid = svpp ? (U16)SvIV(*svpp) : 0;
3146 if ( !trie->trans[ state + charid ].next ) {
3147 trie->trans[ state + charid ].next = next_alloc;
3148 trie->trans[ state ].check++;
3149 prev_states[TRIE_NODENUM(next_alloc)]
3150 = TRIE_NODENUM(state);
3151 next_alloc += trie->uniquecharcount;
3153 state = trie->trans[ state + charid ].next;
3155 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3157 /* charid is now 0 if we dont know the char read, or
3158 * nonzero if we do */
3161 accept_state = TRIE_NODENUM( state );
3162 TRIE_HANDLE_WORD(accept_state);
3164 } /* end second pass */
3166 /* and now dump it out before we compress it */
3167 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
3169 next_alloc, depth+1));
3173 * Inplace compress the table.*
3175 For sparse data sets the table constructed by the trie algorithm will
3176 be mostly 0/FAIL transitions or to put it another way mostly empty.
3177 (Note that leaf nodes will not contain any transitions.)
3179 This algorithm compresses the tables by eliminating most such
3180 transitions, at the cost of a modest bit of extra work during lookup:
3182 - Each states[] entry contains a .base field which indicates the
3183 index in the state[] array wheres its transition data is stored.
3185 - If .base is 0 there are no valid transitions from that node.
3187 - If .base is nonzero then charid is added to it to find an entry in
3190 -If trans[states[state].base+charid].check!=state then the
3191 transition is taken to be a 0/Fail transition. Thus if there are fail
3192 transitions at the front of the node then the .base offset will point
3193 somewhere inside the previous nodes data (or maybe even into a node
3194 even earlier), but the .check field determines if the transition is
3198 The following process inplace converts the table to the compressed
3199 table: We first do not compress the root node 1,and mark all its
3200 .check pointers as 1 and set its .base pointer as 1 as well. This
3201 allows us to do a DFA construction from the compressed table later,
3202 and ensures that any .base pointers we calculate later are greater
3205 - We set 'pos' to indicate the first entry of the second node.
3207 - We then iterate over the columns of the node, finding the first and
3208 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
3209 and set the .check pointers accordingly, and advance pos
3210 appropriately and repreat for the next node. Note that when we copy
3211 the next pointers we have to convert them from the original
3212 NODEIDX form to NODENUM form as the former is not valid post
3215 - If a node has no transitions used we mark its base as 0 and do not
3216 advance the pos pointer.
3218 - If a node only has one transition we use a second pointer into the
3219 structure to fill in allocated fail transitions from other states.
3220 This pointer is independent of the main pointer and scans forward
3221 looking for null transitions that are allocated to a state. When it
3222 finds one it writes the single transition into the "hole". If the
3223 pointer doesnt find one the single transition is appended as normal.
3225 - Once compressed we can Renew/realloc the structures to release the
3228 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
3229 specifically Fig 3.47 and the associated pseudocode.
3233 const U32 laststate = TRIE_NODENUM( next_alloc );
3236 trie->statecount = laststate;
3238 for ( state = 1 ; state < laststate ; state++ ) {
3240 const U32 stateidx = TRIE_NODEIDX( state );
3241 const U32 o_used = trie->trans[ stateidx ].check;
3242 U32 used = trie->trans[ stateidx ].check;
3243 trie->trans[ stateidx ].check = 0;
3246 used && charid < trie->uniquecharcount;
3249 if ( flag || trie->trans[ stateidx + charid ].next ) {
3250 if ( trie->trans[ stateidx + charid ].next ) {
3252 for ( ; zp < pos ; zp++ ) {
3253 if ( ! trie->trans[ zp ].next ) {
3257 trie->states[ state ].trans.base
3259 + trie->uniquecharcount
3261 trie->trans[ zp ].next
3262 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
3264 trie->trans[ zp ].check = state;
3265 if ( ++zp > pos ) pos = zp;
3272 trie->states[ state ].trans.base
3273 = pos + trie->uniquecharcount - charid ;
3275 trie->trans[ pos ].next
3276 = SAFE_TRIE_NODENUM(
3277 trie->trans[ stateidx + charid ].next );
3278 trie->trans[ pos ].check = state;
3283 trie->lasttrans = pos + 1;
3284 trie->states = (reg_trie_state *)
3285 PerlMemShared_realloc( trie->states, laststate
3286 * sizeof(reg_trie_state) );
3287 DEBUG_TRIE_COMPILE_MORE_r(
3288 Perl_re_indentf( aTHX_ "Alloc: %d Orig: %" IVdf " elements, Final:%" IVdf ". Savings of %%%5.2f\n",
3290 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
3294 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
3297 } /* end table compress */
3299 DEBUG_TRIE_COMPILE_MORE_r(
3300 Perl_re_indentf( aTHX_ "Statecount:%" UVxf " Lasttrans:%" UVxf "\n",
3302 (UV)trie->statecount,
3303 (UV)trie->lasttrans)
3305 /* resize the trans array to remove unused space */
3306 trie->trans = (reg_trie_trans *)
3307 PerlMemShared_realloc( trie->trans, trie->lasttrans
3308 * sizeof(reg_trie_trans) );
3310 { /* Modify the program and insert the new TRIE node */
3311 U8 nodetype =(U8)(flags & 0xFF);
3315 regnode *optimize = NULL;
3316 #ifdef RE_TRACK_PATTERN_OFFSETS
3319 U32 mjd_nodelen = 0;
3320 #endif /* RE_TRACK_PATTERN_OFFSETS */
3321 #endif /* DEBUGGING */
3323 This means we convert either the first branch or the first Exact,
3324 depending on whether the thing following (in 'last') is a branch
3325 or not and whther first is the startbranch (ie is it a sub part of
3326 the alternation or is it the whole thing.)
3327 Assuming its a sub part we convert the EXACT otherwise we convert
3328 the whole branch sequence, including the first.
3330 /* Find the node we are going to overwrite */
3331 if ( first != startbranch || OP( last ) == BRANCH ) {
3332 /* branch sub-chain */
3333 NEXT_OFF( first ) = (U16)(last - first);
3334 #ifdef RE_TRACK_PATTERN_OFFSETS
3336 mjd_offset= Node_Offset((convert));
3337 mjd_nodelen= Node_Length((convert));
3340 /* whole branch chain */
3342 #ifdef RE_TRACK_PATTERN_OFFSETS
3345 const regnode *nop = NEXTOPER( convert );
3346 mjd_offset= Node_Offset((nop));
3347 mjd_nodelen= Node_Length((nop));
3351 Perl_re_indentf( aTHX_ "MJD offset:%" UVuf " MJD length:%" UVuf "\n",
3353 (UV)mjd_offset, (UV)mjd_nodelen)
3356 /* But first we check to see if there is a common prefix we can
3357 split out as an EXACT and put in front of the TRIE node. */
3358 trie->startstate= 1;
3359 if ( trie->bitmap && !widecharmap && !trie->jump ) {
3360 /* we want to find the first state that has more than
3361 * one transition, if that state is not the first state
3362 * then we have a common prefix which we can remove.
3365 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
3367 I32 first_ofs = -1; /* keeps track of the ofs of the first
3368 transition, -1 means none */
3370 const U32 base = trie->states[ state ].trans.base;
3372 /* does this state terminate an alternation? */
3373 if ( trie->states[state].wordnum )
3376 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
3377 if ( ( base + ofs >= trie->uniquecharcount ) &&
3378 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
3379 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
3381 if ( ++count > 1 ) {
3382 /* we have more than one transition */
3385 /* if this is the first state there is no common prefix
3386 * to extract, so we can exit */
3387 if ( state == 1 ) break;
3388 tmp = av_fetch( revcharmap, ofs, 0);
3389 ch = (U8*)SvPV_nolen_const( *tmp );
3391 /* if we are on count 2 then we need to initialize the
3392 * bitmap, and store the previous char if there was one
3395 /* clear the bitmap */
3396 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
3398 Perl_re_indentf( aTHX_ "New Start State=%" UVuf " Class: [",
3401 if (first_ofs >= 0) {
3402 SV ** const tmp = av_fetch( revcharmap, first_ofs, 0);
3403 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
3405 TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
3407 Perl_re_printf( aTHX_ "%s", (char*)ch)
3411 /* store the current firstchar in the bitmap */
3412 TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
3413 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "%s", ch));
3419 /* This state has only one transition, its transition is part
3420 * of a common prefix - we need to concatenate the char it
3421 * represents to what we have so far. */
3422 SV **tmp = av_fetch( revcharmap, first_ofs, 0);
3424 char *ch = SvPV( *tmp, len );
3426 SV *sv=sv_newmortal();
3427 Perl_re_indentf( aTHX_ "Prefix State: %" UVuf " Ofs:%" UVuf " Char='%s'\n",
3429 (UV)state, (UV)first_ofs,
3430 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
3431 PL_colors[0], PL_colors[1],
3432 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
3433 PERL_PV_ESCAPE_FIRSTCHAR
3438 OP( convert ) = nodetype;
3439 str=STRING(convert);
3442 STR_LEN(convert) += len;
3448 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "]\n"));
3453 trie->prefixlen = (state-1);
3455 regnode *n = convert+NODE_SZ_STR(convert);
3456 NEXT_OFF(convert) = NODE_SZ_STR(convert);
3457 trie->startstate = state;
3458 trie->minlen -= (state - 1);
3459 trie->maxlen -= (state - 1);
3461 /* At least the UNICOS C compiler choked on this
3462 * being argument to DEBUG_r(), so let's just have
3465 #ifdef PERL_EXT_RE_BUILD
3471 regnode *fix = convert;
3472 U32 word = trie->wordcount;
3473 #ifdef RE_TRACK_PATTERN_OFFSETS
3476 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3477 while( ++fix < n ) {
3478 Set_Node_Offset_Length(fix, 0, 0);
3481 SV ** const tmp = av_fetch( trie_words, word, 0 );
3483 if ( STR_LEN(convert) <= SvCUR(*tmp) )
3484 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3486 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3494 NEXT_OFF(convert) = (U16)(tail - convert);
3495 DEBUG_r(optimize= n);
3501 if ( trie->maxlen ) {
3502 NEXT_OFF( convert ) = (U16)(tail - convert);
3503 ARG_SET( convert, data_slot );
3504 /* Store the offset to the first unabsorbed branch in
3505 jump[0], which is otherwise unused by the jump logic.
3506 We use this when dumping a trie and during optimisation. */
3508 trie->jump[0] = (U16)(nextbranch - convert);
3510 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3511 * and there is a bitmap
3512 * and the first "jump target" node we found leaves enough room
3513 * then convert the TRIE node into a TRIEC node, with the bitmap
3514 * embedded inline in the opcode - this is hypothetically faster.
3516 if ( !trie->states[trie->startstate].wordnum
3518 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3520 OP( convert ) = TRIEC;
3521 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3522 PerlMemShared_free(trie->bitmap);
3525 OP( convert ) = TRIE;
3527 /* store the type in the flags */
3528 convert->flags = nodetype;
3532 + regarglen[ OP( convert ) ];
3534 /* XXX We really should free up the resource in trie now,
3535 as we won't use them - (which resources?) dmq */
3537 /* needed for dumping*/
3538 DEBUG_r(if (optimize) {
3539 regnode *opt = convert;
3541 while ( ++opt < optimize) {
3542 Set_Node_Offset_Length(opt, 0, 0);
3545 Try to clean up some of the debris left after the
3548 while( optimize < jumper ) {
3549 #ifdef RE_TRACK_PATTERN_OFFSETS
3550 mjd_nodelen += Node_Length((optimize));
3552 OP( optimize ) = OPTIMIZED;
3553 Set_Node_Offset_Length(optimize, 0, 0);
3556 Set_Node_Offset_Length(convert, mjd_offset, mjd_nodelen);
3558 } /* end node insert */
3560 /* Finish populating the prev field of the wordinfo array. Walk back
3561 * from each accept state until we find another accept state, and if
3562 * so, point the first word's .prev field at the second word. If the
3563 * second already has a .prev field set, stop now. This will be the
3564 * case either if we've already processed that word's accept state,
3565 * or that state had multiple words, and the overspill words were
3566 * already linked up earlier.
3573 for (word=1; word <= trie->wordcount; word++) {
3575 if (trie->wordinfo[word].prev)
3577 state = trie->wordinfo[word].accept;
3579 state = prev_states[state];
3582 prev = trie->states[state].wordnum;
3586 trie->wordinfo[word].prev = prev;
3588 Safefree(prev_states);
3592 /* and now dump out the compressed format */
3593 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3595 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3597 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3598 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3600 SvREFCNT_dec_NN(revcharmap);
3604 : trie->startstate>1
3610 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3612 /* The Trie is constructed and compressed now so we can build a fail array if
3615 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3617 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3621 We find the fail state for each state in the trie, this state is the longest
3622 proper suffix of the current state's 'word' that is also a proper prefix of
3623 another word in our trie. State 1 represents the word '' and is thus the
3624 default fail state. This allows the DFA not to have to restart after its
3625 tried and failed a word at a given point, it simply continues as though it
3626 had been matching the other word in the first place.
3628 'abcdgu'=~/abcdefg|cdgu/
3629 When we get to 'd' we are still matching the first word, we would encounter
3630 'g' which would fail, which would bring us to the state representing 'd' in
3631 the second word where we would try 'g' and succeed, proceeding to match
3634 /* add a fail transition */
3635 const U32 trie_offset = ARG(source);
3636 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3638 const U32 ucharcount = trie->uniquecharcount;
3639 const U32 numstates = trie->statecount;
3640 const U32 ubound = trie->lasttrans + ucharcount;
3644 U32 base = trie->states[ 1 ].trans.base;
3647 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3649 GET_RE_DEBUG_FLAGS_DECL;
3651 PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3652 PERL_UNUSED_CONTEXT;
3654 PERL_UNUSED_ARG(depth);
3657 if ( OP(source) == TRIE ) {
3658 struct regnode_1 *op = (struct regnode_1 *)
3659 PerlMemShared_calloc(1, sizeof(struct regnode_1));
3660 StructCopy(source, op, struct regnode_1);
3661 stclass = (regnode *)op;
3663 struct regnode_charclass *op = (struct regnode_charclass *)
3664 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3665 StructCopy(source, op, struct regnode_charclass);
3666 stclass = (regnode *)op;
3668 OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3670 ARG_SET( stclass, data_slot );
3671 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3672 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3673 aho->trie=trie_offset;
3674 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3675 Copy( trie->states, aho->states, numstates, reg_trie_state );
3676 Newx( q, numstates, U32);
3677 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3680 /* initialize fail[0..1] to be 1 so that we always have
3681 a valid final fail state */
3682 fail[ 0 ] = fail[ 1 ] = 1;
3684 for ( charid = 0; charid < ucharcount ; charid++ ) {
3685 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3687 q[ q_write ] = newstate;
3688 /* set to point at the root */
3689 fail[ q[ q_write++ ] ]=1;
3692 while ( q_read < q_write) {
3693 const U32 cur = q[ q_read++ % numstates ];
3694 base = trie->states[ cur ].trans.base;
3696 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3697 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3699 U32 fail_state = cur;
3702 fail_state = fail[ fail_state ];
3703 fail_base = aho->states[ fail_state ].trans.base;
3704 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3706 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3707 fail[ ch_state ] = fail_state;
3708 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3710 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3712 q[ q_write++ % numstates] = ch_state;
3716 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3717 when we fail in state 1, this allows us to use the
3718 charclass scan to find a valid start char. This is based on the principle
3719 that theres a good chance the string being searched contains lots of stuff
3720 that cant be a start char.
3722 fail[ 0 ] = fail[ 1 ] = 0;
3723 DEBUG_TRIE_COMPILE_r({
3724 Perl_re_indentf( aTHX_ "Stclass Failtable (%" UVuf " states): 0",
3725 depth, (UV)numstates
3727 for( q_read=1; q_read<numstates; q_read++ ) {
3728 Perl_re_printf( aTHX_ ", %" UVuf, (UV)fail[q_read]);
3730 Perl_re_printf( aTHX_ "\n");
3733 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3738 /* The below joins as many adjacent EXACTish nodes as possible into a single
3739 * one. The regop may be changed if the node(s) contain certain sequences that
3740 * require special handling. The joining is only done if:
3741 * 1) there is room in the current conglomerated node to entirely contain the
3743 * 2) they are the exact same node type
3745 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3746 * these get optimized out
3748 * XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
3749 * as possible, even if that means splitting an existing node so that its first
3750 * part is moved to the preceeding node. This would maximise the efficiency of
3751 * memEQ during matching.
3753 * If a node is to match under /i (folded), the number of characters it matches
3754 * can be different than its character length if it contains a multi-character
3755 * fold. *min_subtract is set to the total delta number of characters of the
3758 * And *unfolded_multi_char is set to indicate whether or not the node contains
3759 * an unfolded multi-char fold. This happens when it won't be known until
3760 * runtime whether the fold is valid or not; namely
3761 * 1) for EXACTF nodes that contain LATIN SMALL LETTER SHARP S, as only if the
3762 * target string being matched against turns out to be UTF-8 is that fold
3764 * 2) for EXACTFL nodes whose folding rules depend on the locale in force at
3766 * (Multi-char folds whose components are all above the Latin1 range are not
3767 * run-time locale dependent, and have already been folded by the time this
3768 * function is called.)
3770 * This is as good a place as any to discuss the design of handling these
3771 * multi-character fold sequences. It's been wrong in Perl for a very long
3772 * time. There are three code points in Unicode whose multi-character folds
3773 * were long ago discovered to mess things up. The previous designs for
3774 * dealing with these involved assigning a special node for them. This
3775 * approach doesn't always work, as evidenced by this example:
3776 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3777 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3778 * would match just the \xDF, it won't be able to handle the case where a
3779 * successful match would have to cross the node's boundary. The new approach
3780 * that hopefully generally solves the problem generates an EXACTFU_SS node
3781 * that is "sss" in this case.
3783 * It turns out that there are problems with all multi-character folds, and not
3784 * just these three. Now the code is general, for all such cases. The
3785 * approach taken is:
3786 * 1) This routine examines each EXACTFish node that could contain multi-
3787 * character folded sequences. Since a single character can fold into
3788 * such a sequence, the minimum match length for this node is less than
3789 * the number of characters in the node. This routine returns in
3790 * *min_subtract how many characters to subtract from the the actual
3791 * length of the string to get a real minimum match length; it is 0 if
3792 * there are no multi-char foldeds. This delta is used by the caller to
3793 * adjust the min length of the match, and the delta between min and max,
3794 * so that the optimizer doesn't reject these possibilities based on size
3796 * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
3797 * is used for an EXACTFU node that contains at least one "ss" sequence in
3798 * it. For non-UTF-8 patterns and strings, this is the only case where
3799 * there is a possible fold length change. That means that a regular
3800 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
3801 * with length changes, and so can be processed faster. regexec.c takes
3802 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
3803 * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
3804 * known until runtime). This saves effort in regex matching. However,
3805 * the pre-folding isn't done for non-UTF8 patterns because the fold of
3806 * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
3807 * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
3808 * again, EXACTFL) nodes fold to isn't known until runtime. The fold
3809 * possibilities for the non-UTF8 patterns are quite simple, except for
3810 * the sharp s. All the ones that don't involve a UTF-8 target string are
3811 * members of a fold-pair, and arrays are set up for all of them so that
3812 * the other member of the pair can be found quickly. Code elsewhere in
3813 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
3814 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
3815 * described in the next item.
3816 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3817 * validity of the fold won't be known until runtime, and so must remain
3818 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFAA
3819 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3820 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3821 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3822 * The reason this is a problem is that the optimizer part of regexec.c
3823 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3824 * that a character in the pattern corresponds to at most a single
3825 * character in the target string. (And I do mean character, and not byte
3826 * here, unlike other parts of the documentation that have never been
3827 * updated to account for multibyte Unicode.) sharp s in EXACTF and
3828 * EXACTFL nodes can match the two character string 'ss'; in EXACTFAA
3829 * nodes it can match "\x{17F}\x{17F}". These, along with other ones in
3830 * EXACTFL nodes, violate the assumption, and they are the only instances
3831 * where it is violated. I'm reluctant to try to change the assumption,
3832 * as the code involved is impenetrable to me (khw), so instead the code
3833 * here punts. This routine examines EXACTFL nodes, and (when the pattern
3834 * isn't UTF-8) EXACTF and EXACTFAA for such unfolded folds, and returns a
3835 * boolean indicating whether or not the node contains such a fold. When
3836 * it is true, the caller sets a flag that later causes the optimizer in
3837 * this file to not set values for the floating and fixed string lengths,
3838 * and thus avoids the optimizer code in regexec.c that makes the invalid
3839 * assumption. Thus, there is no optimization based on string lengths for
3840 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3841 * EXACTF and EXACTFAA nodes that contain the sharp s. (The reason the
3842 * assumption is wrong only in these cases is that all other non-UTF-8
3843 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
3844 * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
3845 * EXACTF nodes because we don't know at compile time if it actually
3846 * matches 'ss' or not. For EXACTF nodes it will match iff the target
3847 * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
3848 * always matches; and EXACTFAA where it never does. In an EXACTFAA node
3849 * in a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
3850 * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
3851 * string would require the pattern to be forced into UTF-8, the overhead
3852 * of which we want to avoid. Similarly the unfolded multi-char folds in
3853 * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
3856 * Similarly, the code that generates tries doesn't currently handle
3857 * not-already-folded multi-char folds, and it looks like a pain to change
3858 * that. Therefore, trie generation of EXACTFAA nodes with the sharp s
3859 * doesn't work. Instead, such an EXACTFAA is turned into a new regnode,
3860 * EXACTFAA_NO_TRIE, which the trie code knows not to handle. Most people
3861 * using /iaa matching will be doing so almost entirely with ASCII
3862 * strings, so this should rarely be encountered in practice */
3864 #define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
3865 if (PL_regkind[OP(scan)] == EXACT) \
3866 join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags), NULL, depth+1)
3869 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
3870 UV *min_subtract, bool *unfolded_multi_char,
3871 U32 flags, regnode *val, U32 depth)
3873 /* Merge several consecutive EXACTish nodes into one. */
3874 regnode *n = regnext(scan);
3876 regnode *next = scan + NODE_SZ_STR(scan);
3880 regnode *stop = scan;
3881 GET_RE_DEBUG_FLAGS_DECL;
3883 PERL_UNUSED_ARG(depth);
3886 PERL_ARGS_ASSERT_JOIN_EXACT;
3887 #ifndef EXPERIMENTAL_INPLACESCAN
3888 PERL_UNUSED_ARG(flags);
3889 PERL_UNUSED_ARG(val);
3891 DEBUG_PEEP("join", scan, depth, 0);
3893 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
3894 * EXACT ones that are mergeable to the current one. */
3896 && (PL_regkind[OP(n)] == NOTHING
3897 || (stringok && OP(n) == OP(scan)))
3899 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
3902 if (OP(n) == TAIL || n > next)
3904 if (PL_regkind[OP(n)] == NOTHING) {
3905 DEBUG_PEEP("skip:", n, depth, 0);
3906 NEXT_OFF(scan) += NEXT_OFF(n);
3907 next = n + NODE_STEP_REGNODE;
3914 else if (stringok) {
3915 const unsigned int oldl = STR_LEN(scan);
3916 regnode * const nnext = regnext(n);
3918 /* XXX I (khw) kind of doubt that this works on platforms (should
3919 * Perl ever run on one) where U8_MAX is above 255 because of lots
3920 * of other assumptions */
3921 /* Don't join if the sum can't fit into a single node */
3922 if (oldl + STR_LEN(n) > U8_MAX)
3925 DEBUG_PEEP("merg", n, depth, 0);
3928 NEXT_OFF(scan) += NEXT_OFF(n);
3929 STR_LEN(scan) += STR_LEN(n);
3930 next = n + NODE_SZ_STR(n);
3931 /* Now we can overwrite *n : */
3932 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
3940 #ifdef EXPERIMENTAL_INPLACESCAN
3941 if (flags && !NEXT_OFF(n)) {
3942 DEBUG_PEEP("atch", val, depth, 0);
3943 if (reg_off_by_arg[OP(n)]) {
3944 ARG_SET(n, val - n);
3947 NEXT_OFF(n) = val - n;
3955 *unfolded_multi_char = FALSE;
3957 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
3958 * can now analyze for sequences of problematic code points. (Prior to
3959 * this final joining, sequences could have been split over boundaries, and
3960 * hence missed). The sequences only happen in folding, hence for any
3961 * non-EXACT EXACTish node */
3962 if (OP(scan) != EXACT && OP(scan) != EXACTL) {
3963 U8* s0 = (U8*) STRING(scan);
3965 U8* s_end = s0 + STR_LEN(scan);
3967 int total_count_delta = 0; /* Total delta number of characters that
3968 multi-char folds expand to */
3970 /* One pass is made over the node's string looking for all the
3971 * possibilities. To avoid some tests in the loop, there are two main
3972 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
3977 if (OP(scan) == EXACTFL) {
3980 /* An EXACTFL node would already have been changed to another
3981 * node type unless there is at least one character in it that
3982 * is problematic; likely a character whose fold definition
3983 * won't be known until runtime, and so has yet to be folded.
3984 * For all but the UTF-8 locale, folds are 1-1 in length, but
3985 * to handle the UTF-8 case, we need to create a temporary
3986 * folded copy using UTF-8 locale rules in order to analyze it.
3987 * This is because our macros that look to see if a sequence is
3988 * a multi-char fold assume everything is folded (otherwise the
3989 * tests in those macros would be too complicated and slow).
3990 * Note that here, the non-problematic folds will have already
3991 * been done, so we can just copy such characters. We actually
3992 * don't completely fold the EXACTFL string. We skip the
3993 * unfolded multi-char folds, as that would just create work
3994 * below to figure out the size they already are */
3996 Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
3999 STRLEN s_len = UTF8SKIP(s);
4000 if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
4001 Copy(s, d, s_len, U8);
4004 else if (is_FOLDS_TO_MULTI_utf8(s)) {
4005 *unfolded_multi_char = TRUE;
4006 Copy(s, d, s_len, U8);
4009 else if (isASCII(*s)) {
4010 *(d++) = toFOLD(*s);
4014 _toFOLD_utf8_flags(s, s_end, d, &len, FOLD_FLAGS_FULL);
4020 /* Point the remainder of the routine to look at our temporary
4024 } /* End of creating folded copy of EXACTFL string */
4026 /* Examine the string for a multi-character fold sequence. UTF-8
4027 * patterns have all characters pre-folded by the time this code is
4029 while (s < s_end - 1) /* Can sto