3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * 'It all comes from here, the stench and the peril.' --Frodo
14 * [p.719 of _The Lord of the Rings_, IV/ix: "Shelob's Lair"]
18 * This file is the lexer for Perl. It's closely linked to the
21 * The main routine is yylex(), which returns the next token.
25 =head1 Lexer interface
26 This is the lower layer of the Perl parser, managing characters and tokens.
28 =for apidoc AmU|yy_parser *|PL_parser
30 Pointer to a structure encapsulating the state of the parsing operation
31 currently in progress. The pointer can be locally changed to perform
32 a nested parse without interfering with the state of an outer parse.
33 Individual members of C<PL_parser> have their own documentation.
39 #define PERL_IN_TOKE_C
41 #include "dquote_inline.h"
42 #include "invlist_inline.h"
44 #define new_constant(a,b,c,d,e,f,g, h) \
45 S_new_constant(aTHX_ a,b,STR_WITH_LEN(c),d,e,f, g, h)
47 #define pl_yylval (PL_parser->yylval)
49 /* XXX temporary backwards compatibility */
50 #define PL_lex_brackets (PL_parser->lex_brackets)
51 #define PL_lex_allbrackets (PL_parser->lex_allbrackets)
52 #define PL_lex_fakeeof (PL_parser->lex_fakeeof)
53 #define PL_lex_brackstack (PL_parser->lex_brackstack)
54 #define PL_lex_casemods (PL_parser->lex_casemods)
55 #define PL_lex_casestack (PL_parser->lex_casestack)
56 #define PL_lex_dojoin (PL_parser->lex_dojoin)
57 #define PL_lex_formbrack (PL_parser->lex_formbrack)
58 #define PL_lex_inpat (PL_parser->lex_inpat)
59 #define PL_lex_inwhat (PL_parser->lex_inwhat)
60 #define PL_lex_op (PL_parser->lex_op)
61 #define PL_lex_repl (PL_parser->lex_repl)
62 #define PL_lex_starts (PL_parser->lex_starts)
63 #define PL_lex_stuff (PL_parser->lex_stuff)
64 #define PL_multi_start (PL_parser->multi_start)
65 #define PL_multi_open (PL_parser->multi_open)
66 #define PL_multi_close (PL_parser->multi_close)
67 #define PL_preambled (PL_parser->preambled)
68 #define PL_linestr (PL_parser->linestr)
69 #define PL_expect (PL_parser->expect)
70 #define PL_copline (PL_parser->copline)
71 #define PL_bufptr (PL_parser->bufptr)
72 #define PL_oldbufptr (PL_parser->oldbufptr)
73 #define PL_oldoldbufptr (PL_parser->oldoldbufptr)
74 #define PL_linestart (PL_parser->linestart)
75 #define PL_bufend (PL_parser->bufend)
76 #define PL_last_uni (PL_parser->last_uni)
77 #define PL_last_lop (PL_parser->last_lop)
78 #define PL_last_lop_op (PL_parser->last_lop_op)
79 #define PL_lex_state (PL_parser->lex_state)
80 #define PL_rsfp (PL_parser->rsfp)
81 #define PL_rsfp_filters (PL_parser->rsfp_filters)
82 #define PL_in_my (PL_parser->in_my)
83 #define PL_in_my_stash (PL_parser->in_my_stash)
84 #define PL_tokenbuf (PL_parser->tokenbuf)
85 #define PL_multi_end (PL_parser->multi_end)
86 #define PL_error_count (PL_parser->error_count)
88 # define PL_nexttoke (PL_parser->nexttoke)
89 # define PL_nexttype (PL_parser->nexttype)
90 # define PL_nextval (PL_parser->nextval)
93 #define SvEVALED(sv) \
94 (SvTYPE(sv) >= SVt_PVNV \
95 && ((XPVIV*)SvANY(sv))->xiv_u.xivu_eval_seen)
97 static const char* const ident_too_long = "Identifier too long";
99 # define NEXTVAL_NEXTTOKE PL_nextval[PL_nexttoke]
101 #define XENUMMASK 0x3f
102 #define XFAKEEOF 0x40
103 #define XFAKEBRACK 0x80
105 #ifdef USE_UTF8_SCRIPTS
106 # define UTF cBOOL(!IN_BYTES)
108 # define UTF cBOOL((PL_linestr && DO_UTF8(PL_linestr)) || ( !(PL_parser->lex_flags & LEX_IGNORE_UTF8_HINTS) && (PL_hints & HINT_UTF8)))
111 /* The maximum number of characters preceding the unrecognized one to display */
112 #define UNRECOGNIZED_PRECEDE_COUNT 10
114 /* In variables named $^X, these are the legal values for X.
115 * 1999-02-27 mjd-perl-patch@plover.com */
116 #define isCONTROLVAR(x) (isUPPER(x) || strchr("[\\]^_?", (x)))
118 #define SPACE_OR_TAB(c) isBLANK_A(c)
120 #define HEXFP_PEEK(s) \
122 (isXDIGIT(s[1]) || isALPHA_FOLD_EQ(s[1], 'p'))) || \
123 isALPHA_FOLD_EQ(s[0], 'p'))
125 /* LEX_* are values for PL_lex_state, the state of the lexer.
126 * They are arranged oddly so that the guard on the switch statement
127 * can get by with a single comparison (if the compiler is smart enough).
129 * These values refer to the various states within a sublex parse,
130 * i.e. within a double quotish string
133 /* #define LEX_NOTPARSING 11 is done in perl.h. */
135 #define LEX_NORMAL 10 /* normal code (ie not within "...") */
136 #define LEX_INTERPNORMAL 9 /* code within a string, eg "$foo[$x+1]" */
137 #define LEX_INTERPCASEMOD 8 /* expecting a \U, \Q or \E etc */
138 #define LEX_INTERPPUSH 7 /* starting a new sublex parse level */
139 #define LEX_INTERPSTART 6 /* expecting the start of a $var */
141 /* at end of code, eg "$x" followed by: */
142 #define LEX_INTERPEND 5 /* ... eg not one of [, { or -> */
143 #define LEX_INTERPENDMAYBE 4 /* ... eg one of [, { or -> */
145 #define LEX_INTERPCONCAT 3 /* expecting anything, eg at start of
146 string or after \E, $foo, etc */
147 #define LEX_INTERPCONST 2 /* NOT USED */
148 #define LEX_FORMLINE 1 /* expecting a format line */
152 static const char* const lex_state_names[] = {
167 #include "keywords.h"
169 /* CLINE is a macro that ensures PL_copline has a sane value */
171 #define CLINE (PL_copline = (CopLINE(PL_curcop) < PL_copline ? CopLINE(PL_curcop) : PL_copline))
174 * Convenience functions to return different tokens and prime the
175 * lexer for the next token. They all take an argument.
177 * TOKEN : generic token (used for '(', DOLSHARP, etc)
178 * OPERATOR : generic operator
179 * AOPERATOR : assignment operator
180 * PREBLOCK : beginning the block after an if, while, foreach, ...
181 * PRETERMBLOCK : beginning a non-code-defining {} block (eg, hash ref)
182 * PREREF : *EXPR where EXPR is not a simple identifier
183 * TERM : expression term
184 * POSTDEREF : postfix dereference (->$* ->@[...] etc.)
185 * LOOPX : loop exiting command (goto, last, dump, etc)
186 * FTST : file test operator
187 * FUN0 : zero-argument function
188 * FUN0OP : zero-argument function, with its op created in this file
189 * FUN1 : not used, except for not, which isn't a UNIOP
190 * BOop : bitwise or or xor
192 * BCop : bitwise complement
193 * SHop : shift operator
194 * PWop : power operator
195 * PMop : pattern-matching operator
196 * Aop : addition-level operator
197 * AopNOASSIGN : addition-level operator that is never part of .=
198 * Mop : multiplication-level operator
199 * Eop : equality-testing operator
200 * Rop : relational operator <= != gt
202 * Also see LOP and lop() below.
205 #ifdef DEBUGGING /* Serve -DT. */
206 # define REPORT(retval) tokereport((I32)retval, &pl_yylval)
208 # define REPORT(retval) (retval)
211 #define TOKEN(retval) return ( PL_bufptr = s, REPORT(retval))
212 #define OPERATOR(retval) return (PL_expect = XTERM, PL_bufptr = s, REPORT(retval))
213 #define AOPERATOR(retval) return ao((PL_expect = XTERM, PL_bufptr = s, retval))
214 #define PREBLOCK(retval) return (PL_expect = XBLOCK,PL_bufptr = s, REPORT(retval))
215 #define PRETERMBLOCK(retval) return (PL_expect = XTERMBLOCK,PL_bufptr = s, REPORT(retval))
216 #define PREREF(retval) return (PL_expect = XREF,PL_bufptr = s, REPORT(retval))
217 #define TERM(retval) return (CLINE, PL_expect = XOPERATOR, PL_bufptr = s, REPORT(retval))
218 #define POSTDEREF(f) return (PL_bufptr = s, S_postderef(aTHX_ REPORT(f),s[1]))
219 #define LOOPX(f) return (PL_bufptr = force_word(s,BAREWORD,TRUE,FALSE), \
221 PL_expect = PL_nexttoke ? XOPERATOR : XTERM, \
223 #define FTST(f) return (pl_yylval.ival=f, PL_expect=XTERMORDORDOR, PL_bufptr=s, REPORT((int)UNIOP))
224 #define FUN0(f) return (pl_yylval.ival=f, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC0))
225 #define FUN0OP(f) return (pl_yylval.opval=f, CLINE, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC0OP))
226 #define FUN1(f) return (pl_yylval.ival=f, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC1))
227 #define BOop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)BITOROP))
228 #define BAop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)BITANDOP))
229 #define BCop(f) return pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr = s, \
231 #define SHop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)SHIFTOP))
232 #define PWop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)POWOP))
233 #define PMop(f) return(pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)MATCHOP))
234 #define Aop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)ADDOP))
235 #define AopNOASSIGN(f) return (pl_yylval.ival=f, PL_bufptr=s, REPORT((int)ADDOP))
236 #define Mop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)MULOP))
237 #define Eop(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)EQOP))
238 #define Rop(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)RELOP))
240 /* This bit of chicanery makes a unary function followed by
241 * a parenthesis into a function with one argument, highest precedence.
242 * The UNIDOR macro is for unary functions that can be followed by the //
243 * operator (such as C<shift // 0>).
245 #define UNI3(f,x,have_x) { \
246 pl_yylval.ival = f; \
247 if (have_x) PL_expect = x; \
249 PL_last_uni = PL_oldbufptr; \
250 PL_last_lop_op = (f) < 0 ? -(f) : (f); \
252 return REPORT( (int)FUNC1 ); \
254 return REPORT( *s=='(' ? (int)FUNC1 : (int)UNIOP ); \
256 #define UNI(f) UNI3(f,XTERM,1)
257 #define UNIDOR(f) UNI3(f,XTERMORDORDOR,1)
258 #define UNIPROTO(f,optional) { \
259 if (optional) PL_last_uni = PL_oldbufptr; \
263 #define UNIBRACK(f) UNI3(f,0,0)
265 /* grandfather return to old style */
268 if (!PL_lex_allbrackets && PL_lex_fakeeof > LEX_FAKEEOF_LOWLOGIC) \
269 PL_lex_fakeeof = LEX_FAKEEOF_LOWLOGIC; \
270 pl_yylval.ival = (f); \
276 #define COPLINE_INC_WITH_HERELINES \
278 CopLINE_inc(PL_curcop); \
279 if (PL_parser->herelines) \
280 CopLINE(PL_curcop) += PL_parser->herelines, \
281 PL_parser->herelines = 0; \
283 /* Called after scan_str to update CopLINE(PL_curcop), but only when there
284 * is no sublex_push to follow. */
285 #define COPLINE_SET_FROM_MULTI_END \
287 CopLINE_set(PL_curcop, PL_multi_end); \
288 if (PL_multi_end != PL_multi_start) \
289 PL_parser->herelines = 0; \
295 /* how to interpret the pl_yylval associated with the token */
299 TOKENTYPE_OPNUM, /* pl_yylval.ival contains an opcode number */
304 static struct debug_tokens {
306 enum token_type type;
308 } const debug_tokens[] =
310 { ADDOP, TOKENTYPE_OPNUM, "ADDOP" },
311 { ANDAND, TOKENTYPE_NONE, "ANDAND" },
312 { ANDOP, TOKENTYPE_NONE, "ANDOP" },
313 { ANONSUB, TOKENTYPE_IVAL, "ANONSUB" },
314 { ANON_SIGSUB, TOKENTYPE_IVAL, "ANON_SIGSUB" },
315 { ARROW, TOKENTYPE_NONE, "ARROW" },
316 { ASSIGNOP, TOKENTYPE_OPNUM, "ASSIGNOP" },
317 { BITANDOP, TOKENTYPE_OPNUM, "BITANDOP" },
318 { BITOROP, TOKENTYPE_OPNUM, "BITOROP" },
319 { COLONATTR, TOKENTYPE_NONE, "COLONATTR" },
320 { CONTINUE, TOKENTYPE_NONE, "CONTINUE" },
321 { DEFAULT, TOKENTYPE_NONE, "DEFAULT" },
322 { DO, TOKENTYPE_NONE, "DO" },
323 { DOLSHARP, TOKENTYPE_NONE, "DOLSHARP" },
324 { DORDOR, TOKENTYPE_NONE, "DORDOR" },
325 { DOROP, TOKENTYPE_OPNUM, "DOROP" },
326 { DOTDOT, TOKENTYPE_IVAL, "DOTDOT" },
327 { ELSE, TOKENTYPE_NONE, "ELSE" },
328 { ELSIF, TOKENTYPE_IVAL, "ELSIF" },
329 { EQOP, TOKENTYPE_OPNUM, "EQOP" },
330 { FOR, TOKENTYPE_IVAL, "FOR" },
331 { FORMAT, TOKENTYPE_NONE, "FORMAT" },
332 { FORMLBRACK, TOKENTYPE_NONE, "FORMLBRACK" },
333 { FORMRBRACK, TOKENTYPE_NONE, "FORMRBRACK" },
334 { FUNC, TOKENTYPE_OPNUM, "FUNC" },
335 { FUNC0, TOKENTYPE_OPNUM, "FUNC0" },
336 { FUNC0OP, TOKENTYPE_OPVAL, "FUNC0OP" },
337 { FUNC0SUB, TOKENTYPE_OPVAL, "FUNC0SUB" },
338 { FUNC1, TOKENTYPE_OPNUM, "FUNC1" },
339 { FUNCMETH, TOKENTYPE_OPVAL, "FUNCMETH" },
340 { GIVEN, TOKENTYPE_IVAL, "GIVEN" },
341 { HASHBRACK, TOKENTYPE_NONE, "HASHBRACK" },
342 { IF, TOKENTYPE_IVAL, "IF" },
343 { LABEL, TOKENTYPE_OPVAL, "LABEL" },
344 { LOCAL, TOKENTYPE_IVAL, "LOCAL" },
345 { LOOPEX, TOKENTYPE_OPNUM, "LOOPEX" },
346 { LSTOP, TOKENTYPE_OPNUM, "LSTOP" },
347 { LSTOPSUB, TOKENTYPE_OPVAL, "LSTOPSUB" },
348 { MATCHOP, TOKENTYPE_OPNUM, "MATCHOP" },
349 { METHOD, TOKENTYPE_OPVAL, "METHOD" },
350 { MULOP, TOKENTYPE_OPNUM, "MULOP" },
351 { MY, TOKENTYPE_IVAL, "MY" },
352 { NOAMP, TOKENTYPE_NONE, "NOAMP" },
353 { NOTOP, TOKENTYPE_NONE, "NOTOP" },
354 { OROP, TOKENTYPE_IVAL, "OROP" },
355 { OROR, TOKENTYPE_NONE, "OROR" },
356 { PACKAGE, TOKENTYPE_NONE, "PACKAGE" },
357 { PLUGEXPR, TOKENTYPE_OPVAL, "PLUGEXPR" },
358 { PLUGSTMT, TOKENTYPE_OPVAL, "PLUGSTMT" },
359 { PMFUNC, TOKENTYPE_OPVAL, "PMFUNC" },
360 { POSTJOIN, TOKENTYPE_NONE, "POSTJOIN" },
361 { POSTDEC, TOKENTYPE_NONE, "POSTDEC" },
362 { POSTINC, TOKENTYPE_NONE, "POSTINC" },
363 { POWOP, TOKENTYPE_OPNUM, "POWOP" },
364 { PREDEC, TOKENTYPE_NONE, "PREDEC" },
365 { PREINC, TOKENTYPE_NONE, "PREINC" },
366 { PRIVATEREF, TOKENTYPE_OPVAL, "PRIVATEREF" },
367 { QWLIST, TOKENTYPE_OPVAL, "QWLIST" },
368 { REFGEN, TOKENTYPE_NONE, "REFGEN" },
369 { RELOP, TOKENTYPE_OPNUM, "RELOP" },
370 { REQUIRE, TOKENTYPE_NONE, "REQUIRE" },
371 { SHIFTOP, TOKENTYPE_OPNUM, "SHIFTOP" },
372 { SIGSUB, TOKENTYPE_NONE, "SIGSUB" },
373 { SUB, TOKENTYPE_NONE, "SUB" },
374 { THING, TOKENTYPE_OPVAL, "THING" },
375 { UMINUS, TOKENTYPE_NONE, "UMINUS" },
376 { UNIOP, TOKENTYPE_OPNUM, "UNIOP" },
377 { UNIOPSUB, TOKENTYPE_OPVAL, "UNIOPSUB" },
378 { UNLESS, TOKENTYPE_IVAL, "UNLESS" },
379 { UNTIL, TOKENTYPE_IVAL, "UNTIL" },
380 { USE, TOKENTYPE_IVAL, "USE" },
381 { WHEN, TOKENTYPE_IVAL, "WHEN" },
382 { WHILE, TOKENTYPE_IVAL, "WHILE" },
383 { BAREWORD, TOKENTYPE_OPVAL, "BAREWORD" },
384 { YADAYADA, TOKENTYPE_IVAL, "YADAYADA" },
385 { 0, TOKENTYPE_NONE, NULL }
388 /* dump the returned token in rv, plus any optional arg in pl_yylval */
391 S_tokereport(pTHX_ I32 rv, const YYSTYPE* lvalp)
393 PERL_ARGS_ASSERT_TOKEREPORT;
396 const char *name = NULL;
397 enum token_type type = TOKENTYPE_NONE;
398 const struct debug_tokens *p;
399 SV* const report = newSVpvs("<== ");
401 for (p = debug_tokens; p->token; p++) {
402 if (p->token == (int)rv) {
409 Perl_sv_catpv(aTHX_ report, name);
410 else if (isGRAPH(rv))
412 Perl_sv_catpvf(aTHX_ report, "'%c'", (char)rv);
414 sv_catpvs(report, " (pending identifier)");
417 sv_catpvs(report, "EOF");
419 Perl_sv_catpvf(aTHX_ report, "?? %" IVdf, (IV)rv);
424 Perl_sv_catpvf(aTHX_ report, "(ival=%" IVdf ")", (IV)lvalp->ival);
426 case TOKENTYPE_OPNUM:
427 Perl_sv_catpvf(aTHX_ report, "(ival=op_%s)",
428 PL_op_name[lvalp->ival]);
431 Perl_sv_catpvf(aTHX_ report, "(pval=\"%s\")", lvalp->pval);
433 case TOKENTYPE_OPVAL:
435 Perl_sv_catpvf(aTHX_ report, "(opval=op_%s)",
436 PL_op_name[lvalp->opval->op_type]);
437 if (lvalp->opval->op_type == OP_CONST) {
438 Perl_sv_catpvf(aTHX_ report, " %s",
439 SvPEEK(cSVOPx_sv(lvalp->opval)));
444 sv_catpvs(report, "(opval=null)");
447 PerlIO_printf(Perl_debug_log, "### %s\n\n", SvPV_nolen_const(report));
453 /* print the buffer with suitable escapes */
456 S_printbuf(pTHX_ const char *const fmt, const char *const s)
458 SV* const tmp = newSVpvs("");
460 PERL_ARGS_ASSERT_PRINTBUF;
462 GCC_DIAG_IGNORE_STMT(-Wformat-nonliteral); /* fmt checked by caller */
463 PerlIO_printf(Perl_debug_log, fmt, pv_display(tmp, s, strlen(s), 0, 60));
464 GCC_DIAG_RESTORE_STMT;
473 * This subroutine looks for an '=' next to the operator that has just been
474 * parsed and turns it into an ASSIGNOP if it finds one.
478 S_ao(pTHX_ int toketype)
480 if (*PL_bufptr == '=') {
482 if (toketype == ANDAND)
483 pl_yylval.ival = OP_ANDASSIGN;
484 else if (toketype == OROR)
485 pl_yylval.ival = OP_ORASSIGN;
486 else if (toketype == DORDOR)
487 pl_yylval.ival = OP_DORASSIGN;
490 return REPORT(toketype);
495 * When Perl expects an operator and finds something else, no_op
496 * prints the warning. It always prints "<something> found where
497 * operator expected. It prints "Missing semicolon on previous line?"
498 * if the surprise occurs at the start of the line. "do you need to
499 * predeclare ..." is printed out for code like "sub bar; foo bar $x"
500 * where the compiler doesn't know if foo is a method call or a function.
501 * It prints "Missing operator before end of line" if there's nothing
502 * after the missing operator, or "... before <...>" if there is something
503 * after the missing operator.
505 * PL_bufptr is expected to point to the start of the thing that was found,
506 * and s after the next token or partial token.
510 S_no_op(pTHX_ const char *const what, char *s)
512 char * const oldbp = PL_bufptr;
513 const bool is_first = (PL_oldbufptr == PL_linestart);
515 PERL_ARGS_ASSERT_NO_OP;
521 yywarn(Perl_form(aTHX_ "%s found where operator expected", what), UTF ? SVf_UTF8 : 0);
522 if (ckWARN_d(WARN_SYNTAX)) {
524 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
525 "\t(Missing semicolon on previous line?)\n");
526 else if (PL_oldoldbufptr && isIDFIRST_lazy_if_safe(PL_oldoldbufptr,
531 for (t = PL_oldoldbufptr;
532 (isWORDCHAR_lazy_if_safe(t, PL_bufend, UTF) || *t == ':');
533 t += UTF ? UTF8SKIP(t) : 1)
537 if (t < PL_bufptr && isSPACE(*t))
538 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
539 "\t(Do you need to predeclare %" UTF8f "?)\n",
540 UTF8fARG(UTF, t - PL_oldoldbufptr, PL_oldoldbufptr));
544 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
545 "\t(Missing operator before %" UTF8f "?)\n",
546 UTF8fARG(UTF, s - oldbp, oldbp));
554 * Complain about missing quote/regexp/heredoc terminator.
555 * If it's called with NULL then it cauterizes the line buffer.
556 * If we're in a delimited string and the delimiter is a control
557 * character, it's reformatted into a two-char sequence like ^C.
562 S_missingterm(pTHX_ char *s, STRLEN len)
564 char tmpbuf[UTF8_MAXBYTES + 1];
569 char * const nl = (char *) my_memrchr(s, '\n', len);
576 else if (PL_multi_close < 32) {
578 tmpbuf[1] = (char)toCTRL(PL_multi_close);
584 if (LIKELY(PL_multi_close < 256)) {
585 *tmpbuf = (char)PL_multi_close;
590 char *end = (char *)uvchr_to_utf8((U8 *)tmpbuf, PL_multi_close);
597 q = memchr(s, '"', len) ? '\'' : '"';
598 sv = sv_2mortal(newSVpvn(s, len));
601 Perl_croak(aTHX_ "Can't find string terminator %c%" SVf "%c"
602 " anywhere before EOF", q, SVfARG(sv), q);
608 * Check whether the named feature is enabled.
611 Perl_feature_is_enabled(pTHX_ const char *const name, STRLEN namelen)
613 char he_name[8 + MAX_FEATURE_LEN] = "feature_";
615 PERL_ARGS_ASSERT_FEATURE_IS_ENABLED;
617 assert(CURRENT_FEATURE_BUNDLE == FEATURE_BUNDLE_CUSTOM);
619 if (namelen > MAX_FEATURE_LEN)
621 memcpy(&he_name[8], name, namelen);
623 return cBOOL(cop_hints_fetch_pvn(PL_curcop, he_name, 8 + namelen, 0,
624 REFCOUNTED_HE_EXISTS));
628 * experimental text filters for win32 carriage-returns, utf16-to-utf8 and
629 * utf16-to-utf8-reversed.
632 #ifdef PERL_CR_FILTER
636 const char *s = SvPVX_const(sv);
637 const char * const e = s + SvCUR(sv);
639 PERL_ARGS_ASSERT_STRIP_RETURN;
641 /* outer loop optimized to do nothing if there are no CR-LFs */
643 if (*s++ == '\r' && *s == '\n') {
644 /* hit a CR-LF, need to copy the rest */
648 if (*s == '\r' && s[1] == '\n')
659 S_cr_textfilter(pTHX_ int idx, SV *sv, int maxlen)
661 const I32 count = FILTER_READ(idx+1, sv, maxlen);
662 if (count > 0 && !maxlen)
669 =for apidoc Amx|void|lex_start|SV *line|PerlIO *rsfp|U32 flags
671 Creates and initialises a new lexer/parser state object, supplying
672 a context in which to lex and parse from a new source of Perl code.
673 A pointer to the new state object is placed in L</PL_parser>. An entry
674 is made on the save stack so that upon unwinding, the new state object
675 will be destroyed and the former value of L</PL_parser> will be restored.
676 Nothing else need be done to clean up the parsing context.
678 The code to be parsed comes from C<line> and C<rsfp>. C<line>, if
679 non-null, provides a string (in SV form) containing code to be parsed.
680 A copy of the string is made, so subsequent modification of C<line>
681 does not affect parsing. C<rsfp>, if non-null, provides an input stream
682 from which code will be read to be parsed. If both are non-null, the
683 code in C<line> comes first and must consist of complete lines of input,
684 and C<rsfp> supplies the remainder of the source.
686 The C<flags> parameter is reserved for future use. Currently it is only
687 used by perl internally, so extensions should always pass zero.
692 /* LEX_START_SAME_FILTER indicates that this is not a new file, so it
693 can share filters with the current parser.
694 LEX_START_DONT_CLOSE indicates that the file handle wasn't opened by the
695 caller, hence isn't owned by the parser, so shouldn't be closed on parser
696 destruction. This is used to handle the case of defaulting to reading the
697 script from the standard input because no filename was given on the command
698 line (without getting confused by situation where STDIN has been closed, so
699 the script handle is opened on fd 0) */
702 Perl_lex_start(pTHX_ SV *line, PerlIO *rsfp, U32 flags)
704 const char *s = NULL;
705 yy_parser *parser, *oparser;
707 if (flags && flags & ~LEX_START_FLAGS)
708 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_start");
710 /* create and initialise a parser */
712 Newxz(parser, 1, yy_parser);
713 parser->old_parser = oparser = PL_parser;
716 parser->stack = NULL;
717 parser->stack_max1 = NULL;
720 /* on scope exit, free this parser and restore any outer one */
722 parser->saved_curcop = PL_curcop;
724 /* initialise lexer state */
726 parser->nexttoke = 0;
727 parser->error_count = oparser ? oparser->error_count : 0;
728 parser->copline = parser->preambling = NOLINE;
729 parser->lex_state = LEX_NORMAL;
730 parser->expect = XSTATE;
732 parser->recheck_utf8_validity = FALSE;
733 parser->rsfp_filters =
734 !(flags & LEX_START_SAME_FILTER) || !oparser
736 : MUTABLE_AV(SvREFCNT_inc(
737 oparser->rsfp_filters
738 ? oparser->rsfp_filters
739 : (oparser->rsfp_filters = newAV())
742 Newx(parser->lex_brackstack, 120, char);
743 Newx(parser->lex_casestack, 12, char);
744 *parser->lex_casestack = '\0';
745 Newxz(parser->lex_shared, 1, LEXSHARED);
749 const U8* first_bad_char_loc;
751 s = SvPV_const(line, len);
754 && UNLIKELY(! is_utf8_string_loc((U8 *) s,
756 &first_bad_char_loc)))
758 _force_out_malformed_utf8_message(first_bad_char_loc,
759 (U8 *) s + SvCUR(line),
761 1 /* 1 means die */ );
762 NOT_REACHED; /* NOTREACHED */
765 parser->linestr = flags & LEX_START_COPIED
766 ? SvREFCNT_inc_simple_NN(line)
767 : newSVpvn_flags(s, len, SvUTF8(line));
769 sv_catpvs(parser->linestr, "\n;");
771 parser->linestr = newSVpvn("\n;", rsfp ? 1 : 2);
774 parser->oldoldbufptr =
777 parser->linestart = SvPVX(parser->linestr);
778 parser->bufend = parser->bufptr + SvCUR(parser->linestr);
779 parser->last_lop = parser->last_uni = NULL;
781 STATIC_ASSERT_STMT(FITS_IN_8_BITS(LEX_IGNORE_UTF8_HINTS|LEX_EVALBYTES
782 |LEX_DONT_CLOSE_RSFP));
783 parser->lex_flags = (U8) (flags & (LEX_IGNORE_UTF8_HINTS|LEX_EVALBYTES
784 |LEX_DONT_CLOSE_RSFP));
786 parser->in_pod = parser->filtered = 0;
790 /* delete a parser object */
793 Perl_parser_free(pTHX_ const yy_parser *parser)
795 PERL_ARGS_ASSERT_PARSER_FREE;
797 PL_curcop = parser->saved_curcop;
798 SvREFCNT_dec(parser->linestr);
800 if (PL_parser->lex_flags & LEX_DONT_CLOSE_RSFP)
801 PerlIO_clearerr(parser->rsfp);
802 else if (parser->rsfp && (!parser->old_parser
803 || (parser->old_parser && parser->rsfp != parser->old_parser->rsfp)))
804 PerlIO_close(parser->rsfp);
805 SvREFCNT_dec(parser->rsfp_filters);
806 SvREFCNT_dec(parser->lex_stuff);
807 SvREFCNT_dec(parser->lex_sub_repl);
809 Safefree(parser->lex_brackstack);
810 Safefree(parser->lex_casestack);
811 Safefree(parser->lex_shared);
812 PL_parser = parser->old_parser;
817 Perl_parser_free_nexttoke_ops(pTHX_ yy_parser *parser, OPSLAB *slab)
819 I32 nexttoke = parser->nexttoke;
820 PERL_ARGS_ASSERT_PARSER_FREE_NEXTTOKE_OPS;
822 if (S_is_opval_token(parser->nexttype[nexttoke] & 0xffff)
823 && parser->nextval[nexttoke].opval
824 && parser->nextval[nexttoke].opval->op_slabbed
825 && OpSLAB(parser->nextval[nexttoke].opval) == slab) {
826 op_free(parser->nextval[nexttoke].opval);
827 parser->nextval[nexttoke].opval = NULL;
834 =for apidoc AmxU|SV *|PL_parser-E<gt>linestr
836 Buffer scalar containing the chunk currently under consideration of the
837 text currently being lexed. This is always a plain string scalar (for
838 which C<SvPOK> is true). It is not intended to be used as a scalar by
839 normal scalar means; instead refer to the buffer directly by the pointer
840 variables described below.
842 The lexer maintains various C<char*> pointers to things in the
843 C<PL_parser-E<gt>linestr> buffer. If C<PL_parser-E<gt>linestr> is ever
844 reallocated, all of these pointers must be updated. Don't attempt to
845 do this manually, but rather use L</lex_grow_linestr> if you need to
846 reallocate the buffer.
848 The content of the text chunk in the buffer is commonly exactly one
849 complete line of input, up to and including a newline terminator,
850 but there are situations where it is otherwise. The octets of the
851 buffer may be intended to be interpreted as either UTF-8 or Latin-1.
852 The function L</lex_bufutf8> tells you which. Do not use the C<SvUTF8>
853 flag on this scalar, which may disagree with it.
855 For direct examination of the buffer, the variable
856 L</PL_parser-E<gt>bufend> points to the end of the buffer. The current
857 lexing position is pointed to by L</PL_parser-E<gt>bufptr>. Direct use
858 of these pointers is usually preferable to examination of the scalar
859 through normal scalar means.
861 =for apidoc AmxU|char *|PL_parser-E<gt>bufend
863 Direct pointer to the end of the chunk of text currently being lexed, the
864 end of the lexer buffer. This is equal to C<SvPVX(PL_parser-E<gt>linestr)
865 + SvCUR(PL_parser-E<gt>linestr)>. A C<NUL> character (zero octet) is
866 always located at the end of the buffer, and does not count as part of
867 the buffer's contents.
869 =for apidoc AmxU|char *|PL_parser-E<gt>bufptr
871 Points to the current position of lexing inside the lexer buffer.
872 Characters around this point may be freely examined, within
873 the range delimited by C<SvPVX(L</PL_parser-E<gt>linestr>)> and
874 L</PL_parser-E<gt>bufend>. The octets of the buffer may be intended to be
875 interpreted as either UTF-8 or Latin-1, as indicated by L</lex_bufutf8>.
877 Lexing code (whether in the Perl core or not) moves this pointer past
878 the characters that it consumes. It is also expected to perform some
879 bookkeeping whenever a newline character is consumed. This movement
880 can be more conveniently performed by the function L</lex_read_to>,
881 which handles newlines appropriately.
883 Interpretation of the buffer's octets can be abstracted out by
884 using the slightly higher-level functions L</lex_peek_unichar> and
885 L</lex_read_unichar>.
887 =for apidoc AmxU|char *|PL_parser-E<gt>linestart
889 Points to the start of the current line inside the lexer buffer.
890 This is useful for indicating at which column an error occurred, and
891 not much else. This must be updated by any lexing code that consumes
892 a newline; the function L</lex_read_to> handles this detail.
898 =for apidoc Amx|bool|lex_bufutf8
900 Indicates whether the octets in the lexer buffer
901 (L</PL_parser-E<gt>linestr>) should be interpreted as the UTF-8 encoding
902 of Unicode characters. If not, they should be interpreted as Latin-1
903 characters. This is analogous to the C<SvUTF8> flag for scalars.
905 In UTF-8 mode, it is not guaranteed that the lexer buffer actually
906 contains valid UTF-8. Lexing code must be robust in the face of invalid
909 The actual C<SvUTF8> flag of the L</PL_parser-E<gt>linestr> scalar
910 is significant, but not the whole story regarding the input character
911 encoding. Normally, when a file is being read, the scalar contains octets
912 and its C<SvUTF8> flag is off, but the octets should be interpreted as
913 UTF-8 if the C<use utf8> pragma is in effect. During a string eval,
914 however, the scalar may have the C<SvUTF8> flag on, and in this case its
915 octets should be interpreted as UTF-8 unless the C<use bytes> pragma
916 is in effect. This logic may change in the future; use this function
917 instead of implementing the logic yourself.
923 Perl_lex_bufutf8(pTHX)
929 =for apidoc Amx|char *|lex_grow_linestr|STRLEN len
931 Reallocates the lexer buffer (L</PL_parser-E<gt>linestr>) to accommodate
932 at least C<len> octets (including terminating C<NUL>). Returns a
933 pointer to the reallocated buffer. This is necessary before making
934 any direct modification of the buffer that would increase its length.
935 L</lex_stuff_pvn> provides a more convenient way to insert text into
938 Do not use C<SvGROW> or C<sv_grow> directly on C<PL_parser-E<gt>linestr>;
939 this function updates all of the lexer's variables that point directly
946 Perl_lex_grow_linestr(pTHX_ STRLEN len)
950 STRLEN bufend_pos, bufptr_pos, oldbufptr_pos, oldoldbufptr_pos;
951 STRLEN linestart_pos, last_uni_pos, last_lop_pos, re_eval_start_pos;
954 linestr = PL_parser->linestr;
955 buf = SvPVX(linestr);
956 if (len <= SvLEN(linestr))
959 /* Is the lex_shared linestr SV the same as the current linestr SV?
960 * Only in this case does re_eval_start need adjusting, since it
961 * points within lex_shared->ls_linestr's buffer */
962 current = ( !PL_parser->lex_shared->ls_linestr
963 || linestr == PL_parser->lex_shared->ls_linestr);
965 bufend_pos = PL_parser->bufend - buf;
966 bufptr_pos = PL_parser->bufptr - buf;
967 oldbufptr_pos = PL_parser->oldbufptr - buf;
968 oldoldbufptr_pos = PL_parser->oldoldbufptr - buf;
969 linestart_pos = PL_parser->linestart - buf;
970 last_uni_pos = PL_parser->last_uni ? PL_parser->last_uni - buf : 0;
971 last_lop_pos = PL_parser->last_lop ? PL_parser->last_lop - buf : 0;
972 re_eval_start_pos = (current && PL_parser->lex_shared->re_eval_start) ?
973 PL_parser->lex_shared->re_eval_start - buf : 0;
975 buf = sv_grow(linestr, len);
977 PL_parser->bufend = buf + bufend_pos;
978 PL_parser->bufptr = buf + bufptr_pos;
979 PL_parser->oldbufptr = buf + oldbufptr_pos;
980 PL_parser->oldoldbufptr = buf + oldoldbufptr_pos;
981 PL_parser->linestart = buf + linestart_pos;
982 if (PL_parser->last_uni)
983 PL_parser->last_uni = buf + last_uni_pos;
984 if (PL_parser->last_lop)
985 PL_parser->last_lop = buf + last_lop_pos;
986 if (current && PL_parser->lex_shared->re_eval_start)
987 PL_parser->lex_shared->re_eval_start = buf + re_eval_start_pos;
992 =for apidoc Amx|void|lex_stuff_pvn|const char *pv|STRLEN len|U32 flags
994 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
995 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
996 reallocating the buffer if necessary. This means that lexing code that
997 runs later will see the characters as if they had appeared in the input.
998 It is not recommended to do this as part of normal parsing, and most
999 uses of this facility run the risk of the inserted characters being
1000 interpreted in an unintended manner.
1002 The string to be inserted is represented by C<len> octets starting
1003 at C<pv>. These octets are interpreted as either UTF-8 or Latin-1,
1004 according to whether the C<LEX_STUFF_UTF8> flag is set in C<flags>.
1005 The characters are recoded for the lexer buffer, according to how the
1006 buffer is currently being interpreted (L</lex_bufutf8>). If a string
1007 to be inserted is available as a Perl scalar, the L</lex_stuff_sv>
1008 function is more convenient.
1014 Perl_lex_stuff_pvn(pTHX_ const char *pv, STRLEN len, U32 flags)
1018 PERL_ARGS_ASSERT_LEX_STUFF_PVN;
1019 if (flags & ~(LEX_STUFF_UTF8))
1020 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_stuff_pvn");
1022 if (flags & LEX_STUFF_UTF8) {
1025 STRLEN highhalf = variant_under_utf8_count((U8 *) pv,
1027 const char *p, *e = pv+len;;
1030 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len+highhalf);
1031 bufptr = PL_parser->bufptr;
1032 Move(bufptr, bufptr+len+highhalf, PL_parser->bufend+1-bufptr, char);
1033 SvCUR_set(PL_parser->linestr,
1034 SvCUR(PL_parser->linestr) + len+highhalf);
1035 PL_parser->bufend += len+highhalf;
1036 for (p = pv; p != e; p++) {
1037 append_utf8_from_native_byte(*p, (U8 **) &bufptr);
1041 if (flags & LEX_STUFF_UTF8) {
1042 STRLEN highhalf = 0;
1043 const char *p, *e = pv+len;
1044 for (p = pv; p != e; p++) {
1046 if (UTF8_IS_ABOVE_LATIN1(c)) {
1047 Perl_croak(aTHX_ "Lexing code attempted to stuff "
1048 "non-Latin-1 character into Latin-1 input");
1049 } else if (UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, e)) {
1052 } else assert(UTF8_IS_INVARIANT(c));
1056 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len-highhalf);
1057 bufptr = PL_parser->bufptr;
1058 Move(bufptr, bufptr+len-highhalf, PL_parser->bufend+1-bufptr, char);
1059 SvCUR_set(PL_parser->linestr,
1060 SvCUR(PL_parser->linestr) + len-highhalf);
1061 PL_parser->bufend += len-highhalf;
1064 if (UTF8_IS_INVARIANT(*p)) {
1070 *bufptr++ = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
1076 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len);
1077 bufptr = PL_parser->bufptr;
1078 Move(bufptr, bufptr+len, PL_parser->bufend+1-bufptr, char);
1079 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) + len);
1080 PL_parser->bufend += len;
1081 Copy(pv, bufptr, len, char);
1087 =for apidoc Amx|void|lex_stuff_pv|const char *pv|U32 flags
1089 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
1090 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
1091 reallocating the buffer if necessary. This means that lexing code that
1092 runs later will see the characters as if they had appeared in the input.
1093 It is not recommended to do this as part of normal parsing, and most
1094 uses of this facility run the risk of the inserted characters being
1095 interpreted in an unintended manner.
1097 The string to be inserted is represented by octets starting at C<pv>
1098 and continuing to the first nul. These octets are interpreted as either
1099 UTF-8 or Latin-1, according to whether the C<LEX_STUFF_UTF8> flag is set
1100 in C<flags>. The characters are recoded for the lexer buffer, according
1101 to how the buffer is currently being interpreted (L</lex_bufutf8>).
1102 If it is not convenient to nul-terminate a string to be inserted, the
1103 L</lex_stuff_pvn> function is more appropriate.
1109 Perl_lex_stuff_pv(pTHX_ const char *pv, U32 flags)
1111 PERL_ARGS_ASSERT_LEX_STUFF_PV;
1112 lex_stuff_pvn(pv, strlen(pv), flags);
1116 =for apidoc Amx|void|lex_stuff_sv|SV *sv|U32 flags
1118 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
1119 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
1120 reallocating the buffer if necessary. This means that lexing code that
1121 runs later will see the characters as if they had appeared in the input.
1122 It is not recommended to do this as part of normal parsing, and most
1123 uses of this facility run the risk of the inserted characters being
1124 interpreted in an unintended manner.
1126 The string to be inserted is the string value of C<sv>. The characters
1127 are recoded for the lexer buffer, according to how the buffer is currently
1128 being interpreted (L</lex_bufutf8>). If a string to be inserted is
1129 not already a Perl scalar, the L</lex_stuff_pvn> function avoids the
1130 need to construct a scalar.
1136 Perl_lex_stuff_sv(pTHX_ SV *sv, U32 flags)
1140 PERL_ARGS_ASSERT_LEX_STUFF_SV;
1142 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_stuff_sv");
1144 lex_stuff_pvn(pv, len, flags | (SvUTF8(sv) ? LEX_STUFF_UTF8 : 0));
1148 =for apidoc Amx|void|lex_unstuff|char *ptr
1150 Discards text about to be lexed, from L</PL_parser-E<gt>bufptr> up to
1151 C<ptr>. Text following C<ptr> will be moved, and the buffer shortened.
1152 This hides the discarded text from any lexing code that runs later,
1153 as if the text had never appeared.
1155 This is not the normal way to consume lexed text. For that, use
1162 Perl_lex_unstuff(pTHX_ char *ptr)
1166 PERL_ARGS_ASSERT_LEX_UNSTUFF;
1167 buf = PL_parser->bufptr;
1169 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_unstuff");
1172 bufend = PL_parser->bufend;
1174 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_unstuff");
1175 unstuff_len = ptr - buf;
1176 Move(ptr, buf, bufend+1-ptr, char);
1177 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) - unstuff_len);
1178 PL_parser->bufend = bufend - unstuff_len;
1182 =for apidoc Amx|void|lex_read_to|char *ptr
1184 Consume text in the lexer buffer, from L</PL_parser-E<gt>bufptr> up
1185 to C<ptr>. This advances L</PL_parser-E<gt>bufptr> to match C<ptr>,
1186 performing the correct bookkeeping whenever a newline character is passed.
1187 This is the normal way to consume lexed text.
1189 Interpretation of the buffer's octets can be abstracted out by
1190 using the slightly higher-level functions L</lex_peek_unichar> and
1191 L</lex_read_unichar>.
1197 Perl_lex_read_to(pTHX_ char *ptr)
1200 PERL_ARGS_ASSERT_LEX_READ_TO;
1201 s = PL_parser->bufptr;
1202 if (ptr < s || ptr > PL_parser->bufend)
1203 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_to");
1204 for (; s != ptr; s++)
1206 COPLINE_INC_WITH_HERELINES;
1207 PL_parser->linestart = s+1;
1209 PL_parser->bufptr = ptr;
1213 =for apidoc Amx|void|lex_discard_to|char *ptr
1215 Discards the first part of the L</PL_parser-E<gt>linestr> buffer,
1216 up to C<ptr>. The remaining content of the buffer will be moved, and
1217 all pointers into the buffer updated appropriately. C<ptr> must not
1218 be later in the buffer than the position of L</PL_parser-E<gt>bufptr>:
1219 it is not permitted to discard text that has yet to be lexed.
1221 Normally it is not necessarily to do this directly, because it suffices to
1222 use the implicit discarding behaviour of L</lex_next_chunk> and things
1223 based on it. However, if a token stretches across multiple lines,
1224 and the lexing code has kept multiple lines of text in the buffer for
1225 that purpose, then after completion of the token it would be wise to
1226 explicitly discard the now-unneeded earlier lines, to avoid future
1227 multi-line tokens growing the buffer without bound.
1233 Perl_lex_discard_to(pTHX_ char *ptr)
1237 PERL_ARGS_ASSERT_LEX_DISCARD_TO;
1238 buf = SvPVX(PL_parser->linestr);
1240 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_discard_to");
1243 if (ptr > PL_parser->bufptr)
1244 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_discard_to");
1245 discard_len = ptr - buf;
1246 if (PL_parser->oldbufptr < ptr)
1247 PL_parser->oldbufptr = ptr;
1248 if (PL_parser->oldoldbufptr < ptr)
1249 PL_parser->oldoldbufptr = ptr;
1250 if (PL_parser->last_uni && PL_parser->last_uni < ptr)
1251 PL_parser->last_uni = NULL;
1252 if (PL_parser->last_lop && PL_parser->last_lop < ptr)
1253 PL_parser->last_lop = NULL;
1254 Move(ptr, buf, PL_parser->bufend+1-ptr, char);
1255 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) - discard_len);
1256 PL_parser->bufend -= discard_len;
1257 PL_parser->bufptr -= discard_len;
1258 PL_parser->oldbufptr -= discard_len;
1259 PL_parser->oldoldbufptr -= discard_len;
1260 if (PL_parser->last_uni)
1261 PL_parser->last_uni -= discard_len;
1262 if (PL_parser->last_lop)
1263 PL_parser->last_lop -= discard_len;
1267 Perl_notify_parser_that_changed_to_utf8(pTHX)
1269 /* Called when $^H is changed to indicate that HINT_UTF8 has changed from
1270 * off to on. At compile time, this has the effect of entering a 'use
1271 * utf8' section. This means that any input was not previously checked for
1272 * UTF-8 (because it was off), but now we do need to check it, or our
1273 * assumptions about the input being sane could be wrong, and we could
1274 * segfault. This routine just sets a flag so that the next time we look
1275 * at the input we do the well-formed UTF-8 check. If we aren't in the
1276 * proper phase, there may not be a parser object, but if there is, setting
1277 * the flag is harmless */
1280 PL_parser->recheck_utf8_validity = TRUE;
1285 =for apidoc Amx|bool|lex_next_chunk|U32 flags
1287 Reads in the next chunk of text to be lexed, appending it to
1288 L</PL_parser-E<gt>linestr>. This should be called when lexing code has
1289 looked to the end of the current chunk and wants to know more. It is
1290 usual, but not necessary, for lexing to have consumed the entirety of
1291 the current chunk at this time.
1293 If L</PL_parser-E<gt>bufptr> is pointing to the very end of the current
1294 chunk (i.e., the current chunk has been entirely consumed), normally the
1295 current chunk will be discarded at the same time that the new chunk is
1296 read in. If C<flags> has the C<LEX_KEEP_PREVIOUS> bit set, the current chunk
1297 will not be discarded. If the current chunk has not been entirely
1298 consumed, then it will not be discarded regardless of the flag.
1300 Returns true if some new text was added to the buffer, or false if the
1301 buffer has reached the end of the input text.
1306 #define LEX_FAKE_EOF 0x80000000
1307 #define LEX_NO_TERM 0x40000000 /* here-doc */
1310 Perl_lex_next_chunk(pTHX_ U32 flags)
1314 STRLEN old_bufend_pos, new_bufend_pos;
1315 STRLEN bufptr_pos, oldbufptr_pos, oldoldbufptr_pos;
1316 STRLEN linestart_pos, last_uni_pos, last_lop_pos;
1317 bool got_some_for_debugger = 0;
1320 if (flags & ~(LEX_KEEP_PREVIOUS|LEX_FAKE_EOF|LEX_NO_TERM))
1321 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_next_chunk");
1322 if (!(flags & LEX_NO_TERM) && PL_lex_inwhat)
1324 linestr = PL_parser->linestr;
1325 buf = SvPVX(linestr);
1326 if (!(flags & LEX_KEEP_PREVIOUS)
1327 && PL_parser->bufptr == PL_parser->bufend)
1329 old_bufend_pos = bufptr_pos = oldbufptr_pos = oldoldbufptr_pos = 0;
1331 if (PL_parser->last_uni != PL_parser->bufend)
1332 PL_parser->last_uni = NULL;
1333 if (PL_parser->last_lop != PL_parser->bufend)
1334 PL_parser->last_lop = NULL;
1335 last_uni_pos = last_lop_pos = 0;
1339 old_bufend_pos = PL_parser->bufend - buf;
1340 bufptr_pos = PL_parser->bufptr - buf;
1341 oldbufptr_pos = PL_parser->oldbufptr - buf;
1342 oldoldbufptr_pos = PL_parser->oldoldbufptr - buf;
1343 linestart_pos = PL_parser->linestart - buf;
1344 last_uni_pos = PL_parser->last_uni ? PL_parser->last_uni - buf : 0;
1345 last_lop_pos = PL_parser->last_lop ? PL_parser->last_lop - buf : 0;
1347 if (flags & LEX_FAKE_EOF) {
1349 } else if (!PL_parser->rsfp && !PL_parser->filtered) {
1351 } else if (filter_gets(linestr, old_bufend_pos)) {
1353 got_some_for_debugger = 1;
1354 } else if (flags & LEX_NO_TERM) {
1357 if (!SvPOK(linestr)) /* can get undefined by filter_gets */
1360 /* End of real input. Close filehandle (unless it was STDIN),
1361 * then add implicit termination.
1363 if (PL_parser->lex_flags & LEX_DONT_CLOSE_RSFP)
1364 PerlIO_clearerr(PL_parser->rsfp);
1365 else if (PL_parser->rsfp)
1366 (void)PerlIO_close(PL_parser->rsfp);
1367 PL_parser->rsfp = NULL;
1368 PL_parser->in_pod = PL_parser->filtered = 0;
1369 if (!PL_in_eval && PL_minus_p) {
1371 /*{*/";}continue{print or die qq(-p destination: $!\\n);}");
1372 PL_minus_n = PL_minus_p = 0;
1373 } else if (!PL_in_eval && PL_minus_n) {
1374 sv_catpvs(linestr, /*{*/";}");
1377 sv_catpvs(linestr, ";");
1380 buf = SvPVX(linestr);
1381 new_bufend_pos = SvCUR(linestr);
1382 PL_parser->bufend = buf + new_bufend_pos;
1383 PL_parser->bufptr = buf + bufptr_pos;
1386 const U8* first_bad_char_loc;
1387 if (UNLIKELY(! is_utf8_string_loc(
1388 (U8 *) PL_parser->bufptr,
1389 PL_parser->bufend - PL_parser->bufptr,
1390 &first_bad_char_loc)))
1392 _force_out_malformed_utf8_message(first_bad_char_loc,
1393 (U8 *) PL_parser->bufend,
1395 1 /* 1 means die */ );
1396 NOT_REACHED; /* NOTREACHED */
1400 PL_parser->oldbufptr = buf + oldbufptr_pos;
1401 PL_parser->oldoldbufptr = buf + oldoldbufptr_pos;
1402 PL_parser->linestart = buf + linestart_pos;
1403 if (PL_parser->last_uni)
1404 PL_parser->last_uni = buf + last_uni_pos;
1405 if (PL_parser->last_lop)
1406 PL_parser->last_lop = buf + last_lop_pos;
1407 if (PL_parser->preambling != NOLINE) {
1408 CopLINE_set(PL_curcop, PL_parser->preambling + 1);
1409 PL_parser->preambling = NOLINE;
1411 if ( got_some_for_debugger
1412 && PERLDB_LINE_OR_SAVESRC
1413 && PL_curstash != PL_debstash)
1415 /* debugger active and we're not compiling the debugger code,
1416 * so store the line into the debugger's array of lines
1418 update_debugger_info(NULL, buf+old_bufend_pos,
1419 new_bufend_pos-old_bufend_pos);
1425 =for apidoc Amx|I32|lex_peek_unichar|U32 flags
1427 Looks ahead one (Unicode) character in the text currently being lexed.
1428 Returns the codepoint (unsigned integer value) of the next character,
1429 or -1 if lexing has reached the end of the input text. To consume the
1430 peeked character, use L</lex_read_unichar>.
1432 If the next character is in (or extends into) the next chunk of input
1433 text, the next chunk will be read in. Normally the current chunk will be
1434 discarded at the same time, but if C<flags> has the C<LEX_KEEP_PREVIOUS>
1435 bit set, then the current chunk will not be discarded.
1437 If the input is being interpreted as UTF-8 and a UTF-8 encoding error
1438 is encountered, an exception is generated.
1444 Perl_lex_peek_unichar(pTHX_ U32 flags)
1448 if (flags & ~(LEX_KEEP_PREVIOUS))
1449 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_peek_unichar");
1450 s = PL_parser->bufptr;
1451 bufend = PL_parser->bufend;
1457 if (!lex_next_chunk(flags))
1459 s = PL_parser->bufptr;
1460 bufend = PL_parser->bufend;
1463 if (UTF8_IS_INVARIANT(head))
1465 if (UTF8_IS_START(head)) {
1466 len = UTF8SKIP(&head);
1467 while ((STRLEN)(bufend-s) < len) {
1468 if (!lex_next_chunk(flags | LEX_KEEP_PREVIOUS))
1470 s = PL_parser->bufptr;
1471 bufend = PL_parser->bufend;
1474 unichar = utf8n_to_uvchr((U8*)s, bufend-s, &retlen, UTF8_CHECK_ONLY);
1475 if (retlen == (STRLEN)-1) {
1476 _force_out_malformed_utf8_message((U8 *) s,
1479 1 /* 1 means die */ );
1480 NOT_REACHED; /* NOTREACHED */
1485 if (!lex_next_chunk(flags))
1487 s = PL_parser->bufptr;
1494 =for apidoc Amx|I32|lex_read_unichar|U32 flags
1496 Reads the next (Unicode) character in the text currently being lexed.
1497 Returns the codepoint (unsigned integer value) of the character read,
1498 and moves L</PL_parser-E<gt>bufptr> past the character, or returns -1
1499 if lexing has reached the end of the input text. To non-destructively
1500 examine the next character, use L</lex_peek_unichar> instead.
1502 If the next character is in (or extends into) the next chunk of input
1503 text, the next chunk will be read in. Normally the current chunk will be
1504 discarded at the same time, but if C<flags> has the C<LEX_KEEP_PREVIOUS>
1505 bit set, then the current chunk will not be discarded.
1507 If the input is being interpreted as UTF-8 and a UTF-8 encoding error
1508 is encountered, an exception is generated.
1514 Perl_lex_read_unichar(pTHX_ U32 flags)
1517 if (flags & ~(LEX_KEEP_PREVIOUS))
1518 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_unichar");
1519 c = lex_peek_unichar(flags);
1522 COPLINE_INC_WITH_HERELINES;
1524 PL_parser->bufptr += UTF8SKIP(PL_parser->bufptr);
1526 ++(PL_parser->bufptr);
1532 =for apidoc Amx|void|lex_read_space|U32 flags
1534 Reads optional spaces, in Perl style, in the text currently being
1535 lexed. The spaces may include ordinary whitespace characters and
1536 Perl-style comments. C<#line> directives are processed if encountered.
1537 L</PL_parser-E<gt>bufptr> is moved past the spaces, so that it points
1538 at a non-space character (or the end of the input text).
1540 If spaces extend into the next chunk of input text, the next chunk will
1541 be read in. Normally the current chunk will be discarded at the same
1542 time, but if C<flags> has the C<LEX_KEEP_PREVIOUS> bit set, then the current
1543 chunk will not be discarded.
1548 #define LEX_NO_INCLINE 0x40000000
1549 #define LEX_NO_NEXT_CHUNK 0x80000000
1552 Perl_lex_read_space(pTHX_ U32 flags)
1555 const bool can_incline = !(flags & LEX_NO_INCLINE);
1556 bool need_incline = 0;
1557 if (flags & ~(LEX_KEEP_PREVIOUS|LEX_NO_NEXT_CHUNK|LEX_NO_INCLINE))
1558 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_space");
1559 s = PL_parser->bufptr;
1560 bufend = PL_parser->bufend;
1566 } while (!(c == '\n' || (c == 0 && s == bufend)));
1567 } else if (c == '\n') {
1570 PL_parser->linestart = s;
1576 } else if (isSPACE(c)) {
1578 } else if (c == 0 && s == bufend) {
1581 if (flags & LEX_NO_NEXT_CHUNK)
1583 PL_parser->bufptr = s;
1584 l = CopLINE(PL_curcop);
1585 CopLINE(PL_curcop) += PL_parser->herelines + 1;
1586 got_more = lex_next_chunk(flags);
1587 CopLINE_set(PL_curcop, l);
1588 s = PL_parser->bufptr;
1589 bufend = PL_parser->bufend;
1592 if (can_incline && need_incline && PL_parser->rsfp) {
1602 PL_parser->bufptr = s;
1607 =for apidoc EXMp|bool|validate_proto|SV *name|SV *proto|bool warn
1609 This function performs syntax checking on a prototype, C<proto>.
1610 If C<warn> is true, any illegal characters or mismatched brackets
1611 will trigger illegalproto warnings, declaring that they were
1612 detected in the prototype for C<name>.
1614 The return value is C<true> if this is a valid prototype, and
1615 C<false> if it is not, regardless of whether C<warn> was C<true> or
1618 Note that C<NULL> is a valid C<proto> and will always return C<true>.
1625 Perl_validate_proto(pTHX_ SV *name, SV *proto, bool warn, bool curstash)
1627 STRLEN len, origlen;
1629 bool bad_proto = FALSE;
1630 bool in_brackets = FALSE;
1631 bool after_slash = FALSE;
1632 char greedy_proto = ' ';
1633 bool proto_after_greedy_proto = FALSE;
1634 bool must_be_last = FALSE;
1635 bool underscore = FALSE;
1636 bool bad_proto_after_underscore = FALSE;
1638 PERL_ARGS_ASSERT_VALIDATE_PROTO;
1643 p = SvPV(proto, len);
1645 for (; len--; p++) {
1648 proto_after_greedy_proto = TRUE;
1650 if (!strchr(";@%", *p))
1651 bad_proto_after_underscore = TRUE;
1654 if (!strchr("$@%*;[]&\\_+", *p) || *p == '\0') {
1661 in_brackets = FALSE;
1662 else if ((*p == '@' || *p == '%')
1666 must_be_last = TRUE;
1675 after_slash = FALSE;
1680 SV *tmpsv = newSVpvs_flags("", SVs_TEMP);
1683 ? sv_uni_display(tmpsv, newSVpvn_flags(p, origlen, SVs_TEMP | SVf_UTF8),
1684 origlen, UNI_DISPLAY_ISPRINT)
1685 : pv_pretty(tmpsv, p, origlen, 60, NULL, NULL, PERL_PV_ESCAPE_NONASCII);
1687 if (curstash && !memchr(SvPVX(name), ':', SvCUR(name))) {
1688 SV *name2 = sv_2mortal(newSVsv(PL_curstname));
1689 sv_catpvs(name2, "::");
1690 sv_catsv(name2, (SV *)name);
1694 if (proto_after_greedy_proto)
1695 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1696 "Prototype after '%c' for %" SVf " : %s",
1697 greedy_proto, SVfARG(name), p);
1699 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1700 "Missing ']' in prototype for %" SVf " : %s",
1703 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1704 "Illegal character in prototype for %" SVf " : %s",
1706 if (bad_proto_after_underscore)
1707 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1708 "Illegal character after '_' in prototype for %" SVf " : %s",
1712 return (! (proto_after_greedy_proto || bad_proto) );
1717 * This subroutine has nothing to do with tilting, whether at windmills
1718 * or pinball tables. Its name is short for "increment line". It
1719 * increments the current line number in CopLINE(PL_curcop) and checks
1720 * to see whether the line starts with a comment of the form
1721 * # line 500 "foo.pm"
1722 * If so, it sets the current line number and file to the values in the comment.
1726 S_incline(pTHX_ const char *s, const char *end)
1734 PERL_ARGS_ASSERT_INCLINE;
1738 COPLINE_INC_WITH_HERELINES;
1739 if (!PL_rsfp && !PL_parser->filtered && PL_lex_state == LEX_NORMAL
1740 && s+1 == PL_bufend && *s == ';') {
1741 /* fake newline in string eval */
1742 CopLINE_dec(PL_curcop);
1747 while (SPACE_OR_TAB(*s))
1749 if (memBEGINs(s, (STRLEN) (end - s), "line"))
1750 s += sizeof("line") - 1;
1753 if (SPACE_OR_TAB(*s))
1757 while (SPACE_OR_TAB(*s))
1765 if (!SPACE_OR_TAB(*s) && *s != '\r' && *s != '\n' && *s != '\0')
1767 while (SPACE_OR_TAB(*s))
1769 if (*s == '"' && (t = (char *) memchr(s+1, '"', end - s))) {
1775 while (*t && !isSPACE(*t))
1779 while (SPACE_OR_TAB(*e) || *e == '\r' || *e == '\f')
1781 if (*e != '\n' && *e != '\0')
1782 return; /* false alarm */
1784 if (!grok_atoUV(n, &uv, &e))
1786 line_num = ((line_t)uv) - 1;
1789 const STRLEN len = t - s;
1791 if (!PL_rsfp && !PL_parser->filtered) {
1792 /* must copy *{"::_<(eval N)[oldfilename:L]"}
1793 * to *{"::_<newfilename"} */
1794 /* However, the long form of evals is only turned on by the
1795 debugger - usually they're "(eval %lu)" */
1796 GV * const cfgv = CopFILEGV(PL_curcop);
1799 STRLEN tmplen2 = len;
1803 if (tmplen2 + 2 <= sizeof smallbuf)
1806 Newx(tmpbuf2, tmplen2 + 2, char);
1811 memcpy(tmpbuf2 + 2, s, tmplen2);
1814 gv2 = *(GV**)hv_fetch(PL_defstash, tmpbuf2, tmplen2, TRUE);
1816 gv_init(gv2, PL_defstash, tmpbuf2, tmplen2, FALSE);
1817 /* adjust ${"::_<newfilename"} to store the new file name */
1818 GvSV(gv2) = newSVpvn(tmpbuf2 + 2, tmplen2 - 2);
1819 /* The line number may differ. If that is the case,
1820 alias the saved lines that are in the array.
1821 Otherwise alias the whole array. */
1822 if (CopLINE(PL_curcop) == line_num) {
1823 GvHV(gv2) = MUTABLE_HV(SvREFCNT_inc(GvHV(cfgv)));
1824 GvAV(gv2) = MUTABLE_AV(SvREFCNT_inc(GvAV(cfgv)));
1826 else if (GvAV(cfgv)) {
1827 AV * const av = GvAV(cfgv);
1828 const line_t start = CopLINE(PL_curcop)+1;
1829 SSize_t items = AvFILLp(av) - start;
1831 AV * const av2 = GvAVn(gv2);
1832 SV **svp = AvARRAY(av) + start;
1833 Size_t l = line_num+1;
1834 while (items-- && l < SSize_t_MAX && l == (line_t)l)
1835 av_store(av2, (SSize_t)l++, SvREFCNT_inc(*svp++));
1840 if (tmpbuf2 != smallbuf) Safefree(tmpbuf2);
1843 CopFILE_free(PL_curcop);
1844 CopFILE_setn(PL_curcop, s, len);
1846 CopLINE_set(PL_curcop, line_num);
1850 S_update_debugger_info(pTHX_ SV *orig_sv, const char *const buf, STRLEN len)
1852 AV *av = CopFILEAVx(PL_curcop);
1855 if (PL_parser->preambling == NOLINE) sv = newSV_type(SVt_PVMG);
1857 sv = *av_fetch(av, 0, 1);
1858 SvUPGRADE(sv, SVt_PVMG);
1860 if (!SvPOK(sv)) SvPVCLEAR(sv);
1862 sv_catsv(sv, orig_sv);
1864 sv_catpvn(sv, buf, len);
1869 if (PL_parser->preambling == NOLINE)
1870 av_store(av, CopLINE(PL_curcop), sv);
1876 * Called to gobble the appropriate amount and type of whitespace.
1877 * Skips comments as well.
1878 * Returns the next character after the whitespace that is skipped.
1881 * Same thing, but look ahead without incrementing line numbers or
1882 * adjusting PL_linestart.
1885 #define skipspace(s) skipspace_flags(s, 0)
1886 #define peekspace(s) skipspace_flags(s, LEX_NO_INCLINE)
1889 S_skipspace_flags(pTHX_ char *s, U32 flags)
1891 PERL_ARGS_ASSERT_SKIPSPACE_FLAGS;
1892 if (PL_lex_formbrack && PL_lex_brackets <= PL_lex_formbrack) {
1893 while (s < PL_bufend && (SPACE_OR_TAB(*s) || !*s))
1896 STRLEN bufptr_pos = PL_bufptr - SvPVX(PL_linestr);
1898 lex_read_space(flags | LEX_KEEP_PREVIOUS |
1899 (PL_lex_inwhat || PL_lex_state == LEX_FORMLINE ?
1900 LEX_NO_NEXT_CHUNK : 0));
1902 PL_bufptr = SvPVX(PL_linestr) + bufptr_pos;
1903 if (PL_linestart > PL_bufptr)
1904 PL_bufptr = PL_linestart;
1912 * Check the unary operators to ensure there's no ambiguity in how they're
1913 * used. An ambiguous piece of code would be:
1915 * This doesn't mean rand() + 5. Because rand() is a unary operator,
1916 * the +5 is its argument.
1924 if (PL_oldoldbufptr != PL_last_uni)
1926 while (isSPACE(*PL_last_uni))
1929 while (isWORDCHAR_lazy_if_safe(s, PL_bufend, UTF) || *s == '-')
1930 s += UTF ? UTF8SKIP(s) : 1;
1931 if (s < PL_bufptr && memchr(s, '(', PL_bufptr - s))
1934 Perl_ck_warner_d(aTHX_ packWARN(WARN_AMBIGUOUS),
1935 "Warning: Use of \"%" UTF8f "\" without parentheses is ambiguous",
1936 UTF8fARG(UTF, (int)(s - PL_last_uni), PL_last_uni));
1940 * LOP : macro to build a list operator. Its behaviour has been replaced
1941 * with a subroutine, S_lop() for which LOP is just another name.
1944 #define LOP(f,x) return lop(f,x,s)
1948 * Build a list operator (or something that might be one). The rules:
1949 * - if we have a next token, then it's a list operator (no parens) for
1950 * which the next token has already been parsed; e.g.,
1953 * - if the next thing is an opening paren, then it's a function
1954 * - else it's a list operator
1958 S_lop(pTHX_ I32 f, U8 x, char *s)
1960 PERL_ARGS_ASSERT_LOP;
1965 PL_last_lop = PL_oldbufptr;
1966 PL_last_lop_op = (OPCODE)f;
1971 return REPORT(FUNC);
1974 return REPORT(FUNC);
1977 if (!PL_lex_allbrackets && PL_lex_fakeeof > LEX_FAKEEOF_LOWLOGIC)
1978 PL_lex_fakeeof = LEX_FAKEEOF_LOWLOGIC;
1979 return REPORT(LSTOP);
1985 * When the lexer realizes it knows the next token (for instance,
1986 * it is reordering tokens for the parser) then it can call S_force_next
1987 * to know what token to return the next time the lexer is called. Caller
1988 * will need to set PL_nextval[] and possibly PL_expect to ensure
1989 * the lexer handles the token correctly.
1993 S_force_next(pTHX_ I32 type)
1997 PerlIO_printf(Perl_debug_log, "### forced token:\n");
1998 tokereport(type, &NEXTVAL_NEXTTOKE);
2001 assert(PL_nexttoke < C_ARRAY_LENGTH(PL_nexttype));
2002 PL_nexttype[PL_nexttoke] = type;
2009 * This subroutine handles postfix deref syntax after the arrow has already
2010 * been emitted. @* $* etc. are emitted as two separate tokens right here.
2011 * @[ @{ %[ %{ *{ are emitted also as two tokens, but this function emits
2012 * only the first, leaving yylex to find the next.
2016 S_postderef(pTHX_ int const funny, char const next)
2018 assert(funny == DOLSHARP || strchr("$@%&*", funny));
2020 PL_expect = XOPERATOR;
2021 if (PL_lex_state == LEX_INTERPNORMAL && !PL_lex_brackets) {
2022 assert('@' == funny || '$' == funny || DOLSHARP == funny);
2023 PL_lex_state = LEX_INTERPEND;
2025 force_next(POSTJOIN);
2031 if ('@' == funny && PL_lex_state == LEX_INTERPNORMAL
2032 && !PL_lex_brackets)
2034 PL_expect = XOPERATOR;
2043 int yyc = PL_parser->yychar;
2044 if (yyc != YYEMPTY) {
2046 NEXTVAL_NEXTTOKE = PL_parser->yylval;
2047 if (yyc == '{'/*}*/ || yyc == HASHBRACK || yyc == '['/*]*/) {
2048 PL_lex_allbrackets--;
2050 yyc |= (3<<24) | (PL_lex_brackstack[PL_lex_brackets] << 16);
2051 } else if (yyc == '('/*)*/) {
2052 PL_lex_allbrackets--;
2057 PL_parser->yychar = YYEMPTY;
2062 S_newSV_maybe_utf8(pTHX_ const char *const start, STRLEN len)
2064 SV * const sv = newSVpvn_utf8(start, len,
2068 && is_utf8_non_invariant_string((const U8*)start, len));
2074 * When the lexer knows the next thing is a word (for instance, it has
2075 * just seen -> and it knows that the next char is a word char, then
2076 * it calls S_force_word to stick the next word into the PL_nexttoke/val
2080 * char *start : buffer position (must be within PL_linestr)
2081 * int token : PL_next* will be this type of bare word
2082 * (e.g., METHOD,BAREWORD)
2083 * int check_keyword : if true, Perl checks to make sure the word isn't
2084 * a keyword (do this if the word is a label, e.g. goto FOO)
2085 * int allow_pack : if true, : characters will also be allowed (require,
2086 * use, etc. do this)
2090 S_force_word(pTHX_ char *start, int token, int check_keyword, int allow_pack)
2095 PERL_ARGS_ASSERT_FORCE_WORD;
2097 start = skipspace(start);
2099 if ( isIDFIRST_lazy_if_safe(s, PL_bufend, UTF)
2100 || (allow_pack && *s == ':' && s[1] == ':') )
2102 s = scan_word(s, PL_tokenbuf, sizeof PL_tokenbuf, allow_pack, &len);
2103 if (check_keyword) {
2104 char *s2 = PL_tokenbuf;
2106 if (allow_pack && memBEGINPs(s2, len, "CORE::")) {
2107 s2 += sizeof("CORE::") - 1;
2108 len2 -= sizeof("CORE::") - 1;
2110 if (keyword(s2, len2, 0))
2113 if (token == METHOD) {
2118 PL_expect = XOPERATOR;
2121 NEXTVAL_NEXTTOKE.opval
2122 = newSVOP(OP_CONST,0,
2123 S_newSV_maybe_utf8(aTHX_ PL_tokenbuf, len));
2124 NEXTVAL_NEXTTOKE.opval->op_private |= OPpCONST_BARE;
2132 * Called when the lexer wants $foo *foo &foo etc, but the program
2133 * text only contains the "foo" portion. The first argument is a pointer
2134 * to the "foo", and the second argument is the type symbol to prefix.
2135 * Forces the next token to be a "BAREWORD".
2136 * Creates the symbol if it didn't already exist (via gv_fetchpv()).
2140 S_force_ident(pTHX_ const char *s, int kind)
2142 PERL_ARGS_ASSERT_FORCE_IDENT;
2145 const STRLEN len = s[1] ? strlen(s) : 1; /* s = "\"" see yylex */
2146 OP* const o = newSVOP(OP_CONST, 0, newSVpvn_flags(s, len,
2147 UTF ? SVf_UTF8 : 0));
2148 NEXTVAL_NEXTTOKE.opval = o;
2149 force_next(BAREWORD);
2151 o->op_private = OPpCONST_ENTERED;
2152 /* XXX see note in pp_entereval() for why we forgo typo
2153 warnings if the symbol must be introduced in an eval.
2155 gv_fetchpvn_flags(s, len,
2156 (PL_in_eval ? GV_ADDMULTI
2157 : GV_ADD) | ( UTF ? SVf_UTF8 : 0 ),
2158 kind == '$' ? SVt_PV :
2159 kind == '@' ? SVt_PVAV :
2160 kind == '%' ? SVt_PVHV :
2168 S_force_ident_maybe_lex(pTHX_ char pit)
2170 NEXTVAL_NEXTTOKE.ival = pit;
2175 Perl_str_to_version(pTHX_ SV *sv)
2180 const char *start = SvPV_const(sv,len);
2181 const char * const end = start + len;
2182 const bool utf = cBOOL(SvUTF8(sv));
2184 PERL_ARGS_ASSERT_STR_TO_VERSION;
2186 while (start < end) {
2190 n = utf8n_to_uvchr((U8*)start, len, &skip, 0);
2195 retval += ((NV)n)/nshift;
2204 * Forces the next token to be a version number.
2205 * If the next token appears to be an invalid version number, (e.g. "v2b"),
2206 * and if "guessing" is TRUE, then no new token is created (and the caller
2207 * must use an alternative parsing method).
2211 S_force_version(pTHX_ char *s, int guessing)
2216 PERL_ARGS_ASSERT_FORCE_VERSION;
2224 while (isDIGIT(*d) || *d == '_' || *d == '.')
2226 if (*d == ';' || isSPACE(*d) || *d == '{' || *d == '}' || !*d) {
2228 s = scan_num(s, &pl_yylval);
2229 version = pl_yylval.opval;
2230 ver = cSVOPx(version)->op_sv;
2231 if (SvPOK(ver) && !SvNIOK(ver)) {
2232 SvUPGRADE(ver, SVt_PVNV);
2233 SvNV_set(ver, str_to_version(ver));
2234 SvNOK_on(ver); /* hint that it is a version */
2237 else if (guessing) {
2242 /* NOTE: The parser sees the package name and the VERSION swapped */
2243 NEXTVAL_NEXTTOKE.opval = version;
2244 force_next(BAREWORD);
2250 * S_force_strict_version
2251 * Forces the next token to be a version number using strict syntax rules.
2255 S_force_strict_version(pTHX_ char *s)
2258 const char *errstr = NULL;
2260 PERL_ARGS_ASSERT_FORCE_STRICT_VERSION;
2262 while (isSPACE(*s)) /* leading whitespace */
2265 if (is_STRICT_VERSION(s,&errstr)) {
2267 s = (char *)scan_version(s, ver, 0);
2268 version = newSVOP(OP_CONST, 0, ver);
2270 else if ((*s != ';' && *s != '{' && *s != '}' )
2271 && (s = skipspace(s), (*s != ';' && *s != '{' && *s != '}' )))
2275 yyerror(errstr); /* version required */
2279 /* NOTE: The parser sees the package name and the VERSION swapped */
2280 NEXTVAL_NEXTTOKE.opval = version;
2281 force_next(BAREWORD);
2288 * Turns any \\ into \ in a quoted string passed in in 'sv', returning 'sv',
2289 * modified as necessary. However, if HINT_NEW_STRING is on, 'sv' is
2290 * unchanged, and a new SV containing the modified input is returned.
2294 S_tokeq(pTHX_ SV *sv)
2301 PERL_ARGS_ASSERT_TOKEQ;
2305 assert (!SvIsCOW(sv));
2306 if (SvTYPE(sv) >= SVt_PVIV && SvIVX(sv) == -1) /* <<'heredoc' */
2310 /* This is relying on the SV being "well formed" with a trailing '\0' */
2311 while (s < send && !(*s == '\\' && s[1] == '\\'))
2316 if ( PL_hints & HINT_NEW_STRING ) {
2317 pv = newSVpvn_flags(SvPVX_const(pv), SvCUR(sv),
2318 SVs_TEMP | SvUTF8(sv));
2322 if (s + 1 < send && (s[1] == '\\'))
2323 s++; /* all that, just for this */
2328 SvCUR_set(sv, d - SvPVX_const(sv));
2330 if ( PL_hints & HINT_NEW_STRING )
2331 return new_constant(NULL, 0, "q", sv, pv, "q", 1, NULL);
2336 * Now come three functions related to double-quote context,
2337 * S_sublex_start, S_sublex_push, and S_sublex_done. They're used when
2338 * converting things like "\u\Lgnat" into ucfirst(lc("gnat")). They
2339 * interact with PL_lex_state, and create fake ( ... ) argument lists
2340 * to handle functions and concatenation.
2344 * stringify ( const[foo] concat lcfirst ( const[bar] ) )
2349 * Assumes that pl_yylval.ival is the op we're creating (e.g. OP_LCFIRST).
2351 * Pattern matching will set PL_lex_op to the pattern-matching op to
2352 * make (we return THING if pl_yylval.ival is OP_NULL, PMFUNC otherwise).
2354 * OP_CONST is easy--just make the new op and return.
2356 * Everything else becomes a FUNC.
2358 * Sets PL_lex_state to LEX_INTERPPUSH unless ival was OP_NULL or we
2359 * had an OP_CONST. This just sets us up for a
2360 * call to S_sublex_push().
2364 S_sublex_start(pTHX)
2366 const I32 op_type = pl_yylval.ival;
2368 if (op_type == OP_NULL) {
2369 pl_yylval.opval = PL_lex_op;
2373 if (op_type == OP_CONST) {
2374 SV *sv = PL_lex_stuff;
2375 PL_lex_stuff = NULL;
2378 if (SvTYPE(sv) == SVt_PVIV) {
2379 /* Overloaded constants, nothing fancy: Convert to SVt_PV: */
2381 const char * const p = SvPV_const(sv, len);
2382 SV * const nsv = newSVpvn_flags(p, len, SvUTF8(sv));
2386 pl_yylval.opval = newSVOP(op_type, 0, sv);
2390 PL_parser->lex_super_state = PL_lex_state;
2391 PL_parser->lex_sub_inwhat = (U16)op_type;
2392 PL_parser->lex_sub_op = PL_lex_op;
2393 PL_parser->sub_no_recover = FALSE;
2394 PL_parser->sub_error_count = PL_error_count;
2395 PL_lex_state = LEX_INTERPPUSH;
2399 pl_yylval.opval = PL_lex_op;
2409 * Create a new scope to save the lexing state. The scope will be
2410 * ended in S_sublex_done. Returns a '(', starting the function arguments
2411 * to the uc, lc, etc. found before.
2412 * Sets PL_lex_state to LEX_INTERPCONCAT.
2419 const bool is_heredoc = PL_multi_close == '<';
2422 PL_lex_state = PL_parser->lex_super_state;
2423 SAVEI8(PL_lex_dojoin);
2424 SAVEI32(PL_lex_brackets);
2425 SAVEI32(PL_lex_allbrackets);
2426 SAVEI32(PL_lex_formbrack);
2427 SAVEI8(PL_lex_fakeeof);
2428 SAVEI32(PL_lex_casemods);
2429 SAVEI32(PL_lex_starts);
2430 SAVEI8(PL_lex_state);
2431 SAVESPTR(PL_lex_repl);
2432 SAVEVPTR(PL_lex_inpat);
2433 SAVEI16(PL_lex_inwhat);
2436 SAVECOPLINE(PL_curcop);
2437 SAVEI32(PL_multi_end);
2438 SAVEI32(PL_parser->herelines);
2439 PL_parser->herelines = 0;
2441 SAVEIV(PL_multi_close);
2442 SAVEPPTR(PL_bufptr);
2443 SAVEPPTR(PL_bufend);
2444 SAVEPPTR(PL_oldbufptr);
2445 SAVEPPTR(PL_oldoldbufptr);
2446 SAVEPPTR(PL_last_lop);
2447 SAVEPPTR(PL_last_uni);
2448 SAVEPPTR(PL_linestart);
2449 SAVESPTR(PL_linestr);
2450 SAVEGENERICPV(PL_lex_brackstack);
2451 SAVEGENERICPV(PL_lex_casestack);
2452 SAVEGENERICPV(PL_parser->lex_shared);
2453 SAVEBOOL(PL_parser->lex_re_reparsing);
2454 SAVEI32(PL_copline);
2456 /* The here-doc parser needs to be able to peek into outer lexing
2457 scopes to find the body of the here-doc. So we put PL_linestr and
2458 PL_bufptr into lex_shared, to ‘share’ those values.
2460 PL_parser->lex_shared->ls_linestr = PL_linestr;
2461 PL_parser->lex_shared->ls_bufptr = PL_bufptr;
2463 PL_linestr = PL_lex_stuff;
2464 PL_lex_repl = PL_parser->lex_sub_repl;
2465 PL_lex_stuff = NULL;
2466 PL_parser->lex_sub_repl = NULL;
2468 /* Arrange for PL_lex_stuff to be freed on scope exit, in case it gets
2469 set for an inner quote-like operator and then an error causes scope-
2470 popping. We must not have a PL_lex_stuff value left dangling, as
2471 that breaks assumptions elsewhere. See bug #123617. */
2472 SAVEGENERICSV(PL_lex_stuff);
2473 SAVEGENERICSV(PL_parser->lex_sub_repl);
2475 PL_bufend = PL_bufptr = PL_oldbufptr = PL_oldoldbufptr = PL_linestart
2476 = SvPVX(PL_linestr);
2477 PL_bufend += SvCUR(PL_linestr);
2478 PL_last_lop = PL_last_uni = NULL;
2479 SAVEFREESV(PL_linestr);
2480 if (PL_lex_repl) SAVEFREESV(PL_lex_repl);
2482 PL_lex_dojoin = FALSE;
2483 PL_lex_brackets = PL_lex_formbrack = 0;
2484 PL_lex_allbrackets = 0;
2485 PL_lex_fakeeof = LEX_FAKEEOF_NEVER;
2486 Newx(PL_lex_brackstack, 120, char);
2487 Newx(PL_lex_casestack, 12, char);
2488 PL_lex_casemods = 0;
2489 *PL_lex_casestack = '\0';
2491 PL_lex_state = LEX_INTERPCONCAT;
2493 CopLINE_set(PL_curcop, (line_t)PL_multi_start);
2494 PL_copline = NOLINE;
2496 Newxz(shared, 1, LEXSHARED);
2497 shared->ls_prev = PL_parser->lex_shared;
2498 PL_parser->lex_shared = shared;
2500 PL_lex_inwhat = PL_parser->lex_sub_inwhat;
2501 if (PL_lex_inwhat == OP_TRANSR) PL_lex_inwhat = OP_TRANS;
2502 if (PL_lex_inwhat == OP_MATCH || PL_lex_inwhat == OP_QR || PL_lex_inwhat == OP_SUBST)
2503 PL_lex_inpat = PL_parser->lex_sub_op;
2505 PL_lex_inpat = NULL;
2507 PL_parser->lex_re_reparsing = cBOOL(PL_in_eval & EVAL_RE_REPARSING);
2508 PL_in_eval &= ~EVAL_RE_REPARSING;
2515 * Restores lexer state after a S_sublex_push.
2521 if (!PL_lex_starts++) {
2522 SV * const sv = newSVpvs("");
2523 if (SvUTF8(PL_linestr))
2525 PL_expect = XOPERATOR;
2526 pl_yylval.opval = newSVOP(OP_CONST, 0, sv);
2530 if (PL_lex_casemods) { /* oops, we've got some unbalanced parens */
2531 PL_lex_state = LEX_INTERPCASEMOD;
2535 /* Is there a right-hand side to take care of? (s//RHS/ or tr//RHS/) */
2536 assert(PL_lex_inwhat != OP_TRANSR);
2538 assert (PL_lex_inwhat == OP_SUBST || PL_lex_inwhat == OP_TRANS);
2539 PL_linestr = PL_lex_repl;
2541 PL_bufend = PL_bufptr = PL_oldbufptr = PL_oldoldbufptr = PL_linestart = SvPVX(PL_linestr);
2542 PL_bufend += SvCUR(PL_linestr);
2543 PL_last_lop = PL_last_uni = NULL;
2544 PL_lex_dojoin = FALSE;
2545 PL_lex_brackets = 0;
2546 PL_lex_allbrackets = 0;
2547 PL_lex_fakeeof = LEX_FAKEEOF_NEVER;
2548 PL_lex_casemods = 0;
2549 *PL_lex_casestack = '\0';
2551 if (SvEVALED(PL_lex_repl)) {
2552 PL_lex_state = LEX_INTERPNORMAL;
2554 /* we don't clear PL_lex_repl here, so that we can check later
2555 whether this is an evalled subst; that means we rely on the
2556 logic to ensure sublex_done() is called again only via the
2557 branch (in yylex()) that clears PL_lex_repl, else we'll loop */
2560 PL_lex_state = LEX_INTERPCONCAT;
2563 if (SvTYPE(PL_linestr) >= SVt_PVNV) {
2564 CopLINE(PL_curcop) +=
2565 ((XPVNV*)SvANY(PL_linestr))->xnv_u.xnv_lines
2566 + PL_parser->herelines;
2567 PL_parser->herelines = 0;
2572 const line_t l = CopLINE(PL_curcop);
2574 if (PL_parser->sub_error_count != PL_error_count) {
2575 if (PL_parser->sub_no_recover) {
2580 if (PL_multi_close == '<')
2581 PL_parser->herelines += l - PL_multi_end;
2582 PL_bufend = SvPVX(PL_linestr);
2583 PL_bufend += SvCUR(PL_linestr);
2584 PL_expect = XOPERATOR;
2590 S_get_and_check_backslash_N_name_wrapper(pTHX_ const char* s, const char* const e)
2592 /* This justs wraps get_and_check_backslash_N_name() to output any error
2593 * message it returns. */
2595 const char * error_msg = NULL;
2598 PERL_ARGS_ASSERT_GET_AND_CHECK_BACKSLASH_N_NAME_WRAPPER;
2600 /* charnames doesn't work well if there have been errors found */
2601 if (PL_error_count > 0) {
2605 result = get_and_check_backslash_N_name(s, e, cBOOL(UTF), &error_msg);
2608 yyerror_pv(error_msg, UTF ? SVf_UTF8 : 0);
2615 Perl_get_and_check_backslash_N_name(pTHX_ const char* s,
2616 const char* const e,
2618 const char ** error_msg)
2620 /* <s> points to first character of interior of \N{}, <e> to one beyond the
2621 * interior, hence to the "}". Finds what the name resolves to, returning
2622 * an SV* containing it; NULL if no valid one found.
2624 * 'is_utf8' is TRUE if we know we want the result to be UTF-8 even if it
2625 * doesn't have to be. */
2633 const char* backslash_ptr = s - 3; /* Points to the <\> of \N{... */
2636 PERL_ARGS_ASSERT_GET_AND_CHECK_BACKSLASH_N_NAME;
2639 assert(s > (char *) 3);
2641 res = newSVpvn_flags(s, e - s, (is_utf8) ? SVf_UTF8 : 0);
2644 SvREFCNT_dec_NN(res);
2645 /* diag_listed_as: Unknown charname '%s' */
2646 *error_msg = Perl_form(aTHX_ "Unknown charname ''");
2650 res = new_constant( NULL, 0, "charnames", res, NULL, backslash_ptr,
2651 /* include the <}> */
2652 e - backslash_ptr + 1, error_msg);
2654 SvREFCNT_dec_NN(res);
2658 /* See if the charnames handler is the Perl core's, and if so, we can skip
2659 * the validation needed for a user-supplied one, as Perl's does its own
2661 table = GvHV(PL_hintgv); /* ^H */
2662 cvp = hv_fetchs(table, "charnames", FALSE);
2663 if (cvp && (cv = *cvp) && SvROK(cv) && (rv = SvRV(cv),
2664 SvTYPE(rv) == SVt_PVCV) && ((stash = CvSTASH(rv)) != NULL))
2666 const char * const name = HvNAME(stash);
2667 if (memEQs(name, HvNAMELEN(stash), "_charnames")) {
2672 /* Here, it isn't Perl's charname handler. We can't rely on a
2673 * user-supplied handler to validate the input name. For non-ut8 input,
2674 * look to see that the first character is legal. Then loop through the
2675 * rest checking that each is a continuation */
2677 /* This code makes the reasonable assumption that the only Latin1-range
2678 * characters that begin a character name alias are alphabetic, otherwise
2679 * would have to create a isCHARNAME_BEGIN macro */
2682 if (! isALPHAU(*s)) {
2687 if (! isCHARNAME_CONT(*s)) {
2690 if (*s == ' ' && *(s-1) == ' ') {
2697 /* Similarly for utf8. For invariants can check directly; for other
2698 * Latin1, can calculate their code point and check; otherwise use a
2700 if (UTF8_IS_INVARIANT(*s)) {
2701 if (! isALPHAU(*s)) {
2705 } else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
2706 if (! isALPHAU(EIGHT_BIT_UTF8_TO_NATIVE(*s, *(s+1)))) {
2712 if (! _invlist_contains_cp(PL_utf8_charname_begin,
2713 utf8_to_uvchr_buf((U8 *) s,
2723 if (UTF8_IS_INVARIANT(*s)) {
2724 if (! isCHARNAME_CONT(*s)) {
2727 if (*s == ' ' && *(s-1) == ' ') {
2732 else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
2733 if (! isCHARNAME_CONT(EIGHT_BIT_UTF8_TO_NATIVE(*s, *(s+1))))
2740 if (! _invlist_contains_cp(PL_utf8_charname_continue,
2741 utf8_to_uvchr_buf((U8 *) s,
2751 if (*(s-1) == ' ') {
2752 /* diag_listed_as: charnames alias definitions may not contain
2753 trailing white-space; marked by <-- HERE in %s
2755 *error_msg = Perl_form(aTHX_
2756 "charnames alias definitions may not contain trailing "
2757 "white-space; marked by <-- HERE in %.*s<-- HERE %.*s",
2758 (int)(s - backslash_ptr + 1), backslash_ptr,
2759 (int)(e - s + 1), s + 1);
2763 if (SvUTF8(res)) { /* Don't accept malformed charname value */
2764 const U8* first_bad_char_loc;
2766 const char* const str = SvPV_const(res, len);
2767 if (UNLIKELY(! is_utf8_string_loc((U8 *) str, len,
2768 &first_bad_char_loc)))
2770 _force_out_malformed_utf8_message(first_bad_char_loc,
2771 (U8 *) PL_parser->bufend,
2773 0 /* 0 means don't die */ );
2774 /* diag_listed_as: Malformed UTF-8 returned by \N{%s}
2775 immediately after '%s' */
2776 *error_msg = Perl_form(aTHX_
2777 "Malformed UTF-8 returned by %.*s immediately after '%.*s'",
2778 (int) (e - backslash_ptr + 1), backslash_ptr,
2779 (int) ((char *) first_bad_char_loc - str), str);
2788 /* The final %.*s makes sure that should the trailing NUL be missing
2789 * that this print won't run off the end of the string */
2790 /* diag_listed_as: Invalid character in \N{...}; marked by <-- HERE
2792 *error_msg = Perl_form(aTHX_
2793 "Invalid character in \\N{...}; marked by <-- HERE in %.*s<-- HERE %.*s",
2794 (int)(s - backslash_ptr + 1), backslash_ptr,
2795 (int)(e - s + 1), s + 1);
2800 /* diag_listed_as: charnames alias definitions may not contain a
2801 sequence of multiple spaces; marked by <-- HERE
2803 *error_msg = Perl_form(aTHX_
2804 "charnames alias definitions may not contain a sequence of "
2805 "multiple spaces; marked by <-- HERE in %.*s<-- HERE %.*s",
2806 (int)(s - backslash_ptr + 1), backslash_ptr,
2807 (int)(e - s + 1), s + 1);
2814 Extracts the next constant part of a pattern, double-quoted string,
2815 or transliteration. This is terrifying code.
2817 For example, in parsing the double-quoted string "ab\x63$d", it would
2818 stop at the '$' and return an OP_CONST containing 'abc'.
2820 It looks at PL_lex_inwhat and PL_lex_inpat to find out whether it's
2821 processing a pattern (PL_lex_inpat is true), a transliteration
2822 (PL_lex_inwhat == OP_TRANS is true), or a double-quoted string.
2824 Returns a pointer to the character scanned up to. If this is
2825 advanced from the start pointer supplied (i.e. if anything was
2826 successfully parsed), will leave an OP_CONST for the substring scanned
2827 in pl_yylval. Caller must intuit reason for not parsing further
2828 by looking at the next characters herself.
2832 \N{FOO} => \N{U+hex_for_character_FOO}
2833 (if FOO expands to multiple characters, expands to \N{U+xx.XX.yy ...})
2836 all other \-char, including \N and \N{ apart from \N{ABC}
2839 @ and $ where it appears to be a var, but not for $ as tail anchor
2843 In transliterations:
2844 characters are VERY literal, except for - not at the start or end
2845 of the string, which indicates a range. However some backslash sequences
2846 are recognized: \r, \n, and the like
2847 \007 \o{}, \x{}, \N{}
2848 If all elements in the transliteration are below 256,
2849 scan_const expands the range to the full set of intermediate
2850 characters. If the range is in utf8, the hyphen is replaced with
2851 a certain range mark which will be handled by pmtrans() in op.c.
2853 In double-quoted strings:
2855 all those recognized in transliterations
2856 deprecated backrefs: \1 (in substitution replacements)
2857 case and quoting: \U \Q \E
2860 scan_const does *not* construct ops to handle interpolated strings.
2861 It stops processing as soon as it finds an embedded $ or @ variable
2862 and leaves it to the caller to work out what's going on.
2864 embedded arrays (whether in pattern or not) could be:
2865 @foo, @::foo, @'foo, @{foo}, @$foo, @+, @-.
2867 $ in double-quoted strings must be the symbol of an embedded scalar.
2869 $ in pattern could be $foo or could be tail anchor. Assumption:
2870 it's a tail anchor if $ is the last thing in the string, or if it's
2871 followed by one of "()| \r\n\t"
2873 \1 (backreferences) are turned into $1 in substitutions
2875 The structure of the code is
2876 while (there's a character to process) {
2877 handle transliteration ranges
2878 skip regexp comments /(?#comment)/ and codes /(?{code})/
2879 skip #-initiated comments in //x patterns
2880 check for embedded arrays
2881 check for embedded scalars
2883 deprecate \1 in substitution replacements
2884 handle string-changing backslashes \l \U \Q \E, etc.
2885 switch (what was escaped) {
2886 handle \- in a transliteration (becomes a literal -)
2887 if a pattern and not \N{, go treat as regular character
2888 handle \132 (octal characters)
2889 handle \x15 and \x{1234} (hex characters)
2890 handle \N{name} (named characters, also \N{3,5} in a pattern)
2891 handle \cV (control characters)
2892 handle printf-style backslashes (\f, \r, \n, etc)
2895 } (end if backslash)
2896 handle regular character
2897 } (end while character to read)
2902 S_scan_const(pTHX_ char *start)
2904 char *send = PL_bufend; /* end of the constant */
2905 SV *sv = newSV(send - start); /* sv for the constant. See note below
2907 char *s = start; /* start of the constant */
2908 char *d = SvPVX(sv); /* destination for copies */
2909 bool dorange = FALSE; /* are we in a translit range? */
2910 bool didrange = FALSE; /* did we just finish a range? */
2911 bool in_charclass = FALSE; /* within /[...]/ */
2912 bool d_is_utf8 = FALSE; /* Output constant is UTF8 */
2913 bool s_is_utf8 = cBOOL(UTF); /* Is the source string assumed to be
2914 UTF8? But, this can show as true
2915 when the source isn't utf8, as for
2916 example when it is entirely composed
2918 STRLEN utf8_variant_count = 0; /* When not in UTF-8, this counts the
2919 number of characters found so far
2920 that will expand (into 2 bytes)
2921 should we have to convert to
2923 SV *res; /* result from charnames */
2924 STRLEN offset_to_max = 0; /* The offset in the output to where the range
2925 high-end character is temporarily placed */
2927 /* Does something require special handling in tr/// ? This avoids extra
2928 * work in a less likely case. As such, khw didn't feel it was worth
2929 * adding any branches to the more mainline code to handle this, which
2930 * means that this doesn't get set in some circumstances when things like
2931 * \x{100} get expanded out. As a result there needs to be extra testing
2932 * done in the tr code */
2933 bool has_above_latin1 = FALSE;
2935 /* Note on sizing: The scanned constant is placed into sv, which is
2936 * initialized by newSV() assuming one byte of output for every byte of
2937 * input. This routine expects newSV() to allocate an extra byte for a
2938 * trailing NUL, which this routine will append if it gets to the end of
2939 * the input. There may be more bytes of input than output (eg., \N{LATIN
2940 * CAPITAL LETTER A}), or more output than input if the constant ends up
2941 * recoded to utf8, but each time a construct is found that might increase
2942 * the needed size, SvGROW() is called. Its size parameter each time is
2943 * based on the best guess estimate at the time, namely the length used so
2944 * far, plus the length the current construct will occupy, plus room for
2945 * the trailing NUL, plus one byte for every input byte still unscanned */
2947 UV uv = UV_MAX; /* Initialize to weird value to try to catch any uses
2950 int backslash_N = 0; /* ? was the character from \N{} */
2951 int non_portable_endpoint = 0; /* ? In a range is an endpoint
2952 platform-specific like \x65 */
2955 PERL_ARGS_ASSERT_SCAN_CONST;
2957 assert(PL_lex_inwhat != OP_TRANSR);
2958 if (PL_lex_inwhat == OP_TRANS && PL_parser->lex_sub_op) {
2959 /* If we are doing a trans and we know we want UTF8 set expectation */
2960 d_is_utf8 = PL_parser->lex_sub_op->op_private & (OPpTRANS_FROM_UTF|OPpTRANS_TO_UTF);
2961 s_is_utf8 = PL_parser->lex_sub_op->op_private & (PL_lex_repl ? OPpTRANS_FROM_UTF : OPpTRANS_TO_UTF);
2964 /* Protect sv from errors and fatal warnings. */
2965 ENTER_with_name("scan_const");
2969 || dorange /* Handle tr/// range at right edge of input */
2972 /* get transliterations out of the way (they're most literal) */
2973 if (PL_lex_inwhat == OP_TRANS) {
2975 /* But there isn't any special handling necessary unless there is a
2976 * range, so for most cases we just drop down and handle the value
2977 * as any other. There are two exceptions.
2979 * 1. A hyphen indicates that we are actually going to have a
2980 * range. In this case, skip the '-', set a flag, then drop
2981 * down to handle what should be the end range value.
2982 * 2. After we've handled that value, the next time through, that
2983 * flag is set and we fix up the range.
2985 * Ranges entirely within Latin1 are expanded out entirely, in
2986 * order to make the transliteration a simple table look-up.
2987 * Ranges that extend above Latin1 have to be done differently, so
2988 * there is no advantage to expanding them here, so they are
2989 * stored here as Min, ILLEGAL_UTF8_BYTE, Max. The illegal byte
2990 * signifies a hyphen without any possible ambiguity. On EBCDIC
2991 * machines, if the range is expressed as Unicode, the Latin1
2992 * portion is expanded out even if the range extends above
2993 * Latin1. This is because each code point in it has to be
2994 * processed here individually to get its native translation */
2998 /* Here, we don't think we're in a range. If the new character
2999 * is not a hyphen; or if it is a hyphen, but it's too close to
3000 * either edge to indicate a range, or if we haven't output any
3001 * characters yet then it's a regular character. */
3002 if (*s != '-' || s >= send - 1 || s == start || d == SvPVX(sv)) {
3004 /* A regular character. Process like any other, but first
3005 * clear any flags */
3009 non_portable_endpoint = 0;
3012 /* The tests here for being above Latin1 and similar ones
3013 * in the following 'else' suffice to find all such
3014 * occurences in the constant, except those added by a
3015 * backslash escape sequence, like \x{100}. Mostly, those
3016 * set 'has_above_latin1' as appropriate */
3017 if (s_is_utf8 && UTF8_IS_ABOVE_LATIN1(*s)) {
3018 has_above_latin1 = TRUE;
3021 /* Drops down to generic code to process current byte */
3023 else { /* Is a '-' in the context where it means a range */
3024 if (didrange) { /* Something like y/A-C-Z// */
3025 Perl_croak(aTHX_ "Ambiguous range in transliteration"
3031 s++; /* Skip past the hyphen */
3033 /* d now points to where the end-range character will be
3034 * placed. Save it so won't have to go finding it later,
3035 * and drop down to get that character. (Actually we
3036 * instead save the offset, to handle the case where a
3037 * realloc in the meantime could change the actual
3038 * pointer). We'll finish processing the range the next
3039 * time through the loop */
3040 offset_to_max = d - SvPVX_const(sv);
3042 if (s_is_utf8 && UTF8_IS_ABOVE_LATIN1(*s)) {
3043 has_above_latin1 = TRUE;
3046 /* Drops down to generic code to process current byte */
3048 } /* End of not a range */
3050 /* Here we have parsed a range. Now must handle it. At this
3052 * 'sv' is a SV* that contains the output string we are
3053 * constructing. The final two characters in that string
3054 * are the range start and range end, in order.
3055 * 'd' points to just beyond the range end in the 'sv' string,
3056 * where we would next place something
3057 * 'offset_to_max' is the offset in 'sv' at which the character
3058 * (the range's maximum end point) before 'd' begins.
3060 char * max_ptr = SvPVX(sv) + offset_to_max;
3063 IV range_max; /* last character in range */
3065 Size_t offset_to_min = 0;
3068 bool convert_unicode;
3069 IV real_range_max = 0;
3071 /* Get the code point values of the range ends. */
3073 /* We know the utf8 is valid, because we just constructed
3074 * it ourselves in previous loop iterations */
3075 min_ptr = (char*) utf8_hop( (U8*) max_ptr, -1);
3076 range_min = valid_utf8_to_uvchr( (U8*) min_ptr, NULL);
3077 range_max = valid_utf8_to_uvchr( (U8*) max_ptr, NULL);
3079 /* This compensates for not all code setting
3080 * 'has_above_latin1', so that we don't skip stuff that
3081 * should be executed */
3082 if (range_max > 255) {
3083 has_above_latin1 = TRUE;
3087 min_ptr = max_ptr - 1;
3088 range_min = * (U8*) min_ptr;
3089 range_max = * (U8*) max_ptr;
3092 /* If the range is just a single code point, like tr/a-a/.../,
3093 * that code point is already in the output, twice. We can
3094 * just back up over the second instance and avoid all the rest
3095 * of the work. But if it is a variant character, it's been
3096 * counted twice, so decrement. (This unlikely scenario is
3097 * special cased, like the one for a range of 2 code points
3098 * below, only because the main-line code below needs a range
3099 * of 3 or more to work without special casing. Might as well
3100 * get it out of the way now.) */
3101 if (UNLIKELY(range_max == range_min)) {
3103 if (! d_is_utf8 && ! UVCHR_IS_INVARIANT(range_max)) {
3104 utf8_variant_count--;
3110 /* On EBCDIC platforms, we may have to deal with portable
3111 * ranges. These happen if at least one range endpoint is a
3112 * Unicode value (\N{...}), or if the range is a subset of
3113 * [A-Z] or [a-z], and both ends are literal characters,
3114 * like 'A', and not like \x{C1} */
3116 cBOOL(backslash_N) /* \N{} forces Unicode,
3117 hence portable range */
3118 || ( ! non_portable_endpoint
3119 && (( isLOWER_A(range_min) && isLOWER_A(range_max))
3120 || (isUPPER_A(range_min) && isUPPER_A(range_max))));
3121 if (convert_unicode) {
3123 /* Special handling is needed for these portable ranges.
3124 * They are defined to be in Unicode terms, which includes
3125 * all the Unicode code points between the end points.
3126 * Convert to Unicode to get the Unicode range. Later we
3127 * will convert each code point in the range back to
3129 range_min = NATIVE_TO_UNI(range_min);
3130 range_max = NATIVE_TO_UNI(range_max);
3134 if (range_min > range_max) {
3136 if (convert_unicode) {
3137 /* Need to convert back to native for meaningful
3138 * messages for this platform */
3139 range_min = UNI_TO_NATIVE(range_min);
3140 range_max = UNI_TO_NATIVE(range_max);
3143 /* Use the characters themselves for the error message if
3144 * ASCII printables; otherwise some visible representation
3146 if (isPRINT_A(range_min) && isPRINT_A(range_max)) {
3148 "Invalid range \"%c-%c\" in transliteration operator",
3149 (char)range_min, (char)range_max);
3152 else if (convert_unicode) {
3153 /* diag_listed_as: Invalid range "%s" in transliteration operator */
3155 "Invalid range \"\\N{U+%04" UVXf "}-\\N{U+%04"
3156 UVXf "}\" in transliteration operator",
3157 range_min, range_max);
3161 /* diag_listed_as: Invalid range "%s" in transliteration operator */
3163 "Invalid range \"\\x{%04" UVXf "}-\\x{%04" UVXf "}\""
3164 " in transliteration operator",
3165 range_min, range_max);
3169 /* If the range is exactly two code points long, they are
3170 * already both in the output */
3171 if (UNLIKELY(range_min + 1 == range_max)) {
3175 /* Here the range contains at least 3 code points */
3179 /* If everything in the transliteration is below 256, we
3180 * can avoid special handling later. A translation table
3181 * for each of those bytes is created by op.c. So we
3182 * expand out all ranges to their constituent code points.
3183 * But if we've encountered something above 255, the
3184 * expanding won't help, so skip doing that. But if it's
3185 * EBCDIC, we may have to look at each character below 256
3186 * if we have to convert to/from Unicode values */
3187 if ( has_above_latin1
3189 && (range_min > 255 || ! convert_unicode)
3192 /* Move the high character one byte to the right; then
3193 * insert between it and the range begin, an illegal
3194 * byte which serves to indicate this is a range (using
3195 * a '-' would be ambiguous). */
3197 while (e-- > max_ptr) {
3200 *(e + 1) = (char) ILLEGAL_UTF8_BYTE;
3204 /* Here, we're going to expand out the range. For EBCDIC
3205 * the range can extend above 255 (not so in ASCII), so
3206 * for EBCDIC, split it into the parts above and below
3209 if (range_max > 255) {
3210 real_range_max = range_max;
3216 /* Here we need to expand out the string to contain each
3217 * character in the range. Grow the output to handle this.
3218 * For non-UTF8, we need a byte for each code point in the
3219 * range, minus the three that we've already allocated for: the
3220 * hyphen, the min, and the max. For UTF-8, we need this
3221 * plus an extra byte for each code point that occupies two
3222 * bytes (is variant) when in UTF-8 (except we've already
3223 * allocated for the end points, including if they are
3224 * variants). For ASCII platforms and Unicode ranges on EBCDIC
3225 * platforms, it's easy to calculate a precise number. To
3226 * start, we count the variants in the range, which we need
3227 * elsewhere in this function anyway. (For the case where it
3228 * isn't easy to calculate, 'extras' has been initialized to 0,
3229 * and the calculation is done in a loop further down.) */
3231 if (convert_unicode)
3234 /* This is executed unconditionally on ASCII, and for
3235 * Unicode ranges on EBCDIC. Under these conditions, all
3236 * code points above a certain value are variant; and none
3237 * under that value are. We just need to find out how much
3238 * of the range is above that value. We don't count the
3239 * end points here, as they will already have been counted
3240 * as they were parsed. */
3241 if (range_min >= UTF_CONTINUATION_MARK) {
3243 /* The whole range is made up of variants */
3244 extras = (range_max - 1) - (range_min + 1) + 1;
3246 else if (range_max >= UTF_CONTINUATION_MARK) {
3248 /* Only the higher portion of the range is variants */
3249 extras = (range_max - 1) - UTF_CONTINUATION_MARK + 1;
3252 utf8_variant_count += extras;
3255 /* The base growth is the number of code points in the range,
3256 * not including the endpoints, which have already been sized
3257 * for (and output). We don't subtract for the hyphen, as it
3258 * has been parsed but not output, and the SvGROW below is
3259 * based only on what's been output plus what's left to parse.
3261 grow = (range_max - 1) - (range_min + 1) + 1;
3265 /* In some cases in EBCDIC, we haven't yet calculated a
3266 * precise amount needed for the UTF-8 variants. Just
3267 * assume the worst case, that everything will expand by a
3269 if (! convert_unicode) {
3275 /* Otherwise we know exactly how many variants there
3276 * are in the range. */
3281 /* Grow, but position the output to overwrite the range min end
3282 * point, because in some cases we overwrite that */
3283 SvCUR_set(sv, d - SvPVX_const(sv));
3284 offset_to_min = min_ptr - SvPVX_const(sv);
3286 /* See Note on sizing above. */
3287 d = offset_to_min + SvGROW(sv, SvCUR(sv)
3290 + 1 /* Trailing NUL */ );
3292 /* Now, we can expand out the range. */
3294 if (convert_unicode) {
3297 /* Recall that the min and max are now in Unicode terms, so
3298 * we have to convert each character to its native
3301 for (i = range_min; i <= range_max; i++) {
3302 append_utf8_from_native_byte(
3303 LATIN1_TO_NATIVE((U8) i),
3308 for (i = range_min; i <= range_max; i++) {
3309 *d++ = (char)LATIN1_TO_NATIVE((U8) i);
3315 /* Always gets run for ASCII, and sometimes for EBCDIC. */
3317 /* Here, no conversions are necessary, which means that the
3318 * first character in the range is already in 'd' and
3319 * valid, so we can skip overwriting it */
3323 for (i = range_min + 1; i <= range_max; i++) {
3324 append_utf8_from_native_byte((U8) i, (U8 **) &d);
3330 assert(range_min + 1 <= range_max);
3331 for (i = range_min + 1; i < range_max; i++) {
3333 /* In this case on EBCDIC, we haven't calculated
3334 * the variants. Do it here, as we go along */
3335 if (! UVCHR_IS_INVARIANT(i)) {
3336 utf8_variant_count++;
3342 /* The range_max is done outside the loop so as to
3343 * avoid having to special case not incrementing
3344 * 'utf8_variant_count' on EBCDIC (it's already been
3345 * counted when originally parsed) */
3346 *d++ = (char) range_max;
3351 /* If the original range extended above 255, add in that
3353 if (real_range_max) {
3354 *d++ = (char) UTF8_TWO_BYTE_HI(0x100);
3355 *d++ = (char) UTF8_TWO_BYTE_LO(0x100);
3356 if (real_range_max > 0x100) {
3357 if (real_range_max > 0x101) {
3358 *d++ = (char) ILLEGAL_UTF8_BYTE;
3360 d = (char*)uvchr_to_utf8((U8*)d, real_range_max);
3366 /* mark the range as done, and continue */
3370 non_portable_endpoint = 0;
3374 } /* End of is a range */
3375 } /* End of transliteration. Joins main code after these else's */
3376 else if (*s == '[' && PL_lex_inpat && !in_charclass) {
3379 while (s1 >= start && *s1-- == '\\')
3382 in_charclass = TRUE;
3384 else if (*s == ']' && PL_lex_inpat && in_charclass) {
3387 while (s1 >= start && *s1-- == '\\')
3390 in_charclass = FALSE;
3392 /* skip for regexp comments /(?#comment)/, except for the last
3393 * char, which will be done separately. Stop on (?{..}) and
3395 else if (*s == '(' && PL_lex_inpat && s[1] == '?' && !in_charclass) {
3397 while (s+1 < send && *s != ')')
3400 else if (!PL_lex_casemods
3401 && ( s[2] == '{' /* This should match regcomp.c */
3402 || (s[2] == '?' && s[3] == '{')))
3407 /* likewise skip #-initiated comments in //x patterns */
3411 && ((PMOP*)PL_lex_inpat)->op_pmflags & RXf_PMf_EXTENDED)
3413 while (s < send && *s != '\n')
3416 /* no further processing of single-quoted regex */
3417 else if (PL_lex_inpat && SvIVX(PL_linestr) == '\'')
3418 goto default_action;
3420 /* check for embedded arrays
3421 * (@foo, @::foo, @'foo, @{foo}, @$foo, @+, @-)
3423 else if (*s == '@' && s[1]) {
3425 ? isIDFIRST_utf8_safe(s+1, send)
3426 : isWORDCHAR_A(s[1]))
3430 if (strchr(":'{$", s[1]))
3432 if (!PL_lex_inpat && (s[1] == '+' || s[1] == '-'))
3433 break; /* in regexp, neither @+ nor @- are interpolated */
3435 /* check for embedded scalars. only stop if we're sure it's a
3437 else if (*s == '$') {
3438 if (!PL_lex_inpat) /* not a regexp, so $ must be var */
3440 if (s + 1 < send && !strchr("()| \r\n\t", s[1])) {
3442 Perl_ck_warner(aTHX_ packWARN(WARN_AMBIGUOUS),
3443 "Possible unintended interpolation of $\\ in regex");
3445 break; /* in regexp, $ might be tail anchor */
3449 /* End of else if chain - OP_TRANS rejoin rest */
3451 if (UNLIKELY(s >= send)) {
3457 if (*s == '\\' && s+1 < send) {
3458 char* e; /* Can be used for ending '}', etc. */
3462 /* warn on \1 - \9 in substitution replacements, but note that \11
3463 * is an octal; and \19 is \1 followed by '9' */
3464 if (PL_lex_inwhat == OP_SUBST
3470 /* diag_listed_as: \%d better written as $%d */
3471 Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX), "\\%c better written as $%c", *s, *s);
3476 /* string-change backslash escapes */
3477 if (PL_lex_inwhat != OP_TRANS && *s && strchr("lLuUEQF", *s)) {
3481 /* In a pattern, process \N, but skip any other backslash escapes.
3482 * This is because we don't want to translate an escape sequence
3483 * into a meta symbol and have the regex compiler use the meta
3484 * symbol meaning, e.g. \x{2E} would be confused with a dot. But
3485 * in spite of this, we do have to process \N here while the proper
3486 * charnames handler is in scope. See bugs #56444 and #62056.
3488 * There is a complication because \N in a pattern may also stand
3489 * for 'match a non-nl', and not mean a charname, in which case its
3490 * processing should be deferred to the regex compiler. To be a
3491 * charname it must be followed immediately by a '{', and not look
3492 * like \N followed by a curly quantifier, i.e., not something like
3493 * \N{3,}. regcurly returns a boolean indicating if it is a legal
3495 else if (PL_lex_inpat
3498 || regcurly(s + 1)))
3501 goto default_action;
3507 if ((isALPHANUMERIC(*s)))
3508 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
3509 "Unrecognized escape \\%c passed through",
3511 /* default action is to copy the quoted character */
3512 goto default_action;
3515 /* eg. \132 indicates the octal constant 0132 */
3516 case '0': case '1': case '2': case '3':
3517 case '4': case '5': case '6': case '7':
3519 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
3521 uv = grok_oct(s, &len, &flags, NULL);
3523 if (len < 3 && s < send && isDIGIT(*s)
3524 && ckWARN(WARN_MISC))
3526 Perl_warner(aTHX_ packWARN(WARN_MISC),
3527 "%s", form_short_octal_warning(s, len));
3530 goto NUM_ESCAPE_INSERT;
3532 /* eg. \o{24} indicates the octal constant \024 */
3537 bool valid = grok_bslash_o(&s, send,
3539 TRUE, /* Output warning */
3540 FALSE, /* Not strict */
3541 TRUE, /* Output warnings for
3546 uv = 0; /* drop through to ensure range ends are set */
3548 goto NUM_ESCAPE_INSERT;
3551 /* eg. \x24 indicates the hex constant 0x24 */
3556 bool valid = grok_bslash_x(&s, send,
3558 TRUE, /* Output warning */
3559 FALSE, /* Not strict */
3560 TRUE, /* Output warnings for
3565 uv = 0; /* drop through to ensure range ends are set */
3570 /* Insert oct or hex escaped character. */
3572 /* Here uv is the ordinal of the next character being added */
3573 if (UVCHR_IS_INVARIANT(uv)) {
3577 if (!d_is_utf8 && uv > 255) {
3579 /* Here, 'uv' won't fit unless we convert to UTF-8.
3580 * If we've only seen invariants so far, all we have to
3581 * do is turn on the flag */
3582 if (utf8_variant_count == 0) {
3586 SvCUR_set(sv, d - SvPVX_const(sv));
3590 sv_utf8_upgrade_flags_grow(
3592 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3594 /* Since we're having to grow here,
3595 * make sure we have enough room for
3596 * this escape and a NUL, so the
3597 * code immediately below won't have
3598 * to actually grow again */
3600 + (STRLEN)(send - s) + 1);
3601 d = SvPVX(sv) + SvCUR(sv);
3604 has_above_latin1 = TRUE;
3610 utf8_variant_count++;
3613 /* Usually, there will already be enough room in 'sv'
3614 * since such escapes are likely longer than any UTF-8
3615 * sequence they can end up as. This isn't the case on
3616 * EBCDIC where \x{40000000} contains 12 bytes, and the
3617 * UTF-8 for it contains 14. And, we have to allow for
3618 * a trailing NUL. It probably can't happen on ASCII
3619 * platforms, but be safe. See Note on sizing above. */
3620 const STRLEN needed = d - SvPVX(sv)
3624 if (UNLIKELY(needed > SvLEN(sv))) {
3625 SvCUR_set(sv, d - SvPVX_const(sv));
3626 d = SvCUR(sv) + SvGROW(sv, needed);
3629 d = (char*)uvchr_to_utf8((U8*)d, uv);
3630 if (PL_lex_inwhat == OP_TRANS
3631 && PL_parser->lex_sub_op)
3633 PL_parser->lex_sub_op->op_private |=
3634 (PL_lex_repl ? OPpTRANS_FROM_UTF
3640 non_portable_endpoint++;
3645 /* In a non-pattern \N must be like \N{U+0041}, or it can be a
3646 * named character, like \N{LATIN SMALL LETTER A}, or a named
3647 * sequence, like \N{LATIN CAPITAL LETTER A WITH MACRON AND
3648 * GRAVE} (except y/// can't handle the latter, croaking). For
3649 * convenience all three forms are referred to as "named
3650 * characters" below.
3652 * For patterns, \N also can mean to match a non-newline. Code
3653 * before this 'switch' statement should already have handled
3654 * this situation, and hence this code only has to deal with
3655 * the named character cases.
3657 * For non-patterns, the named characters are converted to
3658 * their string equivalents. In patterns, named characters are
3659 * not converted to their ultimate forms for the same reasons
3660 * that other escapes aren't (mainly that the ultimate
3661 * character could be considered a meta-symbol by the regex
3662 * compiler). Instead, they are converted to the \N{U+...}
3663 * form to get the value from the charnames that is in effect
3664 * right now, while preserving the fact that it was a named
3665 * character, so that the regex compiler knows this.
3667 * The structure of this section of code (besides checking for
3668 * errors and upgrading to utf8) is:
3669 * If the named character is of the form \N{U+...}, pass it
3670 * through if a pattern; otherwise convert the code point
3672 * Otherwise must be some \N{NAME}: convert to
3673 * \N{U+c1.c2...} if a pattern; otherwise convert to utf8
3675 * Transliteration is an exception. The conversion to utf8 is
3676 * only done if the code point requires it to be representable.
3678 * Here, 's' points to the 'N'; the test below is guaranteed to
3679 * succeed if we are being called on a pattern, as we already
3680 * know from a test above that the next character is a '{'. A
3681 * non-pattern \N must mean 'named character', which requires
3685 yyerror("Missing braces on \\N{}");
3691 /* If there is no matching '}', it is an error. */
3692 if (! (e = (char *) memchr(s, '}', send - s))) {
3693 if (! PL_lex_inpat) {
3694 yyerror("Missing right brace on \\N{}");
3696 yyerror("Missing right brace on \\N{} or unescaped left brace after \\N");
3698 yyquit(); /* Have exhausted the input. */
3701 /* Here it looks like a named character */
3703 if (*s == 'U' && s[1] == '+') { /* \N{U+...} */
3704 s += 2; /* Skip to next char after the 'U+' */
3707 /* In patterns, we can have \N{U+xxxx.yyyy.zzzz...} */
3708 /* Check the syntax. */
3711 if (!isXDIGIT(*s)) {
3714 "Invalid hexadecimal number in \\N{U+...}"
3723 else if ((*s == '.' || *s == '_')
3729 /* Pass everything through unchanged.
3730 * +1 is for the '}' */
3731 Copy(orig_s, d, e - orig_s + 1, char);
3732 d += e - orig_s + 1;
3734 else { /* Not a pattern: convert the hex to string */
3735 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
3736 | PERL_SCAN_SILENT_ILLDIGIT
3737 | PERL_SCAN_DISALLOW_PREFIX;
3739 uv = grok_hex(s, &len, &flags, NULL);
3740 if (len == 0 || (len != (STRLEN)(e - s)))
3743 /* For non-tr///, if the destination is not in utf8,
3744 * unconditionally recode it to be so. This is
3745 * because \N{} implies Unicode semantics, and scalars
3746 * have to be in utf8 to guarantee those semantics.
3747 * tr/// doesn't care about Unicode rules, so no need
3748 * there to upgrade to UTF-8 for small enough code
3750 if (! d_is_utf8 && ( uv > 0xFF
3751 || PL_lex_inwhat != OP_TRANS))
3753 /* See Note on sizing above. */
3754 const STRLEN extra = OFFUNISKIP(uv) + (send - e) + 1;
3756 SvCUR_set(sv, d - SvPVX_const(sv));
3760 if (utf8_variant_count == 0) {
3762 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + extra);
3765 sv_utf8_upgrade_flags_grow(
3767 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3769 d = SvPVX(sv) + SvCUR(sv);
3773 has_above_latin1 = TRUE;
3776 /* Add the (Unicode) code point to the output. */
3777 if (! d_is_utf8 || OFFUNI_IS_INVARIANT(uv)) {
3778 *d++ = (char) LATIN1_TO_NATIVE(uv);
3781 d = (char*) uvoffuni_to_utf8_flags((U8*)d, uv, 0);
3785 else /* Here is \N{NAME} but not \N{U+...}. */
3786 if (! (res = get_and_check_backslash_N_name_wrapper(s, e)))
3787 { /* Failed. We should die eventually, but for now use a NUL
3791 else { /* Successfully evaluated the name */
3793 const char *str = SvPV_const(res, len);
3796 if (! len) { /* The name resolved to an empty string */
3797 const char empty_N[] = "\\N{_}";
3798 Copy(empty_N, d, sizeof(empty_N) - 1, char);
3799 d += sizeof(empty_N) - 1;
3802 /* In order to not lose information for the regex
3803 * compiler, pass the result in the specially made
3804 * syntax: \N{U+c1.c2.c3...}, where c1 etc. are
3805 * the code points in hex of each character
3806 * returned by charnames */
3808 const char *str_end = str + len;
3809 const STRLEN off = d - SvPVX_const(sv);
3811 if (! SvUTF8(res)) {
3812 /* For the non-UTF-8 case, we can determine the
3813 * exact length needed without having to parse
3814 * through the string. Each character takes up
3815 * 2 hex digits plus either a trailing dot or
3817 const char initial_text[] = "\\N{U+";
3818 const STRLEN initial_len = sizeof(initial_text)
3820 d = off + SvGROW(sv, off
3823 /* +1 for trailing NUL */
3826 + (STRLEN)(send - e));
3827 Copy(initial_text, d, initial_len, char);
3829 while (str < str_end) {
3832 my_snprintf(hex_string,
3836 /* The regex compiler is
3837 * expecting Unicode, not
3839 NATIVE_TO_LATIN1(*str));
3840 PERL_MY_SNPRINTF_POST_GUARD(len,
3841 sizeof(hex_string));
3842 Copy(hex_string, d, 3, char);
3846 d--; /* Below, we will overwrite the final
3847 dot with a right brace */
3850 STRLEN char_length; /* cur char's byte length */
3852 /* and the number of bytes after this is
3853 * translated into hex digits */
3854 STRLEN output_length;
3856 /* 2 hex per byte; 2 chars for '\N'; 2 chars
3857 * for max('U+', '.'); and 1 for NUL */
3858 char hex_string[2 * UTF8_MAXBYTES + 5];
3860 /* Get the first character of the result. */
3861 U32 uv = utf8n_to_uvchr((U8 *) str,
3865 /* Convert first code point to Unicode hex,
3866 * including the boiler plate before it. */
3868 my_snprintf(hex_string, sizeof(hex_string),
3870 (unsigned int) NATIVE_TO_UNI(uv));
3872 /* Make sure there is enough space to hold it */
3873 d = off + SvGROW(sv, off
3875 + (STRLEN)(send - e)
3876 + 2); /* '}' + NUL */
3878 Copy(hex_string, d, output_length, char);
3881 /* For each subsequent character, append dot and
3882 * its Unicode code point in hex */
3883 while ((str += char_length) < str_end) {
3884 const STRLEN off = d - SvPVX_const(sv);
3885 U32 uv = utf8n_to_uvchr((U8 *) str,
3890 my_snprintf(hex_string,
3893 (unsigned int) NATIVE_TO_UNI(uv));
3895 d = off + SvGROW(sv, off
3897 + (STRLEN)(send - e)
3898 + 2); /* '}' + NUL */
3899 Copy(hex_string, d, output_length, char);
3904 *d++ = '}'; /* Done. Add the trailing brace */
3907 else { /* Here, not in a pattern. Convert the name to a
3910 if (PL_lex_inwhat == OP_TRANS) {
3911 str = SvPV_const(res, len);
3912 if (len > ((SvUTF8(res))
3916 yyerror(Perl_form(aTHX_
3917 "%.*s must not be a named sequence"
3918 " in transliteration operator",
3919 /* +1 to include the "}" */
3920 (int) (e + 1 - start), start));
3922 goto end_backslash_N;
3925 if (SvUTF8(res) && UTF8_IS_ABOVE_LATIN1(*str)) {
3926 has_above_latin1 = TRUE;
3930 else if (! SvUTF8(res)) {
3931 /* Make sure \N{} return is UTF-8. This is because
3932 * \N{} implies Unicode semantics, and scalars have
3933 * to be in utf8 to guarantee those semantics; but
3934 * not needed in tr/// */
3935 sv_utf8_upgrade_flags(res, 0);
3936 str = SvPV_const(res, len);
3939 /* Upgrade destination to be utf8 if this new
3941 if (! d_is_utf8 && SvUTF8(res)) {
3942 /* See Note on sizing above. */
3943 const STRLEN extra = len + (send - s) + 1;
3945 SvCUR_set(sv, d - SvPVX_const(sv));
3949 if (utf8_variant_count == 0) {
3951 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + extra);
3954 sv_utf8_upgrade_flags_grow(sv,
3955 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3957 d = SvPVX(sv) + SvCUR(sv);
3960 } else if (len > (STRLEN)(e - s + 4)) { /* I _guess_ 4 is \N{} --jhi */
3962 /* See Note on sizing above. (NOTE: SvCUR() is not
3963 * set correctly here). */
3964 const STRLEN extra = len + (send - e) + 1;
3965 const STRLEN off = d - SvPVX_const(sv);
3966 d = off + SvGROW(sv, off + extra);
3968 Copy(str, d, len, char);
3974 } /* End \N{NAME} */
3978 backslash_N++; /* \N{} is defined to be Unicode */
3980 s = e + 1; /* Point to just after the '}' */
3983 /* \c is a control character */
3987 *d++ = grok_bslash_c(*s, 1);
3990 yyerror("Missing control char name in \\c");
3991 yyquit(); /* Are at end of input, no sense continuing */
3994 non_portable_endpoint++;
3998 /* printf-style backslashes, formfeeds, newlines, etc */
4024 } /* end if (backslash) */
4027 /* Just copy the input to the output, though we may have to convert
4030 * If the input has the same representation in UTF-8 as not, it will be
4031 * a single byte, and we don't care about UTF8ness; just copy the byte */
4032 if (NATIVE_BYTE_IS_INVARIANT((U8)(*s))) {
4035 else if (! s_is_utf8 && ! d_is_utf8) {
4036 /* If neither source nor output is UTF-8, is also a single byte,
4037 * just copy it; but this byte counts should we later have to
4038 * convert to UTF-8 */
4040 utf8_variant_count++;
4042 else if (s_is_utf8 && d_is_utf8) { /* Both UTF-8, can just copy */
4043 const STRLEN len = UTF8SKIP(s);
4045 /* We expect the source to have already been checked for
4047 assert(isUTF8_CHAR((U8 *) s, (U8 *) send));
4049 Copy(s, d, len, U8);
4053 else { /* UTF8ness matters and doesn't match, need to convert */
4055 const UV nextuv = (s_is_utf8)
4056 ? utf8n_to_uvchr((U8*)s, send - s, &len, 0)
4058 STRLEN need = UVCHR_SKIP(nextuv);
4061 SvCUR_set(sv, d - SvPVX_const(sv));
4065 /* See Note on sizing above. */
4066 need += (STRLEN)(send - s) + 1;
4068 if (utf8_variant_count == 0) {
4070 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + need);
4073 sv_utf8_upgrade_flags_grow(sv,
4074 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
4076 d = SvPVX(sv) + SvCUR(sv);
4079 } else if (need > len) {
4080 /* encoded value larger than old, may need extra space (NOTE:
4081 * SvCUR() is not set correctly here). See Note on sizing
4083 const STRLEN extra = need + (send - s) + 1;
4084 const STRLEN off = d - SvPVX_const(sv);
4085 d = off + SvGROW(sv, off + extra);
4089 d = (char*)uvchr_to_utf8((U8*)d, nextuv);
4091 } /* while loop to process each character */
4093 /* terminate the string and set up the sv */
4095 SvCUR_set(sv, d - SvPVX_const(sv));
4096 if (SvCUR(sv) >= SvLEN(sv))
4097 Perl_croak(aTHX_ "panic: constant overflowed allocated space, %" UVuf
4098 " >= %" UVuf, (UV)SvCUR(sv), (UV)SvLEN(sv));
4103 if (PL_lex_inwhat == OP_TRANS && PL_parser->lex_sub_op) {
4104 PL_parser->lex_sub_op->op_private |=
4105 (PL_lex_repl ? OPpTRANS_FROM_UTF : OPpTRANS_TO_UTF);
4109 /* shrink the sv if we allocated more than we used */
4110 if (SvCUR(sv) + 5 < SvLEN(sv)) {
4111 SvPV_shrink_to_cur(sv);
4114 /* return the substring (via pl_yylval) only if we parsed anything */
4117 for (; s2 < s; s2++) {
4119 COPLINE_INC_WITH_HERELINES;
4121 SvREFCNT_inc_simple_void_NN(sv);
4122 if ( (PL_hints & ( PL_lex_inpat ? HINT_NEW_RE : HINT_NEW_STRING ))
4123 && ! PL_parser->lex_re_reparsing)
4125 const char *const key = PL_lex_inpat ? "qr" : "q";
4126 const STRLEN keylen = PL_lex_inpat ? 2 : 1;
4130 if (PL_lex_inwhat == OP_TRANS) {
4133 } else if (PL_lex_inwhat == OP_SUBST && !PL_lex_inpat) {
4136 } else if (PL_lex_inpat && SvIVX(PL_linestr) == '\'') {
4144 sv = S_new_constant(aTHX_ start, s - start, key, keylen, sv, NULL,
4145 type, typelen, NULL);
4147 pl_yylval.opval = newSVOP(OP_CONST, 0, sv);
4149 LEAVE_with_name("scan_const");
4154 * Returns TRUE if there's more to the expression (e.g., a subscript),
4157 * It deals with "$foo[3]" and /$foo[3]/ and /$foo[0123456789$]+/
4159 * ->[ and ->{ return TRUE
4160 * ->$* ->$#* ->@* ->@[ ->@{ return TRUE if postderef_qq is enabled
4161 * { and [ outside a pattern are always subscripts, so return TRUE
4162 * if we're outside a pattern and it's not { or [, then return FALSE
4163 * if we're in a pattern and the first char is a {
4164 * {4,5} (any digits around the comma) returns FALSE
4165 * if we're in a pattern and the first char is a [
4167 * [SOMETHING] has a funky algorithm to decide whether it's a
4168 * character class or not. It has to deal with things like
4169 * /$foo[-3]/ and /$foo[$bar]/ as well as /$foo[$\d]+/
4170 * anything else returns TRUE
4173 /* This is the one truly awful dwimmer necessary to conflate C and sed. */
4176 S_intuit_more(pTHX_ char *s, char *e)
4178 PERL_ARGS_ASSERT_INTUIT_MORE;
4180 if (PL_lex_brackets)
4182 if (*s == '-' && s[1] == '>' && (s[2] == '[' || s[2] == '{'))
4184 if (*s == '-' && s[1] == '>'
4185 && FEATURE_POSTDEREF_QQ_IS_ENABLED
4186 && ( (s[2] == '$' && (s[3] == '*' || (s[3] == '#' && s[4] == '*')))
4187 ||(s[2] == '@' && strchr("*[{",s[3])) ))
4189 if (*s != '{' && *s != '[')
4191 PL_parser->sub_no_recover = TRUE;
4195 /* In a pattern, so maybe we have {n,m}. */
4203 /* On the other hand, maybe we have a character class */
4206 if (*s == ']' || *s == '^')
4209 /* this is terrifying, and it works */
4212 const char * const send = (char *) memchr(s, ']', e - s);
4213 unsigned char un_char, last_un_char;
4214 char tmpbuf[sizeof PL_tokenbuf * 4];
4216 if (!send) /* has to be an expression */
4218 weight = 2; /* let's weigh the evidence */
4222 else if (isDIGIT(*s)) {
4224 if (isDIGIT(s[1]) && s[2] == ']')
4230 Zero(seen,256,char);
4232 for (; s < send; s++) {
4233 last_un_char = un_char;
4234 un_char = (unsigned char)*s;
4239 weight -= seen[un_char] * 10;
4240 if (isWORDCHAR_lazy_if_safe(s+1, PL_bufend, UTF)) {
4242 scan_ident(s, tmpbuf, sizeof tmpbuf, FALSE);
4243 len = (int)strlen(tmpbuf);
4244 if (len > 1 && gv_fetchpvn_flags(tmpbuf, len,
4245 UTF ? SVf_UTF8 : 0, SVt_PV))