3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
36 # if __STDC_VERSION__ >= 199901L && !defined(VMS)
47 /* Missing proto on LynxOS */
48 char *gconvert(double, int, int, char *);
51 #ifdef PERL_UTF8_CACHE_ASSERT
52 /* if adding more checks watch out for the following tests:
53 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
54 * lib/utf8.t lib/Unicode/Collate/t/index.t
57 # define ASSERT_UTF8_CACHE(cache) \
58 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
59 assert((cache)[2] <= (cache)[3]); \
60 assert((cache)[3] <= (cache)[1]);} \
63 # define ASSERT_UTF8_CACHE(cache) NOOP
66 #ifdef PERL_OLD_COPY_ON_WRITE
67 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
68 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
71 /* ============================================================================
73 =head1 Allocation and deallocation of SVs.
75 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
76 sv, av, hv...) contains type and reference count information, and for
77 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
78 contains fields specific to each type. Some types store all they need
79 in the head, so don't have a body.
81 In all but the most memory-paranoid configurations (ex: PURIFY), heads
82 and bodies are allocated out of arenas, which by default are
83 approximately 4K chunks of memory parcelled up into N heads or bodies.
84 Sv-bodies are allocated by their sv-type, guaranteeing size
85 consistency needed to allocate safely from arrays.
87 For SV-heads, the first slot in each arena is reserved, and holds a
88 link to the next arena, some flags, and a note of the number of slots.
89 Snaked through each arena chain is a linked list of free items; when
90 this becomes empty, an extra arena is allocated and divided up into N
91 items which are threaded into the free list.
93 SV-bodies are similar, but they use arena-sets by default, which
94 separate the link and info from the arena itself, and reclaim the 1st
95 slot in the arena. SV-bodies are further described later.
97 The following global variables are associated with arenas:
99 PL_sv_arenaroot pointer to list of SV arenas
100 PL_sv_root pointer to list of free SV structures
102 PL_body_arenas head of linked-list of body arenas
103 PL_body_roots[] array of pointers to list of free bodies of svtype
104 arrays are indexed by the svtype needed
106 A few special SV heads are not allocated from an arena, but are
107 instead directly created in the interpreter structure, eg PL_sv_undef.
108 The size of arenas can be changed from the default by setting
109 PERL_ARENA_SIZE appropriately at compile time.
111 The SV arena serves the secondary purpose of allowing still-live SVs
112 to be located and destroyed during final cleanup.
114 At the lowest level, the macros new_SV() and del_SV() grab and free
115 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
116 to return the SV to the free list with error checking.) new_SV() calls
117 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
118 SVs in the free list have their SvTYPE field set to all ones.
120 At the time of very final cleanup, sv_free_arenas() is called from
121 perl_destruct() to physically free all the arenas allocated since the
122 start of the interpreter.
124 The function visit() scans the SV arenas list, and calls a specified
125 function for each SV it finds which is still live - ie which has an SvTYPE
126 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
127 following functions (specified as [function that calls visit()] / [function
128 called by visit() for each SV]):
130 sv_report_used() / do_report_used()
131 dump all remaining SVs (debugging aid)
133 sv_clean_objs() / do_clean_objs(),do_clean_named_objs(),
134 do_clean_named_io_objs(),do_curse()
135 Attempt to free all objects pointed to by RVs,
136 try to do the same for all objects indir-
137 ectly referenced by typeglobs too, and
138 then do a final sweep, cursing any
139 objects that remain. Called once from
140 perl_destruct(), prior to calling sv_clean_all()
143 sv_clean_all() / do_clean_all()
144 SvREFCNT_dec(sv) each remaining SV, possibly
145 triggering an sv_free(). It also sets the
146 SVf_BREAK flag on the SV to indicate that the
147 refcnt has been artificially lowered, and thus
148 stopping sv_free() from giving spurious warnings
149 about SVs which unexpectedly have a refcnt
150 of zero. called repeatedly from perl_destruct()
151 until there are no SVs left.
153 =head2 Arena allocator API Summary
155 Private API to rest of sv.c
159 new_XPVNV(), del_XPVGV(),
164 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
168 * ========================================================================= */
171 * "A time to plant, and a time to uproot what was planted..."
175 # define MEM_LOG_NEW_SV(sv, file, line, func) \
176 Perl_mem_log_new_sv(sv, file, line, func)
177 # define MEM_LOG_DEL_SV(sv, file, line, func) \
178 Perl_mem_log_del_sv(sv, file, line, func)
180 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
181 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
184 #ifdef DEBUG_LEAKING_SCALARS
185 # define FREE_SV_DEBUG_FILE(sv) STMT_START { \
186 if ((sv)->sv_debug_file) PerlMemShared_free((sv)->sv_debug_file); \
188 # define DEBUG_SV_SERIAL(sv) \
189 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
190 PTR2UV(sv), (long)(sv)->sv_debug_serial))
192 # define FREE_SV_DEBUG_FILE(sv)
193 # define DEBUG_SV_SERIAL(sv) NOOP
197 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
198 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
199 /* Whilst I'd love to do this, it seems that things like to check on
201 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
203 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
204 PoisonNew(&SvREFCNT(sv), 1, U32)
206 # define SvARENA_CHAIN(sv) SvANY(sv)
207 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
208 # define POSION_SV_HEAD(sv)
211 /* Mark an SV head as unused, and add to free list.
213 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
214 * its refcount artificially decremented during global destruction, so
215 * there may be dangling pointers to it. The last thing we want in that
216 * case is for it to be reused. */
218 #define plant_SV(p) \
220 const U32 old_flags = SvFLAGS(p); \
221 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
222 DEBUG_SV_SERIAL(p); \
223 FREE_SV_DEBUG_FILE(p); \
225 SvFLAGS(p) = SVTYPEMASK; \
226 if (!(old_flags & SVf_BREAK)) { \
227 SvARENA_CHAIN_SET(p, PL_sv_root); \
233 #define uproot_SV(p) \
236 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
241 /* make some more SVs by adding another arena */
248 char *chunk; /* must use New here to match call to */
249 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
250 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
255 /* new_SV(): return a new, empty SV head */
257 #ifdef DEBUG_LEAKING_SCALARS
258 /* provide a real function for a debugger to play with */
260 S_new_SV(pTHX_ const char *file, int line, const char *func)
267 sv = S_more_sv(aTHX);
271 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
272 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
278 sv->sv_debug_inpad = 0;
279 sv->sv_debug_parent = NULL;
280 sv->sv_debug_file = PL_curcop ? savesharedpv(CopFILE(PL_curcop)): NULL;
282 sv->sv_debug_serial = PL_sv_serial++;
284 MEM_LOG_NEW_SV(sv, file, line, func);
285 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
286 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
290 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
298 (p) = S_more_sv(aTHX); \
302 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
307 /* del_SV(): return an empty SV head to the free list */
320 S_del_sv(pTHX_ SV *p)
324 PERL_ARGS_ASSERT_DEL_SV;
329 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
330 const SV * const sv = sva + 1;
331 const SV * const svend = &sva[SvREFCNT(sva)];
332 if (p >= sv && p < svend) {
338 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
339 "Attempt to free non-arena SV: 0x%"UVxf
340 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
347 #else /* ! DEBUGGING */
349 #define del_SV(p) plant_SV(p)
351 #endif /* DEBUGGING */
355 =head1 SV Manipulation Functions
357 =for apidoc sv_add_arena
359 Given a chunk of memory, link it to the head of the list of arenas,
360 and split it into a list of free SVs.
366 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
369 SV *const sva = MUTABLE_SV(ptr);
373 PERL_ARGS_ASSERT_SV_ADD_ARENA;
375 /* The first SV in an arena isn't an SV. */
376 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
377 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
378 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
380 PL_sv_arenaroot = sva;
381 PL_sv_root = sva + 1;
383 svend = &sva[SvREFCNT(sva) - 1];
386 SvARENA_CHAIN_SET(sv, (sv + 1));
390 /* Must always set typemask because it's always checked in on cleanup
391 when the arenas are walked looking for objects. */
392 SvFLAGS(sv) = SVTYPEMASK;
395 SvARENA_CHAIN_SET(sv, 0);
399 SvFLAGS(sv) = SVTYPEMASK;
402 /* visit(): call the named function for each non-free SV in the arenas
403 * whose flags field matches the flags/mask args. */
406 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
412 PERL_ARGS_ASSERT_VISIT;
414 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
415 const SV * const svend = &sva[SvREFCNT(sva)];
417 for (sv = sva + 1; sv < svend; ++sv) {
418 if (SvTYPE(sv) != (svtype)SVTYPEMASK
419 && (sv->sv_flags & mask) == flags
432 /* called by sv_report_used() for each live SV */
435 do_report_used(pTHX_ SV *const sv)
437 if (SvTYPE(sv) != (svtype)SVTYPEMASK) {
438 PerlIO_printf(Perl_debug_log, "****\n");
445 =for apidoc sv_report_used
447 Dump the contents of all SVs not yet freed (debugging aid).
453 Perl_sv_report_used(pTHX)
456 visit(do_report_used, 0, 0);
462 /* called by sv_clean_objs() for each live SV */
465 do_clean_objs(pTHX_ SV *const ref)
470 SV * const target = SvRV(ref);
471 if (SvOBJECT(target)) {
472 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
473 if (SvWEAKREF(ref)) {
474 sv_del_backref(target, ref);
480 SvREFCNT_dec_NN(target);
487 /* clear any slots in a GV which hold objects - except IO;
488 * called by sv_clean_objs() for each live GV */
491 do_clean_named_objs(pTHX_ SV *const sv)
495 assert(SvTYPE(sv) == SVt_PVGV);
496 assert(isGV_with_GP(sv));
500 /* freeing GP entries may indirectly free the current GV;
501 * hold onto it while we mess with the GP slots */
504 if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) {
505 DEBUG_D((PerlIO_printf(Perl_debug_log,
506 "Cleaning named glob SV object:\n "), sv_dump(obj)));
508 SvREFCNT_dec_NN(obj);
510 if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) {
511 DEBUG_D((PerlIO_printf(Perl_debug_log,
512 "Cleaning named glob AV object:\n "), sv_dump(obj)));
514 SvREFCNT_dec_NN(obj);
516 if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) {
517 DEBUG_D((PerlIO_printf(Perl_debug_log,
518 "Cleaning named glob HV object:\n "), sv_dump(obj)));
520 SvREFCNT_dec_NN(obj);
522 if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) {
523 DEBUG_D((PerlIO_printf(Perl_debug_log,
524 "Cleaning named glob CV object:\n "), sv_dump(obj)));
526 SvREFCNT_dec_NN(obj);
528 SvREFCNT_dec_NN(sv); /* undo the inc above */
531 /* clear any IO slots in a GV which hold objects (except stderr, defout);
532 * called by sv_clean_objs() for each live GV */
535 do_clean_named_io_objs(pTHX_ SV *const sv)
539 assert(SvTYPE(sv) == SVt_PVGV);
540 assert(isGV_with_GP(sv));
541 if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv)
545 if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) {
546 DEBUG_D((PerlIO_printf(Perl_debug_log,
547 "Cleaning named glob IO object:\n "), sv_dump(obj)));
549 SvREFCNT_dec_NN(obj);
551 SvREFCNT_dec_NN(sv); /* undo the inc above */
554 /* Void wrapper to pass to visit() */
556 do_curse(pTHX_ SV * const sv) {
557 if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv)
558 || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv))
564 =for apidoc sv_clean_objs
566 Attempt to destroy all objects not yet freed.
572 Perl_sv_clean_objs(pTHX)
576 PL_in_clean_objs = TRUE;
577 visit(do_clean_objs, SVf_ROK, SVf_ROK);
578 /* Some barnacles may yet remain, clinging to typeglobs.
579 * Run the non-IO destructors first: they may want to output
580 * error messages, close files etc */
581 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
582 visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
583 /* And if there are some very tenacious barnacles clinging to arrays,
584 closures, or what have you.... */
585 visit(do_curse, SVs_OBJECT, SVs_OBJECT);
586 olddef = PL_defoutgv;
587 PL_defoutgv = NULL; /* disable skip of PL_defoutgv */
588 if (olddef && isGV_with_GP(olddef))
589 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef));
590 olderr = PL_stderrgv;
591 PL_stderrgv = NULL; /* disable skip of PL_stderrgv */
592 if (olderr && isGV_with_GP(olderr))
593 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr));
594 SvREFCNT_dec(olddef);
595 PL_in_clean_objs = FALSE;
598 /* called by sv_clean_all() for each live SV */
601 do_clean_all(pTHX_ SV *const sv)
604 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
605 /* don't clean pid table and strtab */
608 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
609 SvFLAGS(sv) |= SVf_BREAK;
614 =for apidoc sv_clean_all
616 Decrement the refcnt of each remaining SV, possibly triggering a
617 cleanup. This function may have to be called multiple times to free
618 SVs which are in complex self-referential hierarchies.
624 Perl_sv_clean_all(pTHX)
628 PL_in_clean_all = TRUE;
629 cleaned = visit(do_clean_all, 0,0);
634 ARENASETS: a meta-arena implementation which separates arena-info
635 into struct arena_set, which contains an array of struct
636 arena_descs, each holding info for a single arena. By separating
637 the meta-info from the arena, we recover the 1st slot, formerly
638 borrowed for list management. The arena_set is about the size of an
639 arena, avoiding the needless malloc overhead of a naive linked-list.
641 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
642 memory in the last arena-set (1/2 on average). In trade, we get
643 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
644 smaller types). The recovery of the wasted space allows use of
645 small arenas for large, rare body types, by changing array* fields
646 in body_details_by_type[] below.
649 char *arena; /* the raw storage, allocated aligned */
650 size_t size; /* its size ~4k typ */
651 svtype utype; /* bodytype stored in arena */
656 /* Get the maximum number of elements in set[] such that struct arena_set
657 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
658 therefore likely to be 1 aligned memory page. */
660 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
661 - 2 * sizeof(int)) / sizeof (struct arena_desc))
664 struct arena_set* next;
665 unsigned int set_size; /* ie ARENAS_PER_SET */
666 unsigned int curr; /* index of next available arena-desc */
667 struct arena_desc set[ARENAS_PER_SET];
671 =for apidoc sv_free_arenas
673 Deallocate the memory used by all arenas. Note that all the individual SV
674 heads and bodies within the arenas must already have been freed.
679 Perl_sv_free_arenas(pTHX)
686 /* Free arenas here, but be careful about fake ones. (We assume
687 contiguity of the fake ones with the corresponding real ones.) */
689 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
690 svanext = MUTABLE_SV(SvANY(sva));
691 while (svanext && SvFAKE(svanext))
692 svanext = MUTABLE_SV(SvANY(svanext));
699 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
702 struct arena_set *current = aroot;
705 assert(aroot->set[i].arena);
706 Safefree(aroot->set[i].arena);
714 i = PERL_ARENA_ROOTS_SIZE;
716 PL_body_roots[i] = 0;
723 Here are mid-level routines that manage the allocation of bodies out
724 of the various arenas. There are 5 kinds of arenas:
726 1. SV-head arenas, which are discussed and handled above
727 2. regular body arenas
728 3. arenas for reduced-size bodies
731 Arena types 2 & 3 are chained by body-type off an array of
732 arena-root pointers, which is indexed by svtype. Some of the
733 larger/less used body types are malloced singly, since a large
734 unused block of them is wasteful. Also, several svtypes dont have
735 bodies; the data fits into the sv-head itself. The arena-root
736 pointer thus has a few unused root-pointers (which may be hijacked
737 later for arena types 4,5)
739 3 differs from 2 as an optimization; some body types have several
740 unused fields in the front of the structure (which are kept in-place
741 for consistency). These bodies can be allocated in smaller chunks,
742 because the leading fields arent accessed. Pointers to such bodies
743 are decremented to point at the unused 'ghost' memory, knowing that
744 the pointers are used with offsets to the real memory.
747 =head1 SV-Body Allocation
749 Allocation of SV-bodies is similar to SV-heads, differing as follows;
750 the allocation mechanism is used for many body types, so is somewhat
751 more complicated, it uses arena-sets, and has no need for still-live
754 At the outermost level, (new|del)_X*V macros return bodies of the
755 appropriate type. These macros call either (new|del)_body_type or
756 (new|del)_body_allocated macro pairs, depending on specifics of the
757 type. Most body types use the former pair, the latter pair is used to
758 allocate body types with "ghost fields".
760 "ghost fields" are fields that are unused in certain types, and
761 consequently don't need to actually exist. They are declared because
762 they're part of a "base type", which allows use of functions as
763 methods. The simplest examples are AVs and HVs, 2 aggregate types
764 which don't use the fields which support SCALAR semantics.
766 For these types, the arenas are carved up into appropriately sized
767 chunks, we thus avoid wasted memory for those unaccessed members.
768 When bodies are allocated, we adjust the pointer back in memory by the
769 size of the part not allocated, so it's as if we allocated the full
770 structure. (But things will all go boom if you write to the part that
771 is "not there", because you'll be overwriting the last members of the
772 preceding structure in memory.)
774 We calculate the correction using the STRUCT_OFFSET macro on the first
775 member present. If the allocated structure is smaller (no initial NV
776 actually allocated) then the net effect is to subtract the size of the NV
777 from the pointer, to return a new pointer as if an initial NV were actually
778 allocated. (We were using structures named *_allocated for this, but
779 this turned out to be a subtle bug, because a structure without an NV
780 could have a lower alignment constraint, but the compiler is allowed to
781 optimised accesses based on the alignment constraint of the actual pointer
782 to the full structure, for example, using a single 64 bit load instruction
783 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
785 This is the same trick as was used for NV and IV bodies. Ironically it
786 doesn't need to be used for NV bodies any more, because NV is now at
787 the start of the structure. IV bodies don't need it either, because
788 they are no longer allocated.
790 In turn, the new_body_* allocators call S_new_body(), which invokes
791 new_body_inline macro, which takes a lock, and takes a body off the
792 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
793 necessary to refresh an empty list. Then the lock is released, and
794 the body is returned.
796 Perl_more_bodies allocates a new arena, and carves it up into an array of N
797 bodies, which it strings into a linked list. It looks up arena-size
798 and body-size from the body_details table described below, thus
799 supporting the multiple body-types.
801 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
802 the (new|del)_X*V macros are mapped directly to malloc/free.
804 For each sv-type, struct body_details bodies_by_type[] carries
805 parameters which control these aspects of SV handling:
807 Arena_size determines whether arenas are used for this body type, and if
808 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
809 zero, forcing individual mallocs and frees.
811 Body_size determines how big a body is, and therefore how many fit into
812 each arena. Offset carries the body-pointer adjustment needed for
813 "ghost fields", and is used in *_allocated macros.
815 But its main purpose is to parameterize info needed in
816 Perl_sv_upgrade(). The info here dramatically simplifies the function
817 vs the implementation in 5.8.8, making it table-driven. All fields
818 are used for this, except for arena_size.
820 For the sv-types that have no bodies, arenas are not used, so those
821 PL_body_roots[sv_type] are unused, and can be overloaded. In
822 something of a special case, SVt_NULL is borrowed for HE arenas;
823 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
824 bodies_by_type[SVt_NULL] slot is not used, as the table is not
829 struct body_details {
830 U8 body_size; /* Size to allocate */
831 U8 copy; /* Size of structure to copy (may be shorter) */
833 unsigned int type : 4; /* We have space for a sanity check. */
834 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
835 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
836 unsigned int arena : 1; /* Allocated from an arena */
837 size_t arena_size; /* Size of arena to allocate */
845 /* With -DPURFIY we allocate everything directly, and don't use arenas.
846 This seems a rather elegant way to simplify some of the code below. */
847 #define HASARENA FALSE
849 #define HASARENA TRUE
851 #define NOARENA FALSE
853 /* Size the arenas to exactly fit a given number of bodies. A count
854 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
855 simplifying the default. If count > 0, the arena is sized to fit
856 only that many bodies, allowing arenas to be used for large, rare
857 bodies (XPVFM, XPVIO) without undue waste. The arena size is
858 limited by PERL_ARENA_SIZE, so we can safely oversize the
861 #define FIT_ARENA0(body_size) \
862 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
863 #define FIT_ARENAn(count,body_size) \
864 ( count * body_size <= PERL_ARENA_SIZE) \
865 ? count * body_size \
866 : FIT_ARENA0 (body_size)
867 #define FIT_ARENA(count,body_size) \
869 ? FIT_ARENAn (count, body_size) \
870 : FIT_ARENA0 (body_size)
872 /* Calculate the length to copy. Specifically work out the length less any
873 final padding the compiler needed to add. See the comment in sv_upgrade
874 for why copying the padding proved to be a bug. */
876 #define copy_length(type, last_member) \
877 STRUCT_OFFSET(type, last_member) \
878 + sizeof (((type*)SvANY((const SV *)0))->last_member)
880 static const struct body_details bodies_by_type[] = {
881 /* HEs use this offset for their arena. */
882 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
884 /* IVs are in the head, so the allocation size is 0. */
886 sizeof(IV), /* This is used to copy out the IV body. */
887 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
888 NOARENA /* IVS don't need an arena */, 0
891 { sizeof(NV), sizeof(NV),
892 STRUCT_OFFSET(XPVNV, xnv_u),
893 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
895 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
896 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
897 + STRUCT_OFFSET(XPV, xpv_cur),
898 SVt_PV, FALSE, NONV, HASARENA,
899 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
901 { sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur),
902 copy_length(XINVLIST, is_offset) - STRUCT_OFFSET(XPV, xpv_cur),
903 + STRUCT_OFFSET(XPV, xpv_cur),
904 SVt_INVLIST, TRUE, NONV, HASARENA,
905 FIT_ARENA(0, sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur)) },
907 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
908 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
909 + STRUCT_OFFSET(XPV, xpv_cur),
910 SVt_PVIV, FALSE, NONV, HASARENA,
911 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
913 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
914 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
915 + STRUCT_OFFSET(XPV, xpv_cur),
916 SVt_PVNV, FALSE, HADNV, HASARENA,
917 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
919 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
920 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
925 SVt_REGEXP, TRUE, NONV, HASARENA,
926 FIT_ARENA(0, sizeof(regexp))
929 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
930 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
932 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
933 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
936 copy_length(XPVAV, xav_alloc),
938 SVt_PVAV, TRUE, NONV, HASARENA,
939 FIT_ARENA(0, sizeof(XPVAV)) },
942 copy_length(XPVHV, xhv_max),
944 SVt_PVHV, TRUE, NONV, HASARENA,
945 FIT_ARENA(0, sizeof(XPVHV)) },
950 SVt_PVCV, TRUE, NONV, HASARENA,
951 FIT_ARENA(0, sizeof(XPVCV)) },
956 SVt_PVFM, TRUE, NONV, NOARENA,
957 FIT_ARENA(20, sizeof(XPVFM)) },
962 SVt_PVIO, TRUE, NONV, HASARENA,
963 FIT_ARENA(24, sizeof(XPVIO)) },
966 #define new_body_allocated(sv_type) \
967 (void *)((char *)S_new_body(aTHX_ sv_type) \
968 - bodies_by_type[sv_type].offset)
970 /* return a thing to the free list */
972 #define del_body(thing, root) \
974 void ** const thing_copy = (void **)thing; \
975 *thing_copy = *root; \
976 *root = (void*)thing_copy; \
981 #define new_XNV() safemalloc(sizeof(XPVNV))
982 #define new_XPVNV() safemalloc(sizeof(XPVNV))
983 #define new_XPVMG() safemalloc(sizeof(XPVMG))
985 #define del_XPVGV(p) safefree(p)
989 #define new_XNV() new_body_allocated(SVt_NV)
990 #define new_XPVNV() new_body_allocated(SVt_PVNV)
991 #define new_XPVMG() new_body_allocated(SVt_PVMG)
993 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
994 &PL_body_roots[SVt_PVGV])
998 /* no arena for you! */
1000 #define new_NOARENA(details) \
1001 safemalloc((details)->body_size + (details)->offset)
1002 #define new_NOARENAZ(details) \
1003 safecalloc((details)->body_size + (details)->offset, 1)
1006 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
1007 const size_t arena_size)
1010 void ** const root = &PL_body_roots[sv_type];
1011 struct arena_desc *adesc;
1012 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
1016 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
1017 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1018 static bool done_sanity_check;
1020 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1021 * variables like done_sanity_check. */
1022 if (!done_sanity_check) {
1023 unsigned int i = SVt_LAST;
1025 done_sanity_check = TRUE;
1028 assert (bodies_by_type[i].type == i);
1034 /* may need new arena-set to hold new arena */
1035 if (!aroot || aroot->curr >= aroot->set_size) {
1036 struct arena_set *newroot;
1037 Newxz(newroot, 1, struct arena_set);
1038 newroot->set_size = ARENAS_PER_SET;
1039 newroot->next = aroot;
1041 PL_body_arenas = (void *) newroot;
1042 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
1045 /* ok, now have arena-set with at least 1 empty/available arena-desc */
1046 curr = aroot->curr++;
1047 adesc = &(aroot->set[curr]);
1048 assert(!adesc->arena);
1050 Newx(adesc->arena, good_arena_size, char);
1051 adesc->size = good_arena_size;
1052 adesc->utype = sv_type;
1053 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
1054 curr, (void*)adesc->arena, (UV)good_arena_size));
1056 start = (char *) adesc->arena;
1058 /* Get the address of the byte after the end of the last body we can fit.
1059 Remember, this is integer division: */
1060 end = start + good_arena_size / body_size * body_size;
1062 /* computed count doesn't reflect the 1st slot reservation */
1063 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1064 DEBUG_m(PerlIO_printf(Perl_debug_log,
1065 "arena %p end %p arena-size %d (from %d) type %d "
1067 (void*)start, (void*)end, (int)good_arena_size,
1068 (int)arena_size, sv_type, (int)body_size,
1069 (int)good_arena_size / (int)body_size));
1071 DEBUG_m(PerlIO_printf(Perl_debug_log,
1072 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1073 (void*)start, (void*)end,
1074 (int)arena_size, sv_type, (int)body_size,
1075 (int)good_arena_size / (int)body_size));
1077 *root = (void *)start;
1080 /* Where the next body would start: */
1081 char * const next = start + body_size;
1084 /* This is the last body: */
1085 assert(next == end);
1087 *(void **)start = 0;
1091 *(void**) start = (void *)next;
1096 /* grab a new thing from the free list, allocating more if necessary.
1097 The inline version is used for speed in hot routines, and the
1098 function using it serves the rest (unless PURIFY).
1100 #define new_body_inline(xpv, sv_type) \
1102 void ** const r3wt = &PL_body_roots[sv_type]; \
1103 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1104 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1105 bodies_by_type[sv_type].body_size,\
1106 bodies_by_type[sv_type].arena_size)); \
1107 *(r3wt) = *(void**)(xpv); \
1113 S_new_body(pTHX_ const svtype sv_type)
1117 new_body_inline(xpv, sv_type);
1123 static const struct body_details fake_rv =
1124 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1127 =for apidoc sv_upgrade
1129 Upgrade an SV to a more complex form. Generally adds a new body type to the
1130 SV, then copies across as much information as possible from the old body.
1131 It croaks if the SV is already in a more complex form than requested. You
1132 generally want to use the C<SvUPGRADE> macro wrapper, which checks the type
1133 before calling C<sv_upgrade>, and hence does not croak. See also
1140 Perl_sv_upgrade(pTHX_ SV *const sv, svtype new_type)
1145 const svtype old_type = SvTYPE(sv);
1146 const struct body_details *new_type_details;
1147 const struct body_details *old_type_details
1148 = bodies_by_type + old_type;
1149 SV *referant = NULL;
1151 PERL_ARGS_ASSERT_SV_UPGRADE;
1153 if (old_type == new_type)
1156 /* This clause was purposefully added ahead of the early return above to
1157 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1158 inference by Nick I-S that it would fix other troublesome cases. See
1159 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1161 Given that shared hash key scalars are no longer PVIV, but PV, there is
1162 no longer need to unshare so as to free up the IVX slot for its proper
1163 purpose. So it's safe to move the early return earlier. */
1165 if (new_type > SVt_PVMG && SvIsCOW(sv)) {
1166 sv_force_normal_flags(sv, 0);
1169 old_body = SvANY(sv);
1171 /* Copying structures onto other structures that have been neatly zeroed
1172 has a subtle gotcha. Consider XPVMG
1174 +------+------+------+------+------+-------+-------+
1175 | NV | CUR | LEN | IV | MAGIC | STASH |
1176 +------+------+------+------+------+-------+-------+
1177 0 4 8 12 16 20 24 28
1179 where NVs are aligned to 8 bytes, so that sizeof that structure is
1180 actually 32 bytes long, with 4 bytes of padding at the end:
1182 +------+------+------+------+------+-------+-------+------+
1183 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1184 +------+------+------+------+------+-------+-------+------+
1185 0 4 8 12 16 20 24 28 32
1187 so what happens if you allocate memory for this structure:
1189 +------+------+------+------+------+-------+-------+------+------+...
1190 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1191 +------+------+------+------+------+-------+-------+------+------+...
1192 0 4 8 12 16 20 24 28 32 36
1194 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1195 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1196 started out as zero once, but it's quite possible that it isn't. So now,
1197 rather than a nicely zeroed GP, you have it pointing somewhere random.
1200 (In fact, GP ends up pointing at a previous GP structure, because the
1201 principle cause of the padding in XPVMG getting garbage is a copy of
1202 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1203 this happens to be moot because XPVGV has been re-ordered, with GP
1204 no longer after STASH)
1206 So we are careful and work out the size of used parts of all the
1214 referant = SvRV(sv);
1215 old_type_details = &fake_rv;
1216 if (new_type == SVt_NV)
1217 new_type = SVt_PVNV;
1219 if (new_type < SVt_PVIV) {
1220 new_type = (new_type == SVt_NV)
1221 ? SVt_PVNV : SVt_PVIV;
1226 if (new_type < SVt_PVNV) {
1227 new_type = SVt_PVNV;
1231 assert(new_type > SVt_PV);
1232 assert(SVt_IV < SVt_PV);
1233 assert(SVt_NV < SVt_PV);
1240 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1241 there's no way that it can be safely upgraded, because perl.c
1242 expects to Safefree(SvANY(PL_mess_sv)) */
1243 assert(sv != PL_mess_sv);
1244 /* This flag bit is used to mean other things in other scalar types.
1245 Given that it only has meaning inside the pad, it shouldn't be set
1246 on anything that can get upgraded. */
1247 assert(!SvPAD_TYPED(sv));
1250 if (UNLIKELY(old_type_details->cant_upgrade))
1251 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1252 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1255 if (UNLIKELY(old_type > new_type))
1256 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1257 (int)old_type, (int)new_type);
1259 new_type_details = bodies_by_type + new_type;
1261 SvFLAGS(sv) &= ~SVTYPEMASK;
1262 SvFLAGS(sv) |= new_type;
1264 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1265 the return statements above will have triggered. */
1266 assert (new_type != SVt_NULL);
1269 assert(old_type == SVt_NULL);
1270 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1274 assert(old_type == SVt_NULL);
1275 SvANY(sv) = new_XNV();
1280 assert(new_type_details->body_size);
1283 assert(new_type_details->arena);
1284 assert(new_type_details->arena_size);
1285 /* This points to the start of the allocated area. */
1286 new_body_inline(new_body, new_type);
1287 Zero(new_body, new_type_details->body_size, char);
1288 new_body = ((char *)new_body) - new_type_details->offset;
1290 /* We always allocated the full length item with PURIFY. To do this
1291 we fake things so that arena is false for all 16 types.. */
1292 new_body = new_NOARENAZ(new_type_details);
1294 SvANY(sv) = new_body;
1295 if (new_type == SVt_PVAV) {
1299 if (old_type_details->body_size) {
1302 /* It will have been zeroed when the new body was allocated.
1303 Lets not write to it, in case it confuses a write-back
1309 #ifndef NODEFAULT_SHAREKEYS
1310 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1312 /* start with PERL_HASH_DEFAULT_HvMAX+1 buckets: */
1313 HvMAX(sv) = PERL_HASH_DEFAULT_HvMAX;
1316 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1317 The target created by newSVrv also is, and it can have magic.
1318 However, it never has SvPVX set.
1320 if (old_type == SVt_IV) {
1322 } else if (old_type >= SVt_PV) {
1323 assert(SvPVX_const(sv) == 0);
1326 if (old_type >= SVt_PVMG) {
1327 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1328 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1330 sv->sv_u.svu_array = NULL; /* or svu_hash */
1335 /* XXX Is this still needed? Was it ever needed? Surely as there is
1336 no route from NV to PVIV, NOK can never be true */
1337 assert(!SvNOKp(sv));
1350 assert(new_type_details->body_size);
1351 /* We always allocated the full length item with PURIFY. To do this
1352 we fake things so that arena is false for all 16 types.. */
1353 if(new_type_details->arena) {
1354 /* This points to the start of the allocated area. */
1355 new_body_inline(new_body, new_type);
1356 Zero(new_body, new_type_details->body_size, char);
1357 new_body = ((char *)new_body) - new_type_details->offset;
1359 new_body = new_NOARENAZ(new_type_details);
1361 SvANY(sv) = new_body;
1363 if (old_type_details->copy) {
1364 /* There is now the potential for an upgrade from something without
1365 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1366 int offset = old_type_details->offset;
1367 int length = old_type_details->copy;
1369 if (new_type_details->offset > old_type_details->offset) {
1370 const int difference
1371 = new_type_details->offset - old_type_details->offset;
1372 offset += difference;
1373 length -= difference;
1375 assert (length >= 0);
1377 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1381 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1382 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1383 * correct 0.0 for us. Otherwise, if the old body didn't have an
1384 * NV slot, but the new one does, then we need to initialise the
1385 * freshly created NV slot with whatever the correct bit pattern is
1387 if (old_type_details->zero_nv && !new_type_details->zero_nv
1388 && !isGV_with_GP(sv))
1392 if (UNLIKELY(new_type == SVt_PVIO)) {
1393 IO * const io = MUTABLE_IO(sv);
1394 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1397 /* Clear the stashcache because a new IO could overrule a package
1399 DEBUG_o(Perl_deb(aTHX_ "sv_upgrade clearing PL_stashcache\n"));
1400 hv_clear(PL_stashcache);
1402 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1403 IoPAGE_LEN(sv) = 60;
1405 if (UNLIKELY(new_type == SVt_REGEXP))
1406 sv->sv_u.svu_rx = (regexp *)new_body;
1407 else if (old_type < SVt_PV) {
1408 /* referant will be NULL unless the old type was SVt_IV emulating
1410 sv->sv_u.svu_rv = referant;
1414 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1415 (unsigned long)new_type);
1418 if (old_type > SVt_IV) {
1422 /* Note that there is an assumption that all bodies of types that
1423 can be upgraded came from arenas. Only the more complex non-
1424 upgradable types are allowed to be directly malloc()ed. */
1425 assert(old_type_details->arena);
1426 del_body((void*)((char*)old_body + old_type_details->offset),
1427 &PL_body_roots[old_type]);
1433 =for apidoc sv_backoff
1435 Remove any string offset. You should normally use the C<SvOOK_off> macro
1442 Perl_sv_backoff(pTHX_ SV *const sv)
1445 const char * const s = SvPVX_const(sv);
1447 PERL_ARGS_ASSERT_SV_BACKOFF;
1448 PERL_UNUSED_CONTEXT;
1451 assert(SvTYPE(sv) != SVt_PVHV);
1452 assert(SvTYPE(sv) != SVt_PVAV);
1454 SvOOK_offset(sv, delta);
1456 SvLEN_set(sv, SvLEN(sv) + delta);
1457 SvPV_set(sv, SvPVX(sv) - delta);
1458 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1459 SvFLAGS(sv) &= ~SVf_OOK;
1466 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1467 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1468 Use the C<SvGROW> wrapper instead.
1474 Perl_sv_grow(pTHX_ SV *const sv, STRLEN newlen)
1478 PERL_ARGS_ASSERT_SV_GROW;
1480 #ifdef HAS_64K_LIMIT
1481 if (newlen >= 0x10000) {
1482 PerlIO_printf(Perl_debug_log,
1483 "Allocation too large: %"UVxf"\n", (UV)newlen);
1486 #endif /* HAS_64K_LIMIT */
1489 if (SvTYPE(sv) < SVt_PV) {
1490 sv_upgrade(sv, SVt_PV);
1491 s = SvPVX_mutable(sv);
1493 else if (SvOOK(sv)) { /* pv is offset? */
1495 s = SvPVX_mutable(sv);
1496 if (newlen > SvLEN(sv))
1497 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1498 #ifdef HAS_64K_LIMIT
1499 if (newlen >= 0x10000)
1505 if (SvIsCOW(sv)) sv_force_normal(sv);
1506 s = SvPVX_mutable(sv);
1509 #ifdef PERL_NEW_COPY_ON_WRITE
1510 /* the new COW scheme uses SvPVX(sv)[SvLEN(sv)-1] (if spare)
1511 * to store the COW count. So in general, allocate one more byte than
1512 * asked for, to make it likely this byte is always spare: and thus
1513 * make more strings COW-able.
1514 * If the new size is a big power of two, don't bother: we assume the
1515 * caller wanted a nice 2^N sized block and will be annoyed at getting
1521 if (newlen > SvLEN(sv)) { /* need more room? */
1522 STRLEN minlen = SvCUR(sv);
1523 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1524 if (newlen < minlen)
1526 #ifndef Perl_safesysmalloc_size
1527 newlen = PERL_STRLEN_ROUNDUP(newlen);
1529 if (SvLEN(sv) && s) {
1530 s = (char*)saferealloc(s, newlen);
1533 s = (char*)safemalloc(newlen);
1534 if (SvPVX_const(sv) && SvCUR(sv)) {
1535 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1539 #ifdef Perl_safesysmalloc_size
1540 /* Do this here, do it once, do it right, and then we will never get
1541 called back into sv_grow() unless there really is some growing
1543 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1545 SvLEN_set(sv, newlen);
1552 =for apidoc sv_setiv
1554 Copies an integer into the given SV, upgrading first if necessary.
1555 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1561 Perl_sv_setiv(pTHX_ SV *const sv, const IV i)
1565 PERL_ARGS_ASSERT_SV_SETIV;
1567 SV_CHECK_THINKFIRST_COW_DROP(sv);
1568 switch (SvTYPE(sv)) {
1571 sv_upgrade(sv, SVt_IV);
1574 sv_upgrade(sv, SVt_PVIV);
1578 if (!isGV_with_GP(sv))
1585 /* diag_listed_as: Can't coerce %s to %s in %s */
1586 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1590 (void)SvIOK_only(sv); /* validate number */
1596 =for apidoc sv_setiv_mg
1598 Like C<sv_setiv>, but also handles 'set' magic.
1604 Perl_sv_setiv_mg(pTHX_ SV *const sv, const IV i)
1606 PERL_ARGS_ASSERT_SV_SETIV_MG;
1613 =for apidoc sv_setuv
1615 Copies an unsigned integer into the given SV, upgrading first if necessary.
1616 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1622 Perl_sv_setuv(pTHX_ SV *const sv, const UV u)
1624 PERL_ARGS_ASSERT_SV_SETUV;
1626 /* With the if statement to ensure that integers are stored as IVs whenever
1628 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1631 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1633 If you wish to remove the following if statement, so that this routine
1634 (and its callers) always return UVs, please benchmark to see what the
1635 effect is. Modern CPUs may be different. Or may not :-)
1637 if (u <= (UV)IV_MAX) {
1638 sv_setiv(sv, (IV)u);
1647 =for apidoc sv_setuv_mg
1649 Like C<sv_setuv>, but also handles 'set' magic.
1655 Perl_sv_setuv_mg(pTHX_ SV *const sv, const UV u)
1657 PERL_ARGS_ASSERT_SV_SETUV_MG;
1664 =for apidoc sv_setnv
1666 Copies a double into the given SV, upgrading first if necessary.
1667 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1673 Perl_sv_setnv(pTHX_ SV *const sv, const NV num)
1677 PERL_ARGS_ASSERT_SV_SETNV;
1679 SV_CHECK_THINKFIRST_COW_DROP(sv);
1680 switch (SvTYPE(sv)) {
1683 sv_upgrade(sv, SVt_NV);
1687 sv_upgrade(sv, SVt_PVNV);
1691 if (!isGV_with_GP(sv))
1698 /* diag_listed_as: Can't coerce %s to %s in %s */
1699 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1704 (void)SvNOK_only(sv); /* validate number */
1709 =for apidoc sv_setnv_mg
1711 Like C<sv_setnv>, but also handles 'set' magic.
1717 Perl_sv_setnv_mg(pTHX_ SV *const sv, const NV num)
1719 PERL_ARGS_ASSERT_SV_SETNV_MG;
1725 /* Print an "isn't numeric" warning, using a cleaned-up,
1726 * printable version of the offending string
1730 S_not_a_number(pTHX_ SV *const sv)
1737 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1740 dsv = newSVpvs_flags("", SVs_TEMP);
1741 pv = sv_uni_display(dsv, sv, 10, UNI_DISPLAY_ISPRINT);
1744 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1745 /* each *s can expand to 4 chars + "...\0",
1746 i.e. need room for 8 chars */
1748 const char *s = SvPVX_const(sv);
1749 const char * const end = s + SvCUR(sv);
1750 for ( ; s < end && d < limit; s++ ) {
1752 if (ch & 128 && !isPRINT_LC(ch)) {
1761 else if (ch == '\r') {
1765 else if (ch == '\f') {
1769 else if (ch == '\\') {
1773 else if (ch == '\0') {
1777 else if (isPRINT_LC(ch))
1794 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1795 /* diag_listed_as: Argument "%s" isn't numeric%s */
1796 "Argument \"%s\" isn't numeric in %s", pv,
1799 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1800 /* diag_listed_as: Argument "%s" isn't numeric%s */
1801 "Argument \"%s\" isn't numeric", pv);
1805 =for apidoc looks_like_number
1807 Test if the content of an SV looks like a number (or is a number).
1808 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1809 non-numeric warning), even if your atof() doesn't grok them. Get-magic is
1816 Perl_looks_like_number(pTHX_ SV *const sv)
1821 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1823 if (SvPOK(sv) || SvPOKp(sv)) {
1824 sbegin = SvPV_nomg_const(sv, len);
1827 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1828 return grok_number(sbegin, len, NULL);
1832 S_glob_2number(pTHX_ GV * const gv)
1834 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1836 /* We know that all GVs stringify to something that is not-a-number,
1837 so no need to test that. */
1838 if (ckWARN(WARN_NUMERIC))
1840 SV *const buffer = sv_newmortal();
1841 gv_efullname3(buffer, gv, "*");
1842 not_a_number(buffer);
1844 /* We just want something true to return, so that S_sv_2iuv_common
1845 can tail call us and return true. */
1849 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1850 until proven guilty, assume that things are not that bad... */
1855 As 64 bit platforms often have an NV that doesn't preserve all bits of
1856 an IV (an assumption perl has been based on to date) it becomes necessary
1857 to remove the assumption that the NV always carries enough precision to
1858 recreate the IV whenever needed, and that the NV is the canonical form.
1859 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1860 precision as a side effect of conversion (which would lead to insanity
1861 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1862 1) to distinguish between IV/UV/NV slots that have cached a valid
1863 conversion where precision was lost and IV/UV/NV slots that have a
1864 valid conversion which has lost no precision
1865 2) to ensure that if a numeric conversion to one form is requested that
1866 would lose precision, the precise conversion (or differently
1867 imprecise conversion) is also performed and cached, to prevent
1868 requests for different numeric formats on the same SV causing
1869 lossy conversion chains. (lossless conversion chains are perfectly
1874 SvIOKp is true if the IV slot contains a valid value
1875 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1876 SvNOKp is true if the NV slot contains a valid value
1877 SvNOK is true only if the NV value is accurate
1880 while converting from PV to NV, check to see if converting that NV to an
1881 IV(or UV) would lose accuracy over a direct conversion from PV to
1882 IV(or UV). If it would, cache both conversions, return NV, but mark
1883 SV as IOK NOKp (ie not NOK).
1885 While converting from PV to IV, check to see if converting that IV to an
1886 NV would lose accuracy over a direct conversion from PV to NV. If it
1887 would, cache both conversions, flag similarly.
1889 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1890 correctly because if IV & NV were set NV *always* overruled.
1891 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1892 changes - now IV and NV together means that the two are interchangeable:
1893 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1895 The benefit of this is that operations such as pp_add know that if
1896 SvIOK is true for both left and right operands, then integer addition
1897 can be used instead of floating point (for cases where the result won't
1898 overflow). Before, floating point was always used, which could lead to
1899 loss of precision compared with integer addition.
1901 * making IV and NV equal status should make maths accurate on 64 bit
1903 * may speed up maths somewhat if pp_add and friends start to use
1904 integers when possible instead of fp. (Hopefully the overhead in
1905 looking for SvIOK and checking for overflow will not outweigh the
1906 fp to integer speedup)
1907 * will slow down integer operations (callers of SvIV) on "inaccurate"
1908 values, as the change from SvIOK to SvIOKp will cause a call into
1909 sv_2iv each time rather than a macro access direct to the IV slot
1910 * should speed up number->string conversion on integers as IV is
1911 favoured when IV and NV are equally accurate
1913 ####################################################################
1914 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1915 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1916 On the other hand, SvUOK is true iff UV.
1917 ####################################################################
1919 Your mileage will vary depending your CPU's relative fp to integer
1923 #ifndef NV_PRESERVES_UV
1924 # define IS_NUMBER_UNDERFLOW_IV 1
1925 # define IS_NUMBER_UNDERFLOW_UV 2
1926 # define IS_NUMBER_IV_AND_UV 2
1927 # define IS_NUMBER_OVERFLOW_IV 4
1928 # define IS_NUMBER_OVERFLOW_UV 5
1930 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1932 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1934 S_sv_2iuv_non_preserve(pTHX_ SV *const sv
1942 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1944 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1945 if (SvNVX(sv) < (NV)IV_MIN) {
1946 (void)SvIOKp_on(sv);
1948 SvIV_set(sv, IV_MIN);
1949 return IS_NUMBER_UNDERFLOW_IV;
1951 if (SvNVX(sv) > (NV)UV_MAX) {
1952 (void)SvIOKp_on(sv);
1955 SvUV_set(sv, UV_MAX);
1956 return IS_NUMBER_OVERFLOW_UV;
1958 (void)SvIOKp_on(sv);
1960 /* Can't use strtol etc to convert this string. (See truth table in
1962 if (SvNVX(sv) <= (UV)IV_MAX) {
1963 SvIV_set(sv, I_V(SvNVX(sv)));
1964 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1965 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1967 /* Integer is imprecise. NOK, IOKp */
1969 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1972 SvUV_set(sv, U_V(SvNVX(sv)));
1973 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1974 if (SvUVX(sv) == UV_MAX) {
1975 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1976 possibly be preserved by NV. Hence, it must be overflow.
1978 return IS_NUMBER_OVERFLOW_UV;
1980 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1982 /* Integer is imprecise. NOK, IOKp */
1984 return IS_NUMBER_OVERFLOW_IV;
1986 #endif /* !NV_PRESERVES_UV*/
1989 S_sv_2iuv_common(pTHX_ SV *const sv)
1993 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
1996 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1997 * without also getting a cached IV/UV from it at the same time
1998 * (ie PV->NV conversion should detect loss of accuracy and cache
1999 * IV or UV at same time to avoid this. */
2000 /* IV-over-UV optimisation - choose to cache IV if possible */
2002 if (SvTYPE(sv) == SVt_NV)
2003 sv_upgrade(sv, SVt_PVNV);
2005 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2006 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2007 certainly cast into the IV range at IV_MAX, whereas the correct
2008 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2010 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2011 if (Perl_isnan(SvNVX(sv))) {
2017 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2018 SvIV_set(sv, I_V(SvNVX(sv)));
2019 if (SvNVX(sv) == (NV) SvIVX(sv)
2020 #ifndef NV_PRESERVES_UV
2021 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2022 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2023 /* Don't flag it as "accurately an integer" if the number
2024 came from a (by definition imprecise) NV operation, and
2025 we're outside the range of NV integer precision */
2029 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2031 /* scalar has trailing garbage, eg "42a" */
2033 DEBUG_c(PerlIO_printf(Perl_debug_log,
2034 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2040 /* IV not precise. No need to convert from PV, as NV
2041 conversion would already have cached IV if it detected
2042 that PV->IV would be better than PV->NV->IV
2043 flags already correct - don't set public IOK. */
2044 DEBUG_c(PerlIO_printf(Perl_debug_log,
2045 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2050 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2051 but the cast (NV)IV_MIN rounds to a the value less (more
2052 negative) than IV_MIN which happens to be equal to SvNVX ??
2053 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2054 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2055 (NV)UVX == NVX are both true, but the values differ. :-(
2056 Hopefully for 2s complement IV_MIN is something like
2057 0x8000000000000000 which will be exact. NWC */
2060 SvUV_set(sv, U_V(SvNVX(sv)));
2062 (SvNVX(sv) == (NV) SvUVX(sv))
2063 #ifndef NV_PRESERVES_UV
2064 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2065 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2066 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2067 /* Don't flag it as "accurately an integer" if the number
2068 came from a (by definition imprecise) NV operation, and
2069 we're outside the range of NV integer precision */
2075 DEBUG_c(PerlIO_printf(Perl_debug_log,
2076 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2082 else if (SvPOKp(sv)) {
2084 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2085 /* We want to avoid a possible problem when we cache an IV/ a UV which
2086 may be later translated to an NV, and the resulting NV is not
2087 the same as the direct translation of the initial string
2088 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2089 be careful to ensure that the value with the .456 is around if the
2090 NV value is requested in the future).
2092 This means that if we cache such an IV/a UV, we need to cache the
2093 NV as well. Moreover, we trade speed for space, and do not
2094 cache the NV if we are sure it's not needed.
2097 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2098 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2099 == IS_NUMBER_IN_UV) {
2100 /* It's definitely an integer, only upgrade to PVIV */
2101 if (SvTYPE(sv) < SVt_PVIV)
2102 sv_upgrade(sv, SVt_PVIV);
2104 } else if (SvTYPE(sv) < SVt_PVNV)
2105 sv_upgrade(sv, SVt_PVNV);
2107 /* If NVs preserve UVs then we only use the UV value if we know that
2108 we aren't going to call atof() below. If NVs don't preserve UVs
2109 then the value returned may have more precision than atof() will
2110 return, even though value isn't perfectly accurate. */
2111 if ((numtype & (IS_NUMBER_IN_UV
2112 #ifdef NV_PRESERVES_UV
2115 )) == IS_NUMBER_IN_UV) {
2116 /* This won't turn off the public IOK flag if it was set above */
2117 (void)SvIOKp_on(sv);
2119 if (!(numtype & IS_NUMBER_NEG)) {
2121 if (value <= (UV)IV_MAX) {
2122 SvIV_set(sv, (IV)value);
2124 /* it didn't overflow, and it was positive. */
2125 SvUV_set(sv, value);
2129 /* 2s complement assumption */
2130 if (value <= (UV)IV_MIN) {
2131 SvIV_set(sv, -(IV)value);
2133 /* Too negative for an IV. This is a double upgrade, but
2134 I'm assuming it will be rare. */
2135 if (SvTYPE(sv) < SVt_PVNV)
2136 sv_upgrade(sv, SVt_PVNV);
2140 SvNV_set(sv, -(NV)value);
2141 SvIV_set(sv, IV_MIN);
2145 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2146 will be in the previous block to set the IV slot, and the next
2147 block to set the NV slot. So no else here. */
2149 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2150 != IS_NUMBER_IN_UV) {
2151 /* It wasn't an (integer that doesn't overflow the UV). */
2152 SvNV_set(sv, Atof(SvPVX_const(sv)));
2154 if (! numtype && ckWARN(WARN_NUMERIC))
2157 #if defined(USE_LONG_DOUBLE)
2158 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2159 PTR2UV(sv), SvNVX(sv)));
2161 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2162 PTR2UV(sv), SvNVX(sv)));
2165 #ifdef NV_PRESERVES_UV
2166 (void)SvIOKp_on(sv);
2168 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2169 SvIV_set(sv, I_V(SvNVX(sv)));
2170 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2173 NOOP; /* Integer is imprecise. NOK, IOKp */
2175 /* UV will not work better than IV */
2177 if (SvNVX(sv) > (NV)UV_MAX) {
2179 /* Integer is inaccurate. NOK, IOKp, is UV */
2180 SvUV_set(sv, UV_MAX);
2182 SvUV_set(sv, U_V(SvNVX(sv)));
2183 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2184 NV preservse UV so can do correct comparison. */
2185 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2188 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2193 #else /* NV_PRESERVES_UV */
2194 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2195 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2196 /* The IV/UV slot will have been set from value returned by
2197 grok_number above. The NV slot has just been set using
2200 assert (SvIOKp(sv));
2202 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2203 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2204 /* Small enough to preserve all bits. */
2205 (void)SvIOKp_on(sv);
2207 SvIV_set(sv, I_V(SvNVX(sv)));
2208 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2210 /* Assumption: first non-preserved integer is < IV_MAX,
2211 this NV is in the preserved range, therefore: */
2212 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2214 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2218 0 0 already failed to read UV.
2219 0 1 already failed to read UV.
2220 1 0 you won't get here in this case. IV/UV
2221 slot set, public IOK, Atof() unneeded.
2222 1 1 already read UV.
2223 so there's no point in sv_2iuv_non_preserve() attempting
2224 to use atol, strtol, strtoul etc. */
2226 sv_2iuv_non_preserve (sv, numtype);
2228 sv_2iuv_non_preserve (sv);
2232 #endif /* NV_PRESERVES_UV */
2233 /* It might be more code efficient to go through the entire logic above
2234 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2235 gets complex and potentially buggy, so more programmer efficient
2236 to do it this way, by turning off the public flags: */
2238 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2242 if (isGV_with_GP(sv))
2243 return glob_2number(MUTABLE_GV(sv));
2245 if (!SvPADTMP(sv)) {
2246 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2249 if (SvTYPE(sv) < SVt_IV)
2250 /* Typically the caller expects that sv_any is not NULL now. */
2251 sv_upgrade(sv, SVt_IV);
2252 /* Return 0 from the caller. */
2259 =for apidoc sv_2iv_flags
2261 Return the integer value of an SV, doing any necessary string
2262 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2263 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2269 Perl_sv_2iv_flags(pTHX_ SV *const sv, const I32 flags)
2276 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2277 && SvTYPE(sv) != SVt_PVFM);
2279 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2285 if (flags & SV_SKIP_OVERLOAD)
2287 tmpstr = AMG_CALLunary(sv, numer_amg);
2288 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2289 return SvIV(tmpstr);
2292 return PTR2IV(SvRV(sv));
2295 if (SvVALID(sv) || isREGEXP(sv)) {
2296 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2297 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2298 In practice they are extremely unlikely to actually get anywhere
2299 accessible by user Perl code - the only way that I'm aware of is when
2300 a constant subroutine which is used as the second argument to index.
2302 Regexps have no SvIVX and SvNVX fields.
2304 assert(isREGEXP(sv) || SvPOKp(sv));
2307 const char * const ptr =
2308 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2310 = grok_number(ptr, SvCUR(sv), &value);
2312 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2313 == IS_NUMBER_IN_UV) {
2314 /* It's definitely an integer */
2315 if (numtype & IS_NUMBER_NEG) {
2316 if (value < (UV)IV_MIN)
2319 if (value < (UV)IV_MAX)
2324 if (ckWARN(WARN_NUMERIC))
2327 return I_V(Atof(ptr));
2331 if (SvTHINKFIRST(sv)) {
2332 #ifdef PERL_OLD_COPY_ON_WRITE
2334 sv_force_normal_flags(sv, 0);
2337 if (SvREADONLY(sv) && !SvOK(sv)) {
2338 if (ckWARN(WARN_UNINITIALIZED))
2345 if (S_sv_2iuv_common(aTHX_ sv))
2349 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2350 PTR2UV(sv),SvIVX(sv)));
2351 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2355 =for apidoc sv_2uv_flags
2357 Return the unsigned integer value of an SV, doing any necessary string
2358 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2359 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2365 Perl_sv_2uv_flags(pTHX_ SV *const sv, const I32 flags)
2372 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2378 if (flags & SV_SKIP_OVERLOAD)
2380 tmpstr = AMG_CALLunary(sv, numer_amg);
2381 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2382 return SvUV(tmpstr);
2385 return PTR2UV(SvRV(sv));
2388 if (SvVALID(sv) || isREGEXP(sv)) {
2389 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2390 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2391 Regexps have no SvIVX and SvNVX fields. */
2392 assert(isREGEXP(sv) || SvPOKp(sv));
2395 const char * const ptr =
2396 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2398 = grok_number(ptr, SvCUR(sv), &value);
2400 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2401 == IS_NUMBER_IN_UV) {
2402 /* It's definitely an integer */
2403 if (!(numtype & IS_NUMBER_NEG))
2407 if (ckWARN(WARN_NUMERIC))
2410 return U_V(Atof(ptr));
2414 if (SvTHINKFIRST(sv)) {
2415 #ifdef PERL_OLD_COPY_ON_WRITE
2417 sv_force_normal_flags(sv, 0);
2420 if (SvREADONLY(sv) && !SvOK(sv)) {
2421 if (ckWARN(WARN_UNINITIALIZED))
2428 if (S_sv_2iuv_common(aTHX_ sv))
2432 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2433 PTR2UV(sv),SvUVX(sv)));
2434 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2438 =for apidoc sv_2nv_flags
2440 Return the num value of an SV, doing any necessary string or integer
2441 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2442 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2448 Perl_sv_2nv_flags(pTHX_ SV *const sv, const I32 flags)
2453 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2454 && SvTYPE(sv) != SVt_PVFM);
2455 if (SvGMAGICAL(sv) || SvVALID(sv) || isREGEXP(sv)) {
2456 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2457 the same flag bit as SVf_IVisUV, so must not let them cache NVs.
2458 Regexps have no SvIVX and SvNVX fields. */
2460 if (flags & SV_GMAGIC)
2464 if (SvPOKp(sv) && !SvIOKp(sv)) {
2465 ptr = SvPVX_const(sv);
2467 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2468 !grok_number(ptr, SvCUR(sv), NULL))
2474 return (NV)SvUVX(sv);
2476 return (NV)SvIVX(sv);
2482 ptr = RX_WRAPPED((REGEXP *)sv);
2485 assert(SvTYPE(sv) >= SVt_PVMG);
2486 /* This falls through to the report_uninit near the end of the
2488 } else if (SvTHINKFIRST(sv)) {
2493 if (flags & SV_SKIP_OVERLOAD)
2495 tmpstr = AMG_CALLunary(sv, numer_amg);
2496 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2497 return SvNV(tmpstr);
2500 return PTR2NV(SvRV(sv));
2502 #ifdef PERL_OLD_COPY_ON_WRITE
2504 sv_force_normal_flags(sv, 0);
2507 if (SvREADONLY(sv) && !SvOK(sv)) {
2508 if (ckWARN(WARN_UNINITIALIZED))
2513 if (SvTYPE(sv) < SVt_NV) {
2514 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2515 sv_upgrade(sv, SVt_NV);
2516 #ifdef USE_LONG_DOUBLE
2518 STORE_NUMERIC_LOCAL_SET_STANDARD();
2519 PerlIO_printf(Perl_debug_log,
2520 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2521 PTR2UV(sv), SvNVX(sv));
2522 RESTORE_NUMERIC_LOCAL();
2526 STORE_NUMERIC_LOCAL_SET_STANDARD();
2527 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2528 PTR2UV(sv), SvNVX(sv));
2529 RESTORE_NUMERIC_LOCAL();
2533 else if (SvTYPE(sv) < SVt_PVNV)
2534 sv_upgrade(sv, SVt_PVNV);
2539 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2540 #ifdef NV_PRESERVES_UV
2546 /* Only set the public NV OK flag if this NV preserves the IV */
2547 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2549 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2550 : (SvIVX(sv) == I_V(SvNVX(sv))))
2556 else if (SvPOKp(sv)) {
2558 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2559 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2561 #ifdef NV_PRESERVES_UV
2562 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2563 == IS_NUMBER_IN_UV) {
2564 /* It's definitely an integer */
2565 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2567 SvNV_set(sv, Atof(SvPVX_const(sv)));
2573 SvNV_set(sv, Atof(SvPVX_const(sv)));
2574 /* Only set the public NV OK flag if this NV preserves the value in
2575 the PV at least as well as an IV/UV would.
2576 Not sure how to do this 100% reliably. */
2577 /* if that shift count is out of range then Configure's test is
2578 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2580 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2581 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2582 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2583 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2584 /* Can't use strtol etc to convert this string, so don't try.
2585 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2588 /* value has been set. It may not be precise. */
2589 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2590 /* 2s complement assumption for (UV)IV_MIN */
2591 SvNOK_on(sv); /* Integer is too negative. */
2596 if (numtype & IS_NUMBER_NEG) {
2597 SvIV_set(sv, -(IV)value);
2598 } else if (value <= (UV)IV_MAX) {
2599 SvIV_set(sv, (IV)value);
2601 SvUV_set(sv, value);
2605 if (numtype & IS_NUMBER_NOT_INT) {
2606 /* I believe that even if the original PV had decimals,
2607 they are lost beyond the limit of the FP precision.
2608 However, neither is canonical, so both only get p
2609 flags. NWC, 2000/11/25 */
2610 /* Both already have p flags, so do nothing */
2612 const NV nv = SvNVX(sv);
2613 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2614 if (SvIVX(sv) == I_V(nv)) {
2617 /* It had no "." so it must be integer. */
2621 /* between IV_MAX and NV(UV_MAX).
2622 Could be slightly > UV_MAX */
2624 if (numtype & IS_NUMBER_NOT_INT) {
2625 /* UV and NV both imprecise. */
2627 const UV nv_as_uv = U_V(nv);
2629 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2638 /* It might be more code efficient to go through the entire logic above
2639 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2640 gets complex and potentially buggy, so more programmer efficient
2641 to do it this way, by turning off the public flags: */
2643 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2644 #endif /* NV_PRESERVES_UV */
2647 if (isGV_with_GP(sv)) {
2648 glob_2number(MUTABLE_GV(sv));
2652 if (!PL_localizing && !SvPADTMP(sv) && ckWARN(WARN_UNINITIALIZED))
2654 assert (SvTYPE(sv) >= SVt_NV);
2655 /* Typically the caller expects that sv_any is not NULL now. */
2656 /* XXX Ilya implies that this is a bug in callers that assume this
2657 and ideally should be fixed. */
2660 #if defined(USE_LONG_DOUBLE)
2662 STORE_NUMERIC_LOCAL_SET_STANDARD();
2663 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2664 PTR2UV(sv), SvNVX(sv));
2665 RESTORE_NUMERIC_LOCAL();
2669 STORE_NUMERIC_LOCAL_SET_STANDARD();
2670 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2671 PTR2UV(sv), SvNVX(sv));
2672 RESTORE_NUMERIC_LOCAL();
2681 Return an SV with the numeric value of the source SV, doing any necessary
2682 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2683 access this function.
2689 Perl_sv_2num(pTHX_ SV *const sv)
2691 PERL_ARGS_ASSERT_SV_2NUM;
2696 SV * const tmpsv = AMG_CALLunary(sv, numer_amg);
2697 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2698 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2699 return sv_2num(tmpsv);
2701 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2704 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2705 * UV as a string towards the end of buf, and return pointers to start and
2708 * We assume that buf is at least TYPE_CHARS(UV) long.
2712 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2714 char *ptr = buf + TYPE_CHARS(UV);
2715 char * const ebuf = ptr;
2718 PERL_ARGS_ASSERT_UIV_2BUF;
2730 *--ptr = '0' + (char)(uv % 10);
2739 =for apidoc sv_2pv_flags
2741 Returns a pointer to the string value of an SV, and sets *lp to its length.
2742 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a
2743 string if necessary. Normally invoked via the C<SvPV_flags> macro.
2744 C<sv_2pv()> and C<sv_2pv_nomg> usually end up here too.
2750 Perl_sv_2pv_flags(pTHX_ SV *const sv, STRLEN *const lp, const I32 flags)
2760 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2761 && SvTYPE(sv) != SVt_PVFM);
2762 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2767 if (flags & SV_SKIP_OVERLOAD)
2769 tmpstr = AMG_CALLunary(sv, string_amg);
2770 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2771 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2773 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2777 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2778 if (flags & SV_CONST_RETURN) {
2779 pv = (char *) SvPVX_const(tmpstr);
2781 pv = (flags & SV_MUTABLE_RETURN)
2782 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2785 *lp = SvCUR(tmpstr);
2787 pv = sv_2pv_flags(tmpstr, lp, flags);
2800 SV *const referent = SvRV(sv);
2804 retval = buffer = savepvn("NULLREF", len);
2805 } else if (SvTYPE(referent) == SVt_REGEXP &&
2806 (!(PL_curcop->cop_hints & HINT_NO_AMAGIC) ||
2807 amagic_is_enabled(string_amg))) {
2808 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2812 /* If the regex is UTF-8 we want the containing scalar to
2813 have an UTF-8 flag too */
2820 *lp = RX_WRAPLEN(re);
2822 return RX_WRAPPED(re);
2824 const char *const typestr = sv_reftype(referent, 0);
2825 const STRLEN typelen = strlen(typestr);
2826 UV addr = PTR2UV(referent);
2827 const char *stashname = NULL;
2828 STRLEN stashnamelen = 0; /* hush, gcc */
2829 const char *buffer_end;
2831 if (SvOBJECT(referent)) {
2832 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2835 stashname = HEK_KEY(name);
2836 stashnamelen = HEK_LEN(name);
2838 if (HEK_UTF8(name)) {
2844 stashname = "__ANON__";
2847 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2848 + 2 * sizeof(UV) + 2 /* )\0 */;
2850 len = typelen + 3 /* (0x */
2851 + 2 * sizeof(UV) + 2 /* )\0 */;
2854 Newx(buffer, len, char);
2855 buffer_end = retval = buffer + len;
2857 /* Working backwards */
2861 *--retval = PL_hexdigit[addr & 15];
2862 } while (addr >>= 4);
2868 memcpy(retval, typestr, typelen);
2872 retval -= stashnamelen;
2873 memcpy(retval, stashname, stashnamelen);
2875 /* retval may not necessarily have reached the start of the
2877 assert (retval >= buffer);
2879 len = buffer_end - retval - 1; /* -1 for that \0 */
2891 if (flags & SV_MUTABLE_RETURN)
2892 return SvPVX_mutable(sv);
2893 if (flags & SV_CONST_RETURN)
2894 return (char *)SvPVX_const(sv);
2899 /* I'm assuming that if both IV and NV are equally valid then
2900 converting the IV is going to be more efficient */
2901 const U32 isUIOK = SvIsUV(sv);
2902 char buf[TYPE_CHARS(UV)];
2906 if (SvTYPE(sv) < SVt_PVIV)
2907 sv_upgrade(sv, SVt_PVIV);
2908 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2910 /* inlined from sv_setpvn */
2911 s = SvGROW_mutable(sv, len + 1);
2912 Move(ptr, s, len, char);
2917 else if (SvNOK(sv)) {
2918 if (SvTYPE(sv) < SVt_PVNV)
2919 sv_upgrade(sv, SVt_PVNV);
2920 if (SvNVX(sv) == 0.0) {
2921 s = SvGROW_mutable(sv, 2);
2926 /* The +20 is pure guesswork. Configure test needed. --jhi */
2927 s = SvGROW_mutable(sv, NV_DIG + 20);
2928 /* some Xenix systems wipe out errno here */
2930 #ifndef USE_LOCALE_NUMERIC
2931 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2934 /* Gconvert always uses the current locale. That's the right thing
2935 * to do if we're supposed to be using locales. But otherwise, we
2936 * want the result to be based on the C locale, so we need to
2937 * change to the C locale during the Gconvert and then change back.
2938 * But if we're already in the C locale (PL_numeric_standard is
2939 * TRUE in that case), no need to do any changing */
2940 if (PL_numeric_standard || IN_SOME_LOCALE_FORM_RUNTIME) {
2941 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2943 /* If the radix character is UTF-8, and actually is in the
2944 * output, turn on the UTF-8 flag for the scalar */
2945 if (! PL_numeric_standard
2946 && PL_numeric_radix_sv && SvUTF8(PL_numeric_radix_sv)
2947 && instr(s, SvPVX_const(PL_numeric_radix_sv)))
2953 char *loc = savepv(setlocale(LC_NUMERIC, NULL));
2954 setlocale(LC_NUMERIC, "C");
2955 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2956 setlocale(LC_NUMERIC, loc);
2961 /* We don't call SvPOK_on(), because it may come to pass that the
2962 * locale changes so that the stringification we just did is no
2963 * longer correct. We will have to re-stringify every time it is
2974 else if (isGV_with_GP(sv)) {
2975 GV *const gv = MUTABLE_GV(sv);
2976 SV *const buffer = sv_newmortal();
2978 gv_efullname3(buffer, gv, "*");
2980 assert(SvPOK(buffer));
2984 *lp = SvCUR(buffer);
2985 return SvPVX(buffer);
2987 else if (isREGEXP(sv)) {
2988 if (lp) *lp = RX_WRAPLEN((REGEXP *)sv);
2989 return RX_WRAPPED((REGEXP *)sv);
2994 if (flags & SV_UNDEF_RETURNS_NULL)
2996 if (!PL_localizing && !SvPADTMP(sv) && ckWARN(WARN_UNINITIALIZED))
2998 /* Typically the caller expects that sv_any is not NULL now. */
2999 if (!SvREADONLY(sv) && SvTYPE(sv) < SVt_PV)
3000 sv_upgrade(sv, SVt_PV);
3005 const STRLEN len = s - SvPVX_const(sv);
3010 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
3011 PTR2UV(sv),SvPVX_const(sv)));
3012 if (flags & SV_CONST_RETURN)
3013 return (char *)SvPVX_const(sv);
3014 if (flags & SV_MUTABLE_RETURN)
3015 return SvPVX_mutable(sv);
3020 =for apidoc sv_copypv
3022 Copies a stringified representation of the source SV into the
3023 destination SV. Automatically performs any necessary mg_get and
3024 coercion of numeric values into strings. Guaranteed to preserve
3025 UTF8 flag even from overloaded objects. Similar in nature to
3026 sv_2pv[_flags] but operates directly on an SV instead of just the
3027 string. Mostly uses sv_2pv_flags to do its work, except when that
3028 would lose the UTF-8'ness of the PV.
3030 =for apidoc sv_copypv_nomg
3032 Like sv_copypv, but doesn't invoke get magic first.
3034 =for apidoc sv_copypv_flags
3036 Implementation of sv_copypv and sv_copypv_nomg. Calls get magic iff flags
3043 Perl_sv_copypv(pTHX_ SV *const dsv, SV *const ssv)
3045 PERL_ARGS_ASSERT_SV_COPYPV;
3047 sv_copypv_flags(dsv, ssv, 0);
3051 Perl_sv_copypv_flags(pTHX_ SV *const dsv, SV *const ssv, const I32 flags)
3056 PERL_ARGS_ASSERT_SV_COPYPV_FLAGS;
3058 if ((flags & SV_GMAGIC) && SvGMAGICAL(ssv))
3060 s = SvPV_nomg_const(ssv,len);
3061 sv_setpvn(dsv,s,len);
3069 =for apidoc sv_2pvbyte
3071 Return a pointer to the byte-encoded representation of the SV, and set *lp
3072 to its length. May cause the SV to be downgraded from UTF-8 as a
3075 Usually accessed via the C<SvPVbyte> macro.
3081 Perl_sv_2pvbyte(pTHX_ SV *sv, STRLEN *const lp)
3083 PERL_ARGS_ASSERT_SV_2PVBYTE;
3085 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3086 || isGV_with_GP(sv) || SvROK(sv)) {
3087 SV *sv2 = sv_newmortal();
3091 else SvGETMAGIC(sv);
3092 sv_utf8_downgrade(sv,0);
3093 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3097 =for apidoc sv_2pvutf8
3099 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3100 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3102 Usually accessed via the C<SvPVutf8> macro.
3108 Perl_sv_2pvutf8(pTHX_ SV *sv, STRLEN *const lp)
3110 PERL_ARGS_ASSERT_SV_2PVUTF8;
3112 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3113 || isGV_with_GP(sv) || SvROK(sv))
3114 sv = sv_mortalcopy(sv);
3117 sv_utf8_upgrade_nomg(sv);
3118 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3123 =for apidoc sv_2bool
3125 This macro is only used by sv_true() or its macro equivalent, and only if
3126 the latter's argument is neither SvPOK, SvIOK nor SvNOK.
3127 It calls sv_2bool_flags with the SV_GMAGIC flag.
3129 =for apidoc sv_2bool_flags
3131 This function is only used by sv_true() and friends, and only if
3132 the latter's argument is neither SvPOK, SvIOK nor SvNOK. If the flags
3133 contain SV_GMAGIC, then it does an mg_get() first.
3140 Perl_sv_2bool_flags(pTHX_ SV *const sv, const I32 flags)
3144 PERL_ARGS_ASSERT_SV_2BOOL_FLAGS;
3146 if(flags & SV_GMAGIC) SvGETMAGIC(sv);
3152 SV * const tmpsv = AMG_CALLunary(sv, bool__amg);
3153 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3154 return cBOOL(SvTRUE(tmpsv));
3156 return SvRV(sv) != 0;
3158 return SvTRUE_common(sv, isGV_with_GP(sv) ? 1 : 0);
3162 =for apidoc sv_utf8_upgrade
3164 Converts the PV of an SV to its UTF-8-encoded form.
3165 Forces the SV to string form if it is not already.
3166 Will C<mg_get> on C<sv> if appropriate.
3167 Always sets the SvUTF8 flag to avoid future validity checks even
3168 if the whole string is the same in UTF-8 as not.
3169 Returns the number of bytes in the converted string
3171 This is not a general purpose byte encoding to Unicode interface:
3172 use the Encode extension for that.
3174 =for apidoc sv_utf8_upgrade_nomg
3176 Like sv_utf8_upgrade, but doesn't do magic on C<sv>.
3178 =for apidoc sv_utf8_upgrade_flags
3180 Converts the PV of an SV to its UTF-8-encoded form.
3181 Forces the SV to string form if it is not already.
3182 Always sets the SvUTF8 flag to avoid future validity checks even
3183 if all the bytes are invariant in UTF-8.
3184 If C<flags> has C<SV_GMAGIC> bit set,
3185 will C<mg_get> on C<sv> if appropriate, else not.
3186 Returns the number of bytes in the converted string
3187 C<sv_utf8_upgrade> and
3188 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3190 This is not a general purpose byte encoding to Unicode interface:
3191 use the Encode extension for that.
3195 The grow version is currently not externally documented. It adds a parameter,
3196 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3197 have free after it upon return. This allows the caller to reserve extra space
3198 that it intends to fill, to avoid extra grows.
3200 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3201 which can be used to tell this function to not first check to see if there are
3202 any characters that are different in UTF-8 (variant characters) which would
3203 force it to allocate a new string to sv, but to assume there are. Typically
3204 this flag is used by a routine that has already parsed the string to find that
3205 there are such characters, and passes this information on so that the work
3206 doesn't have to be repeated.
3208 (One might think that the calling routine could pass in the position of the
3209 first such variant, so it wouldn't have to be found again. But that is not the
3210 case, because typically when the caller is likely to use this flag, it won't be
3211 calling this routine unless it finds something that won't fit into a byte.
3212 Otherwise it tries to not upgrade and just use bytes. But some things that
3213 do fit into a byte are variants in utf8, and the caller may not have been
3214 keeping track of these.)
3216 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3217 isn't guaranteed due to having other routines do the work in some input cases,
3218 or if the input is already flagged as being in utf8.
3220 The speed of this could perhaps be improved for many cases if someone wanted to
3221 write a fast function that counts the number of variant characters in a string,
3222 especially if it could return the position of the first one.
3226 static void S_sv_uncow(pTHX_ SV * const sv, const U32 flags);
3229 Perl_sv_utf8_upgrade_flags_grow(pTHX_ SV *const sv, const I32 flags, STRLEN extra)
3233 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3235 if (sv == &PL_sv_undef)
3237 if (!SvPOK_nog(sv)) {
3239 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3240 (void) sv_2pv_flags(sv,&len, flags);
3242 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3246 (void) SvPV_force_flags(sv,len,flags & SV_GMAGIC);
3251 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3256 S_sv_uncow(aTHX_ sv, 0);
3259 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3260 sv_recode_to_utf8(sv, PL_encoding);
3261 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3265 if (SvCUR(sv) == 0) {
3266 if (extra) SvGROW(sv, extra);
3267 } else { /* Assume Latin-1/EBCDIC */
3268 /* This function could be much more efficient if we
3269 * had a FLAG in SVs to signal if there are any variant
3270 * chars in the PV. Given that there isn't such a flag
3271 * make the loop as fast as possible (although there are certainly ways
3272 * to speed this up, eg. through vectorization) */
3273 U8 * s = (U8 *) SvPVX_const(sv);
3274 U8 * e = (U8 *) SvEND(sv);
3276 STRLEN two_byte_count = 0;
3278 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3280 /* See if really will need to convert to utf8. We mustn't rely on our
3281 * incoming SV being well formed and having a trailing '\0', as certain
3282 * code in pp_formline can send us partially built SVs. */
3286 if (NATIVE_IS_INVARIANT(ch)) continue;
3288 t--; /* t already incremented; re-point to first variant */
3293 /* utf8 conversion not needed because all are invariants. Mark as
3294 * UTF-8 even if no variant - saves scanning loop */
3296 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3301 /* Here, the string should be converted to utf8, either because of an
3302 * input flag (two_byte_count = 0), or because a character that
3303 * requires 2 bytes was found (two_byte_count = 1). t points either to
3304 * the beginning of the string (if we didn't examine anything), or to
3305 * the first variant. In either case, everything from s to t - 1 will
3306 * occupy only 1 byte each on output.
3308 * There are two main ways to convert. One is to create a new string
3309 * and go through the input starting from the beginning, appending each
3310 * converted value onto the new string as we go along. It's probably
3311 * best to allocate enough space in the string for the worst possible
3312 * case rather than possibly running out of space and having to
3313 * reallocate and then copy what we've done so far. Since everything
3314 * from s to t - 1 is invariant, the destination can be initialized
3315 * with these using a fast memory copy
3317 * The other way is to figure out exactly how big the string should be
3318 * by parsing the entire input. Then you don't have to make it big
3319 * enough to handle the worst possible case, and more importantly, if
3320 * the string you already have is large enough, you don't have to
3321 * allocate a new string, you can copy the last character in the input
3322 * string to the final position(s) that will be occupied by the
3323 * converted string and go backwards, stopping at t, since everything
3324 * before that is invariant.
3326 * There are advantages and disadvantages to each method.
3328 * In the first method, we can allocate a new string, do the memory
3329 * copy from the s to t - 1, and then proceed through the rest of the
3330 * string byte-by-byte.
3332 * In the second method, we proceed through the rest of the input
3333 * string just calculating how big the converted string will be. Then
3334 * there are two cases:
3335 * 1) if the string has enough extra space to handle the converted
3336 * value. We go backwards through the string, converting until we
3337 * get to the position we are at now, and then stop. If this
3338 * position is far enough along in the string, this method is
3339 * faster than the other method. If the memory copy were the same
3340 * speed as the byte-by-byte loop, that position would be about
3341 * half-way, as at the half-way mark, parsing to the end and back
3342 * is one complete string's parse, the same amount as starting
3343 * over and going all the way through. Actually, it would be
3344 * somewhat less than half-way, as it's faster to just count bytes
3345 * than to also copy, and we don't have the overhead of allocating
3346 * a new string, changing the scalar to use it, and freeing the
3347 * existing one. But if the memory copy is fast, the break-even
3348 * point is somewhere after half way. The counting loop could be
3349 * sped up by vectorization, etc, to move the break-even point
3350 * further towards the beginning.
3351 * 2) if the string doesn't have enough space to handle the converted
3352 * value. A new string will have to be allocated, and one might
3353 * as well, given that, start from the beginning doing the first
3354 * method. We've spent extra time parsing the string and in
3355 * exchange all we've gotten is that we know precisely how big to
3356 * make the new one. Perl is more optimized for time than space,
3357 * so this case is a loser.
3358 * So what I've decided to do is not use the 2nd method unless it is
3359 * guaranteed that a new string won't have to be allocated, assuming
3360 * the worst case. I also decided not to put any more conditions on it
3361 * than this, for now. It seems likely that, since the worst case is
3362 * twice as big as the unknown portion of the string (plus 1), we won't
3363 * be guaranteed enough space, causing us to go to the first method,
3364 * unless the string is short, or the first variant character is near
3365 * the end of it. In either of these cases, it seems best to use the
3366 * 2nd method. The only circumstance I can think of where this would
3367 * be really slower is if the string had once had much more data in it
3368 * than it does now, but there is still a substantial amount in it */
3371 STRLEN invariant_head = t - s;
3372 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3373 if (SvLEN(sv) < size) {
3375 /* Here, have decided to allocate a new string */
3380 Newx(dst, size, U8);
3382 /* If no known invariants at the beginning of the input string,
3383 * set so starts from there. Otherwise, can use memory copy to
3384 * get up to where we are now, and then start from here */
3386 if (invariant_head <= 0) {
3389 Copy(s, dst, invariant_head, char);
3390 d = dst + invariant_head;
3394 const UV uv = NATIVE8_TO_UNI(*t++);
3395 if (UNI_IS_INVARIANT(uv))
3396 *d++ = (U8)UNI_TO_NATIVE(uv);
3398 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3399 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3403 SvPV_free(sv); /* No longer using pre-existing string */
3404 SvPV_set(sv, (char*)dst);
3405 SvCUR_set(sv, d - dst);
3406 SvLEN_set(sv, size);
3409 /* Here, have decided to get the exact size of the string.
3410 * Currently this happens only when we know that there is
3411 * guaranteed enough space to fit the converted string, so
3412 * don't have to worry about growing. If two_byte_count is 0,
3413 * then t points to the first byte of the string which hasn't
3414 * been examined yet. Otherwise two_byte_count is 1, and t
3415 * points to the first byte in the string that will expand to
3416 * two. Depending on this, start examining at t or 1 after t.
3419 U8 *d = t + two_byte_count;
3422 /* Count up the remaining bytes that expand to two */
3425 const U8 chr = *d++;
3426 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3429 /* The string will expand by just the number of bytes that
3430 * occupy two positions. But we are one afterwards because of
3431 * the increment just above. This is the place to put the
3432 * trailing NUL, and to set the length before we decrement */
3434 d += two_byte_count;
3435 SvCUR_set(sv, d - s);
3439 /* Having decremented d, it points to the position to put the
3440 * very last byte of the expanded string. Go backwards through
3441 * the string, copying and expanding as we go, stopping when we
3442 * get to the part that is invariant the rest of the way down */
3446 const U8 ch = NATIVE8_TO_UNI(*e--);
3447 if (UNI_IS_INVARIANT(ch)) {
3448 *d-- = UNI_TO_NATIVE(ch);
3450 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3451 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3456 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3457 /* Update pos. We do it at the end rather than during
3458 * the upgrade, to avoid slowing down the common case
3459 * (upgrade without pos) */
3460 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3462 I32 pos = mg->mg_len;
3463 if (pos > 0 && (U32)pos > invariant_head) {
3464 U8 *d = (U8*) SvPVX(sv) + invariant_head;
3465 STRLEN n = (U32)pos - invariant_head;
3467 if (UTF8_IS_START(*d))
3472 mg->mg_len = d - (U8*)SvPVX(sv);
3475 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3476 magic_setutf8(sv,mg); /* clear UTF8 cache */
3481 /* Mark as UTF-8 even if no variant - saves scanning loop */
3487 =for apidoc sv_utf8_downgrade
3489 Attempts to convert the PV of an SV from characters to bytes.
3490 If the PV contains a character that cannot fit
3491 in a byte, this conversion will fail;
3492 in this case, either returns false or, if C<fail_ok> is not
3495 This is not a general purpose Unicode to byte encoding interface:
3496 use the Encode extension for that.
3502 Perl_sv_utf8_downgrade(pTHX_ SV *const sv, const bool fail_ok)
3506 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3508 if (SvPOKp(sv) && SvUTF8(sv)) {
3512 int mg_flags = SV_GMAGIC;
3515 S_sv_uncow(aTHX_ sv, 0);
3517 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3519 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3521 I32 pos = mg->mg_len;
3523 sv_pos_b2u(sv, &pos);
3524 mg_flags = 0; /* sv_pos_b2u does get magic */
3528 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3529 magic_setutf8(sv,mg); /* clear UTF8 cache */
3532 s = (U8 *) SvPV_flags(sv, len, mg_flags);
3534 if (!utf8_to_bytes(s, &len)) {
3539 Perl_croak(aTHX_ "Wide character in %s",
3542 Perl_croak(aTHX_ "Wide character");
3553 =for apidoc sv_utf8_encode
3555 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3556 flag off so that it looks like octets again.
3562 Perl_sv_utf8_encode(pTHX_ SV *const sv)
3564 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3566 if (SvREADONLY(sv)) {
3567 sv_force_normal_flags(sv, 0);
3569 (void) sv_utf8_upgrade(sv);
3574 =for apidoc sv_utf8_decode
3576 If the PV of the SV is an octet sequence in UTF-8
3577 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3578 so that it looks like a character. If the PV contains only single-byte
3579 characters, the C<SvUTF8> flag stays off.
3580 Scans PV for validity and returns false if the PV is invalid UTF-8.
3586 Perl_sv_utf8_decode(pTHX_ SV *const sv)
3588 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3591 const U8 *start, *c;
3594 /* The octets may have got themselves encoded - get them back as
3597 if (!sv_utf8_downgrade(sv, TRUE))
3600 /* it is actually just a matter of turning the utf8 flag on, but
3601 * we want to make sure everything inside is valid utf8 first.
3603 c = start = (const U8 *) SvPVX_const(sv);
3604 if (!is_utf8_string(c, SvCUR(sv)))
3606 e = (const U8 *) SvEND(sv);
3609 if (!UTF8_IS_INVARIANT(ch)) {
3614 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3615 /* adjust pos to the start of a UTF8 char sequence */
3616 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3618 I32 pos = mg->mg_len;
3620 for (c = start + pos; c > start; c--) {
3621 if (UTF8_IS_START(*c))
3624 mg->mg_len = c - start;
3627 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3628 magic_setutf8(sv,mg); /* clear UTF8 cache */
3635 =for apidoc sv_setsv
3637 Copies the contents of the source SV C<ssv> into the destination SV
3638 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3639 function if the source SV needs to be reused. Does not handle 'set' magic.
3640 Loosely speaking, it performs a copy-by-value, obliterating any previous
3641 content of the destination.
3643 You probably want to use one of the assortment of wrappers, such as
3644 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3645 C<SvSetMagicSV_nosteal>.
3647 =for apidoc sv_setsv_flags
3649 Copies the contents of the source SV C<ssv> into the destination SV
3650 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3651 function if the source SV needs to be reused. Does not handle 'set' magic.
3652 Loosely speaking, it performs a copy-by-value, obliterating any previous
3653 content of the destination.
3654 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3655 C<ssv> if appropriate, else not. If the C<flags>
3656 parameter has the C<NOSTEAL> bit set then the
3657 buffers of temps will not be stolen. <sv_setsv>
3658 and C<sv_setsv_nomg> are implemented in terms of this function.
3660 You probably want to use one of the assortment of wrappers, such as
3661 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3662 C<SvSetMagicSV_nosteal>.
3664 This is the primary function for copying scalars, and most other
3665 copy-ish functions and macros use this underneath.
3671 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3673 I32 mro_changes = 0; /* 1 = method, 2 = isa, 3 = recursive isa */
3674 HV *old_stash = NULL;
3676 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3678 if (dtype != SVt_PVGV && !isGV_with_GP(dstr)) {
3679 const char * const name = GvNAME(sstr);
3680 const STRLEN len = GvNAMELEN(sstr);
3682 if (dtype >= SVt_PV) {
3688 SvUPGRADE(dstr, SVt_PVGV);
3689 (void)SvOK_off(dstr);
3690 /* We have to turn this on here, even though we turn it off
3691 below, as GvSTASH will fail an assertion otherwise. */
3692 isGV_with_GP_on(dstr);
3694 GvSTASH(dstr) = GvSTASH(sstr);
3696 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3697 gv_name_set(MUTABLE_GV(dstr), name, len,
3698 GV_ADD | (GvNAMEUTF8(sstr) ? SVf_UTF8 : 0 ));
3699 SvFAKE_on(dstr); /* can coerce to non-glob */
3702 if(GvGP(MUTABLE_GV(sstr))) {
3703 /* If source has method cache entry, clear it */
3705 SvREFCNT_dec(GvCV(sstr));
3706 GvCV_set(sstr, NULL);
3709 /* If source has a real method, then a method is
3712 GvCV((const GV *)sstr) && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3718 /* If dest already had a real method, that's a change as well */
3720 !mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)
3721 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3726 /* We don't need to check the name of the destination if it was not a
3727 glob to begin with. */
3728 if(dtype == SVt_PVGV) {
3729 const char * const name = GvNAME((const GV *)dstr);
3732 /* The stash may have been detached from the symbol table, so
3734 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3738 const STRLEN len = GvNAMELEN(dstr);
3739 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
3740 || (len == 1 && name[0] == ':')) {
3743 /* Set aside the old stash, so we can reset isa caches on
3745 if((old_stash = GvHV(dstr)))
3746 /* Make sure we do not lose it early. */
3747 SvREFCNT_inc_simple_void_NN(
3748 sv_2mortal((SV *)old_stash)
3754 gp_free(MUTABLE_GV(dstr));
3755 isGV_with_GP_off(dstr); /* SvOK_off does not like globs. */
3756 (void)SvOK_off(dstr);
3757 isGV_with_GP_on(dstr);
3758 GvINTRO_off(dstr); /* one-shot flag */
3759 GvGP_set(dstr, gp_ref(GvGP(sstr)));
3760 if (SvTAINTED(sstr))
3762 if (GvIMPORTED(dstr) != GVf_IMPORTED
3763 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3765 GvIMPORTED_on(dstr);
3768 if(mro_changes == 2) {
3769 if (GvAV((const GV *)sstr)) {
3771 SV * const sref = (SV *)GvAV((const GV *)dstr);
3772 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3773 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3774 AV * const ary = newAV();
3775 av_push(ary, mg->mg_obj); /* takes the refcount */
3776 mg->mg_obj = (SV *)ary;
3778 av_push((AV *)mg->mg_obj, SvREFCNT_inc_simple_NN(dstr));
3780 else sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3782 mro_isa_changed_in(GvSTASH(dstr));
3784 else if(mro_changes == 3) {
3785 HV * const stash = GvHV(dstr);
3786 if(old_stash ? (HV *)HvENAME_get(old_stash) : stash)
3792 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3793 if (GvIO(dstr) && dtype == SVt_PVGV) {
3794 DEBUG_o(Perl_deb(aTHX_
3795 "glob_assign_glob clearing PL_stashcache\n"));
3796 /* It's a cache. It will rebuild itself quite happily.
3797 It's a lot of effort to work out exactly which key (or keys)
3798 might be invalidated by the creation of the this file handle.
3800 hv_clear(PL_stashcache);
3806 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3808 SV * const sref = SvRV(sstr);
3810 const int intro = GvINTRO(dstr);
3813 const U32 stype = SvTYPE(sref);
3815 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3818 GvINTRO_off(dstr); /* one-shot flag */
3819 GvLINE(dstr) = CopLINE(PL_curcop);
3820 GvEGV(dstr) = MUTABLE_GV(dstr);
3825 location = (SV **) &(GvGP(dstr)->gp_cv); /* XXX bypassing GvCV_set */
3826 import_flag = GVf_IMPORTED_CV;
3829 location = (SV **) &GvHV(dstr);
3830 import_flag = GVf_IMPORTED_HV;
3833 location = (SV **) &GvAV(dstr);
3834 import_flag = GVf_IMPORTED_AV;
3837 location = (SV **) &GvIOp(dstr);
3840 location = (SV **) &GvFORM(dstr);
3843 location = &GvSV(dstr);
3844 import_flag = GVf_IMPORTED_SV;
3847 if (stype == SVt_PVCV) {
3848 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3849 if (GvCVGEN(dstr)) {
3850 SvREFCNT_dec(GvCV(dstr));
3851 GvCV_set(dstr, NULL);
3852 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3855 /* SAVEt_GVSLOT takes more room on the savestack and has more
3856 overhead in leave_scope than SAVEt_GENERIC_SV. But for CVs
3857 leave_scope needs access to the GV so it can reset method
3858 caches. We must use SAVEt_GVSLOT whenever the type is
3859 SVt_PVCV, even if the stash is anonymous, as the stash may
3860 gain a name somehow before leave_scope. */
3861 if (stype == SVt_PVCV) {
3862 /* There is no save_pushptrptrptr. Creating it for this
3863 one call site would be overkill. So inline the ss add
3867 SS_ADD_PTR(location);
3868 SS_ADD_PTR(SvREFCNT_inc(*location));
3869 SS_ADD_UV(SAVEt_GVSLOT);
3872 else SAVEGENERICSV(*location);
3875 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3876 CV* const cv = MUTABLE_CV(*location);
3878 if (!GvCVGEN((const GV *)dstr) &&
3879 (CvROOT(cv) || CvXSUB(cv)) &&
3880 /* redundant check that avoids creating the extra SV
3881 most of the time: */
3882 (CvCONST(cv) || ckWARN(WARN_REDEFINE)))
3884 SV * const new_const_sv =
3885 CvCONST((const CV *)sref)
3886 ? cv_const_sv((const CV *)sref)
3888 report_redefined_cv(
3889 sv_2mortal(Perl_newSVpvf(aTHX_
3892 HvNAME_HEK(GvSTASH((const GV *)dstr))
3894 HEKfARG(GvENAME_HEK(MUTABLE_GV(dstr)))
3897 CvCONST((const CV *)sref) ? &new_const_sv : NULL
3901 cv_ckproto_len_flags(cv, (const GV *)dstr,
3902 SvPOK(sref) ? CvPROTO(sref) : NULL,
3903 SvPOK(sref) ? CvPROTOLEN(sref) : 0,
3904 SvPOK(sref) ? SvUTF8(sref) : 0);
3906 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3907 GvASSUMECV_on(dstr);
3908 if(GvSTASH(dstr)) gv_method_changed(dstr); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3910 *location = SvREFCNT_inc_simple_NN(sref);
3911 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3912 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3913 GvFLAGS(dstr) |= import_flag;
3915 if (stype == SVt_PVHV) {
3916 const char * const name = GvNAME((GV*)dstr);
3917 const STRLEN len = GvNAMELEN(dstr);
3920 (len > 1 && name[len-2] == ':' && name[len-1] == ':')
3921 || (len == 1 && name[0] == ':')
3923 && (!dref || HvENAME_get(dref))
3926 (HV *)sref, (HV *)dref,
3932 stype == SVt_PVAV && sref != dref
3933 && strEQ(GvNAME((GV*)dstr), "ISA")
3934 /* The stash may have been detached from the symbol table, so
3935 check its name before doing anything. */
3936 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3939 MAGIC * const omg = dref && SvSMAGICAL(dref)
3940 ? mg_find(dref, PERL_MAGIC_isa)
3942 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3943 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3944 AV * const ary = newAV();
3945 av_push(ary, mg->mg_obj); /* takes the refcount */
3946 mg->mg_obj = (SV *)ary;
3949 if (SvTYPE(omg->mg_obj) == SVt_PVAV) {
3950 SV **svp = AvARRAY((AV *)omg->mg_obj);
3951 I32 items = AvFILLp((AV *)omg->mg_obj) + 1;
3955 SvREFCNT_inc_simple_NN(*svp++)
3961 SvREFCNT_inc_simple_NN(omg->mg_obj)
3965 av_push((AV *)mg->mg_obj,SvREFCNT_inc_simple_NN(dstr));
3970 sref, omg ? omg->mg_obj : dstr, PERL_MAGIC_isa, NULL, 0
3972 mg = mg_find(sref, PERL_MAGIC_isa);
3974 /* Since the *ISA assignment could have affected more than
3975 one stash, don't call mro_isa_changed_in directly, but let
3976 magic_clearisa do it for us, as it already has the logic for
3977 dealing with globs vs arrays of globs. */
3979 Perl_magic_clearisa(aTHX_ NULL, mg);
3981 else if (stype == SVt_PVIO) {
3982 DEBUG_o(Perl_deb(aTHX_ "glob_assign_ref clearing PL_stashcache\n"));
3983 /* It's a cache. It will rebuild itself quite happily.
3984 It's a lot of effort to work out exactly which key (or keys)
3985 might be invalidated by the creation of the this file handle.
3987 hv_clear(PL_stashcache);
3991 if (!intro) SvREFCNT_dec(dref);
3992 if (SvTAINTED(sstr))
3997 /* Work around compiler warnings about unsigned >= THRESHOLD when thres-
3999 #if SV_COW_THRESHOLD
4000 # define GE_COW_THRESHOLD(len) ((len) >= SV_COW_THRESHOLD)
4002 # define GE_COW_THRESHOLD(len) 1
4004 #if SV_COWBUF_THRESHOLD
4005 # define GE_COWBUF_THRESHOLD(len) ((len) >= SV_COWBUF_THRESHOLD)
4007 # define GE_COWBUF_THRESHOLD(len) 1
4011 Perl_sv_setsv_flags(pTHX_ SV *dstr, SV* sstr, const I32 flags)
4018 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
4023 if (SvIS_FREED(dstr)) {
4024 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
4025 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
4027 SV_CHECK_THINKFIRST_COW_DROP(dstr);
4029 sstr = &PL_sv_undef;
4030 if (SvIS_FREED(sstr)) {
4031 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
4032 (void*)sstr, (void*)dstr);
4034 stype = SvTYPE(sstr);
4035 dtype = SvTYPE(dstr);
4037 /* There's a lot of redundancy below but we're going for speed here */
4042 if (dtype != SVt_PVGV && dtype != SVt_PVLV) {
4043 (void)SvOK_off(dstr);
4051 sv_upgrade(dstr, SVt_IV);
4055 sv_upgrade(dstr, SVt_PVIV);
4059 goto end_of_first_switch;
4061 (void)SvIOK_only(dstr);
4062 SvIV_set(dstr, SvIVX(sstr));
4065 /* SvTAINTED can only be true if the SV has taint magic, which in
4066 turn means that the SV type is PVMG (or greater). This is the
4067 case statement for SVt_IV, so this cannot be true (whatever gcov
4069 assert(!SvTAINTED(sstr));
4074 if (dtype < SVt_PV && dtype != SVt_IV)
4075 sv_upgrade(dstr, SVt_IV);
4083 sv_upgrade(dstr, SVt_NV);
4087 sv_upgrade(dstr, SVt_PVNV);
4091 goto end_of_first_switch;
4093 SvNV_set(dstr, SvNVX(sstr));
4094 (void)SvNOK_only(dstr);
4095 /* SvTAINTED can only be true if the SV has taint magic, which in
4096 turn means that the SV type is PVMG (or greater). This is the
4097 case statement for SVt_NV, so this cannot be true (whatever gcov
4099 assert(!SvTAINTED(sstr));
4106 sv_upgrade(dstr, SVt_PV);
4109 if (dtype < SVt_PVIV)
4110 sv_upgrade(dstr, SVt_PVIV);
4113 if (dtype < SVt_PVNV)
4114 sv_upgrade(dstr, SVt_PVNV);
4118 const char * const type = sv_reftype(sstr,0);
4120 /* diag_listed_as: Bizarre copy of %s */
4121 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
4123 Perl_croak(aTHX_ "Bizarre copy of %s", type);
4129 if (dtype < SVt_REGEXP)
4131 if (dtype >= SVt_PV) {
4137 sv_upgrade(dstr, SVt_REGEXP);
4145 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
4147 if (SvTYPE(sstr) != stype)
4148 stype = SvTYPE(sstr);
4150 if (isGV_with_GP(sstr) && dtype <= SVt_PVLV) {
4151 glob_assign_glob(dstr, sstr, dtype);
4154 if (stype == SVt_PVLV)
4156 if (isREGEXP(sstr)) goto upgregexp;
4157 SvUPGRADE(dstr, SVt_PVNV);
4160 SvUPGRADE(dstr, (svtype)stype);
4162 end_of_first_switch:
4164 /* dstr may have been upgraded. */
4165 dtype = SvTYPE(dstr);
4166 sflags = SvFLAGS(sstr);
4168 if (dtype == SVt_PVCV) {
4169 /* Assigning to a subroutine sets the prototype. */
4172 const char *const ptr = SvPV_const(sstr, len);
4174 SvGROW(dstr, len + 1);
4175 Copy(ptr, SvPVX(dstr), len + 1, char);
4176 SvCUR_set(dstr, len);
4178 SvFLAGS(dstr) |= sflags & SVf_UTF8;
4179 CvAUTOLOAD_off(dstr);
4184 else if (dtype == SVt_PVAV || dtype == SVt_PVHV || dtype == SVt_PVFM) {
4185 const char * const type = sv_reftype(dstr,0);
4187 /* diag_listed_as: Cannot copy to %s */
4188 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
4190 Perl_croak(aTHX_ "Cannot copy to %s", type);
4191 } else if (sflags & SVf_ROK) {
4192 if (isGV_with_GP(dstr)
4193 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
4196 if (GvIMPORTED(dstr) != GVf_IMPORTED
4197 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
4199 GvIMPORTED_on(dstr);
4204 glob_assign_glob(dstr, sstr, dtype);
4208 if (dtype >= SVt_PV) {
4209 if (isGV_with_GP(dstr)) {
4210 glob_assign_ref(dstr, sstr);
4213 if (SvPVX_const(dstr)) {
4219 (void)SvOK_off(dstr);
4220 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4221 SvFLAGS(dstr) |= sflags & SVf_ROK;
4222 assert(!(sflags & SVp_NOK));
4223 assert(!(sflags & SVp_IOK));
4224 assert(!(sflags & SVf_NOK));
4225 assert(!(sflags & SVf_IOK));
4227 else if (isGV_with_GP(dstr)) {
4228 if (!(sflags & SVf_OK)) {
4229 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4230 "Undefined value assigned to typeglob");
4233 GV *gv = gv_fetchsv_nomg(sstr, GV_ADD, SVt_PVGV);
4234 if (dstr != (const SV *)gv) {
4235 const char * const name = GvNAME((const GV *)dstr);
4236 const STRLEN len = GvNAMELEN(dstr);
4237 HV *old_stash = NULL;
4238 bool reset_isa = FALSE;
4239 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
4240 || (len == 1 && name[0] == ':')) {
4241 /* Set aside the old stash, so we can reset isa caches
4242 on its subclasses. */
4243 if((old_stash = GvHV(dstr))) {
4244 /* Make sure we do not lose it early. */
4245 SvREFCNT_inc_simple_void_NN(
4246 sv_2mortal((SV *)old_stash)
4253 gp_free(MUTABLE_GV(dstr));
4254 GvGP_set(dstr, gp_ref(GvGP(gv)));
4257 HV * const stash = GvHV(dstr);
4259 old_stash ? (HV *)HvENAME_get(old_stash) : stash
4269 else if ((dtype == SVt_REGEXP || dtype == SVt_PVLV)
4270 && (stype == SVt_REGEXP || isREGEXP(sstr))) {
4271 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4273 else if (sflags & SVp_POK) {
4275 const STRLEN cur = SvCUR(sstr);
4276 const STRLEN len = SvLEN(sstr);
4279 * Check to see if we can just swipe the string. If so, it's a
4280 * possible small lose on short strings, but a big win on long ones.
4281 * It might even be a win on short strings if SvPVX_const(dstr)
4282 * has to be allocated and SvPVX_const(sstr) has to be freed.
4283 * Likewise if we can set up COW rather than doing an actual copy, we
4284 * drop to the else clause, as the swipe code and the COW setup code
4285 * have much in common.
4288 /* Whichever path we take through the next code, we want this true,
4289 and doing it now facilitates the COW check. */
4290 (void)SvPOK_only(dstr);
4293 /* If we're already COW then this clause is not true, and if COW
4294 is allowed then we drop down to the else and make dest COW
4295 with us. If caller hasn't said that we're allowed to COW
4296 shared hash keys then we don't do the COW setup, even if the
4297 source scalar is a shared hash key scalar. */
4298 (((flags & SV_COW_SHARED_HASH_KEYS)
4299 ? !(sflags & SVf_IsCOW)
4300 #ifdef PERL_NEW_COPY_ON_WRITE
4302 ((!GE_COWBUF_THRESHOLD(cur) && SvLEN(dstr) > cur)
4303 /* If this is a regular (non-hek) COW, only so many COW
4304 "copies" are possible. */
4305 || CowREFCNT(sstr) == SV_COW_REFCNT_MAX))
4307 : 1 /* If making a COW copy is forbidden then the behaviour we
4308 desire is as if the source SV isn't actually already
4309 COW, even if it is. So we act as if the source flags
4310 are not COW, rather than actually testing them. */
4312 #ifndef PERL_ANY_COW
4313 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
4314 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
4315 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
4316 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
4317 but in turn, it's somewhat dead code, never expected to go
4318 live, but more kept as a placeholder on how to do it better
4319 in a newer implementation. */
4320 /* If we are COW and dstr is a suitable target then we drop down
4321 into the else and make dest a COW of us. */
4322 || (SvFLAGS(dstr) & SVf_BREAK)
4327 #ifdef PERL_NEW_COPY_ON_WRITE
4328 /* slated for free anyway (and not COW)? */
4329 (sflags & (SVs_TEMP|SVf_IsCOW)) == SVs_TEMP &&
4331 (sflags & SVs_TEMP) && /* slated for free anyway? */
4333 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4334 (!(flags & SV_NOSTEAL)) &&
4335 /* and we're allowed to steal temps */
4336 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4337 len) /* and really is a string */
4339 && ((flags & SV_COW_SHARED_HASH_KEYS)
4340 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4341 # ifdef PERL_OLD_COPY_ON_WRITE
4342 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4343 && SvTYPE(sstr) >= SVt_PVIV && len
4345 && !(SvFLAGS(dstr) & SVf_BREAK)
4346 && !(sflags & SVf_IsCOW)
4347 && GE_COW_THRESHOLD(cur) && cur+1 < len
4348 && (GE_COWBUF_THRESHOLD(cur) || SvLEN(dstr) < cur+1)
4354 /* Failed the swipe test, and it's not a shared hash key either.
4355 Have to copy the string. */
4356 SvGROW(dstr, cur + 1); /* inlined from sv_setpvn */
4357 Move(SvPVX_const(sstr),SvPVX(dstr),cur,char);
4358 SvCUR_set(dstr, cur);
4359 *SvEND(dstr) = '\0';
4361 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4363 /* Either it's a shared hash key, or it's suitable for
4364 copy-on-write or we can swipe the string. */
4366 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4372 if (!(sflags & SVf_IsCOW)) {
4374 # ifdef PERL_OLD_COPY_ON_WRITE
4375 /* Make the source SV into a loop of 1.
4376 (about to become 2) */
4377 SV_COW_NEXT_SV_SET(sstr, sstr);
4379 CowREFCNT(sstr) = 0;
4384 /* Initial code is common. */
4385 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4390 /* making another shared SV. */
4393 # ifdef PERL_OLD_COPY_ON_WRITE
4394 assert (SvTYPE(dstr) >= SVt_PVIV);
4395 /* SvIsCOW_normal */
4396 /* splice us in between source and next-after-source. */
4397 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4398 SV_COW_NEXT_SV_SET(sstr, dstr);
4402 SvPV_set(dstr, SvPVX_mutable(sstr));
4406 /* SvIsCOW_shared_hash */
4407 DEBUG_C(PerlIO_printf(Perl_debug_log,
4408 "Copy on write: Sharing hash\n"));
4410 assert (SvTYPE(dstr) >= SVt_PV);
4412 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4414 SvLEN_set(dstr, len);
4415 SvCUR_set(dstr, cur);
4419 { /* Passes the swipe test. */
4420 SvPV_set(dstr, SvPVX_mutable(sstr));
4421 SvLEN_set(dstr, SvLEN(sstr));
4422 SvCUR_set(dstr, SvCUR(sstr));
4425 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4426 SvPV_set(sstr, NULL);
4432 if (sflags & SVp_NOK) {
4433 SvNV_set(dstr, SvNVX(sstr));
4435 if (sflags & SVp_IOK) {
4436 SvIV_set(dstr, SvIVX(sstr));
4437 /* Must do this otherwise some other overloaded use of 0x80000000
4438 gets confused. I guess SVpbm_VALID */
4439 if (sflags & SVf_IVisUV)
4442 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4444 const MAGIC * const smg = SvVSTRING_mg(sstr);
4446 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4447 smg->mg_ptr, smg->mg_len);
4448 SvRMAGICAL_on(dstr);
4452 else if (sflags & (SVp_IOK|SVp_NOK)) {
4453 (void)SvOK_off(dstr);
4454 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4455 if (sflags & SVp_IOK) {
4456 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4457 SvIV_set(dstr, SvIVX(sstr));
4459 if (sflags & SVp_NOK) {
4460 SvNV_set(dstr, SvNVX(sstr));
4464 if (isGV_with_GP(sstr)) {
4465 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4468 (void)SvOK_off(dstr);
4470 if (SvTAINTED(sstr))
4475 =for apidoc sv_setsv_mg
4477 Like C<sv_setsv>, but also handles 'set' magic.
4483 Perl_sv_setsv_mg(pTHX_ SV *const dstr, SV *const sstr)
4485 PERL_ARGS_ASSERT_SV_SETSV_MG;
4487 sv_setsv(dstr,sstr);
4492 # ifdef PERL_OLD_COPY_ON_WRITE
4493 # define SVt_COW SVt_PVIV
4495 # define SVt_COW SVt_PV
4498 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4500 STRLEN cur = SvCUR(sstr);
4501 STRLEN len = SvLEN(sstr);
4504 PERL_ARGS_ASSERT_SV_SETSV_COW;
4507 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4508 (void*)sstr, (void*)dstr);
4515 if (SvTHINKFIRST(dstr))
4516 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4517 else if (SvPVX_const(dstr))
4518 Safefree(SvPVX_mutable(dstr));
4522 SvUPGRADE(dstr, SVt_COW);
4524 assert (SvPOK(sstr));
4525 assert (SvPOKp(sstr));
4526 # ifdef PERL_OLD_COPY_ON_WRITE
4527 assert (!SvIOK(sstr));
4528 assert (!SvIOKp(sstr));
4529 assert (!SvNOK(sstr));
4530 assert (!SvNOKp(sstr));
4533 if (SvIsCOW(sstr)) {
4535 if (SvLEN(sstr) == 0) {
4536 /* source is a COW shared hash key. */
4537 DEBUG_C(PerlIO_printf(Perl_debug_log,
4538 "Fast copy on write: Sharing hash\n"));
4539 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4542 # ifdef PERL_OLD_COPY_ON_WRITE
4543 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4545 assert(SvCUR(sstr)+1 < SvLEN(sstr));
4546 assert(CowREFCNT(sstr) < SV_COW_REFCNT_MAX);
4549 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4550 SvUPGRADE(sstr, SVt_COW);
4552 DEBUG_C(PerlIO_printf(Perl_debug_log,
4553 "Fast copy on write: Converting sstr to COW\n"));
4554 # ifdef PERL_OLD_COPY_ON_WRITE
4555 SV_COW_NEXT_SV_SET(dstr, sstr);
4557 CowREFCNT(sstr) = 0;
4560 # ifdef PERL_OLD_COPY_ON_WRITE
4561 SV_COW_NEXT_SV_SET(sstr, dstr);
4565 new_pv = SvPVX_mutable(sstr);
4568 SvPV_set(dstr, new_pv);
4569 SvFLAGS(dstr) = (SVt_COW|SVf_POK|SVp_POK|SVf_IsCOW);
4572 SvLEN_set(dstr, len);
4573 SvCUR_set(dstr, cur);
4582 =for apidoc sv_setpvn
4584 Copies a string into an SV. The C<len> parameter indicates the number of
4585 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4586 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4592 Perl_sv_setpvn(pTHX_ SV *const sv, const char *const ptr, const STRLEN len)
4597 PERL_ARGS_ASSERT_SV_SETPVN;
4599 SV_CHECK_THINKFIRST_COW_DROP(sv);
4605 /* len is STRLEN which is unsigned, need to copy to signed */
4608 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen %"
4611 SvUPGRADE(sv, SVt_PV);
4613 dptr = SvGROW(sv, len + 1);
4614 Move(ptr,dptr,len,char);
4617 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4619 if (SvTYPE(sv) == SVt_PVCV) CvAUTOLOAD_off(sv);
4623 =for apidoc sv_setpvn_mg
4625 Like C<sv_setpvn>, but also handles 'set' magic.
4631 Perl_sv_setpvn_mg(pTHX_ SV *const sv, const char *const ptr, const STRLEN len)
4633 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4635 sv_setpvn(sv,ptr,len);
4640 =for apidoc sv_setpv