5 * "A fair jaw-cracker dwarf-language must be." --Samwise Gamgee
8 /* This file contains functions for compiling a regular expression. See
9 * also regexec.c which funnily enough, contains functions for executing
10 * a regular expression.
12 * This file is also copied at build time to ext/re/re_comp.c, where
13 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
14 * This causes the main functions to be compiled under new names and with
15 * debugging support added, which makes "use re 'debug'" work.
18 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
19 * confused with the original package (see point 3 below). Thanks, Henry!
22 /* Additional note: this code is very heavily munged from Henry's version
23 * in places. In some spots I've traded clarity for efficiency, so don't
24 * blame Henry for some of the lack of readability.
27 /* The names of the functions have been changed from regcomp and
28 * regexec to pregcomp and pregexec in order to avoid conflicts
29 * with the POSIX routines of the same names.
32 #ifdef PERL_EXT_RE_BUILD
37 * pregcomp and pregexec -- regsub and regerror are not used in perl
39 * Copyright (c) 1986 by University of Toronto.
40 * Written by Henry Spencer. Not derived from licensed software.
42 * Permission is granted to anyone to use this software for any
43 * purpose on any computer system, and to redistribute it freely,
44 * subject to the following restrictions:
46 * 1. The author is not responsible for the consequences of use of
47 * this software, no matter how awful, even if they arise
50 * 2. The origin of this software must not be misrepresented, either
51 * by explicit claim or by omission.
53 * 3. Altered versions must be plainly marked as such, and must not
54 * be misrepresented as being the original software.
57 **** Alterations to Henry's code are...
59 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
60 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 by Larry Wall and others
62 **** You may distribute under the terms of either the GNU General Public
63 **** License or the Artistic License, as specified in the README file.
66 * Beware that some of this code is subtly aware of the way operator
67 * precedence is structured in regular expressions. Serious changes in
68 * regular-expression syntax might require a total rethink.
71 #define PERL_IN_REGCOMP_C
74 #ifndef PERL_IN_XSUB_RE
79 #ifdef PERL_IN_XSUB_RE
90 # if defined(BUGGY_MSC6)
91 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
92 # pragma optimize("a",off)
93 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
94 # pragma optimize("w",on )
95 # endif /* BUGGY_MSC6 */
102 typedef struct RExC_state_t {
103 U32 flags; /* are we folding, multilining? */
104 char *precomp; /* uncompiled string. */
105 regexp *rx; /* perl core regexp structure */
106 regexp_internal *rxi; /* internal data for regexp object pprivate field */
107 char *start; /* Start of input for compile */
108 char *end; /* End of input for compile */
109 char *parse; /* Input-scan pointer. */
110 I32 whilem_seen; /* number of WHILEM in this expr */
111 regnode *emit_start; /* Start of emitted-code area */
112 regnode *emit_bound; /* First regnode outside of the allocated space */
113 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
114 I32 naughty; /* How bad is this pattern? */
115 I32 sawback; /* Did we see \1, ...? */
117 I32 size; /* Code size. */
118 I32 npar; /* Capture buffer count, (OPEN). */
119 I32 cpar; /* Capture buffer count, (CLOSE). */
120 I32 nestroot; /* root parens we are in - used by accept */
124 regnode **open_parens; /* pointers to open parens */
125 regnode **close_parens; /* pointers to close parens */
126 regnode *opend; /* END node in program */
127 I32 utf8; /* whether the pattern is utf8 or not */
128 I32 orig_utf8; /* whether the pattern was originally in utf8 */
129 /* XXX use this for future optimisation of case
130 * where pattern must be upgraded to utf8. */
131 HV *charnames; /* cache of named sequences */
132 HV *paren_names; /* Paren names */
134 regnode **recurse; /* Recurse regops */
135 I32 recurse_count; /* Number of recurse regops */
137 char *starttry; /* -Dr: where regtry was called. */
138 #define RExC_starttry (pRExC_state->starttry)
141 const char *lastparse;
143 AV *paren_name_list; /* idx -> name */
144 #define RExC_lastparse (pRExC_state->lastparse)
145 #define RExC_lastnum (pRExC_state->lastnum)
146 #define RExC_paren_name_list (pRExC_state->paren_name_list)
150 #define RExC_flags (pRExC_state->flags)
151 #define RExC_precomp (pRExC_state->precomp)
152 #define RExC_rx (pRExC_state->rx)
153 #define RExC_rxi (pRExC_state->rxi)
154 #define RExC_start (pRExC_state->start)
155 #define RExC_end (pRExC_state->end)
156 #define RExC_parse (pRExC_state->parse)
157 #define RExC_whilem_seen (pRExC_state->whilem_seen)
158 #ifdef RE_TRACK_PATTERN_OFFSETS
159 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
161 #define RExC_emit (pRExC_state->emit)
162 #define RExC_emit_start (pRExC_state->emit_start)
163 #define RExC_emit_bound (pRExC_state->emit_bound)
164 #define RExC_naughty (pRExC_state->naughty)
165 #define RExC_sawback (pRExC_state->sawback)
166 #define RExC_seen (pRExC_state->seen)
167 #define RExC_size (pRExC_state->size)
168 #define RExC_npar (pRExC_state->npar)
169 #define RExC_nestroot (pRExC_state->nestroot)
170 #define RExC_extralen (pRExC_state->extralen)
171 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
172 #define RExC_seen_evals (pRExC_state->seen_evals)
173 #define RExC_utf8 (pRExC_state->utf8)
174 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
175 #define RExC_charnames (pRExC_state->charnames)
176 #define RExC_open_parens (pRExC_state->open_parens)
177 #define RExC_close_parens (pRExC_state->close_parens)
178 #define RExC_opend (pRExC_state->opend)
179 #define RExC_paren_names (pRExC_state->paren_names)
180 #define RExC_recurse (pRExC_state->recurse)
181 #define RExC_recurse_count (pRExC_state->recurse_count)
184 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
185 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
186 ((*s) == '{' && regcurly(s)))
189 #undef SPSTART /* dratted cpp namespace... */
192 * Flags to be passed up and down.
194 #define WORST 0 /* Worst case. */
195 #define HASWIDTH 0x01 /* Known to match non-null strings. */
196 #define SIMPLE 0x02 /* Simple enough to be STAR/PLUS operand. */
197 #define SPSTART 0x04 /* Starts with * or +. */
198 #define TRYAGAIN 0x08 /* Weeded out a declaration. */
199 #define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
201 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
203 /* whether trie related optimizations are enabled */
204 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
205 #define TRIE_STUDY_OPT
206 #define FULL_TRIE_STUDY
212 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
213 #define PBITVAL(paren) (1 << ((paren) & 7))
214 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
215 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
216 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
219 /* About scan_data_t.
221 During optimisation we recurse through the regexp program performing
222 various inplace (keyhole style) optimisations. In addition study_chunk
223 and scan_commit populate this data structure with information about
224 what strings MUST appear in the pattern. We look for the longest
225 string that must appear for at a fixed location, and we look for the
226 longest string that may appear at a floating location. So for instance
231 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
232 strings (because they follow a .* construct). study_chunk will identify
233 both FOO and BAR as being the longest fixed and floating strings respectively.
235 The strings can be composites, for instance
239 will result in a composite fixed substring 'foo'.
241 For each string some basic information is maintained:
243 - offset or min_offset
244 This is the position the string must appear at, or not before.
245 It also implicitly (when combined with minlenp) tells us how many
246 character must match before the string we are searching.
247 Likewise when combined with minlenp and the length of the string
248 tells us how many characters must appear after the string we have
252 Only used for floating strings. This is the rightmost point that
253 the string can appear at. Ifset to I32 max it indicates that the
254 string can occur infinitely far to the right.
257 A pointer to the minimum length of the pattern that the string
258 was found inside. This is important as in the case of positive
259 lookahead or positive lookbehind we can have multiple patterns
264 The minimum length of the pattern overall is 3, the minimum length
265 of the lookahead part is 3, but the minimum length of the part that
266 will actually match is 1. So 'FOO's minimum length is 3, but the
267 minimum length for the F is 1. This is important as the minimum length
268 is used to determine offsets in front of and behind the string being
269 looked for. Since strings can be composites this is the length of the
270 pattern at the time it was commited with a scan_commit. Note that
271 the length is calculated by study_chunk, so that the minimum lengths
272 are not known until the full pattern has been compiled, thus the
273 pointer to the value.
277 In the case of lookbehind the string being searched for can be
278 offset past the start point of the final matching string.
279 If this value was just blithely removed from the min_offset it would
280 invalidate some of the calculations for how many chars must match
281 before or after (as they are derived from min_offset and minlen and
282 the length of the string being searched for).
283 When the final pattern is compiled and the data is moved from the
284 scan_data_t structure into the regexp structure the information
285 about lookbehind is factored in, with the information that would
286 have been lost precalculated in the end_shift field for the
289 The fields pos_min and pos_delta are used to store the minimum offset
290 and the delta to the maximum offset at the current point in the pattern.
294 typedef struct scan_data_t {
295 /*I32 len_min; unused */
296 /*I32 len_delta; unused */
300 I32 last_end; /* min value, <0 unless valid. */
303 SV **longest; /* Either &l_fixed, or &l_float. */
304 SV *longest_fixed; /* longest fixed string found in pattern */
305 I32 offset_fixed; /* offset where it starts */
306 I32 *minlen_fixed; /* pointer to the minlen relevent to the string */
307 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
308 SV *longest_float; /* longest floating string found in pattern */
309 I32 offset_float_min; /* earliest point in string it can appear */
310 I32 offset_float_max; /* latest point in string it can appear */
311 I32 *minlen_float; /* pointer to the minlen relevent to the string */
312 I32 lookbehind_float; /* is the position of the string modified by LB */
316 struct regnode_charclass_class *start_class;
320 * Forward declarations for pregcomp()'s friends.
323 static const scan_data_t zero_scan_data =
324 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
326 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
327 #define SF_BEFORE_SEOL 0x0001
328 #define SF_BEFORE_MEOL 0x0002
329 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
330 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
333 # define SF_FIX_SHIFT_EOL (0+2)
334 # define SF_FL_SHIFT_EOL (0+4)
336 # define SF_FIX_SHIFT_EOL (+2)
337 # define SF_FL_SHIFT_EOL (+4)
340 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
341 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
343 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
344 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
345 #define SF_IS_INF 0x0040
346 #define SF_HAS_PAR 0x0080
347 #define SF_IN_PAR 0x0100
348 #define SF_HAS_EVAL 0x0200
349 #define SCF_DO_SUBSTR 0x0400
350 #define SCF_DO_STCLASS_AND 0x0800
351 #define SCF_DO_STCLASS_OR 0x1000
352 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
353 #define SCF_WHILEM_VISITED_POS 0x2000
355 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
356 #define SCF_SEEN_ACCEPT 0x8000
358 #define UTF (RExC_utf8 != 0)
359 #define LOC ((RExC_flags & RXf_PMf_LOCALE) != 0)
360 #define FOLD ((RExC_flags & RXf_PMf_FOLD) != 0)
362 #define OOB_UNICODE 12345678
363 #define OOB_NAMEDCLASS -1
365 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
366 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
369 /* length of regex to show in messages that don't mark a position within */
370 #define RegexLengthToShowInErrorMessages 127
373 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
374 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
375 * op/pragma/warn/regcomp.
377 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
378 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
380 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
383 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
384 * arg. Show regex, up to a maximum length. If it's too long, chop and add
387 #define _FAIL(code) STMT_START { \
388 const char *ellipses = ""; \
389 IV len = RExC_end - RExC_precomp; \
392 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx); \
393 if (len > RegexLengthToShowInErrorMessages) { \
394 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
395 len = RegexLengthToShowInErrorMessages - 10; \
401 #define FAIL(msg) _FAIL( \
402 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
403 msg, (int)len, RExC_precomp, ellipses))
405 #define FAIL2(msg,arg) _FAIL( \
406 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
407 arg, (int)len, RExC_precomp, ellipses))
410 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
412 #define Simple_vFAIL(m) STMT_START { \
413 const IV offset = RExC_parse - RExC_precomp; \
414 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
415 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
419 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
421 #define vFAIL(m) STMT_START { \
423 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx); \
428 * Like Simple_vFAIL(), but accepts two arguments.
430 #define Simple_vFAIL2(m,a1) STMT_START { \
431 const IV offset = RExC_parse - RExC_precomp; \
432 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
433 (int)offset, RExC_precomp, RExC_precomp + offset); \
437 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
439 #define vFAIL2(m,a1) STMT_START { \
441 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx); \
442 Simple_vFAIL2(m, a1); \
447 * Like Simple_vFAIL(), but accepts three arguments.
449 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
450 const IV offset = RExC_parse - RExC_precomp; \
451 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
452 (int)offset, RExC_precomp, RExC_precomp + offset); \
456 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
458 #define vFAIL3(m,a1,a2) STMT_START { \
460 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx); \
461 Simple_vFAIL3(m, a1, a2); \
465 * Like Simple_vFAIL(), but accepts four arguments.
467 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
468 const IV offset = RExC_parse - RExC_precomp; \
469 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
470 (int)offset, RExC_precomp, RExC_precomp + offset); \
473 #define vWARN(loc,m) STMT_START { \
474 const IV offset = loc - RExC_precomp; \
475 Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \
476 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
479 #define vWARNdep(loc,m) STMT_START { \
480 const IV offset = loc - RExC_precomp; \
481 Perl_warner(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
482 "%s" REPORT_LOCATION, \
483 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
487 #define vWARN2(loc, m, a1) STMT_START { \
488 const IV offset = loc - RExC_precomp; \
489 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
490 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
493 #define vWARN3(loc, m, a1, a2) STMT_START { \
494 const IV offset = loc - RExC_precomp; \
495 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
496 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
499 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
500 const IV offset = loc - RExC_precomp; \
501 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
502 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
505 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
506 const IV offset = loc - RExC_precomp; \
507 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
508 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
512 /* Allow for side effects in s */
513 #define REGC(c,s) STMT_START { \
514 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
517 /* Macros for recording node offsets. 20001227 mjd@plover.com
518 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
519 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
520 * Element 0 holds the number n.
521 * Position is 1 indexed.
523 #ifndef RE_TRACK_PATTERN_OFFSETS
524 #define Set_Node_Offset_To_R(node,byte)
525 #define Set_Node_Offset(node,byte)
526 #define Set_Cur_Node_Offset
527 #define Set_Node_Length_To_R(node,len)
528 #define Set_Node_Length(node,len)
529 #define Set_Node_Cur_Length(node)
530 #define Node_Offset(n)
531 #define Node_Length(n)
532 #define Set_Node_Offset_Length(node,offset,len)
533 #define ProgLen(ri) ri->u.proglen
534 #define SetProgLen(ri,x) ri->u.proglen = x
536 #define ProgLen(ri) ri->u.offsets[0]
537 #define SetProgLen(ri,x) ri->u.offsets[0] = x
538 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
540 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
541 __LINE__, (int)(node), (int)(byte))); \
543 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
545 RExC_offsets[2*(node)-1] = (byte); \
550 #define Set_Node_Offset(node,byte) \
551 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
552 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
554 #define Set_Node_Length_To_R(node,len) STMT_START { \
556 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
557 __LINE__, (int)(node), (int)(len))); \
559 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
561 RExC_offsets[2*(node)] = (len); \
566 #define Set_Node_Length(node,len) \
567 Set_Node_Length_To_R((node)-RExC_emit_start, len)
568 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
569 #define Set_Node_Cur_Length(node) \
570 Set_Node_Length(node, RExC_parse - parse_start)
572 /* Get offsets and lengths */
573 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
574 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
576 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
577 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
578 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
582 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
583 #define EXPERIMENTAL_INPLACESCAN
584 #endif /*RE_TRACK_PATTERN_OFFSETS*/
586 #define DEBUG_STUDYDATA(str,data,depth) \
587 DEBUG_OPTIMISE_MORE_r(if(data){ \
588 PerlIO_printf(Perl_debug_log, \
589 "%*s" str "Pos:%"IVdf"/%"IVdf \
590 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
591 (int)(depth)*2, "", \
592 (IV)((data)->pos_min), \
593 (IV)((data)->pos_delta), \
594 (UV)((data)->flags), \
595 (IV)((data)->whilem_c), \
596 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
597 is_inf ? "INF " : "" \
599 if ((data)->last_found) \
600 PerlIO_printf(Perl_debug_log, \
601 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
602 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
603 SvPVX_const((data)->last_found), \
604 (IV)((data)->last_end), \
605 (IV)((data)->last_start_min), \
606 (IV)((data)->last_start_max), \
607 ((data)->longest && \
608 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
609 SvPVX_const((data)->longest_fixed), \
610 (IV)((data)->offset_fixed), \
611 ((data)->longest && \
612 (data)->longest==&((data)->longest_float)) ? "*" : "", \
613 SvPVX_const((data)->longest_float), \
614 (IV)((data)->offset_float_min), \
615 (IV)((data)->offset_float_max) \
617 PerlIO_printf(Perl_debug_log,"\n"); \
620 static void clear_re(pTHX_ void *r);
622 /* Mark that we cannot extend a found fixed substring at this point.
623 Update the longest found anchored substring and the longest found
624 floating substrings if needed. */
627 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
629 const STRLEN l = CHR_SVLEN(data->last_found);
630 const STRLEN old_l = CHR_SVLEN(*data->longest);
631 GET_RE_DEBUG_FLAGS_DECL;
633 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
634 SvSetMagicSV(*data->longest, data->last_found);
635 if (*data->longest == data->longest_fixed) {
636 data->offset_fixed = l ? data->last_start_min : data->pos_min;
637 if (data->flags & SF_BEFORE_EOL)
639 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
641 data->flags &= ~SF_FIX_BEFORE_EOL;
642 data->minlen_fixed=minlenp;
643 data->lookbehind_fixed=0;
645 else { /* *data->longest == data->longest_float */
646 data->offset_float_min = l ? data->last_start_min : data->pos_min;
647 data->offset_float_max = (l
648 ? data->last_start_max
649 : data->pos_min + data->pos_delta);
650 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
651 data->offset_float_max = I32_MAX;
652 if (data->flags & SF_BEFORE_EOL)
654 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
656 data->flags &= ~SF_FL_BEFORE_EOL;
657 data->minlen_float=minlenp;
658 data->lookbehind_float=0;
661 SvCUR_set(data->last_found, 0);
663 SV * const sv = data->last_found;
664 if (SvUTF8(sv) && SvMAGICAL(sv)) {
665 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
671 data->flags &= ~SF_BEFORE_EOL;
672 DEBUG_STUDYDATA("commit: ",data,0);
675 /* Can match anything (initialization) */
677 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
679 ANYOF_CLASS_ZERO(cl);
680 ANYOF_BITMAP_SETALL(cl);
681 cl->flags = ANYOF_EOS|ANYOF_UNICODE_ALL;
683 cl->flags |= ANYOF_LOCALE;
686 /* Can match anything (initialization) */
688 S_cl_is_anything(const struct regnode_charclass_class *cl)
692 for (value = 0; value <= ANYOF_MAX; value += 2)
693 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
695 if (!(cl->flags & ANYOF_UNICODE_ALL))
697 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
702 /* Can match anything (initialization) */
704 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
706 Zero(cl, 1, struct regnode_charclass_class);
708 cl_anything(pRExC_state, cl);
712 S_cl_init_zero(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
714 Zero(cl, 1, struct regnode_charclass_class);
716 cl_anything(pRExC_state, cl);
718 cl->flags |= ANYOF_LOCALE;
721 /* 'And' a given class with another one. Can create false positives */
722 /* We assume that cl is not inverted */
724 S_cl_and(struct regnode_charclass_class *cl,
725 const struct regnode_charclass_class *and_with)
728 assert(and_with->type == ANYOF);
729 if (!(and_with->flags & ANYOF_CLASS)
730 && !(cl->flags & ANYOF_CLASS)
731 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
732 && !(and_with->flags & ANYOF_FOLD)
733 && !(cl->flags & ANYOF_FOLD)) {
736 if (and_with->flags & ANYOF_INVERT)
737 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
738 cl->bitmap[i] &= ~and_with->bitmap[i];
740 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
741 cl->bitmap[i] &= and_with->bitmap[i];
742 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
743 if (!(and_with->flags & ANYOF_EOS))
744 cl->flags &= ~ANYOF_EOS;
746 if (cl->flags & ANYOF_UNICODE_ALL && and_with->flags & ANYOF_UNICODE &&
747 !(and_with->flags & ANYOF_INVERT)) {
748 cl->flags &= ~ANYOF_UNICODE_ALL;
749 cl->flags |= ANYOF_UNICODE;
750 ARG_SET(cl, ARG(and_with));
752 if (!(and_with->flags & ANYOF_UNICODE_ALL) &&
753 !(and_with->flags & ANYOF_INVERT))
754 cl->flags &= ~ANYOF_UNICODE_ALL;
755 if (!(and_with->flags & (ANYOF_UNICODE|ANYOF_UNICODE_ALL)) &&
756 !(and_with->flags & ANYOF_INVERT))
757 cl->flags &= ~ANYOF_UNICODE;
760 /* 'OR' a given class with another one. Can create false positives */
761 /* We assume that cl is not inverted */
763 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
765 if (or_with->flags & ANYOF_INVERT) {
767 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
768 * <= (B1 | !B2) | (CL1 | !CL2)
769 * which is wasteful if CL2 is small, but we ignore CL2:
770 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
771 * XXXX Can we handle case-fold? Unclear:
772 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
773 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
775 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
776 && !(or_with->flags & ANYOF_FOLD)
777 && !(cl->flags & ANYOF_FOLD) ) {
780 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
781 cl->bitmap[i] |= ~or_with->bitmap[i];
782 } /* XXXX: logic is complicated otherwise */
784 cl_anything(pRExC_state, cl);
787 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
788 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
789 && (!(or_with->flags & ANYOF_FOLD)
790 || (cl->flags & ANYOF_FOLD)) ) {
793 /* OR char bitmap and class bitmap separately */
794 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
795 cl->bitmap[i] |= or_with->bitmap[i];
796 if (or_with->flags & ANYOF_CLASS) {
797 for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
798 cl->classflags[i] |= or_with->classflags[i];
799 cl->flags |= ANYOF_CLASS;
802 else { /* XXXX: logic is complicated, leave it along for a moment. */
803 cl_anything(pRExC_state, cl);
806 if (or_with->flags & ANYOF_EOS)
807 cl->flags |= ANYOF_EOS;
809 if (cl->flags & ANYOF_UNICODE && or_with->flags & ANYOF_UNICODE &&
810 ARG(cl) != ARG(or_with)) {
811 cl->flags |= ANYOF_UNICODE_ALL;
812 cl->flags &= ~ANYOF_UNICODE;
814 if (or_with->flags & ANYOF_UNICODE_ALL) {
815 cl->flags |= ANYOF_UNICODE_ALL;
816 cl->flags &= ~ANYOF_UNICODE;
820 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
821 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
822 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
823 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
828 dump_trie(trie,widecharmap,revcharmap)
829 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
830 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
832 These routines dump out a trie in a somewhat readable format.
833 The _interim_ variants are used for debugging the interim
834 tables that are used to generate the final compressed
835 representation which is what dump_trie expects.
837 Part of the reason for their existance is to provide a form
838 of documentation as to how the different representations function.
843 Dumps the final compressed table form of the trie to Perl_debug_log.
844 Used for debugging make_trie().
848 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
849 AV *revcharmap, U32 depth)
852 SV *sv=sv_newmortal();
853 int colwidth= widecharmap ? 6 : 4;
854 GET_RE_DEBUG_FLAGS_DECL;
857 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
858 (int)depth * 2 + 2,"",
859 "Match","Base","Ofs" );
861 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
862 SV ** const tmp = av_fetch( revcharmap, state, 0);
864 PerlIO_printf( Perl_debug_log, "%*s",
866 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
867 PL_colors[0], PL_colors[1],
868 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
869 PERL_PV_ESCAPE_FIRSTCHAR
874 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
875 (int)depth * 2 + 2,"");
877 for( state = 0 ; state < trie->uniquecharcount ; state++ )
878 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
879 PerlIO_printf( Perl_debug_log, "\n");
881 for( state = 1 ; state < trie->statecount ; state++ ) {
882 const U32 base = trie->states[ state ].trans.base;
884 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
886 if ( trie->states[ state ].wordnum ) {
887 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
889 PerlIO_printf( Perl_debug_log, "%6s", "" );
892 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
897 while( ( base + ofs < trie->uniquecharcount ) ||
898 ( base + ofs - trie->uniquecharcount < trie->lasttrans
899 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
902 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
904 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
905 if ( ( base + ofs >= trie->uniquecharcount ) &&
906 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
907 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
909 PerlIO_printf( Perl_debug_log, "%*"UVXf,
911 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
913 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
917 PerlIO_printf( Perl_debug_log, "]");
920 PerlIO_printf( Perl_debug_log, "\n" );
924 Dumps a fully constructed but uncompressed trie in list form.
925 List tries normally only are used for construction when the number of
926 possible chars (trie->uniquecharcount) is very high.
927 Used for debugging make_trie().
930 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
931 HV *widecharmap, AV *revcharmap, U32 next_alloc,
935 SV *sv=sv_newmortal();
936 int colwidth= widecharmap ? 6 : 4;
937 GET_RE_DEBUG_FLAGS_DECL;
938 /* print out the table precompression. */
939 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
940 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
941 "------:-----+-----------------\n" );
943 for( state=1 ; state < next_alloc ; state ++ ) {
946 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
947 (int)depth * 2 + 2,"", (UV)state );
948 if ( ! trie->states[ state ].wordnum ) {
949 PerlIO_printf( Perl_debug_log, "%5s| ","");
951 PerlIO_printf( Perl_debug_log, "W%4x| ",
952 trie->states[ state ].wordnum
955 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
956 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
958 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
960 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
961 PL_colors[0], PL_colors[1],
962 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
963 PERL_PV_ESCAPE_FIRSTCHAR
965 TRIE_LIST_ITEM(state,charid).forid,
966 (UV)TRIE_LIST_ITEM(state,charid).newstate
969 PerlIO_printf(Perl_debug_log, "\n%*s| ",
970 (int)((depth * 2) + 14), "");
973 PerlIO_printf( Perl_debug_log, "\n");
978 Dumps a fully constructed but uncompressed trie in table form.
979 This is the normal DFA style state transition table, with a few
980 twists to facilitate compression later.
981 Used for debugging make_trie().
984 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
985 HV *widecharmap, AV *revcharmap, U32 next_alloc,
990 SV *sv=sv_newmortal();
991 int colwidth= widecharmap ? 6 : 4;
992 GET_RE_DEBUG_FLAGS_DECL;
995 print out the table precompression so that we can do a visual check
996 that they are identical.
999 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1001 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1002 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1004 PerlIO_printf( Perl_debug_log, "%*s",
1006 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1007 PL_colors[0], PL_colors[1],
1008 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1009 PERL_PV_ESCAPE_FIRSTCHAR
1015 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1017 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1018 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1021 PerlIO_printf( Perl_debug_log, "\n" );
1023 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1025 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1026 (int)depth * 2 + 2,"",
1027 (UV)TRIE_NODENUM( state ) );
1029 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1030 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1032 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1034 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1036 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1037 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1039 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1040 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1047 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1048 startbranch: the first branch in the whole branch sequence
1049 first : start branch of sequence of branch-exact nodes.
1050 May be the same as startbranch
1051 last : Thing following the last branch.
1052 May be the same as tail.
1053 tail : item following the branch sequence
1054 count : words in the sequence
1055 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1056 depth : indent depth
1058 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1060 A trie is an N'ary tree where the branches are determined by digital
1061 decomposition of the key. IE, at the root node you look up the 1st character and
1062 follow that branch repeat until you find the end of the branches. Nodes can be
1063 marked as "accepting" meaning they represent a complete word. Eg:
1067 would convert into the following structure. Numbers represent states, letters
1068 following numbers represent valid transitions on the letter from that state, if
1069 the number is in square brackets it represents an accepting state, otherwise it
1070 will be in parenthesis.
1072 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1076 (1) +-i->(6)-+-s->[7]
1078 +-s->(3)-+-h->(4)-+-e->[5]
1080 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1082 This shows that when matching against the string 'hers' we will begin at state 1
1083 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1084 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1085 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1086 single traverse. We store a mapping from accepting to state to which word was
1087 matched, and then when we have multiple possibilities we try to complete the
1088 rest of the regex in the order in which they occured in the alternation.
1090 The only prior NFA like behaviour that would be changed by the TRIE support is
1091 the silent ignoring of duplicate alternations which are of the form:
1093 / (DUPE|DUPE) X? (?{ ... }) Y /x
1095 Thus EVAL blocks follwing a trie may be called a different number of times with
1096 and without the optimisation. With the optimisations dupes will be silently
1097 ignored. This inconsistant behaviour of EVAL type nodes is well established as
1098 the following demonstrates:
1100 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1102 which prints out 'word' three times, but
1104 'words'=~/(word|word|word)(?{ print $1 })S/
1106 which doesnt print it out at all. This is due to other optimisations kicking in.
1108 Example of what happens on a structural level:
1110 The regexp /(ac|ad|ab)+/ will produce the folowing debug output:
1112 1: CURLYM[1] {1,32767}(18)
1123 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1124 and should turn into:
1126 1: CURLYM[1] {1,32767}(18)
1128 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1136 Cases where tail != last would be like /(?foo|bar)baz/:
1146 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1147 and would end up looking like:
1150 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1157 d = uvuni_to_utf8_flags(d, uv, 0);
1159 is the recommended Unicode-aware way of saying
1164 #define TRIE_STORE_REVCHAR \
1166 SV *tmp = newSVpvs(""); \
1167 if (UTF) SvUTF8_on(tmp); \
1168 Perl_sv_catpvf( aTHX_ tmp, "%c", (int)uvc ); \
1169 av_push( revcharmap, tmp ); \
1172 #define TRIE_READ_CHAR STMT_START { \
1176 if ( foldlen > 0 ) { \
1177 uvc = utf8n_to_uvuni( scan, UTF8_MAXLEN, &len, uniflags ); \
1182 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1183 uvc = to_uni_fold( uvc, foldbuf, &foldlen ); \
1184 foldlen -= UNISKIP( uvc ); \
1185 scan = foldbuf + UNISKIP( uvc ); \
1188 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1198 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1199 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1200 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1201 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1203 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1204 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1205 TRIE_LIST_CUR( state )++; \
1208 #define TRIE_LIST_NEW(state) STMT_START { \
1209 Newxz( trie->states[ state ].trans.list, \
1210 4, reg_trie_trans_le ); \
1211 TRIE_LIST_CUR( state ) = 1; \
1212 TRIE_LIST_LEN( state ) = 4; \
1215 #define TRIE_HANDLE_WORD(state) STMT_START { \
1216 U16 dupe= trie->states[ state ].wordnum; \
1217 regnode * const noper_next = regnext( noper ); \
1219 if (trie->wordlen) \
1220 trie->wordlen[ curword ] = wordlen; \
1222 /* store the word for dumping */ \
1224 if (OP(noper) != NOTHING) \
1225 tmp = newSVpvn(STRING(noper), STR_LEN(noper)); \
1227 tmp = newSVpvn( "", 0 ); \
1228 if ( UTF ) SvUTF8_on( tmp ); \
1229 av_push( trie_words, tmp ); \
1234 if ( noper_next < tail ) { \
1236 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1237 trie->jump[curword] = (U16)(noper_next - convert); \
1239 jumper = noper_next; \
1241 nextbranch= regnext(cur); \
1245 /* So it's a dupe. This means we need to maintain a */\
1246 /* linked-list from the first to the next. */\
1247 /* we only allocate the nextword buffer when there */\
1248 /* a dupe, so first time we have to do the allocation */\
1249 if (!trie->nextword) \
1250 trie->nextword = (U16 *) \
1251 PerlMemShared_calloc( word_count + 1, sizeof(U16)); \
1252 while ( trie->nextword[dupe] ) \
1253 dupe= trie->nextword[dupe]; \
1254 trie->nextword[dupe]= curword; \
1256 /* we haven't inserted this word yet. */ \
1257 trie->states[ state ].wordnum = curword; \
1262 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1263 ( ( base + charid >= ucharcount \
1264 && base + charid < ubound \
1265 && state == trie->trans[ base - ucharcount + charid ].check \
1266 && trie->trans[ base - ucharcount + charid ].next ) \
1267 ? trie->trans[ base - ucharcount + charid ].next \
1268 : ( state==1 ? special : 0 ) \
1272 #define MADE_JUMP_TRIE 2
1273 #define MADE_EXACT_TRIE 4
1276 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1279 /* first pass, loop through and scan words */
1280 reg_trie_data *trie;
1281 HV *widecharmap = NULL;
1282 AV *revcharmap = newAV();
1284 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1289 regnode *jumper = NULL;
1290 regnode *nextbranch = NULL;
1291 regnode *convert = NULL;
1292 /* we just use folder as a flag in utf8 */
1293 const U8 * const folder = ( flags == EXACTF
1295 : ( flags == EXACTFL
1302 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1303 AV *trie_words = NULL;
1304 /* along with revcharmap, this only used during construction but both are
1305 * useful during debugging so we store them in the struct when debugging.
1308 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1309 STRLEN trie_charcount=0;
1311 SV *re_trie_maxbuff;
1312 GET_RE_DEBUG_FLAGS_DECL;
1314 PERL_UNUSED_ARG(depth);
1317 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1319 trie->startstate = 1;
1320 trie->wordcount = word_count;
1321 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1322 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1323 if (!(UTF && folder))
1324 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1326 trie_words = newAV();
1329 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1330 if (!SvIOK(re_trie_maxbuff)) {
1331 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1334 PerlIO_printf( Perl_debug_log,
1335 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1336 (int)depth * 2 + 2, "",
1337 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1338 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1342 /* Find the node we are going to overwrite */
1343 if ( first == startbranch && OP( last ) != BRANCH ) {
1344 /* whole branch chain */
1347 /* branch sub-chain */
1348 convert = NEXTOPER( first );
1351 /* -- First loop and Setup --
1353 We first traverse the branches and scan each word to determine if it
1354 contains widechars, and how many unique chars there are, this is
1355 important as we have to build a table with at least as many columns as we
1358 We use an array of integers to represent the character codes 0..255
1359 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1360 native representation of the character value as the key and IV's for the
1363 *TODO* If we keep track of how many times each character is used we can
1364 remap the columns so that the table compression later on is more
1365 efficient in terms of memory by ensuring most common value is in the
1366 middle and the least common are on the outside. IMO this would be better
1367 than a most to least common mapping as theres a decent chance the most
1368 common letter will share a node with the least common, meaning the node
1369 will not be compressable. With a middle is most common approach the worst
1370 case is when we have the least common nodes twice.
1374 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1375 regnode * const noper = NEXTOPER( cur );
1376 const U8 *uc = (U8*)STRING( noper );
1377 const U8 * const e = uc + STR_LEN( noper );
1379 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1380 const U8 *scan = (U8*)NULL;
1381 U32 wordlen = 0; /* required init */
1383 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1385 if (OP(noper) == NOTHING) {
1389 if ( set_bit ) /* bitmap only alloced when !(UTF&&Folding) */
1390 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1391 regardless of encoding */
1393 for ( ; uc < e ; uc += len ) {
1394 TRIE_CHARCOUNT(trie)++;
1398 if ( !trie->charmap[ uvc ] ) {
1399 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1401 trie->charmap[ folder[ uvc ] ] = trie->charmap[ uvc ];
1405 /* store the codepoint in the bitmap, and if its ascii
1406 also store its folded equivelent. */
1407 TRIE_BITMAP_SET(trie,uvc);
1408 if ( folder ) TRIE_BITMAP_SET(trie,folder[ uvc ]);
1409 set_bit = 0; /* We've done our bit :-) */
1414 widecharmap = newHV();
1416 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1419 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1421 if ( !SvTRUE( *svpp ) ) {
1422 sv_setiv( *svpp, ++trie->uniquecharcount );
1427 if( cur == first ) {
1430 } else if (chars < trie->minlen) {
1432 } else if (chars > trie->maxlen) {
1436 } /* end first pass */
1437 DEBUG_TRIE_COMPILE_r(
1438 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1439 (int)depth * 2 + 2,"",
1440 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1441 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1442 (int)trie->minlen, (int)trie->maxlen )
1444 trie->wordlen = (U32 *) PerlMemShared_calloc( word_count, sizeof(U32) );
1447 We now know what we are dealing with in terms of unique chars and
1448 string sizes so we can calculate how much memory a naive
1449 representation using a flat table will take. If it's over a reasonable
1450 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1451 conservative but potentially much slower representation using an array
1454 At the end we convert both representations into the same compressed
1455 form that will be used in regexec.c for matching with. The latter
1456 is a form that cannot be used to construct with but has memory
1457 properties similar to the list form and access properties similar
1458 to the table form making it both suitable for fast searches and
1459 small enough that its feasable to store for the duration of a program.
1461 See the comment in the code where the compressed table is produced
1462 inplace from the flat tabe representation for an explanation of how
1463 the compression works.
1468 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1470 Second Pass -- Array Of Lists Representation
1472 Each state will be represented by a list of charid:state records
1473 (reg_trie_trans_le) the first such element holds the CUR and LEN
1474 points of the allocated array. (See defines above).
1476 We build the initial structure using the lists, and then convert
1477 it into the compressed table form which allows faster lookups
1478 (but cant be modified once converted).
1481 STRLEN transcount = 1;
1483 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1484 "%*sCompiling trie using list compiler\n",
1485 (int)depth * 2 + 2, ""));
1487 trie->states = (reg_trie_state *)
1488 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1489 sizeof(reg_trie_state) );
1493 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1495 regnode * const noper = NEXTOPER( cur );
1496 U8 *uc = (U8*)STRING( noper );
1497 const U8 * const e = uc + STR_LEN( noper );
1498 U32 state = 1; /* required init */
1499 U16 charid = 0; /* sanity init */
1500 U8 *scan = (U8*)NULL; /* sanity init */
1501 STRLEN foldlen = 0; /* required init */
1502 U32 wordlen = 0; /* required init */
1503 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1505 if (OP(noper) != NOTHING) {
1506 for ( ; uc < e ; uc += len ) {
1511 charid = trie->charmap[ uvc ];
1513 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1517 charid=(U16)SvIV( *svpp );
1520 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1527 if ( !trie->states[ state ].trans.list ) {
1528 TRIE_LIST_NEW( state );
1530 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1531 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1532 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1537 newstate = next_alloc++;
1538 TRIE_LIST_PUSH( state, charid, newstate );
1543 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1547 TRIE_HANDLE_WORD(state);
1549 } /* end second pass */
1551 /* next alloc is the NEXT state to be allocated */
1552 trie->statecount = next_alloc;
1553 trie->states = (reg_trie_state *)
1554 PerlMemShared_realloc( trie->states,
1556 * sizeof(reg_trie_state) );
1558 /* and now dump it out before we compress it */
1559 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1560 revcharmap, next_alloc,
1564 trie->trans = (reg_trie_trans *)
1565 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1572 for( state=1 ; state < next_alloc ; state ++ ) {
1576 DEBUG_TRIE_COMPILE_MORE_r(
1577 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1581 if (trie->states[state].trans.list) {
1582 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1586 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1587 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1588 if ( forid < minid ) {
1590 } else if ( forid > maxid ) {
1594 if ( transcount < tp + maxid - minid + 1) {
1596 trie->trans = (reg_trie_trans *)
1597 PerlMemShared_realloc( trie->trans,
1599 * sizeof(reg_trie_trans) );
1600 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1602 base = trie->uniquecharcount + tp - minid;
1603 if ( maxid == minid ) {
1605 for ( ; zp < tp ; zp++ ) {
1606 if ( ! trie->trans[ zp ].next ) {
1607 base = trie->uniquecharcount + zp - minid;
1608 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1609 trie->trans[ zp ].check = state;
1615 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1616 trie->trans[ tp ].check = state;
1621 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1622 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1623 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1624 trie->trans[ tid ].check = state;
1626 tp += ( maxid - minid + 1 );
1628 Safefree(trie->states[ state ].trans.list);
1631 DEBUG_TRIE_COMPILE_MORE_r(
1632 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1635 trie->states[ state ].trans.base=base;
1637 trie->lasttrans = tp + 1;
1641 Second Pass -- Flat Table Representation.
1643 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1644 We know that we will need Charcount+1 trans at most to store the data
1645 (one row per char at worst case) So we preallocate both structures
1646 assuming worst case.
1648 We then construct the trie using only the .next slots of the entry
1651 We use the .check field of the first entry of the node temporarily to
1652 make compression both faster and easier by keeping track of how many non
1653 zero fields are in the node.
1655 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1658 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1659 number representing the first entry of the node, and state as a
1660 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1661 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1662 are 2 entrys per node. eg:
1670 The table is internally in the right hand, idx form. However as we also
1671 have to deal with the states array which is indexed by nodenum we have to
1672 use TRIE_NODENUM() to convert.
1675 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1676 "%*sCompiling trie using table compiler\n",
1677 (int)depth * 2 + 2, ""));
1679 trie->trans = (reg_trie_trans *)
1680 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
1681 * trie->uniquecharcount + 1,
1682 sizeof(reg_trie_trans) );
1683 trie->states = (reg_trie_state *)
1684 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1685 sizeof(reg_trie_state) );
1686 next_alloc = trie->uniquecharcount + 1;
1689 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1691 regnode * const noper = NEXTOPER( cur );
1692 const U8 *uc = (U8*)STRING( noper );
1693 const U8 * const e = uc + STR_LEN( noper );
1695 U32 state = 1; /* required init */
1697 U16 charid = 0; /* sanity init */
1698 U32 accept_state = 0; /* sanity init */
1699 U8 *scan = (U8*)NULL; /* sanity init */
1701 STRLEN foldlen = 0; /* required init */
1702 U32 wordlen = 0; /* required init */
1703 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1705 if ( OP(noper) != NOTHING ) {
1706 for ( ; uc < e ; uc += len ) {
1711 charid = trie->charmap[ uvc ];
1713 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1714 charid = svpp ? (U16)SvIV(*svpp) : 0;
1718 if ( !trie->trans[ state + charid ].next ) {
1719 trie->trans[ state + charid ].next = next_alloc;
1720 trie->trans[ state ].check++;
1721 next_alloc += trie->uniquecharcount;
1723 state = trie->trans[ state + charid ].next;
1725 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1727 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1730 accept_state = TRIE_NODENUM( state );
1731 TRIE_HANDLE_WORD(accept_state);
1733 } /* end second pass */
1735 /* and now dump it out before we compress it */
1736 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
1738 next_alloc, depth+1));
1742 * Inplace compress the table.*
1744 For sparse data sets the table constructed by the trie algorithm will
1745 be mostly 0/FAIL transitions or to put it another way mostly empty.
1746 (Note that leaf nodes will not contain any transitions.)
1748 This algorithm compresses the tables by eliminating most such
1749 transitions, at the cost of a modest bit of extra work during lookup:
1751 - Each states[] entry contains a .base field which indicates the
1752 index in the state[] array wheres its transition data is stored.
1754 - If .base is 0 there are no valid transitions from that node.
1756 - If .base is nonzero then charid is added to it to find an entry in
1759 -If trans[states[state].base+charid].check!=state then the
1760 transition is taken to be a 0/Fail transition. Thus if there are fail
1761 transitions at the front of the node then the .base offset will point
1762 somewhere inside the previous nodes data (or maybe even into a node
1763 even earlier), but the .check field determines if the transition is
1767 The following process inplace converts the table to the compressed
1768 table: We first do not compress the root node 1,and mark its all its
1769 .check pointers as 1 and set its .base pointer as 1 as well. This
1770 allows to do a DFA construction from the compressed table later, and
1771 ensures that any .base pointers we calculate later are greater than
1774 - We set 'pos' to indicate the first entry of the second node.
1776 - We then iterate over the columns of the node, finding the first and
1777 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
1778 and set the .check pointers accordingly, and advance pos
1779 appropriately and repreat for the next node. Note that when we copy
1780 the next pointers we have to convert them from the original
1781 NODEIDX form to NODENUM form as the former is not valid post
1784 - If a node has no transitions used we mark its base as 0 and do not
1785 advance the pos pointer.
1787 - If a node only has one transition we use a second pointer into the
1788 structure to fill in allocated fail transitions from other states.
1789 This pointer is independent of the main pointer and scans forward
1790 looking for null transitions that are allocated to a state. When it
1791 finds one it writes the single transition into the "hole". If the
1792 pointer doesnt find one the single transition is appended as normal.
1794 - Once compressed we can Renew/realloc the structures to release the
1797 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
1798 specifically Fig 3.47 and the associated pseudocode.
1802 const U32 laststate = TRIE_NODENUM( next_alloc );
1805 trie->statecount = laststate;
1807 for ( state = 1 ; state < laststate ; state++ ) {
1809 const U32 stateidx = TRIE_NODEIDX( state );
1810 const U32 o_used = trie->trans[ stateidx ].check;
1811 U32 used = trie->trans[ stateidx ].check;
1812 trie->trans[ stateidx ].check = 0;
1814 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
1815 if ( flag || trie->trans[ stateidx + charid ].next ) {
1816 if ( trie->trans[ stateidx + charid ].next ) {
1818 for ( ; zp < pos ; zp++ ) {
1819 if ( ! trie->trans[ zp ].next ) {
1823 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
1824 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
1825 trie->trans[ zp ].check = state;
1826 if ( ++zp > pos ) pos = zp;
1833 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
1835 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
1836 trie->trans[ pos ].check = state;
1841 trie->lasttrans = pos + 1;
1842 trie->states = (reg_trie_state *)
1843 PerlMemShared_realloc( trie->states, laststate
1844 * sizeof(reg_trie_state) );
1845 DEBUG_TRIE_COMPILE_MORE_r(
1846 PerlIO_printf( Perl_debug_log,
1847 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
1848 (int)depth * 2 + 2,"",
1849 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
1852 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
1855 } /* end table compress */
1857 DEBUG_TRIE_COMPILE_MORE_r(
1858 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
1859 (int)depth * 2 + 2, "",
1860 (UV)trie->statecount,
1861 (UV)trie->lasttrans)
1863 /* resize the trans array to remove unused space */
1864 trie->trans = (reg_trie_trans *)
1865 PerlMemShared_realloc( trie->trans, trie->lasttrans
1866 * sizeof(reg_trie_trans) );
1868 /* and now dump out the compressed format */
1869 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
1871 { /* Modify the program and insert the new TRIE node*/
1872 U8 nodetype =(U8)(flags & 0xFF);
1876 regnode *optimize = NULL;
1877 #ifdef RE_TRACK_PATTERN_OFFSETS
1880 U32 mjd_nodelen = 0;
1881 #endif /* RE_TRACK_PATTERN_OFFSETS */
1882 #endif /* DEBUGGING */
1884 This means we convert either the first branch or the first Exact,
1885 depending on whether the thing following (in 'last') is a branch
1886 or not and whther first is the startbranch (ie is it a sub part of
1887 the alternation or is it the whole thing.)
1888 Assuming its a sub part we conver the EXACT otherwise we convert
1889 the whole branch sequence, including the first.
1891 /* Find the node we are going to overwrite */
1892 if ( first != startbranch || OP( last ) == BRANCH ) {
1893 /* branch sub-chain */
1894 NEXT_OFF( first ) = (U16)(last - first);
1895 #ifdef RE_TRACK_PATTERN_OFFSETS
1897 mjd_offset= Node_Offset((convert));
1898 mjd_nodelen= Node_Length((convert));
1901 /* whole branch chain */
1903 #ifdef RE_TRACK_PATTERN_OFFSETS
1906 const regnode *nop = NEXTOPER( convert );
1907 mjd_offset= Node_Offset((nop));
1908 mjd_nodelen= Node_Length((nop));
1912 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
1913 (int)depth * 2 + 2, "",
1914 (UV)mjd_offset, (UV)mjd_nodelen)
1917 /* But first we check to see if there is a common prefix we can
1918 split out as an EXACT and put in front of the TRIE node. */
1919 trie->startstate= 1;
1920 if ( trie->bitmap && !widecharmap && !trie->jump ) {
1922 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
1926 const U32 base = trie->states[ state ].trans.base;
1928 if ( trie->states[state].wordnum )
1931 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1932 if ( ( base + ofs >= trie->uniquecharcount ) &&
1933 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1934 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1936 if ( ++count > 1 ) {
1937 SV **tmp = av_fetch( revcharmap, ofs, 0);
1938 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
1939 if ( state == 1 ) break;
1941 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
1943 PerlIO_printf(Perl_debug_log,
1944 "%*sNew Start State=%"UVuf" Class: [",
1945 (int)depth * 2 + 2, "",
1948 SV ** const tmp = av_fetch( revcharmap, idx, 0);
1949 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
1951 TRIE_BITMAP_SET(trie,*ch);
1953 TRIE_BITMAP_SET(trie, folder[ *ch ]);
1955 PerlIO_printf(Perl_debug_log, (char*)ch)
1959 TRIE_BITMAP_SET(trie,*ch);
1961 TRIE_BITMAP_SET(trie,folder[ *ch ]);
1962 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
1968 SV **tmp = av_fetch( revcharmap, idx, 0);
1970 char *ch = SvPV( *tmp, len );
1972 SV *sv=sv_newmortal();
1973 PerlIO_printf( Perl_debug_log,
1974 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
1975 (int)depth * 2 + 2, "",
1977 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
1978 PL_colors[0], PL_colors[1],
1979 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1980 PERL_PV_ESCAPE_FIRSTCHAR
1985 OP( convert ) = nodetype;
1986 str=STRING(convert);
1989 STR_LEN(convert) += len;
1995 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2001 regnode *n = convert+NODE_SZ_STR(convert);
2002 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2003 trie->startstate = state;
2004 trie->minlen -= (state - 1);
2005 trie->maxlen -= (state - 1);
2007 regnode *fix = convert;
2008 U32 word = trie->wordcount;
2010 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2011 while( ++fix < n ) {
2012 Set_Node_Offset_Length(fix, 0, 0);
2015 SV ** const tmp = av_fetch( trie_words, word, 0 );
2017 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2018 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2020 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2027 NEXT_OFF(convert) = (U16)(tail - convert);
2028 DEBUG_r(optimize= n);
2034 if ( trie->maxlen ) {
2035 NEXT_OFF( convert ) = (U16)(tail - convert);
2036 ARG_SET( convert, data_slot );
2037 /* Store the offset to the first unabsorbed branch in
2038 jump[0], which is otherwise unused by the jump logic.
2039 We use this when dumping a trie and during optimisation. */
2041 trie->jump[0] = (U16)(nextbranch - convert);
2044 if ( !trie->states[trie->startstate].wordnum && trie->bitmap &&
2045 ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2047 OP( convert ) = TRIEC;
2048 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2049 PerlMemShared_free(trie->bitmap);
2052 OP( convert ) = TRIE;
2054 /* store the type in the flags */
2055 convert->flags = nodetype;
2059 + regarglen[ OP( convert ) ];
2061 /* XXX We really should free up the resource in trie now,
2062 as we won't use them - (which resources?) dmq */
2064 /* needed for dumping*/
2065 DEBUG_r(if (optimize) {
2066 regnode *opt = convert;
2068 while ( ++opt < optimize) {
2069 Set_Node_Offset_Length(opt,0,0);
2072 Try to clean up some of the debris left after the
2075 while( optimize < jumper ) {
2076 mjd_nodelen += Node_Length((optimize));
2077 OP( optimize ) = OPTIMIZED;
2078 Set_Node_Offset_Length(optimize,0,0);
2081 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2083 } /* end node insert */
2084 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2086 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2087 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2089 SvREFCNT_dec(revcharmap);
2093 : trie->startstate>1
2099 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2101 /* The Trie is constructed and compressed now so we can build a fail array now if its needed
2103 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2104 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2107 We find the fail state for each state in the trie, this state is the longest proper
2108 suffix of the current states 'word' that is also a proper prefix of another word in our
2109 trie. State 1 represents the word '' and is the thus the default fail state. This allows
2110 the DFA not to have to restart after its tried and failed a word at a given point, it
2111 simply continues as though it had been matching the other word in the first place.
2113 'abcdgu'=~/abcdefg|cdgu/
2114 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2115 fail, which would bring use to the state representing 'd' in the second word where we would
2116 try 'g' and succeed, prodceding to match 'cdgu'.
2118 /* add a fail transition */
2119 const U32 trie_offset = ARG(source);
2120 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2122 const U32 ucharcount = trie->uniquecharcount;
2123 const U32 numstates = trie->statecount;
2124 const U32 ubound = trie->lasttrans + ucharcount;
2128 U32 base = trie->states[ 1 ].trans.base;
2131 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2132 GET_RE_DEBUG_FLAGS_DECL;
2134 PERL_UNUSED_ARG(depth);
2138 ARG_SET( stclass, data_slot );
2139 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2140 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2141 aho->trie=trie_offset;
2142 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2143 Copy( trie->states, aho->states, numstates, reg_trie_state );
2144 Newxz( q, numstates, U32);
2145 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2148 /* initialize fail[0..1] to be 1 so that we always have
2149 a valid final fail state */
2150 fail[ 0 ] = fail[ 1 ] = 1;
2152 for ( charid = 0; charid < ucharcount ; charid++ ) {
2153 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2155 q[ q_write ] = newstate;
2156 /* set to point at the root */
2157 fail[ q[ q_write++ ] ]=1;
2160 while ( q_read < q_write) {
2161 const U32 cur = q[ q_read++ % numstates ];
2162 base = trie->states[ cur ].trans.base;
2164 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2165 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2167 U32 fail_state = cur;
2170 fail_state = fail[ fail_state ];
2171 fail_base = aho->states[ fail_state ].trans.base;
2172 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2174 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2175 fail[ ch_state ] = fail_state;
2176 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2178 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2180 q[ q_write++ % numstates] = ch_state;
2184 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2185 when we fail in state 1, this allows us to use the
2186 charclass scan to find a valid start char. This is based on the principle
2187 that theres a good chance the string being searched contains lots of stuff
2188 that cant be a start char.
2190 fail[ 0 ] = fail[ 1 ] = 0;
2191 DEBUG_TRIE_COMPILE_r({
2192 PerlIO_printf(Perl_debug_log,
2193 "%*sStclass Failtable (%"UVuf" states): 0",
2194 (int)(depth * 2), "", (UV)numstates
2196 for( q_read=1; q_read<numstates; q_read++ ) {
2197 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2199 PerlIO_printf(Perl_debug_log, "\n");
2202 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2207 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2208 * These need to be revisited when a newer toolchain becomes available.
2210 #if defined(__sparc64__) && defined(__GNUC__)
2211 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2212 # undef SPARC64_GCC_WORKAROUND
2213 # define SPARC64_GCC_WORKAROUND 1
2217 #define DEBUG_PEEP(str,scan,depth) \
2218 DEBUG_OPTIMISE_r({if (scan){ \
2219 SV * const mysv=sv_newmortal(); \
2220 regnode *Next = regnext(scan); \
2221 regprop(RExC_rx, mysv, scan); \
2222 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2223 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2224 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2231 #define JOIN_EXACT(scan,min,flags) \
2232 if (PL_regkind[OP(scan)] == EXACT) \
2233 join_exact(pRExC_state,(scan),(min),(flags),NULL,depth+1)
2236 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, I32 *min, U32 flags,regnode *val, U32 depth) {
2237 /* Merge several consecutive EXACTish nodes into one. */
2238 regnode *n = regnext(scan);
2240 regnode *next = scan + NODE_SZ_STR(scan);
2244 regnode *stop = scan;
2245 GET_RE_DEBUG_FLAGS_DECL;
2247 PERL_UNUSED_ARG(depth);
2249 #ifndef EXPERIMENTAL_INPLACESCAN
2250 PERL_UNUSED_ARG(flags);
2251 PERL_UNUSED_ARG(val);
2253 DEBUG_PEEP("join",scan,depth);
2255 /* Skip NOTHING, merge EXACT*. */
2257 ( PL_regkind[OP(n)] == NOTHING ||
2258 (stringok && (OP(n) == OP(scan))))
2260 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX) {
2262 if (OP(n) == TAIL || n > next)
2264 if (PL_regkind[OP(n)] == NOTHING) {
2265 DEBUG_PEEP("skip:",n,depth);
2266 NEXT_OFF(scan) += NEXT_OFF(n);
2267 next = n + NODE_STEP_REGNODE;
2274 else if (stringok) {
2275 const unsigned int oldl = STR_LEN(scan);
2276 regnode * const nnext = regnext(n);
2278 DEBUG_PEEP("merg",n,depth);
2281 if (oldl + STR_LEN(n) > U8_MAX)
2283 NEXT_OFF(scan) += NEXT_OFF(n);
2284 STR_LEN(scan) += STR_LEN(n);
2285 next = n + NODE_SZ_STR(n);
2286 /* Now we can overwrite *n : */
2287 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2295 #ifdef EXPERIMENTAL_INPLACESCAN
2296 if (flags && !NEXT_OFF(n)) {
2297 DEBUG_PEEP("atch", val, depth);
2298 if (reg_off_by_arg[OP(n)]) {
2299 ARG_SET(n, val - n);
2302 NEXT_OFF(n) = val - n;
2309 if (UTF && ( OP(scan) == EXACTF ) && ( STR_LEN(scan) >= 6 ) ) {
2311 Two problematic code points in Unicode casefolding of EXACT nodes:
2313 U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
2314 U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
2320 U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
2321 U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
2323 This means that in case-insensitive matching (or "loose matching",
2324 as Unicode calls it), an EXACTF of length six (the UTF-8 encoded byte
2325 length of the above casefolded versions) can match a target string
2326 of length two (the byte length of UTF-8 encoded U+0390 or U+03B0).
2327 This would rather mess up the minimum length computation.
2329 What we'll do is to look for the tail four bytes, and then peek
2330 at the preceding two bytes to see whether we need to decrease
2331 the minimum length by four (six minus two).
2333 Thanks to the design of UTF-8, there cannot be false matches:
2334 A sequence of valid UTF-8 bytes cannot be a subsequence of
2335 another valid sequence of UTF-8 bytes.
2338 char * const s0 = STRING(scan), *s, *t;
2339 char * const s1 = s0 + STR_LEN(scan) - 1;
2340 char * const s2 = s1 - 4;
2341 #ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
2342 const char t0[] = "\xaf\x49\xaf\x42";
2344 const char t0[] = "\xcc\x88\xcc\x81";
2346 const char * const t1 = t0 + 3;
2349 s < s2 && (t = ninstr(s, s1, t0, t1));
2352 if (((U8)t[-1] == 0x68 && (U8)t[-2] == 0xB4) ||
2353 ((U8)t[-1] == 0x46 && (U8)t[-2] == 0xB5))
2355 if (((U8)t[-1] == 0xB9 && (U8)t[-2] == 0xCE) ||
2356 ((U8)t[-1] == 0x85 && (U8)t[-2] == 0xCF))
2364 n = scan + NODE_SZ_STR(scan);
2366 if (PL_regkind[OP(n)] != NOTHING || OP(n) == NOTHING) {
2373 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2377 /* REx optimizer. Converts nodes into quickier variants "in place".
2378 Finds fixed substrings. */
2380 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2381 to the position after last scanned or to NULL. */
2383 #define INIT_AND_WITHP \
2384 assert(!and_withp); \
2385 Newx(and_withp,1,struct regnode_charclass_class); \
2386 SAVEFREEPV(and_withp)
2388 /* this is a chain of data about sub patterns we are processing that
2389 need to be handled seperately/specially in study_chunk. Its so
2390 we can simulate recursion without losing state. */
2392 typedef struct scan_frame {
2393 regnode *last; /* last node to process in this frame */
2394 regnode *next; /* next node to process when last is reached */
2395 struct scan_frame *prev; /*previous frame*/
2396 I32 stop; /* what stopparen do we use */
2400 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2402 #define CASE_SYNST_FNC(nAmE) \
2404 if (flags & SCF_DO_STCLASS_AND) { \
2405 for (value = 0; value < 256; value++) \
2406 if (!is_ ## nAmE ## _cp(value)) \
2407 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2410 for (value = 0; value < 256; value++) \
2411 if (is_ ## nAmE ## _cp(value)) \
2412 ANYOF_BITMAP_SET(data->start_class, value); \
2416 if (flags & SCF_DO_STCLASS_AND) { \
2417 for (value = 0; value < 256; value++) \
2418 if (is_ ## nAmE ## _cp(value)) \
2419 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2422 for (value = 0; value < 256; value++) \
2423 if (!is_ ## nAmE ## _cp(value)) \
2424 ANYOF_BITMAP_SET(data->start_class, value); \
2431 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2432 I32 *minlenp, I32 *deltap,
2437 struct regnode_charclass_class *and_withp,
2438 U32 flags, U32 depth)
2439 /* scanp: Start here (read-write). */
2440 /* deltap: Write maxlen-minlen here. */
2441 /* last: Stop before this one. */
2442 /* data: string data about the pattern */
2443 /* stopparen: treat close N as END */
2444 /* recursed: which subroutines have we recursed into */
2445 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
2448 I32 min = 0, pars = 0, code;
2449 regnode *scan = *scanp, *next;
2451 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
2452 int is_inf_internal = 0; /* The studied chunk is infinite */
2453 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
2454 scan_data_t data_fake;
2455 SV *re_trie_maxbuff = NULL;
2456 regnode *first_non_open = scan;
2457 I32 stopmin = I32_MAX;
2458 scan_frame *frame = NULL;
2460 GET_RE_DEBUG_FLAGS_DECL;
2463 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
2467 while (first_non_open && OP(first_non_open) == OPEN)
2468 first_non_open=regnext(first_non_open);
2473 while ( scan && OP(scan) != END && scan < last ){
2474 /* Peephole optimizer: */
2475 DEBUG_STUDYDATA("Peep:", data,depth);
2476 DEBUG_PEEP("Peep",scan,depth);
2477 JOIN_EXACT(scan,&min,0);
2479 /* Follow the next-chain of the current node and optimize
2480 away all the NOTHINGs from it. */
2481 if (OP(scan) != CURLYX) {
2482 const int max = (reg_off_by_arg[OP(scan)]
2484 /* I32 may be smaller than U16 on CRAYs! */
2485 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
2486 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
2490 /* Skip NOTHING and LONGJMP. */
2491 while ((n = regnext(n))
2492 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
2493 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
2494 && off + noff < max)
2496 if (reg_off_by_arg[OP(scan)])
2499 NEXT_OFF(scan) = off;
2504 /* The principal pseudo-switch. Cannot be a switch, since we
2505 look into several different things. */
2506 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
2507 || OP(scan) == IFTHEN) {
2508 next = regnext(scan);
2510 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
2512 if (OP(next) == code || code == IFTHEN) {
2513 /* NOTE - There is similar code to this block below for handling
2514 TRIE nodes on a re-study. If you change stuff here check there
2516 I32 max1 = 0, min1 = I32_MAX, num = 0;
2517 struct regnode_charclass_class accum;
2518 regnode * const startbranch=scan;
2520 if (flags & SCF_DO_SUBSTR)
2521 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
2522 if (flags & SCF_DO_STCLASS)
2523 cl_init_zero(pRExC_state, &accum);
2525 while (OP(scan) == code) {
2526 I32 deltanext, minnext, f = 0, fake;
2527 struct regnode_charclass_class this_class;
2530 data_fake.flags = 0;
2532 data_fake.whilem_c = data->whilem_c;
2533 data_fake.last_closep = data->last_closep;
2536 data_fake.last_closep = &fake;
2538 data_fake.pos_delta = delta;
2539 next = regnext(scan);
2540 scan = NEXTOPER(scan);
2542 scan = NEXTOPER(scan);
2543 if (flags & SCF_DO_STCLASS) {
2544 cl_init(pRExC_state, &this_class);
2545 data_fake.start_class = &this_class;
2546 f = SCF_DO_STCLASS_AND;
2548 if (flags & SCF_WHILEM_VISITED_POS)
2549 f |= SCF_WHILEM_VISITED_POS;
2551 /* we suppose the run is continuous, last=next...*/
2552 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
2554 stopparen, recursed, NULL, f,depth+1);
2557 if (max1 < minnext + deltanext)
2558 max1 = minnext + deltanext;
2559 if (deltanext == I32_MAX)
2560 is_inf = is_inf_internal = 1;
2562 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
2564 if (data_fake.flags & SCF_SEEN_ACCEPT) {
2565 if ( stopmin > minnext)
2566 stopmin = min + min1;
2567 flags &= ~SCF_DO_SUBSTR;
2569 data->flags |= SCF_SEEN_ACCEPT;
2572 if (data_fake.flags & SF_HAS_EVAL)
2573 data->flags |= SF_HAS_EVAL;
2574 data->whilem_c = data_fake.whilem_c;
2576 if (flags & SCF_DO_STCLASS)
2577 cl_or(pRExC_state, &accum, &this_class);
2579 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
2581 if (flags & SCF_DO_SUBSTR) {
2582 data->pos_min += min1;
2583 data->pos_delta += max1 - min1;
2584 if (max1 != min1 || is_inf)
2585 data->longest = &(data->longest_float);
2588 delta += max1 - min1;
2589 if (flags & SCF_DO_STCLASS_OR) {
2590 cl_or(pRExC_state, data->start_class, &accum);
2592 cl_and(data->start_class, and_withp);
2593 flags &= ~SCF_DO_STCLASS;
2596 else if (flags & SCF_DO_STCLASS_AND) {
2598 cl_and(data->start_class, &accum);
2599 flags &= ~SCF_DO_STCLASS;
2602 /* Switch to OR mode: cache the old value of
2603 * data->start_class */
2605 StructCopy(data->start_class, and_withp,
2606 struct regnode_charclass_class);
2607 flags &= ~SCF_DO_STCLASS_AND;
2608 StructCopy(&accum, data->start_class,
2609 struct regnode_charclass_class);
2610 flags |= SCF_DO_STCLASS_OR;
2611 data->start_class->flags |= ANYOF_EOS;
2615 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
2618 Assuming this was/is a branch we are dealing with: 'scan' now
2619 points at the item that follows the branch sequence, whatever
2620 it is. We now start at the beginning of the sequence and look
2627 which would be constructed from a pattern like /A|LIST|OF|WORDS/
2629 If we can find such a subseqence we need to turn the first
2630 element into a trie and then add the subsequent branch exact
2631 strings to the trie.
2635 1. patterns where the whole set of branch can be converted.
2637 2. patterns where only a subset can be converted.
2639 In case 1 we can replace the whole set with a single regop
2640 for the trie. In case 2 we need to keep the start and end
2643 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
2644 becomes BRANCH TRIE; BRANCH X;
2646 There is an additional case, that being where there is a
2647 common prefix, which gets split out into an EXACT like node
2648 preceding the TRIE node.
2650 If x(1..n)==tail then we can do a simple trie, if not we make
2651 a "jump" trie, such that when we match the appropriate word
2652 we "jump" to the appopriate tail node. Essentailly we turn
2653 a nested if into a case structure of sorts.
2658 if (!re_trie_maxbuff) {
2659 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2660 if (!SvIOK(re_trie_maxbuff))
2661 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2663 if ( SvIV(re_trie_maxbuff)>=0 ) {
2665 regnode *first = (regnode *)NULL;
2666 regnode *last = (regnode *)NULL;
2667 regnode *tail = scan;
2672 SV * const mysv = sv_newmortal(); /* for dumping */
2674 /* var tail is used because there may be a TAIL
2675 regop in the way. Ie, the exacts will point to the
2676 thing following the TAIL, but the last branch will
2677 point at the TAIL. So we advance tail. If we
2678 have nested (?:) we may have to move through several
2682 while ( OP( tail ) == TAIL ) {
2683 /* this is the TAIL generated by (?:) */
2684 tail = regnext( tail );
2689 regprop(RExC_rx, mysv, tail );
2690 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
2691 (int)depth * 2 + 2, "",
2692 "Looking for TRIE'able sequences. Tail node is: ",
2693 SvPV_nolen_const( mysv )
2699 step through the branches, cur represents each
2700 branch, noper is the first thing to be matched
2701 as part of that branch and noper_next is the
2702 regnext() of that node. if noper is an EXACT
2703 and noper_next is the same as scan (our current
2704 position in the regex) then the EXACT branch is
2705 a possible optimization target. Once we have
2706 two or more consequetive such branches we can
2707 create a trie of the EXACT's contents and stich
2708 it in place. If the sequence represents all of
2709 the branches we eliminate the whole thing and
2710 replace it with a single TRIE. If it is a
2711 subsequence then we need to stitch it in. This
2712 means the first branch has to remain, and needs
2713 to be repointed at the item on the branch chain
2714 following the last branch optimized. This could
2715 be either a BRANCH, in which case the
2716 subsequence is internal, or it could be the
2717 item following the branch sequence in which
2718 case the subsequence is at the end.
2722 /* dont use tail as the end marker for this traverse */
2723 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
2724 regnode * const noper = NEXTOPER( cur );
2725 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
2726 regnode * const noper_next = regnext( noper );
2730 regprop(RExC_rx, mysv, cur);
2731 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
2732 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
2734 regprop(RExC_rx, mysv, noper);
2735 PerlIO_printf( Perl_debug_log, " -> %s",
2736 SvPV_nolen_const(mysv));
2739 regprop(RExC_rx, mysv, noper_next );
2740 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
2741 SvPV_nolen_const(mysv));
2743 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
2744 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
2746 if ( (((first && optype!=NOTHING) ? OP( noper ) == optype
2747 : PL_regkind[ OP( noper ) ] == EXACT )
2748 || OP(noper) == NOTHING )
2750 && noper_next == tail
2755 if ( !first || optype == NOTHING ) {
2756 if (!first) first = cur;
2757 optype = OP( noper );
2763 make_trie( pRExC_state,
2764 startbranch, first, cur, tail, count,
2767 if ( PL_regkind[ OP( noper ) ] == EXACT
2769 && noper_next == tail
2774 optype = OP( noper );
2784 regprop(RExC_rx, mysv, cur);
2785 PerlIO_printf( Perl_debug_log,
2786 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
2787 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
2791 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, optype, depth+1 );
2792 #ifdef TRIE_STUDY_OPT
2793 if ( ((made == MADE_EXACT_TRIE &&
2794 startbranch == first)
2795 || ( first_non_open == first )) &&
2797 flags |= SCF_TRIE_RESTUDY;
2798 if ( startbranch == first
2801 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
2811 else if ( code == BRANCHJ ) { /* single branch is optimized. */
2812 scan = NEXTOPER(NEXTOPER(scan));
2813 } else /* single branch is optimized. */
2814 scan = NEXTOPER(scan);
2816 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
2817 scan_frame *newframe = NULL;
2822 if (OP(scan) != SUSPEND) {
2823 /* set the pointer */
2824 if (OP(scan) == GOSUB) {
2826 RExC_recurse[ARG2L(scan)] = scan;
2827 start = RExC_open_parens[paren-1];
2828 end = RExC_close_parens[paren-1];
2831 start = RExC_rxi->program + 1;
2835 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
2836 SAVEFREEPV(recursed);
2838 if (!PAREN_TEST(recursed,paren+1)) {
2839 PAREN_SET(recursed,paren+1);
2840 Newx(newframe,1,scan_frame);
2842 if (flags & SCF_DO_SUBSTR) {
2843 SCAN_COMMIT(pRExC_state,data,minlenp);
2844 data->longest = &(data->longest_float);
2846 is_inf = is_inf_internal = 1;
2847 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
2848 cl_anything(pRExC_state, data->start_class);
2849 flags &= ~SCF_DO_STCLASS;
2852 Newx(newframe,1,scan_frame);
2855 end = regnext(scan);
2860 SAVEFREEPV(newframe);
2861 newframe->next = regnext(scan);
2862 newframe->last = last;
2863 newframe->stop = stopparen;
2864 newframe->prev = frame;
2874 else if (OP(scan) == EXACT) {
2875 I32 l = STR_LEN(scan);
2878 const U8 * const s = (U8*)STRING(scan);
2879 l = utf8_length(s, s + l);
2880 uc = utf8_to_uvchr(s, NULL);
2882 uc = *((U8*)STRING(scan));
2885 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
2886 /* The code below prefers earlier match for fixed
2887 offset, later match for variable offset. */
2888 if (data->last_end == -1) { /* Update the start info. */
2889 data->last_start_min = data->pos_min;
2890 data->last_start_max = is_inf
2891 ? I32_MAX : data->pos_min + data->pos_delta;
2893 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
2895 SvUTF8_on(data->last_found);
2897 SV * const sv = data->last_found;
2898 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
2899 mg_find(sv, PERL_MAGIC_utf8) : NULL;
2900 if (mg && mg->mg_len >= 0)
2901 mg->mg_len += utf8_length((U8*)STRING(scan),
2902 (U8*)STRING(scan)+STR_LEN(scan));
2904 data->last_end = data->pos_min + l;
2905 data->pos_min += l; /* As in the first entry. */
2906 data->flags &= ~SF_BEFORE_EOL;
2908 if (flags & SCF_DO_STCLASS_AND) {
2909 /* Check whether it is compatible with what we know already! */
2913 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
2914 && !ANYOF_BITMAP_TEST(data->start_class, uc)
2915 && (!(data->start_class->flags & ANYOF_FOLD)
2916 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold[uc])))
2919 ANYOF_CLASS_ZERO(data->start_class);
2920 ANYOF_BITMAP_ZERO(data->start_class);
2922 ANYOF_BITMAP_SET(data->start_class, uc);
2923 data->start_class->flags &= ~ANYOF_EOS;
2925 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
2927 else if (flags & SCF_DO_STCLASS_OR) {
2928 /* false positive possible if the class is case-folded */
2930 ANYOF_BITMAP_SET(data->start_class, uc);
2932 data->start_class->flags |= ANYOF_UNICODE_ALL;
2933 data->start_class->flags &= ~ANYOF_EOS;
2934 cl_and(data->start_class, and_withp);
2936 flags &= ~SCF_DO_STCLASS;
2938 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
2939 I32 l = STR_LEN(scan);
2940 UV uc = *((U8*)STRING(scan));
2942 /* Search for fixed substrings supports EXACT only. */
2943 if (flags & SCF_DO_SUBSTR) {
2945 SCAN_COMMIT(pRExC_state, data, minlenp);
2948 const U8 * const s = (U8 *)STRING(scan);
2949 l = utf8_length(s, s + l);
2950 uc = utf8_to_uvchr(s, NULL);
2953 if (flags & SCF_DO_SUBSTR)
2955 if (flags & SCF_DO_STCLASS_AND) {
2956 /* Check whether it is compatible with what we know already! */
2960 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
2961 && !ANYOF_BITMAP_TEST(data->start_class, uc)
2962 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold[uc])))
2964 ANYOF_CLASS_ZERO(data->start_class);
2965 ANYOF_BITMAP_ZERO(data->start_class);
2967 ANYOF_BITMAP_SET(data->start_class, uc);
2968 data->start_class->flags &= ~ANYOF_EOS;
2969 data->start_class->flags |= ANYOF_FOLD;
2970 if (OP(scan) == EXACTFL)
2971 data->start_class->flags |= ANYOF_LOCALE;
2974 else if (flags & SCF_DO_STCLASS_OR) {
2975 if (data->start_class->flags & ANYOF_FOLD) {
2976 /* false positive possible if the class is case-folded.
2977 Assume that the locale settings are the same... */
2979 ANYOF_BITMAP_SET(data->start_class, uc);
2980 data->start_class->flags &= ~ANYOF_EOS;
2982 cl_and(data->start_class, and_withp);
2984 flags &= ~SCF_DO_STCLASS;
2986 else if (strchr((const char*)PL_varies,OP(scan))) {
2987 I32 mincount, maxcount, minnext, deltanext, fl = 0;
2988 I32 f = flags, pos_before = 0;
2989 regnode * const oscan = scan;
2990 struct regnode_charclass_class this_class;
2991 struct regnode_charclass_class *oclass = NULL;
2992 I32 next_is_eval = 0;
2994 switch (PL_regkind[OP(scan)]) {
2995 case WHILEM: /* End of (?:...)* . */
2996 scan = NEXTOPER(scan);
2999 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3000 next = NEXTOPER(scan);
3001 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3003 maxcount = REG_INFTY;
3004 next = regnext(scan);
3005 scan = NEXTOPER(scan);
3009 if (flags & SCF_DO_SUBSTR)
3014 if (flags & SCF_DO_STCLASS) {
3016 maxcount = REG_INFTY;
3017 next = regnext(scan);
3018 scan = NEXTOPER(scan);
3021 is_inf = is_inf_internal = 1;
3022 scan = regnext(scan);
3023 if (flags & SCF_DO_SUBSTR) {
3024 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3025 data->longest = &(data->longest_float);
3027 goto optimize_curly_tail;
3029 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3030 && (scan->flags == stopparen))
3035 mincount = ARG1(scan);
3036 maxcount = ARG2(scan);
3038 next = regnext(scan);
3039 if (OP(scan) == CURLYX) {
3040 I32 lp = (data ? *(data->last_closep) : 0);
3041 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3043 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3044 next_is_eval = (OP(scan) == EVAL);
3046 if (flags & SCF_DO_SUBSTR) {
3047 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3048 pos_before = data->pos_min;
3052 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3054 data->flags |= SF_IS_INF;
3056 if (flags & SCF_DO_STCLASS) {
3057 cl_init(pRExC_state, &this_class);
3058 oclass = data->start_class;
3059 data->start_class = &this_class;
3060 f |= SCF_DO_STCLASS_AND;
3061 f &= ~SCF_DO_STCLASS_OR;
3063 /* These are the cases when once a subexpression
3064 fails at a particular position, it cannot succeed
3065 even after backtracking at the enclosing scope.
3067 XXXX what if minimal match and we are at the
3068 initial run of {n,m}? */
3069 if ((mincount != maxcount - 1) && (maxcount != REG_INFTY))
3070 f &= ~SCF_WHILEM_VISITED_POS;
3072 /* This will finish on WHILEM, setting scan, or on NULL: */
3073 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3074 last, data, stopparen, recursed, NULL,
3076 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3078 if (flags & SCF_DO_STCLASS)
3079 data->start_class = oclass;
3080 if (mincount == 0 || minnext == 0) {
3081 if (flags & SCF_DO_STCLASS_OR) {
3082 cl_or(pRExC_state, data->start_class, &this_class);
3084 else if (flags & SCF_DO_STCLASS_AND) {
3085 /* Switch to OR mode: cache the old value of
3086 * data->start_class */
3088 StructCopy(data->start_class, and_withp,
3089 struct regnode_charclass_class);
3090 flags &= ~SCF_DO_STCLASS_AND;
3091 StructCopy(&this_class, data->start_class,
3092 struct regnode_charclass_class);
3093 flags |= SCF_DO_STCLASS_OR;
3094 data->start_class->flags |= ANYOF_EOS;
3096 } else { /* Non-zero len */
3097 if (flags & SCF_DO_STCLASS_OR) {
3098 cl_or(pRExC_state, data->start_class, &this_class);
3099 cl_and(data->start_class, and_withp);
3101 else if (flags & SCF_DO_STCLASS_AND)
3102 cl_and(data->start_class, &this_class);
3103 flags &= ~SCF_DO_STCLASS;
3105 if (!scan) /* It was not CURLYX, but CURLY. */
3107 if ( /* ? quantifier ok, except for (?{ ... }) */
3108 (next_is_eval || !(mincount == 0 && maxcount == 1))
3109 && (minnext == 0) && (deltanext == 0)
3110 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3111 && maxcount <= REG_INFTY/3 /* Complement check for big count */
3112 && ckWARN(WARN_REGEXP))
3115 "Quantifier unexpected on zero-length expression");
3118 min += minnext * mincount;
3119 is_inf_internal |= ((maxcount == REG_INFTY
3120 && (minnext + deltanext) > 0)
3121 || deltanext == I32_MAX);
3122 is_inf |= is_inf_internal;
3123 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3125 /* Try powerful optimization CURLYX => CURLYN. */
3126 if ( OP(oscan) == CURLYX && data
3127 && data->flags & SF_IN_PAR
3128 && !(data->flags & SF_HAS_EVAL)
3129 && !deltanext && minnext == 1 ) {
3130 /* Try to optimize to CURLYN. */
3131 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3132 regnode * const nxt1 = nxt;
3139 if (!strchr((const char*)PL_simple,OP(nxt))
3140 && !(PL_regkind[OP(nxt)] == EXACT
3141 && STR_LEN(nxt) == 1))
3147 if (OP(nxt) != CLOSE)
3149 if (RExC_open_parens) {
3150 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3151 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3153 /* Now we know that nxt2 is the only contents: */
3154 oscan->flags = (U8)ARG(nxt);
3156 OP(nxt1) = NOTHING; /* was OPEN. */
3159 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3160 NEXT_OFF(nxt1+ 1) = 0; /* just for consistancy. */
3161 NEXT_OFF(nxt2) = 0; /* just for consistancy with CURLY. */
3162 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3163 OP(nxt + 1) = OPTIMIZED; /* was count. */
3164 NEXT_OFF(nxt+ 1) = 0; /* just for consistancy. */
3169 /* Try optimization CURLYX => CURLYM. */
3170 if ( OP(oscan) == CURLYX && data
3171 && !(data->flags & SF_HAS_PAR)
3172 && !(data->flags & SF_HAS_EVAL)
3173 && !deltanext /* atom is fixed width */
3174 && minnext != 0 /* CURLYM can't handle zero width */
3176 /* XXXX How to optimize if data == 0? */
3177 /* Optimize to a simpler form. */
3178 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3182 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3183 && (OP(nxt2) != WHILEM))
3185 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3186 /* Need to optimize away parenths. */
3187 if (data->flags & SF_IN_PAR) {
3188 /* Set the parenth number. */
3189 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3191 if (OP(nxt) != CLOSE)
3192 FAIL("Panic opt close");
3193 oscan->flags = (U8)ARG(nxt);
3194 if (RExC_open_parens) {
3195 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3196 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3198 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3199 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3202 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3203 OP(nxt + 1) = OPTIMIZED; /* was count. */
3204 NEXT_OFF(nxt1 + 1) = 0; /* just for consistancy. */
3205 NEXT_OFF(nxt + 1) = 0; /* just for consistancy. */
3208 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3209 regnode *nnxt = regnext(nxt1);
3212 if (reg_off_by_arg[OP(nxt1)])
3213 ARG_SET(nxt1, nxt2 - nxt1);
3214 else if (nxt2 - nxt1 < U16_MAX)
3215 NEXT_OFF(nxt1) = nxt2 - nxt1;
3217 OP(nxt) = NOTHING; /* Cannot beautify */
3222 /* Optimize again: */
3223 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
3224 NULL, stopparen, recursed, NULL, 0,depth+1);
3229 else if ((OP(oscan) == CURLYX)
3230 && (flags & SCF_WHILEM_VISITED_POS)
3231 /* See the comment on a similar expression above.
3232 However, this time it not a subexpression
3233 we care about, but the expression itself. */
3234 && (maxcount == REG_INFTY)
3235 && data && ++data->whilem_c < 16) {
3236 /* This stays as CURLYX, we can put the count/of pair. */
3237 /* Find WHILEM (as in regexec.c) */
3238 regnode *nxt = oscan + NEXT_OFF(oscan);
3240 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
3242 PREVOPER(nxt)->flags = (U8)(data->whilem_c
3243 | (RExC_whilem_seen << 4)); /* On WHILEM */
3245 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
3247 if (flags & SCF_DO_SUBSTR) {
3248 SV *last_str = NULL;
3249 int counted = mincount != 0;
3251 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
3252 #if defined(SPARC64_GCC_WORKAROUND)
3255 const char *s = NULL;
3258 if (pos_before >= data->last_start_min)
3261 b = data->last_start_min;
3264 s = SvPV_const(data->last_found, l);
3265 old = b - data->last_start_min;
3268 I32 b = pos_before >= data->last_start_min
3269 ? pos_before : data->last_start_min;
3271 const char * const s = SvPV_const(data->last_found, l);
3272 I32 old = b - data->last_start_min;
3276 old = utf8_hop((U8*)s, old) - (U8*)s;
3279 /* Get the added string: */
3280 last_str = newSVpvn(s + old, l);
3282 SvUTF8_on(last_str);
3283 if (deltanext == 0 && pos_before == b) {
3284 /* What was added is a constant string */
3286 SvGROW(last_str, (mincount * l) + 1);
3287 repeatcpy(SvPVX(last_str) + l,
3288 SvPVX_const(last_str), l, mincount - 1);
3289 SvCUR_set(last_str, SvCUR(last_str) * mincount);
3290 /* Add additional parts. */
3291 SvCUR_set(data->last_found,
3292 SvCUR(data->last_found) - l);
3293 sv_catsv(data->last_found, last_str);
3295 SV * sv = data->last_found;
3297 SvUTF8(sv) && SvMAGICAL(sv) ?
3298 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3299 if (mg && mg->mg_len >= 0)
3300 mg->mg_len += CHR_SVLEN(last_str);
3302 data->last_end += l * (mincount - 1);
3305 /* start offset must point into the last copy */
3306 data->last_start_min += minnext * (mincount - 1);
3307 data->last_start_max += is_inf ? I32_MAX
3308 : (maxcount - 1) * (minnext + data->pos_delta);
3311 /* It is counted once already... */
3312 data->pos_min += minnext * (mincount - counted);
3313 data->pos_delta += - counted * deltanext +
3314 (minnext + deltanext) * maxcount - minnext * mincount;
3315 if (mincount != maxcount) {
3316 /* Cannot extend fixed substrings found inside
3318 SCAN_COMMIT(pRExC_state,data,minlenp);
3319 if (mincount && last_str) {
3320 SV * const sv = data->last_found;
3321 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3322 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3326 sv_setsv(sv, last_str);
3327 data->last_end = data->pos_min;
3328 data->last_start_min =
3329 data->pos_min - CHR_SVLEN(last_str);
3330 data->last_start_max = is_inf
3332 : data->pos_min + data->pos_delta
3333 - CHR_SVLEN(last_str);
3335 data->longest = &(data->longest_float);
3337 SvREFCNT_dec(last_str);
3339 if (data && (fl & SF_HAS_EVAL))
3340 data->flags |= SF_HAS_EVAL;
3341 optimize_curly_tail:
3342 if (OP(oscan) != CURLYX) {
3343 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
3345 NEXT_OFF(oscan) += NEXT_OFF(next);
3348 default: /* REF and CLUMP only? */
3349 if (flags & SCF_DO_SUBSTR) {
3350 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3351 data->longest = &(data->longest_float);
3353 is_inf = is_inf_internal = 1;
3354 if (flags & SCF_DO_STCLASS_OR)
3355 cl_anything(pRExC_state, data->start_class);
3356 flags &= ~SCF_DO_STCLASS;
3360 else if (OP(scan) == LNBREAK) {
3361 if (flags & SCF_DO_STCLASS) {
3363 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3364 if (flags & SCF_DO_STCLASS_AND) {
3365 for (value = 0; value < 256; value++)
3366 if (!is_VERTWS_cp(value))
3367 ANYOF_BITMAP_CLEAR(data->start_class, value);
3370 for (value = 0; value < 256; value++)
3371 if (is_VERTWS_cp(value))
3372 ANYOF_BITMAP_SET(data->start_class, value);
3374 if (flags & SCF_DO_STCLASS_OR)
3375 cl_and(data->start_class, and_withp);
3376 flags &= ~SCF_DO_STCLASS;
3380 if (flags & SCF_DO_SUBSTR) {
3381 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3383 data->pos_delta += 1;
3384 data->longest = &(data->longest_float);
3388 else if (OP(scan) == FOLDCHAR) {
3389 int d = ARG(scan)==0xDF ? 1 : 2;
3390 flags &= ~SCF_DO_STCLASS;
3393 if (flags & SCF_DO_SUBSTR) {
3394 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3396 data->pos_delta += d;
3397 data->longest = &(data->longest_float);
3400 else if (strchr((const char*)PL_simple,OP(scan))) {
3403 if (flags & SCF_DO_SUBSTR) {
3404 SCAN_COMMIT(pRExC_state,data,minlenp);
3408 if (flags & SCF_DO_STCLASS) {
3409 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3411 /* Some of the logic below assumes that switching
3412 locale on will only add false positives. */
3413 switch (PL_regkind[OP(scan)]) {
3417 /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
3418 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3419 cl_anything(pRExC_state, data->start_class);
3422 if (OP(scan) == SANY)
3424 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
3425 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
3426 || (data->start_class->flags & ANYOF_CLASS));
3427 cl_anything(pRExC_state, data->start_class);
3429 if (flags & SCF_DO_STCLASS_AND || !value)
3430 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
3433 if (flags & SCF_DO_STCLASS_AND)
3434 cl_and(data->start_class,
3435 (struct regnode_charclass_class*)scan);
3437 cl_or(pRExC_state, data->start_class,
3438 (struct regnode_charclass_class*)scan);
3441 if (flags & SCF_DO_STCLASS_AND) {
3442 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3443 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
3444 for (value = 0; value < 256; value++)
3445 if (!isALNUM(value))
3446 ANYOF_BITMAP_CLEAR(data->start_class, value);
3450 if (data->start_class->flags & ANYOF_LOCALE)
3451 ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
3453 for (value = 0; value < 256; value++)
3455 ANYOF_BITMAP_SET(data->start_class, value);
3460 if (flags & SCF_DO_STCLASS_AND) {
3461 if (data->start_class->flags & ANYOF_LOCALE)
3462 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
3465 ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
3466 data->start_class->flags |= ANYOF_LOCALE;
3470 if (flags & SCF_DO_STCLASS_AND) {
3471 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3472 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
3473 for (value = 0; value < 256; value++)
3475 ANYOF_BITMAP_CLEAR(data->start_class, value);
3479 if (data->start_class->flags & ANYOF_LOCALE)
3480 ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
3482 for (value = 0; value < 256; value++)
3483 if (!isALNUM(value))
3484 ANYOF_BITMAP_SET(data->start_class, value);
3489 if (flags & SCF_DO_STCLASS_AND) {
3490 if (data->start_class->flags & ANYOF_LOCALE)
3491 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
3494 data->start_class->flags |= ANYOF_LOCALE;
3495 ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
3499 if (flags & SCF_DO_STCLASS_AND) {
3500 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3501 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
3502 for (value = 0; value < 256; value++)
3503 if (!isSPACE(value))
3504 ANYOF_BITMAP_CLEAR(data->start_class, value);
3508 if (data->start_class->flags & ANYOF_LOCALE)
3509 ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
3511 for (value = 0; value < 256; value++)
3513 ANYOF_BITMAP_SET(data->start_class, value);
3518 if (flags & SCF_DO_STCLASS_AND) {
3519 if (data->start_class->flags & ANYOF_LOCALE)
3520 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
3523 data->start_class->flags |= ANYOF_LOCALE;
3524 ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
3528 if (flags & SCF_DO_STCLASS_AND) {
3529 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3530 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
3531 for (value = 0; value < 256; value++)
3533 ANYOF_BITMAP_CLEAR(data->start_class, value);
3537 if (data->start_class->flags & ANYOF_LOCALE)
3538 ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
3540 for (value = 0; value < 256; value++)
3541 if (!isSPACE(value))
3542 ANYOF_BITMAP_SET(data->start_class, value);
3547 if (flags & SCF_DO_STCLASS_AND) {
3548 if (data->start_class->flags & ANYOF_LOCALE) {
3549 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
3550 for (value = 0; value < 256; value++)
3551 if (!isSPACE(value))
3552 ANYOF_BITMAP_CLEAR(data->start_class, value);
3556 data->start_class->flags |= ANYOF_LOCALE;
3557 ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
3561 if (flags & SCF_DO_STCLASS_AND) {
3562 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
3563 for (value = 0; value < 256; value++)
3564 if (!isDIGIT(value))
3565 ANYOF_BITMAP_CLEAR(data->start_class, value);
3568 if (data->start_class->flags & ANYOF_LOCALE)
3569 ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
3571 for (value = 0; value < 256; value++)
3573 ANYOF_BITMAP_SET(data->start_class, value);
3578 if (flags & SCF_DO_STCLASS_AND) {
3579 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
3580 for (value = 0; value < 256; value++)
3582 ANYOF_BITMAP_CLEAR(data->start_class, value);
3585 if (data->start_class->flags & ANYOF_LOCALE)
3586 ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
3588 for (value = 0; value < 256; value++)
3589 if (!isDIGIT(value))
3590 ANYOF_BITMAP_SET(data->start_class, value);
3594 CASE_SYNST_FNC(VERTWS);
3595 CASE_SYNST_FNC(HORIZWS);
3598 if (flags & SCF_DO_STCLASS_OR)
3599 cl_and(data->start_class, and_withp);
3600 flags &= ~SCF_DO_STCLASS;
3603 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
3604 data->flags |= (OP(scan) == MEOL
3608 else if ( PL_regkind[OP(scan)] == BRANCHJ
3609 /* Lookbehind, or need to calculate parens/evals/stclass: */
3610 && (scan->flags || data || (flags & SCF_DO_STCLASS))
3611 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
3612 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
3613 || OP(scan) == UNLESSM )
3615 /* Negative Lookahead/lookbehind
3616 In this case we can't do fixed string optimisation.
3619 I32 deltanext, minnext, fake = 0;
3621 struct regnode_charclass_class intrnl;
3624 data_fake.flags = 0;
3626 data_fake.whilem_c = data->whilem_c;
3627 data_fake.last_closep = data->last_closep;
3630 data_fake.last_closep = &fake;
3631 data_fake.pos_delta = delta;
3632 if ( flags & SCF_DO_STCLASS && !scan->flags
3633 && OP(scan) == IFMATCH ) { /* Lookahead */
3634 cl_init(pRExC_state, &intrnl);
3635 data_fake.start_class = &intrnl;
3636 f |= SCF_DO_STCLASS_AND;
3638 if (flags & SCF_WHILEM_VISITED_POS)
3639 f |= SCF_WHILEM_VISITED_POS;
3640 next = regnext(scan);
3641 nscan = NEXTOPER(NEXTOPER(scan));
3642 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
3643 last, &data_fake, stopparen, recursed, NULL, f, depth+1);
3646 FAIL("Variable length lookbehind not implemented");
3648 else if (minnext > (I32)U8_MAX) {
3649 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
3651 scan->flags = (U8)minnext;
3654 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3656 if (data_fake.flags & SF_HAS_EVAL)
3657 data->flags |= SF_HAS_EVAL;
3658 data->whilem_c = data_fake.whilem_c;
3660 if (f & SCF_DO_STCLASS_AND) {
3661 const int was = (data->start_class->flags & ANYOF_EOS);
3663 cl_and(data->start_class, &intrnl);
3665 data->start_class->flags |= ANYOF_EOS;
3668 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
3670 /* Positive Lookahead/lookbehind
3671 In this case we can do fixed string optimisation,
3672 but we must be careful about it. Note in the case of
3673 lookbehind the positions will be offset by the minimum
3674 length of the pattern, something we won't know about
3675 until after the recurse.
3677 I32 deltanext, fake = 0;
3679 struct regnode_charclass_class intrnl;
3681 /* We use SAVEFREEPV so that when the full compile
3682 is finished perl will clean up the allocated
3683 minlens when its all done. This was we don't
3684 have to worry about freeing them when we know
3685 they wont be used, which would be a pain.
3688 Newx( minnextp, 1, I32 );
3689 SAVEFREEPV(minnextp);
3692 StructCopy(data, &data_fake, scan_data_t);
3693 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
3696 SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
3697 data_fake.last_found=newSVsv(data->last_found);
3701 data_fake.last_closep = &fake;
3702 data_fake.flags = 0;
3703 data_fake.pos_delta = delta;
3705 data_fake.flags |= SF_IS_INF;
3706 if ( flags & SCF_DO_STCLASS && !scan->flags
3707 && OP(scan) == IFMATCH ) { /* Lookahead */
3708 cl_init(pRExC_state, &intrnl);
3709 data_fake.start_class = &intrnl;
3710 f |= SCF_DO_STCLASS_AND;
3712 if (flags & SCF_WHILEM_VISITED_POS)
3713 f |= SCF_WHILEM_VISITED_POS;
3714 next = regnext(scan);
3715 nscan = NEXTOPER(NEXTOPER(scan));
3717 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
3718 last, &data_fake, stopparen, recursed, NULL, f,depth+1);
3721 FAIL("Variable length lookbehind not implemented");
3723 else if (*minnextp > (I32)U8_MAX) {
3724 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
3726 scan->flags = (U8)*minnextp;
3731 if (f & SCF_DO_STCLASS_AND) {
3732 const int was = (data->start_class->flags & ANYOF_EOS);
3734 cl_and(data->start_class, &intrnl);
3736 data->start_class->flags |= ANYOF_EOS;
3739 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3741 if (data_fake.flags & SF_HAS_EVAL)
3742 data->flags |= SF_HAS_EVAL;
3743 data->whilem_c = data_fake.whilem_c;
3744 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
3745 if (RExC_rx->minlen<*minnextp)
3746 RExC_rx->minlen=*minnextp;
3747 SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
3748 SvREFCNT_dec(data_fake.last_found);
3750 if ( data_fake.minlen_fixed != minlenp )
3752 data->offset_fixed= data_fake.offset_fixed;
3753 data->minlen_fixed= data_fake.minlen_fixed;
3754 data->lookbehind_fixed+= scan->flags;
3756 if ( data_fake.minlen_float != minlenp )
3758 data->minlen_float= data_fake.minlen_float;
3759 data->offset_float_min=data_fake.offset_float_min;
3760 data->offset_float_max=data_fake.offset_float_max;
3761 data->lookbehind_float+= scan->flags;
3770 else if (OP(scan) == OPEN) {
3771 if (stopparen != (I32)ARG(scan))
3774 else if (OP(scan) == CLOSE) {
3775 if (stopparen == (I32)ARG(scan)) {
3778 if ((I32)ARG(scan) == is_par) {
3779 next = regnext(scan);
3781 if ( next && (OP(next) != WHILEM) && next < last)
3782 is_par = 0; /* Disable optimization */
3785 *(data->last_closep) = ARG(scan);
3787 else if (OP(scan) == EVAL) {
3789 data->flags |= SF_HAS_EVAL;
3791 else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
3792 if (flags & SCF_DO_SUBSTR) {
3793 SCAN_COMMIT(pRExC_state,data,minlenp);
3794 flags &= ~SCF_DO_SUBSTR;
3796 if (data && OP(scan)==ACCEPT) {
3797 data->flags |= SCF_SEEN_ACCEPT;
3802 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
3804 if (flags & SCF_DO_SUBSTR) {
3805 SCAN_COMMIT(pRExC_state,data,minlenp);
3806 data->longest = &(data->longest_float);