This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
b86dda4fbaeae1d2277847271bb160bc0f883bef
[perl5.git] / pod / perlop.pod
1 =head1 NAME
2
3 perlop - Perl operators and precedence
4
5 =head1 DESCRIPTION
6
7 =head2 Operator Precedence and Associativity
8
9 Operator precedence and associativity work in Perl more or less like
10 they do in mathematics.
11
12 I<Operator precedence> means some operators are evaluated before
13 others.  For example, in C<2 + 4 * 5>, the multiplication has higher
14 precedence so C<4 * 5> is evaluated first yielding C<2 + 20 ==
15 22> and not C<6 * 5 == 30>.
16
17 I<Operator associativity> defines what happens if a sequence of the
18 same operators is used one after another: whether the evaluator will
19 evaluate the left operations first or the right.  For example, in C<8
20 - 4 - 2>, subtraction is left associative so Perl evaluates the
21 expression left to right.  C<8 - 4> is evaluated first making the
22 expression C<4 - 2 == 2> and not C<8 - 2 == 6>.
23
24 Perl operators have the following associativity and precedence,
25 listed from highest precedence to lowest.  Operators borrowed from
26 C keep the same precedence relationship with each other, even where
27 C's precedence is slightly screwy.  (This makes learning Perl easier
28 for C folks.)  With very few exceptions, these all operate on scalar
29 values only, not array values.
30
31     left        terms and list operators (leftward)
32     left        ->
33     nonassoc    ++ --
34     right       **
35     right       ! ~ \ and unary + and -
36     left        =~ !~
37     left        * / % x
38     left        + - .
39     left        << >>
40     nonassoc    named unary operators
41     nonassoc    < > <= >= lt gt le ge
42     nonassoc    == != <=> eq ne cmp
43     left        &
44     left        | ^
45     left        &&
46     left        || //
47     nonassoc    ..  ...
48     right       ?:
49     right       = += -= *= etc.
50     left        , =>
51     nonassoc    list operators (rightward)
52     right       not
53     left        and
54     left        or xor err
55
56 In the following sections, these operators are covered in precedence order.
57
58 Many operators can be overloaded for objects.  See L<overload>.
59
60 =head2 Terms and List Operators (Leftward)
61
62 A TERM has the highest precedence in Perl.  They include variables,
63 quote and quote-like operators, any expression in parentheses,
64 and any function whose arguments are parenthesized.  Actually, there
65 aren't really functions in this sense, just list operators and unary
66 operators behaving as functions because you put parentheses around
67 the arguments.  These are all documented in L<perlfunc>.
68
69 If any list operator (print(), etc.) or any unary operator (chdir(), etc.)
70 is followed by a left parenthesis as the next token, the operator and
71 arguments within parentheses are taken to be of highest precedence,
72 just like a normal function call.
73
74 In the absence of parentheses, the precedence of list operators such as
75 C<print>, C<sort>, or C<chmod> is either very high or very low depending on
76 whether you are looking at the left side or the right side of the operator.
77 For example, in
78
79     @ary = (1, 3, sort 4, 2);
80     print @ary;         # prints 1324
81
82 the commas on the right of the sort are evaluated before the sort,
83 but the commas on the left are evaluated after.  In other words,
84 list operators tend to gobble up all arguments that follow, and
85 then act like a simple TERM with regard to the preceding expression.
86 Be careful with parentheses:
87
88     # These evaluate exit before doing the print:
89     print($foo, exit);  # Obviously not what you want.
90     print $foo, exit;   # Nor is this.
91
92     # These do the print before evaluating exit:
93     (print $foo), exit; # This is what you want.
94     print($foo), exit;  # Or this.
95     print ($foo), exit; # Or even this.
96
97 Also note that
98
99     print ($foo & 255) + 1, "\n";
100
101 probably doesn't do what you expect at first glance.  The parentheses
102 enclose the argument list for C<print> which is evaluated (printing
103 the result of C<$foo & 255>).  Then one is added to the return value
104 of C<print> (usually 1).  The result is something like this:
105
106     1 + 1, "\n";    # Obviously not what you meant.
107
108 To do what you meant properly, you must write:
109
110     print(($foo & 255) + 1, "\n");
111
112 See L<Named Unary Operators> for more discussion of this.
113
114 Also parsed as terms are the C<do {}> and C<eval {}> constructs, as
115 well as subroutine and method calls, and the anonymous
116 constructors C<[]> and C<{}>.
117
118 See also L<Quote and Quote-like Operators> toward the end of this section,
119 as well as L<"I/O Operators">.
120
121 =head2 The Arrow Operator
122
123 "C<< -> >>" is an infix dereference operator, just as it is in C
124 and C++.  If the right side is either a C<[...]>, C<{...}>, or a
125 C<(...)> subscript, then the left side must be either a hard or
126 symbolic reference to an array, a hash, or a subroutine respectively.
127 (Or technically speaking, a location capable of holding a hard
128 reference, if it's an array or hash reference being used for
129 assignment.)  See L<perlreftut> and L<perlref>.
130
131 Otherwise, the right side is a method name or a simple scalar
132 variable containing either the method name or a subroutine reference,
133 and the left side must be either an object (a blessed reference)
134 or a class name (that is, a package name).  See L<perlobj>.
135
136 =head2 Auto-increment and Auto-decrement
137
138 "++" and "--" work as in C.  That is, if placed before a variable,
139 they increment or decrement the variable by one before returning the
140 value, and if placed after, increment or decrement after returning the
141 value.
142
143     $i = 0;  $j = 0;
144     print $i++;  # prints 0
145     print ++$j;  # prints 1
146
147 Note that just as in C, Perl doesn't define B<when> the variable is
148 incremented or decremented. You just know it will be done sometime 
149 before or after the value is returned. This also means that modifying
150 a variable twice in the same statement will lead to undefined behaviour.
151 Avoid statements like:
152
153     $i = $i ++;
154     print ++ $i + $i ++;
155
156 Perl will not guarantee what the result of the above statements is.
157
158 The auto-increment operator has a little extra builtin magic to it.  If
159 you increment a variable that is numeric, or that has ever been used in
160 a numeric context, you get a normal increment.  If, however, the
161 variable has been used in only string contexts since it was set, and
162 has a value that is not the empty string and matches the pattern
163 C</^[a-zA-Z]*[0-9]*\z/>, the increment is done as a string, preserving each
164 character within its range, with carry:
165
166     print ++($foo = '99');      # prints '100'
167     print ++($foo = 'a0');      # prints 'a1'
168     print ++($foo = 'Az');      # prints 'Ba'
169     print ++($foo = 'zz');      # prints 'aaa'
170
171 C<undef> is always treated as numeric, and in particular is changed
172 to C<0> before incrementing (so that a post-increment of an undef value
173 will return C<0> rather than C<undef>).
174
175 The auto-decrement operator is not magical.
176
177 =head2 Exponentiation
178
179 Binary "**" is the exponentiation operator.  It binds even more
180 tightly than unary minus, so -2**4 is -(2**4), not (-2)**4. (This is
181 implemented using C's pow(3) function, which actually works on doubles
182 internally.)
183
184 =head2 Symbolic Unary Operators
185
186 Unary "!" performs logical negation, i.e., "not".  See also C<not> for a lower
187 precedence version of this.
188
189 Unary "-" performs arithmetic negation if the operand is numeric.  If
190 the operand is an identifier, a string consisting of a minus sign
191 concatenated with the identifier is returned.  Otherwise, if the string
192 starts with a plus or minus, a string starting with the opposite sign
193 is returned.  One effect of these rules is that -bareword is equivalent
194 to the string "-bareword".
195
196 Unary "~" performs bitwise negation, i.e., 1's complement.  For
197 example, C<0666 & ~027> is 0640.  (See also L<Integer Arithmetic> and
198 L<Bitwise String Operators>.)  Note that the width of the result is
199 platform-dependent: ~0 is 32 bits wide on a 32-bit platform, but 64
200 bits wide on a 64-bit platform, so if you are expecting a certain bit
201 width, remember to use the & operator to mask off the excess bits.
202
203 Unary "+" has no effect whatsoever, even on strings.  It is useful
204 syntactically for separating a function name from a parenthesized expression
205 that would otherwise be interpreted as the complete list of function
206 arguments.  (See examples above under L<Terms and List Operators (Leftward)>.)
207
208 Unary "\" creates a reference to whatever follows it.  See L<perlreftut>
209 and L<perlref>.  Do not confuse this behavior with the behavior of
210 backslash within a string, although both forms do convey the notion
211 of protecting the next thing from interpolation.
212
213 =head2 Binding Operators
214
215 Binary "=~" binds a scalar expression to a pattern match.  Certain operations
216 search or modify the string $_ by default.  This operator makes that kind
217 of operation work on some other string.  The right argument is a search
218 pattern, substitution, or transliteration.  The left argument is what is
219 supposed to be searched, substituted, or transliterated instead of the default
220 $_.  When used in scalar context, the return value generally indicates the
221 success of the operation.  Behavior in list context depends on the particular
222 operator.  See L</"Regexp Quote-Like Operators"> for details and 
223 L<perlretut> for examples using these operators.
224
225 If the right argument is an expression rather than a search pattern,
226 substitution, or transliteration, it is interpreted as a search pattern at run
227 time.
228
229 Binary "!~" is just like "=~" except the return value is negated in
230 the logical sense.
231
232 =head2 Multiplicative Operators
233
234 Binary "*" multiplies two numbers.
235
236 Binary "/" divides two numbers.
237
238 Binary "%" computes the modulus of two numbers.  Given integer
239 operands C<$a> and C<$b>: If C<$b> is positive, then C<$a % $b> is
240 C<$a> minus the largest multiple of C<$b> that is not greater than
241 C<$a>.  If C<$b> is negative, then C<$a % $b> is C<$a> minus the
242 smallest multiple of C<$b> that is not less than C<$a> (i.e. the
243 result will be less than or equal to zero). 
244 Note that when C<use integer> is in scope, "%" gives you direct access
245 to the modulus operator as implemented by your C compiler.  This
246 operator is not as well defined for negative operands, but it will
247 execute faster.
248
249 Binary "x" is the repetition operator.  In scalar context or if the left
250 operand is not enclosed in parentheses, it returns a string consisting
251 of the left operand repeated the number of times specified by the right
252 operand.  In list context, if the left operand is enclosed in
253 parentheses or is a list formed by C<qw/STRING/>, it repeats the list.
254 If the right operand is zero or negative, it returns an empty string
255 or an empty list, depending on the context.
256
257     print '-' x 80;             # print row of dashes
258
259     print "\t" x ($tab/8), ' ' x ($tab%8);      # tab over
260
261     @ones = (1) x 80;           # a list of 80 1's
262     @ones = (5) x @ones;        # set all elements to 5
263
264
265 =head2 Additive Operators
266
267 Binary "+" returns the sum of two numbers.
268
269 Binary "-" returns the difference of two numbers.
270
271 Binary "." concatenates two strings.
272
273 =head2 Shift Operators
274
275 Binary "<<" returns the value of its left argument shifted left by the
276 number of bits specified by the right argument.  Arguments should be
277 integers.  (See also L<Integer Arithmetic>.)
278
279 Binary ">>" returns the value of its left argument shifted right by
280 the number of bits specified by the right argument.  Arguments should
281 be integers.  (See also L<Integer Arithmetic>.)
282
283 Note that both "<<" and ">>" in Perl are implemented directly using
284 "<<" and ">>" in C.  If C<use integer> (see L<Integer Arithmetic>) is
285 in force then signed C integers are used, else unsigned C integers are
286 used.  Either way, the implementation isn't going to generate results
287 larger than the size of the integer type Perl was built with (32 bits
288 or 64 bits).
289
290 The result of overflowing the range of the integers is undefined
291 because it is undefined also in C.  In other words, using 32-bit
292 integers, C<< 1 << 32 >> is undefined.  Shifting by a negative number
293 of bits is also undefined.
294
295 =head2 Named Unary Operators
296
297 The various named unary operators are treated as functions with one
298 argument, with optional parentheses.
299
300 If any list operator (print(), etc.) or any unary operator (chdir(), etc.)
301 is followed by a left parenthesis as the next token, the operator and
302 arguments within parentheses are taken to be of highest precedence,
303 just like a normal function call.  For example,
304 because named unary operators are higher precedence than ||:
305
306     chdir $foo    || die;       # (chdir $foo) || die
307     chdir($foo)   || die;       # (chdir $foo) || die
308     chdir ($foo)  || die;       # (chdir $foo) || die
309     chdir +($foo) || die;       # (chdir $foo) || die
310
311 but, because * is higher precedence than named operators:
312
313     chdir $foo * 20;    # chdir ($foo * 20)
314     chdir($foo) * 20;   # (chdir $foo) * 20
315     chdir ($foo) * 20;  # (chdir $foo) * 20
316     chdir +($foo) * 20; # chdir ($foo * 20)
317
318     rand 10 * 20;       # rand (10 * 20)
319     rand(10) * 20;      # (rand 10) * 20
320     rand (10) * 20;     # (rand 10) * 20
321     rand +(10) * 20;    # rand (10 * 20)
322
323 Regarding precedence, the filetest operators, like C<-f>, C<-M>, etc. are
324 treated like named unary operators, but they don't follow this functional
325 parenthesis rule.  That means, for example, that C<-f($file).".bak"> is
326 equivalent to C<-f "$file.bak">.
327
328 See also L<"Terms and List Operators (Leftward)">.
329
330 =head2 Relational Operators
331
332 Binary "<" returns true if the left argument is numerically less than
333 the right argument.
334
335 Binary ">" returns true if the left argument is numerically greater
336 than the right argument.
337
338 Binary "<=" returns true if the left argument is numerically less than
339 or equal to the right argument.
340
341 Binary ">=" returns true if the left argument is numerically greater
342 than or equal to the right argument.
343
344 Binary "lt" returns true if the left argument is stringwise less than
345 the right argument.
346
347 Binary "gt" returns true if the left argument is stringwise greater
348 than the right argument.
349
350 Binary "le" returns true if the left argument is stringwise less than
351 or equal to the right argument.
352
353 Binary "ge" returns true if the left argument is stringwise greater
354 than or equal to the right argument.
355
356 =head2 Equality Operators
357
358 Binary "==" returns true if the left argument is numerically equal to
359 the right argument.
360
361 Binary "!=" returns true if the left argument is numerically not equal
362 to the right argument.
363
364 Binary "<=>" returns -1, 0, or 1 depending on whether the left
365 argument is numerically less than, equal to, or greater than the right
366 argument.  If your platform supports NaNs (not-a-numbers) as numeric
367 values, using them with "<=>" returns undef.  NaN is not "<", "==", ">",
368 "<=" or ">=" anything (even NaN), so those 5 return false. NaN != NaN
369 returns true, as does NaN != anything else. If your platform doesn't
370 support NaNs then NaN is just a string with numeric value 0.
371
372     perl -le '$a = NaN; print "No NaN support here" if $a == $a'
373     perl -le '$a = NaN; print "NaN support here" if $a != $a'
374
375 Binary "eq" returns true if the left argument is stringwise equal to
376 the right argument.
377
378 Binary "ne" returns true if the left argument is stringwise not equal
379 to the right argument.
380
381 Binary "cmp" returns -1, 0, or 1 depending on whether the left
382 argument is stringwise less than, equal to, or greater than the right
383 argument.
384
385 "lt", "le", "ge", "gt" and "cmp" use the collation (sort) order specified
386 by the current locale if C<use locale> is in effect.  See L<perllocale>.
387
388 =head2 Bitwise And
389
390 Binary "&" returns its operands ANDed together bit by bit.
391 (See also L<Integer Arithmetic> and L<Bitwise String Operators>.)
392
393 Note that "&" has lower priority than relational operators, so for example
394 the brackets are essential in a test like
395
396         print "Even\n" if ($x & 1) == 0;
397
398 =head2 Bitwise Or and Exclusive Or
399
400 Binary "|" returns its operands ORed together bit by bit.
401 (See also L<Integer Arithmetic> and L<Bitwise String Operators>.)
402
403 Binary "^" returns its operands XORed together bit by bit.
404 (See also L<Integer Arithmetic> and L<Bitwise String Operators>.)
405
406 Note that "|" and "^" have lower priority than relational operators, so
407 for example the brackets are essential in a test like
408
409         print "false\n" if (8 | 2) != 10;
410
411 =head2 C-style Logical And
412
413 Binary "&&" performs a short-circuit logical AND operation.  That is,
414 if the left operand is false, the right operand is not even evaluated.
415 Scalar or list context propagates down to the right operand if it
416 is evaluated.
417
418 =head2 C-style Logical Or
419
420 Binary "||" performs a short-circuit logical OR operation.  That is,
421 if the left operand is true, the right operand is not even evaluated.
422 Scalar or list context propagates down to the right operand if it
423 is evaluated.
424
425 =head2 C-style Logical Defined-Or
426
427 Although it has no direct equivalent in C, Perl's C<//> operator is related
428 to its C-style or.  In fact, it's exactly the same as C<||>, except that it 
429 tests the left hand side's definedness instead of its truth.  Thus, C<$a // $b>
430 is similar to C<defined($a) || $b> (except that it returns the value of C<$a> 
431 rather than the value of C<defined($a)>) and is exactly equivalent to 
432 C<defined($a) ? $a : $b>.  This is very useful for providing default values
433 for variables.  If you actually want to test if at least one of C<$a> and 
434 C<$b> is defined, use C<defined($a // $b)>.
435
436 The C<||>, C<//> and C<&&> operators return the last value evaluated
437 (unlike C's C<||> and C<&&>, which return 0 or 1). Thus, a reasonably
438 portable way to find out the home directory might be:
439
440     $home = $ENV{'HOME'} // $ENV{'LOGDIR'} //
441         (getpwuid($<))[7] // die "You're homeless!\n";
442
443 In particular, this means that you shouldn't use this
444 for selecting between two aggregates for assignment:
445
446     @a = @b || @c;              # this is wrong
447     @a = scalar(@b) || @c;      # really meant this
448     @a = @b ? @b : @c;          # this works fine, though
449
450 As more readable alternatives to C<&&>, C<//> and C<||> when used for
451 control flow, Perl provides C<and>, C<err> and C<or> operators (see below).
452 The short-circuit behavior is identical.  The precedence of "and", "err" 
453 and "or" is much lower, however, so that you can safely use them after a
454 list operator without the need for parentheses:
455
456     unlink "alpha", "beta", "gamma"
457             or gripe(), next LINE;
458
459 With the C-style operators that would have been written like this:
460
461     unlink("alpha", "beta", "gamma")
462             || (gripe(), next LINE);
463
464 Using "or" for assignment is unlikely to do what you want; see below.
465
466 =head2 Range Operators
467
468 Binary ".." is the range operator, which is really two different
469 operators depending on the context.  In list context, it returns a
470 list of values counting (up by ones) from the left value to the right
471 value.  If the left value is greater than the right value then it
472 returns the empty list.  The range operator is useful for writing
473 C<foreach (1..10)> loops and for doing slice operations on arrays. In
474 the current implementation, no temporary array is created when the
475 range operator is used as the expression in C<foreach> loops, but older
476 versions of Perl might burn a lot of memory when you write something
477 like this:
478
479     for (1 .. 1_000_000) {
480         # code
481     }
482
483 The range operator also works on strings, using the magical auto-increment,
484 see below.
485
486 In scalar context, ".." returns a boolean value.  The operator is
487 bistable, like a flip-flop, and emulates the line-range (comma) operator
488 of B<sed>, B<awk>, and various editors.  Each ".." operator maintains its
489 own boolean state.  It is false as long as its left operand is false.
490 Once the left operand is true, the range operator stays true until the
491 right operand is true, I<AFTER> which the range operator becomes false
492 again.  It doesn't become false till the next time the range operator is
493 evaluated.  It can test the right operand and become false on the same
494 evaluation it became true (as in B<awk>), but it still returns true once.
495 If you don't want it to test the right operand till the next
496 evaluation, as in B<sed>, just use three dots ("...") instead of
497 two.  In all other regards, "..." behaves just like ".." does.
498
499 The right operand is not evaluated while the operator is in the
500 "false" state, and the left operand is not evaluated while the
501 operator is in the "true" state.  The precedence is a little lower
502 than || and &&.  The value returned is either the empty string for
503 false, or a sequence number (beginning with 1) for true.  The
504 sequence number is reset for each range encountered.  The final
505 sequence number in a range has the string "E0" appended to it, which
506 doesn't affect its numeric value, but gives you something to search
507 for if you want to exclude the endpoint.  You can exclude the
508 beginning point by waiting for the sequence number to be greater
509 than 1.
510
511 If either operand of scalar ".." is a constant expression,
512 that operand is considered true if it is equal (C<==>) to the current
513 input line number (the C<$.> variable).
514
515 To be pedantic, the comparison is actually C<int(EXPR) == int(EXPR)>,
516 but that is only an issue if you use a floating point expression; when
517 implicitly using C<$.> as described in the previous paragraph, the
518 comparison is C<int(EXPR) == int($.)> which is only an issue when C<$.>
519 is set to a floating point value and you are not reading from a file.
520 Furthermore, C<"span" .. "spat"> or C<2.18 .. 3.14> will not do what
521 you want in scalar context because each of the operands are evaluated
522 using their integer representation.
523
524 Examples:
525
526 As a scalar operator:
527
528     if (101 .. 200) { print; } # print 2nd hundred lines, short for
529                                #   if ($. == 101 .. $. == 200) ...
530     next line if (1 .. /^$/);  # skip header lines, short for
531                                #   ... if ($. == 1 .. /^$/);
532     s/^/> / if (/^$/ .. eof()); # quote body
533
534     # parse mail messages
535     while (<>) {
536         $in_header =   1  .. /^$/;
537         $in_body   = /^$/ .. eof;
538         if ($in_header) {
539             # ...
540         } else { # in body
541             # ...
542         }
543     } continue {
544         close ARGV if eof;             # reset $. each file
545     }
546
547 Here's a simple example to illustrate the difference between
548 the two range operators:
549
550     @lines = ("   - Foo",
551               "01 - Bar",
552               "1  - Baz",
553               "   - Quux");
554
555     foreach(@lines)
556     {
557         if (/0/ .. /1/)
558         {
559             print "$_\n";
560         }
561     }
562
563 This program will print only the line containing "Bar". If 
564 the range operator is changed to C<...>, it will also print the 
565 "Baz" line.
566
567 And now some examples as a list operator:
568
569     for (101 .. 200) { print; } # print $_ 100 times
570     @foo = @foo[0 .. $#foo];    # an expensive no-op
571     @foo = @foo[$#foo-4 .. $#foo];      # slice last 5 items
572
573 The range operator (in list context) makes use of the magical
574 auto-increment algorithm if the operands are strings.  You
575 can say
576
577     @alphabet = ('A' .. 'Z');
578
579 to get all normal letters of the English alphabet, or
580
581     $hexdigit = (0 .. 9, 'a' .. 'f')[$num & 15];
582
583 to get a hexadecimal digit, or
584
585     @z2 = ('01' .. '31');  print $z2[$mday];
586
587 to get dates with leading zeros.  If the final value specified is not
588 in the sequence that the magical increment would produce, the sequence
589 goes until the next value would be longer than the final value
590 specified.
591
592 Because each operand is evaluated in integer form, C<2.18 .. 3.14> will
593 return two elements in list context.
594
595     @list = (2.18 .. 3.14); # same as @list = (2 .. 3);
596
597 =head2 Conditional Operator
598
599 Ternary "?:" is the conditional operator, just as in C.  It works much
600 like an if-then-else.  If the argument before the ? is true, the
601 argument before the : is returned, otherwise the argument after the :
602 is returned.  For example:
603
604     printf "I have %d dog%s.\n", $n,
605             ($n == 1) ? '' : "s";
606
607 Scalar or list context propagates downward into the 2nd
608 or 3rd argument, whichever is selected.
609
610     $a = $ok ? $b : $c;  # get a scalar
611     @a = $ok ? @b : @c;  # get an array
612     $a = $ok ? @b : @c;  # oops, that's just a count!
613
614 The operator may be assigned to if both the 2nd and 3rd arguments are
615 legal lvalues (meaning that you can assign to them):
616
617     ($a_or_b ? $a : $b) = $c;
618
619 Because this operator produces an assignable result, using assignments
620 without parentheses will get you in trouble.  For example, this:
621
622     $a % 2 ? $a += 10 : $a += 2
623
624 Really means this:
625
626     (($a % 2) ? ($a += 10) : $a) += 2
627
628 Rather than this:
629
630     ($a % 2) ? ($a += 10) : ($a += 2)
631
632 That should probably be written more simply as:
633
634     $a += ($a % 2) ? 10 : 2;
635
636 =head2 Assignment Operators
637
638 "=" is the ordinary assignment operator.
639
640 Assignment operators work as in C.  That is,
641
642     $a += 2;
643
644 is equivalent to
645
646     $a = $a + 2;
647
648 although without duplicating any side effects that dereferencing the lvalue
649 might trigger, such as from tie().  Other assignment operators work similarly.
650 The following are recognized:
651
652     **=    +=    *=    &=    <<=    &&=
653            -=    /=    |=    >>=    ||=
654            .=    %=    ^=
655                  x=
656
657 Although these are grouped by family, they all have the precedence
658 of assignment.
659
660 Unlike in C, the scalar assignment operator produces a valid lvalue.
661 Modifying an assignment is equivalent to doing the assignment and
662 then modifying the variable that was assigned to.  This is useful
663 for modifying a copy of something, like this:
664
665     ($tmp = $global) =~ tr [A-Z] [a-z];
666
667 Likewise,
668
669     ($a += 2) *= 3;
670
671 is equivalent to
672
673     $a += 2;
674     $a *= 3;
675
676 Similarly, a list assignment in list context produces the list of
677 lvalues assigned to, and a list assignment in scalar context returns
678 the number of elements produced by the expression on the right hand
679 side of the assignment.
680
681 =head2 Comma Operator
682
683 Binary "," is the comma operator.  In scalar context it evaluates
684 its left argument, throws that value away, then evaluates its right
685 argument and returns that value.  This is just like C's comma operator.
686
687 In list context, it's just the list argument separator, and inserts
688 both its arguments into the list.
689
690 The C<< => >> operator is a synonym for the comma, but forces any word
691 (consisting entirely of word characters) to its left to be interpreted
692 as a string (as of 5.001).  If the argument on the left is not a word,
693 it is first interpreted as an expression, and then the string value of
694 that is used.
695
696 The C<< => >> operator is helpful in documenting the correspondence
697 between keys and values in hashes, and other paired elements in lists.
698
699 =head2 List Operators (Rightward)
700
701 On the right side of a list operator, it has very low precedence,
702 such that it controls all comma-separated expressions found there.
703 The only operators with lower precedence are the logical operators
704 "and", "or", and "not", which may be used to evaluate calls to list
705 operators without the need for extra parentheses:
706
707     open HANDLE, "filename"
708         or die "Can't open: $!\n";
709
710 See also discussion of list operators in L<Terms and List Operators (Leftward)>.
711
712 =head2 Logical Not
713
714 Unary "not" returns the logical negation of the expression to its right.
715 It's the equivalent of "!" except for the very low precedence.
716
717 =head2 Logical And
718
719 Binary "and" returns the logical conjunction of the two surrounding
720 expressions.  It's equivalent to && except for the very low
721 precedence.  This means that it short-circuits: i.e., the right
722 expression is evaluated only if the left expression is true.
723
724 =head2 Logical or, Defined or, and Exclusive Or
725
726 Binary "or" returns the logical disjunction of the two surrounding
727 expressions.  It's equivalent to || except for the very low precedence.
728 This makes it useful for control flow
729
730     print FH $data              or die "Can't write to FH: $!";
731
732 This means that it short-circuits: i.e., the right expression is evaluated
733 only if the left expression is false.  Due to its precedence, you should
734 probably avoid using this for assignment, only for control flow.
735
736     $a = $b or $c;              # bug: this is wrong
737     ($a = $b) or $c;            # really means this
738     $a = $b || $c;              # better written this way
739
740 However, when it's a list-context assignment and you're trying to use
741 "||" for control flow, you probably need "or" so that the assignment
742 takes higher precedence.
743
744     @info = stat($file) || die;     # oops, scalar sense of stat!
745     @info = stat($file) or die;     # better, now @info gets its due
746
747 Then again, you could always use parentheses.
748
749 Binary "err" is equivalent to C<//>--it's just like binary "or", except it tests
750 its left argument's definedness instead of its truth.  There are two ways to 
751 remember "err":  either because many functions return C<undef> on an B<err>or,
752 or as a sort of correction:  C<$a=($b err 'default')>
753
754 Binary "xor" returns the exclusive-OR of the two surrounding expressions.
755 It cannot short circuit, of course.
756
757 =head2 C Operators Missing From Perl
758
759 Here is what C has that Perl doesn't:
760
761 =over 8
762
763 =item unary &
764
765 Address-of operator.  (But see the "\" operator for taking a reference.)
766
767 =item unary *
768
769 Dereference-address operator. (Perl's prefix dereferencing
770 operators are typed: $, @, %, and &.)
771
772 =item (TYPE)
773
774 Type-casting operator.
775
776 =back
777
778 =head2 Quote and Quote-like Operators
779
780 While we usually think of quotes as literal values, in Perl they
781 function as operators, providing various kinds of interpolating and
782 pattern matching capabilities.  Perl provides customary quote characters
783 for these behaviors, but also provides a way for you to choose your
784 quote character for any of them.  In the following table, a C<{}> represents
785 any pair of delimiters you choose.  
786
787     Customary  Generic        Meaning        Interpolates
788         ''       q{}          Literal             no
789         ""      qq{}          Literal             yes
790         ``      qx{}          Command             yes*
791                 qw{}         Word list            no
792         //       m{}       Pattern match          yes*
793                 qr{}          Pattern             yes*
794                  s{}{}      Substitution          yes*
795                 tr{}{}    Transliteration         no (but see below)
796         <<EOF                 here-doc            yes*
797
798         * unless the delimiter is ''.
799
800 Non-bracketing delimiters use the same character fore and aft, but the four
801 sorts of brackets (round, angle, square, curly) will all nest, which means
802 that 
803
804         q{foo{bar}baz} 
805
806 is the same as 
807
808         'foo{bar}baz'
809
810 Note, however, that this does not always work for quoting Perl code:
811
812         $s = q{ if($a eq "}") ... }; # WRONG
813
814 is a syntax error. The C<Text::Balanced> module (from CPAN, and
815 starting from Perl 5.8 part of the standard distribution) is able
816 to do this properly.
817
818 There can be whitespace between the operator and the quoting
819 characters, except when C<#> is being used as the quoting character.
820 C<q#foo#> is parsed as the string C<foo>, while C<q #foo#> is the
821 operator C<q> followed by a comment.  Its argument will be taken
822 from the next line.  This allows you to write:
823
824     s {foo}  # Replace foo
825       {bar}  # with bar.
826
827 The following escape sequences are available in constructs that interpolate
828 and in transliterations.
829
830     \t          tab             (HT, TAB)
831     \n          newline         (NL)
832     \r          return          (CR)
833     \f          form feed       (FF)
834     \b          backspace       (BS)
835     \a          alarm (bell)    (BEL)
836     \e          escape          (ESC)
837     \033        octal char      (ESC)
838     \x1b        hex char        (ESC)
839     \x{263a}    wide hex char   (SMILEY)
840     \c[         control char    (ESC)
841     \N{name}    named Unicode character
842
843 B<NOTE>: Unlike C and other languages, Perl has no \v escape sequence for
844 the vertical tab (VT - ASCII 11).
845
846 The following escape sequences are available in constructs that interpolate
847 but not in transliterations.
848
849     \l          lowercase next char
850     \u          uppercase next char
851     \L          lowercase till \E
852     \U          uppercase till \E
853     \E          end case modification
854     \Q          quote non-word characters till \E
855
856 If C<use locale> is in effect, the case map used by C<\l>, C<\L>,
857 C<\u> and C<\U> is taken from the current locale.  See L<perllocale>.
858 If Unicode (for example, C<\N{}> or wide hex characters of 0x100 or
859 beyond) is being used, the case map used by C<\l>, C<\L>, C<\u> and
860 C<\U> is as defined by Unicode.  For documentation of C<\N{name}>,
861 see L<charnames>.
862
863 All systems use the virtual C<"\n"> to represent a line terminator,
864 called a "newline".  There is no such thing as an unvarying, physical
865 newline character.  It is only an illusion that the operating system,
866 device drivers, C libraries, and Perl all conspire to preserve.  Not all
867 systems read C<"\r"> as ASCII CR and C<"\n"> as ASCII LF.  For example,
868 on a Mac, these are reversed, and on systems without line terminator,
869 printing C<"\n"> may emit no actual data.  In general, use C<"\n"> when
870 you mean a "newline" for your system, but use the literal ASCII when you
871 need an exact character.  For example, most networking protocols expect
872 and prefer a CR+LF (C<"\015\012"> or C<"\cM\cJ">) for line terminators,
873 and although they often accept just C<"\012">, they seldom tolerate just
874 C<"\015">.  If you get in the habit of using C<"\n"> for networking,
875 you may be burned some day.
876
877 For constructs that do interpolate, variables beginning with "C<$>"
878 or "C<@>" are interpolated.  Subscripted variables such as C<$a[3]> or
879 C<< $href->{key}[0] >> are also interpolated, as are array and hash slices.
880 But method calls such as C<< $obj->meth >> are not.
881
882 Interpolating an array or slice interpolates the elements in order,
883 separated by the value of C<$">, so is equivalent to interpolating
884 C<join $", @array>.    "Punctuation" arrays such as C<@+> are only
885 interpolated if the name is enclosed in braces C<@{+}>.
886
887 You cannot include a literal C<$> or C<@> within a C<\Q> sequence. 
888 An unescaped C<$> or C<@> interpolates the corresponding variable, 
889 while escaping will cause the literal string C<\$> to be inserted.
890 You'll need to write something like C<m/\Quser\E\@\Qhost/>. 
891
892 Patterns are subject to an additional level of interpretation as a
893 regular expression.  This is done as a second pass, after variables are
894 interpolated, so that regular expressions may be incorporated into the
895 pattern from the variables.  If this is not what you want, use C<\Q> to
896 interpolate a variable literally.
897
898 Apart from the behavior described above, Perl does not expand
899 multiple levels of interpolation.  In particular, contrary to the
900 expectations of shell programmers, back-quotes do I<NOT> interpolate
901 within double quotes, nor do single quotes impede evaluation of
902 variables when used within double quotes.
903
904 =head2 Regexp Quote-Like Operators
905
906 Here are the quote-like operators that apply to pattern
907 matching and related activities.
908
909 =over 8
910
911 =item ?PATTERN?
912
913 This is just like the C</pattern/> search, except that it matches only
914 once between calls to the reset() operator.  This is a useful
915 optimization when you want to see only the first occurrence of
916 something in each file of a set of files, for instance.  Only C<??>
917 patterns local to the current package are reset.
918
919     while (<>) {
920         if (?^$?) {
921                             # blank line between header and body
922         }
923     } continue {
924         reset if eof;       # clear ?? status for next file
925     }
926
927 This usage is vaguely deprecated, which means it just might possibly
928 be removed in some distant future version of Perl, perhaps somewhere
929 around the year 2168.
930
931 =item m/PATTERN/cgimosx
932
933 =item /PATTERN/cgimosx
934
935 Searches a string for a pattern match, and in scalar context returns
936 true if it succeeds, false if it fails.  If no string is specified
937 via the C<=~> or C<!~> operator, the $_ string is searched.  (The
938 string specified with C<=~> need not be an lvalue--it may be the
939 result of an expression evaluation, but remember the C<=~> binds
940 rather tightly.)  See also L<perlre>.  See L<perllocale> for
941 discussion of additional considerations that apply when C<use locale>
942 is in effect.
943
944 Options are:
945
946     c   Do not reset search position on a failed match when /g is in effect.
947     g   Match globally, i.e., find all occurrences.
948     i   Do case-insensitive pattern matching.
949     m   Treat string as multiple lines.
950     o   Compile pattern only once.
951     s   Treat string as single line.
952     x   Use extended regular expressions.
953
954 If "/" is the delimiter then the initial C<m> is optional.  With the C<m>
955 you can use any pair of non-alphanumeric, non-whitespace characters 
956 as delimiters.  This is particularly useful for matching path names
957 that contain "/", to avoid LTS (leaning toothpick syndrome).  If "?" is
958 the delimiter, then the match-only-once rule of C<?PATTERN?> applies.
959 If "'" is the delimiter, no interpolation is performed on the PATTERN.
960
961 PATTERN may contain variables, which will be interpolated (and the
962 pattern recompiled) every time the pattern search is evaluated, except
963 for when the delimiter is a single quote.  (Note that C<$(>, C<$)>, and
964 C<$|> are not interpolated because they look like end-of-string tests.)
965 If you want such a pattern to be compiled only once, add a C</o> after
966 the trailing delimiter.  This avoids expensive run-time recompilations,
967 and is useful when the value you are interpolating won't change over
968 the life of the script.  However, mentioning C</o> constitutes a promise
969 that you won't change the variables in the pattern.  If you change them,
970 Perl won't even notice.  See also L<"qr/STRING/imosx">.
971
972 If the PATTERN evaluates to the empty string, the last
973 I<successfully> matched regular expression is used instead. In this
974 case, only the C<g> and C<c> flags on the empty pattern is honoured -
975 the other flags are taken from the original pattern. If no match has
976 previously succeeded, this will (silently) act instead as a genuine
977 empty pattern (which will always match).
978
979 Note that it's possible to confuse Perl into thinking C<//> (the empty 
980 regex) is really C<//> (the defined-or operator).  Perl is usually pretty 
981 good about this, but some pathological cases might trigger this, such as 
982 C<$a///> (is that C<($a) / (//)> or C<$a // />?) and C<print $fh //> 
983 (C<print $fh(//> or C<print($fh //>?).  In all of these examples, Perl 
984 will assume you meant defined-or.  If you meant the empty regex, just 
985 use parentheses or spaces to disambiguate, or even prefix the empty 
986 regex with an C<m> (so C<//> becomes C<m//>).
987
988 If the C</g> option is not used, C<m//> in list context returns a
989 list consisting of the subexpressions matched by the parentheses in the
990 pattern, i.e., (C<$1>, C<$2>, C<$3>...).  (Note that here C<$1> etc. are
991 also set, and that this differs from Perl 4's behavior.)  When there are
992 no parentheses in the pattern, the return value is the list C<(1)> for
993 success.  With or without parentheses, an empty list is returned upon
994 failure.
995
996 Examples:
997
998     open(TTY, '/dev/tty');
999     <TTY> =~ /^y/i && foo();    # do foo if desired
1000
1001     if (/Version: *([0-9.]*)/) { $version = $1; }
1002
1003     next if m#^/usr/spool/uucp#;
1004
1005     # poor man's grep
1006     $arg = shift;
1007     while (<>) {
1008         print if /$arg/o;       # compile only once
1009     }
1010
1011     if (($F1, $F2, $Etc) = ($foo =~ /^(\S+)\s+(\S+)\s*(.*)/))
1012
1013 This last example splits $foo into the first two words and the
1014 remainder of the line, and assigns those three fields to $F1, $F2, and
1015 $Etc.  The conditional is true if any variables were assigned, i.e., if
1016 the pattern matched.
1017
1018 The C</g> modifier specifies global pattern matching--that is,
1019 matching as many times as possible within the string.  How it behaves
1020 depends on the context.  In list context, it returns a list of the
1021 substrings matched by any capturing parentheses in the regular
1022 expression.  If there are no parentheses, it returns a list of all
1023 the matched strings, as if there were parentheses around the whole
1024 pattern.
1025
1026 In scalar context, each execution of C<m//g> finds the next match,
1027 returning true if it matches, and false if there is no further match.
1028 The position after the last match can be read or set using the pos()
1029 function; see L<perlfunc/pos>.   A failed match normally resets the
1030 search position to the beginning of the string, but you can avoid that
1031 by adding the C</c> modifier (e.g. C<m//gc>).  Modifying the target
1032 string also resets the search position.
1033
1034 You can intermix C<m//g> matches with C<m/\G.../g>, where C<\G> is a
1035 zero-width assertion that matches the exact position where the previous
1036 C<m//g>, if any, left off.  Without the C</g> modifier, the C<\G> assertion
1037 still anchors at pos(), but the match is of course only attempted once.
1038 Using C<\G> without C</g> on a target string that has not previously had a
1039 C</g> match applied to it is the same as using the C<\A> assertion to match
1040 the beginning of the string.  Note also that, currently, C<\G> is only
1041 properly supported when anchored at the very beginning of the pattern.
1042
1043 Examples:
1044
1045     # list context
1046     ($one,$five,$fifteen) = (`uptime` =~ /(\d+\.\d+)/g);
1047
1048     # scalar context
1049     $/ = "";
1050     while (defined($paragraph = <>)) {
1051         while ($paragraph =~ /[a-z]['")]*[.!?]+['")]*\s/g) {
1052             $sentences++;
1053         }
1054     }
1055     print "$sentences\n";
1056
1057     # using m//gc with \G
1058     $_ = "ppooqppqq";
1059     while ($i++ < 2) {
1060         print "1: '";
1061         print $1 while /(o)/gc; print "', pos=", pos, "\n";
1062         print "2: '";
1063         print $1 if /\G(q)/gc;  print "', pos=", pos, "\n";
1064         print "3: '";
1065         print $1 while /(p)/gc; print "', pos=", pos, "\n";
1066     }
1067     print "Final: '$1', pos=",pos,"\n" if /\G(.)/;
1068
1069 The last example should print:
1070
1071     1: 'oo', pos=4
1072     2: 'q', pos=5
1073     3: 'pp', pos=7
1074     1: '', pos=7
1075     2: 'q', pos=8
1076     3: '', pos=8
1077     Final: 'q', pos=8
1078
1079 Notice that the final match matched C<q> instead of C<p>, which a match
1080 without the C<\G> anchor would have done. Also note that the final match
1081 did not update C<pos> -- C<pos> is only updated on a C</g> match. If the
1082 final match did indeed match C<p>, it's a good bet that you're running an
1083 older (pre-5.6.0) Perl.
1084
1085 A useful idiom for C<lex>-like scanners is C</\G.../gc>.  You can
1086 combine several regexps like this to process a string part-by-part,
1087 doing different actions depending on which regexp matched.  Each
1088 regexp tries to match where the previous one leaves off.
1089
1090  $_ = <<'EOL';
1091       $url = new URI::URL "http://www/";   die if $url eq "xXx";
1092  EOL
1093  LOOP:
1094     {
1095       print(" digits"),         redo LOOP if /\G\d+\b[,.;]?\s*/gc;
1096       print(" lowercase"),      redo LOOP if /\G[a-z]+\b[,.;]?\s*/gc;
1097       print(" UPPERCASE"),      redo LOOP if /\G[A-Z]+\b[,.;]?\s*/gc;
1098       print(" Capitalized"),    redo LOOP if /\G[A-Z][a-z]+\b[,.;]?\s*/gc;
1099       print(" MiXeD"),          redo LOOP if /\G[A-Za-z]+\b[,.;]?\s*/gc;
1100       print(" alphanumeric"),   redo LOOP if /\G[A-Za-z0-9]+\b[,.;]?\s*/gc;
1101       print(" line-noise"),     redo LOOP if /\G[^A-Za-z0-9]+/gc;
1102       print ". That's all!\n";
1103     }
1104
1105 Here is the output (split into several lines):
1106
1107  line-noise lowercase line-noise lowercase UPPERCASE line-noise
1108  UPPERCASE line-noise lowercase line-noise lowercase line-noise
1109  lowercase lowercase line-noise lowercase lowercase line-noise
1110  MiXeD line-noise. That's all!
1111
1112 =item q/STRING/
1113
1114 =item C<'STRING'>
1115
1116 A single-quoted, literal string.  A backslash represents a backslash
1117 unless followed by the delimiter or another backslash, in which case
1118 the delimiter or backslash is interpolated.
1119
1120     $foo = q!I said, "You said, 'She said it.'"!;
1121     $bar = q('This is it.');
1122     $baz = '\n';                # a two-character string
1123
1124 =item qq/STRING/
1125
1126 =item "STRING"
1127
1128 A double-quoted, interpolated string.
1129
1130     $_ .= qq
1131      (*** The previous line contains the naughty word "$1".\n)
1132                 if /\b(tcl|java|python)\b/i;      # :-)
1133     $baz = "\n";                # a one-character string
1134
1135 =item qr/STRING/imosx
1136
1137 This operator quotes (and possibly compiles) its I<STRING> as a regular
1138 expression.  I<STRING> is interpolated the same way as I<PATTERN>
1139 in C<m/PATTERN/>.  If "'" is used as the delimiter, no interpolation
1140 is done.  Returns a Perl value which may be used instead of the
1141 corresponding C</STRING/imosx> expression.
1142
1143 For example,
1144
1145     $rex = qr/my.STRING/is;
1146     s/$rex/foo/;
1147
1148 is equivalent to
1149
1150     s/my.STRING/foo/is;
1151
1152 The result may be used as a subpattern in a match:
1153
1154     $re = qr/$pattern/;
1155     $string =~ /foo${re}bar/;   # can be interpolated in other patterns
1156     $string =~ $re;             # or used standalone
1157     $string =~ /$re/;           # or this way
1158
1159 Since Perl may compile the pattern at the moment of execution of qr()
1160 operator, using qr() may have speed advantages in some situations,
1161 notably if the result of qr() is used standalone:
1162
1163     sub match {
1164         my $patterns = shift;
1165         my @compiled = map qr/$_/i, @$patterns;
1166         grep {
1167             my $success = 0;
1168             foreach my $pat (@compiled) {
1169                 $success = 1, last if /$pat/;
1170             }
1171             $success;
1172         } @_;
1173     }
1174
1175 Precompilation of the pattern into an internal representation at
1176 the moment of qr() avoids a need to recompile the pattern every
1177 time a match C</$pat/> is attempted.  (Perl has many other internal
1178 optimizations, but none would be triggered in the above example if
1179 we did not use qr() operator.)
1180
1181 Options are:
1182
1183     i   Do case-insensitive pattern matching.
1184     m   Treat string as multiple lines.
1185     o   Compile pattern only once.
1186     s   Treat string as single line.
1187     x   Use extended regular expressions.
1188
1189 See L<perlre> for additional information on valid syntax for STRING, and
1190 for a detailed look at the semantics of regular expressions.
1191
1192 =item qx/STRING/
1193
1194 =item `STRING`
1195
1196 A string which is (possibly) interpolated and then executed as a
1197 system command with C</bin/sh> or its equivalent.  Shell wildcards,
1198 pipes, and redirections will be honored.  The collected standard
1199 output of the command is returned; standard error is unaffected.  In
1200 scalar context, it comes back as a single (potentially multi-line)
1201 string, or undef if the command failed.  In list context, returns a
1202 list of lines (however you've defined lines with $/ or
1203 $INPUT_RECORD_SEPARATOR), or an empty list if the command failed.
1204
1205 Because backticks do not affect standard error, use shell file descriptor
1206 syntax (assuming the shell supports this) if you care to address this.
1207 To capture a command's STDERR and STDOUT together:
1208
1209     $output = `cmd 2>&1`;
1210
1211 To capture a command's STDOUT but discard its STDERR:
1212
1213     $output = `cmd 2>/dev/null`;
1214
1215 To capture a command's STDERR but discard its STDOUT (ordering is
1216 important here):
1217
1218     $output = `cmd 2>&1 1>/dev/null`;
1219
1220 To exchange a command's STDOUT and STDERR in order to capture the STDERR
1221 but leave its STDOUT to come out the old STDERR:
1222
1223     $output = `cmd 3>&1 1>&2 2>&3 3>&-`;
1224
1225 To read both a command's STDOUT and its STDERR separately, it's easiest
1226 to redirect them separately to files, and then read from those files
1227 when the program is done:
1228
1229     system("program args 1>program.stdout 2>program.stderr");
1230
1231 Using single-quote as a delimiter protects the command from Perl's
1232 double-quote interpolation, passing it on to the shell instead:
1233
1234     $perl_info  = qx(ps $$);            # that's Perl's $$
1235     $shell_info = qx'ps $$';            # that's the new shell's $$
1236
1237 How that string gets evaluated is entirely subject to the command
1238 interpreter on your system.  On most platforms, you will have to protect
1239 shell metacharacters if you want them treated literally.  This is in
1240 practice difficult to do, as it's unclear how to escape which characters.
1241 See L<perlsec> for a clean and safe example of a manual fork() and exec()
1242 to emulate backticks safely.
1243
1244 On some platforms (notably DOS-like ones), the shell may not be
1245 capable of dealing with multiline commands, so putting newlines in
1246 the string may not get you what you want.  You may be able to evaluate
1247 multiple commands in a single line by separating them with the command
1248 separator character, if your shell supports that (e.g. C<;> on many Unix
1249 shells; C<&> on the Windows NT C<cmd> shell).
1250
1251 Beginning with v5.6.0, Perl will attempt to flush all files opened for
1252 output before starting the child process, but this may not be supported
1253 on some platforms (see L<perlport>).  To be safe, you may need to set
1254 C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method of
1255 C<IO::Handle> on any open handles.
1256
1257 Beware that some command shells may place restrictions on the length
1258 of the command line.  You must ensure your strings don't exceed this
1259 limit after any necessary interpolations.  See the platform-specific
1260 release notes for more details about your particular environment.
1261
1262 Using this operator can lead to programs that are difficult to port,
1263 because the shell commands called vary between systems, and may in
1264 fact not be present at all.  As one example, the C<type> command under
1265 the POSIX shell is very different from the C<type> command under DOS.
1266 That doesn't mean you should go out of your way to avoid backticks
1267 when they're the right way to get something done.  Perl was made to be
1268 a glue language, and one of the things it glues together is commands.
1269 Just understand what you're getting yourself into.
1270
1271 See L<"I/O Operators"> for more discussion.
1272
1273 =item qw/STRING/
1274
1275 Evaluates to a list of the words extracted out of STRING, using embedded
1276 whitespace as the word delimiters.  It can be understood as being roughly
1277 equivalent to:
1278
1279     split(' ', q/STRING/);
1280
1281 the differences being that it generates a real list at compile time, and
1282 in scalar context it returns the last element in the list.  So
1283 this expression:
1284
1285     qw(foo bar baz)
1286
1287 is semantically equivalent to the list:
1288
1289     'foo', 'bar', 'baz'
1290
1291 Some frequently seen examples:
1292
1293     use POSIX qw( setlocale localeconv )
1294     @EXPORT = qw( foo bar baz );
1295
1296 A common mistake is to try to separate the words with comma or to
1297 put comments into a multi-line C<qw>-string.  For this reason, the
1298 C<use warnings> pragma and the B<-w> switch (that is, the C<$^W> variable) 
1299 produces warnings if the STRING contains the "," or the "#" character.
1300
1301 =item s/PATTERN/REPLACEMENT/egimosx
1302
1303 Searches a string for a pattern, and if found, replaces that pattern
1304 with the replacement text and returns the number of substitutions
1305 made.  Otherwise it returns false (specifically, the empty string).
1306
1307 If no string is specified via the C<=~> or C<!~> operator, the C<$_>
1308 variable is searched and modified.  (The string specified with C<=~> must
1309 be scalar variable, an array element, a hash element, or an assignment
1310 to one of those, i.e., an lvalue.)
1311
1312 If the delimiter chosen is a single quote, no interpolation is
1313 done on either the PATTERN or the REPLACEMENT.  Otherwise, if the
1314 PATTERN contains a $ that looks like a variable rather than an
1315 end-of-string test, the variable will be interpolated into the pattern
1316 at run-time.  If you want the pattern compiled only once the first time
1317 the variable is interpolated, use the C</o> option.  If the pattern
1318 evaluates to the empty string, the last successfully executed regular
1319 expression is used instead.  See L<perlre> for further explanation on these.
1320 See L<perllocale> for discussion of additional considerations that apply
1321 when C<use locale> is in effect.
1322
1323 Options are:
1324
1325     e   Evaluate the right side as an expression.
1326     g   Replace globally, i.e., all occurrences.
1327     i   Do case-insensitive pattern matching.
1328     m   Treat string as multiple lines.
1329     o   Compile pattern only once.
1330     s   Treat string as single line.
1331     x   Use extended regular expressions.
1332
1333 Any non-alphanumeric, non-whitespace delimiter may replace the
1334 slashes.  If single quotes are used, no interpretation is done on the
1335 replacement string (the C</e> modifier overrides this, however).  Unlike
1336 Perl 4, Perl 5 treats backticks as normal delimiters; the replacement
1337 text is not evaluated as a command.  If the
1338 PATTERN is delimited by bracketing quotes, the REPLACEMENT has its own
1339 pair of quotes, which may or may not be bracketing quotes, e.g.,
1340 C<s(foo)(bar)> or C<< s<foo>/bar/ >>.  A C</e> will cause the
1341 replacement portion to be treated as a full-fledged Perl expression
1342 and evaluated right then and there.  It is, however, syntax checked at
1343 compile-time. A second C<e> modifier will cause the replacement portion
1344 to be C<eval>ed before being run as a Perl expression.
1345
1346 Examples:
1347
1348     s/\bgreen\b/mauve/g;                # don't change wintergreen
1349
1350     $path =~ s|/usr/bin|/usr/local/bin|;
1351
1352     s/Login: $foo/Login: $bar/; # run-time pattern
1353
1354     ($foo = $bar) =~ s/this/that/;      # copy first, then change
1355
1356     $count = ($paragraph =~ s/Mister\b/Mr./g);  # get change-count
1357
1358     $_ = 'abc123xyz';
1359     s/\d+/$&*2/e;               # yields 'abc246xyz'
1360     s/\d+/sprintf("%5d",$&)/e;  # yields 'abc  246xyz'
1361     s/\w/$& x 2/eg;             # yields 'aabbcc  224466xxyyzz'
1362
1363     s/%(.)/$percent{$1}/g;      # change percent escapes; no /e
1364     s/%(.)/$percent{$1} || $&/ge;       # expr now, so /e
1365     s/^=(\w+)/&pod($1)/ge;      # use function call
1366
1367     # expand variables in $_, but dynamics only, using
1368     # symbolic dereferencing
1369     s/\$(\w+)/${$1}/g;
1370
1371     # Add one to the value of any numbers in the string
1372     s/(\d+)/1 + $1/eg;
1373
1374     # This will expand any embedded scalar variable
1375     # (including lexicals) in $_ : First $1 is interpolated
1376     # to the variable name, and then evaluated
1377     s/(\$\w+)/$1/eeg;
1378
1379     # Delete (most) C comments.
1380     $program =~ s {
1381         /\*     # Match the opening delimiter.
1382         .*?     # Match a minimal number of characters.
1383         \*/     # Match the closing delimiter.
1384     } []gsx;
1385
1386     s/^\s*(.*?)\s*$/$1/;        # trim whitespace in $_, expensively
1387
1388     for ($variable) {           # trim whitespace in $variable, cheap
1389         s/^\s+//;
1390         s/\s+$//;
1391     }
1392
1393     s/([^ ]*) *([^ ]*)/$2 $1/;  # reverse 1st two fields
1394
1395 Note the use of $ instead of \ in the last example.  Unlike
1396 B<sed>, we use the \<I<digit>> form in only the left hand side.
1397 Anywhere else it's $<I<digit>>.
1398
1399 Occasionally, you can't use just a C</g> to get all the changes
1400 to occur that you might want.  Here are two common cases:
1401
1402     # put commas in the right places in an integer
1403     1 while s/(\d)(\d\d\d)(?!\d)/$1,$2/g;  
1404
1405     # expand tabs to 8-column spacing
1406     1 while s/\t+/' ' x (length($&)*8 - length($`)%8)/e;
1407
1408 =item tr/SEARCHLIST/REPLACEMENTLIST/cds
1409
1410 =item y/SEARCHLIST/REPLACEMENTLIST/cds
1411
1412 Transliterates all occurrences of the characters found in the search list
1413 with the corresponding character in the replacement list.  It returns
1414 the number of characters replaced or deleted.  If no string is
1415 specified via the =~ or !~ operator, the $_ string is transliterated.  (The
1416 string specified with =~ must be a scalar variable, an array element, a
1417 hash element, or an assignment to one of those, i.e., an lvalue.)
1418
1419 A character range may be specified with a hyphen, so C<tr/A-J/0-9/> 
1420 does the same replacement as C<tr/ACEGIBDFHJ/0246813579/>.
1421 For B<sed> devotees, C<y> is provided as a synonym for C<tr>.  If the
1422 SEARCHLIST is delimited by bracketing quotes, the REPLACEMENTLIST has
1423 its own pair of quotes, which may or may not be bracketing quotes,
1424 e.g., C<tr[A-Z][a-z]> or C<tr(+\-*/)/ABCD/>.
1425
1426 Note that C<tr> does B<not> do regular expression character classes
1427 such as C<\d> or C<[:lower:]>.  The <tr> operator is not equivalent to
1428 the tr(1) utility.  If you want to map strings between lower/upper
1429 cases, see L<perlfunc/lc> and L<perlfunc/uc>, and in general consider
1430 using the C<s> operator if you need regular expressions.
1431
1432 Note also that the whole range idea is rather unportable between
1433 character sets--and even within character sets they may cause results
1434 you probably didn't expect.  A sound principle is to use only ranges
1435 that begin from and end at either alphabets of equal case (a-e, A-E),
1436 or digits (0-4).  Anything else is unsafe.  If in doubt, spell out the
1437 character sets in full.
1438
1439 Options:
1440
1441     c   Complement the SEARCHLIST.
1442     d   Delete found but unreplaced characters.
1443     s   Squash duplicate replaced characters.
1444
1445 If the C</c> modifier is specified, the SEARCHLIST character set
1446 is complemented.  If the C</d> modifier is specified, any characters
1447 specified by SEARCHLIST not found in REPLACEMENTLIST are deleted.
1448 (Note that this is slightly more flexible than the behavior of some
1449 B<tr> programs, which delete anything they find in the SEARCHLIST,
1450 period.) If the C</s> modifier is specified, sequences of characters
1451 that were transliterated to the same character are squashed down
1452 to a single instance of the character.
1453
1454 If the C</d> modifier is used, the REPLACEMENTLIST is always interpreted
1455 exactly as specified.  Otherwise, if the REPLACEMENTLIST is shorter
1456 than the SEARCHLIST, the final character is replicated till it is long
1457 enough.  If the REPLACEMENTLIST is empty, the SEARCHLIST is replicated.
1458 This latter is useful for counting characters in a class or for
1459 squashing character sequences in a class.
1460
1461 Examples:
1462
1463     $ARGV[1] =~ tr/A-Z/a-z/;    # canonicalize to lower case
1464
1465     $cnt = tr/*/*/;             # count the stars in $_
1466
1467     $cnt = $sky =~ tr/*/*/;     # count the stars in $sky
1468
1469     $cnt = tr/0-9//;            # count the digits in $_
1470
1471     tr/a-zA-Z//s;               # bookkeeper -> bokeper
1472
1473     ($HOST = $host) =~ tr/a-z/A-Z/;
1474
1475     tr/a-zA-Z/ /cs;             # change non-alphas to single space
1476
1477     tr [\200-\377]
1478        [\000-\177];             # delete 8th bit
1479
1480 If multiple transliterations are given for a character, only the
1481 first one is used:
1482
1483     tr/AAA/XYZ/
1484
1485 will transliterate any A to X.
1486
1487 Because the transliteration table is built at compile time, neither
1488 the SEARCHLIST nor the REPLACEMENTLIST are subjected to double quote
1489 interpolation.  That means that if you want to use variables, you
1490 must use an eval():
1491
1492     eval "tr/$oldlist/$newlist/";
1493     die $@ if $@;
1494
1495     eval "tr/$oldlist/$newlist/, 1" or die $@;
1496
1497 =item <<EOF
1498
1499 A line-oriented form of quoting is based on the shell "here-document"
1500 syntax.  Following a C<< << >> you specify a string to terminate
1501 the quoted material, and all lines following the current line down to
1502 the terminating string are the value of the item.  The terminating
1503 string may be either an identifier (a word), or some quoted text.  If
1504 quoted, the type of quotes you use determines the treatment of the
1505 text, just as in regular quoting.  An unquoted identifier works like
1506 double quotes.  There must be no space between the C<< << >> and
1507 the identifier, unless the identifier is quoted.  (If you put a space it
1508 will be treated as a null identifier, which is valid, and matches the first
1509 empty line.)  The terminating string must appear by itself (unquoted and
1510 with no surrounding whitespace) on the terminating line.
1511
1512        print <<EOF;
1513     The price is $Price.
1514     EOF
1515
1516        print << "EOF"; # same as above
1517     The price is $Price.
1518     EOF
1519
1520        print << `EOC`; # execute commands
1521     echo hi there
1522     echo lo there
1523     EOC
1524
1525        print <<"foo", <<"bar"; # you can stack them
1526     I said foo.
1527     foo
1528     I said bar.
1529     bar
1530
1531        myfunc(<< "THIS", 23, <<'THAT');
1532     Here's a line
1533     or two.
1534     THIS
1535     and here's another.
1536     THAT
1537
1538 Just don't forget that you have to put a semicolon on the end
1539 to finish the statement, as Perl doesn't know you're not going to
1540 try to do this:
1541
1542        print <<ABC
1543     179231
1544     ABC
1545        + 20;
1546
1547 If you want your here-docs to be indented with the 
1548 rest of the code, you'll need to remove leading whitespace
1549 from each line manually:
1550
1551     ($quote = <<'FINIS') =~ s/^\s+//gm;
1552        The Road goes ever on and on, 
1553        down from the door where it began.
1554     FINIS
1555
1556 If you use a here-doc within a delimited construct, such as in C<s///eg>,
1557 the quoted material must come on the lines following the final delimiter.
1558 So instead of
1559
1560     s/this/<<E . 'that'
1561     the other
1562     E
1563      . 'more '/eg;
1564
1565 you have to write
1566
1567     s/this/<<E . 'that' 
1568      . 'more '/eg; 
1569     the other 
1570     E 
1571
1572 If the terminating identifier is on the last line of the program, you
1573 must be sure there is a newline after it; otherwise, Perl will give the
1574 warning B<Can't find string terminator "END" anywhere before EOF...>.
1575
1576 Additionally, the quoting rules for the identifier are not related to
1577 Perl's quoting rules -- C<q()>, C<qq()>, and the like are not supported
1578 in place of C<''> and C<"">, and the only interpolation is for backslashing
1579 the quoting character:
1580
1581     print << "abc\"def";
1582     testing...
1583     abc"def
1584
1585 Finally, quoted strings cannot span multiple lines.  The general rule is
1586 that the identifier must be a string literal.  Stick with that, and you
1587 should be safe.
1588
1589 =back
1590
1591 =head2 Gory details of parsing quoted constructs
1592
1593 When presented with something that might have several different
1594 interpretations, Perl uses the B<DWIM> (that's "Do What I Mean")
1595 principle to pick the most probable interpretation.  This strategy
1596 is so successful that Perl programmers often do not suspect the
1597 ambivalence of what they write.  But from time to time, Perl's
1598 notions differ substantially from what the author honestly meant.
1599
1600 This section hopes to clarify how Perl handles quoted constructs.
1601 Although the most common reason to learn this is to unravel labyrinthine
1602 regular expressions, because the initial steps of parsing are the
1603 same for all quoting operators, they are all discussed together.
1604
1605 The most important Perl parsing rule is the first one discussed
1606 below: when processing a quoted construct, Perl first finds the end
1607 of that construct, then interprets its contents.  If you understand
1608 this rule, you may skip the rest of this section on the first
1609 reading.  The other rules are likely to contradict the user's
1610 expectations much less frequently than this first one.
1611
1612 Some passes discussed below are performed concurrently, but because
1613 their results are the same, we consider them individually.  For different
1614 quoting constructs, Perl performs different numbers of passes, from
1615 one to five, but these passes are always performed in the same order.
1616
1617 =over 4
1618
1619 =item Finding the end
1620
1621 The first pass is finding the end of the quoted construct, whether
1622 it be a multicharacter delimiter C<"\nEOF\n"> in the C<<<EOF>
1623 construct, a C</> that terminates a C<qq//> construct, a C<]> which
1624 terminates C<qq[]> construct, or a C<< > >> which terminates a
1625 fileglob started with C<< < >>.
1626
1627 When searching for single-character non-pairing delimiters, such
1628 as C</>, combinations of C<\\> and C<\/> are skipped.  However,
1629 when searching for single-character pairing delimiter like C<[>,
1630 combinations of C<\\>, C<\]>, and C<\[> are all skipped, and nested
1631 C<[>, C<]> are skipped as well.  When searching for multicharacter
1632 delimiters, nothing is skipped.
1633
1634 For constructs with three-part delimiters (C<s///>, C<y///>, and
1635 C<tr///>), the search is repeated once more.
1636
1637 During this search no attention is paid to the semantics of the construct.
1638 Thus:
1639
1640     "$hash{"$foo/$bar"}"
1641
1642 or:
1643
1644     m/ 
1645       bar       # NOT a comment, this slash / terminated m//!
1646      /x
1647
1648 do not form legal quoted expressions.   The quoted part ends on the
1649 first C<"> and C</>, and the rest happens to be a syntax error.
1650 Because the slash that terminated C<m//> was followed by a C<SPACE>,
1651 the example above is not C<m//x>, but rather C<m//> with no C</x>
1652 modifier.  So the embedded C<#> is interpreted as a literal C<#>.
1653
1654 =item Removal of backslashes before delimiters
1655
1656 During the second pass, text between the starting and ending
1657 delimiters is copied to a safe location, and the C<\> is removed
1658 from combinations consisting of C<\> and delimiter--or delimiters,
1659 meaning both starting and ending delimiters will should these differ.
1660 This removal does not happen for multi-character delimiters.
1661 Note that the combination C<\\> is left intact, just as it was.
1662
1663 Starting from this step no information about the delimiters is
1664 used in parsing.
1665
1666 =item Interpolation
1667
1668 The next step is interpolation in the text obtained, which is now
1669 delimiter-independent.  There are four different cases.
1670
1671 =over 4
1672
1673 =item C<<<'EOF'>, C<m''>, C<s'''>, C<tr///>, C<y///>
1674
1675 No interpolation is performed.
1676
1677 =item C<''>, C<q//>
1678
1679 The only interpolation is removal of C<\> from pairs C<\\>.
1680
1681 =item C<"">, C<``>, C<qq//>, C<qx//>, C<< <file*glob> >>
1682
1683 C<\Q>, C<\U>, C<\u>, C<\L>, C<\l> (possibly paired with C<\E>) are
1684 converted to corresponding Perl constructs.  Thus, C<"$foo\Qbaz$bar">
1685 is converted to C<$foo . (quotemeta("baz" . $bar))> internally.
1686 The other combinations are replaced with appropriate expansions.
1687
1688 Let it be stressed that I<whatever falls between C<\Q> and C<\E>>
1689 is interpolated in the usual way.  Something like C<"\Q\\E"> has
1690 no C<\E> inside.  instead, it has C<\Q>, C<\\>, and C<E>, so the
1691 result is the same as for C<"\\\\E">.  As a general rule, backslashes
1692 between C<\Q> and C<\E> may lead to counterintuitive results.  So,
1693 C<"\Q\t\E"> is converted to C<quotemeta("\t")>, which is the same
1694 as C<"\\\t"> (since TAB is not alphanumeric).  Note also that:
1695
1696   $str = '\t';
1697   return "\Q$str";
1698
1699 may be closer to the conjectural I<intention> of the writer of C<"\Q\t\E">.
1700
1701 Interpolated scalars and arrays are converted internally to the C<join> and
1702 C<.> catenation operations.  Thus, C<"$foo XXX '@arr'"> becomes:
1703
1704   $foo . " XXX '" . (join $", @arr) . "'";
1705
1706 All operations above are performed simultaneously, left to right.
1707
1708 Because the result of C<"\Q STRING \E"> has all metacharacters
1709 quoted, there is no way to insert a literal C<$> or C<@> inside a
1710 C<\Q\E> pair.  If protected by C<\>, C<$> will be quoted to became
1711 C<"\\\$">; if not, it is interpreted as the start of an interpolated
1712 scalar.
1713
1714 Note also that the interpolation code needs to make a decision on
1715 where the interpolated scalar ends.  For instance, whether 
1716 C<< "a $b -> {c}" >> really means:
1717
1718   "a " . $b . " -> {c}";
1719
1720 or:
1721
1722   "a " . $b -> {c};
1723
1724 Most of the time, the longest possible text that does not include
1725 spaces between components and which contains matching braces or
1726 brackets.  because the outcome may be determined by voting based
1727 on heuristic estimators, the result is not strictly predictable.
1728 Fortunately, it's usually correct for ambiguous cases.
1729
1730 =item C<?RE?>, C</RE/>, C<m/RE/>, C<s/RE/foo/>, 
1731
1732 Processing of C<\Q>, C<\U>, C<\u>, C<\L>, C<\l>, and interpolation
1733 happens (almost) as with C<qq//> constructs, but the substitution
1734 of C<\> followed by RE-special chars (including C<\>) is not
1735 performed.  Moreover, inside C<(?{BLOCK})>, C<(?# comment )>, and
1736 a C<#>-comment in a C<//x>-regular expression, no processing is
1737 performed whatsoever.  This is the first step at which the presence
1738 of the C<//x> modifier is relevant.
1739
1740 Interpolation has several quirks: C<$|>, C<$(>, and C<$)> are not
1741 interpolated, and constructs C<$var[SOMETHING]> are voted (by several
1742 different estimators) to be either an array element or C<$var>
1743 followed by an RE alternative.  This is where the notation
1744 C<${arr[$bar]}> comes handy: C</${arr[0-9]}/> is interpreted as
1745 array element C<-9>, not as a regular expression from the variable
1746 C<$arr> followed by a digit, which would be the interpretation of
1747 C</$arr[0-9]/>.  Since voting among different estimators may occur,
1748 the result is not predictable.
1749
1750 It is at this step that C<\1> is begrudgingly converted to C<$1> in
1751 the replacement text of C<s///> to correct the incorrigible
1752 I<sed> hackers who haven't picked up the saner idiom yet.  A warning
1753 is emitted if the C<use warnings> pragma or the B<-w> command-line flag
1754 (that is, the C<$^W> variable) was set.
1755
1756 The lack of processing of C<\\> creates specific restrictions on
1757 the post-processed text.  If the delimiter is C</>, one cannot get
1758 the combination C<\/> into the result of this step.  C</> will
1759 finish the regular expression, C<\/> will be stripped to C</> on
1760 the previous step, and C<\\/> will be left as is.  Because C</> is
1761 equivalent to C<\/> inside a regular expression, this does not
1762 matter unless the delimiter happens to be character special to the
1763 RE engine, such as in C<s*foo*bar*>, C<m[foo]>, or C<?foo?>; or an
1764 alphanumeric char, as in:
1765
1766   m m ^ a \s* b mmx;
1767
1768 In the RE above, which is intentionally obfuscated for illustration, the
1769 delimiter is C<m>, the modifier is C<mx>, and after backslash-removal the
1770 RE is the same as for C<m/ ^ a \s* b /mx>.  There's more than one 
1771 reason you're encouraged to restrict your delimiters to non-alphanumeric,
1772 non-whitespace choices.
1773
1774 =back
1775
1776 This step is the last one for all constructs except regular expressions,
1777 which are processed further.
1778
1779 =item Interpolation of regular expressions
1780
1781 Previous steps were performed during the compilation of Perl code,
1782 but this one happens at run time--although it may be optimized to
1783 be calculated at compile time if appropriate.  After preprocessing
1784 described above, and possibly after evaluation if catenation,
1785 joining, casing translation, or metaquoting are involved, the
1786 resulting I<string> is passed to the RE engine for compilation.
1787
1788 Whatever happens in the RE engine might be better discussed in L<perlre>,
1789 but for the sake of continuity, we shall do so here.
1790
1791 This is another step where the presence of the C<//x> modifier is
1792 relevant.  The RE engine scans the string from left to right and
1793 converts it to a finite automaton.
1794
1795 Backslashed characters are either replaced with corresponding
1796 literal strings (as with C<\{>), or else they generate special nodes
1797 in the finite automaton (as with C<\b>).  Characters special to the
1798 RE engine (such as C<|>) generate corresponding nodes or groups of
1799 nodes.  C<(?#...)> comments are ignored.  All the rest is either
1800 converted to literal strings to match, or else is ignored (as is
1801 whitespace and C<#>-style comments if C<//x> is present).
1802
1803 Parsing of the bracketed character class construct, C<[...]>, is
1804 rather different than the rule used for the rest of the pattern.
1805 The terminator of this construct is found using the same rules as
1806 for finding the terminator of a C<{}>-delimited construct, the only
1807 exception being that C<]> immediately following C<[> is treated as
1808 though preceded by a backslash.  Similarly, the terminator of
1809 C<(?{...})> is found using the same rules as for finding the
1810 terminator of a C<{}>-delimited construct.
1811
1812 It is possible to inspect both the string given to RE engine and the
1813 resulting finite automaton.  See the arguments C<debug>/C<debugcolor>
1814 in the C<use L<re>> pragma, as well as Perl's B<-Dr> command-line
1815 switch documented in L<perlrun/"Command Switches">.
1816
1817 =item Optimization of regular expressions
1818
1819 This step is listed for completeness only.  Since it does not change
1820 semantics, details of this step are not documented and are subject
1821 to change without notice.  This step is performed over the finite
1822 automaton that was generated during the previous pass.
1823
1824 It is at this stage that C<split()> silently optimizes C</^/> to
1825 mean C</^/m>.
1826
1827 =back
1828
1829 =head2 I/O Operators
1830
1831 There are several I/O operators you should know about.
1832
1833 A string enclosed by backticks (grave accents) first undergoes
1834 double-quote interpolation.  It is then interpreted as an external
1835 command, and the output of that command is the value of the
1836 backtick string, like in a shell.  In scalar context, a single string
1837 consisting of all output is returned.  In list context, a list of
1838 values is returned, one per line of output.  (You can set C<$/> to use
1839 a different line terminator.)  The command is executed each time the
1840 pseudo-literal is evaluated.  The status value of the command is
1841 returned in C<$?> (see L<perlvar> for the interpretation of C<$?>).
1842 Unlike in B<csh>, no translation is done on the return data--newlines
1843 remain newlines.  Unlike in any of the shells, single quotes do not
1844 hide variable names in the command from interpretation.  To pass a
1845 literal dollar-sign through to the shell you need to hide it with a
1846 backslash.  The generalized form of backticks is C<qx//>.  (Because
1847 backticks always undergo shell expansion as well, see L<perlsec> for
1848 security concerns.)
1849
1850 In scalar context, evaluating a filehandle in angle brackets yields
1851 the next line from that file (the newline, if any, included), or
1852 C<undef> at end-of-file or on error.  When C<$/> is set to C<undef>
1853 (sometimes known as file-slurp mode) and the file is empty, it
1854 returns C<''> the first time, followed by C<undef> subsequently.
1855
1856 Ordinarily you must assign the returned value to a variable, but
1857 there is one situation where an automatic assignment happens.  If
1858 and only if the input symbol is the only thing inside the conditional
1859 of a C<while> statement (even if disguised as a C<for(;;)> loop),
1860 the value is automatically assigned to the global variable $_,
1861 destroying whatever was there previously.  (This may seem like an
1862 odd thing to you, but you'll use the construct in almost every Perl
1863 script you write.)  The $_ variable is not implicitly localized.
1864 You'll have to put a C<local $_;> before the loop if you want that
1865 to happen.
1866
1867 The following lines are equivalent:
1868
1869     while (defined($_ = <STDIN>)) { print; }
1870     while ($_ = <STDIN>) { print; }
1871     while (<STDIN>) { print; }
1872     for (;<STDIN>;) { print; }
1873     print while defined($_ = <STDIN>);
1874     print while ($_ = <STDIN>);
1875     print while <STDIN>;
1876
1877 This also behaves similarly, but avoids $_ :
1878
1879     while (my $line = <STDIN>) { print $line }    
1880
1881 In these loop constructs, the assigned value (whether assignment
1882 is automatic or explicit) is then tested to see whether it is
1883 defined.  The defined test avoids problems where line has a string
1884 value that would be treated as false by Perl, for example a "" or
1885 a "0" with no trailing newline.  If you really mean for such values
1886 to terminate the loop, they should be tested for explicitly:
1887
1888     while (($_ = <STDIN>) ne '0') { ... }
1889     while (<STDIN>) { last unless $_; ... }
1890
1891 In other boolean contexts, C<< <I<filehandle>> >> without an
1892 explicit C<defined> test or comparison elicit a warning if the 
1893 C<use warnings> pragma or the B<-w>
1894 command-line switch (the C<$^W> variable) is in effect.
1895
1896 The filehandles STDIN, STDOUT, and STDERR are predefined.  (The
1897 filehandles C<stdin>, C<stdout>, and C<stderr> will also work except
1898 in packages, where they would be interpreted as local identifiers
1899 rather than global.)  Additional filehandles may be created with
1900 the open() function, amongst others.  See L<perlopentut> and
1901 L<perlfunc/open> for details on this.
1902
1903 If a <FILEHANDLE> is used in a context that is looking for
1904 a list, a list comprising all input lines is returned, one line per
1905 list element.  It's easy to grow to a rather large data space this
1906 way, so use with care.
1907
1908 <FILEHANDLE> may also be spelled C<readline(*FILEHANDLE)>.
1909 See L<perlfunc/readline>.
1910
1911 The null filehandle <> is special: it can be used to emulate the
1912 behavior of B<sed> and B<awk>.  Input from <> comes either from
1913 standard input, or from each file listed on the command line.  Here's
1914 how it works: the first time <> is evaluated, the @ARGV array is
1915 checked, and if it is empty, C<$ARGV[0]> is set to "-", which when opened
1916 gives you standard input.  The @ARGV array is then processed as a list
1917 of filenames.  The loop
1918
1919     while (<>) {
1920         ...                     # code for each line
1921     }
1922
1923 is equivalent to the following Perl-like pseudo code:
1924
1925     unshift(@ARGV, '-') unless @ARGV;
1926     while ($ARGV = shift) {
1927         open(ARGV, $ARGV);
1928         while (<ARGV>) {
1929             ...         # code for each line
1930         }
1931     }
1932
1933 except that it isn't so cumbersome to say, and will actually work.
1934 It really does shift the @ARGV array and put the current filename
1935 into the $ARGV variable.  It also uses filehandle I<ARGV>
1936 internally--<> is just a synonym for <ARGV>, which
1937 is magical.  (The pseudo code above doesn't work because it treats
1938 <ARGV> as non-magical.)
1939
1940 You can modify @ARGV before the first <> as long as the array ends up
1941 containing the list of filenames you really want.  Line numbers (C<$.>)
1942 continue as though the input were one big happy file.  See the example
1943 in L<perlfunc/eof> for how to reset line numbers on each file.
1944
1945 If you want to set @ARGV to your own list of files, go right ahead.  
1946 This sets @ARGV to all plain text files if no @ARGV was given:
1947
1948     @ARGV = grep { -f && -T } glob('*') unless @ARGV;
1949
1950 You can even set them to pipe commands.  For example, this automatically
1951 filters compressed arguments through B<gzip>:
1952
1953     @ARGV = map { /\.(gz|Z)$/ ? "gzip -dc < $_ |" : $_ } @ARGV;
1954
1955 If you want to pass switches into your script, you can use one of the
1956 Getopts modules or put a loop on the front like this:
1957
1958     while ($_ = $ARGV[0], /^-/) {
1959         shift;
1960         last if /^--$/;
1961         if (/^-D(.*)/) { $debug = $1 }
1962         if (/^-v/)     { $verbose++  }
1963         # ...           # other switches
1964     }
1965
1966     while (<>) {
1967         # ...           # code for each line
1968     }
1969
1970 The <> symbol will return C<undef> for end-of-file only once.  
1971 If you call it again after this, it will assume you are processing another 
1972 @ARGV list, and if you haven't set @ARGV, will read input from STDIN.
1973
1974 If what the angle brackets contain is a simple scalar variable (e.g.,
1975 <$foo>), then that variable contains the name of the
1976 filehandle to input from, or its typeglob, or a reference to the
1977 same.  For example:
1978
1979     $fh = \*STDIN;
1980     $line = <$fh>;
1981
1982 If what's within the angle brackets is neither a filehandle nor a simple
1983 scalar variable containing a filehandle name, typeglob, or typeglob
1984 reference, it is interpreted as a filename pattern to be globbed, and
1985 either a list of filenames or the next filename in the list is returned,
1986 depending on context.  This distinction is determined on syntactic
1987 grounds alone.  That means C<< <$x> >> is always a readline() from
1988 an indirect handle, but C<< <$hash{key}> >> is always a glob().
1989 That's because $x is a simple scalar variable, but C<$hash{key}> is
1990 not--it's a hash element.
1991
1992 One level of double-quote interpretation is done first, but you can't
1993 say C<< <$foo> >> because that's an indirect filehandle as explained
1994 in the previous paragraph.  (In older versions of Perl, programmers
1995 would insert curly brackets to force interpretation as a filename glob:
1996 C<< <${foo}> >>.  These days, it's considered cleaner to call the
1997 internal function directly as C<glob($foo)>, which is probably the right
1998 way to have done it in the first place.)  For example:
1999
2000     while (<*.c>) {
2001         chmod 0644, $_;
2002     }
2003
2004 is roughly equivalent to:
2005
2006     open(FOO, "echo *.c | tr -s ' \t\r\f' '\\012\\012\\012\\012'|");
2007     while (<FOO>) {
2008         chomp;
2009         chmod 0644, $_;
2010     }
2011
2012 except that the globbing is actually done internally using the standard
2013 C<File::Glob> extension.  Of course, the shortest way to do the above is:
2014
2015     chmod 0644, <*.c>;
2016
2017 A (file)glob evaluates its (embedded) argument only when it is
2018 starting a new list.  All values must be read before it will start
2019 over.  In list context, this isn't important because you automatically
2020 get them all anyway.  However, in scalar context the operator returns
2021 the next value each time it's called, or C<undef> when the list has
2022 run out.  As with filehandle reads, an automatic C<defined> is
2023 generated when the glob occurs in the test part of a C<while>,
2024 because legal glob returns (e.g. a file called F<0>) would otherwise
2025 terminate the loop.  Again, C<undef> is returned only once.  So if
2026 you're expecting a single value from a glob, it is much better to
2027 say
2028
2029     ($file) = <blurch*>;
2030
2031 than
2032
2033     $file = <blurch*>;
2034
2035 because the latter will alternate between returning a filename and
2036 returning false.
2037
2038 If you're trying to do variable interpolation, it's definitely better
2039 to use the glob() function, because the older notation can cause people
2040 to become confused with the indirect filehandle notation.
2041
2042     @files = glob("$dir/*.[ch]");
2043     @files = glob($files[$i]);
2044
2045 =head2 Constant Folding
2046
2047 Like C, Perl does a certain amount of expression evaluation at
2048 compile time whenever it determines that all arguments to an
2049 operator are static and have no side effects.  In particular, string
2050 concatenation happens at compile time between literals that don't do
2051 variable substitution.  Backslash interpolation also happens at
2052 compile time.  You can say
2053
2054     'Now is the time for all' . "\n" .
2055         'good men to come to.'
2056
2057 and this all reduces to one string internally.  Likewise, if
2058 you say
2059
2060     foreach $file (@filenames) {
2061         if (-s $file > 5 + 100 * 2**16) {  }
2062     }
2063
2064 the compiler will precompute the number which that expression
2065 represents so that the interpreter won't have to.
2066
2067 =head2 No-ops
2068
2069 Perl doesn't officially have a no-op operator, but the bare constants
2070 C<0> and C<1> are special-cased to not produce a warning in a void
2071 context, so you can for example safely do
2072
2073     1 while foo();
2074
2075 =head2 Bitwise String Operators
2076
2077 Bitstrings of any size may be manipulated by the bitwise operators
2078 (C<~ | & ^>).
2079
2080 If the operands to a binary bitwise op are strings of different
2081 sizes, B<|> and B<^> ops act as though the shorter operand had
2082 additional zero bits on the right, while the B<&> op acts as though
2083 the longer operand were truncated to the length of the shorter.
2084 The granularity for such extension or truncation is one or more
2085 bytes.
2086
2087     # ASCII-based examples 
2088     print "j p \n" ^ " a h";            # prints "JAPH\n"
2089     print "JA" | "  ph\n";              # prints "japh\n"
2090     print "japh\nJunk" & '_____';       # prints "JAPH\n";
2091     print 'p N$' ^ " E<H\n";            # prints "Perl\n";
2092
2093 If you are intending to manipulate bitstrings, be certain that
2094 you're supplying bitstrings: If an operand is a number, that will imply
2095 a B<numeric> bitwise operation.  You may explicitly show which type of
2096 operation you intend by using C<""> or C<0+>, as in the examples below.
2097
2098     $foo =  150  |  105 ;       # yields 255  (0x96 | 0x69 is 0xFF)
2099     $foo = '150' |  105 ;       # yields 255
2100     $foo =  150  | '105';       # yields 255
2101     $foo = '150' | '105';       # yields string '155' (under ASCII)
2102
2103     $baz = 0+$foo & 0+$bar;     # both ops explicitly numeric
2104     $biz = "$foo" ^ "$bar";     # both ops explicitly stringy
2105
2106 See L<perlfunc/vec> for information on how to manipulate individual bits
2107 in a bit vector.
2108
2109 =head2 Integer Arithmetic
2110
2111 By default, Perl assumes that it must do most of its arithmetic in
2112 floating point.  But by saying
2113
2114     use integer;
2115
2116 you may tell the compiler that it's okay to use integer operations
2117 (if it feels like it) from here to the end of the enclosing BLOCK.
2118 An inner BLOCK may countermand this by saying
2119
2120     no integer;
2121
2122 which lasts until the end of that BLOCK.  Note that this doesn't
2123 mean everything is only an integer, merely that Perl may use integer
2124 operations if it is so inclined.  For example, even under C<use
2125 integer>, if you take the C<sqrt(2)>, you'll still get C<1.4142135623731>
2126 or so.
2127
2128 Used on numbers, the bitwise operators ("&", "|", "^", "~", "<<",
2129 and ">>") always produce integral results.  (But see also 
2130 L<Bitwise String Operators>.)  However, C<use integer> still has meaning for
2131 them.  By default, their results are interpreted as unsigned integers, but
2132 if C<use integer> is in effect, their results are interpreted
2133 as signed integers.  For example, C<~0> usually evaluates to a large
2134 integral value.  However, C<use integer; ~0> is C<-1> on twos-complement
2135 machines.
2136
2137 =head2 Floating-point Arithmetic
2138
2139 While C<use integer> provides integer-only arithmetic, there is no
2140 analogous mechanism to provide automatic rounding or truncation to a
2141 certain number of decimal places.  For rounding to a certain number
2142 of digits, sprintf() or printf() is usually the easiest route.
2143 See L<perlfaq4>.
2144
2145 Floating-point numbers are only approximations to what a mathematician
2146 would call real numbers.  There are infinitely more reals than floats,
2147 so some corners must be cut.  For example:
2148
2149     printf "%.20g\n", 123456789123456789;
2150     #        produces 123456789123456784
2151
2152 Testing for exact equality of floating-point equality or inequality is
2153 not a good idea.  Here's a (relatively expensive) work-around to compare
2154 whether two floating-point numbers are equal to a particular number of
2155 decimal places.  See Knuth, volume II, for a more robust treatment of
2156 this topic.
2157
2158     sub fp_equal {
2159         my ($X, $Y, $POINTS) = @_;
2160         my ($tX, $tY);
2161         $tX = sprintf("%.${POINTS}g", $X);
2162         $tY = sprintf("%.${POINTS}g", $Y);
2163         return $tX eq $tY;
2164     }
2165
2166 The POSIX module (part of the standard perl distribution) implements
2167 ceil(), floor(), and other mathematical and trigonometric functions.
2168 The Math::Complex module (part of the standard perl distribution)
2169 defines mathematical functions that work on both the reals and the
2170 imaginary numbers.  Math::Complex not as efficient as POSIX, but
2171 POSIX can't work with complex numbers.
2172
2173 Rounding in financial applications can have serious implications, and
2174 the rounding method used should be specified precisely.  In these
2175 cases, it probably pays not to trust whichever system rounding is
2176 being used by Perl, but to instead implement the rounding function you
2177 need yourself.
2178
2179 =head2 Bigger Numbers
2180
2181 The standard Math::BigInt and Math::BigFloat modules provide
2182 variable-precision arithmetic and overloaded operators, although
2183 they're currently pretty slow. At the cost of some space and
2184 considerable speed, they avoid the normal pitfalls associated with
2185 limited-precision representations.
2186
2187     use Math::BigInt;
2188     $x = Math::BigInt->new('123456789123456789');
2189     print $x * $x;
2190
2191     # prints +15241578780673678515622620750190521
2192
2193 There are several modules that let you calculate with (bound only by
2194 memory and cpu-time) unlimited or fixed precision. There are also
2195 some non-standard modules that provide faster implementations via
2196 external C libraries.
2197
2198 Here is a short, but incomplete summary:
2199
2200         Math::Fraction          big, unlimited fractions like 9973 / 12967
2201         Math::String            treat string sequences like numbers
2202         Math::FixedPrecision    calculate with a fixed precision
2203         Math::Currency          for currency calculations
2204         Bit::Vector             manipulate bit vectors fast (uses C)
2205         Math::BigIntFast        Bit::Vector wrapper for big numbers
2206         Math::Pari              provides access to the Pari C library
2207         Math::BigInteger        uses an external C library
2208         Math::Cephes            uses external Cephes C library (no big numbers)
2209         Math::Cephes::Fraction  fractions via the Cephes library
2210         Math::GMP               another one using an external C library
2211
2212 Choose wisely.
2213
2214 =cut