3 * Copyright (C) 1991, 1992, 1993, 1996, 1997, 1998, 1999,
4 * 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008, by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
11 /* entry in hash value chain */
13 /* Keep hent_next first in this structure, because sv_free_arenas take
14 advantage of this to share code between the he arenas and the SV
16 HE *hent_next; /* next entry in chain */
17 HEK *hent_hek; /* hash key */
19 SV *hent_val; /* scalar value that was hashed */
20 Size_t hent_refcount; /* references for this shared hash key */
24 /* hash key -- defined separately for use as shared pointer */
26 U32 hek_hash; /* hash of key */
27 I32 hek_len; /* length of hash key */
28 char hek_key[1]; /* variable-length hash key */
29 /* the hash-key is \0-terminated */
30 /* after the \0 there is a byte for flags, such as whether the key
35 struct he shared_he_he;
36 struct hek shared_he_hek;
40 Don't access this directly.
41 Use the funcs in mro.c
45 AV *(*resolve)(pTHX_ HV* stash, U32 level);
48 U16 kflags; /* For the hash API - set HVhek_UTF8 if name is UTF-8 */
53 /* a hash holding the different MROs private data. */
55 /* a pointer directly to the current MROs private data. If mro_linear_all
56 is NULL, this owns the SV reference, else it is just a pointer to a
57 value stored in and owned by mro_linear_all. */
58 SV *mro_linear_current;
59 HV *mro_nextmethod; /* next::method caching */
60 U32 cache_gen; /* Bumping this invalidates our method cache */
61 U32 pkg_gen; /* Bumps when local methods/@ISA change */
62 const struct mro_alg *mro_which; /* which mro alg is in use? */
63 HV *isa; /* Everything this class @ISA */
66 #define MRO_GET_PRIVATE_DATA(smeta, which) \
67 (((smeta)->mro_which && (which) == (smeta)->mro_which) \
68 ? (smeta)->mro_linear_current \
69 : Perl_mro_get_private_data(aTHX_ (smeta), (which)))
72 Don't access this directly.
76 HEK *xhvnameu_name; /* When xhv_name_count is 0 */
77 HEK **xhvnameu_names; /* When xhv_name_count is non-0 */
81 union _xhvnameu xhv_name_u; /* name, if a symbol table */
82 AV *xhv_backreferences; /* back references for weak references */
83 HE *xhv_eiter; /* current entry of iterator */
84 I32 xhv_riter; /* current root of iterator */
86 /* Concerning xhv_name_count: When non-zero, xhv_name_u contains a pointer
87 * to an array of HEK pointers, this being the length. The first element is
88 * the name of the stash, which may be NULL. If xhv_name_count is positive,
89 * then *xhv_name is one of the effective names. If xhv_name_count is nega-
90 * tive, then xhv_name_u.xhvnameu_names[1] is the first effective name.
93 struct mro_meta *xhv_mro_meta;
94 HV * xhv_super; /* SUPER method cache */
98 /* This structure must match the beginning of struct xpvmg in sv.h. */
100 HV* xmg_stash; /* class package */
102 STRLEN xhv_keys; /* total keys, including placeholders */
103 STRLEN xhv_max; /* subscript of last element of xhv_array */
107 /* The use of a temporary pointer and the casting games
108 * is needed to serve the dual purposes of
109 * (a) the hashed data being interpreted as "unsigned char" (new since 5.8,
110 * a "char" can be either signed or unsigned, depending on the compiler)
111 * (b) catering for old code that uses a "char"
113 * The "hash seed" feature was added in Perl 5.8.1 to perturb the results
114 * to avoid "algorithmic complexity attacks".
116 * If USE_HASH_SEED is defined, hash randomisation is done by default
117 * If USE_HASH_SEED_EXPLICIT is defined, hash randomisation is done
118 * only if the environment variable PERL_HASH_SEED is set.
119 * (see also perl.c:perl_parse() and S_init_tls_and_interp() and util.c:get_hash_seed())
121 #ifndef PERL_HASH_SEED
122 # if defined(USE_HASH_SEED) || defined(USE_HASH_SEED_EXPLICIT)
123 # define PERL_HASH_SEED PL_hash_seed
125 # define PERL_HASH_SEED "PeRlHaShhAcKpErl"
129 #define PERL_HASH_SEED_U32 *((U32*)PERL_HASH_SEED)
130 #define PERL_HASH_SEED_U64_1 (((U64*)PERL_HASH_SEED)[0])
131 #define PERL_HASH_SEED_U64_2 (((U64*)PERL_HASH_SEED)[1])
133 /* legacy - only mod_perl should be doing this. */
134 #ifdef PERL_HASH_INTERNAL_ACCESS
135 #define PERL_HASH_INTERNAL(hash,str,len) PERL_HASH(hash,str,len)
138 /* Uncomment one of the following lines to use an alternative hash algorithm.
139 #define PERL_HASH_FUNC_SDBM
140 #define PERL_HASH_FUNC_DJB2
141 #define PERL_HASH_FUNC_SUPERFAST
142 #define PERL_HASH_FUNC_MURMUR3
143 #define PERL_HASH_FUNC_SIPHASH
144 #define PERL_HASH_FUNC_ONE_AT_A_TIME
147 #if !(defined(PERL_HASH_FUNC_SDBM) || defined(PERL_HASH_FUNC_DJB2) || defined(PERL_HASH_FUNC_SUPERFAST) || defined(PERL_HASH_FUNC_MURMUR3) || defined(PERL_HASH_FUNC_ONE_AT_A_TIME))
148 #define PERL_HASH_FUNC_MURMUR3
151 #if defined(PERL_HASH_FUNC_SIPHASH)
152 #define PERL_HASH_FUNC "SIPHASH"
153 #define PERL_HASH_SEED_BYTES 16
155 /* This is SipHash by Jean-Philippe Aumasson and Daniel J. Bernstein.
156 * The authors claim it is relatively secure compared to the alternatives
157 * and that performance wise it is a suitable hash for languages like Perl.
160 * https://www.131002.net/siphash/
162 * This implementation seems to perform slightly slower than one-at-a-time for
163 * short keys, but degrades slower for longer keys. Murmur Hash outperforms it
164 * regardless of keys size.
169 #define PERL_HASH_NEEDS_TWO_SEEDS
175 #define ROTL(x,b) (U64)( ((x) << (b)) | ( (x) >> (64 - (b))) )
177 #define U32TO8_LE(p, v) \
178 (p)[0] = (U8)((v) ); (p)[1] = (U8)((v) >> 8); \
179 (p)[2] = (U8)((v) >> 16); (p)[3] = (U8)((v) >> 24);
181 #define U64TO8_LE(p, v) \
182 U32TO8_LE((p), (U32)((v) )); \
183 U32TO8_LE((p) + 4, (U32)((v) >> 32));
185 #define U8TO64_LE(p) \
186 (((U64)((p)[0]) ) | \
187 ((U64)((p)[1]) << 8) | \
188 ((U64)((p)[2]) << 16) | \
189 ((U64)((p)[3]) << 24) | \
190 ((U64)((p)[4]) << 32) | \
191 ((U64)((p)[5]) << 40) | \
192 ((U64)((p)[6]) << 48) | \
193 ((U64)((p)[7]) << 56))
197 v0_PeRlHaSh += v1_PeRlHaSh; v1_PeRlHaSh=ROTL(v1_PeRlHaSh,13); v1_PeRlHaSh ^= v0_PeRlHaSh; v0_PeRlHaSh=ROTL(v0_PeRlHaSh,32); \
198 v2_PeRlHaSh += v3_PeRlHaSh; v3_PeRlHaSh=ROTL(v3_PeRlHaSh,16); v3_PeRlHaSh ^= v2_PeRlHaSh; \
199 v0_PeRlHaSh += v3_PeRlHaSh; v3_PeRlHaSh=ROTL(v3_PeRlHaSh,21); v3_PeRlHaSh ^= v0_PeRlHaSh; \
200 v2_PeRlHaSh += v1_PeRlHaSh; v1_PeRlHaSh=ROTL(v1_PeRlHaSh,17); v1_PeRlHaSh ^= v2_PeRlHaSh; v2_PeRlHaSh=ROTL(v2_PeRlHaSh,32); \
204 #define PERL_HASH(hash,str,len) STMT_START { \
205 const char * const strtmp_PeRlHaSh = (str); \
206 const unsigned char *in_PeRlHaSh = (const unsigned char *)strtmp_PeRlHaSh; \
207 const U32 inlen_PeRlHaSh = (len); \
208 /* "somepseudorandomlygeneratedbytes" */ \
209 U64 v0_PeRlHaSh = 0x736f6d6570736575ULL; \
210 U64 v1_PeRlHaSh = 0x646f72616e646f6dULL; \
211 U64 v2_PeRlHaSh = 0x6c7967656e657261ULL; \
212 U64 v3_PeRlHaSh = 0x7465646279746573ULL; \
215 U64 k0_PeRlHaSh = PERL_HASH_SEED_U64_1; \
216 U64 k1_PeRlHaSh = PERL_HASH_SEED_U64_2; \
218 const int left_PeRlHaSh = inlen_PeRlHaSh & 7; \
219 const U8 *end_PeRlHaSh = in_PeRlHaSh + inlen_PeRlHaSh - left_PeRlHaSh; \
221 b_PeRlHaSh = ( ( U64 )(len) ) << 56; \
222 v3_PeRlHaSh ^= k1_PeRlHaSh; \
223 v2_PeRlHaSh ^= k0_PeRlHaSh; \
224 v1_PeRlHaSh ^= k1_PeRlHaSh; \
225 v0_PeRlHaSh ^= k0_PeRlHaSh; \
227 for ( ; in_PeRlHaSh != end_PeRlHaSh; in_PeRlHaSh += 8 ) \
229 m_PeRlHaSh = U8TO64_LE( in_PeRlHaSh ); \
230 v3_PeRlHaSh ^= m_PeRlHaSh; \
233 v0_PeRlHaSh ^= m_PeRlHaSh; \
236 switch( left_PeRlHaSh ) \
238 case 7: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 6] ) << 48; \
239 case 6: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 5] ) << 40; \
240 case 5: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 4] ) << 32; \
241 case 4: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 3] ) << 24; \
242 case 3: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 2] ) << 16; \
243 case 2: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 1] ) << 8; \
244 case 1: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 0] ); break; \
248 v3_PeRlHaSh ^= b_PeRlHaSh; \
251 v0_PeRlHaSh ^= b_PeRlHaSh; \
253 v2_PeRlHaSh ^= 0xff; \
258 b_PeRlHaSh = v0_PeRlHaSh ^ v1_PeRlHaSh ^ v2_PeRlHaSh ^ v3_PeRlHaSh; \
259 (hash)= (U32)(b_PeRlHaSh & U32_MAX); \
262 #elif defined(PERL_HASH_FUNC_SUPERFAST)
263 #define PERL_HASH_FUNC "SUPERFAST"
264 /* FYI: This is the "Super-Fast" algorithm mentioned by Bob Jenkins in
265 * (http://burtleburtle.net/bob/hash/doobs.html)
266 * It is by Paul Hsieh (c) 2004 and is analysed here
267 * http://www.azillionmonkeys.com/qed/hash.html
268 * license terms are here:
269 * http://www.azillionmonkeys.com/qed/weblicense.html
272 #if (defined(__GNUC__) && defined(__i386__)) || defined(__WATCOMC__) \
273 || defined(_MSC_VER) || defined (__BORLANDC__) || defined (__TURBOC__)
274 #define get16bits(d) (*((const U16 *) (d)))
277 #if !defined (get16bits)
278 #define get16bits(d) ((((const U8 *)(d))[1] << UINT32_C(8))\
279 +((const U8 *)(d))[0])
281 #define PERL_HASH(hash,str,len) \
283 register const char * const strtmp_PeRlHaSh = (str); \
284 register const unsigned char *str_PeRlHaSh = (const unsigned char *)strtmp_PeRlHaSh; \
285 register U32 len_PeRlHaSh = (len); \
286 register U32 hash_PeRlHaSh = PERL_HASH_SEED_U32 ^ len; \
287 register U32 tmp_PeRlHaSh; \
288 register int rem_PeRlHaSh= len_PeRlHaSh & 3; \
289 len_PeRlHaSh >>= 2; \
291 for (;len_PeRlHaSh > 0; len_PeRlHaSh--) { \
292 hash_PeRlHaSh += get16bits (str_PeRlHaSh); \
293 tmp_PeRlHaSh = (get16bits (str_PeRlHaSh+2) << 11) ^ hash_PeRlHaSh; \
294 hash_PeRlHaSh = (hash_PeRlHaSh << 16) ^ tmp_PeRlHaSh; \
295 str_PeRlHaSh += 2 * sizeof (U16); \
296 hash_PeRlHaSh += hash_PeRlHaSh >> 11; \
299 /* Handle end cases */ \
300 switch (rem_PeRlHaSh) { \
301 case 3: hash_PeRlHaSh += get16bits (str_PeRlHaSh); \
302 hash_PeRlHaSh ^= hash_PeRlHaSh << 16; \
303 hash_PeRlHaSh ^= str_PeRlHaSh[sizeof (U16)] << 18; \
304 hash_PeRlHaSh += hash_PeRlHaSh >> 11; \
306 case 2: hash_PeRlHaSh += get16bits (str_PeRlHaSh); \
307 hash_PeRlHaSh ^= hash_PeRlHaSh << 11; \
308 hash_PeRlHaSh += hash_PeRlHaSh >> 17; \
310 case 1: hash_PeRlHaSh += *str_PeRlHaSh; \
311 hash_PeRlHaSh ^= hash_PeRlHaSh << 10; \
312 hash_PeRlHaSh += hash_PeRlHaSh >> 1; \
315 /* Force "avalanching" of final 127 bits */ \
316 hash_PeRlHaSh ^= hash_PeRlHaSh << 3; \
317 hash_PeRlHaSh += hash_PeRlHaSh >> 5; \
318 hash_PeRlHaSh ^= hash_PeRlHaSh << 4; \
319 hash_PeRlHaSh += hash_PeRlHaSh >> 17; \
320 hash_PeRlHaSh ^= hash_PeRlHaSh << 25; \
321 (hash) = (hash_PeRlHaSh + (hash_PeRlHaSh >> 6)); \
324 #elif defined(PERL_HASH_FUNC_MURMUR3)
325 #define PERL_HASH_FUNC "MURMUR3"
326 #define PERL_HASH_SEED_BYTES 4
328 /*-----------------------------------------------------------------------------
329 * MurmurHash3 was written by Austin Appleby, and is placed in the public
332 * This implementation was originally written by Shane Day, and is also public domain,
333 * and was modified to function as a macro similar to other perl hash functions by
336 * This is a portable ANSI C implementation of MurmurHash3_x86_32 (Murmur3A)
337 * with support for progressive processing.
339 * If you want to understand the MurmurHash algorithm you would be much better
340 * off reading the original source. Just point your browser at:
341 * http://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp
345 * We can only process entire 32 bit chunks of input, except for the very end
346 * that may be shorter.
348 * To handle endianess I simply use a macro that reads a U32 and define
349 * that macro to be a direct read on little endian machines, a read and swap
350 * on big endian machines, or a byte-by-byte read if the endianess is unknown.
354 /*-----------------------------------------------------------------------------
355 * Endianess, misalignment capabilities and util macros
357 * The following 3 macros are defined in this section. The other macros defined
358 * are only needed to help derive these 3.
360 * MURMUR_READ_UINT32(x) Read a little endian unsigned 32-bit int
361 * MURMUR_UNALIGNED_SAFE Defined if READ_UINT32 works on non-word boundaries
362 * MURMUR_ROTL32(x,r) Rotate x left by r bits
365 /* Now find best way we can to READ_UINT32 */
366 #if (BYTEORDER == 0x1234 || BYTEORDER == 0x12345678) && U32SIZE == 4
367 /* CPU endian matches murmurhash algorithm, so read 32-bit word directly */
368 #define MURMUR_READ_UINT32(ptr) (*((U32*)(ptr)))
369 #elif BYTEORDER == 0x4321 || BYTEORDER == 0x87654321
370 /* TODO: Add additional cases below where a compiler provided bswap32 is available */
371 #if defined(__GNUC__) && (__GNUC__>4 || (__GNUC__==4 && __GNUC_MINOR__>=3))
372 #define MURMUR_READ_UINT32(ptr) (__builtin_bswap32(*((U32*)(ptr))))
374 /* Without a known fast bswap32 we're just as well off doing this */
375 #define MURMUR_READ_UINT32(ptr) (ptr[0]|ptr[1]<<8|ptr[2]<<16|ptr[3]<<24)
376 #define MURMUR_UNALIGNED_SAFE
379 /* Unknown endianess so last resort is to read individual bytes */
380 #define MURMUR_READ_UINT32(ptr) (ptr[0]|ptr[1]<<8|ptr[2]<<16|ptr[3]<<24)
382 /* Since we're not doing word-reads we can skip the messing about with realignment */
383 #define MURMUR_UNALIGNED_SAFE
386 /* Find best way to ROTL32 */
387 #if defined(_MSC_VER)
388 #include <stdlib.h> /* Microsoft put _rotl declaration in here */
389 #define MURMUR_ROTL32(x,r) _rotl(x,r)
391 /* gcc recognises this code and generates a rotate instruction for CPUs with one */
392 #define MURMUR_ROTL32(x,r) (((U32)x << r) | ((U32)x >> (32 - r)))
396 /*-----------------------------------------------------------------------------
397 * Core murmurhash algorithm macros */
399 #define MURMUR_C1 (0xcc9e2d51)
400 #define MURMUR_C2 (0x1b873593)
401 #define MURMUR_C3 (0xe6546b64)
402 #define MURMUR_C4 (0x85ebca6b)
403 #define MURMUR_C5 (0xc2b2ae35)
405 /* This is the main processing body of the algorithm. It operates
406 * on each full 32-bits of input. */
407 #define MURMUR_DOBLOCK(h1, k1) STMT_START { \
409 k1 = MURMUR_ROTL32(k1,15); \
413 h1 = MURMUR_ROTL32(h1,13); \
414 h1 = h1 * 5 + MURMUR_C3; \
418 /* Append unaligned bytes to carry, forcing hash churn if we have 4 bytes */
419 /* cnt=bytes to process, h1=name of h1 var, c=carry, n=bytes in c, ptr/len=payload */
420 #define MURMUR_DOBYTES(cnt, h1, c, n, ptr, len) STMT_START { \
421 int MURMUR_DOBYTES_i = cnt; \
422 while(MURMUR_DOBYTES_i--) { \
423 c = c>>8 | *ptr++<<24; \
426 MURMUR_DOBLOCK(h1, c); \
432 /* process the last 1..3 bytes and finalize */
433 #define MURMUR_FINALIZE(hash, PeRlHaSh_len, PeRlHaSh_k1, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_total_length) STMT_START { \
434 /* Advance over whole 32-bit chunks, possibly leaving 1..3 bytes */\
435 PeRlHaSh_len -= PeRlHaSh_len/4*4; \
437 /* Append any remaining bytes into carry */ \
438 MURMUR_DOBYTES(PeRlHaSh_len, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_len); \
440 if (PeRlHaSh_bytes_in_carry) { \
441 PeRlHaSh_k1 = PeRlHaSh_carry >> ( 4 - PeRlHaSh_bytes_in_carry ) * 8; \
442 PeRlHaSh_k1 *= MURMUR_C1; \
443 PeRlHaSh_k1 = MURMUR_ROTL32(PeRlHaSh_k1,15); \
444 PeRlHaSh_k1 *= MURMUR_C2; \
445 PeRlHaSh_h1 ^= PeRlHaSh_k1; \
447 PeRlHaSh_h1 ^= PeRlHaSh_total_length; \
450 PeRlHaSh_h1 ^= PeRlHaSh_h1 >> 16; \
451 PeRlHaSh_h1 *= MURMUR_C4; \
452 PeRlHaSh_h1 ^= PeRlHaSh_h1 >> 13; \
453 PeRlHaSh_h1 *= MURMUR_C5; \
454 PeRlHaSh_h1 ^= PeRlHaSh_h1 >> 16; \
455 (hash)= PeRlHaSh_h1; \
458 /* now we create the hash function */
460 #if defined(UNALIGNED_SAFE)
461 #define PERL_HASH(hash,str,len) STMT_START { \
462 register const char * const s_PeRlHaSh_tmp = (str); \
463 register const unsigned char *PeRlHaSh_ptr = (const unsigned char *)s_PeRlHaSh_tmp; \
464 register I32 PeRlHaSh_len = len; \
466 U32 PeRlHaSh_h1 = PERL_HASH_SEED_U32; \
468 U32 PeRlHaSh_carry = 0; \
470 const unsigned char *PeRlHaSh_end; \
472 int PeRlHaSh_bytes_in_carry = 0; /* bytes in carry */ \
473 I32 PeRlHaSh_total_length= PeRlHaSh_len; \
475 /* This CPU handles unaligned word access */ \
476 /* Process 32-bit chunks */ \
477 PeRlHaSh_end = PeRlHaSh_ptr + PeRlHaSh_len/4*4; \
478 for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \
479 PeRlHaSh_k1 = MURMUR_READ_UINT32(PeRlHaSh_ptr); \
480 MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \
483 MURMUR_FINALIZE(hash, PeRlHaSh_len, PeRlHaSh_k1, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_total_length);\
486 #define PERL_HASH(hash,str,len) STMT_START { \
487 register const char * const s_PeRlHaSh_tmp = (str); \
488 register const unsigned char *PeRlHaSh_ptr = (const unsigned char *)s_PeRlHaSh_tmp; \
489 register I32 PeRlHaSh_len = len; \
491 U32 PeRlHaSh_h1 = PERL_HASH_SEED_U32; \
493 U32 PeRlHaSh_carry = 0; \
495 const unsigned char *PeRlHaSh_end; \
497 int PeRlHaSh_bytes_in_carry = 0; /* bytes in carry */ \
498 I32 PeRlHaSh_total_length= PeRlHaSh_len; \
500 /* This CPU does not handle unaligned word access */ \
502 /* Consume enough so that the next data byte is word aligned */ \
503 int PeRlHaSh_i = -(long)PeRlHaSh_ptr & 3; \
504 if(PeRlHaSh_i && PeRlHaSh_i <= PeRlHaSh_len) { \
505 MURMUR_DOBYTES(PeRlHaSh_i, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_len);\
508 /* We're now aligned. Process in aligned blocks. Specialise for each possible carry count */ \
509 PeRlHaSh_end = PeRlHaSh_ptr + PeRlHaSh_len/4*4; \
510 switch(PeRlHaSh_bytes_in_carry) { /* how many bytes in carry */ \
511 case 0: /* c=[----] w=[3210] b=[3210]=w c'=[----] */ \
512 for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \
513 PeRlHaSh_k1 = MURMUR_READ_UINT32(PeRlHaSh_ptr); \
514 MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \
517 case 1: /* c=[0---] w=[4321] b=[3210]=c>>24|w<<8 c'=[4---] */ \
518 for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \
519 PeRlHaSh_k1 = PeRlHaSh_carry>>24; \
520 PeRlHaSh_carry = MURMUR_READ_UINT32(PeRlHaSh_ptr); \
521 PeRlHaSh_k1 |= PeRlHaSh_carry<<8; \
522 MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \
525 case 2: /* c=[10--] w=[5432] b=[3210]=c>>16|w<<16 c'=[54--] */ \
526 for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \
527 PeRlHaSh_k1 = PeRlHaSh_carry>>16; \
528 PeRlHaSh_carry = MURMUR_READ_UINT32(PeRlHaSh_ptr); \
529 PeRlHaSh_k1 |= PeRlHaSh_carry<<16; \
530 MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \
533 case 3: /* c=[210-] w=[6543] b=[3210]=c>>8|w<<24 c'=[654-] */ \
534 for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \
535 PeRlHaSh_k1 = PeRlHaSh_carry>>8; \
536 PeRlHaSh_carry = MURMUR_READ_UINT32(PeRlHaSh_ptr); \
537 PeRlHaSh_k1 |= PeRlHaSh_carry<<24; \
538 MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \
542 MURMUR_FINALIZE(hash, PeRlHaSh_len, PeRlHaSh_k1, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_total_length);\
546 #elif defined(PERL_HASH_FUNC_DJB2)
547 #define PERL_HASH_FUNC "DJB2"
548 #define PERL_HASH_SEED_BYTES 4
549 #define PERL_HASH(hash,str,len) \
551 register const char * const s_PeRlHaSh_tmp = (str); \
552 register const unsigned char *s_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp; \
553 register I32 i_PeRlHaSh = len; \
554 register U32 hash_PeRlHaSh = PERL_HASH_SEED_U32 ^ len; \
555 while (i_PeRlHaSh--) { \
556 hash_PeRlHaSh = ((hash_PeRlHaSh << 5) + hash_PeRlHaSh) + *s_PeRlHaSh++; \
558 (hash) = hash_PeRlHaSh;\
561 #elif defined(PERL_HASH_FUNC_SDBM)
562 #define PERL_HASH_FUNC "SDBM"
563 #define PERL_HASH_SEED_BYTES 4
564 #define PERL_HASH(hash,str,len) \
566 register const char * const s_PeRlHaSh_tmp = (str); \
567 register const unsigned char *s_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp; \
568 register I32 i_PeRlHaSh = len; \
569 register U32 hash_PeRlHaSh = PERL_HASH_SEED_U32 ^ len; \
570 while (i_PeRlHaSh--) { \
571 hash_PeRlHaSh = (hash_PeRlHaSh << 6) + (hash_PeRlHaSh << 16) - hash_PeRlHaSh + *s_PeRlHaSh++; \
573 (hash) = hash_PeRlHaSh;\
576 #elif defined(PERL_HASH_FUNC_ONE_AT_A_TIME)
577 /* DEFAULT/HISTORIC HASH FUNCTION */
578 #define PERL_HASH_FUNC "ONE_AT_A_TIME"
579 #define PERL_HASH_SEED_BYTES 4
581 /* FYI: This is the "One-at-a-Time" algorithm by Bob Jenkins
582 * from requirements by Colin Plumb.
583 * (http://burtleburtle.net/bob/hash/doobs.html) */
584 #define PERL_HASH(hash,str,len) \
586 register const char * const s_PeRlHaSh_tmp = (str); \
587 register const unsigned char *s_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp; \
588 register I32 i_PeRlHaSh = len; \
589 register U32 hash_PeRlHaSh = PERL_HASH_SEED_U32 ^ len; \
590 while (i_PeRlHaSh--) { \
591 hash_PeRlHaSh += (U8)*s_PeRlHaSh++; \
592 hash_PeRlHaSh += (hash_PeRlHaSh << 10); \
593 hash_PeRlHaSh ^= (hash_PeRlHaSh >> 6); \
595 hash_PeRlHaSh += (hash_PeRlHaSh << 3); \
596 hash_PeRlHaSh ^= (hash_PeRlHaSh >> 11); \
597 (hash) = (hash_PeRlHaSh + (hash_PeRlHaSh << 15)); \
601 #error "No hash function defined!"
604 =head1 Hash Manipulation Functions
606 =for apidoc AmU||HEf_SVKEY
607 This flag, used in the length slot of hash entries and magic structures,
608 specifies the structure contains an C<SV*> pointer where a C<char*> pointer
609 is to be expected. (For information only--not to be used).
613 =for apidoc AmU||Nullhv
616 (deprecated - use C<(HV *)NULL> instead)
618 =head1 Hash Manipulation Functions
620 =for apidoc Am|char*|HvNAME|HV* stash
621 Returns the package name of a stash, or NULL if C<stash> isn't a stash.
622 See C<SvSTASH>, C<CvSTASH>.
624 =for apidoc Am|STRLEN|HvNAMELEN|HV *stash
625 Returns the length of the stash's name.
627 =for apidoc Am|unsigned char|HvNAMEUTF8|HV *stash
628 Returns true if the name is in UTF8 encoding.
630 =for apidoc Am|char*|HvENAME|HV* stash
631 Returns the effective name of a stash, or NULL if there is none. The
632 effective name represents a location in the symbol table where this stash
633 resides. It is updated automatically when packages are aliased or deleted.
634 A stash that is no longer in the symbol table has no effective name. This
635 name is preferable to C<HvNAME> for use in MRO linearisations and isa
638 =for apidoc Am|STRLEN|HvENAMELEN|HV *stash
639 Returns the length of the stash's effective name.
641 =for apidoc Am|unsigned char|HvENAMEUTF8|HV *stash
642 Returns true if the effective name is in UTF8 encoding.
644 =for apidoc Am|void*|HeKEY|HE* he
645 Returns the actual pointer stored in the key slot of the hash entry. The
646 pointer may be either C<char*> or C<SV*>, depending on the value of
647 C<HeKLEN()>. Can be assigned to. The C<HePV()> or C<HeSVKEY()> macros are
648 usually preferable for finding the value of a key.
650 =for apidoc Am|STRLEN|HeKLEN|HE* he
651 If this is negative, and amounts to C<HEf_SVKEY>, it indicates the entry
652 holds an C<SV*> key. Otherwise, holds the actual length of the key. Can
653 be assigned to. The C<HePV()> macro is usually preferable for finding key
656 =for apidoc Am|SV*|HeVAL|HE* he
657 Returns the value slot (type C<SV*>) stored in the hash entry. Can be assigned
664 =for apidoc Am|U32|HeHASH|HE* he
665 Returns the computed hash stored in the hash entry.
667 =for apidoc Am|char*|HePV|HE* he|STRLEN len
668 Returns the key slot of the hash entry as a C<char*> value, doing any
669 necessary dereferencing of possibly C<SV*> keys. The length of the string
670 is placed in C<len> (this is a macro, so do I<not> use C<&len>). If you do
671 not care about what the length of the key is, you may use the global
672 variable C<PL_na>, though this is rather less efficient than using a local
673 variable. Remember though, that hash keys in perl are free to contain
674 embedded nulls, so using C<strlen()> or similar is not a good way to find
675 the length of hash keys. This is very similar to the C<SvPV()> macro
676 described elsewhere in this document. See also C<HeUTF8>.
678 If you are using C<HePV> to get values to pass to C<newSVpvn()> to create a
679 new SV, you should consider using C<newSVhek(HeKEY_hek(he))> as it is more
682 =for apidoc Am|char*|HeUTF8|HE* he
683 Returns whether the C<char *> value returned by C<HePV> is encoded in UTF-8,
684 doing any necessary dereferencing of possibly C<SV*> keys. The value returned
685 will be 0 or non-0, not necessarily 1 (or even a value with any low bits set),
686 so B<do not> blindly assign this to a C<bool> variable, as C<bool> may be a
689 =for apidoc Am|SV*|HeSVKEY|HE* he
690 Returns the key as an C<SV*>, or C<NULL> if the hash entry does not
691 contain an C<SV*> key.
693 =for apidoc Am|SV*|HeSVKEY_force|HE* he
694 Returns the key as an C<SV*>. Will create and return a temporary mortal
695 C<SV*> if the hash entry contains only a C<char*> key.
697 =for apidoc Am|SV*|HeSVKEY_set|HE* he|SV* sv
698 Sets the key to a given C<SV*>, taking care to set the appropriate flags to
699 indicate the presence of an C<SV*> key, and returns the same
705 /* these hash entry flags ride on hent_klen (for use only in magic/tied HVs) */
706 #define HEf_SVKEY -2 /* hent_key is an SV* */
709 # define Nullhv Null(HV*)
711 #define HvARRAY(hv) ((hv)->sv_u.svu_hash)
712 #define HvFILL(hv) Perl_hv_fill(aTHX_ (const HV *)(hv))
713 #define HvMAX(hv) ((XPVHV*) SvANY(hv))->xhv_max
714 /* This quite intentionally does no flag checking first. That's your
716 #define HvAUX(hv) ((struct xpvhv_aux*)&(HvARRAY(hv)[HvMAX(hv)+1]))
717 #define HvRITER(hv) (*Perl_hv_riter_p(aTHX_ MUTABLE_HV(hv)))
718 #define HvEITER(hv) (*Perl_hv_eiter_p(aTHX_ MUTABLE_HV(hv)))
719 #define HvRITER_set(hv,r) Perl_hv_riter_set(aTHX_ MUTABLE_HV(hv), r)
720 #define HvEITER_set(hv,e) Perl_hv_eiter_set(aTHX_ MUTABLE_HV(hv), e)
721 #define HvRITER_get(hv) (SvOOK(hv) ? HvAUX(hv)->xhv_riter : -1)
722 #define HvEITER_get(hv) (SvOOK(hv) ? HvAUX(hv)->xhv_eiter : NULL)
723 #define HvNAME(hv) HvNAME_get(hv)
724 #define HvNAMELEN(hv) HvNAMELEN_get(hv)
725 #define HvENAME(hv) HvENAME_get(hv)
726 #define HvENAMELEN(hv) HvENAMELEN_get(hv)
728 /* Checking that hv is a valid package stash is the
729 caller's responsibility */
730 #define HvMROMETA(hv) (HvAUX(hv)->xhv_mro_meta \
731 ? HvAUX(hv)->xhv_mro_meta \
732 : Perl_mro_meta_init(aTHX_ hv))
734 #define HvNAME_HEK_NN(hv) \
736 HvAUX(hv)->xhv_name_count \
737 ? *HvAUX(hv)->xhv_name_u.xhvnameu_names \
738 : HvAUX(hv)->xhv_name_u.xhvnameu_name \
740 /* This macro may go away without notice. */
741 #define HvNAME_HEK(hv) \
742 (SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name ? HvNAME_HEK_NN(hv) : NULL)
743 #define HvNAME_get(hv) \
744 ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvNAME_HEK_NN(hv)) \
745 ? HEK_KEY(HvNAME_HEK_NN(hv)) : NULL)
746 #define HvNAMELEN_get(hv) \
747 ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvNAME_HEK_NN(hv)) \
748 ? HEK_LEN(HvNAME_HEK_NN(hv)) : 0)
749 #define HvNAMEUTF8(hv) \
750 ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvNAME_HEK_NN(hv)) \
751 ? HEK_UTF8(HvNAME_HEK_NN(hv)) : 0)
752 #define HvENAME_HEK_NN(hv) \
754 HvAUX(hv)->xhv_name_count > 0 ? HvAUX(hv)->xhv_name_u.xhvnameu_names[0] : \
755 HvAUX(hv)->xhv_name_count < -1 ? HvAUX(hv)->xhv_name_u.xhvnameu_names[1] : \
756 HvAUX(hv)->xhv_name_count == -1 ? NULL : \
757 HvAUX(hv)->xhv_name_u.xhvnameu_name \
759 #define HvENAME_HEK(hv) \
760 (SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name ? HvENAME_HEK_NN(hv) : NULL)
761 #define HvENAME_get(hv) \
762 ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvAUX(hv)->xhv_name_count != -1) \
763 ? HEK_KEY(HvENAME_HEK_NN(hv)) : NULL)
764 #define HvENAMELEN_get(hv) \
765 ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvAUX(hv)->xhv_name_count != -1) \
766 ? HEK_LEN(HvENAME_HEK_NN(hv)) : 0)
767 #define HvENAMEUTF8(hv) \
768 ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvAUX(hv)->xhv_name_count != -1) \
769 ? HEK_UTF8(HvENAME_HEK_NN(hv)) : 0)
771 /* the number of keys (including any placeholders) */
772 #define XHvTOTALKEYS(xhv) ((xhv)->xhv_keys)
775 * HvKEYS gets the number of keys that actually exist(), and is provided
776 * for backwards compatibility with old XS code. The core uses HvUSEDKEYS
777 * (keys, excluding placeholders) and HvTOTALKEYS (including placeholders)
779 #define HvKEYS(hv) HvUSEDKEYS(hv)
780 #define HvUSEDKEYS(hv) (HvTOTALKEYS(hv) - HvPLACEHOLDERS_get(hv))
781 #define HvTOTALKEYS(hv) XHvTOTALKEYS((XPVHV*) SvANY(hv))
782 #define HvPLACEHOLDERS(hv) (*Perl_hv_placeholders_p(aTHX_ MUTABLE_HV(hv)))
783 #define HvPLACEHOLDERS_get(hv) (SvMAGIC(hv) ? Perl_hv_placeholders_get(aTHX_ (const HV *)hv) : 0)
784 #define HvPLACEHOLDERS_set(hv,p) Perl_hv_placeholders_set(aTHX_ MUTABLE_HV(hv), p)
786 #define HvSHAREKEYS(hv) (SvFLAGS(hv) & SVphv_SHAREKEYS)
787 #define HvSHAREKEYS_on(hv) (SvFLAGS(hv) |= SVphv_SHAREKEYS)
788 #define HvSHAREKEYS_off(hv) (SvFLAGS(hv) &= ~SVphv_SHAREKEYS)
790 /* This is an optimisation flag. It won't be set if all hash keys have a 0
791 * flag. Currently the only flags relate to utf8.
792 * Hence it won't be set if all keys are 8 bit only. It will be set if any key
793 * is utf8 (including 8 bit keys that were entered as utf8, and need upgrading
794 * when retrieved during iteration. It may still be set when there are no longer
796 * See HVhek_ENABLEHVKFLAGS for the trigger.
798 #define HvHASKFLAGS(hv) (SvFLAGS(hv) & SVphv_HASKFLAGS)
799 #define HvHASKFLAGS_on(hv) (SvFLAGS(hv) |= SVphv_HASKFLAGS)
800 #define HvHASKFLAGS_off(hv) (SvFLAGS(hv) &= ~SVphv_HASKFLAGS)
802 #define HvLAZYDEL(hv) (SvFLAGS(hv) & SVphv_LAZYDEL)
803 #define HvLAZYDEL_on(hv) (SvFLAGS(hv) |= SVphv_LAZYDEL)
804 #define HvLAZYDEL_off(hv) (SvFLAGS(hv) &= ~SVphv_LAZYDEL)
807 # define Nullhe Null(HE*)
809 #define HeNEXT(he) (he)->hent_next
810 #define HeKEY_hek(he) (he)->hent_hek
811 #define HeKEY(he) HEK_KEY(HeKEY_hek(he))
812 #define HeKEY_sv(he) (*(SV**)HeKEY(he))
813 #define HeKLEN(he) HEK_LEN(HeKEY_hek(he))
814 #define HeKUTF8(he) HEK_UTF8(HeKEY_hek(he))
815 #define HeKWASUTF8(he) HEK_WASUTF8(HeKEY_hek(he))
816 #define HeKLEN_UTF8(he) (HeKUTF8(he) ? -HeKLEN(he) : HeKLEN(he))
817 #define HeKFLAGS(he) HEK_FLAGS(HeKEY_hek(he))
818 #define HeVAL(he) (he)->he_valu.hent_val
819 #define HeHASH(he) HEK_HASH(HeKEY_hek(he))
820 #define HePV(he,lp) ((HeKLEN(he) == HEf_SVKEY) ? \
821 SvPV(HeKEY_sv(he),lp) : \
822 ((lp = HeKLEN(he)), HeKEY(he)))
823 #define HeUTF8(he) ((HeKLEN(he) == HEf_SVKEY) ? \
824 SvUTF8(HeKEY_sv(he)) : \
827 #define HeSVKEY(he) ((HeKEY(he) && \
828 HeKLEN(he) == HEf_SVKEY) ? \
831 #define HeSVKEY_force(he) (HeKEY(he) ? \
832 ((HeKLEN(he) == HEf_SVKEY) ? \
834 newSVpvn_flags(HeKEY(he), \
835 HeKLEN(he), SVs_TEMP)) : \
837 #define HeSVKEY_set(he,sv) ((HeKLEN(he) = HEf_SVKEY), (HeKEY_sv(he) = sv))
840 # define Nullhek Null(HEK*)
842 #define HEK_BASESIZE STRUCT_OFFSET(HEK, hek_key[0])
843 #define HEK_HASH(hek) (hek)->hek_hash
844 #define HEK_LEN(hek) (hek)->hek_len
845 #define HEK_KEY(hek) (hek)->hek_key
846 #define HEK_FLAGS(hek) (*((unsigned char *)(HEK_KEY(hek))+HEK_LEN(hek)+1))
848 #define HVhek_UTF8 0x01 /* Key is utf8 encoded. */
849 #define HVhek_WASUTF8 0x02 /* Key is bytes here, but was supplied as utf8. */
850 #define HVhek_UNSHARED 0x08 /* This key isn't a shared hash key. */
851 #define HVhek_FREEKEY 0x100 /* Internal flag to say key is malloc()ed. */
852 #define HVhek_PLACEHOLD 0x200 /* Internal flag to create placeholder.
853 * (may change, but Storable is a core module) */
854 #define HVhek_KEYCANONICAL 0x400 /* Internal flag - key is in canonical form.
855 If the string is UTF-8, it cannot be
856 converted to bytes. */
857 #define HVhek_MASK 0xFF
859 #define HVhek_ENABLEHVKFLAGS (HVhek_MASK & ~(HVhek_UNSHARED))
861 #define HEK_UTF8(hek) (HEK_FLAGS(hek) & HVhek_UTF8)
862 #define HEK_UTF8_on(hek) (HEK_FLAGS(hek) |= HVhek_UTF8)
863 #define HEK_UTF8_off(hek) (HEK_FLAGS(hek) &= ~HVhek_UTF8)
864 #define HEK_WASUTF8(hek) (HEK_FLAGS(hek) & HVhek_WASUTF8)
865 #define HEK_WASUTF8_on(hek) (HEK_FLAGS(hek) |= HVhek_WASUTF8)
866 #define HEK_WASUTF8_off(hek) (HEK_FLAGS(hek) &= ~HVhek_WASUTF8)
868 /* calculate HV array allocation */
869 #ifndef PERL_USE_LARGE_HV_ALLOC
870 /* Default to allocating the correct size - default to assuming that malloc()
871 is not broken and is efficient at allocating blocks sized at powers-of-two.
873 # define PERL_HV_ARRAY_ALLOC_BYTES(size) ((size) * sizeof(HE*))
875 # define MALLOC_OVERHEAD 16
876 # define PERL_HV_ARRAY_ALLOC_BYTES(size) \
878 ? (size) * sizeof(HE*) \
879 : (size) * sizeof(HE*) * 2 - MALLOC_OVERHEAD)
882 /* Flags for hv_iternext_flags. */
883 #define HV_ITERNEXT_WANTPLACEHOLDERS 0x01 /* Don't skip placeholders. */
885 #define hv_iternext(hv) hv_iternext_flags(hv, 0)
886 #define hv_magic(hv, gv, how) sv_magic(MUTABLE_SV(hv), MUTABLE_SV(gv), how, NULL, 0)
887 #define hv_undef(hv) Perl_hv_undef_flags(aTHX_ hv, 0)
889 #define Perl_sharepvn(pv, len, hash) HEK_KEY(share_hek(pv, len, hash))
890 #define sharepvn(pv, len, hash) Perl_sharepvn(pv, len, hash)
892 #define share_hek_hek(hek) \
893 (++(((struct shared_he *)(((char *)hek) \
894 - STRUCT_OFFSET(struct shared_he, \
896 ->shared_he_he.he_valu.hent_refcount), \
899 #define hv_store_ent(hv, keysv, val, hash) \
900 ((HE *) hv_common((hv), (keysv), NULL, 0, 0, HV_FETCH_ISSTORE, \
903 #define hv_exists_ent(hv, keysv, hash) \
904 (hv_common((hv), (keysv), NULL, 0, 0, HV_FETCH_ISEXISTS, 0, (hash)) \
906 #define hv_fetch_ent(hv, keysv, lval, hash) \
907 ((HE *) hv_common((hv), (keysv), NULL, 0, 0, \
908 ((lval) ? HV_FETCH_LVALUE : 0), NULL, (hash)))
909 #define hv_delete_ent(hv, key, flags, hash) \
910 (MUTABLE_SV(hv_common((hv), (key), NULL, 0, 0, (flags) | HV_DELETE, \
913 #define hv_store_flags(hv, key, klen, val, hash, flags) \
914 ((SV**) hv_common((hv), NULL, (key), (klen), (flags), \
915 (HV_FETCH_ISSTORE|HV_FETCH_JUST_SV), (val), \
918 #define hv_store(hv, key, klen, val, hash) \
919 ((SV**) hv_common_key_len((hv), (key), (klen), \
920 (HV_FETCH_ISSTORE|HV_FETCH_JUST_SV), \
923 #define hv_exists(hv, key, klen) \
924 (hv_common_key_len((hv), (key), (klen), HV_FETCH_ISEXISTS, NULL, 0) \
927 #define hv_fetch(hv, key, klen, lval) \
928 ((SV**) hv_common_key_len((hv), (key), (klen), (lval) \
929 ? (HV_FETCH_JUST_SV | HV_FETCH_LVALUE) \
930 : HV_FETCH_JUST_SV, NULL, 0))
932 #define hv_delete(hv, key, klen, flags) \
933 (MUTABLE_SV(hv_common_key_len((hv), (key), (klen), \
934 (flags) | HV_DELETE, NULL, 0)))
936 /* This refcounted he structure is used for storing the hints used for lexical
937 pragmas. Without threads, it's basically struct he + refcount.
938 With threads, life gets more complex as the structure needs to be shared
939 between threads (because it hangs from OPs, which are shared), hence the
940 alternate definition and mutex. */
942 struct refcounted_he;
944 /* flags for the refcounted_he API */
945 #define REFCOUNTED_HE_KEY_UTF8 0x00000001
947 # define REFCOUNTED_HE_EXISTS 0x00000002
952 /* Gosh. This really isn't a good name any longer. */
953 struct refcounted_he {
954 struct refcounted_he *refcounted_he_next; /* next entry in chain */
956 U32 refcounted_he_hash;
957 U32 refcounted_he_keylen;
959 HEK *refcounted_he_hek; /* hint key */
962 IV refcounted_he_u_iv;
963 UV refcounted_he_u_uv;
964 STRLEN refcounted_he_u_len;
965 void *refcounted_he_u_ptr; /* Might be useful in future */
967 U32 refcounted_he_refcnt; /* reference count */
968 /* First byte is flags. Then NUL-terminated value. Then for ithreads,
969 non-NUL terminated key. */
970 char refcounted_he_data[1];
974 =for apidoc m|SV *|refcounted_he_fetch_pvs|const struct refcounted_he *chain|const char *key|U32 flags
976 Like L</refcounted_he_fetch_pvn>, but takes a literal string instead of
977 a string/length pair, and no precomputed hash.
982 #define refcounted_he_fetch_pvs(chain, key, flags) \
983 Perl_refcounted_he_fetch_pvn(aTHX_ chain, STR_WITH_LEN(key), 0, flags)
986 =for apidoc m|struct refcounted_he *|refcounted_he_new_pvs|struct refcounted_he *parent|const char *key|SV *value|U32 flags
988 Like L</refcounted_he_new_pvn>, but takes a literal string instead of
989 a string/length pair, and no precomputed hash.
994 #define refcounted_he_new_pvs(parent, key, value, flags) \
995 Perl_refcounted_he_new_pvn(aTHX_ parent, STR_WITH_LEN(key), 0, value, flags)
997 /* Flag bits are HVhek_UTF8, HVhek_WASUTF8, then */
998 #define HVrhek_undef 0x00 /* Value is undef. */
999 #define HVrhek_delete 0x10 /* Value is placeholder - signifies delete. */
1000 #define HVrhek_IV 0x20 /* Value is IV. */
1001 #define HVrhek_UV 0x30 /* Value is UV. */
1002 #define HVrhek_PV 0x40 /* Value is a (byte) string. */
1003 #define HVrhek_PV_UTF8 0x50 /* Value is a (utf8) string. */
1004 /* Two spare. As these have to live in the optree, you can't store anything
1005 interpreter specific, such as SVs. :-( */
1006 #define HVrhek_typemask 0x70
1009 /* A big expression to find the key offset */
1010 #define REF_HE_KEY(chain) \
1011 ((((chain->refcounted_he_data[0] & 0x60) == 0x40) \
1012 ? chain->refcounted_he_val.refcounted_he_u_len + 1 : 0) \
1013 + 1 + chain->refcounted_he_data)
1016 # ifdef USE_ITHREADS
1017 # define HINTS_REFCNT_LOCK MUTEX_LOCK(&PL_hints_mutex)
1018 # define HINTS_REFCNT_UNLOCK MUTEX_UNLOCK(&PL_hints_mutex)
1020 # define HINTS_REFCNT_LOCK NOOP
1021 # define HINTS_REFCNT_UNLOCK NOOP
1026 # define HINTS_REFCNT_INIT MUTEX_INIT(&PL_hints_mutex)
1027 # define HINTS_REFCNT_TERM MUTEX_DESTROY(&PL_hints_mutex)
1029 # define HINTS_REFCNT_INIT NOOP
1030 # define HINTS_REFCNT_TERM NOOP
1034 * Passed in PERL_MAGIC_uvar calls
1036 #define HV_DISABLE_UVAR_XKEY 0x01
1037 /* We need to ensure that these don't clash with G_DISCARD, which is 2, as it
1038 is documented as being passed to hv_delete(). */
1039 #define HV_FETCH_ISSTORE 0x04
1040 #define HV_FETCH_ISEXISTS 0x08
1041 #define HV_FETCH_LVALUE 0x10
1042 #define HV_FETCH_JUST_SV 0x20
1043 #define HV_DELETE 0x40
1044 #define HV_FETCH_EMPTY_HE 0x80 /* Leave HeVAL null. */
1046 /* Must not conflict with HVhek_UTF8 */
1047 #define HV_NAME_SETALL 0x02
1052 Creates a new HV. The reference count is set to 1.
1057 #define newHV() MUTABLE_HV(newSV_type(SVt_PVHV))
1061 * c-indentation-style: bsd
1063 * indent-tabs-mode: nil
1066 * ex: set ts=8 sts=4 sw=4 et: