3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
36 # if __STDC_VERSION__ >= 199901L && !defined(VMS)
47 /* Missing proto on LynxOS */
48 char *gconvert(double, int, int, char *);
51 #ifdef PERL_UTF8_CACHE_ASSERT
52 /* if adding more checks watch out for the following tests:
53 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
54 * lib/utf8.t lib/Unicode/Collate/t/index.t
57 # define ASSERT_UTF8_CACHE(cache) \
58 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
59 assert((cache)[2] <= (cache)[3]); \
60 assert((cache)[3] <= (cache)[1]);} \
63 # define ASSERT_UTF8_CACHE(cache) NOOP
66 #ifdef PERL_OLD_COPY_ON_WRITE
67 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
68 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
69 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
73 /* ============================================================================
75 =head1 Allocation and deallocation of SVs.
77 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
78 sv, av, hv...) contains type and reference count information, and for
79 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
80 contains fields specific to each type. Some types store all they need
81 in the head, so don't have a body.
83 In all but the most memory-paranoid configurations (ex: PURIFY), heads
84 and bodies are allocated out of arenas, which by default are
85 approximately 4K chunks of memory parcelled up into N heads or bodies.
86 Sv-bodies are allocated by their sv-type, guaranteeing size
87 consistency needed to allocate safely from arrays.
89 For SV-heads, the first slot in each arena is reserved, and holds a
90 link to the next arena, some flags, and a note of the number of slots.
91 Snaked through each arena chain is a linked list of free items; when
92 this becomes empty, an extra arena is allocated and divided up into N
93 items which are threaded into the free list.
95 SV-bodies are similar, but they use arena-sets by default, which
96 separate the link and info from the arena itself, and reclaim the 1st
97 slot in the arena. SV-bodies are further described later.
99 The following global variables are associated with arenas:
101 PL_sv_arenaroot pointer to list of SV arenas
102 PL_sv_root pointer to list of free SV structures
104 PL_body_arenas head of linked-list of body arenas
105 PL_body_roots[] array of pointers to list of free bodies of svtype
106 arrays are indexed by the svtype needed
108 A few special SV heads are not allocated from an arena, but are
109 instead directly created in the interpreter structure, eg PL_sv_undef.
110 The size of arenas can be changed from the default by setting
111 PERL_ARENA_SIZE appropriately at compile time.
113 The SV arena serves the secondary purpose of allowing still-live SVs
114 to be located and destroyed during final cleanup.
116 At the lowest level, the macros new_SV() and del_SV() grab and free
117 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
118 to return the SV to the free list with error checking.) new_SV() calls
119 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
120 SVs in the free list have their SvTYPE field set to all ones.
122 At the time of very final cleanup, sv_free_arenas() is called from
123 perl_destruct() to physically free all the arenas allocated since the
124 start of the interpreter.
126 The function visit() scans the SV arenas list, and calls a specified
127 function for each SV it finds which is still live - ie which has an SvTYPE
128 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
129 following functions (specified as [function that calls visit()] / [function
130 called by visit() for each SV]):
132 sv_report_used() / do_report_used()
133 dump all remaining SVs (debugging aid)
135 sv_clean_objs() / do_clean_objs(),do_clean_named_objs(),
136 do_clean_named_io_objs()
137 Attempt to free all objects pointed to by RVs,
138 and try to do the same for all objects indirectly
139 referenced by typeglobs too. Called once from
140 perl_destruct(), prior to calling sv_clean_all()
143 sv_clean_all() / do_clean_all()
144 SvREFCNT_dec(sv) each remaining SV, possibly
145 triggering an sv_free(). It also sets the
146 SVf_BREAK flag on the SV to indicate that the
147 refcnt has been artificially lowered, and thus
148 stopping sv_free() from giving spurious warnings
149 about SVs which unexpectedly have a refcnt
150 of zero. called repeatedly from perl_destruct()
151 until there are no SVs left.
153 =head2 Arena allocator API Summary
155 Private API to rest of sv.c
159 new_XPVNV(), del_XPVGV(),
164 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
168 * ========================================================================= */
171 * "A time to plant, and a time to uproot what was planted..."
175 # define MEM_LOG_NEW_SV(sv, file, line, func) \
176 Perl_mem_log_new_sv(sv, file, line, func)
177 # define MEM_LOG_DEL_SV(sv, file, line, func) \
178 Perl_mem_log_del_sv(sv, file, line, func)
180 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
181 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
184 #ifdef DEBUG_LEAKING_SCALARS
185 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
186 # define DEBUG_SV_SERIAL(sv) \
187 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
188 PTR2UV(sv), (long)(sv)->sv_debug_serial))
190 # define FREE_SV_DEBUG_FILE(sv)
191 # define DEBUG_SV_SERIAL(sv) NOOP
195 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
196 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
197 /* Whilst I'd love to do this, it seems that things like to check on
199 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
201 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
202 PoisonNew(&SvREFCNT(sv), 1, U32)
204 # define SvARENA_CHAIN(sv) SvANY(sv)
205 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
206 # define POSION_SV_HEAD(sv)
209 /* Mark an SV head as unused, and add to free list.
211 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
212 * its refcount artificially decremented during global destruction, so
213 * there may be dangling pointers to it. The last thing we want in that
214 * case is for it to be reused. */
216 #define plant_SV(p) \
218 const U32 old_flags = SvFLAGS(p); \
219 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
220 DEBUG_SV_SERIAL(p); \
221 FREE_SV_DEBUG_FILE(p); \
223 SvFLAGS(p) = SVTYPEMASK; \
224 if (!(old_flags & SVf_BREAK)) { \
225 SvARENA_CHAIN_SET(p, PL_sv_root); \
231 #define uproot_SV(p) \
234 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
239 /* make some more SVs by adding another arena */
246 char *chunk; /* must use New here to match call to */
247 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
248 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
253 /* new_SV(): return a new, empty SV head */
255 #ifdef DEBUG_LEAKING_SCALARS
256 /* provide a real function for a debugger to play with */
258 S_new_SV(pTHX_ const char *file, int line, const char *func)
265 sv = S_more_sv(aTHX);
269 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
270 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
276 sv->sv_debug_inpad = 0;
277 sv->sv_debug_parent = NULL;
278 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
280 sv->sv_debug_serial = PL_sv_serial++;
282 MEM_LOG_NEW_SV(sv, file, line, func);
283 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
284 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
288 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
296 (p) = S_more_sv(aTHX); \
300 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
305 /* del_SV(): return an empty SV head to the free list */
318 S_del_sv(pTHX_ SV *p)
322 PERL_ARGS_ASSERT_DEL_SV;
327 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
328 const SV * const sv = sva + 1;
329 const SV * const svend = &sva[SvREFCNT(sva)];
330 if (p >= sv && p < svend) {
336 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
337 "Attempt to free non-arena SV: 0x%"UVxf
338 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
345 #else /* ! DEBUGGING */
347 #define del_SV(p) plant_SV(p)
349 #endif /* DEBUGGING */
353 =head1 SV Manipulation Functions
355 =for apidoc sv_add_arena
357 Given a chunk of memory, link it to the head of the list of arenas,
358 and split it into a list of free SVs.
364 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
367 SV *const sva = MUTABLE_SV(ptr);
371 PERL_ARGS_ASSERT_SV_ADD_ARENA;
373 /* The first SV in an arena isn't an SV. */
374 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
375 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
376 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
378 PL_sv_arenaroot = sva;
379 PL_sv_root = sva + 1;
381 svend = &sva[SvREFCNT(sva) - 1];
384 SvARENA_CHAIN_SET(sv, (sv + 1));
388 /* Must always set typemask because it's always checked in on cleanup
389 when the arenas are walked looking for objects. */
390 SvFLAGS(sv) = SVTYPEMASK;
393 SvARENA_CHAIN_SET(sv, 0);
397 SvFLAGS(sv) = SVTYPEMASK;
400 /* visit(): call the named function for each non-free SV in the arenas
401 * whose flags field matches the flags/mask args. */
404 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
410 PERL_ARGS_ASSERT_VISIT;
412 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
413 const SV * const svend = &sva[SvREFCNT(sva)];
415 for (sv = sva + 1; sv < svend; ++sv) {
416 if (SvTYPE(sv) != (svtype)SVTYPEMASK
417 && (sv->sv_flags & mask) == flags
430 /* called by sv_report_used() for each live SV */
433 do_report_used(pTHX_ SV *const sv)
435 if (SvTYPE(sv) != (svtype)SVTYPEMASK) {
436 PerlIO_printf(Perl_debug_log, "****\n");
443 =for apidoc sv_report_used
445 Dump the contents of all SVs not yet freed (debugging aid).
451 Perl_sv_report_used(pTHX)
454 visit(do_report_used, 0, 0);
460 /* called by sv_clean_objs() for each live SV */
463 do_clean_objs(pTHX_ SV *const ref)
468 SV * const target = SvRV(ref);
469 if (SvOBJECT(target)) {
470 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
471 if (SvWEAKREF(ref)) {
472 sv_del_backref(target, ref);
478 SvREFCNT_dec(target);
483 /* XXX Might want to check arrays, etc. */
487 /* clear any slots in a GV which hold objects - except IO;
488 * called by sv_clean_objs() for each live GV */
491 do_clean_named_objs(pTHX_ SV *const sv)
495 assert(SvTYPE(sv) == SVt_PVGV);
496 assert(isGV_with_GP(sv));
500 /* freeing GP entries may indirectly free the current GV;
501 * hold onto it while we mess with the GP slots */
504 if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) {
505 DEBUG_D((PerlIO_printf(Perl_debug_log,
506 "Cleaning named glob SV object:\n "), sv_dump(obj)));
510 if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) {
511 DEBUG_D((PerlIO_printf(Perl_debug_log,
512 "Cleaning named glob AV object:\n "), sv_dump(obj)));
516 if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) {
517 DEBUG_D((PerlIO_printf(Perl_debug_log,
518 "Cleaning named glob HV object:\n "), sv_dump(obj)));
522 if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) {
523 DEBUG_D((PerlIO_printf(Perl_debug_log,
524 "Cleaning named glob CV object:\n "), sv_dump(obj)));
528 SvREFCNT_dec(sv); /* undo the inc above */
531 /* clear any IO slots in a GV which hold objects (except stderr, defout);
532 * called by sv_clean_objs() for each live GV */
535 do_clean_named_io_objs(pTHX_ SV *const sv)
539 assert(SvTYPE(sv) == SVt_PVGV);
540 assert(isGV_with_GP(sv));
541 if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv)
545 if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) {
546 DEBUG_D((PerlIO_printf(Perl_debug_log,
547 "Cleaning named glob IO object:\n "), sv_dump(obj)));
551 SvREFCNT_dec(sv); /* undo the inc above */
554 /* Void wrapper to pass to visit() */
556 do_curse(pTHX_ SV * const sv) {
557 if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv)
558 || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv))
564 =for apidoc sv_clean_objs
566 Attempt to destroy all objects not yet freed.
572 Perl_sv_clean_objs(pTHX)
576 PL_in_clean_objs = TRUE;
577 visit(do_clean_objs, SVf_ROK, SVf_ROK);
578 /* Some barnacles may yet remain, clinging to typeglobs.
579 * Run the non-IO destructors first: they may want to output
580 * error messages, close files etc */
581 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
582 visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
583 /* And if there are some very tenacious barnacles clinging to arrays,
584 closures, or what have you.... */
585 visit(do_curse, SVs_OBJECT, SVs_OBJECT);
586 olddef = PL_defoutgv;
587 PL_defoutgv = NULL; /* disable skip of PL_defoutgv */
588 if (olddef && isGV_with_GP(olddef))
589 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef));
590 olderr = PL_stderrgv;
591 PL_stderrgv = NULL; /* disable skip of PL_stderrgv */
592 if (olderr && isGV_with_GP(olderr))
593 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr));
594 SvREFCNT_dec(olddef);
595 PL_in_clean_objs = FALSE;
598 /* called by sv_clean_all() for each live SV */
601 do_clean_all(pTHX_ SV *const sv)
604 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
605 /* don't clean pid table and strtab */
608 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
609 SvFLAGS(sv) |= SVf_BREAK;
614 =for apidoc sv_clean_all
616 Decrement the refcnt of each remaining SV, possibly triggering a
617 cleanup. This function may have to be called multiple times to free
618 SVs which are in complex self-referential hierarchies.
624 Perl_sv_clean_all(pTHX)
628 PL_in_clean_all = TRUE;
629 cleaned = visit(do_clean_all, 0,0);
634 ARENASETS: a meta-arena implementation which separates arena-info
635 into struct arena_set, which contains an array of struct
636 arena_descs, each holding info for a single arena. By separating
637 the meta-info from the arena, we recover the 1st slot, formerly
638 borrowed for list management. The arena_set is about the size of an
639 arena, avoiding the needless malloc overhead of a naive linked-list.
641 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
642 memory in the last arena-set (1/2 on average). In trade, we get
643 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
644 smaller types). The recovery of the wasted space allows use of
645 small arenas for large, rare body types, by changing array* fields
646 in body_details_by_type[] below.
649 char *arena; /* the raw storage, allocated aligned */
650 size_t size; /* its size ~4k typ */
651 svtype utype; /* bodytype stored in arena */
656 /* Get the maximum number of elements in set[] such that struct arena_set
657 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
658 therefore likely to be 1 aligned memory page. */
660 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
661 - 2 * sizeof(int)) / sizeof (struct arena_desc))
664 struct arena_set* next;
665 unsigned int set_size; /* ie ARENAS_PER_SET */
666 unsigned int curr; /* index of next available arena-desc */
667 struct arena_desc set[ARENAS_PER_SET];
671 =for apidoc sv_free_arenas
673 Deallocate the memory used by all arenas. Note that all the individual SV
674 heads and bodies within the arenas must already have been freed.
679 Perl_sv_free_arenas(pTHX)
686 /* Free arenas here, but be careful about fake ones. (We assume
687 contiguity of the fake ones with the corresponding real ones.) */
689 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
690 svanext = MUTABLE_SV(SvANY(sva));
691 while (svanext && SvFAKE(svanext))
692 svanext = MUTABLE_SV(SvANY(svanext));
699 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
702 struct arena_set *current = aroot;
705 assert(aroot->set[i].arena);
706 Safefree(aroot->set[i].arena);
714 i = PERL_ARENA_ROOTS_SIZE;
716 PL_body_roots[i] = 0;
723 Here are mid-level routines that manage the allocation of bodies out
724 of the various arenas. There are 5 kinds of arenas:
726 1. SV-head arenas, which are discussed and handled above
727 2. regular body arenas
728 3. arenas for reduced-size bodies
731 Arena types 2 & 3 are chained by body-type off an array of
732 arena-root pointers, which is indexed by svtype. Some of the
733 larger/less used body types are malloced singly, since a large
734 unused block of them is wasteful. Also, several svtypes dont have
735 bodies; the data fits into the sv-head itself. The arena-root
736 pointer thus has a few unused root-pointers (which may be hijacked
737 later for arena types 4,5)
739 3 differs from 2 as an optimization; some body types have several
740 unused fields in the front of the structure (which are kept in-place
741 for consistency). These bodies can be allocated in smaller chunks,
742 because the leading fields arent accessed. Pointers to such bodies
743 are decremented to point at the unused 'ghost' memory, knowing that
744 the pointers are used with offsets to the real memory.
747 =head1 SV-Body Allocation
749 Allocation of SV-bodies is similar to SV-heads, differing as follows;
750 the allocation mechanism is used for many body types, so is somewhat
751 more complicated, it uses arena-sets, and has no need for still-live
754 At the outermost level, (new|del)_X*V macros return bodies of the
755 appropriate type. These macros call either (new|del)_body_type or
756 (new|del)_body_allocated macro pairs, depending on specifics of the
757 type. Most body types use the former pair, the latter pair is used to
758 allocate body types with "ghost fields".
760 "ghost fields" are fields that are unused in certain types, and
761 consequently don't need to actually exist. They are declared because
762 they're part of a "base type", which allows use of functions as
763 methods. The simplest examples are AVs and HVs, 2 aggregate types
764 which don't use the fields which support SCALAR semantics.
766 For these types, the arenas are carved up into appropriately sized
767 chunks, we thus avoid wasted memory for those unaccessed members.
768 When bodies are allocated, we adjust the pointer back in memory by the
769 size of the part not allocated, so it's as if we allocated the full
770 structure. (But things will all go boom if you write to the part that
771 is "not there", because you'll be overwriting the last members of the
772 preceding structure in memory.)
774 We calculate the correction using the STRUCT_OFFSET macro on the first
775 member present. If the allocated structure is smaller (no initial NV
776 actually allocated) then the net effect is to subtract the size of the NV
777 from the pointer, to return a new pointer as if an initial NV were actually
778 allocated. (We were using structures named *_allocated for this, but
779 this turned out to be a subtle bug, because a structure without an NV
780 could have a lower alignment constraint, but the compiler is allowed to
781 optimised accesses based on the alignment constraint of the actual pointer
782 to the full structure, for example, using a single 64 bit load instruction
783 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
785 This is the same trick as was used for NV and IV bodies. Ironically it
786 doesn't need to be used for NV bodies any more, because NV is now at
787 the start of the structure. IV bodies don't need it either, because
788 they are no longer allocated.
790 In turn, the new_body_* allocators call S_new_body(), which invokes
791 new_body_inline macro, which takes a lock, and takes a body off the
792 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
793 necessary to refresh an empty list. Then the lock is released, and
794 the body is returned.
796 Perl_more_bodies allocates a new arena, and carves it up into an array of N
797 bodies, which it strings into a linked list. It looks up arena-size
798 and body-size from the body_details table described below, thus
799 supporting the multiple body-types.
801 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
802 the (new|del)_X*V macros are mapped directly to malloc/free.
804 For each sv-type, struct body_details bodies_by_type[] carries
805 parameters which control these aspects of SV handling:
807 Arena_size determines whether arenas are used for this body type, and if
808 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
809 zero, forcing individual mallocs and frees.
811 Body_size determines how big a body is, and therefore how many fit into
812 each arena. Offset carries the body-pointer adjustment needed for
813 "ghost fields", and is used in *_allocated macros.
815 But its main purpose is to parameterize info needed in
816 Perl_sv_upgrade(). The info here dramatically simplifies the function
817 vs the implementation in 5.8.8, making it table-driven. All fields
818 are used for this, except for arena_size.
820 For the sv-types that have no bodies, arenas are not used, so those
821 PL_body_roots[sv_type] are unused, and can be overloaded. In
822 something of a special case, SVt_NULL is borrowed for HE arenas;
823 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
824 bodies_by_type[SVt_NULL] slot is not used, as the table is not
829 struct body_details {
830 U8 body_size; /* Size to allocate */
831 U8 copy; /* Size of structure to copy (may be shorter) */
833 unsigned int type : 4; /* We have space for a sanity check. */
834 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
835 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
836 unsigned int arena : 1; /* Allocated from an arena */
837 size_t arena_size; /* Size of arena to allocate */
845 /* With -DPURFIY we allocate everything directly, and don't use arenas.
846 This seems a rather elegant way to simplify some of the code below. */
847 #define HASARENA FALSE
849 #define HASARENA TRUE
851 #define NOARENA FALSE
853 /* Size the arenas to exactly fit a given number of bodies. A count
854 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
855 simplifying the default. If count > 0, the arena is sized to fit
856 only that many bodies, allowing arenas to be used for large, rare
857 bodies (XPVFM, XPVIO) without undue waste. The arena size is
858 limited by PERL_ARENA_SIZE, so we can safely oversize the
861 #define FIT_ARENA0(body_size) \
862 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
863 #define FIT_ARENAn(count,body_size) \
864 ( count * body_size <= PERL_ARENA_SIZE) \
865 ? count * body_size \
866 : FIT_ARENA0 (body_size)
867 #define FIT_ARENA(count,body_size) \
869 ? FIT_ARENAn (count, body_size) \
870 : FIT_ARENA0 (body_size)
872 /* Calculate the length to copy. Specifically work out the length less any
873 final padding the compiler needed to add. See the comment in sv_upgrade
874 for why copying the padding proved to be a bug. */
876 #define copy_length(type, last_member) \
877 STRUCT_OFFSET(type, last_member) \
878 + sizeof (((type*)SvANY((const SV *)0))->last_member)
880 static const struct body_details bodies_by_type[] = {
881 /* HEs use this offset for their arena. */
882 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
884 /* The bind placeholder pretends to be an RV for now.
885 Also it's marked as "can't upgrade" to stop anyone using it before it's
887 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
889 /* IVs are in the head, so the allocation size is 0. */
891 sizeof(IV), /* This is used to copy out the IV body. */
892 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
893 NOARENA /* IVS don't need an arena */, 0
896 { sizeof(NV), sizeof(NV),
897 STRUCT_OFFSET(XPVNV, xnv_u),
898 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
900 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
901 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
902 + STRUCT_OFFSET(XPV, xpv_cur),
903 SVt_PV, FALSE, NONV, HASARENA,
904 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
906 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
907 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
908 + STRUCT_OFFSET(XPV, xpv_cur),
909 SVt_PVIV, FALSE, NONV, HASARENA,
910 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
912 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
913 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
914 + STRUCT_OFFSET(XPV, xpv_cur),
915 SVt_PVNV, FALSE, HADNV, HASARENA,
916 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
918 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
919 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
924 SVt_REGEXP, FALSE, NONV, HASARENA,
925 FIT_ARENA(0, sizeof(regexp))
928 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
929 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
931 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
932 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
935 copy_length(XPVAV, xav_alloc),
937 SVt_PVAV, TRUE, NONV, HASARENA,
938 FIT_ARENA(0, sizeof(XPVAV)) },
941 copy_length(XPVHV, xhv_max),
943 SVt_PVHV, TRUE, NONV, HASARENA,
944 FIT_ARENA(0, sizeof(XPVHV)) },
949 SVt_PVCV, TRUE, NONV, HASARENA,
950 FIT_ARENA(0, sizeof(XPVCV)) },
955 SVt_PVFM, TRUE, NONV, NOARENA,
956 FIT_ARENA(20, sizeof(XPVFM)) },
961 SVt_PVIO, TRUE, NONV, HASARENA,
962 FIT_ARENA(24, sizeof(XPVIO)) },
965 #define new_body_allocated(sv_type) \
966 (void *)((char *)S_new_body(aTHX_ sv_type) \
967 - bodies_by_type[sv_type].offset)
969 /* return a thing to the free list */
971 #define del_body(thing, root) \
973 void ** const thing_copy = (void **)thing; \
974 *thing_copy = *root; \
975 *root = (void*)thing_copy; \
980 #define new_XNV() safemalloc(sizeof(XPVNV))
981 #define new_XPVNV() safemalloc(sizeof(XPVNV))
982 #define new_XPVMG() safemalloc(sizeof(XPVMG))
984 #define del_XPVGV(p) safefree(p)
988 #define new_XNV() new_body_allocated(SVt_NV)
989 #define new_XPVNV() new_body_allocated(SVt_PVNV)
990 #define new_XPVMG() new_body_allocated(SVt_PVMG)
992 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
993 &PL_body_roots[SVt_PVGV])
997 /* no arena for you! */
999 #define new_NOARENA(details) \
1000 safemalloc((details)->body_size + (details)->offset)
1001 #define new_NOARENAZ(details) \
1002 safecalloc((details)->body_size + (details)->offset, 1)
1005 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
1006 const size_t arena_size)
1009 void ** const root = &PL_body_roots[sv_type];
1010 struct arena_desc *adesc;
1011 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
1015 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
1016 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1017 static bool done_sanity_check;
1019 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1020 * variables like done_sanity_check. */
1021 if (!done_sanity_check) {
1022 unsigned int i = SVt_LAST;
1024 done_sanity_check = TRUE;
1027 assert (bodies_by_type[i].type == i);
1033 /* may need new arena-set to hold new arena */
1034 if (!aroot || aroot->curr >= aroot->set_size) {
1035 struct arena_set *newroot;
1036 Newxz(newroot, 1, struct arena_set);
1037 newroot->set_size = ARENAS_PER_SET;
1038 newroot->next = aroot;
1040 PL_body_arenas = (void *) newroot;
1041 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
1044 /* ok, now have arena-set with at least 1 empty/available arena-desc */
1045 curr = aroot->curr++;
1046 adesc = &(aroot->set[curr]);
1047 assert(!adesc->arena);
1049 Newx(adesc->arena, good_arena_size, char);
1050 adesc->size = good_arena_size;
1051 adesc->utype = sv_type;
1052 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
1053 curr, (void*)adesc->arena, (UV)good_arena_size));
1055 start = (char *) adesc->arena;
1057 /* Get the address of the byte after the end of the last body we can fit.
1058 Remember, this is integer division: */
1059 end = start + good_arena_size / body_size * body_size;
1061 /* computed count doesn't reflect the 1st slot reservation */
1062 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1063 DEBUG_m(PerlIO_printf(Perl_debug_log,
1064 "arena %p end %p arena-size %d (from %d) type %d "
1066 (void*)start, (void*)end, (int)good_arena_size,
1067 (int)arena_size, sv_type, (int)body_size,
1068 (int)good_arena_size / (int)body_size));
1070 DEBUG_m(PerlIO_printf(Perl_debug_log,
1071 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1072 (void*)start, (void*)end,
1073 (int)arena_size, sv_type, (int)body_size,
1074 (int)good_arena_size / (int)body_size));
1076 *root = (void *)start;
1079 /* Where the next body would start: */
1080 char * const next = start + body_size;
1083 /* This is the last body: */
1084 assert(next == end);
1086 *(void **)start = 0;
1090 *(void**) start = (void *)next;
1095 /* grab a new thing from the free list, allocating more if necessary.
1096 The inline version is used for speed in hot routines, and the
1097 function using it serves the rest (unless PURIFY).
1099 #define new_body_inline(xpv, sv_type) \
1101 void ** const r3wt = &PL_body_roots[sv_type]; \
1102 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1103 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1104 bodies_by_type[sv_type].body_size,\
1105 bodies_by_type[sv_type].arena_size)); \
1106 *(r3wt) = *(void**)(xpv); \
1112 S_new_body(pTHX_ const svtype sv_type)
1116 new_body_inline(xpv, sv_type);
1122 static const struct body_details fake_rv =
1123 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1126 =for apidoc sv_upgrade
1128 Upgrade an SV to a more complex form. Generally adds a new body type to the
1129 SV, then copies across as much information as possible from the old body.
1130 It croaks if the SV is already in a more complex form than requested. You
1131 generally want to use the C<SvUPGRADE> macro wrapper, which checks the type
1132 before calling C<sv_upgrade>, and hence does not croak. See also
1139 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1144 const svtype old_type = SvTYPE(sv);
1145 const struct body_details *new_type_details;
1146 const struct body_details *old_type_details
1147 = bodies_by_type + old_type;
1148 SV *referant = NULL;
1150 PERL_ARGS_ASSERT_SV_UPGRADE;
1152 if (old_type == new_type)
1155 /* This clause was purposefully added ahead of the early return above to
1156 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1157 inference by Nick I-S that it would fix other troublesome cases. See
1158 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1160 Given that shared hash key scalars are no longer PVIV, but PV, there is
1161 no longer need to unshare so as to free up the IVX slot for its proper
1162 purpose. So it's safe to move the early return earlier. */
1164 if (new_type != SVt_PV && SvIsCOW(sv)) {
1165 sv_force_normal_flags(sv, 0);
1168 old_body = SvANY(sv);
1170 /* Copying structures onto other structures that have been neatly zeroed
1171 has a subtle gotcha. Consider XPVMG
1173 +------+------+------+------+------+-------+-------+
1174 | NV | CUR | LEN | IV | MAGIC | STASH |
1175 +------+------+------+------+------+-------+-------+
1176 0 4 8 12 16 20 24 28
1178 where NVs are aligned to 8 bytes, so that sizeof that structure is
1179 actually 32 bytes long, with 4 bytes of padding at the end:
1181 +------+------+------+------+------+-------+-------+------+
1182 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1183 +------+------+------+------+------+-------+-------+------+
1184 0 4 8 12 16 20 24 28 32
1186 so what happens if you allocate memory for this structure:
1188 +------+------+------+------+------+-------+-------+------+------+...
1189 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1190 +------+------+------+------+------+-------+-------+------+------+...
1191 0 4 8 12 16 20 24 28 32 36
1193 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1194 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1195 started out as zero once, but it's quite possible that it isn't. So now,
1196 rather than a nicely zeroed GP, you have it pointing somewhere random.
1199 (In fact, GP ends up pointing at a previous GP structure, because the
1200 principle cause of the padding in XPVMG getting garbage is a copy of
1201 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1202 this happens to be moot because XPVGV has been re-ordered, with GP
1203 no longer after STASH)
1205 So we are careful and work out the size of used parts of all the
1213 referant = SvRV(sv);
1214 old_type_details = &fake_rv;
1215 if (new_type == SVt_NV)
1216 new_type = SVt_PVNV;
1218 if (new_type < SVt_PVIV) {
1219 new_type = (new_type == SVt_NV)
1220 ? SVt_PVNV : SVt_PVIV;
1225 if (new_type < SVt_PVNV) {
1226 new_type = SVt_PVNV;
1230 assert(new_type > SVt_PV);
1231 assert(SVt_IV < SVt_PV);
1232 assert(SVt_NV < SVt_PV);
1239 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1240 there's no way that it can be safely upgraded, because perl.c
1241 expects to Safefree(SvANY(PL_mess_sv)) */
1242 assert(sv != PL_mess_sv);
1243 /* This flag bit is used to mean other things in other scalar types.
1244 Given that it only has meaning inside the pad, it shouldn't be set
1245 on anything that can get upgraded. */
1246 assert(!SvPAD_TYPED(sv));
1249 if (old_type_details->cant_upgrade)
1250 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1251 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1254 if (old_type > new_type)
1255 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1256 (int)old_type, (int)new_type);
1258 new_type_details = bodies_by_type + new_type;
1260 SvFLAGS(sv) &= ~SVTYPEMASK;
1261 SvFLAGS(sv) |= new_type;
1263 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1264 the return statements above will have triggered. */
1265 assert (new_type != SVt_NULL);
1268 assert(old_type == SVt_NULL);
1269 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1273 assert(old_type == SVt_NULL);
1274 SvANY(sv) = new_XNV();
1279 assert(new_type_details->body_size);
1282 assert(new_type_details->arena);
1283 assert(new_type_details->arena_size);
1284 /* This points to the start of the allocated area. */
1285 new_body_inline(new_body, new_type);
1286 Zero(new_body, new_type_details->body_size, char);
1287 new_body = ((char *)new_body) - new_type_details->offset;
1289 /* We always allocated the full length item with PURIFY. To do this
1290 we fake things so that arena is false for all 16 types.. */
1291 new_body = new_NOARENAZ(new_type_details);
1293 SvANY(sv) = new_body;
1294 if (new_type == SVt_PVAV) {
1298 if (old_type_details->body_size) {
1301 /* It will have been zeroed when the new body was allocated.
1302 Lets not write to it, in case it confuses a write-back
1308 #ifndef NODEFAULT_SHAREKEYS
1309 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1311 HvMAX(sv) = 7; /* (start with 8 buckets) */
1314 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1315 The target created by newSVrv also is, and it can have magic.
1316 However, it never has SvPVX set.
1318 if (old_type == SVt_IV) {
1320 } else if (old_type >= SVt_PV) {
1321 assert(SvPVX_const(sv) == 0);
1324 if (old_type >= SVt_PVMG) {
1325 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1326 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1328 sv->sv_u.svu_array = NULL; /* or svu_hash */
1334 /* This ensures that SvTHINKFIRST(sv) is true, and hence that
1335 sv_force_normal_flags(sv) is called. */
1338 /* XXX Is this still needed? Was it ever needed? Surely as there is
1339 no route from NV to PVIV, NOK can never be true */
1340 assert(!SvNOKp(sv));
1351 assert(new_type_details->body_size);
1352 /* We always allocated the full length item with PURIFY. To do this
1353 we fake things so that arena is false for all 16 types.. */
1354 if(new_type_details->arena) {
1355 /* This points to the start of the allocated area. */
1356 new_body_inline(new_body, new_type);
1357 Zero(new_body, new_type_details->body_size, char);
1358 new_body = ((char *)new_body) - new_type_details->offset;
1360 new_body = new_NOARENAZ(new_type_details);
1362 SvANY(sv) = new_body;
1364 if (old_type_details->copy) {
1365 /* There is now the potential for an upgrade from something without
1366 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1367 int offset = old_type_details->offset;
1368 int length = old_type_details->copy;
1370 if (new_type_details->offset > old_type_details->offset) {
1371 const int difference
1372 = new_type_details->offset - old_type_details->offset;
1373 offset += difference;
1374 length -= difference;
1376 assert (length >= 0);
1378 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1382 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1383 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1384 * correct 0.0 for us. Otherwise, if the old body didn't have an
1385 * NV slot, but the new one does, then we need to initialise the
1386 * freshly created NV slot with whatever the correct bit pattern is
1388 if (old_type_details->zero_nv && !new_type_details->zero_nv
1389 && !isGV_with_GP(sv))
1393 if (new_type == SVt_PVIO) {
1394 IO * const io = MUTABLE_IO(sv);
1395 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1398 /* Clear the stashcache because a new IO could overrule a package
1400 hv_clear(PL_stashcache);
1402 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1403 IoPAGE_LEN(sv) = 60;
1405 if (old_type < SVt_PV) {
1406 /* referant will be NULL unless the old type was SVt_IV emulating
1408 sv->sv_u.svu_rv = referant;
1412 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1413 (unsigned long)new_type);
1416 if (old_type > SVt_IV) {
1420 /* Note that there is an assumption that all bodies of types that
1421 can be upgraded came from arenas. Only the more complex non-
1422 upgradable types are allowed to be directly malloc()ed. */
1423 assert(old_type_details->arena);
1424 del_body((void*)((char*)old_body + old_type_details->offset),
1425 &PL_body_roots[old_type]);
1431 =for apidoc sv_backoff
1433 Remove any string offset. You should normally use the C<SvOOK_off> macro
1440 Perl_sv_backoff(pTHX_ register SV *const sv)
1443 const char * const s = SvPVX_const(sv);
1445 PERL_ARGS_ASSERT_SV_BACKOFF;
1446 PERL_UNUSED_CONTEXT;
1449 assert(SvTYPE(sv) != SVt_PVHV);
1450 assert(SvTYPE(sv) != SVt_PVAV);
1452 SvOOK_offset(sv, delta);
1454 SvLEN_set(sv, SvLEN(sv) + delta);
1455 SvPV_set(sv, SvPVX(sv) - delta);
1456 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1457 SvFLAGS(sv) &= ~SVf_OOK;
1464 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1465 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1466 Use the C<SvGROW> wrapper instead.
1472 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1476 PERL_ARGS_ASSERT_SV_GROW;
1478 if (PL_madskills && newlen >= 0x100000) {
1479 PerlIO_printf(Perl_debug_log,
1480 "Allocation too large: %"UVxf"\n", (UV)newlen);
1482 #ifdef HAS_64K_LIMIT
1483 if (newlen >= 0x10000) {
1484 PerlIO_printf(Perl_debug_log,
1485 "Allocation too large: %"UVxf"\n", (UV)newlen);
1488 #endif /* HAS_64K_LIMIT */
1491 if (SvTYPE(sv) < SVt_PV) {
1492 sv_upgrade(sv, SVt_PV);
1493 s = SvPVX_mutable(sv);
1495 else if (SvOOK(sv)) { /* pv is offset? */
1497 s = SvPVX_mutable(sv);
1498 if (newlen > SvLEN(sv))
1499 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1500 #ifdef HAS_64K_LIMIT
1501 if (newlen >= 0x10000)
1506 s = SvPVX_mutable(sv);
1508 if (newlen > SvLEN(sv)) { /* need more room? */
1509 STRLEN minlen = SvCUR(sv);
1510 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1511 if (newlen < minlen)
1513 #ifndef Perl_safesysmalloc_size
1514 newlen = PERL_STRLEN_ROUNDUP(newlen);
1516 if (SvLEN(sv) && s) {
1517 s = (char*)saferealloc(s, newlen);
1520 s = (char*)safemalloc(newlen);
1521 if (SvPVX_const(sv) && SvCUR(sv)) {
1522 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1526 #ifdef Perl_safesysmalloc_size
1527 /* Do this here, do it once, do it right, and then we will never get
1528 called back into sv_grow() unless there really is some growing
1530 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1532 SvLEN_set(sv, newlen);
1539 =for apidoc sv_setiv
1541 Copies an integer into the given SV, upgrading first if necessary.
1542 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1548 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1552 PERL_ARGS_ASSERT_SV_SETIV;
1554 SV_CHECK_THINKFIRST_COW_DROP(sv);
1555 switch (SvTYPE(sv)) {
1558 sv_upgrade(sv, SVt_IV);
1561 sv_upgrade(sv, SVt_PVIV);
1565 if (!isGV_with_GP(sv))
1572 /* diag_listed_as: Can't coerce %s to %s in %s */
1573 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1577 (void)SvIOK_only(sv); /* validate number */
1583 =for apidoc sv_setiv_mg
1585 Like C<sv_setiv>, but also handles 'set' magic.
1591 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1593 PERL_ARGS_ASSERT_SV_SETIV_MG;
1600 =for apidoc sv_setuv
1602 Copies an unsigned integer into the given SV, upgrading first if necessary.
1603 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1609 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1611 PERL_ARGS_ASSERT_SV_SETUV;
1613 /* With the if statement to ensure that integers are stored as IVs whenever
1615 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1618 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1620 If you wish to remove the following if statement, so that this routine
1621 (and its callers) always return UVs, please benchmark to see what the
1622 effect is. Modern CPUs may be different. Or may not :-)
1624 if (u <= (UV)IV_MAX) {
1625 sv_setiv(sv, (IV)u);
1634 =for apidoc sv_setuv_mg
1636 Like C<sv_setuv>, but also handles 'set' magic.
1642 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1644 PERL_ARGS_ASSERT_SV_SETUV_MG;
1651 =for apidoc sv_setnv
1653 Copies a double into the given SV, upgrading first if necessary.
1654 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1660 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1664 PERL_ARGS_ASSERT_SV_SETNV;
1666 SV_CHECK_THINKFIRST_COW_DROP(sv);
1667 switch (SvTYPE(sv)) {
1670 sv_upgrade(sv, SVt_NV);
1674 sv_upgrade(sv, SVt_PVNV);
1678 if (!isGV_with_GP(sv))
1685 /* diag_listed_as: Can't coerce %s to %s in %s */
1686 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1691 (void)SvNOK_only(sv); /* validate number */
1696 =for apidoc sv_setnv_mg
1698 Like C<sv_setnv>, but also handles 'set' magic.
1704 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1706 PERL_ARGS_ASSERT_SV_SETNV_MG;
1712 /* Print an "isn't numeric" warning, using a cleaned-up,
1713 * printable version of the offending string
1717 S_not_a_number(pTHX_ SV *const sv)
1724 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1727 dsv = newSVpvs_flags("", SVs_TEMP);
1728 pv = sv_uni_display(dsv, sv, 10, UNI_DISPLAY_ISPRINT);
1731 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1732 /* each *s can expand to 4 chars + "...\0",
1733 i.e. need room for 8 chars */
1735 const char *s = SvPVX_const(sv);
1736 const char * const end = s + SvCUR(sv);
1737 for ( ; s < end && d < limit; s++ ) {
1739 if (ch & 128 && !isPRINT_LC(ch)) {
1748 else if (ch == '\r') {
1752 else if (ch == '\f') {
1756 else if (ch == '\\') {
1760 else if (ch == '\0') {
1764 else if (isPRINT_LC(ch))
1781 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1782 /* diag_listed_as: Argument "%s" isn't numeric%s */
1783 "Argument \"%s\" isn't numeric in %s", pv,
1786 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1787 /* diag_listed_as: Argument "%s" isn't numeric%s */
1788 "Argument \"%s\" isn't numeric", pv);
1792 =for apidoc looks_like_number
1794 Test if the content of an SV looks like a number (or is a number).
1795 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1796 non-numeric warning), even if your atof() doesn't grok them. Get-magic is
1803 Perl_looks_like_number(pTHX_ SV *const sv)
1808 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1810 if (SvPOK(sv) || SvPOKp(sv)) {
1811 sbegin = SvPV_nomg_const(sv, len);
1814 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1815 return grok_number(sbegin, len, NULL);
1819 S_glob_2number(pTHX_ GV * const gv)
1821 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1823 /* We know that all GVs stringify to something that is not-a-number,
1824 so no need to test that. */
1825 if (ckWARN(WARN_NUMERIC))
1827 SV *const buffer = sv_newmortal();
1828 gv_efullname3(buffer, gv, "*");
1829 not_a_number(buffer);
1831 /* We just want something true to return, so that S_sv_2iuv_common
1832 can tail call us and return true. */
1836 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1837 until proven guilty, assume that things are not that bad... */
1842 As 64 bit platforms often have an NV that doesn't preserve all bits of
1843 an IV (an assumption perl has been based on to date) it becomes necessary
1844 to remove the assumption that the NV always carries enough precision to
1845 recreate the IV whenever needed, and that the NV is the canonical form.
1846 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1847 precision as a side effect of conversion (which would lead to insanity
1848 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1849 1) to distinguish between IV/UV/NV slots that have cached a valid
1850 conversion where precision was lost and IV/UV/NV slots that have a
1851 valid conversion which has lost no precision
1852 2) to ensure that if a numeric conversion to one form is requested that
1853 would lose precision, the precise conversion (or differently
1854 imprecise conversion) is also performed and cached, to prevent
1855 requests for different numeric formats on the same SV causing
1856 lossy conversion chains. (lossless conversion chains are perfectly
1861 SvIOKp is true if the IV slot contains a valid value
1862 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1863 SvNOKp is true if the NV slot contains a valid value
1864 SvNOK is true only if the NV value is accurate
1867 while converting from PV to NV, check to see if converting that NV to an
1868 IV(or UV) would lose accuracy over a direct conversion from PV to
1869 IV(or UV). If it would, cache both conversions, return NV, but mark
1870 SV as IOK NOKp (ie not NOK).
1872 While converting from PV to IV, check to see if converting that IV to an
1873 NV would lose accuracy over a direct conversion from PV to NV. If it
1874 would, cache both conversions, flag similarly.
1876 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1877 correctly because if IV & NV were set NV *always* overruled.
1878 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1879 changes - now IV and NV together means that the two are interchangeable:
1880 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1882 The benefit of this is that operations such as pp_add know that if
1883 SvIOK is true for both left and right operands, then integer addition
1884 can be used instead of floating point (for cases where the result won't
1885 overflow). Before, floating point was always used, which could lead to
1886 loss of precision compared with integer addition.
1888 * making IV and NV equal status should make maths accurate on 64 bit
1890 * may speed up maths somewhat if pp_add and friends start to use
1891 integers when possible instead of fp. (Hopefully the overhead in
1892 looking for SvIOK and checking for overflow will not outweigh the
1893 fp to integer speedup)
1894 * will slow down integer operations (callers of SvIV) on "inaccurate"
1895 values, as the change from SvIOK to SvIOKp will cause a call into
1896 sv_2iv each time rather than a macro access direct to the IV slot
1897 * should speed up number->string conversion on integers as IV is
1898 favoured when IV and NV are equally accurate
1900 ####################################################################
1901 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1902 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1903 On the other hand, SvUOK is true iff UV.
1904 ####################################################################
1906 Your mileage will vary depending your CPU's relative fp to integer
1910 #ifndef NV_PRESERVES_UV
1911 # define IS_NUMBER_UNDERFLOW_IV 1
1912 # define IS_NUMBER_UNDERFLOW_UV 2
1913 # define IS_NUMBER_IV_AND_UV 2
1914 # define IS_NUMBER_OVERFLOW_IV 4
1915 # define IS_NUMBER_OVERFLOW_UV 5
1917 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1919 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1921 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1929 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1931 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1932 if (SvNVX(sv) < (NV)IV_MIN) {
1933 (void)SvIOKp_on(sv);
1935 SvIV_set(sv, IV_MIN);
1936 return IS_NUMBER_UNDERFLOW_IV;
1938 if (SvNVX(sv) > (NV)UV_MAX) {
1939 (void)SvIOKp_on(sv);
1942 SvUV_set(sv, UV_MAX);
1943 return IS_NUMBER_OVERFLOW_UV;
1945 (void)SvIOKp_on(sv);
1947 /* Can't use strtol etc to convert this string. (See truth table in
1949 if (SvNVX(sv) <= (UV)IV_MAX) {
1950 SvIV_set(sv, I_V(SvNVX(sv)));
1951 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1952 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1954 /* Integer is imprecise. NOK, IOKp */
1956 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1959 SvUV_set(sv, U_V(SvNVX(sv)));
1960 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1961 if (SvUVX(sv) == UV_MAX) {
1962 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1963 possibly be preserved by NV. Hence, it must be overflow.
1965 return IS_NUMBER_OVERFLOW_UV;
1967 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1969 /* Integer is imprecise. NOK, IOKp */
1971 return IS_NUMBER_OVERFLOW_IV;
1973 #endif /* !NV_PRESERVES_UV*/
1976 S_sv_2iuv_common(pTHX_ SV *const sv)
1980 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
1983 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1984 * without also getting a cached IV/UV from it at the same time
1985 * (ie PV->NV conversion should detect loss of accuracy and cache
1986 * IV or UV at same time to avoid this. */
1987 /* IV-over-UV optimisation - choose to cache IV if possible */
1989 if (SvTYPE(sv) == SVt_NV)
1990 sv_upgrade(sv, SVt_PVNV);
1992 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1993 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1994 certainly cast into the IV range at IV_MAX, whereas the correct
1995 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1997 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1998 if (Perl_isnan(SvNVX(sv))) {
2004 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2005 SvIV_set(sv, I_V(SvNVX(sv)));
2006 if (SvNVX(sv) == (NV) SvIVX(sv)
2007 #ifndef NV_PRESERVES_UV
2008 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2009 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2010 /* Don't flag it as "accurately an integer" if the number
2011 came from a (by definition imprecise) NV operation, and
2012 we're outside the range of NV integer precision */
2016 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2018 /* scalar has trailing garbage, eg "42a" */
2020 DEBUG_c(PerlIO_printf(Perl_debug_log,
2021 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2027 /* IV not precise. No need to convert from PV, as NV
2028 conversion would already have cached IV if it detected
2029 that PV->IV would be better than PV->NV->IV
2030 flags already correct - don't set public IOK. */
2031 DEBUG_c(PerlIO_printf(Perl_debug_log,
2032 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2037 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2038 but the cast (NV)IV_MIN rounds to a the value less (more
2039 negative) than IV_MIN which happens to be equal to SvNVX ??
2040 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2041 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2042 (NV)UVX == NVX are both true, but the values differ. :-(
2043 Hopefully for 2s complement IV_MIN is something like
2044 0x8000000000000000 which will be exact. NWC */
2047 SvUV_set(sv, U_V(SvNVX(sv)));
2049 (SvNVX(sv) == (NV) SvUVX(sv))
2050 #ifndef NV_PRESERVES_UV
2051 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2052 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2053 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2054 /* Don't flag it as "accurately an integer" if the number
2055 came from a (by definition imprecise) NV operation, and
2056 we're outside the range of NV integer precision */
2062 DEBUG_c(PerlIO_printf(Perl_debug_log,
2063 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2069 else if (SvPOKp(sv) && SvLEN(sv)) {
2071 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2072 /* We want to avoid a possible problem when we cache an IV/ a UV which
2073 may be later translated to an NV, and the resulting NV is not
2074 the same as the direct translation of the initial string
2075 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2076 be careful to ensure that the value with the .456 is around if the
2077 NV value is requested in the future).
2079 This means that if we cache such an IV/a UV, we need to cache the
2080 NV as well. Moreover, we trade speed for space, and do not
2081 cache the NV if we are sure it's not needed.
2084 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2085 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2086 == IS_NUMBER_IN_UV) {
2087 /* It's definitely an integer, only upgrade to PVIV */
2088 if (SvTYPE(sv) < SVt_PVIV)
2089 sv_upgrade(sv, SVt_PVIV);
2091 } else if (SvTYPE(sv) < SVt_PVNV)
2092 sv_upgrade(sv, SVt_PVNV);
2094 /* If NVs preserve UVs then we only use the UV value if we know that
2095 we aren't going to call atof() below. If NVs don't preserve UVs
2096 then the value returned may have more precision than atof() will
2097 return, even though value isn't perfectly accurate. */
2098 if ((numtype & (IS_NUMBER_IN_UV
2099 #ifdef NV_PRESERVES_UV
2102 )) == IS_NUMBER_IN_UV) {
2103 /* This won't turn off the public IOK flag if it was set above */
2104 (void)SvIOKp_on(sv);
2106 if (!(numtype & IS_NUMBER_NEG)) {
2108 if (value <= (UV)IV_MAX) {
2109 SvIV_set(sv, (IV)value);
2111 /* it didn't overflow, and it was positive. */
2112 SvUV_set(sv, value);
2116 /* 2s complement assumption */
2117 if (value <= (UV)IV_MIN) {
2118 SvIV_set(sv, -(IV)value);
2120 /* Too negative for an IV. This is a double upgrade, but
2121 I'm assuming it will be rare. */
2122 if (SvTYPE(sv) < SVt_PVNV)
2123 sv_upgrade(sv, SVt_PVNV);
2127 SvNV_set(sv, -(NV)value);
2128 SvIV_set(sv, IV_MIN);
2132 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2133 will be in the previous block to set the IV slot, and the next
2134 block to set the NV slot. So no else here. */
2136 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2137 != IS_NUMBER_IN_UV) {
2138 /* It wasn't an (integer that doesn't overflow the UV). */
2139 SvNV_set(sv, Atof(SvPVX_const(sv)));
2141 if (! numtype && ckWARN(WARN_NUMERIC))
2144 #if defined(USE_LONG_DOUBLE)
2145 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2146 PTR2UV(sv), SvNVX(sv)));
2148 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2149 PTR2UV(sv), SvNVX(sv)));
2152 #ifdef NV_PRESERVES_UV
2153 (void)SvIOKp_on(sv);
2155 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2156 SvIV_set(sv, I_V(SvNVX(sv)));
2157 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2160 NOOP; /* Integer is imprecise. NOK, IOKp */
2162 /* UV will not work better than IV */
2164 if (SvNVX(sv) > (NV)UV_MAX) {
2166 /* Integer is inaccurate. NOK, IOKp, is UV */
2167 SvUV_set(sv, UV_MAX);
2169 SvUV_set(sv, U_V(SvNVX(sv)));
2170 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2171 NV preservse UV so can do correct comparison. */
2172 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2175 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2180 #else /* NV_PRESERVES_UV */
2181 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2182 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2183 /* The IV/UV slot will have been set from value returned by
2184 grok_number above. The NV slot has just been set using
2187 assert (SvIOKp(sv));
2189 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2190 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2191 /* Small enough to preserve all bits. */
2192 (void)SvIOKp_on(sv);
2194 SvIV_set(sv, I_V(SvNVX(sv)));
2195 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2197 /* Assumption: first non-preserved integer is < IV_MAX,
2198 this NV is in the preserved range, therefore: */
2199 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2201 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2205 0 0 already failed to read UV.
2206 0 1 already failed to read UV.
2207 1 0 you won't get here in this case. IV/UV
2208 slot set, public IOK, Atof() unneeded.
2209 1 1 already read UV.
2210 so there's no point in sv_2iuv_non_preserve() attempting
2211 to use atol, strtol, strtoul etc. */
2213 sv_2iuv_non_preserve (sv, numtype);
2215 sv_2iuv_non_preserve (sv);
2219 #endif /* NV_PRESERVES_UV */
2220 /* It might be more code efficient to go through the entire logic above
2221 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2222 gets complex and potentially buggy, so more programmer efficient
2223 to do it this way, by turning off the public flags: */
2225 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2229 if (isGV_with_GP(sv))
2230 return glob_2number(MUTABLE_GV(sv));
2232 if (!SvPADTMP(sv)) {
2233 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2236 if (SvTYPE(sv) < SVt_IV)
2237 /* Typically the caller expects that sv_any is not NULL now. */
2238 sv_upgrade(sv, SVt_IV);
2239 /* Return 0 from the caller. */
2246 =for apidoc sv_2iv_flags
2248 Return the integer value of an SV, doing any necessary string
2249 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2250 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2256 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2263 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2269 if (flags & SV_SKIP_OVERLOAD)
2271 tmpstr = AMG_CALLunary(sv, numer_amg);
2272 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2273 return SvIV(tmpstr);
2276 return PTR2IV(SvRV(sv));
2280 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2281 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2282 In practice they are extremely unlikely to actually get anywhere
2283 accessible by user Perl code - the only way that I'm aware of is when
2284 a constant subroutine which is used as the second argument to index.
2289 return I_V(SvNVX(sv));
2290 if (SvPOKp(sv) && SvLEN(sv)) {
2293 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2295 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2296 == IS_NUMBER_IN_UV) {
2297 /* It's definitely an integer */
2298 if (numtype & IS_NUMBER_NEG) {
2299 if (value < (UV)IV_MIN)
2302 if (value < (UV)IV_MAX)
2307 if (ckWARN(WARN_NUMERIC))
2310 return I_V(Atof(SvPVX_const(sv)));
2312 if (ckWARN(WARN_UNINITIALIZED))
2317 if (SvTHINKFIRST(sv)) {
2319 sv_force_normal_flags(sv, 0);
2321 if (SvREADONLY(sv) && !SvOK(sv)) {
2322 if (ckWARN(WARN_UNINITIALIZED))
2329 if (S_sv_2iuv_common(aTHX_ sv))
2333 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2334 PTR2UV(sv),SvIVX(sv)));
2335 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2339 =for apidoc sv_2uv_flags
2341 Return the unsigned integer value of an SV, doing any necessary string
2342 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2343 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2349 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2356 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2362 if (flags & SV_SKIP_OVERLOAD)
2364 tmpstr = AMG_CALLunary(sv, numer_amg);
2365 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2366 return SvUV(tmpstr);
2369 return PTR2UV(SvRV(sv));
2373 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2374 the same flag bit as SVf_IVisUV, so must not let them cache IVs. */
2378 return U_V(SvNVX(sv));
2379 if (SvPOKp(sv) && SvLEN(sv)) {
2382 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2384 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2385 == IS_NUMBER_IN_UV) {
2386 /* It's definitely an integer */
2387 if (!(numtype & IS_NUMBER_NEG))
2391 if (ckWARN(WARN_NUMERIC))
2394 return U_V(Atof(SvPVX_const(sv)));
2396 if (ckWARN(WARN_UNINITIALIZED))
2401 if (SvTHINKFIRST(sv)) {
2403 sv_force_normal_flags(sv, 0);
2405 if (SvREADONLY(sv) && !SvOK(sv)) {
2406 if (ckWARN(WARN_UNINITIALIZED))
2413 if (S_sv_2iuv_common(aTHX_ sv))
2417 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2418 PTR2UV(sv),SvUVX(sv)));
2419 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2423 =for apidoc sv_2nv_flags
2425 Return the num value of an SV, doing any necessary string or integer
2426 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2427 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2433 Perl_sv_2nv_flags(pTHX_ register SV *const sv, const I32 flags)
2438 if (SvGMAGICAL(sv) || SvVALID(sv)) {
2439 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2440 the same flag bit as SVf_IVisUV, so must not let them cache NVs. */
2441 if (flags & SV_GMAGIC)
2445 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2446 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2447 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2449 return Atof(SvPVX_const(sv));
2453 return (NV)SvUVX(sv);
2455 return (NV)SvIVX(sv);
2460 assert(SvTYPE(sv) >= SVt_PVMG);
2461 /* This falls through to the report_uninit near the end of the
2463 } else if (SvTHINKFIRST(sv)) {
2468 if (flags & SV_SKIP_OVERLOAD)
2470 tmpstr = AMG_CALLunary(sv, numer_amg);
2471 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2472 return SvNV(tmpstr);
2475 return PTR2NV(SvRV(sv));
2478 sv_force_normal_flags(sv, 0);
2480 if (SvREADONLY(sv) && !SvOK(sv)) {
2481 if (ckWARN(WARN_UNINITIALIZED))
2486 if (SvTYPE(sv) < SVt_NV) {
2487 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2488 sv_upgrade(sv, SVt_NV);
2489 #ifdef USE_LONG_DOUBLE
2491 STORE_NUMERIC_LOCAL_SET_STANDARD();
2492 PerlIO_printf(Perl_debug_log,
2493 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2494 PTR2UV(sv), SvNVX(sv));
2495 RESTORE_NUMERIC_LOCAL();
2499 STORE_NUMERIC_LOCAL_SET_STANDARD();
2500 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2501 PTR2UV(sv), SvNVX(sv));
2502 RESTORE_NUMERIC_LOCAL();
2506 else if (SvTYPE(sv) < SVt_PVNV)
2507 sv_upgrade(sv, SVt_PVNV);
2512 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2513 #ifdef NV_PRESERVES_UV
2519 /* Only set the public NV OK flag if this NV preserves the IV */
2520 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2522 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2523 : (SvIVX(sv) == I_V(SvNVX(sv))))
2529 else if (SvPOKp(sv) && SvLEN(sv)) {
2531 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2532 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2534 #ifdef NV_PRESERVES_UV
2535 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2536 == IS_NUMBER_IN_UV) {
2537 /* It's definitely an integer */
2538 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2540 SvNV_set(sv, Atof(SvPVX_const(sv)));
2546 SvNV_set(sv, Atof(SvPVX_const(sv)));
2547 /* Only set the public NV OK flag if this NV preserves the value in
2548 the PV at least as well as an IV/UV would.
2549 Not sure how to do this 100% reliably. */
2550 /* if that shift count is out of range then Configure's test is
2551 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2553 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2554 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2555 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2556 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2557 /* Can't use strtol etc to convert this string, so don't try.
2558 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2561 /* value has been set. It may not be precise. */
2562 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2563 /* 2s complement assumption for (UV)IV_MIN */
2564 SvNOK_on(sv); /* Integer is too negative. */
2569 if (numtype & IS_NUMBER_NEG) {
2570 SvIV_set(sv, -(IV)value);
2571 } else if (value <= (UV)IV_MAX) {
2572 SvIV_set(sv, (IV)value);
2574 SvUV_set(sv, value);
2578 if (numtype & IS_NUMBER_NOT_INT) {
2579 /* I believe that even if the original PV had decimals,
2580 they are lost beyond the limit of the FP precision.
2581 However, neither is canonical, so both only get p
2582 flags. NWC, 2000/11/25 */
2583 /* Both already have p flags, so do nothing */
2585 const NV nv = SvNVX(sv);
2586 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2587 if (SvIVX(sv) == I_V(nv)) {
2590 /* It had no "." so it must be integer. */
2594 /* between IV_MAX and NV(UV_MAX).
2595 Could be slightly > UV_MAX */
2597 if (numtype & IS_NUMBER_NOT_INT) {
2598 /* UV and NV both imprecise. */
2600 const UV nv_as_uv = U_V(nv);
2602 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2611 /* It might be more code efficient to go through the entire logic above
2612 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2613 gets complex and potentially buggy, so more programmer efficient
2614 to do it this way, by turning off the public flags: */
2616 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2617 #endif /* NV_PRESERVES_UV */
2620 if (isGV_with_GP(sv)) {
2621 glob_2number(MUTABLE_GV(sv));
2625 if (!PL_localizing && !SvPADTMP(sv) && ckWARN(WARN_UNINITIALIZED))
2627 assert (SvTYPE(sv) >= SVt_NV);
2628 /* Typically the caller expects that sv_any is not NULL now. */
2629 /* XXX Ilya implies that this is a bug in callers that assume this
2630 and ideally should be fixed. */
2633 #if defined(USE_LONG_DOUBLE)
2635 STORE_NUMERIC_LOCAL_SET_STANDARD();
2636 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2637 PTR2UV(sv), SvNVX(sv));
2638 RESTORE_NUMERIC_LOCAL();
2642 STORE_NUMERIC_LOCAL_SET_STANDARD();
2643 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2644 PTR2UV(sv), SvNVX(sv));
2645 RESTORE_NUMERIC_LOCAL();
2654 Return an SV with the numeric value of the source SV, doing any necessary
2655 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2656 access this function.
2662 Perl_sv_2num(pTHX_ register SV *const sv)
2664 PERL_ARGS_ASSERT_SV_2NUM;
2669 SV * const tmpsv = AMG_CALLunary(sv, numer_amg);
2670 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2671 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2672 return sv_2num(tmpsv);
2674 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2677 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2678 * UV as a string towards the end of buf, and return pointers to start and
2681 * We assume that buf is at least TYPE_CHARS(UV) long.
2685 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2687 char *ptr = buf + TYPE_CHARS(UV);
2688 char * const ebuf = ptr;
2691 PERL_ARGS_ASSERT_UIV_2BUF;
2703 *--ptr = '0' + (char)(uv % 10);
2712 =for apidoc sv_2pv_flags
2714 Returns a pointer to the string value of an SV, and sets *lp to its length.
2715 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a
2716 string if necessary. Normally invoked via the C<SvPV_flags> macro.
2717 C<sv_2pv()> and C<sv_2pv_nomg> usually end up here too.
2723 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2733 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2738 if (flags & SV_SKIP_OVERLOAD)
2740 tmpstr = AMG_CALLunary(sv, string_amg);
2741 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2742 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2744 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2748 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2749 if (flags & SV_CONST_RETURN) {
2750 pv = (char *) SvPVX_const(tmpstr);
2752 pv = (flags & SV_MUTABLE_RETURN)
2753 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2756 *lp = SvCUR(tmpstr);
2758 pv = sv_2pv_flags(tmpstr, lp, flags);
2771 SV *const referent = SvRV(sv);
2775 retval = buffer = savepvn("NULLREF", len);
2776 } else if (SvTYPE(referent) == SVt_REGEXP &&
2777 (!(PL_curcop->cop_hints & HINT_NO_AMAGIC) ||
2778 amagic_is_enabled(string_amg))) {
2779 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2783 /* If the regex is UTF-8 we want the containing scalar to
2784 have an UTF-8 flag too */
2791 *lp = RX_WRAPLEN(re);
2793 return RX_WRAPPED(re);
2795 const char *const typestr = sv_reftype(referent, 0);
2796 const STRLEN typelen = strlen(typestr);
2797 UV addr = PTR2UV(referent);
2798 const char *stashname = NULL;
2799 STRLEN stashnamelen = 0; /* hush, gcc */
2800 const char *buffer_end;
2802 if (SvOBJECT(referent)) {
2803 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2806 stashname = HEK_KEY(name);
2807 stashnamelen = HEK_LEN(name);
2809 if (HEK_UTF8(name)) {
2815 stashname = "__ANON__";
2818 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2819 + 2 * sizeof(UV) + 2 /* )\0 */;
2821 len = typelen + 3 /* (0x */
2822 + 2 * sizeof(UV) + 2 /* )\0 */;
2825 Newx(buffer, len, char);
2826 buffer_end = retval = buffer + len;
2828 /* Working backwards */
2832 *--retval = PL_hexdigit[addr & 15];
2833 } while (addr >>= 4);
2839 memcpy(retval, typestr, typelen);
2843 retval -= stashnamelen;
2844 memcpy(retval, stashname, stashnamelen);
2846 /* retval may not necessarily have reached the start of the
2848 assert (retval >= buffer);
2850 len = buffer_end - retval - 1; /* -1 for that \0 */
2862 if (flags & SV_MUTABLE_RETURN)
2863 return SvPVX_mutable(sv);
2864 if (flags & SV_CONST_RETURN)
2865 return (char *)SvPVX_const(sv);
2870 /* I'm assuming that if both IV and NV are equally valid then
2871 converting the IV is going to be more efficient */
2872 const U32 isUIOK = SvIsUV(sv);
2873 char buf[TYPE_CHARS(UV)];
2877 if (SvTYPE(sv) < SVt_PVIV)
2878 sv_upgrade(sv, SVt_PVIV);
2879 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2881 /* inlined from sv_setpvn */
2882 s = SvGROW_mutable(sv, len + 1);
2883 Move(ptr, s, len, char);
2887 else if (SvNOK(sv)) {
2888 if (SvTYPE(sv) < SVt_PVNV)
2889 sv_upgrade(sv, SVt_PVNV);
2890 if (SvNVX(sv) == 0.0) {
2891 s = SvGROW_mutable(sv, 2);
2896 /* The +20 is pure guesswork. Configure test needed. --jhi */
2897 s = SvGROW_mutable(sv, NV_DIG + 20);
2898 /* some Xenix systems wipe out errno here */
2899 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2908 else if (isGV_with_GP(sv)) {
2909 GV *const gv = MUTABLE_GV(sv);
2910 SV *const buffer = sv_newmortal();
2912 gv_efullname3(buffer, gv, "*");
2914 assert(SvPOK(buffer));
2918 *lp = SvCUR(buffer);
2919 return SvPVX(buffer);
2924 if (flags & SV_UNDEF_RETURNS_NULL)
2926 if (!PL_localizing && !SvPADTMP(sv) && ckWARN(WARN_UNINITIALIZED))
2928 /* Typically the caller expects that sv_any is not NULL now. */
2929 if (!SvREADONLY(sv) && SvTYPE(sv) < SVt_PV)
2930 sv_upgrade(sv, SVt_PV);
2935 const STRLEN len = s - SvPVX_const(sv);
2941 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2942 PTR2UV(sv),SvPVX_const(sv)));
2943 if (flags & SV_CONST_RETURN)
2944 return (char *)SvPVX_const(sv);
2945 if (flags & SV_MUTABLE_RETURN)
2946 return SvPVX_mutable(sv);
2951 =for apidoc sv_copypv
2953 Copies a stringified representation of the source SV into the
2954 destination SV. Automatically performs any necessary mg_get and
2955 coercion of numeric values into strings. Guaranteed to preserve
2956 UTF8 flag even from overloaded objects. Similar in nature to
2957 sv_2pv[_flags] but operates directly on an SV instead of just the
2958 string. Mostly uses sv_2pv_flags to do its work, except when that
2959 would lose the UTF-8'ness of the PV.
2961 =for apidoc sv_copypv_nomg
2963 Like sv_copypv, but doesn't invoke get magic first.
2965 =for apidoc sv_copypv_flags
2967 Implementation of sv_copypv and sv_copypv_nomg. Calls get magic iff flags
2974 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
2976 PERL_ARGS_ASSERT_SV_COPYPV;
2978 sv_copypv_flags(dsv, ssv, 0);
2982 Perl_sv_copypv_flags(pTHX_ SV *const dsv, register SV *const ssv, const I32 flags)
2987 PERL_ARGS_ASSERT_SV_COPYPV_FLAGS;
2989 if ((flags & SV_GMAGIC) && SvGMAGICAL(ssv))
2991 s = SvPV_nomg_const(ssv,len);
2992 sv_setpvn(dsv,s,len);
3000 =for apidoc sv_2pvbyte
3002 Return a pointer to the byte-encoded representation of the SV, and set *lp
3003 to its length. May cause the SV to be downgraded from UTF-8 as a
3006 Usually accessed via the C<SvPVbyte> macro.
3012 Perl_sv_2pvbyte(pTHX_ register SV *sv, STRLEN *const lp)
3014 PERL_ARGS_ASSERT_SV_2PVBYTE;
3016 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3017 || isGV_with_GP(sv) || SvROK(sv)) {
3018 SV *sv2 = sv_newmortal();
3022 else SvGETMAGIC(sv);
3023 sv_utf8_downgrade(sv,0);
3024 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3028 =for apidoc sv_2pvutf8
3030 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3031 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3033 Usually accessed via the C<SvPVutf8> macro.
3039 Perl_sv_2pvutf8(pTHX_ register SV *sv, STRLEN *const lp)
3041 PERL_ARGS_ASSERT_SV_2PVUTF8;
3043 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3044 || isGV_with_GP(sv) || SvROK(sv))
3045 sv = sv_mortalcopy(sv);
3048 sv_utf8_upgrade_nomg(sv);
3049 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3054 =for apidoc sv_2bool
3056 This macro is only used by sv_true() or its macro equivalent, and only if
3057 the latter's argument is neither SvPOK, SvIOK nor SvNOK.
3058 It calls sv_2bool_flags with the SV_GMAGIC flag.
3060 =for apidoc sv_2bool_flags
3062 This function is only used by sv_true() and friends, and only if
3063 the latter's argument is neither SvPOK, SvIOK nor SvNOK. If the flags
3064 contain SV_GMAGIC, then it does an mg_get() first.
3071 Perl_sv_2bool_flags(pTHX_ register SV *const sv, const I32 flags)
3075 PERL_ARGS_ASSERT_SV_2BOOL_FLAGS;
3077 if(flags & SV_GMAGIC) SvGETMAGIC(sv);
3083 SV * const tmpsv = AMG_CALLunary(sv, bool__amg);
3084 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3085 return cBOOL(SvTRUE(tmpsv));
3087 return SvRV(sv) != 0;
3089 return SvTRUE_common(sv, isGV_with_GP(sv) ? 1 : 0);
3093 =for apidoc sv_utf8_upgrade
3095 Converts the PV of an SV to its UTF-8-encoded form.
3096 Forces the SV to string form if it is not already.
3097 Will C<mg_get> on C<sv> if appropriate.
3098 Always sets the SvUTF8 flag to avoid future validity checks even
3099 if the whole string is the same in UTF-8 as not.
3100 Returns the number of bytes in the converted string
3102 This is not as a general purpose byte encoding to Unicode interface:
3103 use the Encode extension for that.
3105 =for apidoc sv_utf8_upgrade_nomg
3107 Like sv_utf8_upgrade, but doesn't do magic on C<sv>.
3109 =for apidoc sv_utf8_upgrade_flags
3111 Converts the PV of an SV to its UTF-8-encoded form.
3112 Forces the SV to string form if it is not already.
3113 Always sets the SvUTF8 flag to avoid future validity checks even
3114 if all the bytes are invariant in UTF-8.
3115 If C<flags> has C<SV_GMAGIC> bit set,
3116 will C<mg_get> on C<sv> if appropriate, else not.
3117 Returns the number of bytes in the converted string
3118 C<sv_utf8_upgrade> and
3119 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3121 This is not as a general purpose byte encoding to Unicode interface:
3122 use the Encode extension for that.
3126 The grow version is currently not externally documented. It adds a parameter,
3127 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3128 have free after it upon return. This allows the caller to reserve extra space
3129 that it intends to fill, to avoid extra grows.
3131 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3132 which can be used to tell this function to not first check to see if there are
3133 any characters that are different in UTF-8 (variant characters) which would
3134 force it to allocate a new string to sv, but to assume there are. Typically
3135 this flag is used by a routine that has already parsed the string to find that
3136 there are such characters, and passes this information on so that the work
3137 doesn't have to be repeated.
3139 (One might think that the calling routine could pass in the position of the
3140 first such variant, so it wouldn't have to be found again. But that is not the
3141 case, because typically when the caller is likely to use this flag, it won't be
3142 calling this routine unless it finds something that won't fit into a byte.
3143 Otherwise it tries to not upgrade and just use bytes. But some things that
3144 do fit into a byte are variants in utf8, and the caller may not have been
3145 keeping track of these.)
3147 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3148 isn't guaranteed due to having other routines do the work in some input cases,
3149 or if the input is already flagged as being in utf8.
3151 The speed of this could perhaps be improved for many cases if someone wanted to
3152 write a fast function that counts the number of variant characters in a string,
3153 especially if it could return the position of the first one.
3158 Perl_sv_utf8_upgrade_flags_grow(pTHX_ register SV *const sv, const I32 flags, STRLEN extra)
3162 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3164 if (sv == &PL_sv_undef)
3168 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3169 (void) sv_2pv_flags(sv,&len, flags);
3171 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3175 (void) SvPV_force_flags(sv,len,flags & SV_GMAGIC);
3180 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3185 sv_force_normal_flags(sv, 0);
3188 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3189 sv_recode_to_utf8(sv, PL_encoding);
3190 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3194 if (SvCUR(sv) == 0) {
3195 if (extra) SvGROW(sv, extra);
3196 } else { /* Assume Latin-1/EBCDIC */
3197 /* This function could be much more efficient if we
3198 * had a FLAG in SVs to signal if there are any variant
3199 * chars in the PV. Given that there isn't such a flag
3200 * make the loop as fast as possible (although there are certainly ways
3201 * to speed this up, eg. through vectorization) */
3202 U8 * s = (U8 *) SvPVX_const(sv);
3203 U8 * e = (U8 *) SvEND(sv);
3205 STRLEN two_byte_count = 0;
3207 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3209 /* See if really will need to convert to utf8. We mustn't rely on our
3210 * incoming SV being well formed and having a trailing '\0', as certain
3211 * code in pp_formline can send us partially built SVs. */
3215 if (NATIVE_IS_INVARIANT(ch)) continue;
3217 t--; /* t already incremented; re-point to first variant */
3222 /* utf8 conversion not needed because all are invariants. Mark as
3223 * UTF-8 even if no variant - saves scanning loop */
3225 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3230 /* Here, the string should be converted to utf8, either because of an
3231 * input flag (two_byte_count = 0), or because a character that
3232 * requires 2 bytes was found (two_byte_count = 1). t points either to
3233 * the beginning of the string (if we didn't examine anything), or to
3234 * the first variant. In either case, everything from s to t - 1 will
3235 * occupy only 1 byte each on output.
3237 * There are two main ways to convert. One is to create a new string
3238 * and go through the input starting from the beginning, appending each
3239 * converted value onto the new string as we go along. It's probably
3240 * best to allocate enough space in the string for the worst possible
3241 * case rather than possibly running out of space and having to
3242 * reallocate and then copy what we've done so far. Since everything
3243 * from s to t - 1 is invariant, the destination can be initialized
3244 * with these using a fast memory copy
3246 * The other way is to figure out exactly how big the string should be
3247 * by parsing the entire input. Then you don't have to make it big
3248 * enough to handle the worst possible case, and more importantly, if
3249 * the string you already have is large enough, you don't have to
3250 * allocate a new string, you can copy the last character in the input
3251 * string to the final position(s) that will be occupied by the
3252 * converted string and go backwards, stopping at t, since everything
3253 * before that is invariant.
3255 * There are advantages and disadvantages to each method.
3257 * In the first method, we can allocate a new string, do the memory
3258 * copy from the s to t - 1, and then proceed through the rest of the
3259 * string byte-by-byte.
3261 * In the second method, we proceed through the rest of the input
3262 * string just calculating how big the converted string will be. Then
3263 * there are two cases:
3264 * 1) if the string has enough extra space to handle the converted
3265 * value. We go backwards through the string, converting until we
3266 * get to the position we are at now, and then stop. If this
3267 * position is far enough along in the string, this method is
3268 * faster than the other method. If the memory copy were the same
3269 * speed as the byte-by-byte loop, that position would be about
3270 * half-way, as at the half-way mark, parsing to the end and back
3271 * is one complete string's parse, the same amount as starting
3272 * over and going all the way through. Actually, it would be
3273 * somewhat less than half-way, as it's faster to just count bytes
3274 * than to also copy, and we don't have the overhead of allocating
3275 * a new string, changing the scalar to use it, and freeing the
3276 * existing one. But if the memory copy is fast, the break-even
3277 * point is somewhere after half way. The counting loop could be
3278 * sped up by vectorization, etc, to move the break-even point
3279 * further towards the beginning.
3280 * 2) if the string doesn't have enough space to handle the converted
3281 * value. A new string will have to be allocated, and one might
3282 * as well, given that, start from the beginning doing the first
3283 * method. We've spent extra time parsing the string and in
3284 * exchange all we've gotten is that we know precisely how big to
3285 * make the new one. Perl is more optimized for time than space,
3286 * so this case is a loser.
3287 * So what I've decided to do is not use the 2nd method unless it is
3288 * guaranteed that a new string won't have to be allocated, assuming
3289 * the worst case. I also decided not to put any more conditions on it
3290 * than this, for now. It seems likely that, since the worst case is
3291 * twice as big as the unknown portion of the string (plus 1), we won't
3292 * be guaranteed enough space, causing us to go to the first method,
3293 * unless the string is short, or the first variant character is near
3294 * the end of it. In either of these cases, it seems best to use the
3295 * 2nd method. The only circumstance I can think of where this would
3296 * be really slower is if the string had once had much more data in it
3297 * than it does now, but there is still a substantial amount in it */
3300 STRLEN invariant_head = t - s;
3301 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3302 if (SvLEN(sv) < size) {
3304 /* Here, have decided to allocate a new string */
3309 Newx(dst, size, U8);
3311 /* If no known invariants at the beginning of the input string,
3312 * set so starts from there. Otherwise, can use memory copy to
3313 * get up to where we are now, and then start from here */
3315 if (invariant_head <= 0) {
3318 Copy(s, dst, invariant_head, char);
3319 d = dst + invariant_head;
3323 const UV uv = NATIVE8_TO_UNI(*t++);
3324 if (UNI_IS_INVARIANT(uv))
3325 *d++ = (U8)UNI_TO_NATIVE(uv);
3327 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3328 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3332 SvPV_free(sv); /* No longer using pre-existing string */
3333 SvPV_set(sv, (char*)dst);
3334 SvCUR_set(sv, d - dst);
3335 SvLEN_set(sv, size);
3338 /* Here, have decided to get the exact size of the string.
3339 * Currently this happens only when we know that there is
3340 * guaranteed enough space to fit the converted string, so
3341 * don't have to worry about growing. If two_byte_count is 0,
3342 * then t points to the first byte of the string which hasn't
3343 * been examined yet. Otherwise two_byte_count is 1, and t
3344 * points to the first byte in the string that will expand to
3345 * two. Depending on this, start examining at t or 1 after t.
3348 U8 *d = t + two_byte_count;
3351 /* Count up the remaining bytes that expand to two */
3354 const U8 chr = *d++;
3355 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3358 /* The string will expand by just the number of bytes that
3359 * occupy two positions. But we are one afterwards because of
3360 * the increment just above. This is the place to put the
3361 * trailing NUL, and to set the length before we decrement */
3363 d += two_byte_count;
3364 SvCUR_set(sv, d - s);
3368 /* Having decremented d, it points to the position to put the
3369 * very last byte of the expanded string. Go backwards through
3370 * the string, copying and expanding as we go, stopping when we
3371 * get to the part that is invariant the rest of the way down */
3375 const U8 ch = NATIVE8_TO_UNI(*e--);
3376 if (UNI_IS_INVARIANT(ch)) {
3377 *d-- = UNI_TO_NATIVE(ch);
3379 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3380 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3385 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3386 /* Update pos. We do it at the end rather than during
3387 * the upgrade, to avoid slowing down the common case
3388 * (upgrade without pos) */
3389 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3391 I32 pos = mg->mg_len;
3392 if (pos > 0 && (U32)pos > invariant_head) {
3393 U8 *d = (U8*) SvPVX(sv) + invariant_head;
3394 STRLEN n = (U32)pos - invariant_head;
3396 if (UTF8_IS_START(*d))
3401 mg->mg_len = d - (U8*)SvPVX(sv);
3404 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3405 magic_setutf8(sv,mg); /* clear UTF8 cache */
3410 /* Mark as UTF-8 even if no variant - saves scanning loop */
3416 =for apidoc sv_utf8_downgrade
3418 Attempts to convert the PV of an SV from characters to bytes.
3419 If the PV contains a character that cannot fit
3420 in a byte, this conversion will fail;
3421 in this case, either returns false or, if C<fail_ok> is not
3424 This is not as a general purpose Unicode to byte encoding interface:
3425 use the Encode extension for that.
3431 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3435 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3437 if (SvPOKp(sv) && SvUTF8(sv)) {
3441 int mg_flags = SV_GMAGIC;
3444 sv_force_normal_flags(sv, 0);
3446 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3448 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3450 I32 pos = mg->mg_len;
3452 sv_pos_b2u(sv, &pos);
3453 mg_flags = 0; /* sv_pos_b2u does get magic */
3457 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3458 magic_setutf8(sv,mg); /* clear UTF8 cache */
3461 s = (U8 *) SvPV_flags(sv, len, mg_flags);
3463 if (!utf8_to_bytes(s, &len)) {
3468 Perl_croak(aTHX_ "Wide character in %s",
3471 Perl_croak(aTHX_ "Wide character");
3482 =for apidoc sv_utf8_encode
3484 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3485 flag off so that it looks like octets again.
3491 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3493 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3495 if (SvREADONLY(sv)) {
3496 sv_force_normal_flags(sv, 0);
3498 (void) sv_utf8_upgrade(sv);
3503 =for apidoc sv_utf8_decode
3505 If the PV of the SV is an octet sequence in UTF-8
3506 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3507 so that it looks like a character. If the PV contains only single-byte
3508 characters, the C<SvUTF8> flag stays off.
3509 Scans PV for validity and returns false if the PV is invalid UTF-8.
3515 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3517 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3520 const U8 *start, *c;
3523 /* The octets may have got themselves encoded - get them back as
3526 if (!sv_utf8_downgrade(sv, TRUE))
3529 /* it is actually just a matter of turning the utf8 flag on, but
3530 * we want to make sure everything inside is valid utf8 first.
3532 c = start = (const U8 *) SvPVX_const(sv);
3533 if (!is_utf8_string(c, SvCUR(sv)))
3535 e = (const U8 *) SvEND(sv);
3538 if (!UTF8_IS_INVARIANT(ch)) {
3543 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3544 /* adjust pos to the start of a UTF8 char sequence */
3545 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3547 I32 pos = mg->mg_len;
3549 for (c = start + pos; c > start; c--) {
3550 if (UTF8_IS_START(*c))
3553 mg->mg_len = c - start;
3556 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3557 magic_setutf8(sv,mg); /* clear UTF8 cache */
3564 =for apidoc sv_setsv
3566 Copies the contents of the source SV C<ssv> into the destination SV
3567 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3568 function if the source SV needs to be reused. Does not handle 'set' magic.
3569 Loosely speaking, it performs a copy-by-value, obliterating any previous
3570 content of the destination.
3572 You probably want to use one of the assortment of wrappers, such as
3573 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3574 C<SvSetMagicSV_nosteal>.
3576 =for apidoc sv_setsv_flags
3578 Copies the contents of the source SV C<ssv> into the destination SV
3579 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3580 function if the source SV needs to be reused. Does not handle 'set' magic.
3581 Loosely speaking, it performs a copy-by-value, obliterating any previous
3582 content of the destination.
3583 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3584 C<ssv> if appropriate, else not. If the C<flags>
3585 parameter has the C<NOSTEAL> bit set then the
3586 buffers of temps will not be stolen. <sv_setsv>
3587 and C<sv_setsv_nomg> are implemented in terms of this function.
3589 You probably want to use one of the assortment of wrappers, such as
3590 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3591 C<SvSetMagicSV_nosteal>.
3593 This is the primary function for copying scalars, and most other
3594 copy-ish functions and macros use this underneath.
3600 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3602 I32 mro_changes = 0; /* 1 = method, 2 = isa, 3 = recursive isa */
3603 HV *old_stash = NULL;
3605 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3607 if (dtype != SVt_PVGV && !isGV_with_GP(dstr)) {
3608 const char * const name = GvNAME(sstr);
3609 const STRLEN len = GvNAMELEN(sstr);
3611 if (dtype >= SVt_PV) {
3617 SvUPGRADE(dstr, SVt_PVGV);
3618 (void)SvOK_off(dstr);
3619 /* We have to turn this on here, even though we turn it off
3620 below, as GvSTASH will fail an assertion otherwise. */
3621 isGV_with_GP_on(dstr);
3623 GvSTASH(dstr) = GvSTASH(sstr);
3625 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3626 gv_name_set(MUTABLE_GV(dstr), name, len,
3627 GV_ADD | (GvNAMEUTF8(sstr) ? SVf_UTF8 : 0 ));
3628 SvFAKE_on(dstr); /* can coerce to non-glob */
3631 if(GvGP(MUTABLE_GV(sstr))) {
3632 /* If source has method cache entry, clear it */
3634 SvREFCNT_dec(GvCV(sstr));
3635 GvCV_set(sstr, NULL);
3638 /* If source has a real method, then a method is
3641 GvCV((const GV *)sstr) && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3647 /* If dest already had a real method, that's a change as well */
3649 !mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)
3650 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3655 /* We don't need to check the name of the destination if it was not a
3656 glob to begin with. */
3657 if(dtype == SVt_PVGV) {
3658 const char * const name = GvNAME((const GV *)dstr);
3661 /* The stash may have been detached from the symbol table, so
3663 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3667 const STRLEN len = GvNAMELEN(dstr);
3668 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
3669 || (len == 1 && name[0] == ':')) {
3672 /* Set aside the old stash, so we can reset isa caches on
3674 if((old_stash = GvHV(dstr)))
3675 /* Make sure we do not lose it early. */
3676 SvREFCNT_inc_simple_void_NN(
3677 sv_2mortal((SV *)old_stash)
3683 gp_free(MUTABLE_GV(dstr));
3684 isGV_with_GP_off(dstr); /* SvOK_off does not like globs. */
3685 (void)SvOK_off(dstr);
3686 isGV_with_GP_on(dstr);
3687 GvINTRO_off(dstr); /* one-shot flag */
3688 GvGP_set(dstr, gp_ref(GvGP(sstr)));
3689 if (SvTAINTED(sstr))
3691 if (GvIMPORTED(dstr) != GVf_IMPORTED
3692 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3694 GvIMPORTED_on(dstr);
3697 if(mro_changes == 2) {
3698 if (GvAV((const GV *)sstr)) {
3700 SV * const sref = (SV *)GvAV((const GV *)dstr);
3701 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3702 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3703 AV * const ary = newAV();
3704 av_push(ary, mg->mg_obj); /* takes the refcount */
3705 mg->mg_obj = (SV *)ary;
3707 av_push((AV *)mg->mg_obj, SvREFCNT_inc_simple_NN(dstr));
3709 else sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3711 mro_isa_changed_in(GvSTASH(dstr));
3713 else if(mro_changes == 3) {
3714 HV * const stash = GvHV(dstr);
3715 if(old_stash ? (HV *)HvENAME_get(old_stash) : stash)
3721 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3726 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3728 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3730 const int intro = GvINTRO(dstr);
3733 const U32 stype = SvTYPE(sref);
3735 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3738 GvINTRO_off(dstr); /* one-shot flag */
3739 GvLINE(dstr) = CopLINE(PL_curcop);
3740 GvEGV(dstr) = MUTABLE_GV(dstr);
3745 location = (SV **) &(GvGP(dstr)->gp_cv); /* XXX bypassing GvCV_set */
3746 import_flag = GVf_IMPORTED_CV;
3749 location = (SV **) &GvHV(dstr);
3750 import_flag = GVf_IMPORTED_HV;
3753 location = (SV **) &GvAV(dstr);
3754 import_flag = GVf_IMPORTED_AV;
3757 location = (SV **) &GvIOp(dstr);
3760 location = (SV **) &GvFORM(dstr);
3763 location = &GvSV(dstr);
3764 import_flag = GVf_IMPORTED_SV;
3767 if (stype == SVt_PVCV) {
3768 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3769 if (GvCVGEN(dstr)) {
3770 SvREFCNT_dec(GvCV(dstr));
3771 GvCV_set(dstr, NULL);
3772 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3775 SAVEGENERICSV(*location);
3779 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3780 CV* const cv = MUTABLE_CV(*location);
3782 if (!GvCVGEN((const GV *)dstr) &&
3783 (CvROOT(cv) || CvXSUB(cv)) &&
3784 /* redundant check that avoids creating the extra SV
3785 most of the time: */
3786 (CvCONST(cv) || ckWARN(WARN_REDEFINE)))
3788 SV * const new_const_sv =
3789 CvCONST((const CV *)sref)
3790 ? cv_const_sv((const CV *)sref)
3792 report_redefined_cv(
3793 sv_2mortal(Perl_newSVpvf(aTHX_
3796 HvNAME_HEK(GvSTASH((const GV *)dstr))
3798 HEKfARG(GvENAME_HEK(MUTABLE_GV(dstr)))
3801 CvCONST((const CV *)sref) ? &new_const_sv : NULL
3805 cv_ckproto_len_flags(cv, (const GV *)dstr,
3806 SvPOK(sref) ? CvPROTO(sref) : NULL,
3807 SvPOK(sref) ? CvPROTOLEN(sref) : 0,
3808 SvPOK(sref) ? SvUTF8(sref) : 0);
3810 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3811 GvASSUMECV_on(dstr);
3812 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3815 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3816 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3817 GvFLAGS(dstr) |= import_flag;
3819 if (stype == SVt_PVHV) {
3820 const char * const name = GvNAME((GV*)dstr);
3821 const STRLEN len = GvNAMELEN(dstr);
3824 (len > 1 && name[len-2] == ':' && name[len-1] == ':')
3825 || (len == 1 && name[0] == ':')
3827 && (!dref || HvENAME_get(dref))
3830 (HV *)sref, (HV *)dref,
3836 stype == SVt_PVAV && sref != dref
3837 && strEQ(GvNAME((GV*)dstr), "ISA")
3838 /* The stash may have been detached from the symbol table, so
3839 check its name before doing anything. */
3840 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3843 MAGIC * const omg = dref && SvSMAGICAL(dref)
3844 ? mg_find(dref, PERL_MAGIC_isa)
3846 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3847 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3848 AV * const ary = newAV();
3849 av_push(ary, mg->mg_obj); /* takes the refcount */
3850 mg->mg_obj = (SV *)ary;
3853 if (SvTYPE(omg->mg_obj) == SVt_PVAV) {
3854 SV **svp = AvARRAY((AV *)omg->mg_obj);
3855 I32 items = AvFILLp((AV *)omg->mg_obj) + 1;
3859 SvREFCNT_inc_simple_NN(*svp++)
3865 SvREFCNT_inc_simple_NN(omg->mg_obj)
3869 av_push((AV *)mg->mg_obj,SvREFCNT_inc_simple_NN(dstr));
3874 sref, omg ? omg->mg_obj : dstr, PERL_MAGIC_isa, NULL, 0
3876 mg = mg_find(sref, PERL_MAGIC_isa);
3878 /* Since the *ISA assignment could have affected more than
3879 one stash, don't call mro_isa_changed_in directly, but let
3880 magic_clearisa do it for us, as it already has the logic for
3881 dealing with globs vs arrays of globs. */
3883 Perl_magic_clearisa(aTHX_ NULL, mg);
3888 if (SvTAINTED(sstr))
3894 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3901 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3906 if (SvIS_FREED(dstr)) {
3907 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3908 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3910 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3912 sstr = &PL_sv_undef;
3913 if (SvIS_FREED(sstr)) {
3914 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3915 (void*)sstr, (void*)dstr);
3917 stype = SvTYPE(sstr);
3918 dtype = SvTYPE(dstr);
3920 /* There's a lot of redundancy below but we're going for speed here */
3925 if (dtype != SVt_PVGV && dtype != SVt_PVLV) {
3926 (void)SvOK_off(dstr);
3934 sv_upgrade(dstr, SVt_IV);
3938 sv_upgrade(dstr, SVt_PVIV);
3942 goto end_of_first_switch;
3944 (void)SvIOK_only(dstr);
3945 SvIV_set(dstr, SvIVX(sstr));
3948 /* SvTAINTED can only be true if the SV has taint magic, which in
3949 turn means that the SV type is PVMG (or greater). This is the
3950 case statement for SVt_IV, so this cannot be true (whatever gcov
3952 assert(!SvTAINTED(sstr));
3957 if (dtype < SVt_PV && dtype != SVt_IV)
3958 sv_upgrade(dstr, SVt_IV);
3966 sv_upgrade(dstr, SVt_NV);
3970 sv_upgrade(dstr, SVt_PVNV);
3974 goto end_of_first_switch;
3976 SvNV_set(dstr, SvNVX(sstr));
3977 (void)SvNOK_only(dstr);
3978 /* SvTAINTED can only be true if the SV has taint magic, which in
3979 turn means that the SV type is PVMG (or greater). This is the
3980 case statement for SVt_NV, so this cannot be true (whatever gcov
3982 assert(!SvTAINTED(sstr));
3989 sv_upgrade(dstr, SVt_PV);
3992 if (dtype < SVt_PVIV)
3993 sv_upgrade(dstr, SVt_PVIV);
3996 if (dtype < SVt_PVNV)
3997 sv_upgrade(dstr, SVt_PVNV);
4001 const char * const type = sv_reftype(sstr,0);
4003 /* diag_listed_as: Bizarre copy of %s */
4004 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
4006 Perl_croak(aTHX_ "Bizarre copy of %s", type);
4011 if (dtype < SVt_REGEXP)
4012 sv_upgrade(dstr, SVt_REGEXP);
4015 /* case SVt_BIND: */
4019 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
4021 if (SvTYPE(sstr) != stype)
4022 stype = SvTYPE(sstr);
4024 if (isGV_with_GP(sstr) && dtype <= SVt_PVLV) {
4025 glob_assign_glob(dstr, sstr, dtype);
4028 if (stype == SVt_PVLV)
4029 SvUPGRADE(dstr, SVt_PVNV);
4031 SvUPGRADE(dstr, (svtype)stype);
4033 end_of_first_switch:
4035 /* dstr may have been upgraded. */
4036 dtype = SvTYPE(dstr);
4037 sflags = SvFLAGS(sstr);
4039 if (dtype == SVt_PVCV) {
4040 /* Assigning to a subroutine sets the prototype. */
4043 const char *const ptr = SvPV_const(sstr, len);
4045 SvGROW(dstr, len + 1);
4046 Copy(ptr, SvPVX(dstr), len + 1, char);
4047 SvCUR_set(dstr, len);
4049 SvFLAGS(dstr) |= sflags & SVf_UTF8;
4050 CvAUTOLOAD_off(dstr);
4055 else if (dtype == SVt_PVAV || dtype == SVt_PVHV || dtype == SVt_PVFM) {
4056 const char * const type = sv_reftype(dstr,0);
4058 /* diag_listed_as: Cannot copy to %s */
4059 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
4061 Perl_croak(aTHX_ "Cannot copy to %s", type);
4062 } else if (sflags & SVf_ROK) {
4063 if (isGV_with_GP(dstr)
4064 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
4067 if (GvIMPORTED(dstr) != GVf_IMPORTED
4068 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
4070 GvIMPORTED_on(dstr);
4075 glob_assign_glob(dstr, sstr, dtype);
4079 if (dtype >= SVt_PV) {
4080 if (isGV_with_GP(dstr)) {
4081 glob_assign_ref(dstr, sstr);
4084 if (SvPVX_const(dstr)) {
4090 (void)SvOK_off(dstr);
4091 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4092 SvFLAGS(dstr) |= sflags & SVf_ROK;
4093 assert(!(sflags & SVp_NOK));
4094 assert(!(sflags & SVp_IOK));
4095 assert(!(sflags & SVf_NOK));
4096 assert(!(sflags & SVf_IOK));
4098 else if (isGV_with_GP(dstr)) {
4099 if (!(sflags & SVf_OK)) {
4100 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4101 "Undefined value assigned to typeglob");
4104 GV *gv = gv_fetchsv_nomg(sstr, GV_ADD, SVt_PVGV);
4105 if (dstr != (const SV *)gv) {
4106 const char * const name = GvNAME((const GV *)dstr);
4107 const STRLEN len = GvNAMELEN(dstr);
4108 HV *old_stash = NULL;
4109 bool reset_isa = FALSE;
4110 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
4111 || (len == 1 && name[0] == ':')) {
4112 /* Set aside the old stash, so we can reset isa caches
4113 on its subclasses. */
4114 if((old_stash = GvHV(dstr))) {
4115 /* Make sure we do not lose it early. */
4116 SvREFCNT_inc_simple_void_NN(
4117 sv_2mortal((SV *)old_stash)
4124 gp_free(MUTABLE_GV(dstr));
4125 GvGP_set(dstr, gp_ref(GvGP(gv)));
4128 HV * const stash = GvHV(dstr);
4130 old_stash ? (HV *)HvENAME_get(old_stash) : stash
4140 else if (dtype == SVt_REGEXP && stype == SVt_REGEXP) {
4141 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4143 else if (sflags & SVp_POK) {
4147 * Check to see if we can just swipe the string. If so, it's a
4148 * possible small lose on short strings, but a big win on long ones.
4149 * It might even be a win on short strings if SvPVX_const(dstr)
4150 * has to be allocated and SvPVX_const(sstr) has to be freed.
4151 * Likewise if we can set up COW rather than doing an actual copy, we
4152 * drop to the else clause, as the swipe code and the COW setup code
4153 * have much in common.
4156 /* Whichever path we take through the next code, we want this true,
4157 and doing it now facilitates the COW check. */
4158 (void)SvPOK_only(dstr);
4161 /* If we're already COW then this clause is not true, and if COW
4162 is allowed then we drop down to the else and make dest COW
4163 with us. If caller hasn't said that we're allowed to COW
4164 shared hash keys then we don't do the COW setup, even if the
4165 source scalar is a shared hash key scalar. */
4166 (((flags & SV_COW_SHARED_HASH_KEYS)
4167 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
4168 : 1 /* If making a COW copy is forbidden then the behaviour we
4169 desire is as if the source SV isn't actually already
4170 COW, even if it is. So we act as if the source flags
4171 are not COW, rather than actually testing them. */
4173 #ifndef PERL_OLD_COPY_ON_WRITE
4174 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
4175 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
4176 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
4177 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
4178 but in turn, it's somewhat dead code, never expected to go
4179 live, but more kept as a placeholder on how to do it better
4180 in a newer implementation. */
4181 /* If we are COW and dstr is a suitable target then we drop down
4182 into the else and make dest a COW of us. */
4183 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
4188 (sflags & SVs_TEMP) && /* slated for free anyway? */
4189 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4190 (!(flags & SV_NOSTEAL)) &&
4191 /* and we're allowed to steal temps */
4192 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4193 SvLEN(sstr)) /* and really is a string */
4194 #ifdef PERL_OLD_COPY_ON_WRITE
4195 && ((flags & SV_COW_SHARED_HASH_KEYS)
4196 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4197 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4198 && SvTYPE(sstr) >= SVt_PVIV))
4202 /* Failed the swipe test, and it's not a shared hash key either.
4203 Have to copy the string. */
4204 STRLEN len = SvCUR(sstr);
4205 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
4206 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
4207 SvCUR_set(dstr, len);
4208 *SvEND(dstr) = '\0';
4210 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4212 /* Either it's a shared hash key, or it's suitable for
4213 copy-on-write or we can swipe the string. */
4215 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4219 #ifdef PERL_OLD_COPY_ON_WRITE
4221 if ((sflags & (SVf_FAKE | SVf_READONLY))
4222 != (SVf_FAKE | SVf_READONLY)) {
4223 SvREADONLY_on(sstr);
4225 /* Make the source SV into a loop of 1.
4226 (about to become 2) */
4227 SV_COW_NEXT_SV_SET(sstr, sstr);
4231 /* Initial code is common. */
4232 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4237 /* making another shared SV. */
4238 STRLEN cur = SvCUR(sstr);
4239 STRLEN len = SvLEN(sstr);
4240 #ifdef PERL_OLD_COPY_ON_WRITE
4242 assert (SvTYPE(dstr) >= SVt_PVIV);
4243 /* SvIsCOW_normal */
4244 /* splice us in between source and next-after-source. */
4245 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4246 SV_COW_NEXT_SV_SET(sstr, dstr);
4247 SvPV_set(dstr, SvPVX_mutable(sstr));
4251 /* SvIsCOW_shared_hash */
4252 DEBUG_C(PerlIO_printf(Perl_debug_log,
4253 "Copy on write: Sharing hash\n"));
4255 assert (SvTYPE(dstr) >= SVt_PV);
4257 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4259 SvLEN_set(dstr, len);
4260 SvCUR_set(dstr, cur);
4261 SvREADONLY_on(dstr);
4265 { /* Passes the swipe test. */
4266 SvPV_set(dstr, SvPVX_mutable(sstr));
4267 SvLEN_set(dstr, SvLEN(sstr));
4268 SvCUR_set(dstr, SvCUR(sstr));
4271 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4272 SvPV_set(sstr, NULL);
4278 if (sflags & SVp_NOK) {
4279 SvNV_set(dstr, SvNVX(sstr));
4281 if (sflags & SVp_IOK) {
4282 SvIV_set(dstr, SvIVX(sstr));
4283 /* Must do this otherwise some other overloaded use of 0x80000000
4284 gets confused. I guess SVpbm_VALID */
4285 if (sflags & SVf_IVisUV)
4288 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4290 const MAGIC * const smg = SvVSTRING_mg(sstr);
4292 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4293 smg->mg_ptr, smg->mg_len);
4294 SvRMAGICAL_on(dstr);
4298 else if (sflags & (SVp_IOK|SVp_NOK)) {
4299 (void)SvOK_off(dstr);
4300 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4301 if (sflags & SVp_IOK) {
4302 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4303 SvIV_set(dstr, SvIVX(sstr));
4305 if (sflags & SVp_NOK) {
4306 SvNV_set(dstr, SvNVX(sstr));
4310 if (isGV_with_GP(sstr)) {
4311 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4314 (void)SvOK_off(dstr);
4316 if (SvTAINTED(sstr))
4321 =for apidoc sv_setsv_mg
4323 Like C<sv_setsv>, but also handles 'set' magic.
4329 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
4331 PERL_ARGS_ASSERT_SV_SETSV_MG;
4333 sv_setsv(dstr,sstr);
4337 #ifdef PERL_OLD_COPY_ON_WRITE
4339 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4341 STRLEN cur = SvCUR(sstr);
4342 STRLEN len = SvLEN(sstr);
4345 PERL_ARGS_ASSERT_SV_SETSV_COW;
4348 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4349 (void*)sstr, (void*)dstr);
4356 if (SvTHINKFIRST(dstr))
4357 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4358 else if (SvPVX_const(dstr))
4359 Safefree(SvPVX_mutable(dstr));
4363 SvUPGRADE(dstr, SVt_PVIV);
4365 assert (SvPOK(sstr));
4366 assert (SvPOKp(sstr));
4367 assert (!SvIOK(sstr));
4368 assert (!SvIOKp(sstr));
4369 assert (!SvNOK(sstr));
4370 assert (!SvNOKp(sstr));
4372 if (SvIsCOW(sstr)) {
4374 if (SvLEN(sstr) == 0) {
4375 /* source is a COW shared hash key. */
4376 DEBUG_C(PerlIO_printf(Perl_debug_log,
4377 "Fast copy on write: Sharing hash\n"));
4378 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4381 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4383 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4384 SvUPGRADE(sstr, SVt_PVIV);
4385 SvREADONLY_on(sstr);
4387 DEBUG_C(PerlIO_printf(Perl_debug_log,
4388 "Fast copy on write: Converting sstr to COW\n"));
4389 SV_COW_NEXT_SV_SET(dstr, sstr);
4391 SV_COW_NEXT_SV_SET(sstr, dstr);
4392 new_pv = SvPVX_mutable(sstr);
4395 SvPV_set(dstr, new_pv);
4396 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4399 SvLEN_set(dstr, len);
4400 SvCUR_set(dstr, cur);
4409 =for apidoc sv_setpvn
4411 Copies a string into an SV. The C<len> parameter indicates the number of
4412 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4413 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4419 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4424 PERL_ARGS_ASSERT_SV_SETPVN;
4426 SV_CHECK_THINKFIRST_COW_DROP(sv);
4432 /* len is STRLEN which is unsigned, need to copy to signed */
4435 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen %"
4438 SvUPGRADE(sv, SVt_PV);
4440 dptr = SvGROW(sv, len + 1);
4441 Move(ptr,dptr,len,char);
4444 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4446 if (SvTYPE(sv) == SVt_PVCV) CvAUTOLOAD_off(sv);
4450 =for apidoc sv_setpvn_mg
4452 Like C<sv_setpvn>, but also handles 'set' magic.
4458 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4460 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4462 sv_setpvn(sv,ptr,len);
4467 =for apidoc sv_setpv
4469 Copies a string into an SV. The string must be null-terminated. Does not
4470 handle 'set' magic. See C<sv_setpv_mg>.
4476 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4481 PERL_ARGS_ASSERT_SV_SETPV;
4483 SV_CHECK_THINKFIRST_COW_DROP(sv);
4489 SvUPGRADE(sv, SVt_PV);
4491 SvGROW(sv, len + 1);
4492 Move(ptr,SvPVX(sv),len+1,char);
4494 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4496 if (SvTYPE(sv) == SVt_PVCV) CvAUTOLOAD_off(sv);
4500 =for apidoc sv_setpv_mg
4502 Like C<sv_setpv>, but also handles 'set' magic.
4508 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4510 PERL_ARGS_ASSERT_SV_SETPV_MG;
4517 Perl_sv_sethek(pTHX_ register SV *const sv, const HEK *const hek)
4521 PERL_ARGS_ASSERT_SV_SETHEK;
4527 if (HEK_LEN(hek) == HEf_SVKEY) {
4528 sv_setsv(sv, *(SV**)HEK_KEY(hek));
4531 const int flags = HEK_FLAGS(hek);
4532 if (flags & HVhek_WASUTF8) {
4533 STRLEN utf8_len = HEK_LEN(hek);
4534 char *as_utf8 = (char *)bytes_to_utf8((U8*)HEK_KEY(hek), &utf8_len);
4535 sv_usepvn_flags(sv, as_utf8, utf8_len, SV_HAS_TRAILING_NUL);
4538 } else if (flags & (HVhek_REHASH|HVhek_UNSHARED)) {
4539 sv_setpvn(sv, HEK_KEY(hek), HEK_LEN(hek));
4542 else SvUTF8_off(sv);
4546 SV_CHECK_THINKFIRST_COW_DROP(sv);
4547 SvUPGRADE(sv, SVt_PV);
4548 Safefree(SvPVX(sv));
4549 SvPV_set(sv,(char *)HEK_KEY(share_hek_hek(hek)));
4550 SvCUR_set(sv, HEK_LEN(hek));
4557 else SvUTF8_off(sv);
4565 =for apidoc sv_usepvn_flags
4567 Tells an SV to use C<ptr> to find its string value. Normally the
4568 string is stored inside the SV but sv_usepvn allows the SV to use an
4569 outside string. The C<ptr> should point to memory that was allocated
4570 by C<malloc>. It must be the start of a mallocked block
4571 of memory, and not a pointer to the middle of it. The
4572 string length, C<len>, must be supplied. By default
4573 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4574 so that pointer should not be freed or used by the programmer after
4575 giving it to sv_usepvn, and neither should any pointers from "behind"
4576 that pointer (e.g. ptr + 1) be used.
4578 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4579 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4580 will be skipped (i.e. the buffer is actually at least 1 byte longer than
4581 C<len>, and already meets the requirements for storing in C<SvPVX>).
4587 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4592 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4594 SV_CHECK_THINKFIRST_COW_DROP(sv);
4595 SvUPGRADE(sv, SVt_PV);
4598 if (flags & SV_SMAGIC)
4602 if (SvPVX_const(sv))
4606 if (flags & SV_HAS_TRAILING_NUL)
4607 assert(ptr[len] == '\0');
4610 allocate = (flags & SV_HAS_TRAILING_NUL)
4612 #ifdef Perl_safesysmalloc_size
4615 PERL_STRLEN_ROUNDUP(len + 1);
4617 if (flags & SV_HAS_TRAILING_NUL) {
4618 /* It's long enough - do nothing.
4619 Specifically Perl_newCONSTSUB is relying on this. */
4622 /* Force a move to shake out bugs in callers. */
4623 char *new_ptr = (char*)safemalloc(allocate);
4624 Copy(ptr, new_ptr, len, char);
4625 PoisonFree(ptr,len,char);
4629 ptr = (char*) saferealloc (ptr, allocate);
4632 #ifdef Perl_safesysmalloc_size
4633 SvLEN_set(sv, Perl_safesysmalloc_size(ptr));
4635 SvLEN_set(sv, allocate);
4639 if (!(flags & SV_HAS_TRAILING_NUL)) {
4642 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4644 if (flags & SV_SMAGIC)
4648 #ifdef PERL_OLD_COPY_ON_WRITE
4649 /* Need to do this *after* making the SV normal, as we need the buffer
4650 pointer to remain valid until after we've copied it. If we let go too early,
4651 another thread could invalidate it by unsharing last of the same hash key
4652 (which it can do by means other than releasing copy-on-write Svs)
4653 or by changing the other copy-on-write SVs in the loop. */
4655 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
4657 PERL_ARGS_ASSERT_SV_RELEASE_COW;
4659 { /* this SV was SvIsCOW_normal(sv) */
4660 /* we need to find the SV pointing to us. */
4661 SV *current = SV_COW_NEXT_SV(after);
4663 if (current == sv) {
4664 /* The SV we point to points back to us (there were only two of us
4666 Hence other SV is no longer copy on write either. */
4668 SvREADONLY_off(after);