5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
88 #include "dquote_static.c"
95 # if defined(BUGGY_MSC6)
96 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
97 # pragma optimize("a",off)
98 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
99 # pragma optimize("w",on )
100 # endif /* BUGGY_MSC6 */
104 #define STATIC static
107 typedef struct RExC_state_t {
108 U32 flags; /* are we folding, multilining? */
109 char *precomp; /* uncompiled string. */
110 REGEXP *rx_sv; /* The SV that is the regexp. */
111 regexp *rx; /* perl core regexp structure */
112 regexp_internal *rxi; /* internal data for regexp object pprivate field */
113 char *start; /* Start of input for compile */
114 char *end; /* End of input for compile */
115 char *parse; /* Input-scan pointer. */
116 I32 whilem_seen; /* number of WHILEM in this expr */
117 regnode *emit_start; /* Start of emitted-code area */
118 regnode *emit_bound; /* First regnode outside of the allocated space */
119 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
120 I32 naughty; /* How bad is this pattern? */
121 I32 sawback; /* Did we see \1, ...? */
123 I32 size; /* Code size. */
124 I32 npar; /* Capture buffer count, (OPEN). */
125 I32 cpar; /* Capture buffer count, (CLOSE). */
126 I32 nestroot; /* root parens we are in - used by accept */
130 regnode **open_parens; /* pointers to open parens */
131 regnode **close_parens; /* pointers to close parens */
132 regnode *opend; /* END node in program */
133 I32 utf8; /* whether the pattern is utf8 or not */
134 I32 orig_utf8; /* whether the pattern was originally in utf8 */
135 /* XXX use this for future optimisation of case
136 * where pattern must be upgraded to utf8. */
137 I32 uni_semantics; /* If a d charset modifier should use unicode
138 rules, even if the pattern is not in
140 HV *paren_names; /* Paren names */
142 regnode **recurse; /* Recurse regops */
143 I32 recurse_count; /* Number of recurse regops */
146 I32 override_recoding;
148 char *starttry; /* -Dr: where regtry was called. */
149 #define RExC_starttry (pRExC_state->starttry)
152 const char *lastparse;
154 AV *paren_name_list; /* idx -> name */
155 #define RExC_lastparse (pRExC_state->lastparse)
156 #define RExC_lastnum (pRExC_state->lastnum)
157 #define RExC_paren_name_list (pRExC_state->paren_name_list)
161 #define RExC_flags (pRExC_state->flags)
162 #define RExC_precomp (pRExC_state->precomp)
163 #define RExC_rx_sv (pRExC_state->rx_sv)
164 #define RExC_rx (pRExC_state->rx)
165 #define RExC_rxi (pRExC_state->rxi)
166 #define RExC_start (pRExC_state->start)
167 #define RExC_end (pRExC_state->end)
168 #define RExC_parse (pRExC_state->parse)
169 #define RExC_whilem_seen (pRExC_state->whilem_seen)
170 #ifdef RE_TRACK_PATTERN_OFFSETS
171 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
173 #define RExC_emit (pRExC_state->emit)
174 #define RExC_emit_start (pRExC_state->emit_start)
175 #define RExC_emit_bound (pRExC_state->emit_bound)
176 #define RExC_naughty (pRExC_state->naughty)
177 #define RExC_sawback (pRExC_state->sawback)
178 #define RExC_seen (pRExC_state->seen)
179 #define RExC_size (pRExC_state->size)
180 #define RExC_npar (pRExC_state->npar)
181 #define RExC_nestroot (pRExC_state->nestroot)
182 #define RExC_extralen (pRExC_state->extralen)
183 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
184 #define RExC_seen_evals (pRExC_state->seen_evals)
185 #define RExC_utf8 (pRExC_state->utf8)
186 #define RExC_uni_semantics (pRExC_state->uni_semantics)
187 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
188 #define RExC_open_parens (pRExC_state->open_parens)
189 #define RExC_close_parens (pRExC_state->close_parens)
190 #define RExC_opend (pRExC_state->opend)
191 #define RExC_paren_names (pRExC_state->paren_names)
192 #define RExC_recurse (pRExC_state->recurse)
193 #define RExC_recurse_count (pRExC_state->recurse_count)
194 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
195 #define RExC_contains_locale (pRExC_state->contains_locale)
196 #define RExC_override_recoding (pRExC_state->override_recoding)
199 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
200 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
201 ((*s) == '{' && regcurly(s)))
204 #undef SPSTART /* dratted cpp namespace... */
207 * Flags to be passed up and down.
209 #define WORST 0 /* Worst case. */
210 #define HASWIDTH 0x01 /* Known to match non-null strings. */
212 /* Simple enough to be STAR/PLUS operand, in an EXACT node must be a single
213 * character, and if utf8, must be invariant. Note that this is not the same thing as REGNODE_SIMPLE */
215 #define SPSTART 0x04 /* Starts with * or +. */
216 #define TRYAGAIN 0x08 /* Weeded out a declaration. */
217 #define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
219 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
221 /* whether trie related optimizations are enabled */
222 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
223 #define TRIE_STUDY_OPT
224 #define FULL_TRIE_STUDY
230 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
231 #define PBITVAL(paren) (1 << ((paren) & 7))
232 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
233 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
234 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
236 /* If not already in utf8, do a longjmp back to the beginning */
237 #define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
238 #define REQUIRE_UTF8 STMT_START { \
239 if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
242 /* About scan_data_t.
244 During optimisation we recurse through the regexp program performing
245 various inplace (keyhole style) optimisations. In addition study_chunk
246 and scan_commit populate this data structure with information about
247 what strings MUST appear in the pattern. We look for the longest
248 string that must appear at a fixed location, and we look for the
249 longest string that may appear at a floating location. So for instance
254 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
255 strings (because they follow a .* construct). study_chunk will identify
256 both FOO and BAR as being the longest fixed and floating strings respectively.
258 The strings can be composites, for instance
262 will result in a composite fixed substring 'foo'.
264 For each string some basic information is maintained:
266 - offset or min_offset
267 This is the position the string must appear at, or not before.
268 It also implicitly (when combined with minlenp) tells us how many
269 characters must match before the string we are searching for.
270 Likewise when combined with minlenp and the length of the string it
271 tells us how many characters must appear after the string we have
275 Only used for floating strings. This is the rightmost point that
276 the string can appear at. If set to I32 max it indicates that the
277 string can occur infinitely far to the right.
280 A pointer to the minimum length of the pattern that the string
281 was found inside. This is important as in the case of positive
282 lookahead or positive lookbehind we can have multiple patterns
287 The minimum length of the pattern overall is 3, the minimum length
288 of the lookahead part is 3, but the minimum length of the part that
289 will actually match is 1. So 'FOO's minimum length is 3, but the
290 minimum length for the F is 1. This is important as the minimum length
291 is used to determine offsets in front of and behind the string being
292 looked for. Since strings can be composites this is the length of the
293 pattern at the time it was committed with a scan_commit. Note that
294 the length is calculated by study_chunk, so that the minimum lengths
295 are not known until the full pattern has been compiled, thus the
296 pointer to the value.
300 In the case of lookbehind the string being searched for can be
301 offset past the start point of the final matching string.
302 If this value was just blithely removed from the min_offset it would
303 invalidate some of the calculations for how many chars must match
304 before or after (as they are derived from min_offset and minlen and
305 the length of the string being searched for).
306 When the final pattern is compiled and the data is moved from the
307 scan_data_t structure into the regexp structure the information
308 about lookbehind is factored in, with the information that would
309 have been lost precalculated in the end_shift field for the
312 The fields pos_min and pos_delta are used to store the minimum offset
313 and the delta to the maximum offset at the current point in the pattern.
317 typedef struct scan_data_t {
318 /*I32 len_min; unused */
319 /*I32 len_delta; unused */
323 I32 last_end; /* min value, <0 unless valid. */
326 SV **longest; /* Either &l_fixed, or &l_float. */
327 SV *longest_fixed; /* longest fixed string found in pattern */
328 I32 offset_fixed; /* offset where it starts */
329 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
330 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
331 SV *longest_float; /* longest floating string found in pattern */
332 I32 offset_float_min; /* earliest point in string it can appear */
333 I32 offset_float_max; /* latest point in string it can appear */
334 I32 *minlen_float; /* pointer to the minlen relevant to the string */
335 I32 lookbehind_float; /* is the position of the string modified by LB */
339 struct regnode_charclass_class *start_class;
343 * Forward declarations for pregcomp()'s friends.
346 static const scan_data_t zero_scan_data =
347 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
349 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
350 #define SF_BEFORE_SEOL 0x0001
351 #define SF_BEFORE_MEOL 0x0002
352 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
353 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
356 # define SF_FIX_SHIFT_EOL (0+2)
357 # define SF_FL_SHIFT_EOL (0+4)
359 # define SF_FIX_SHIFT_EOL (+2)
360 # define SF_FL_SHIFT_EOL (+4)
363 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
364 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
366 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
367 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
368 #define SF_IS_INF 0x0040
369 #define SF_HAS_PAR 0x0080
370 #define SF_IN_PAR 0x0100
371 #define SF_HAS_EVAL 0x0200
372 #define SCF_DO_SUBSTR 0x0400
373 #define SCF_DO_STCLASS_AND 0x0800
374 #define SCF_DO_STCLASS_OR 0x1000
375 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
376 #define SCF_WHILEM_VISITED_POS 0x2000
378 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
379 #define SCF_SEEN_ACCEPT 0x8000
381 #define UTF cBOOL(RExC_utf8)
382 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
383 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
384 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
385 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
386 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
387 #define MORE_ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
388 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
390 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
392 #define OOB_UNICODE 12345678
393 #define OOB_NAMEDCLASS -1
395 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
396 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
399 /* length of regex to show in messages that don't mark a position within */
400 #define RegexLengthToShowInErrorMessages 127
403 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
404 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
405 * op/pragma/warn/regcomp.
407 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
408 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
410 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
413 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
414 * arg. Show regex, up to a maximum length. If it's too long, chop and add
417 #define _FAIL(code) STMT_START { \
418 const char *ellipses = ""; \
419 IV len = RExC_end - RExC_precomp; \
422 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
423 if (len > RegexLengthToShowInErrorMessages) { \
424 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
425 len = RegexLengthToShowInErrorMessages - 10; \
431 #define FAIL(msg) _FAIL( \
432 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
433 msg, (int)len, RExC_precomp, ellipses))
435 #define FAIL2(msg,arg) _FAIL( \
436 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
437 arg, (int)len, RExC_precomp, ellipses))
440 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
442 #define Simple_vFAIL(m) STMT_START { \
443 const IV offset = RExC_parse - RExC_precomp; \
444 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
445 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
449 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
451 #define vFAIL(m) STMT_START { \
453 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
458 * Like Simple_vFAIL(), but accepts two arguments.
460 #define Simple_vFAIL2(m,a1) STMT_START { \
461 const IV offset = RExC_parse - RExC_precomp; \
462 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
463 (int)offset, RExC_precomp, RExC_precomp + offset); \
467 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
469 #define vFAIL2(m,a1) STMT_START { \
471 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
472 Simple_vFAIL2(m, a1); \
477 * Like Simple_vFAIL(), but accepts three arguments.
479 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
480 const IV offset = RExC_parse - RExC_precomp; \
481 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
482 (int)offset, RExC_precomp, RExC_precomp + offset); \
486 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
488 #define vFAIL3(m,a1,a2) STMT_START { \
490 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
491 Simple_vFAIL3(m, a1, a2); \
495 * Like Simple_vFAIL(), but accepts four arguments.
497 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
498 const IV offset = RExC_parse - RExC_precomp; \
499 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
500 (int)offset, RExC_precomp, RExC_precomp + offset); \
503 #define ckWARNreg(loc,m) STMT_START { \
504 const IV offset = loc - RExC_precomp; \
505 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
506 (int)offset, RExC_precomp, RExC_precomp + offset); \
509 #define ckWARNregdep(loc,m) STMT_START { \
510 const IV offset = loc - RExC_precomp; \
511 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
513 (int)offset, RExC_precomp, RExC_precomp + offset); \
516 #define ckWARN2regdep(loc,m, a1) STMT_START { \
517 const IV offset = loc - RExC_precomp; \
518 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
520 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
523 #define ckWARN2reg(loc, m, a1) STMT_START { \
524 const IV offset = loc - RExC_precomp; \
525 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
526 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
529 #define vWARN3(loc, m, a1, a2) STMT_START { \
530 const IV offset = loc - RExC_precomp; \
531 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
532 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
535 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
536 const IV offset = loc - RExC_precomp; \
537 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
538 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
541 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
542 const IV offset = loc - RExC_precomp; \
543 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
544 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
547 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
548 const IV offset = loc - RExC_precomp; \
549 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
550 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
553 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
554 const IV offset = loc - RExC_precomp; \
555 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
556 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
560 /* Allow for side effects in s */
561 #define REGC(c,s) STMT_START { \
562 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
565 /* Macros for recording node offsets. 20001227 mjd@plover.com
566 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
567 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
568 * Element 0 holds the number n.
569 * Position is 1 indexed.
571 #ifndef RE_TRACK_PATTERN_OFFSETS
572 #define Set_Node_Offset_To_R(node,byte)
573 #define Set_Node_Offset(node,byte)
574 #define Set_Cur_Node_Offset
575 #define Set_Node_Length_To_R(node,len)
576 #define Set_Node_Length(node,len)
577 #define Set_Node_Cur_Length(node)
578 #define Node_Offset(n)
579 #define Node_Length(n)
580 #define Set_Node_Offset_Length(node,offset,len)
581 #define ProgLen(ri) ri->u.proglen
582 #define SetProgLen(ri,x) ri->u.proglen = x
584 #define ProgLen(ri) ri->u.offsets[0]
585 #define SetProgLen(ri,x) ri->u.offsets[0] = x
586 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
588 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
589 __LINE__, (int)(node), (int)(byte))); \
591 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
593 RExC_offsets[2*(node)-1] = (byte); \
598 #define Set_Node_Offset(node,byte) \
599 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
600 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
602 #define Set_Node_Length_To_R(node,len) STMT_START { \
604 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
605 __LINE__, (int)(node), (int)(len))); \
607 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
609 RExC_offsets[2*(node)] = (len); \
614 #define Set_Node_Length(node,len) \
615 Set_Node_Length_To_R((node)-RExC_emit_start, len)
616 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
617 #define Set_Node_Cur_Length(node) \
618 Set_Node_Length(node, RExC_parse - parse_start)
620 /* Get offsets and lengths */
621 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
622 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
624 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
625 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
626 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
630 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
631 #define EXPERIMENTAL_INPLACESCAN
632 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
634 #define DEBUG_STUDYDATA(str,data,depth) \
635 DEBUG_OPTIMISE_MORE_r(if(data){ \
636 PerlIO_printf(Perl_debug_log, \
637 "%*s" str "Pos:%"IVdf"/%"IVdf \
638 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
639 (int)(depth)*2, "", \
640 (IV)((data)->pos_min), \
641 (IV)((data)->pos_delta), \
642 (UV)((data)->flags), \
643 (IV)((data)->whilem_c), \
644 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
645 is_inf ? "INF " : "" \
647 if ((data)->last_found) \
648 PerlIO_printf(Perl_debug_log, \
649 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
650 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
651 SvPVX_const((data)->last_found), \
652 (IV)((data)->last_end), \
653 (IV)((data)->last_start_min), \
654 (IV)((data)->last_start_max), \
655 ((data)->longest && \
656 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
657 SvPVX_const((data)->longest_fixed), \
658 (IV)((data)->offset_fixed), \
659 ((data)->longest && \
660 (data)->longest==&((data)->longest_float)) ? "*" : "", \
661 SvPVX_const((data)->longest_float), \
662 (IV)((data)->offset_float_min), \
663 (IV)((data)->offset_float_max) \
665 PerlIO_printf(Perl_debug_log,"\n"); \
668 static void clear_re(pTHX_ void *r);
670 /* Mark that we cannot extend a found fixed substring at this point.
671 Update the longest found anchored substring and the longest found
672 floating substrings if needed. */
675 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
677 const STRLEN l = CHR_SVLEN(data->last_found);
678 const STRLEN old_l = CHR_SVLEN(*data->longest);
679 GET_RE_DEBUG_FLAGS_DECL;
681 PERL_ARGS_ASSERT_SCAN_COMMIT;
683 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
684 SvSetMagicSV(*data->longest, data->last_found);
685 if (*data->longest == data->longest_fixed) {
686 data->offset_fixed = l ? data->last_start_min : data->pos_min;
687 if (data->flags & SF_BEFORE_EOL)
689 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
691 data->flags &= ~SF_FIX_BEFORE_EOL;
692 data->minlen_fixed=minlenp;
693 data->lookbehind_fixed=0;
695 else { /* *data->longest == data->longest_float */
696 data->offset_float_min = l ? data->last_start_min : data->pos_min;
697 data->offset_float_max = (l
698 ? data->last_start_max
699 : data->pos_min + data->pos_delta);
700 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
701 data->offset_float_max = I32_MAX;
702 if (data->flags & SF_BEFORE_EOL)
704 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
706 data->flags &= ~SF_FL_BEFORE_EOL;
707 data->minlen_float=minlenp;
708 data->lookbehind_float=0;
711 SvCUR_set(data->last_found, 0);
713 SV * const sv = data->last_found;
714 if (SvUTF8(sv) && SvMAGICAL(sv)) {
715 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
721 data->flags &= ~SF_BEFORE_EOL;
722 DEBUG_STUDYDATA("commit: ",data,0);
725 /* Can match anything (initialization) */
727 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
729 PERL_ARGS_ASSERT_CL_ANYTHING;
731 ANYOF_BITMAP_SETALL(cl);
732 cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
733 |ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
735 /* If any portion of the regex is to operate under locale rules,
736 * initialization includes it. The reason this isn't done for all regexes
737 * is that the optimizer was written under the assumption that locale was
738 * all-or-nothing. Given the complexity and lack of documentation in the
739 * optimizer, and that there are inadequate test cases for locale, so many
740 * parts of it may not work properly, it is safest to avoid locale unless
742 if (RExC_contains_locale) {
743 ANYOF_CLASS_SETALL(cl); /* /l uses class */
744 cl->flags |= ANYOF_LOCALE;
747 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
751 /* Can match anything (initialization) */
753 S_cl_is_anything(const struct regnode_charclass_class *cl)
757 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
759 for (value = 0; value <= ANYOF_MAX; value += 2)
760 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
762 if (!(cl->flags & ANYOF_UNICODE_ALL))
764 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
769 /* Can match anything (initialization) */
771 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
773 PERL_ARGS_ASSERT_CL_INIT;
775 Zero(cl, 1, struct regnode_charclass_class);
777 cl_anything(pRExC_state, cl);
778 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
781 /* These two functions currently do the exact same thing */
782 #define cl_init_zero S_cl_init
784 /* 'AND' a given class with another one. Can create false positives. 'cl'
785 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
786 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
788 S_cl_and(struct regnode_charclass_class *cl,
789 const struct regnode_charclass_class *and_with)
791 PERL_ARGS_ASSERT_CL_AND;
793 assert(and_with->type == ANYOF);
795 /* I (khw) am not sure all these restrictions are necessary XXX */
796 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
797 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
798 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
799 && !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
800 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
803 if (and_with->flags & ANYOF_INVERT)
804 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
805 cl->bitmap[i] &= ~and_with->bitmap[i];
807 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
808 cl->bitmap[i] &= and_with->bitmap[i];
809 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
811 if (and_with->flags & ANYOF_INVERT) {
813 /* Here, the and'ed node is inverted. Get the AND of the flags that
814 * aren't affected by the inversion. Those that are affected are
815 * handled individually below */
816 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
817 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
818 cl->flags |= affected_flags;
820 /* We currently don't know how to deal with things that aren't in the
821 * bitmap, but we know that the intersection is no greater than what
822 * is already in cl, so let there be false positives that get sorted
823 * out after the synthetic start class succeeds, and the node is
824 * matched for real. */
826 /* The inversion of these two flags indicate that the resulting
827 * intersection doesn't have them */
828 if (and_with->flags & ANYOF_UNICODE_ALL) {
829 cl->flags &= ~ANYOF_UNICODE_ALL;
831 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
832 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
835 else { /* and'd node is not inverted */
836 U8 outside_bitmap_but_not_utf8; /* Temp variable */
838 if (! ANYOF_NONBITMAP(and_with)) {
840 /* Here 'and_with' doesn't match anything outside the bitmap
841 * (except possibly ANYOF_UNICODE_ALL), which means the
842 * intersection can't either, except for ANYOF_UNICODE_ALL, in
843 * which case we don't know what the intersection is, but it's no
844 * greater than what cl already has, so can just leave it alone,
845 * with possible false positives */
846 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
847 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
848 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
851 else if (! ANYOF_NONBITMAP(cl)) {
853 /* Here, 'and_with' does match something outside the bitmap, and cl
854 * doesn't have a list of things to match outside the bitmap. If
855 * cl can match all code points above 255, the intersection will
856 * be those above-255 code points that 'and_with' matches. If cl
857 * can't match all Unicode code points, it means that it can't
858 * match anything outside the bitmap (since the 'if' that got us
859 * into this block tested for that), so we leave the bitmap empty.
861 if (cl->flags & ANYOF_UNICODE_ALL) {
862 ARG_SET(cl, ARG(and_with));
864 /* and_with's ARG may match things that don't require UTF8.
865 * And now cl's will too, in spite of this being an 'and'. See
866 * the comments below about the kludge */
867 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
871 /* Here, both 'and_with' and cl match something outside the
872 * bitmap. Currently we do not do the intersection, so just match
873 * whatever cl had at the beginning. */
877 /* Take the intersection of the two sets of flags. However, the
878 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
879 * kludge around the fact that this flag is not treated like the others
880 * which are initialized in cl_anything(). The way the optimizer works
881 * is that the synthetic start class (SSC) is initialized to match
882 * anything, and then the first time a real node is encountered, its
883 * values are AND'd with the SSC's with the result being the values of
884 * the real node. However, there are paths through the optimizer where
885 * the AND never gets called, so those initialized bits are set
886 * inappropriately, which is not usually a big deal, as they just cause
887 * false positives in the SSC, which will just mean a probably
888 * imperceptible slow down in execution. However this bit has a
889 * higher false positive consequence in that it can cause utf8.pm,
890 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
891 * bigger slowdown and also causes significant extra memory to be used.
892 * In order to prevent this, the code now takes a different tack. The
893 * bit isn't set unless some part of the regular expression needs it,
894 * but once set it won't get cleared. This means that these extra
895 * modules won't get loaded unless there was some path through the
896 * pattern that would have required them anyway, and so any false
897 * positives that occur by not ANDing them out when they could be
898 * aren't as severe as they would be if we treated this bit like all
900 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
901 & ANYOF_NONBITMAP_NON_UTF8;
902 cl->flags &= and_with->flags;
903 cl->flags |= outside_bitmap_but_not_utf8;
907 /* 'OR' a given class with another one. Can create false positives. 'cl'
908 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
909 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
911 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
913 PERL_ARGS_ASSERT_CL_OR;
915 if (or_with->flags & ANYOF_INVERT) {
917 /* Here, the or'd node is to be inverted. This means we take the
918 * complement of everything not in the bitmap, but currently we don't
919 * know what that is, so give up and match anything */
920 if (ANYOF_NONBITMAP(or_with)) {
921 cl_anything(pRExC_state, cl);
924 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
925 * <= (B1 | !B2) | (CL1 | !CL2)
926 * which is wasteful if CL2 is small, but we ignore CL2:
927 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
928 * XXXX Can we handle case-fold? Unclear:
929 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
930 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
932 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
933 && !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
934 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
937 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
938 cl->bitmap[i] |= ~or_with->bitmap[i];
939 } /* XXXX: logic is complicated otherwise */
941 cl_anything(pRExC_state, cl);
944 /* And, we can just take the union of the flags that aren't affected
945 * by the inversion */
946 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
948 /* For the remaining flags:
949 ANYOF_UNICODE_ALL and inverted means to not match anything above
950 255, which means that the union with cl should just be
951 what cl has in it, so can ignore this flag
952 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
953 is 127-255 to match them, but then invert that, so the
954 union with cl should just be what cl has in it, so can
957 } else { /* 'or_with' is not inverted */
958 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
959 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
960 && (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
961 || (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
964 /* OR char bitmap and class bitmap separately */
965 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
966 cl->bitmap[i] |= or_with->bitmap[i];
967 if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
968 for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
969 cl->classflags[i] |= or_with->classflags[i];
970 cl->flags |= ANYOF_CLASS;
973 else { /* XXXX: logic is complicated, leave it along for a moment. */
974 cl_anything(pRExC_state, cl);
977 if (ANYOF_NONBITMAP(or_with)) {
979 /* Use the added node's outside-the-bit-map match if there isn't a
980 * conflict. If there is a conflict (both nodes match something
981 * outside the bitmap, but what they match outside is not the same
982 * pointer, and hence not easily compared until XXX we extend
983 * inversion lists this far), give up and allow the start class to
984 * match everything outside the bitmap. If that stuff is all above
985 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
986 if (! ANYOF_NONBITMAP(cl)) {
987 ARG_SET(cl, ARG(or_with));
989 else if (ARG(cl) != ARG(or_with)) {
991 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
992 cl_anything(pRExC_state, cl);
995 cl->flags |= ANYOF_UNICODE_ALL;
1000 /* Take the union */
1001 cl->flags |= or_with->flags;
1005 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1006 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1007 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1008 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1013 dump_trie(trie,widecharmap,revcharmap)
1014 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1015 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1017 These routines dump out a trie in a somewhat readable format.
1018 The _interim_ variants are used for debugging the interim
1019 tables that are used to generate the final compressed
1020 representation which is what dump_trie expects.
1022 Part of the reason for their existence is to provide a form
1023 of documentation as to how the different representations function.
1028 Dumps the final compressed table form of the trie to Perl_debug_log.
1029 Used for debugging make_trie().
1033 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1034 AV *revcharmap, U32 depth)
1037 SV *sv=sv_newmortal();
1038 int colwidth= widecharmap ? 6 : 4;
1040 GET_RE_DEBUG_FLAGS_DECL;
1042 PERL_ARGS_ASSERT_DUMP_TRIE;
1044 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1045 (int)depth * 2 + 2,"",
1046 "Match","Base","Ofs" );
1048 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1049 SV ** const tmp = av_fetch( revcharmap, state, 0);
1051 PerlIO_printf( Perl_debug_log, "%*s",
1053 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1054 PL_colors[0], PL_colors[1],
1055 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1056 PERL_PV_ESCAPE_FIRSTCHAR
1061 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1062 (int)depth * 2 + 2,"");
1064 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1065 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1066 PerlIO_printf( Perl_debug_log, "\n");
1068 for( state = 1 ; state < trie->statecount ; state++ ) {
1069 const U32 base = trie->states[ state ].trans.base;
1071 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1073 if ( trie->states[ state ].wordnum ) {
1074 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1076 PerlIO_printf( Perl_debug_log, "%6s", "" );
1079 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1084 while( ( base + ofs < trie->uniquecharcount ) ||
1085 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1086 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1089 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1091 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1092 if ( ( base + ofs >= trie->uniquecharcount ) &&
1093 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1094 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1096 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1098 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1100 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1104 PerlIO_printf( Perl_debug_log, "]");
1107 PerlIO_printf( Perl_debug_log, "\n" );
1109 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1110 for (word=1; word <= trie->wordcount; word++) {
1111 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1112 (int)word, (int)(trie->wordinfo[word].prev),
1113 (int)(trie->wordinfo[word].len));
1115 PerlIO_printf(Perl_debug_log, "\n" );
1118 Dumps a fully constructed but uncompressed trie in list form.
1119 List tries normally only are used for construction when the number of
1120 possible chars (trie->uniquecharcount) is very high.
1121 Used for debugging make_trie().
1124 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1125 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1129 SV *sv=sv_newmortal();
1130 int colwidth= widecharmap ? 6 : 4;
1131 GET_RE_DEBUG_FLAGS_DECL;
1133 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1135 /* print out the table precompression. */
1136 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1137 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1138 "------:-----+-----------------\n" );
1140 for( state=1 ; state < next_alloc ; state ++ ) {
1143 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1144 (int)depth * 2 + 2,"", (UV)state );
1145 if ( ! trie->states[ state ].wordnum ) {
1146 PerlIO_printf( Perl_debug_log, "%5s| ","");
1148 PerlIO_printf( Perl_debug_log, "W%4x| ",
1149 trie->states[ state ].wordnum
1152 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1153 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1155 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1157 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1158 PL_colors[0], PL_colors[1],
1159 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1160 PERL_PV_ESCAPE_FIRSTCHAR
1162 TRIE_LIST_ITEM(state,charid).forid,
1163 (UV)TRIE_LIST_ITEM(state,charid).newstate
1166 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1167 (int)((depth * 2) + 14), "");
1170 PerlIO_printf( Perl_debug_log, "\n");
1175 Dumps a fully constructed but uncompressed trie in table form.
1176 This is the normal DFA style state transition table, with a few
1177 twists to facilitate compression later.
1178 Used for debugging make_trie().
1181 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1182 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1187 SV *sv=sv_newmortal();
1188 int colwidth= widecharmap ? 6 : 4;
1189 GET_RE_DEBUG_FLAGS_DECL;
1191 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1194 print out the table precompression so that we can do a visual check
1195 that they are identical.
1198 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1200 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1201 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1203 PerlIO_printf( Perl_debug_log, "%*s",
1205 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1206 PL_colors[0], PL_colors[1],
1207 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1208 PERL_PV_ESCAPE_FIRSTCHAR
1214 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1216 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1217 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1220 PerlIO_printf( Perl_debug_log, "\n" );
1222 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1224 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1225 (int)depth * 2 + 2,"",
1226 (UV)TRIE_NODENUM( state ) );
1228 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1229 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1231 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1233 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1235 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1236 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1238 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1239 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1247 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1248 startbranch: the first branch in the whole branch sequence
1249 first : start branch of sequence of branch-exact nodes.
1250 May be the same as startbranch
1251 last : Thing following the last branch.
1252 May be the same as tail.
1253 tail : item following the branch sequence
1254 count : words in the sequence
1255 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1256 depth : indent depth
1258 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1260 A trie is an N'ary tree where the branches are determined by digital
1261 decomposition of the key. IE, at the root node you look up the 1st character and
1262 follow that branch repeat until you find the end of the branches. Nodes can be
1263 marked as "accepting" meaning they represent a complete word. Eg:
1267 would convert into the following structure. Numbers represent states, letters
1268 following numbers represent valid transitions on the letter from that state, if
1269 the number is in square brackets it represents an accepting state, otherwise it
1270 will be in parenthesis.
1272 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1276 (1) +-i->(6)-+-s->[7]
1278 +-s->(3)-+-h->(4)-+-e->[5]
1280 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1282 This shows that when matching against the string 'hers' we will begin at state 1
1283 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1284 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1285 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1286 single traverse. We store a mapping from accepting to state to which word was
1287 matched, and then when we have multiple possibilities we try to complete the
1288 rest of the regex in the order in which they occured in the alternation.
1290 The only prior NFA like behaviour that would be changed by the TRIE support is
1291 the silent ignoring of duplicate alternations which are of the form:
1293 / (DUPE|DUPE) X? (?{ ... }) Y /x
1295 Thus EVAL blocks following a trie may be called a different number of times with
1296 and without the optimisation. With the optimisations dupes will be silently
1297 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1298 the following demonstrates:
1300 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1302 which prints out 'word' three times, but
1304 'words'=~/(word|word|word)(?{ print $1 })S/
1306 which doesnt print it out at all. This is due to other optimisations kicking in.
1308 Example of what happens on a structural level:
1310 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1312 1: CURLYM[1] {1,32767}(18)
1323 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1324 and should turn into:
1326 1: CURLYM[1] {1,32767}(18)
1328 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1336 Cases where tail != last would be like /(?foo|bar)baz/:
1346 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1347 and would end up looking like:
1350 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1357 d = uvuni_to_utf8_flags(d, uv, 0);
1359 is the recommended Unicode-aware way of saying
1364 #define TRIE_STORE_REVCHAR \
1367 SV *zlopp = newSV(2); \
1368 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1369 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, uvc & 0xFF); \
1370 SvCUR_set(zlopp, kapow - flrbbbbb); \
1373 av_push(revcharmap, zlopp); \
1375 char ooooff = (char)uvc; \
1376 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1380 #define TRIE_READ_CHAR STMT_START { \
1384 if ( foldlen > 0 ) { \
1385 uvc = utf8n_to_uvuni( scan, UTF8_MAXLEN, &len, uniflags ); \
1390 len = UTF8SKIP(uc);\
1391 uvc = to_utf8_fold( uc, foldbuf, &foldlen); \
1392 foldlen -= UNISKIP( uvc ); \
1393 scan = foldbuf + UNISKIP( uvc ); \
1396 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1406 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1407 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1408 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1409 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1411 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1412 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1413 TRIE_LIST_CUR( state )++; \
1416 #define TRIE_LIST_NEW(state) STMT_START { \
1417 Newxz( trie->states[ state ].trans.list, \
1418 4, reg_trie_trans_le ); \
1419 TRIE_LIST_CUR( state ) = 1; \
1420 TRIE_LIST_LEN( state ) = 4; \
1423 #define TRIE_HANDLE_WORD(state) STMT_START { \
1424 U16 dupe= trie->states[ state ].wordnum; \
1425 regnode * const noper_next = regnext( noper ); \
1428 /* store the word for dumping */ \
1430 if (OP(noper) != NOTHING) \
1431 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1433 tmp = newSVpvn_utf8( "", 0, UTF ); \
1434 av_push( trie_words, tmp ); \
1438 trie->wordinfo[curword].prev = 0; \
1439 trie->wordinfo[curword].len = wordlen; \
1440 trie->wordinfo[curword].accept = state; \
1442 if ( noper_next < tail ) { \
1444 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1445 trie->jump[curword] = (U16)(noper_next - convert); \
1447 jumper = noper_next; \
1449 nextbranch= regnext(cur); \
1453 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1454 /* chain, so that when the bits of chain are later */\
1455 /* linked together, the dups appear in the chain */\
1456 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1457 trie->wordinfo[dupe].prev = curword; \
1459 /* we haven't inserted this word yet. */ \
1460 trie->states[ state ].wordnum = curword; \
1465 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1466 ( ( base + charid >= ucharcount \
1467 && base + charid < ubound \
1468 && state == trie->trans[ base - ucharcount + charid ].check \
1469 && trie->trans[ base - ucharcount + charid ].next ) \
1470 ? trie->trans[ base - ucharcount + charid ].next \
1471 : ( state==1 ? special : 0 ) \
1475 #define MADE_JUMP_TRIE 2
1476 #define MADE_EXACT_TRIE 4
1479 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1482 /* first pass, loop through and scan words */
1483 reg_trie_data *trie;
1484 HV *widecharmap = NULL;
1485 AV *revcharmap = newAV();
1487 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1492 regnode *jumper = NULL;
1493 regnode *nextbranch = NULL;
1494 regnode *convert = NULL;
1495 U32 *prev_states; /* temp array mapping each state to previous one */
1496 /* we just use folder as a flag in utf8 */
1497 const U8 * folder = NULL;
1500 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1501 AV *trie_words = NULL;
1502 /* along with revcharmap, this only used during construction but both are
1503 * useful during debugging so we store them in the struct when debugging.
1506 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1507 STRLEN trie_charcount=0;
1509 SV *re_trie_maxbuff;
1510 GET_RE_DEBUG_FLAGS_DECL;
1512 PERL_ARGS_ASSERT_MAKE_TRIE;
1514 PERL_UNUSED_ARG(depth);
1519 case EXACTFU: folder = PL_fold_latin1; break;
1520 case EXACTF: folder = PL_fold; break;
1521 case EXACTFL: folder = PL_fold_locale; break;
1524 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1526 trie->startstate = 1;
1527 trie->wordcount = word_count;
1528 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1529 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1530 if (!(UTF && folder))
1531 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1532 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1533 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1536 trie_words = newAV();
1539 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1540 if (!SvIOK(re_trie_maxbuff)) {
1541 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1544 PerlIO_printf( Perl_debug_log,
1545 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1546 (int)depth * 2 + 2, "",
1547 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1548 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1552 /* Find the node we are going to overwrite */
1553 if ( first == startbranch && OP( last ) != BRANCH ) {
1554 /* whole branch chain */
1557 /* branch sub-chain */
1558 convert = NEXTOPER( first );
1561 /* -- First loop and Setup --
1563 We first traverse the branches and scan each word to determine if it
1564 contains widechars, and how many unique chars there are, this is
1565 important as we have to build a table with at least as many columns as we
1568 We use an array of integers to represent the character codes 0..255
1569 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1570 native representation of the character value as the key and IV's for the
1573 *TODO* If we keep track of how many times each character is used we can
1574 remap the columns so that the table compression later on is more
1575 efficient in terms of memory by ensuring the most common value is in the
1576 middle and the least common are on the outside. IMO this would be better
1577 than a most to least common mapping as theres a decent chance the most
1578 common letter will share a node with the least common, meaning the node
1579 will not be compressible. With a middle is most common approach the worst
1580 case is when we have the least common nodes twice.
1584 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1585 regnode * const noper = NEXTOPER( cur );
1586 const U8 *uc = (U8*)STRING( noper );
1587 const U8 * const e = uc + STR_LEN( noper );
1589 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1590 const U8 *scan = (U8*)NULL;
1591 U32 wordlen = 0; /* required init */
1593 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1595 if (OP(noper) == NOTHING) {
1599 if ( set_bit ) /* bitmap only alloced when !(UTF&&Folding) */
1600 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1601 regardless of encoding */
1603 for ( ; uc < e ; uc += len ) {
1604 TRIE_CHARCOUNT(trie)++;
1608 if ( !trie->charmap[ uvc ] ) {
1609 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1611 trie->charmap[ folder[ uvc ] ] = trie->charmap[ uvc ];
1615 /* store the codepoint in the bitmap, and its folded
1617 TRIE_BITMAP_SET(trie,uvc);
1619 /* store the folded codepoint */
1620 if ( folder ) TRIE_BITMAP_SET(trie,folder[ uvc ]);
1623 /* store first byte of utf8 representation of
1624 variant codepoints */
1625 if (! UNI_IS_INVARIANT(uvc)) {
1626 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1629 set_bit = 0; /* We've done our bit :-) */
1634 widecharmap = newHV();
1636 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1639 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1641 if ( !SvTRUE( *svpp ) ) {
1642 sv_setiv( *svpp, ++trie->uniquecharcount );
1647 if( cur == first ) {
1650 } else if (chars < trie->minlen) {
1652 } else if (chars > trie->maxlen) {
1656 } /* end first pass */
1657 DEBUG_TRIE_COMPILE_r(
1658 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1659 (int)depth * 2 + 2,"",
1660 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1661 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1662 (int)trie->minlen, (int)trie->maxlen )
1666 We now know what we are dealing with in terms of unique chars and
1667 string sizes so we can calculate how much memory a naive
1668 representation using a flat table will take. If it's over a reasonable
1669 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1670 conservative but potentially much slower representation using an array
1673 At the end we convert both representations into the same compressed
1674 form that will be used in regexec.c for matching with. The latter
1675 is a form that cannot be used to construct with but has memory
1676 properties similar to the list form and access properties similar
1677 to the table form making it both suitable for fast searches and
1678 small enough that its feasable to store for the duration of a program.
1680 See the comment in the code where the compressed table is produced
1681 inplace from the flat tabe representation for an explanation of how
1682 the compression works.
1687 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1690 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1692 Second Pass -- Array Of Lists Representation
1694 Each state will be represented by a list of charid:state records
1695 (reg_trie_trans_le) the first such element holds the CUR and LEN
1696 points of the allocated array. (See defines above).
1698 We build the initial structure using the lists, and then convert
1699 it into the compressed table form which allows faster lookups
1700 (but cant be modified once converted).
1703 STRLEN transcount = 1;
1705 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1706 "%*sCompiling trie using list compiler\n",
1707 (int)depth * 2 + 2, ""));
1709 trie->states = (reg_trie_state *)
1710 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1711 sizeof(reg_trie_state) );
1715 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1717 regnode * const noper = NEXTOPER( cur );
1718 U8 *uc = (U8*)STRING( noper );
1719 const U8 * const e = uc + STR_LEN( noper );
1720 U32 state = 1; /* required init */
1721 U16 charid = 0; /* sanity init */
1722 U8 *scan = (U8*)NULL; /* sanity init */
1723 STRLEN foldlen = 0; /* required init */
1724 U32 wordlen = 0; /* required init */
1725 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1727 if (OP(noper) != NOTHING) {
1728 for ( ; uc < e ; uc += len ) {
1733 charid = trie->charmap[ uvc ];
1735 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1739 charid=(U16)SvIV( *svpp );
1742 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1749 if ( !trie->states[ state ].trans.list ) {
1750 TRIE_LIST_NEW( state );
1752 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1753 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1754 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1759 newstate = next_alloc++;
1760 prev_states[newstate] = state;
1761 TRIE_LIST_PUSH( state, charid, newstate );
1766 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1770 TRIE_HANDLE_WORD(state);
1772 } /* end second pass */
1774 /* next alloc is the NEXT state to be allocated */
1775 trie->statecount = next_alloc;
1776 trie->states = (reg_trie_state *)
1777 PerlMemShared_realloc( trie->states,
1779 * sizeof(reg_trie_state) );
1781 /* and now dump it out before we compress it */
1782 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1783 revcharmap, next_alloc,
1787 trie->trans = (reg_trie_trans *)
1788 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1795 for( state=1 ; state < next_alloc ; state ++ ) {
1799 DEBUG_TRIE_COMPILE_MORE_r(
1800 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1804 if (trie->states[state].trans.list) {
1805 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1809 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1810 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1811 if ( forid < minid ) {
1813 } else if ( forid > maxid ) {
1817 if ( transcount < tp + maxid - minid + 1) {
1819 trie->trans = (reg_trie_trans *)
1820 PerlMemShared_realloc( trie->trans,
1822 * sizeof(reg_trie_trans) );
1823 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1825 base = trie->uniquecharcount + tp - minid;
1826 if ( maxid == minid ) {
1828 for ( ; zp < tp ; zp++ ) {
1829 if ( ! trie->trans[ zp ].next ) {
1830 base = trie->uniquecharcount + zp - minid;
1831 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1832 trie->trans[ zp ].check = state;
1838 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1839 trie->trans[ tp ].check = state;
1844 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1845 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1846 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1847 trie->trans[ tid ].check = state;
1849 tp += ( maxid - minid + 1 );
1851 Safefree(trie->states[ state ].trans.list);
1854 DEBUG_TRIE_COMPILE_MORE_r(
1855 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1858 trie->states[ state ].trans.base=base;
1860 trie->lasttrans = tp + 1;
1864 Second Pass -- Flat Table Representation.
1866 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1867 We know that we will need Charcount+1 trans at most to store the data
1868 (one row per char at worst case) So we preallocate both structures
1869 assuming worst case.
1871 We then construct the trie using only the .next slots of the entry
1874 We use the .check field of the first entry of the node temporarily to
1875 make compression both faster and easier by keeping track of how many non
1876 zero fields are in the node.
1878 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1881 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1882 number representing the first entry of the node, and state as a
1883 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1884 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1885 are 2 entrys per node. eg:
1893 The table is internally in the right hand, idx form. However as we also
1894 have to deal with the states array which is indexed by nodenum we have to
1895 use TRIE_NODENUM() to convert.
1898 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1899 "%*sCompiling trie using table compiler\n",
1900 (int)depth * 2 + 2, ""));
1902 trie->trans = (reg_trie_trans *)
1903 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
1904 * trie->uniquecharcount + 1,
1905 sizeof(reg_trie_trans) );
1906 trie->states = (reg_trie_state *)
1907 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1908 sizeof(reg_trie_state) );
1909 next_alloc = trie->uniquecharcount + 1;
1912 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1914 regnode * const noper = NEXTOPER( cur );
1915 const U8 *uc = (U8*)STRING( noper );
1916 const U8 * const e = uc + STR_LEN( noper );
1918 U32 state = 1; /* required init */
1920 U16 charid = 0; /* sanity init */
1921 U32 accept_state = 0; /* sanity init */
1922 U8 *scan = (U8*)NULL; /* sanity init */
1924 STRLEN foldlen = 0; /* required init */
1925 U32 wordlen = 0; /* required init */
1926 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1928 if ( OP(noper) != NOTHING ) {
1929 for ( ; uc < e ; uc += len ) {
1934 charid = trie->charmap[ uvc ];
1936 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1937 charid = svpp ? (U16)SvIV(*svpp) : 0;
1941 if ( !trie->trans[ state + charid ].next ) {
1942 trie->trans[ state + charid ].next = next_alloc;
1943 trie->trans[ state ].check++;
1944 prev_states[TRIE_NODENUM(next_alloc)]
1945 = TRIE_NODENUM(state);
1946 next_alloc += trie->uniquecharcount;
1948 state = trie->trans[ state + charid ].next;
1950 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1952 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1955 accept_state = TRIE_NODENUM( state );
1956 TRIE_HANDLE_WORD(accept_state);
1958 } /* end second pass */
1960 /* and now dump it out before we compress it */
1961 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
1963 next_alloc, depth+1));
1967 * Inplace compress the table.*
1969 For sparse data sets the table constructed by the trie algorithm will
1970 be mostly 0/FAIL transitions or to put it another way mostly empty.
1971 (Note that leaf nodes will not contain any transitions.)
1973 This algorithm compresses the tables by eliminating most such
1974 transitions, at the cost of a modest bit of extra work during lookup:
1976 - Each states[] entry contains a .base field which indicates the
1977 index in the state[] array wheres its transition data is stored.
1979 - If .base is 0 there are no valid transitions from that node.
1981 - If .base is nonzero then charid is added to it to find an entry in
1984 -If trans[states[state].base+charid].check!=state then the
1985 transition is taken to be a 0/Fail transition. Thus if there are fail
1986 transitions at the front of the node then the .base offset will point
1987 somewhere inside the previous nodes data (or maybe even into a node
1988 even earlier), but the .check field determines if the transition is
1992 The following process inplace converts the table to the compressed
1993 table: We first do not compress the root node 1,and mark all its
1994 .check pointers as 1 and set its .base pointer as 1 as well. This
1995 allows us to do a DFA construction from the compressed table later,
1996 and ensures that any .base pointers we calculate later are greater
1999 - We set 'pos' to indicate the first entry of the second node.
2001 - We then iterate over the columns of the node, finding the first and
2002 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2003 and set the .check pointers accordingly, and advance pos
2004 appropriately and repreat for the next node. Note that when we copy
2005 the next pointers we have to convert them from the original
2006 NODEIDX form to NODENUM form as the former is not valid post
2009 - If a node has no transitions used we mark its base as 0 and do not
2010 advance the pos pointer.
2012 - If a node only has one transition we use a second pointer into the
2013 structure to fill in allocated fail transitions from other states.
2014 This pointer is independent of the main pointer and scans forward
2015 looking for null transitions that are allocated to a state. When it
2016 finds one it writes the single transition into the "hole". If the
2017 pointer doesnt find one the single transition is appended as normal.
2019 - Once compressed we can Renew/realloc the structures to release the
2022 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2023 specifically Fig 3.47 and the associated pseudocode.
2027 const U32 laststate = TRIE_NODENUM( next_alloc );
2030 trie->statecount = laststate;
2032 for ( state = 1 ; state < laststate ; state++ ) {
2034 const U32 stateidx = TRIE_NODEIDX( state );
2035 const U32 o_used = trie->trans[ stateidx ].check;
2036 U32 used = trie->trans[ stateidx ].check;
2037 trie->trans[ stateidx ].check = 0;
2039 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2040 if ( flag || trie->trans[ stateidx + charid ].next ) {
2041 if ( trie->trans[ stateidx + charid ].next ) {
2043 for ( ; zp < pos ; zp++ ) {
2044 if ( ! trie->trans[ zp ].next ) {
2048 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2049 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2050 trie->trans[ zp ].check = state;
2051 if ( ++zp > pos ) pos = zp;
2058 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2060 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2061 trie->trans[ pos ].check = state;
2066 trie->lasttrans = pos + 1;
2067 trie->states = (reg_trie_state *)
2068 PerlMemShared_realloc( trie->states, laststate
2069 * sizeof(reg_trie_state) );
2070 DEBUG_TRIE_COMPILE_MORE_r(
2071 PerlIO_printf( Perl_debug_log,
2072 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2073 (int)depth * 2 + 2,"",
2074 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2077 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2080 } /* end table compress */
2082 DEBUG_TRIE_COMPILE_MORE_r(
2083 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2084 (int)depth * 2 + 2, "",
2085 (UV)trie->statecount,
2086 (UV)trie->lasttrans)
2088 /* resize the trans array to remove unused space */
2089 trie->trans = (reg_trie_trans *)
2090 PerlMemShared_realloc( trie->trans, trie->lasttrans
2091 * sizeof(reg_trie_trans) );
2093 { /* Modify the program and insert the new TRIE node */
2094 U8 nodetype =(U8)(flags & 0xFF);
2098 regnode *optimize = NULL;
2099 #ifdef RE_TRACK_PATTERN_OFFSETS
2102 U32 mjd_nodelen = 0;
2103 #endif /* RE_TRACK_PATTERN_OFFSETS */
2104 #endif /* DEBUGGING */
2106 This means we convert either the first branch or the first Exact,
2107 depending on whether the thing following (in 'last') is a branch
2108 or not and whther first is the startbranch (ie is it a sub part of
2109 the alternation or is it the whole thing.)
2110 Assuming its a sub part we convert the EXACT otherwise we convert
2111 the whole branch sequence, including the first.
2113 /* Find the node we are going to overwrite */
2114 if ( first != startbranch || OP( last ) == BRANCH ) {
2115 /* branch sub-chain */
2116 NEXT_OFF( first ) = (U16)(last - first);
2117 #ifdef RE_TRACK_PATTERN_OFFSETS
2119 mjd_offset= Node_Offset((convert));
2120 mjd_nodelen= Node_Length((convert));
2123 /* whole branch chain */
2125 #ifdef RE_TRACK_PATTERN_OFFSETS
2128 const regnode *nop = NEXTOPER( convert );
2129 mjd_offset= Node_Offset((nop));
2130 mjd_nodelen= Node_Length((nop));
2134 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2135 (int)depth * 2 + 2, "",
2136 (UV)mjd_offset, (UV)mjd_nodelen)
2139 /* But first we check to see if there is a common prefix we can
2140 split out as an EXACT and put in front of the TRIE node. */
2141 trie->startstate= 1;
2142 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2144 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2148 const U32 base = trie->states[ state ].trans.base;
2150 if ( trie->states[state].wordnum )
2153 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2154 if ( ( base + ofs >= trie->uniquecharcount ) &&
2155 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2156 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2158 if ( ++count > 1 ) {
2159 SV **tmp = av_fetch( revcharmap, ofs, 0);
2160 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2161 if ( state == 1 ) break;
2163 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2165 PerlIO_printf(Perl_debug_log,
2166 "%*sNew Start State=%"UVuf" Class: [",
2167 (int)depth * 2 + 2, "",
2170 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2171 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2173 TRIE_BITMAP_SET(trie,*ch);
2175 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2177 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2181 TRIE_BITMAP_SET(trie,*ch);
2183 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2184 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2190 SV **tmp = av_fetch( revcharmap, idx, 0);
2192 char *ch = SvPV( *tmp, len );
2194 SV *sv=sv_newmortal();
2195 PerlIO_printf( Perl_debug_log,
2196 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2197 (int)depth * 2 + 2, "",
2199 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2200 PL_colors[0], PL_colors[1],
2201 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2202 PERL_PV_ESCAPE_FIRSTCHAR
2207 OP( convert ) = nodetype;
2208 str=STRING(convert);
2211 STR_LEN(convert) += len;
2217 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2222 trie->prefixlen = (state-1);
2224 regnode *n = convert+NODE_SZ_STR(convert);
2225 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2226 trie->startstate = state;
2227 trie->minlen -= (state - 1);
2228 trie->maxlen -= (state - 1);
2230 /* At least the UNICOS C compiler choked on this
2231 * being argument to DEBUG_r(), so let's just have
2234 #ifdef PERL_EXT_RE_BUILD
2240 regnode *fix = convert;
2241 U32 word = trie->wordcount;
2243 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2244 while( ++fix < n ) {
2245 Set_Node_Offset_Length(fix, 0, 0);
2248 SV ** const tmp = av_fetch( trie_words, word, 0 );
2250 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2251 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2253 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2261 NEXT_OFF(convert) = (U16)(tail - convert);
2262 DEBUG_r(optimize= n);
2268 if ( trie->maxlen ) {
2269 NEXT_OFF( convert ) = (U16)(tail - convert);
2270 ARG_SET( convert, data_slot );
2271 /* Store the offset to the first unabsorbed branch in
2272 jump[0], which is otherwise unused by the jump logic.
2273 We use this when dumping a trie and during optimisation. */
2275 trie->jump[0] = (U16)(nextbranch - convert);
2277 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2278 * and there is a bitmap
2279 * and the first "jump target" node we found leaves enough room
2280 * then convert the TRIE node into a TRIEC node, with the bitmap
2281 * embedded inline in the opcode - this is hypothetically faster.
2283 if ( !trie->states[trie->startstate].wordnum
2285 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2287 OP( convert ) = TRIEC;
2288 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2289 PerlMemShared_free(trie->bitmap);
2292 OP( convert ) = TRIE;
2294 /* store the type in the flags */
2295 convert->flags = nodetype;
2299 + regarglen[ OP( convert ) ];
2301 /* XXX We really should free up the resource in trie now,
2302 as we won't use them - (which resources?) dmq */
2304 /* needed for dumping*/
2305 DEBUG_r(if (optimize) {
2306 regnode *opt = convert;
2308 while ( ++opt < optimize) {
2309 Set_Node_Offset_Length(opt,0,0);
2312 Try to clean up some of the debris left after the
2315 while( optimize < jumper ) {
2316 mjd_nodelen += Node_Length((optimize));
2317 OP( optimize ) = OPTIMIZED;
2318 Set_Node_Offset_Length(optimize,0,0);
2321 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2323 } /* end node insert */
2325 /* Finish populating the prev field of the wordinfo array. Walk back
2326 * from each accept state until we find another accept state, and if
2327 * so, point the first word's .prev field at the second word. If the
2328 * second already has a .prev field set, stop now. This will be the
2329 * case either if we've already processed that word's accept state,
2330 * or that state had multiple words, and the overspill words were
2331 * already linked up earlier.
2338 for (word=1; word <= trie->wordcount; word++) {
2340 if (trie->wordinfo[word].prev)
2342 state = trie->wordinfo[word].accept;
2344 state = prev_states[state];
2347 prev = trie->states[state].wordnum;
2351 trie->wordinfo[word].prev = prev;
2353 Safefree(prev_states);
2357 /* and now dump out the compressed format */
2358 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2360 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2362 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2363 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2365 SvREFCNT_dec(revcharmap);
2369 : trie->startstate>1
2375 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2377 /* The Trie is constructed and compressed now so we can build a fail array if it's needed
2379 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2380 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2383 We find the fail state for each state in the trie, this state is the longest proper
2384 suffix of the current state's 'word' that is also a proper prefix of another word in our
2385 trie. State 1 represents the word '' and is thus the default fail state. This allows
2386 the DFA not to have to restart after its tried and failed a word at a given point, it
2387 simply continues as though it had been matching the other word in the first place.
2389 'abcdgu'=~/abcdefg|cdgu/
2390 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2391 fail, which would bring us to the state representing 'd' in the second word where we would
2392 try 'g' and succeed, proceeding to match 'cdgu'.
2394 /* add a fail transition */
2395 const U32 trie_offset = ARG(source);
2396 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2398 const U32 ucharcount = trie->uniquecharcount;
2399 const U32 numstates = trie->statecount;
2400 const U32 ubound = trie->lasttrans + ucharcount;
2404 U32 base = trie->states[ 1 ].trans.base;
2407 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2408 GET_RE_DEBUG_FLAGS_DECL;
2410 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2412 PERL_UNUSED_ARG(depth);
2416 ARG_SET( stclass, data_slot );
2417 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2418 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2419 aho->trie=trie_offset;
2420 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2421 Copy( trie->states, aho->states, numstates, reg_trie_state );
2422 Newxz( q, numstates, U32);
2423 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2426 /* initialize fail[0..1] to be 1 so that we always have
2427 a valid final fail state */
2428 fail[ 0 ] = fail[ 1 ] = 1;
2430 for ( charid = 0; charid < ucharcount ; charid++ ) {
2431 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2433 q[ q_write ] = newstate;
2434 /* set to point at the root */
2435 fail[ q[ q_write++ ] ]=1;
2438 while ( q_read < q_write) {
2439 const U32 cur = q[ q_read++ % numstates ];
2440 base = trie->states[ cur ].trans.base;
2442 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2443 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2445 U32 fail_state = cur;
2448 fail_state = fail[ fail_state ];
2449 fail_base = aho->states[ fail_state ].trans.base;
2450 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2452 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2453 fail[ ch_state ] = fail_state;
2454 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2456 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2458 q[ q_write++ % numstates] = ch_state;
2462 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2463 when we fail in state 1, this allows us to use the
2464 charclass scan to find a valid start char. This is based on the principle
2465 that theres a good chance the string being searched contains lots of stuff
2466 that cant be a start char.
2468 fail[ 0 ] = fail[ 1 ] = 0;
2469 DEBUG_TRIE_COMPILE_r({
2470 PerlIO_printf(Perl_debug_log,
2471 "%*sStclass Failtable (%"UVuf" states): 0",
2472 (int)(depth * 2), "", (UV)numstates
2474 for( q_read=1; q_read<numstates; q_read++ ) {
2475 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2477 PerlIO_printf(Perl_debug_log, "\n");
2480 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2485 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2486 * These need to be revisited when a newer toolchain becomes available.
2488 #if defined(__sparc64__) && defined(__GNUC__)
2489 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2490 # undef SPARC64_GCC_WORKAROUND
2491 # define SPARC64_GCC_WORKAROUND 1
2495 #define DEBUG_PEEP(str,scan,depth) \
2496 DEBUG_OPTIMISE_r({if (scan){ \
2497 SV * const mysv=sv_newmortal(); \
2498 regnode *Next = regnext(scan); \
2499 regprop(RExC_rx, mysv, scan); \
2500 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2501 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2502 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2509 #define JOIN_EXACT(scan,min,flags) \
2510 if (PL_regkind[OP(scan)] == EXACT) \
2511 join_exact(pRExC_state,(scan),(min),(flags),NULL,depth+1)
2514 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, I32 *min, U32 flags,regnode *val, U32 depth) {
2515 /* Merge several consecutive EXACTish nodes into one. */
2516 regnode *n = regnext(scan);
2518 regnode *next = scan + NODE_SZ_STR(scan);
2522 regnode *stop = scan;
2523 GET_RE_DEBUG_FLAGS_DECL;
2525 PERL_UNUSED_ARG(depth);
2528 PERL_ARGS_ASSERT_JOIN_EXACT;
2529 #ifndef EXPERIMENTAL_INPLACESCAN
2530 PERL_UNUSED_ARG(flags);
2531 PERL_UNUSED_ARG(val);
2533 DEBUG_PEEP("join",scan,depth);
2535 /* Skip NOTHING, merge EXACT*. */
2537 ( PL_regkind[OP(n)] == NOTHING ||
2538 (stringok && (OP(n) == OP(scan))))
2540 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX) {
2542 if (OP(n) == TAIL || n > next)
2544 if (PL_regkind[OP(n)] == NOTHING) {
2545 DEBUG_PEEP("skip:",n,depth);
2546 NEXT_OFF(scan) += NEXT_OFF(n);
2547 next = n + NODE_STEP_REGNODE;
2554 else if (stringok) {
2555 const unsigned int oldl = STR_LEN(scan);
2556 regnode * const nnext = regnext(n);
2558 if (oldl + STR_LEN(n) > U8_MAX)
2561 DEBUG_PEEP("merg",n,depth);
2564 NEXT_OFF(scan) += NEXT_OFF(n);
2565 STR_LEN(scan) += STR_LEN(n);
2566 next = n + NODE_SZ_STR(n);
2567 /* Now we can overwrite *n : */
2568 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2576 #ifdef EXPERIMENTAL_INPLACESCAN
2577 if (flags && !NEXT_OFF(n)) {
2578 DEBUG_PEEP("atch", val, depth);
2579 if (reg_off_by_arg[OP(n)]) {
2580 ARG_SET(n, val - n);
2583 NEXT_OFF(n) = val - n;
2589 #define GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS 0x0390
2590 #define IOTA_D_T GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS
2591 #define GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS 0x03B0
2592 #define UPSILON_D_T GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS
2595 && ( OP(scan) == EXACTF || OP(scan) == EXACTFU || OP(scan) == EXACTFA)
2596 && ( STR_LEN(scan) >= 6 ) )
2599 Two problematic code points in Unicode casefolding of EXACT nodes:
2601 U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
2602 U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
2608 U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
2609 U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
2611 This means that in case-insensitive matching (or "loose matching",
2612 as Unicode calls it), an EXACTF of length six (the UTF-8 encoded byte
2613 length of the above casefolded versions) can match a target string
2614 of length two (the byte length of UTF-8 encoded U+0390 or U+03B0).
2615 This would rather mess up the minimum length computation.
2617 What we'll do is to look for the tail four bytes, and then peek
2618 at the preceding two bytes to see whether we need to decrease
2619 the minimum length by four (six minus two).
2621 Thanks to the design of UTF-8, there cannot be false matches:
2622 A sequence of valid UTF-8 bytes cannot be a subsequence of
2623 another valid sequence of UTF-8 bytes.
2626 char * const s0 = STRING(scan), *s, *t;
2627 char * const s1 = s0 + STR_LEN(scan) - 1;
2628 char * const s2 = s1 - 4;
2629 #ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
2630 const char t0[] = "\xaf\x49\xaf\x42";
2632 const char t0[] = "\xcc\x88\xcc\x81";
2634 const char * const t1 = t0 + 3;
2637 s < s2 && (t = ninstr(s, s1, t0, t1));
2640 if (((U8)t[-1] == 0x68 && (U8)t[-2] == 0xB4) ||
2641 ((U8)t[-1] == 0x46 && (U8)t[-2] == 0xB5))
2643 if (((U8)t[-1] == 0xB9 && (U8)t[-2] == 0xCE) ||
2644 ((U8)t[-1] == 0x85 && (U8)t[-2] == 0xCF))
2651 /* Allow dumping but overwriting the collection of skipped
2652 * ops and/or strings with fake optimized ops */
2653 n = scan + NODE_SZ_STR(scan);
2661 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2665 /* REx optimizer. Converts nodes into quicker variants "in place".
2666 Finds fixed substrings. */
2668 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2669 to the position after last scanned or to NULL. */
2671 #define INIT_AND_WITHP \
2672 assert(!and_withp); \
2673 Newx(and_withp,1,struct regnode_charclass_class); \
2674 SAVEFREEPV(and_withp)
2676 /* this is a chain of data about sub patterns we are processing that
2677 need to be handled separately/specially in study_chunk. Its so
2678 we can simulate recursion without losing state. */
2680 typedef struct scan_frame {
2681 regnode *last; /* last node to process in this frame */
2682 regnode *next; /* next node to process when last is reached */
2683 struct scan_frame *prev; /*previous frame*/
2684 I32 stop; /* what stopparen do we use */
2688 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2690 #define CASE_SYNST_FNC(nAmE) \
2692 if (flags & SCF_DO_STCLASS_AND) { \
2693 for (value = 0; value < 256; value++) \
2694 if (!is_ ## nAmE ## _cp(value)) \
2695 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2698 for (value = 0; value < 256; value++) \
2699 if (is_ ## nAmE ## _cp(value)) \
2700 ANYOF_BITMAP_SET(data->start_class, value); \
2704 if (flags & SCF_DO_STCLASS_AND) { \
2705 for (value = 0; value < 256; value++) \
2706 if (is_ ## nAmE ## _cp(value)) \
2707 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2710 for (value = 0; value < 256; value++) \
2711 if (!is_ ## nAmE ## _cp(value)) \
2712 ANYOF_BITMAP_SET(data->start_class, value); \
2719 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2720 I32 *minlenp, I32 *deltap,
2725 struct regnode_charclass_class *and_withp,
2726 U32 flags, U32 depth)
2727 /* scanp: Start here (read-write). */
2728 /* deltap: Write maxlen-minlen here. */
2729 /* last: Stop before this one. */
2730 /* data: string data about the pattern */
2731 /* stopparen: treat close N as END */
2732 /* recursed: which subroutines have we recursed into */
2733 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
2736 I32 min = 0, pars = 0, code;
2737 regnode *scan = *scanp, *next;
2739 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
2740 int is_inf_internal = 0; /* The studied chunk is infinite */
2741 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
2742 scan_data_t data_fake;
2743 SV *re_trie_maxbuff = NULL;
2744 regnode *first_non_open = scan;
2745 I32 stopmin = I32_MAX;
2746 scan_frame *frame = NULL;
2747 GET_RE_DEBUG_FLAGS_DECL;
2749 PERL_ARGS_ASSERT_STUDY_CHUNK;
2752 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
2756 while (first_non_open && OP(first_non_open) == OPEN)
2757 first_non_open=regnext(first_non_open);
2762 while ( scan && OP(scan) != END && scan < last ){
2763 /* Peephole optimizer: */
2764 DEBUG_STUDYDATA("Peep:", data,depth);
2765 DEBUG_PEEP("Peep",scan,depth);
2766 JOIN_EXACT(scan,&min,0);
2768 /* Follow the next-chain of the current node and optimize
2769 away all the NOTHINGs from it. */
2770 if (OP(scan) != CURLYX) {
2771 const int max = (reg_off_by_arg[OP(scan)]
2773 /* I32 may be smaller than U16 on CRAYs! */
2774 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
2775 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
2779 /* Skip NOTHING and LONGJMP. */
2780 while ((n = regnext(n))
2781 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
2782 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
2783 && off + noff < max)
2785 if (reg_off_by_arg[OP(scan)])
2788 NEXT_OFF(scan) = off;
2793 /* The principal pseudo-switch. Cannot be a switch, since we
2794 look into several different things. */
2795 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
2796 || OP(scan) == IFTHEN) {
2797 next = regnext(scan);
2799 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
2801 if (OP(next) == code || code == IFTHEN) {
2802 /* NOTE - There is similar code to this block below for handling
2803 TRIE nodes on a re-study. If you change stuff here check there
2805 I32 max1 = 0, min1 = I32_MAX, num = 0;
2806 struct regnode_charclass_class accum;
2807 regnode * const startbranch=scan;
2809 if (flags & SCF_DO_SUBSTR)
2810 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
2811 if (flags & SCF_DO_STCLASS)
2812 cl_init_zero(pRExC_state, &accum);
2814 while (OP(scan) == code) {
2815 I32 deltanext, minnext, f = 0, fake;
2816 struct regnode_charclass_class this_class;
2819 data_fake.flags = 0;
2821 data_fake.whilem_c = data->whilem_c;
2822 data_fake.last_closep = data->last_closep;
2825 data_fake.last_closep = &fake;
2827 data_fake.pos_delta = delta;
2828 next = regnext(scan);
2829 scan = NEXTOPER(scan);
2831 scan = NEXTOPER(scan);
2832 if (flags & SCF_DO_STCLASS) {
2833 cl_init(pRExC_state, &this_class);
2834 data_fake.start_class = &this_class;
2835 f = SCF_DO_STCLASS_AND;
2837 if (flags & SCF_WHILEM_VISITED_POS)
2838 f |= SCF_WHILEM_VISITED_POS;
2840 /* we suppose the run is continuous, last=next...*/
2841 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
2843 stopparen, recursed, NULL, f,depth+1);
2846 if (max1 < minnext + deltanext)
2847 max1 = minnext + deltanext;
2848 if (deltanext == I32_MAX)
2849 is_inf = is_inf_internal = 1;
2851 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
2853 if (data_fake.flags & SCF_SEEN_ACCEPT) {
2854 if ( stopmin > minnext)
2855 stopmin = min + min1;
2856 flags &= ~SCF_DO_SUBSTR;
2858 data->flags |= SCF_SEEN_ACCEPT;
2861 if (data_fake.flags & SF_HAS_EVAL)
2862 data->flags |= SF_HAS_EVAL;
2863 data->whilem_c = data_fake.whilem_c;
2865 if (flags & SCF_DO_STCLASS)
2866 cl_or(pRExC_state, &accum, &this_class);
2868 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
2870 if (flags & SCF_DO_SUBSTR) {
2871 data->pos_min += min1;
2872 data->pos_delta += max1 - min1;
2873 if (max1 != min1 || is_inf)
2874 data->longest = &(data->longest_float);
2877 delta += max1 - min1;
2878 if (flags & SCF_DO_STCLASS_OR) {
2879 cl_or(pRExC_state, data->start_class, &accum);
2881 cl_and(data->start_class, and_withp);
2882 flags &= ~SCF_DO_STCLASS;
2885 else if (flags & SCF_DO_STCLASS_AND) {
2887 cl_and(data->start_class, &accum);
2888 flags &= ~SCF_DO_STCLASS;
2891 /* Switch to OR mode: cache the old value of
2892 * data->start_class */
2894 StructCopy(data->start_class, and_withp,
2895 struct regnode_charclass_class);
2896 flags &= ~SCF_DO_STCLASS_AND;
2897 StructCopy(&accum, data->start_class,
2898 struct regnode_charclass_class);
2899 flags |= SCF_DO_STCLASS_OR;
2900 data->start_class->flags |= ANYOF_EOS;
2904 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
2907 Assuming this was/is a branch we are dealing with: 'scan' now
2908 points at the item that follows the branch sequence, whatever
2909 it is. We now start at the beginning of the sequence and look
2916 which would be constructed from a pattern like /A|LIST|OF|WORDS/
2918 If we can find such a subsequence we need to turn the first
2919 element into a trie and then add the subsequent branch exact
2920 strings to the trie.
2924 1. patterns where the whole set of branches can be converted.
2926 2. patterns where only a subset can be converted.
2928 In case 1 we can replace the whole set with a single regop
2929 for the trie. In case 2 we need to keep the start and end
2932 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
2933 becomes BRANCH TRIE; BRANCH X;
2935 There is an additional case, that being where there is a
2936 common prefix, which gets split out into an EXACT like node
2937 preceding the TRIE node.
2939 If x(1..n)==tail then we can do a simple trie, if not we make
2940 a "jump" trie, such that when we match the appropriate word
2941 we "jump" to the appropriate tail node. Essentially we turn
2942 a nested if into a case structure of sorts.
2947 if (!re_trie_maxbuff) {
2948 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2949 if (!SvIOK(re_trie_maxbuff))
2950 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2952 if ( SvIV(re_trie_maxbuff)>=0 ) {
2954 regnode *first = (regnode *)NULL;
2955 regnode *last = (regnode *)NULL;
2956 regnode *tail = scan;
2961 SV * const mysv = sv_newmortal(); /* for dumping */
2963 /* var tail is used because there may be a TAIL
2964 regop in the way. Ie, the exacts will point to the
2965 thing following the TAIL, but the last branch will
2966 point at the TAIL. So we advance tail. If we
2967 have nested (?:) we may have to move through several
2971 while ( OP( tail ) == TAIL ) {
2972 /* this is the TAIL generated by (?:) */
2973 tail = regnext( tail );
2978 regprop(RExC_rx, mysv, tail );
2979 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
2980 (int)depth * 2 + 2, "",
2981 "Looking for TRIE'able sequences. Tail node is: ",
2982 SvPV_nolen_const( mysv )
2988 step through the branches, cur represents each
2989 branch, noper is the first thing to be matched
2990 as part of that branch and noper_next is the
2991 regnext() of that node. if noper is an EXACT
2992 and noper_next is the same as scan (our current
2993 position in the regex) then the EXACT branch is
2994 a possible optimization target. Once we have
2995 two or more consecutive such branches we can
2996 create a trie of the EXACT's contents and stich
2997 it in place. If the sequence represents all of
2998 the branches we eliminate the whole thing and
2999 replace it with a single TRIE. If it is a
3000 subsequence then we need to stitch it in. This
3001 means the first branch has to remain, and needs
3002 to be repointed at the item on the branch chain
3003 following the last branch optimized. This could
3004 be either a BRANCH, in which case the
3005 subsequence is internal, or it could be the
3006 item following the branch sequence in which
3007 case the subsequence is at the end.
3011 /* dont use tail as the end marker for this traverse */
3012 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3013 regnode * const noper = NEXTOPER( cur );
3014 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3015 regnode * const noper_next = regnext( noper );
3019 regprop(RExC_rx, mysv, cur);
3020 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3021 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3023 regprop(RExC_rx, mysv, noper);
3024 PerlIO_printf( Perl_debug_log, " -> %s",
3025 SvPV_nolen_const(mysv));
3028 regprop(RExC_rx, mysv, noper_next );
3029 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3030 SvPV_nolen_const(mysv));
3032 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
3033 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
3035 if ( (((first && optype!=NOTHING) ? OP( noper ) == optype
3036 : PL_regkind[ OP( noper ) ] == EXACT )
3037 || OP(noper) == NOTHING )
3039 && noper_next == tail
3044 if ( !first || optype == NOTHING ) {
3045 if (!first) first = cur;
3046 optype = OP( noper );
3052 Currently the trie logic handles case insensitive matching properly only
3053 when the pattern is UTF-8 and the node is EXACTFU (thus forcing unicode
3056 If/when this is fixed the following define can be swapped
3057 in below to fully enable trie logic.
3059 #define TRIE_TYPE_IS_SAFE 1
3062 #define TRIE_TYPE_IS_SAFE ((UTF && optype == EXACTFU) || optype==EXACT)
3064 if ( last && TRIE_TYPE_IS_SAFE ) {
3065 make_trie( pRExC_state,
3066 startbranch, first, cur, tail, count,
3069 if ( PL_regkind[ OP( noper ) ] == EXACT
3071 && noper_next == tail
3076 optype = OP( noper );
3086 regprop(RExC_rx, mysv, cur);
3087 PerlIO_printf( Perl_debug_log,
3088 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3089 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3093 if ( last && TRIE_TYPE_IS_SAFE ) {
3094 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, optype, depth+1 );
3095 #ifdef TRIE_STUDY_OPT
3096 if ( ((made == MADE_EXACT_TRIE &&
3097 startbranch == first)
3098 || ( first_non_open == first )) &&
3100 flags |= SCF_TRIE_RESTUDY;
3101 if ( startbranch == first
3104 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3114 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3115 scan = NEXTOPER(NEXTOPER(scan));
3116 } else /* single branch is optimized. */
3117 scan = NEXTOPER(scan);
3119 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3120 scan_frame *newframe = NULL;
3125 if (OP(scan) != SUSPEND) {
3126 /* set the pointer */
3127 if (OP(scan) == GOSUB) {
3129 RExC_recurse[ARG2L(scan)] = scan;
3130 start = RExC_open_parens[paren-1];
3131 end = RExC_close_parens[paren-1];
3134 start = RExC_rxi->program + 1;
3138 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3139 SAVEFREEPV(recursed);
3141 if (!PAREN_TEST(recursed,paren+1)) {
3142 PAREN_SET(recursed,paren+1);
3143 Newx(newframe,1,scan_frame);
3145 if (flags & SCF_DO_SUBSTR) {
3146 SCAN_COMMIT(pRExC_state,data,minlenp);
3147 data->longest = &(data->longest_float);
3149 is_inf = is_inf_internal = 1;
3150 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3151 cl_anything(pRExC_state, data->start_class);
3152 flags &= ~SCF_DO_STCLASS;
3155 Newx(newframe,1,scan_frame);
3158 end = regnext(scan);
3163 SAVEFREEPV(newframe);
3164 newframe->next = regnext(scan);
3165 newframe->last = last;
3166 newframe->stop = stopparen;
3167 newframe->prev = frame;
3177 else if (OP(scan) == EXACT) {
3178 I32 l = STR_LEN(scan);
3181 const U8 * const s = (U8*)STRING(scan);
3182 l = utf8_length(s, s + l);
3183 uc = utf8_to_uvchr(s, NULL);
3185 uc = *((U8*)STRING(scan));
3188 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3189 /* The code below prefers earlier match for fixed
3190 offset, later match for variable offset. */
3191 if (data->last_end == -1) { /* Update the start info. */
3192 data->last_start_min = data->pos_min;
3193 data->last_start_max = is_inf
3194 ? I32_MAX : data->pos_min + data->pos_delta;
3196 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3198 SvUTF8_on(data->last_found);
3200 SV * const sv = data->last_found;
3201 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3202 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3203 if (mg && mg->mg_len >= 0)
3204 mg->mg_len += utf8_length((U8*)STRING(scan),
3205 (U8*)STRING(scan)+STR_LEN(scan));
3207 data->last_end = data->pos_min + l;
3208 data->pos_min += l; /* As in the first entry. */
3209 data->flags &= ~SF_BEFORE_EOL;
3211 if (flags & SCF_DO_STCLASS_AND) {
3212 /* Check whether it is compatible with what we know already! */
3216 /* If compatible, we or it in below. It is compatible if is
3217 * in the bitmp and either 1) its bit or its fold is set, or 2)
3218 * it's for a locale. Even if there isn't unicode semantics
3219 * here, at runtime there may be because of matching against a
3220 * utf8 string, so accept a possible false positive for
3221 * latin1-range folds */
3223 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3224 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3225 && (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
3226 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3231 ANYOF_CLASS_ZERO(data->start_class);
3232 ANYOF_BITMAP_ZERO(data->start_class);
3234 ANYOF_BITMAP_SET(data->start_class, uc);
3235 else if (uc >= 0x100) {
3238 /* Some Unicode code points fold to the Latin1 range; as
3239 * XXX temporary code, instead of figuring out if this is
3240 * one, just assume it is and set all the start class bits
3241 * that could be some such above 255 code point's fold
3242 * which will generate fals positives. As the code
3243 * elsewhere that does compute the fold settles down, it
3244 * can be extracted out and re-used here */
3245 for (i = 0; i < 256; i++){
3246 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3247 ANYOF_BITMAP_SET(data->start_class, i);
3251 data->start_class->flags &= ~ANYOF_EOS;
3253 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3255 else if (flags & SCF_DO_STCLASS_OR) {
3256 /* false positive possible if the class is case-folded */
3258 ANYOF_BITMAP_SET(data->start_class, uc);
3260 data->start_class->flags |= ANYOF_UNICODE_ALL;
3261 data->start_class->flags &= ~ANYOF_EOS;
3262 cl_and(data->start_class, and_withp);
3264 flags &= ~SCF_DO_STCLASS;
3266 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3267 I32 l = STR_LEN(scan);
3268 UV uc = *((U8*)STRING(scan));
3270 /* Search for fixed substrings supports EXACT only. */
3271 if (flags & SCF_DO_SUBSTR) {
3273 SCAN_COMMIT(pRExC_state, data, minlenp);
3276 const U8 * const s = (U8 *)STRING(scan);
3277 l = utf8_length(s, s + l);
3278 uc = utf8_to_uvchr(s, NULL);
3281 if (flags & SCF_DO_SUBSTR)
3283 if (flags & SCF_DO_STCLASS_AND) {
3284 /* Check whether it is compatible with what we know already! */
3287 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3288 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3289 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3293 ANYOF_CLASS_ZERO(data->start_class);
3294 ANYOF_BITMAP_ZERO(data->start_class);
3296 ANYOF_BITMAP_SET(data->start_class, uc);
3297 data->start_class->flags &= ~ANYOF_EOS;
3298 data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
3299 if (OP(scan) == EXACTFL) {
3300 /* XXX This set is probably no longer necessary, and
3301 * probably wrong as LOCALE now is on in the initial
3303 data->start_class->flags |= ANYOF_LOCALE;
3307 /* Also set the other member of the fold pair. In case
3308 * that unicode semantics is called for at runtime, use
3309 * the full latin1 fold. (Can't do this for locale,
3310 * because not known until runtime */
3311 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3314 else if (uc >= 0x100) {
3316 for (i = 0; i < 256; i++){
3317 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3318 ANYOF_BITMAP_SET(data->start_class, i);
3323 else if (flags & SCF_DO_STCLASS_OR) {
3324 if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
3325 /* false positive possible if the class is case-folded.
3326 Assume that the locale settings are the same... */
3328 ANYOF_BITMAP_SET(data->start_class, uc);
3329 if (OP(scan) != EXACTFL) {
3331 /* And set the other member of the fold pair, but
3332 * can't do that in locale because not known until
3334 ANYOF_BITMAP_SET(data->start_class,
3335 PL_fold_latin1[uc]);
3338 data->start_class->flags &= ~ANYOF_EOS;
3340 cl_and(data->start_class, and_withp);
3342 flags &= ~SCF_DO_STCLASS;
3344 else if (REGNODE_VARIES(OP(scan))) {
3345 I32 mincount, maxcount, minnext, deltanext, fl = 0;
3346 I32 f = flags, pos_before = 0;
3347 regnode * const oscan = scan;
3348 struct regnode_charclass_class this_class;
3349 struct regnode_charclass_class *oclass = NULL;
3350 I32 next_is_eval = 0;
3352 switch (PL_regkind[OP(scan)]) {
3353 case WHILEM: /* End of (?:...)* . */
3354 scan = NEXTOPER(scan);
3357 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3358 next = NEXTOPER(scan);
3359 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3361 maxcount = REG_INFTY;
3362 next = regnext(scan);
3363 scan = NEXTOPER(scan);
3367 if (flags & SCF_DO_SUBSTR)
3372 if (flags & SCF_DO_STCLASS) {
3374 maxcount = REG_INFTY;
3375 next = regnext(scan);
3376 scan = NEXTOPER(scan);
3379 is_inf = is_inf_internal = 1;
3380 scan = regnext(scan);
3381 if (flags & SCF_DO_SUBSTR) {
3382 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3383 data->longest = &(data->longest_float);
3385 goto optimize_curly_tail;
3387 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3388 && (scan->flags == stopparen))
3393 mincount = ARG1(scan);
3394 maxcount = ARG2(scan);
3396 next = regnext(scan);
3397 if (OP(scan) == CURLYX) {
3398 I32 lp = (data ? *(data->last_closep) : 0);
3399 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3401 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3402 next_is_eval = (OP(scan) == EVAL);
3404 if (flags & SCF_DO_SUBSTR) {
3405 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3406 pos_before = data->pos_min;
3410 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3412 data->flags |= SF_IS_INF;
3414 if (flags & SCF_DO_STCLASS) {
3415 cl_init(pRExC_state, &this_class);
3416 oclass = data->start_class;
3417 data->start_class = &this_class;
3418 f |= SCF_DO_STCLASS_AND;
3419 f &= ~SCF_DO_STCLASS_OR;
3421 /* Exclude from super-linear cache processing any {n,m}
3422 regops for which the combination of input pos and regex
3423 pos is not enough information to determine if a match
3426 For example, in the regex /foo(bar\s*){4,8}baz/ with the
3427 regex pos at the \s*, the prospects for a match depend not
3428 only on the input position but also on how many (bar\s*)
3429 repeats into the {4,8} we are. */
3430 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3431 f &= ~SCF_WHILEM_VISITED_POS;
3433 /* This will finish on WHILEM, setting scan, or on NULL: */
3434 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3435 last, data, stopparen, recursed, NULL,
3437 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3439 if (flags & SCF_DO_STCLASS)
3440 data->start_class = oclass;
3441 if (mincount == 0 || minnext == 0) {
3442 if (flags & SCF_DO_STCLASS_OR) {
3443 cl_or(pRExC_state, data->start_class, &this_class);
3445 else if (flags & SCF_DO_STCLASS_AND) {
3446 /* Switch to OR mode: cache the old value of
3447 * data->start_class */
3449 StructCopy(data->start_class, and_withp,
3450 struct regnode_charclass_class);
3451 flags &= ~SCF_DO_STCLASS_AND;
3452 StructCopy(&this_class, data->start_class,
3453 struct regnode_charclass_class);
3454 flags |= SCF_DO_STCLASS_OR;
3455 data->start_class->flags |= ANYOF_EOS;
3457 } else { /* Non-zero len */
3458 if (flags & SCF_DO_STCLASS_OR) {
3459 cl_or(pRExC_state, data->start_class, &this_class);
3460 cl_and(data->start_class, and_withp);
3462 else if (flags & SCF_DO_STCLASS_AND)
3463 cl_and(data->start_class, &this_class);
3464 flags &= ~SCF_DO_STCLASS;
3466 if (!scan) /* It was not CURLYX, but CURLY. */
3468 if ( /* ? quantifier ok, except for (?{ ... }) */
3469 (next_is_eval || !(mincount == 0 && maxcount == 1))
3470 && (minnext == 0) && (deltanext == 0)
3471 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3472 && maxcount <= REG_INFTY/3) /* Complement check for big count */
3474 ckWARNreg(RExC_parse,
3475 "Quantifier unexpected on zero-length expression");
3478 min += minnext * mincount;
3479 is_inf_internal |= ((maxcount == REG_INFTY
3480 && (minnext + deltanext) > 0)
3481 || deltanext == I32_MAX);
3482 is_inf |= is_inf_internal;
3483 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3485 /* Try powerful optimization CURLYX => CURLYN. */
3486 if ( OP(oscan) == CURLYX && data
3487 && data->flags & SF_IN_PAR
3488 && !(data->flags & SF_HAS_EVAL)
3489 && !deltanext && minnext == 1 ) {
3490 /* Try to optimize to CURLYN. */
3491 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3492 regnode * const nxt1 = nxt;
3499 if (!REGNODE_SIMPLE(OP(nxt))
3500 && !(PL_regkind[OP(nxt)] == EXACT
3501 && STR_LEN(nxt) == 1))
3507 if (OP(nxt) != CLOSE)
3509 if (RExC_open_parens) {
3510 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3511 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3513 /* Now we know that nxt2 is the only contents: */
3514 oscan->flags = (U8)ARG(nxt);
3516 OP(nxt1) = NOTHING; /* was OPEN. */
3519 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3520 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
3521 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
3522 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3523 OP(nxt + 1) = OPTIMIZED; /* was count. */
3524 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
3529 /* Try optimization CURLYX => CURLYM. */
3530 if ( OP(oscan) == CURLYX && data
3531 && !(data->flags & SF_HAS_PAR)
3532 && !(data->flags & SF_HAS_EVAL)
3533 && !deltanext /* atom is fixed width */
3534 && minnext != 0 /* CURLYM can't handle zero width */
3536 /* XXXX How to optimize if data == 0? */
3537 /* Optimize to a simpler form. */
3538 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3542 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3543 && (OP(nxt2) != WHILEM))
3545 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3546 /* Need to optimize away parenths. */
3547 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
3548 /* Set the parenth number. */
3549 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3551 oscan->flags = (U8)ARG(nxt);
3552 if (RExC_open_parens) {
3553 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3554 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3556 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3557 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3560 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3561 OP(nxt + 1) = OPTIMIZED; /* was count. */
3562 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
3563 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
3566 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3567 regnode *nnxt = regnext(nxt1);
3569 if (reg_off_by_arg[OP(nxt1)])
3570 ARG_SET(nxt1, nxt2 - nxt1);
3571 else if (nxt2 - nxt1 < U16_MAX)
3572 NEXT_OFF(nxt1) = nxt2 - nxt1;
3574 OP(nxt) = NOTHING; /* Cannot beautify */
3579 /* Optimize again: */
3580 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
3581 NULL, stopparen, recursed, NULL, 0,depth+1);
3586 else if ((OP(oscan) == CURLYX)
3587 && (flags & SCF_WHILEM_VISITED_POS)
3588 /* See the comment on a similar expression above.
3589 However, this time it's not a subexpression
3590 we care about, but the expression itself. */
3591 && (maxcount == REG_INFTY)
3592 && data && ++data->whilem_c < 16) {
3593 /* This stays as CURLYX, we can put the count/of pair. */
3594 /* Find WHILEM (as in regexec.c) */
3595 regnode *nxt = oscan + NEXT_OFF(oscan);
3597 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
3599 PREVOPER(nxt)->flags = (U8)(data->whilem_c
3600 | (RExC_whilem_seen << 4)); /* On WHILEM */
3602 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
3604 if (flags & SCF_DO_SUBSTR) {
3605 SV *last_str = NULL;
3606 int counted = mincount != 0;
3608 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
3609 #if defined(SPARC64_GCC_WORKAROUND)
3612 const char *s = NULL;
3615 if (pos_before >= data->last_start_min)
3618 b = data->last_start_min;
3621 s = SvPV_const(data->last_found, l);
3622 old = b - data->last_start_min;
3625 I32 b = pos_before >= data->last_start_min
3626 ? pos_before : data->last_start_min;
3628 const char * const s = SvPV_const(data->last_found, l);
3629 I32 old = b - data->last_start_min;
3633 old = utf8_hop((U8*)s, old) - (U8*)s;
3635 /* Get the added string: */
3636 last_str = newSVpvn_utf8(s + old, l, UTF);
3637 if (deltanext == 0 && pos_before == b) {
3638 /* What was added is a constant string */
3640 SvGROW(last_str, (mincount * l) + 1);
3641 repeatcpy(SvPVX(last_str) + l,
3642 SvPVX_const(last_str), l, mincount - 1);
3643 SvCUR_set(last_str, SvCUR(last_str) * mincount);
3644 /* Add additional parts. */
3645 SvCUR_set(data->last_found,
3646 SvCUR(data->last_found) - l);
3647 sv_catsv(data->last_found, last_str);
3649 SV * sv = data->last_found;
3651 SvUTF8(sv) && SvMAGICAL(sv) ?
3652 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3653 if (mg && mg->mg_len >= 0)
3654 mg->mg_len += CHR_SVLEN(last_str) - l;
3656 data->last_end += l * (mincount - 1);
3659 /* start offset must point into the last copy */
3660 data->last_start_min += minnext * (mincount - 1);
3661 data->last_start_max += is_inf ? I32_MAX
3662 : (maxcount - 1) * (minnext + data->pos_delta);
3665 /* It is counted once already... */
3666 data->pos_min += minnext * (mincount - counted);
3667 data->pos_delta += - counted * deltanext +
3668 (minnext + deltanext) * maxcount - minnext * mincount;
3669 if (mincount != maxcount) {
3670 /* Cannot extend fixed substrings found inside
3672 SCAN_COMMIT(pRExC_state,data,minlenp);
3673 if (mincount && last_str) {
3674 SV * const sv = data->last_found;
3675 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3676 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3680 sv_setsv(sv, last_str);
3681 data->last_end = data->pos_min;
3682 data->last_start_min =
3683 data->pos_min - CHR_SVLEN(last_str);
3684 data->last_start_max = is_inf
3686 : data->pos_min + data->pos_delta
3687 - CHR_SVLEN(last_str);
3689 data->longest = &(data->longest_float);
3691 SvREFCNT_dec(last_str);
3693 if (data && (fl & SF_HAS_EVAL))
3694 data->flags |= SF_HAS_EVAL;
3695 optimize_curly_tail:
3696 if (OP(oscan) != CURLYX) {
3697 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
3699 NEXT_OFF(oscan) += NEXT_OFF(next);
3702 default: /* REF, ANYOFV, and CLUMP only? */
3703 if (flags & SCF_DO_SUBSTR) {
3704 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3705 data->longest = &(data->longest_float);
3707 is_inf = is_inf_internal = 1;
3708 if (flags & SCF_DO_STCLASS_OR)
3709 cl_anything(pRExC_state, data->start_class);
3710 flags &= ~SCF_DO_STCLASS;
3714 else if (OP(scan) == LNBREAK) {
3715 if (flags & SCF_DO_STCLASS) {
3717 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3718 if (flags & SCF_DO_STCLASS_AND) {
3719 for (value = 0; value < 256; value++)
3720 if (!is_VERTWS_cp(value))
3721 ANYOF_BITMAP_CLEAR(data->start_class, value);
3724 for (value = 0; value < 256; value++)
3725 if (is_VERTWS_cp(value))
3726 ANYOF_BITMAP_SET(data->start_class, value);
3728 if (flags & SCF_DO_STCLASS_OR)
3729 cl_and(data->start_class, and_withp);
3730 flags &= ~SCF_DO_STCLASS;
3734 if (flags & SCF_DO_SUBSTR) {
3735 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3737 data->pos_delta += 1;
3738 data->longest = &(data->longest_float);
3741 else if (OP(scan) == FOLDCHAR) {
3742 int d = ARG(scan) == LATIN_SMALL_LETTER_SHARP_S ? 1 : 2;
3743 flags &= ~SCF_DO_STCLASS;
3746 if (flags & SCF_DO_SUBSTR) {
3747 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3749 data->pos_delta += d;
3750 data->longest = &(data->longest_float);
3753 else if (REGNODE_SIMPLE(OP(scan))) {
3756 if (flags & SCF_DO_SUBSTR) {
3757 SCAN_COMMIT(pRExC_state,data,minlenp);
3761 if (flags & SCF_DO_STCLASS) {
3762 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3764 /* Some of the logic below assumes that switching
3765 locale on will only add false positives. */
3766 switch (PL_regkind[OP(scan)]) {
3770 /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
3771 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3772 cl_anything(pRExC_state, data->start_class);
3775 if (OP(scan) == SANY)
3777 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
3778 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
3779 || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
3780 cl_anything(pRExC_state, data->start_class);
3782 if (flags & SCF_DO_STCLASS_AND || !value)
3783 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
3786 if (flags & SCF_DO_STCLASS_AND)
3787 cl_and(data->start_class,
3788 (struct regnode_charclass_class*)scan);
3790 cl_or(pRExC_state, data->start_class,
3791 (struct regnode_charclass_class*)scan);
3794 if (flags & SCF_DO_STCLASS_AND) {
3795 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3796 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
3797 if (OP(scan) == ALNUMU) {
3798 for (value = 0; value < 256; value++) {
3799 if (!isWORDCHAR_L1(value)) {
3800 ANYOF_BITMAP_CLEAR(data->start_class, value);
3804 for (value = 0; value < 256; value++) {
3805 if (!isALNUM(value)) {
3806 ANYOF_BITMAP_CLEAR(data->start_class, value);
3813 if (data->start_class->flags & ANYOF_LOCALE)
3814 ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
3816 /* Even if under locale, set the bits for non-locale
3817 * in case it isn't a true locale-node. This will
3818 * create false positives if it truly is locale */
3819 if (OP(scan) == ALNUMU) {
3820 for (value = 0; value < 256; value++) {
3821 if (isWORDCHAR_L1(value)) {
3822 ANYOF_BITMAP_SET(data->start_class, value);
3826 for (value = 0; value < 256; value++) {
3827 if (isALNUM(value)) {
3828 ANYOF_BITMAP_SET(data->start_class, value);
3835 if (flags & SCF_DO_STCLASS_AND) {
3836 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3837 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
3838 if (OP(scan) == NALNUMU) {
3839 for (value = 0; value < 256; value++) {
3840 if (isWORDCHAR_L1(value)) {
3841 ANYOF_BITMAP_CLEAR(data->start_class, value);
3845 for (value = 0; value < 256; value++) {
3846 if (isALNUM(value)) {
3847 ANYOF_BITMAP_CLEAR(data->start_class, value);