3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
36 # if __STDC_VERSION__ >= 199901L && !defined(VMS)
47 /* Missing proto on LynxOS */
48 char *gconvert(double, int, int, char *);
51 #ifdef PERL_UTF8_CACHE_ASSERT
52 /* if adding more checks watch out for the following tests:
53 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
54 * lib/utf8.t lib/Unicode/Collate/t/index.t
57 # define ASSERT_UTF8_CACHE(cache) \
58 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
59 assert((cache)[2] <= (cache)[3]); \
60 assert((cache)[3] <= (cache)[1]);} \
63 # define ASSERT_UTF8_CACHE(cache) NOOP
66 #ifdef PERL_OLD_COPY_ON_WRITE
67 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
68 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
71 /* ============================================================================
73 =head1 Allocation and deallocation of SVs.
75 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
76 sv, av, hv...) contains type and reference count information, and for
77 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
78 contains fields specific to each type. Some types store all they need
79 in the head, so don't have a body.
81 In all but the most memory-paranoid configurations (ex: PURIFY), heads
82 and bodies are allocated out of arenas, which by default are
83 approximately 4K chunks of memory parcelled up into N heads or bodies.
84 Sv-bodies are allocated by their sv-type, guaranteeing size
85 consistency needed to allocate safely from arrays.
87 For SV-heads, the first slot in each arena is reserved, and holds a
88 link to the next arena, some flags, and a note of the number of slots.
89 Snaked through each arena chain is a linked list of free items; when
90 this becomes empty, an extra arena is allocated and divided up into N
91 items which are threaded into the free list.
93 SV-bodies are similar, but they use arena-sets by default, which
94 separate the link and info from the arena itself, and reclaim the 1st
95 slot in the arena. SV-bodies are further described later.
97 The following global variables are associated with arenas:
99 PL_sv_arenaroot pointer to list of SV arenas
100 PL_sv_root pointer to list of free SV structures
102 PL_body_arenas head of linked-list of body arenas
103 PL_body_roots[] array of pointers to list of free bodies of svtype
104 arrays are indexed by the svtype needed
106 A few special SV heads are not allocated from an arena, but are
107 instead directly created in the interpreter structure, eg PL_sv_undef.
108 The size of arenas can be changed from the default by setting
109 PERL_ARENA_SIZE appropriately at compile time.
111 The SV arena serves the secondary purpose of allowing still-live SVs
112 to be located and destroyed during final cleanup.
114 At the lowest level, the macros new_SV() and del_SV() grab and free
115 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
116 to return the SV to the free list with error checking.) new_SV() calls
117 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
118 SVs in the free list have their SvTYPE field set to all ones.
120 At the time of very final cleanup, sv_free_arenas() is called from
121 perl_destruct() to physically free all the arenas allocated since the
122 start of the interpreter.
124 The function visit() scans the SV arenas list, and calls a specified
125 function for each SV it finds which is still live - ie which has an SvTYPE
126 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
127 following functions (specified as [function that calls visit()] / [function
128 called by visit() for each SV]):
130 sv_report_used() / do_report_used()
131 dump all remaining SVs (debugging aid)
133 sv_clean_objs() / do_clean_objs(),do_clean_named_objs(),
134 do_clean_named_io_objs(),do_curse()
135 Attempt to free all objects pointed to by RVs,
136 try to do the same for all objects indir-
137 ectly referenced by typeglobs too, and
138 then do a final sweep, cursing any
139 objects that remain. Called once from
140 perl_destruct(), prior to calling sv_clean_all()
143 sv_clean_all() / do_clean_all()
144 SvREFCNT_dec(sv) each remaining SV, possibly
145 triggering an sv_free(). It also sets the
146 SVf_BREAK flag on the SV to indicate that the
147 refcnt has been artificially lowered, and thus
148 stopping sv_free() from giving spurious warnings
149 about SVs which unexpectedly have a refcnt
150 of zero. called repeatedly from perl_destruct()
151 until there are no SVs left.
153 =head2 Arena allocator API Summary
155 Private API to rest of sv.c
159 new_XPVNV(), del_XPVGV(),
164 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
168 * ========================================================================= */
171 * "A time to plant, and a time to uproot what was planted..."
175 # define MEM_LOG_NEW_SV(sv, file, line, func) \
176 Perl_mem_log_new_sv(sv, file, line, func)
177 # define MEM_LOG_DEL_SV(sv, file, line, func) \
178 Perl_mem_log_del_sv(sv, file, line, func)
180 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
181 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
184 #ifdef DEBUG_LEAKING_SCALARS
185 # define FREE_SV_DEBUG_FILE(sv) STMT_START { \
186 if ((sv)->sv_debug_file) PerlMemShared_free((sv)->sv_debug_file); \
188 # define DEBUG_SV_SERIAL(sv) \
189 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
190 PTR2UV(sv), (long)(sv)->sv_debug_serial))
192 # define FREE_SV_DEBUG_FILE(sv)
193 # define DEBUG_SV_SERIAL(sv) NOOP
197 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
198 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
199 /* Whilst I'd love to do this, it seems that things like to check on
201 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
203 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
204 PoisonNew(&SvREFCNT(sv), 1, U32)
206 # define SvARENA_CHAIN(sv) SvANY(sv)
207 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
208 # define POSION_SV_HEAD(sv)
211 /* Mark an SV head as unused, and add to free list.
213 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
214 * its refcount artificially decremented during global destruction, so
215 * there may be dangling pointers to it. The last thing we want in that
216 * case is for it to be reused. */
218 #define plant_SV(p) \
220 const U32 old_flags = SvFLAGS(p); \
221 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
222 DEBUG_SV_SERIAL(p); \
223 FREE_SV_DEBUG_FILE(p); \
225 SvFLAGS(p) = SVTYPEMASK; \
226 if (!(old_flags & SVf_BREAK)) { \
227 SvARENA_CHAIN_SET(p, PL_sv_root); \
233 #define uproot_SV(p) \
236 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
241 /* make some more SVs by adding another arena */
248 char *chunk; /* must use New here to match call to */
249 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
250 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
255 /* new_SV(): return a new, empty SV head */
257 #ifdef DEBUG_LEAKING_SCALARS
258 /* provide a real function for a debugger to play with */
260 S_new_SV(pTHX_ const char *file, int line, const char *func)
267 sv = S_more_sv(aTHX);
271 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
272 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
278 sv->sv_debug_inpad = 0;
279 sv->sv_debug_parent = NULL;
280 sv->sv_debug_file = PL_curcop ? savesharedpv(CopFILE(PL_curcop)): NULL;
282 sv->sv_debug_serial = PL_sv_serial++;
284 MEM_LOG_NEW_SV(sv, file, line, func);
285 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
286 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
290 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
298 (p) = S_more_sv(aTHX); \
302 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
307 /* del_SV(): return an empty SV head to the free list */
320 S_del_sv(pTHX_ SV *p)
324 PERL_ARGS_ASSERT_DEL_SV;
329 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
330 const SV * const sv = sva + 1;
331 const SV * const svend = &sva[SvREFCNT(sva)];
332 if (p >= sv && p < svend) {
338 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
339 "Attempt to free non-arena SV: 0x%"UVxf
340 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
347 #else /* ! DEBUGGING */
349 #define del_SV(p) plant_SV(p)
351 #endif /* DEBUGGING */
355 =head1 SV Manipulation Functions
357 =for apidoc sv_add_arena
359 Given a chunk of memory, link it to the head of the list of arenas,
360 and split it into a list of free SVs.
366 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
369 SV *const sva = MUTABLE_SV(ptr);
373 PERL_ARGS_ASSERT_SV_ADD_ARENA;
375 /* The first SV in an arena isn't an SV. */
376 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
377 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
378 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
380 PL_sv_arenaroot = sva;
381 PL_sv_root = sva + 1;
383 svend = &sva[SvREFCNT(sva) - 1];
386 SvARENA_CHAIN_SET(sv, (sv + 1));
390 /* Must always set typemask because it's always checked in on cleanup
391 when the arenas are walked looking for objects. */
392 SvFLAGS(sv) = SVTYPEMASK;
395 SvARENA_CHAIN_SET(sv, 0);
399 SvFLAGS(sv) = SVTYPEMASK;
402 /* visit(): call the named function for each non-free SV in the arenas
403 * whose flags field matches the flags/mask args. */
406 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
412 PERL_ARGS_ASSERT_VISIT;
414 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
415 const SV * const svend = &sva[SvREFCNT(sva)];
417 for (sv = sva + 1; sv < svend; ++sv) {
418 if (SvTYPE(sv) != (svtype)SVTYPEMASK
419 && (sv->sv_flags & mask) == flags
432 /* called by sv_report_used() for each live SV */
435 do_report_used(pTHX_ SV *const sv)
437 if (SvTYPE(sv) != (svtype)SVTYPEMASK) {
438 PerlIO_printf(Perl_debug_log, "****\n");
445 =for apidoc sv_report_used
447 Dump the contents of all SVs not yet freed (debugging aid).
453 Perl_sv_report_used(pTHX)
456 visit(do_report_used, 0, 0);
462 /* called by sv_clean_objs() for each live SV */
465 do_clean_objs(pTHX_ SV *const ref)
470 SV * const target = SvRV(ref);
471 if (SvOBJECT(target)) {
472 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
473 if (SvWEAKREF(ref)) {
474 sv_del_backref(target, ref);
480 SvREFCNT_dec_NN(target);
487 /* clear any slots in a GV which hold objects - except IO;
488 * called by sv_clean_objs() for each live GV */
491 do_clean_named_objs(pTHX_ SV *const sv)
495 assert(SvTYPE(sv) == SVt_PVGV);
496 assert(isGV_with_GP(sv));
500 /* freeing GP entries may indirectly free the current GV;
501 * hold onto it while we mess with the GP slots */
504 if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) {
505 DEBUG_D((PerlIO_printf(Perl_debug_log,
506 "Cleaning named glob SV object:\n "), sv_dump(obj)));
508 SvREFCNT_dec_NN(obj);
510 if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) {
511 DEBUG_D((PerlIO_printf(Perl_debug_log,
512 "Cleaning named glob AV object:\n "), sv_dump(obj)));
514 SvREFCNT_dec_NN(obj);
516 if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) {
517 DEBUG_D((PerlIO_printf(Perl_debug_log,
518 "Cleaning named glob HV object:\n "), sv_dump(obj)));
520 SvREFCNT_dec_NN(obj);
522 if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) {
523 DEBUG_D((PerlIO_printf(Perl_debug_log,
524 "Cleaning named glob CV object:\n "), sv_dump(obj)));
526 SvREFCNT_dec_NN(obj);
528 SvREFCNT_dec_NN(sv); /* undo the inc above */
531 /* clear any IO slots in a GV which hold objects (except stderr, defout);
532 * called by sv_clean_objs() for each live GV */
535 do_clean_named_io_objs(pTHX_ SV *const sv)
539 assert(SvTYPE(sv) == SVt_PVGV);
540 assert(isGV_with_GP(sv));
541 if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv)
545 if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) {
546 DEBUG_D((PerlIO_printf(Perl_debug_log,
547 "Cleaning named glob IO object:\n "), sv_dump(obj)));
549 SvREFCNT_dec_NN(obj);
551 SvREFCNT_dec_NN(sv); /* undo the inc above */
554 /* Void wrapper to pass to visit() */
556 do_curse(pTHX_ SV * const sv) {
557 if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv)
558 || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv))
564 =for apidoc sv_clean_objs
566 Attempt to destroy all objects not yet freed.
572 Perl_sv_clean_objs(pTHX)
576 PL_in_clean_objs = TRUE;
577 visit(do_clean_objs, SVf_ROK, SVf_ROK);
578 /* Some barnacles may yet remain, clinging to typeglobs.
579 * Run the non-IO destructors first: they may want to output
580 * error messages, close files etc */
581 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
582 visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
583 /* And if there are some very tenacious barnacles clinging to arrays,
584 closures, or what have you.... */
585 visit(do_curse, SVs_OBJECT, SVs_OBJECT);
586 olddef = PL_defoutgv;
587 PL_defoutgv = NULL; /* disable skip of PL_defoutgv */
588 if (olddef && isGV_with_GP(olddef))
589 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef));
590 olderr = PL_stderrgv;
591 PL_stderrgv = NULL; /* disable skip of PL_stderrgv */
592 if (olderr && isGV_with_GP(olderr))
593 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr));
594 SvREFCNT_dec(olddef);
595 PL_in_clean_objs = FALSE;
598 /* called by sv_clean_all() for each live SV */
601 do_clean_all(pTHX_ SV *const sv)
604 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
605 /* don't clean pid table and strtab */
608 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
609 SvFLAGS(sv) |= SVf_BREAK;
614 =for apidoc sv_clean_all
616 Decrement the refcnt of each remaining SV, possibly triggering a
617 cleanup. This function may have to be called multiple times to free
618 SVs which are in complex self-referential hierarchies.
624 Perl_sv_clean_all(pTHX)
628 PL_in_clean_all = TRUE;
629 cleaned = visit(do_clean_all, 0,0);
634 ARENASETS: a meta-arena implementation which separates arena-info
635 into struct arena_set, which contains an array of struct
636 arena_descs, each holding info for a single arena. By separating
637 the meta-info from the arena, we recover the 1st slot, formerly
638 borrowed for list management. The arena_set is about the size of an
639 arena, avoiding the needless malloc overhead of a naive linked-list.
641 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
642 memory in the last arena-set (1/2 on average). In trade, we get
643 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
644 smaller types). The recovery of the wasted space allows use of
645 small arenas for large, rare body types, by changing array* fields
646 in body_details_by_type[] below.
649 char *arena; /* the raw storage, allocated aligned */
650 size_t size; /* its size ~4k typ */
651 svtype utype; /* bodytype stored in arena */
656 /* Get the maximum number of elements in set[] such that struct arena_set
657 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
658 therefore likely to be 1 aligned memory page. */
660 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
661 - 2 * sizeof(int)) / sizeof (struct arena_desc))
664 struct arena_set* next;
665 unsigned int set_size; /* ie ARENAS_PER_SET */
666 unsigned int curr; /* index of next available arena-desc */
667 struct arena_desc set[ARENAS_PER_SET];
671 =for apidoc sv_free_arenas
673 Deallocate the memory used by all arenas. Note that all the individual SV
674 heads and bodies within the arenas must already have been freed.
679 Perl_sv_free_arenas(pTHX)
686 /* Free arenas here, but be careful about fake ones. (We assume
687 contiguity of the fake ones with the corresponding real ones.) */
689 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
690 svanext = MUTABLE_SV(SvANY(sva));
691 while (svanext && SvFAKE(svanext))
692 svanext = MUTABLE_SV(SvANY(svanext));
699 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
702 struct arena_set *current = aroot;
705 assert(aroot->set[i].arena);
706 Safefree(aroot->set[i].arena);
714 i = PERL_ARENA_ROOTS_SIZE;
716 PL_body_roots[i] = 0;
723 Here are mid-level routines that manage the allocation of bodies out
724 of the various arenas. There are 5 kinds of arenas:
726 1. SV-head arenas, which are discussed and handled above
727 2. regular body arenas
728 3. arenas for reduced-size bodies
731 Arena types 2 & 3 are chained by body-type off an array of
732 arena-root pointers, which is indexed by svtype. Some of the
733 larger/less used body types are malloced singly, since a large
734 unused block of them is wasteful. Also, several svtypes dont have
735 bodies; the data fits into the sv-head itself. The arena-root
736 pointer thus has a few unused root-pointers (which may be hijacked
737 later for arena types 4,5)
739 3 differs from 2 as an optimization; some body types have several
740 unused fields in the front of the structure (which are kept in-place
741 for consistency). These bodies can be allocated in smaller chunks,
742 because the leading fields arent accessed. Pointers to such bodies
743 are decremented to point at the unused 'ghost' memory, knowing that
744 the pointers are used with offsets to the real memory.
747 =head1 SV-Body Allocation
749 Allocation of SV-bodies is similar to SV-heads, differing as follows;
750 the allocation mechanism is used for many body types, so is somewhat
751 more complicated, it uses arena-sets, and has no need for still-live
754 At the outermost level, (new|del)_X*V macros return bodies of the
755 appropriate type. These macros call either (new|del)_body_type or
756 (new|del)_body_allocated macro pairs, depending on specifics of the
757 type. Most body types use the former pair, the latter pair is used to
758 allocate body types with "ghost fields".
760 "ghost fields" are fields that are unused in certain types, and
761 consequently don't need to actually exist. They are declared because
762 they're part of a "base type", which allows use of functions as
763 methods. The simplest examples are AVs and HVs, 2 aggregate types
764 which don't use the fields which support SCALAR semantics.
766 For these types, the arenas are carved up into appropriately sized
767 chunks, we thus avoid wasted memory for those unaccessed members.
768 When bodies are allocated, we adjust the pointer back in memory by the
769 size of the part not allocated, so it's as if we allocated the full
770 structure. (But things will all go boom if you write to the part that
771 is "not there", because you'll be overwriting the last members of the
772 preceding structure in memory.)
774 We calculate the correction using the STRUCT_OFFSET macro on the first
775 member present. If the allocated structure is smaller (no initial NV
776 actually allocated) then the net effect is to subtract the size of the NV
777 from the pointer, to return a new pointer as if an initial NV were actually
778 allocated. (We were using structures named *_allocated for this, but
779 this turned out to be a subtle bug, because a structure without an NV
780 could have a lower alignment constraint, but the compiler is allowed to
781 optimised accesses based on the alignment constraint of the actual pointer
782 to the full structure, for example, using a single 64 bit load instruction
783 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
785 This is the same trick as was used for NV and IV bodies. Ironically it
786 doesn't need to be used for NV bodies any more, because NV is now at
787 the start of the structure. IV bodies don't need it either, because
788 they are no longer allocated.
790 In turn, the new_body_* allocators call S_new_body(), which invokes
791 new_body_inline macro, which takes a lock, and takes a body off the
792 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
793 necessary to refresh an empty list. Then the lock is released, and
794 the body is returned.
796 Perl_more_bodies allocates a new arena, and carves it up into an array of N
797 bodies, which it strings into a linked list. It looks up arena-size
798 and body-size from the body_details table described below, thus
799 supporting the multiple body-types.
801 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
802 the (new|del)_X*V macros are mapped directly to malloc/free.
804 For each sv-type, struct body_details bodies_by_type[] carries
805 parameters which control these aspects of SV handling:
807 Arena_size determines whether arenas are used for this body type, and if
808 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
809 zero, forcing individual mallocs and frees.
811 Body_size determines how big a body is, and therefore how many fit into
812 each arena. Offset carries the body-pointer adjustment needed for
813 "ghost fields", and is used in *_allocated macros.
815 But its main purpose is to parameterize info needed in
816 Perl_sv_upgrade(). The info here dramatically simplifies the function
817 vs the implementation in 5.8.8, making it table-driven. All fields
818 are used for this, except for arena_size.
820 For the sv-types that have no bodies, arenas are not used, so those
821 PL_body_roots[sv_type] are unused, and can be overloaded. In
822 something of a special case, SVt_NULL is borrowed for HE arenas;
823 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
824 bodies_by_type[SVt_NULL] slot is not used, as the table is not
829 struct body_details {
830 U8 body_size; /* Size to allocate */
831 U8 copy; /* Size of structure to copy (may be shorter) */
833 unsigned int type : 4; /* We have space for a sanity check. */
834 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
835 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
836 unsigned int arena : 1; /* Allocated from an arena */
837 size_t arena_size; /* Size of arena to allocate */
845 /* With -DPURFIY we allocate everything directly, and don't use arenas.
846 This seems a rather elegant way to simplify some of the code below. */
847 #define HASARENA FALSE
849 #define HASARENA TRUE
851 #define NOARENA FALSE
853 /* Size the arenas to exactly fit a given number of bodies. A count
854 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
855 simplifying the default. If count > 0, the arena is sized to fit
856 only that many bodies, allowing arenas to be used for large, rare
857 bodies (XPVFM, XPVIO) without undue waste. The arena size is
858 limited by PERL_ARENA_SIZE, so we can safely oversize the
861 #define FIT_ARENA0(body_size) \
862 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
863 #define FIT_ARENAn(count,body_size) \
864 ( count * body_size <= PERL_ARENA_SIZE) \
865 ? count * body_size \
866 : FIT_ARENA0 (body_size)
867 #define FIT_ARENA(count,body_size) \
869 ? FIT_ARENAn (count, body_size) \
870 : FIT_ARENA0 (body_size)
872 /* Calculate the length to copy. Specifically work out the length less any
873 final padding the compiler needed to add. See the comment in sv_upgrade
874 for why copying the padding proved to be a bug. */
876 #define copy_length(type, last_member) \
877 STRUCT_OFFSET(type, last_member) \
878 + sizeof (((type*)SvANY((const SV *)0))->last_member)
880 static const struct body_details bodies_by_type[] = {
881 /* HEs use this offset for their arena. */
882 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
884 /* The bind placeholder pretends to be an RV for now.
885 Also it's marked as "can't upgrade" to stop anyone using it before it's
887 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
889 /* IVs are in the head, so the allocation size is 0. */
891 sizeof(IV), /* This is used to copy out the IV body. */
892 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
893 NOARENA /* IVS don't need an arena */, 0
896 { sizeof(NV), sizeof(NV),
897 STRUCT_OFFSET(XPVNV, xnv_u),
898 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
900 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
901 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
902 + STRUCT_OFFSET(XPV, xpv_cur),
903 SVt_PV, FALSE, NONV, HASARENA,
904 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
906 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
907 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
908 + STRUCT_OFFSET(XPV, xpv_cur),
909 SVt_PVIV, FALSE, NONV, HASARENA,
910 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
912 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
913 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
914 + STRUCT_OFFSET(XPV, xpv_cur),
915 SVt_PVNV, FALSE, HADNV, HASARENA,
916 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
918 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
919 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
924 SVt_REGEXP, FALSE, NONV, HASARENA,
925 FIT_ARENA(0, sizeof(regexp))
928 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
929 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
931 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
932 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
935 copy_length(XPVAV, xav_alloc),
937 SVt_PVAV, TRUE, NONV, HASARENA,
938 FIT_ARENA(0, sizeof(XPVAV)) },
941 copy_length(XPVHV, xhv_max),
943 SVt_PVHV, TRUE, NONV, HASARENA,
944 FIT_ARENA(0, sizeof(XPVHV)) },
949 SVt_PVCV, TRUE, NONV, HASARENA,
950 FIT_ARENA(0, sizeof(XPVCV)) },
955 SVt_PVFM, TRUE, NONV, NOARENA,
956 FIT_ARENA(20, sizeof(XPVFM)) },
961 SVt_PVIO, TRUE, NONV, HASARENA,
962 FIT_ARENA(24, sizeof(XPVIO)) },
965 #define new_body_allocated(sv_type) \
966 (void *)((char *)S_new_body(aTHX_ sv_type) \
967 - bodies_by_type[sv_type].offset)
969 /* return a thing to the free list */
971 #define del_body(thing, root) \
973 void ** const thing_copy = (void **)thing; \
974 *thing_copy = *root; \
975 *root = (void*)thing_copy; \
980 #define new_XNV() safemalloc(sizeof(XPVNV))
981 #define new_XPVNV() safemalloc(sizeof(XPVNV))
982 #define new_XPVMG() safemalloc(sizeof(XPVMG))
984 #define del_XPVGV(p) safefree(p)
988 #define new_XNV() new_body_allocated(SVt_NV)
989 #define new_XPVNV() new_body_allocated(SVt_PVNV)
990 #define new_XPVMG() new_body_allocated(SVt_PVMG)
992 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
993 &PL_body_roots[SVt_PVGV])
997 /* no arena for you! */
999 #define new_NOARENA(details) \
1000 safemalloc((details)->body_size + (details)->offset)
1001 #define new_NOARENAZ(details) \
1002 safecalloc((details)->body_size + (details)->offset, 1)
1005 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
1006 const size_t arena_size)
1009 void ** const root = &PL_body_roots[sv_type];
1010 struct arena_desc *adesc;
1011 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
1015 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
1016 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1017 static bool done_sanity_check;
1019 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1020 * variables like done_sanity_check. */
1021 if (!done_sanity_check) {
1022 unsigned int i = SVt_LAST;
1024 done_sanity_check = TRUE;
1027 assert (bodies_by_type[i].type == i);
1033 /* may need new arena-set to hold new arena */
1034 if (!aroot || aroot->curr >= aroot->set_size) {
1035 struct arena_set *newroot;
1036 Newxz(newroot, 1, struct arena_set);
1037 newroot->set_size = ARENAS_PER_SET;
1038 newroot->next = aroot;
1040 PL_body_arenas = (void *) newroot;
1041 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
1044 /* ok, now have arena-set with at least 1 empty/available arena-desc */
1045 curr = aroot->curr++;
1046 adesc = &(aroot->set[curr]);
1047 assert(!adesc->arena);
1049 Newx(adesc->arena, good_arena_size, char);
1050 adesc->size = good_arena_size;
1051 adesc->utype = sv_type;
1052 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
1053 curr, (void*)adesc->arena, (UV)good_arena_size));
1055 start = (char *) adesc->arena;
1057 /* Get the address of the byte after the end of the last body we can fit.
1058 Remember, this is integer division: */
1059 end = start + good_arena_size / body_size * body_size;
1061 /* computed count doesn't reflect the 1st slot reservation */
1062 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1063 DEBUG_m(PerlIO_printf(Perl_debug_log,
1064 "arena %p end %p arena-size %d (from %d) type %d "
1066 (void*)start, (void*)end, (int)good_arena_size,
1067 (int)arena_size, sv_type, (int)body_size,
1068 (int)good_arena_size / (int)body_size));
1070 DEBUG_m(PerlIO_printf(Perl_debug_log,
1071 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1072 (void*)start, (void*)end,
1073 (int)arena_size, sv_type, (int)body_size,
1074 (int)good_arena_size / (int)body_size));
1076 *root = (void *)start;
1079 /* Where the next body would start: */
1080 char * const next = start + body_size;
1083 /* This is the last body: */
1084 assert(next == end);
1086 *(void **)start = 0;
1090 *(void**) start = (void *)next;
1095 /* grab a new thing from the free list, allocating more if necessary.
1096 The inline version is used for speed in hot routines, and the
1097 function using it serves the rest (unless PURIFY).
1099 #define new_body_inline(xpv, sv_type) \
1101 void ** const r3wt = &PL_body_roots[sv_type]; \
1102 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1103 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1104 bodies_by_type[sv_type].body_size,\
1105 bodies_by_type[sv_type].arena_size)); \
1106 *(r3wt) = *(void**)(xpv); \
1112 S_new_body(pTHX_ const svtype sv_type)
1116 new_body_inline(xpv, sv_type);
1122 static const struct body_details fake_rv =
1123 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1126 =for apidoc sv_upgrade
1128 Upgrade an SV to a more complex form. Generally adds a new body type to the
1129 SV, then copies across as much information as possible from the old body.
1130 It croaks if the SV is already in a more complex form than requested. You
1131 generally want to use the C<SvUPGRADE> macro wrapper, which checks the type
1132 before calling C<sv_upgrade>, and hence does not croak. See also
1139 Perl_sv_upgrade(pTHX_ SV *const sv, svtype new_type)
1144 const svtype old_type = SvTYPE(sv);
1145 const struct body_details *new_type_details;
1146 const struct body_details *old_type_details
1147 = bodies_by_type + old_type;
1148 SV *referant = NULL;
1150 PERL_ARGS_ASSERT_SV_UPGRADE;
1152 if (old_type == new_type)
1155 /* This clause was purposefully added ahead of the early return above to
1156 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1157 inference by Nick I-S that it would fix other troublesome cases. See
1158 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1160 Given that shared hash key scalars are no longer PVIV, but PV, there is
1161 no longer need to unshare so as to free up the IVX slot for its proper
1162 purpose. So it's safe to move the early return earlier. */
1164 if (new_type > SVt_PVMG && SvIsCOW(sv)) {
1165 sv_force_normal_flags(sv, 0);
1168 old_body = SvANY(sv);
1170 /* Copying structures onto other structures that have been neatly zeroed
1171 has a subtle gotcha. Consider XPVMG
1173 +------+------+------+------+------+-------+-------+
1174 | NV | CUR | LEN | IV | MAGIC | STASH |
1175 +------+------+------+------+------+-------+-------+
1176 0 4 8 12 16 20 24 28
1178 where NVs are aligned to 8 bytes, so that sizeof that structure is
1179 actually 32 bytes long, with 4 bytes of padding at the end:
1181 +------+------+------+------+------+-------+-------+------+
1182 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1183 +------+------+------+------+------+-------+-------+------+
1184 0 4 8 12 16 20 24 28 32
1186 so what happens if you allocate memory for this structure:
1188 +------+------+------+------+------+-------+-------+------+------+...
1189 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1190 +------+------+------+------+------+-------+-------+------+------+...
1191 0 4 8 12 16 20 24 28 32 36
1193 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1194 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1195 started out as zero once, but it's quite possible that it isn't. So now,
1196 rather than a nicely zeroed GP, you have it pointing somewhere random.
1199 (In fact, GP ends up pointing at a previous GP structure, because the
1200 principle cause of the padding in XPVMG getting garbage is a copy of
1201 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1202 this happens to be moot because XPVGV has been re-ordered, with GP
1203 no longer after STASH)
1205 So we are careful and work out the size of used parts of all the
1213 referant = SvRV(sv);
1214 old_type_details = &fake_rv;
1215 if (new_type == SVt_NV)
1216 new_type = SVt_PVNV;
1218 if (new_type < SVt_PVIV) {
1219 new_type = (new_type == SVt_NV)
1220 ? SVt_PVNV : SVt_PVIV;
1225 if (new_type < SVt_PVNV) {
1226 new_type = SVt_PVNV;
1230 assert(new_type > SVt_PV);
1231 assert(SVt_IV < SVt_PV);
1232 assert(SVt_NV < SVt_PV);
1239 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1240 there's no way that it can be safely upgraded, because perl.c
1241 expects to Safefree(SvANY(PL_mess_sv)) */
1242 assert(sv != PL_mess_sv);
1243 /* This flag bit is used to mean other things in other scalar types.
1244 Given that it only has meaning inside the pad, it shouldn't be set
1245 on anything that can get upgraded. */
1246 assert(!SvPAD_TYPED(sv));
1249 if (old_type_details->cant_upgrade)
1250 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1251 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1254 if (old_type > new_type)
1255 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1256 (int)old_type, (int)new_type);
1258 new_type_details = bodies_by_type + new_type;
1260 SvFLAGS(sv) &= ~SVTYPEMASK;
1261 SvFLAGS(sv) |= new_type;
1263 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1264 the return statements above will have triggered. */
1265 assert (new_type != SVt_NULL);
1268 assert(old_type == SVt_NULL);
1269 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1273 assert(old_type == SVt_NULL);
1274 SvANY(sv) = new_XNV();
1279 assert(new_type_details->body_size);
1282 assert(new_type_details->arena);
1283 assert(new_type_details->arena_size);
1284 /* This points to the start of the allocated area. */
1285 new_body_inline(new_body, new_type);
1286 Zero(new_body, new_type_details->body_size, char);
1287 new_body = ((char *)new_body) - new_type_details->offset;
1289 /* We always allocated the full length item with PURIFY. To do this
1290 we fake things so that arena is false for all 16 types.. */
1291 new_body = new_NOARENAZ(new_type_details);
1293 SvANY(sv) = new_body;
1294 if (new_type == SVt_PVAV) {
1298 if (old_type_details->body_size) {
1301 /* It will have been zeroed when the new body was allocated.
1302 Lets not write to it, in case it confuses a write-back
1308 #ifndef NODEFAULT_SHAREKEYS
1309 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1311 HvMAX(sv) = 7; /* (start with 8 buckets) */
1314 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1315 The target created by newSVrv also is, and it can have magic.
1316 However, it never has SvPVX set.
1318 if (old_type == SVt_IV) {
1320 } else if (old_type >= SVt_PV) {
1321 assert(SvPVX_const(sv) == 0);
1324 if (old_type >= SVt_PVMG) {
1325 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1326 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1328 sv->sv_u.svu_array = NULL; /* or svu_hash */
1333 /* XXX Is this still needed? Was it ever needed? Surely as there is
1334 no route from NV to PVIV, NOK can never be true */
1335 assert(!SvNOKp(sv));
1347 assert(new_type_details->body_size);
1348 /* We always allocated the full length item with PURIFY. To do this
1349 we fake things so that arena is false for all 16 types.. */
1350 if(new_type_details->arena) {
1351 /* This points to the start of the allocated area. */
1352 new_body_inline(new_body, new_type);
1353 Zero(new_body, new_type_details->body_size, char);
1354 new_body = ((char *)new_body) - new_type_details->offset;
1356 new_body = new_NOARENAZ(new_type_details);
1358 SvANY(sv) = new_body;
1360 if (old_type_details->copy) {
1361 /* There is now the potential for an upgrade from something without
1362 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1363 int offset = old_type_details->offset;
1364 int length = old_type_details->copy;
1366 if (new_type_details->offset > old_type_details->offset) {
1367 const int difference
1368 = new_type_details->offset - old_type_details->offset;
1369 offset += difference;
1370 length -= difference;
1372 assert (length >= 0);
1374 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1378 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1379 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1380 * correct 0.0 for us. Otherwise, if the old body didn't have an
1381 * NV slot, but the new one does, then we need to initialise the
1382 * freshly created NV slot with whatever the correct bit pattern is
1384 if (old_type_details->zero_nv && !new_type_details->zero_nv
1385 && !isGV_with_GP(sv))
1389 if (new_type == SVt_PVIO) {
1390 IO * const io = MUTABLE_IO(sv);
1391 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1394 /* Clear the stashcache because a new IO could overrule a package
1396 DEBUG_o(Perl_deb(aTHX_ "sv_upgrade clearing PL_stashcache\n"));
1397 hv_clear(PL_stashcache);
1399 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1400 IoPAGE_LEN(sv) = 60;
1402 if (new_type == SVt_REGEXP)
1403 sv->sv_u.svu_rx = (regexp *)new_body;
1404 else if (old_type < SVt_PV) {
1405 /* referant will be NULL unless the old type was SVt_IV emulating
1407 sv->sv_u.svu_rv = referant;
1411 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1412 (unsigned long)new_type);
1415 if (old_type > SVt_IV) {
1419 /* Note that there is an assumption that all bodies of types that
1420 can be upgraded came from arenas. Only the more complex non-
1421 upgradable types are allowed to be directly malloc()ed. */
1422 assert(old_type_details->arena);
1423 del_body((void*)((char*)old_body + old_type_details->offset),
1424 &PL_body_roots[old_type]);
1430 =for apidoc sv_backoff
1432 Remove any string offset. You should normally use the C<SvOOK_off> macro
1439 Perl_sv_backoff(pTHX_ SV *const sv)
1442 const char * const s = SvPVX_const(sv);
1444 PERL_ARGS_ASSERT_SV_BACKOFF;
1445 PERL_UNUSED_CONTEXT;
1448 assert(SvTYPE(sv) != SVt_PVHV);
1449 assert(SvTYPE(sv) != SVt_PVAV);
1451 SvOOK_offset(sv, delta);
1453 SvLEN_set(sv, SvLEN(sv) + delta);
1454 SvPV_set(sv, SvPVX(sv) - delta);
1455 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1456 SvFLAGS(sv) &= ~SVf_OOK;
1463 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1464 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1465 Use the C<SvGROW> wrapper instead.
1471 Perl_sv_grow(pTHX_ SV *const sv, STRLEN newlen)
1475 PERL_ARGS_ASSERT_SV_GROW;
1477 if (PL_madskills && newlen >= 0x100000) {
1478 PerlIO_printf(Perl_debug_log,
1479 "Allocation too large: %"UVxf"\n", (UV)newlen);
1481 #ifdef HAS_64K_LIMIT
1482 if (newlen >= 0x10000) {
1483 PerlIO_printf(Perl_debug_log,
1484 "Allocation too large: %"UVxf"\n", (UV)newlen);
1487 #endif /* HAS_64K_LIMIT */
1490 if (SvTYPE(sv) < SVt_PV) {
1491 sv_upgrade(sv, SVt_PV);
1492 s = SvPVX_mutable(sv);
1494 else if (SvOOK(sv)) { /* pv is offset? */
1496 s = SvPVX_mutable(sv);
1497 if (newlen > SvLEN(sv))
1498 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1499 #ifdef HAS_64K_LIMIT
1500 if (newlen >= 0x10000)
1506 if (SvIsCOW(sv)) sv_force_normal(sv);
1507 s = SvPVX_mutable(sv);
1510 if (newlen > SvLEN(sv)) { /* need more room? */
1511 STRLEN minlen = SvCUR(sv);
1512 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1513 if (newlen < minlen)
1515 #ifndef Perl_safesysmalloc_size
1516 newlen = PERL_STRLEN_ROUNDUP(newlen);
1518 if (SvLEN(sv) && s) {
1519 s = (char*)saferealloc(s, newlen);
1522 s = (char*)safemalloc(newlen);
1523 if (SvPVX_const(sv) && SvCUR(sv)) {
1524 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1528 #ifdef Perl_safesysmalloc_size
1529 /* Do this here, do it once, do it right, and then we will never get
1530 called back into sv_grow() unless there really is some growing
1532 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1534 SvLEN_set(sv, newlen);
1541 =for apidoc sv_setiv
1543 Copies an integer into the given SV, upgrading first if necessary.
1544 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1550 Perl_sv_setiv(pTHX_ SV *const sv, const IV i)
1554 PERL_ARGS_ASSERT_SV_SETIV;
1556 SV_CHECK_THINKFIRST_COW_DROP(sv);
1557 switch (SvTYPE(sv)) {
1560 sv_upgrade(sv, SVt_IV);
1563 sv_upgrade(sv, SVt_PVIV);
1567 if (!isGV_with_GP(sv))
1574 /* diag_listed_as: Can't coerce %s to %s in %s */
1575 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1579 (void)SvIOK_only(sv); /* validate number */
1585 =for apidoc sv_setiv_mg
1587 Like C<sv_setiv>, but also handles 'set' magic.
1593 Perl_sv_setiv_mg(pTHX_ SV *const sv, const IV i)
1595 PERL_ARGS_ASSERT_SV_SETIV_MG;
1602 =for apidoc sv_setuv
1604 Copies an unsigned integer into the given SV, upgrading first if necessary.
1605 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1611 Perl_sv_setuv(pTHX_ SV *const sv, const UV u)
1613 PERL_ARGS_ASSERT_SV_SETUV;
1615 /* With the if statement to ensure that integers are stored as IVs whenever
1617 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1620 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1622 If you wish to remove the following if statement, so that this routine
1623 (and its callers) always return UVs, please benchmark to see what the
1624 effect is. Modern CPUs may be different. Or may not :-)
1626 if (u <= (UV)IV_MAX) {
1627 sv_setiv(sv, (IV)u);
1636 =for apidoc sv_setuv_mg
1638 Like C<sv_setuv>, but also handles 'set' magic.
1644 Perl_sv_setuv_mg(pTHX_ SV *const sv, const UV u)
1646 PERL_ARGS_ASSERT_SV_SETUV_MG;
1653 =for apidoc sv_setnv
1655 Copies a double into the given SV, upgrading first if necessary.
1656 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1662 Perl_sv_setnv(pTHX_ SV *const sv, const NV num)
1666 PERL_ARGS_ASSERT_SV_SETNV;
1668 SV_CHECK_THINKFIRST_COW_DROP(sv);
1669 switch (SvTYPE(sv)) {
1672 sv_upgrade(sv, SVt_NV);
1676 sv_upgrade(sv, SVt_PVNV);
1680 if (!isGV_with_GP(sv))
1687 /* diag_listed_as: Can't coerce %s to %s in %s */
1688 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1693 (void)SvNOK_only(sv); /* validate number */
1698 =for apidoc sv_setnv_mg
1700 Like C<sv_setnv>, but also handles 'set' magic.
1706 Perl_sv_setnv_mg(pTHX_ SV *const sv, const NV num)
1708 PERL_ARGS_ASSERT_SV_SETNV_MG;
1714 /* Print an "isn't numeric" warning, using a cleaned-up,
1715 * printable version of the offending string
1719 S_not_a_number(pTHX_ SV *const sv)
1726 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1729 dsv = newSVpvs_flags("", SVs_TEMP);
1730 pv = sv_uni_display(dsv, sv, 10, UNI_DISPLAY_ISPRINT);
1733 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1734 /* each *s can expand to 4 chars + "...\0",
1735 i.e. need room for 8 chars */
1737 const char *s = SvPVX_const(sv);
1738 const char * const end = s + SvCUR(sv);
1739 for ( ; s < end && d < limit; s++ ) {
1741 if (ch & 128 && !isPRINT_LC(ch)) {
1750 else if (ch == '\r') {
1754 else if (ch == '\f') {
1758 else if (ch == '\\') {
1762 else if (ch == '\0') {
1766 else if (isPRINT_LC(ch))
1783 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1784 /* diag_listed_as: Argument "%s" isn't numeric%s */
1785 "Argument \"%s\" isn't numeric in %s", pv,
1788 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1789 /* diag_listed_as: Argument "%s" isn't numeric%s */
1790 "Argument \"%s\" isn't numeric", pv);
1794 =for apidoc looks_like_number
1796 Test if the content of an SV looks like a number (or is a number).
1797 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1798 non-numeric warning), even if your atof() doesn't grok them. Get-magic is
1805 Perl_looks_like_number(pTHX_ SV *const sv)
1810 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1812 if (SvPOK(sv) || SvPOKp(sv)) {
1813 sbegin = SvPV_nomg_const(sv, len);
1816 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1817 return grok_number(sbegin, len, NULL);
1821 S_glob_2number(pTHX_ GV * const gv)
1823 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1825 /* We know that all GVs stringify to something that is not-a-number,
1826 so no need to test that. */
1827 if (ckWARN(WARN_NUMERIC))
1829 SV *const buffer = sv_newmortal();
1830 gv_efullname3(buffer, gv, "*");
1831 not_a_number(buffer);
1833 /* We just want something true to return, so that S_sv_2iuv_common
1834 can tail call us and return true. */
1838 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1839 until proven guilty, assume that things are not that bad... */
1844 As 64 bit platforms often have an NV that doesn't preserve all bits of
1845 an IV (an assumption perl has been based on to date) it becomes necessary
1846 to remove the assumption that the NV always carries enough precision to
1847 recreate the IV whenever needed, and that the NV is the canonical form.
1848 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1849 precision as a side effect of conversion (which would lead to insanity
1850 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1851 1) to distinguish between IV/UV/NV slots that have cached a valid
1852 conversion where precision was lost and IV/UV/NV slots that have a
1853 valid conversion which has lost no precision
1854 2) to ensure that if a numeric conversion to one form is requested that
1855 would lose precision, the precise conversion (or differently
1856 imprecise conversion) is also performed and cached, to prevent
1857 requests for different numeric formats on the same SV causing
1858 lossy conversion chains. (lossless conversion chains are perfectly
1863 SvIOKp is true if the IV slot contains a valid value
1864 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1865 SvNOKp is true if the NV slot contains a valid value
1866 SvNOK is true only if the NV value is accurate
1869 while converting from PV to NV, check to see if converting that NV to an
1870 IV(or UV) would lose accuracy over a direct conversion from PV to
1871 IV(or UV). If it would, cache both conversions, return NV, but mark
1872 SV as IOK NOKp (ie not NOK).
1874 While converting from PV to IV, check to see if converting that IV to an
1875 NV would lose accuracy over a direct conversion from PV to NV. If it
1876 would, cache both conversions, flag similarly.
1878 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1879 correctly because if IV & NV were set NV *always* overruled.
1880 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1881 changes - now IV and NV together means that the two are interchangeable:
1882 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1884 The benefit of this is that operations such as pp_add know that if
1885 SvIOK is true for both left and right operands, then integer addition
1886 can be used instead of floating point (for cases where the result won't
1887 overflow). Before, floating point was always used, which could lead to
1888 loss of precision compared with integer addition.
1890 * making IV and NV equal status should make maths accurate on 64 bit
1892 * may speed up maths somewhat if pp_add and friends start to use
1893 integers when possible instead of fp. (Hopefully the overhead in
1894 looking for SvIOK and checking for overflow will not outweigh the
1895 fp to integer speedup)
1896 * will slow down integer operations (callers of SvIV) on "inaccurate"
1897 values, as the change from SvIOK to SvIOKp will cause a call into
1898 sv_2iv each time rather than a macro access direct to the IV slot
1899 * should speed up number->string conversion on integers as IV is
1900 favoured when IV and NV are equally accurate
1902 ####################################################################
1903 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1904 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1905 On the other hand, SvUOK is true iff UV.
1906 ####################################################################
1908 Your mileage will vary depending your CPU's relative fp to integer
1912 #ifndef NV_PRESERVES_UV
1913 # define IS_NUMBER_UNDERFLOW_IV 1
1914 # define IS_NUMBER_UNDERFLOW_UV 2
1915 # define IS_NUMBER_IV_AND_UV 2
1916 # define IS_NUMBER_OVERFLOW_IV 4
1917 # define IS_NUMBER_OVERFLOW_UV 5
1919 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1921 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1923 S_sv_2iuv_non_preserve(pTHX_ SV *const sv
1931 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1933 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1934 if (SvNVX(sv) < (NV)IV_MIN) {
1935 (void)SvIOKp_on(sv);
1937 SvIV_set(sv, IV_MIN);
1938 return IS_NUMBER_UNDERFLOW_IV;
1940 if (SvNVX(sv) > (NV)UV_MAX) {
1941 (void)SvIOKp_on(sv);
1944 SvUV_set(sv, UV_MAX);
1945 return IS_NUMBER_OVERFLOW_UV;
1947 (void)SvIOKp_on(sv);
1949 /* Can't use strtol etc to convert this string. (See truth table in
1951 if (SvNVX(sv) <= (UV)IV_MAX) {
1952 SvIV_set(sv, I_V(SvNVX(sv)));
1953 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1954 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1956 /* Integer is imprecise. NOK, IOKp */
1958 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1961 SvUV_set(sv, U_V(SvNVX(sv)));
1962 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1963 if (SvUVX(sv) == UV_MAX) {
1964 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1965 possibly be preserved by NV. Hence, it must be overflow.
1967 return IS_NUMBER_OVERFLOW_UV;
1969 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1971 /* Integer is imprecise. NOK, IOKp */
1973 return IS_NUMBER_OVERFLOW_IV;
1975 #endif /* !NV_PRESERVES_UV*/
1978 S_sv_2iuv_common(pTHX_ SV *const sv)
1982 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
1985 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1986 * without also getting a cached IV/UV from it at the same time
1987 * (ie PV->NV conversion should detect loss of accuracy and cache
1988 * IV or UV at same time to avoid this. */
1989 /* IV-over-UV optimisation - choose to cache IV if possible */
1991 if (SvTYPE(sv) == SVt_NV)
1992 sv_upgrade(sv, SVt_PVNV);
1994 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1995 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1996 certainly cast into the IV range at IV_MAX, whereas the correct
1997 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1999 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2000 if (Perl_isnan(SvNVX(sv))) {
2006 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2007 SvIV_set(sv, I_V(SvNVX(sv)));
2008 if (SvNVX(sv) == (NV) SvIVX(sv)
2009 #ifndef NV_PRESERVES_UV
2010 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2011 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2012 /* Don't flag it as "accurately an integer" if the number
2013 came from a (by definition imprecise) NV operation, and
2014 we're outside the range of NV integer precision */
2018 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2020 /* scalar has trailing garbage, eg "42a" */
2022 DEBUG_c(PerlIO_printf(Perl_debug_log,
2023 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2029 /* IV not precise. No need to convert from PV, as NV
2030 conversion would already have cached IV if it detected
2031 that PV->IV would be better than PV->NV->IV
2032 flags already correct - don't set public IOK. */
2033 DEBUG_c(PerlIO_printf(Perl_debug_log,
2034 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2039 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2040 but the cast (NV)IV_MIN rounds to a the value less (more
2041 negative) than IV_MIN which happens to be equal to SvNVX ??
2042 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2043 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2044 (NV)UVX == NVX are both true, but the values differ. :-(
2045 Hopefully for 2s complement IV_MIN is something like
2046 0x8000000000000000 which will be exact. NWC */
2049 SvUV_set(sv, U_V(SvNVX(sv)));
2051 (SvNVX(sv) == (NV) SvUVX(sv))
2052 #ifndef NV_PRESERVES_UV
2053 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2054 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2055 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2056 /* Don't flag it as "accurately an integer" if the number
2057 came from a (by definition imprecise) NV operation, and
2058 we're outside the range of NV integer precision */
2064 DEBUG_c(PerlIO_printf(Perl_debug_log,
2065 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2071 else if (SvPOKp(sv)) {
2073 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2074 /* We want to avoid a possible problem when we cache an IV/ a UV which
2075 may be later translated to an NV, and the resulting NV is not
2076 the same as the direct translation of the initial string
2077 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2078 be careful to ensure that the value with the .456 is around if the
2079 NV value is requested in the future).
2081 This means that if we cache such an IV/a UV, we need to cache the
2082 NV as well. Moreover, we trade speed for space, and do not
2083 cache the NV if we are sure it's not needed.
2086 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2087 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2088 == IS_NUMBER_IN_UV) {
2089 /* It's definitely an integer, only upgrade to PVIV */
2090 if (SvTYPE(sv) < SVt_PVIV)
2091 sv_upgrade(sv, SVt_PVIV);
2093 } else if (SvTYPE(sv) < SVt_PVNV)
2094 sv_upgrade(sv, SVt_PVNV);
2096 /* If NVs preserve UVs then we only use the UV value if we know that
2097 we aren't going to call atof() below. If NVs don't preserve UVs
2098 then the value returned may have more precision than atof() will
2099 return, even though value isn't perfectly accurate. */
2100 if ((numtype & (IS_NUMBER_IN_UV
2101 #ifdef NV_PRESERVES_UV
2104 )) == IS_NUMBER_IN_UV) {
2105 /* This won't turn off the public IOK flag if it was set above */
2106 (void)SvIOKp_on(sv);
2108 if (!(numtype & IS_NUMBER_NEG)) {
2110 if (value <= (UV)IV_MAX) {
2111 SvIV_set(sv, (IV)value);
2113 /* it didn't overflow, and it was positive. */
2114 SvUV_set(sv, value);
2118 /* 2s complement assumption */
2119 if (value <= (UV)IV_MIN) {
2120 SvIV_set(sv, -(IV)value);
2122 /* Too negative for an IV. This is a double upgrade, but
2123 I'm assuming it will be rare. */
2124 if (SvTYPE(sv) < SVt_PVNV)
2125 sv_upgrade(sv, SVt_PVNV);
2129 SvNV_set(sv, -(NV)value);
2130 SvIV_set(sv, IV_MIN);
2134 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2135 will be in the previous block to set the IV slot, and the next
2136 block to set the NV slot. So no else here. */
2138 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2139 != IS_NUMBER_IN_UV) {
2140 /* It wasn't an (integer that doesn't overflow the UV). */
2141 SvNV_set(sv, Atof(SvPVX_const(sv)));
2143 if (! numtype && ckWARN(WARN_NUMERIC))
2146 #if defined(USE_LONG_DOUBLE)
2147 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2148 PTR2UV(sv), SvNVX(sv)));
2150 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2151 PTR2UV(sv), SvNVX(sv)));
2154 #ifdef NV_PRESERVES_UV
2155 (void)SvIOKp_on(sv);
2157 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2158 SvIV_set(sv, I_V(SvNVX(sv)));
2159 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2162 NOOP; /* Integer is imprecise. NOK, IOKp */
2164 /* UV will not work better than IV */
2166 if (SvNVX(sv) > (NV)UV_MAX) {
2168 /* Integer is inaccurate. NOK, IOKp, is UV */
2169 SvUV_set(sv, UV_MAX);
2171 SvUV_set(sv, U_V(SvNVX(sv)));
2172 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2173 NV preservse UV so can do correct comparison. */
2174 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2177 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2182 #else /* NV_PRESERVES_UV */
2183 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2184 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2185 /* The IV/UV slot will have been set from value returned by
2186 grok_number above. The NV slot has just been set using
2189 assert (SvIOKp(sv));
2191 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2192 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2193 /* Small enough to preserve all bits. */
2194 (void)SvIOKp_on(sv);
2196 SvIV_set(sv, I_V(SvNVX(sv)));
2197 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2199 /* Assumption: first non-preserved integer is < IV_MAX,
2200 this NV is in the preserved range, therefore: */
2201 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2203 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2207 0 0 already failed to read UV.
2208 0 1 already failed to read UV.
2209 1 0 you won't get here in this case. IV/UV
2210 slot set, public IOK, Atof() unneeded.
2211 1 1 already read UV.
2212 so there's no point in sv_2iuv_non_preserve() attempting
2213 to use atol, strtol, strtoul etc. */
2215 sv_2iuv_non_preserve (sv, numtype);
2217 sv_2iuv_non_preserve (sv);
2221 #endif /* NV_PRESERVES_UV */
2222 /* It might be more code efficient to go through the entire logic above
2223 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2224 gets complex and potentially buggy, so more programmer efficient
2225 to do it this way, by turning off the public flags: */
2227 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2231 if (isGV_with_GP(sv))
2232 return glob_2number(MUTABLE_GV(sv));
2234 if (!SvPADTMP(sv)) {
2235 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2238 if (SvTYPE(sv) < SVt_IV)
2239 /* Typically the caller expects that sv_any is not NULL now. */
2240 sv_upgrade(sv, SVt_IV);
2241 /* Return 0 from the caller. */
2248 =for apidoc sv_2iv_flags
2250 Return the integer value of an SV, doing any necessary string
2251 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2252 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2258 Perl_sv_2iv_flags(pTHX_ SV *const sv, const I32 flags)
2265 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2271 if (flags & SV_SKIP_OVERLOAD)
2273 tmpstr = AMG_CALLunary(sv, numer_amg);
2274 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2275 return SvIV(tmpstr);
2278 return PTR2IV(SvRV(sv));
2281 if (SvVALID(sv) || isREGEXP(sv)) {
2282 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2283 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2284 In practice they are extremely unlikely to actually get anywhere
2285 accessible by user Perl code - the only way that I'm aware of is when
2286 a constant subroutine which is used as the second argument to index.
2288 Regexps have no SvIVX and SvNVX fields.
2290 assert(isREGEXP(sv) || SvPOKp(sv));
2293 const char * const ptr =
2294 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2296 = grok_number(ptr, SvCUR(sv), &value);
2298 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2299 == IS_NUMBER_IN_UV) {
2300 /* It's definitely an integer */
2301 if (numtype & IS_NUMBER_NEG) {
2302 if (value < (UV)IV_MIN)
2305 if (value < (UV)IV_MAX)
2310 if (ckWARN(WARN_NUMERIC))
2313 return I_V(Atof(ptr));
2317 if (SvTHINKFIRST(sv)) {
2318 #ifdef PERL_OLD_COPY_ON_WRITE
2320 sv_force_normal_flags(sv, 0);
2323 if (SvREADONLY(sv) && !SvOK(sv)) {
2324 if (ckWARN(WARN_UNINITIALIZED))
2331 if (S_sv_2iuv_common(aTHX_ sv))
2335 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2336 PTR2UV(sv),SvIVX(sv)));
2337 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2341 =for apidoc sv_2uv_flags
2343 Return the unsigned integer value of an SV, doing any necessary string
2344 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2345 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2351 Perl_sv_2uv_flags(pTHX_ SV *const sv, const I32 flags)
2358 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2364 if (flags & SV_SKIP_OVERLOAD)
2366 tmpstr = AMG_CALLunary(sv, numer_amg);
2367 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2368 return SvUV(tmpstr);
2371 return PTR2UV(SvRV(sv));
2374 if (SvVALID(sv) || isREGEXP(sv)) {
2375 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2376 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2377 Regexps have no SvIVX and SvNVX fields. */
2378 assert(isREGEXP(sv) || SvPOKp(sv));
2381 const char * const ptr =
2382 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2384 = grok_number(ptr, SvCUR(sv), &value);
2386 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2387 == IS_NUMBER_IN_UV) {
2388 /* It's definitely an integer */
2389 if (!(numtype & IS_NUMBER_NEG))
2393 if (ckWARN(WARN_NUMERIC))
2396 return U_V(Atof(ptr));
2400 if (SvTHINKFIRST(sv)) {
2401 #ifdef PERL_OLD_COPY_ON_WRITE
2403 sv_force_normal_flags(sv, 0);
2406 if (SvREADONLY(sv) && !SvOK(sv)) {
2407 if (ckWARN(WARN_UNINITIALIZED))
2414 if (S_sv_2iuv_common(aTHX_ sv))
2418 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2419 PTR2UV(sv),SvUVX(sv)));
2420 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2424 =for apidoc sv_2nv_flags
2426 Return the num value of an SV, doing any necessary string or integer
2427 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2428 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2434 Perl_sv_2nv_flags(pTHX_ SV *const sv, const I32 flags)
2439 if (SvGMAGICAL(sv) || SvVALID(sv) || isREGEXP(sv)) {
2440 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2441 the same flag bit as SVf_IVisUV, so must not let them cache NVs.
2442 Regexps have no SvIVX and SvNVX fields. */
2444 if (flags & SV_GMAGIC)
2448 if (SvPOKp(sv) && !SvIOKp(sv)) {
2449 ptr = SvPVX_const(sv);
2451 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2452 !grok_number(ptr, SvCUR(sv), NULL))
2458 return (NV)SvUVX(sv);
2460 return (NV)SvIVX(sv);
2466 ptr = RX_WRAPPED((REGEXP *)sv);
2469 assert(SvTYPE(sv) >= SVt_PVMG);
2470 /* This falls through to the report_uninit near the end of the
2472 } else if (SvTHINKFIRST(sv)) {
2477 if (flags & SV_SKIP_OVERLOAD)
2479 tmpstr = AMG_CALLunary(sv, numer_amg);
2480 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2481 return SvNV(tmpstr);
2484 return PTR2NV(SvRV(sv));
2486 #ifdef PERL_OLD_COPY_ON_WRITE
2488 sv_force_normal_flags(sv, 0);
2491 if (SvREADONLY(sv) && !SvOK(sv)) {
2492 if (ckWARN(WARN_UNINITIALIZED))
2497 if (SvTYPE(sv) < SVt_NV) {
2498 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2499 sv_upgrade(sv, SVt_NV);
2500 #ifdef USE_LONG_DOUBLE
2502 STORE_NUMERIC_LOCAL_SET_STANDARD();
2503 PerlIO_printf(Perl_debug_log,
2504 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2505 PTR2UV(sv), SvNVX(sv));
2506 RESTORE_NUMERIC_LOCAL();
2510 STORE_NUMERIC_LOCAL_SET_STANDARD();
2511 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2512 PTR2UV(sv), SvNVX(sv));
2513 RESTORE_NUMERIC_LOCAL();
2517 else if (SvTYPE(sv) < SVt_PVNV)
2518 sv_upgrade(sv, SVt_PVNV);
2523 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2524 #ifdef NV_PRESERVES_UV
2530 /* Only set the public NV OK flag if this NV preserves the IV */
2531 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2533 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2534 : (SvIVX(sv) == I_V(SvNVX(sv))))
2540 else if (SvPOKp(sv)) {
2542 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2543 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2545 #ifdef NV_PRESERVES_UV
2546 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2547 == IS_NUMBER_IN_UV) {
2548 /* It's definitely an integer */
2549 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2551 SvNV_set(sv, Atof(SvPVX_const(sv)));
2557 SvNV_set(sv, Atof(SvPVX_const(sv)));
2558 /* Only set the public NV OK flag if this NV preserves the value in
2559 the PV at least as well as an IV/UV would.
2560 Not sure how to do this 100% reliably. */
2561 /* if that shift count is out of range then Configure's test is
2562 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2564 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2565 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2566 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2567 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2568 /* Can't use strtol etc to convert this string, so don't try.
2569 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2572 /* value has been set. It may not be precise. */
2573 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2574 /* 2s complement assumption for (UV)IV_MIN */
2575 SvNOK_on(sv); /* Integer is too negative. */
2580 if (numtype & IS_NUMBER_NEG) {
2581 SvIV_set(sv, -(IV)value);
2582 } else if (value <= (UV)IV_MAX) {
2583 SvIV_set(sv, (IV)value);
2585 SvUV_set(sv, value);
2589 if (numtype & IS_NUMBER_NOT_INT) {
2590 /* I believe that even if the original PV had decimals,
2591 they are lost beyond the limit of the FP precision.
2592 However, neither is canonical, so both only get p
2593 flags. NWC, 2000/11/25 */
2594 /* Both already have p flags, so do nothing */
2596 const NV nv = SvNVX(sv);
2597 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2598 if (SvIVX(sv) == I_V(nv)) {
2601 /* It had no "." so it must be integer. */
2605 /* between IV_MAX and NV(UV_MAX).
2606 Could be slightly > UV_MAX */
2608 if (numtype & IS_NUMBER_NOT_INT) {
2609 /* UV and NV both imprecise. */
2611 const UV nv_as_uv = U_V(nv);
2613 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2622 /* It might be more code efficient to go through the entire logic above
2623 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2624 gets complex and potentially buggy, so more programmer efficient
2625 to do it this way, by turning off the public flags: */
2627 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2628 #endif /* NV_PRESERVES_UV */
2631 if (isGV_with_GP(sv)) {
2632 glob_2number(MUTABLE_GV(sv));
2636 if (!PL_localizing && !SvPADTMP(sv) && ckWARN(WARN_UNINITIALIZED))
2638 assert (SvTYPE(sv) >= SVt_NV);
2639 /* Typically the caller expects that sv_any is not NULL now. */
2640 /* XXX Ilya implies that this is a bug in callers that assume this
2641 and ideally should be fixed. */
2644 #if defined(USE_LONG_DOUBLE)
2646 STORE_NUMERIC_LOCAL_SET_STANDARD();
2647 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2648 PTR2UV(sv), SvNVX(sv));
2649 RESTORE_NUMERIC_LOCAL();
2653 STORE_NUMERIC_LOCAL_SET_STANDARD();
2654 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2655 PTR2UV(sv), SvNVX(sv));
2656 RESTORE_NUMERIC_LOCAL();
2665 Return an SV with the numeric value of the source SV, doing any necessary
2666 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2667 access this function.
2673 Perl_sv_2num(pTHX_ SV *const sv)
2675 PERL_ARGS_ASSERT_SV_2NUM;
2680 SV * const tmpsv = AMG_CALLunary(sv, numer_amg);
2681 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2682 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2683 return sv_2num(tmpsv);
2685 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2688 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2689 * UV as a string towards the end of buf, and return pointers to start and
2692 * We assume that buf is at least TYPE_CHARS(UV) long.
2696 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2698 char *ptr = buf + TYPE_CHARS(UV);
2699 char * const ebuf = ptr;
2702 PERL_ARGS_ASSERT_UIV_2BUF;
2714 *--ptr = '0' + (char)(uv % 10);
2723 =for apidoc sv_2pv_flags
2725 Returns a pointer to the string value of an SV, and sets *lp to its length.
2726 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a
2727 string if necessary. Normally invoked via the C<SvPV_flags> macro.
2728 C<sv_2pv()> and C<sv_2pv_nomg> usually end up here too.
2734 Perl_sv_2pv_flags(pTHX_ SV *const sv, STRLEN *const lp, const I32 flags)
2744 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2749 if (flags & SV_SKIP_OVERLOAD)
2751 tmpstr = AMG_CALLunary(sv, string_amg);
2752 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2753 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2755 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2759 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2760 if (flags & SV_CONST_RETURN) {
2761 pv = (char *) SvPVX_const(tmpstr);
2763 pv = (flags & SV_MUTABLE_RETURN)
2764 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2767 *lp = SvCUR(tmpstr);
2769 pv = sv_2pv_flags(tmpstr, lp, flags);
2782 SV *const referent = SvRV(sv);
2786 retval = buffer = savepvn("NULLREF", len);
2787 } else if (SvTYPE(referent) == SVt_REGEXP &&
2788 (!(PL_curcop->cop_hints & HINT_NO_AMAGIC) ||
2789 amagic_is_enabled(string_amg))) {
2790 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2794 /* If the regex is UTF-8 we want the containing scalar to
2795 have an UTF-8 flag too */
2802 *lp = RX_WRAPLEN(re);
2804 return RX_WRAPPED(re);
2806 const char *const typestr = sv_reftype(referent, 0);
2807 const STRLEN typelen = strlen(typestr);
2808 UV addr = PTR2UV(referent);
2809 const char *stashname = NULL;
2810 STRLEN stashnamelen = 0; /* hush, gcc */
2811 const char *buffer_end;
2813 if (SvOBJECT(referent)) {
2814 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2817 stashname = HEK_KEY(name);
2818 stashnamelen = HEK_LEN(name);
2820 if (HEK_UTF8(name)) {
2826 stashname = "__ANON__";
2829 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2830 + 2 * sizeof(UV) + 2 /* )\0 */;
2832 len = typelen + 3 /* (0x */
2833 + 2 * sizeof(UV) + 2 /* )\0 */;
2836 Newx(buffer, len, char);
2837 buffer_end = retval = buffer + len;
2839 /* Working backwards */
2843 *--retval = PL_hexdigit[addr & 15];
2844 } while (addr >>= 4);
2850 memcpy(retval, typestr, typelen);
2854 retval -= stashnamelen;
2855 memcpy(retval, stashname, stashnamelen);
2857 /* retval may not necessarily have reached the start of the
2859 assert (retval >= buffer);
2861 len = buffer_end - retval - 1; /* -1 for that \0 */
2873 if (flags & SV_MUTABLE_RETURN)
2874 return SvPVX_mutable(sv);
2875 if (flags & SV_CONST_RETURN)
2876 return (char *)SvPVX_const(sv);
2881 /* I'm assuming that if both IV and NV are equally valid then
2882 converting the IV is going to be more efficient */
2883 const U32 isUIOK = SvIsUV(sv);
2884 char buf[TYPE_CHARS(UV)];
2888 if (SvTYPE(sv) < SVt_PVIV)
2889 sv_upgrade(sv, SVt_PVIV);
2890 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2892 /* inlined from sv_setpvn */
2893 s = SvGROW_mutable(sv, len + 1);
2894 Move(ptr, s, len, char);
2898 else if (SvNOK(sv)) {
2899 if (SvTYPE(sv) < SVt_PVNV)
2900 sv_upgrade(sv, SVt_PVNV);
2901 if (SvNVX(sv) == 0.0) {
2902 s = SvGROW_mutable(sv, 2);
2907 /* The +20 is pure guesswork. Configure test needed. --jhi */
2908 s = SvGROW_mutable(sv, NV_DIG + 20);
2909 /* some Xenix systems wipe out errno here */
2910 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2919 else if (isGV_with_GP(sv)) {
2920 GV *const gv = MUTABLE_GV(sv);
2921 SV *const buffer = sv_newmortal();
2923 gv_efullname3(buffer, gv, "*");
2925 assert(SvPOK(buffer));
2929 *lp = SvCUR(buffer);
2930 return SvPVX(buffer);
2932 else if (isREGEXP(sv)) {
2933 if (lp) *lp = RX_WRAPLEN((REGEXP *)sv);
2934 return RX_WRAPPED((REGEXP *)sv);
2939 if (flags & SV_UNDEF_RETURNS_NULL)
2941 if (!PL_localizing && !SvPADTMP(sv) && ckWARN(WARN_UNINITIALIZED))
2943 /* Typically the caller expects that sv_any is not NULL now. */
2944 if (!SvREADONLY(sv) && SvTYPE(sv) < SVt_PV)
2945 sv_upgrade(sv, SVt_PV);
2950 const STRLEN len = s - SvPVX_const(sv);
2956 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2957 PTR2UV(sv),SvPVX_const(sv)));
2958 if (flags & SV_CONST_RETURN)
2959 return (char *)SvPVX_const(sv);
2960 if (flags & SV_MUTABLE_RETURN)
2961 return SvPVX_mutable(sv);
2966 =for apidoc sv_copypv
2968 Copies a stringified representation of the source SV into the
2969 destination SV. Automatically performs any necessary mg_get and
2970 coercion of numeric values into strings. Guaranteed to preserve
2971 UTF8 flag even from overloaded objects. Similar in nature to
2972 sv_2pv[_flags] but operates directly on an SV instead of just the
2973 string. Mostly uses sv_2pv_flags to do its work, except when that
2974 would lose the UTF-8'ness of the PV.
2976 =for apidoc sv_copypv_nomg
2978 Like sv_copypv, but doesn't invoke get magic first.
2980 =for apidoc sv_copypv_flags
2982 Implementation of sv_copypv and sv_copypv_nomg. Calls get magic iff flags
2989 Perl_sv_copypv(pTHX_ SV *const dsv, SV *const ssv)
2991 PERL_ARGS_ASSERT_SV_COPYPV;
2993 sv_copypv_flags(dsv, ssv, 0);
2997 Perl_sv_copypv_flags(pTHX_ SV *const dsv, SV *const ssv, const I32 flags)
3002 PERL_ARGS_ASSERT_SV_COPYPV_FLAGS;
3004 if ((flags & SV_GMAGIC) && SvGMAGICAL(ssv))
3006 s = SvPV_nomg_const(ssv,len);
3007 sv_setpvn(dsv,s,len);
3015 =for apidoc sv_2pvbyte
3017 Return a pointer to the byte-encoded representation of the SV, and set *lp
3018 to its length. May cause the SV to be downgraded from UTF-8 as a
3021 Usually accessed via the C<SvPVbyte> macro.
3027 Perl_sv_2pvbyte(pTHX_ SV *sv, STRLEN *const lp)
3029 PERL_ARGS_ASSERT_SV_2PVBYTE;
3031 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3032 || isGV_with_GP(sv) || SvROK(sv)) {
3033 SV *sv2 = sv_newmortal();
3037 else SvGETMAGIC(sv);
3038 sv_utf8_downgrade(sv,0);
3039 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3043 =for apidoc sv_2pvutf8
3045 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3046 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3048 Usually accessed via the C<SvPVutf8> macro.
3054 Perl_sv_2pvutf8(pTHX_ SV *sv, STRLEN *const lp)
3056 PERL_ARGS_ASSERT_SV_2PVUTF8;
3058 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3059 || isGV_with_GP(sv) || SvROK(sv))
3060 sv = sv_mortalcopy(sv);
3063 sv_utf8_upgrade_nomg(sv);
3064 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3069 =for apidoc sv_2bool
3071 This macro is only used by sv_true() or its macro equivalent, and only if
3072 the latter's argument is neither SvPOK, SvIOK nor SvNOK.
3073 It calls sv_2bool_flags with the SV_GMAGIC flag.
3075 =for apidoc sv_2bool_flags
3077 This function is only used by sv_true() and friends, and only if
3078 the latter's argument is neither SvPOK, SvIOK nor SvNOK. If the flags
3079 contain SV_GMAGIC, then it does an mg_get() first.
3086 Perl_sv_2bool_flags(pTHX_ SV *const sv, const I32 flags)
3090 PERL_ARGS_ASSERT_SV_2BOOL_FLAGS;
3092 if(flags & SV_GMAGIC) SvGETMAGIC(sv);
3098 SV * const tmpsv = AMG_CALLunary(sv, bool__amg);
3099 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3100 return cBOOL(SvTRUE(tmpsv));
3102 return SvRV(sv) != 0;
3104 return SvTRUE_common(sv, isGV_with_GP(sv) ? 1 : 0);
3108 =for apidoc sv_utf8_upgrade
3110 Converts the PV of an SV to its UTF-8-encoded form.
3111 Forces the SV to string form if it is not already.
3112 Will C<mg_get> on C<sv> if appropriate.
3113 Always sets the SvUTF8 flag to avoid future validity checks even
3114 if the whole string is the same in UTF-8 as not.
3115 Returns the number of bytes in the converted string
3117 This is not a general purpose byte encoding to Unicode interface:
3118 use the Encode extension for that.
3120 =for apidoc sv_utf8_upgrade_nomg
3122 Like sv_utf8_upgrade, but doesn't do magic on C<sv>.
3124 =for apidoc sv_utf8_upgrade_flags
3126 Converts the PV of an SV to its UTF-8-encoded form.
3127 Forces the SV to string form if it is not already.
3128 Always sets the SvUTF8 flag to avoid future validity checks even
3129 if all the bytes are invariant in UTF-8.
3130 If C<flags> has C<SV_GMAGIC> bit set,
3131 will C<mg_get> on C<sv> if appropriate, else not.
3132 Returns the number of bytes in the converted string
3133 C<sv_utf8_upgrade> and
3134 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3136 This is not a general purpose byte encoding to Unicode interface:
3137 use the Encode extension for that.
3141 The grow version is currently not externally documented. It adds a parameter,
3142 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3143 have free after it upon return. This allows the caller to reserve extra space
3144 that it intends to fill, to avoid extra grows.
3146 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3147 which can be used to tell this function to not first check to see if there are
3148 any characters that are different in UTF-8 (variant characters) which would
3149 force it to allocate a new string to sv, but to assume there are. Typically
3150 this flag is used by a routine that has already parsed the string to find that
3151 there are such characters, and passes this information on so that the work
3152 doesn't have to be repeated.
3154 (One might think that the calling routine could pass in the position of the
3155 first such variant, so it wouldn't have to be found again. But that is not the
3156 case, because typically when the caller is likely to use this flag, it won't be
3157 calling this routine unless it finds something that won't fit into a byte.
3158 Otherwise it tries to not upgrade and just use bytes. But some things that
3159 do fit into a byte are variants in utf8, and the caller may not have been
3160 keeping track of these.)
3162 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3163 isn't guaranteed due to having other routines do the work in some input cases,
3164 or if the input is already flagged as being in utf8.
3166 The speed of this could perhaps be improved for many cases if someone wanted to
3167 write a fast function that counts the number of variant characters in a string,
3168 especially if it could return the position of the first one.
3173 Perl_sv_utf8_upgrade_flags_grow(pTHX_ SV *const sv, const I32 flags, STRLEN extra)
3177 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3179 if (sv == &PL_sv_undef)
3181 if (!SvPOK_nog(sv)) {
3183 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3184 (void) sv_2pv_flags(sv,&len, flags);
3186 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3190 (void) SvPV_force_flags(sv,len,flags & SV_GMAGIC);
3195 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3200 sv_force_normal_flags(sv, 0);
3203 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3204 sv_recode_to_utf8(sv, PL_encoding);
3205 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3209 if (SvCUR(sv) == 0) {
3210 if (extra) SvGROW(sv, extra);
3211 } else { /* Assume Latin-1/EBCDIC */
3212 /* This function could be much more efficient if we
3213 * had a FLAG in SVs to signal if there are any variant
3214 * chars in the PV. Given that there isn't such a flag
3215 * make the loop as fast as possible (although there are certainly ways
3216 * to speed this up, eg. through vectorization) */
3217 U8 * s = (U8 *) SvPVX_const(sv);
3218 U8 * e = (U8 *) SvEND(sv);
3220 STRLEN two_byte_count = 0;
3222 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3224 /* See if really will need to convert to utf8. We mustn't rely on our
3225 * incoming SV being well formed and having a trailing '\0', as certain
3226 * code in pp_formline can send us partially built SVs. */
3230 if (NATIVE_IS_INVARIANT(ch)) continue;
3232 t--; /* t already incremented; re-point to first variant */
3237 /* utf8 conversion not needed because all are invariants. Mark as
3238 * UTF-8 even if no variant - saves scanning loop */
3240 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3245 /* Here, the string should be converted to utf8, either because of an
3246 * input flag (two_byte_count = 0), or because a character that
3247 * requires 2 bytes was found (two_byte_count = 1). t points either to
3248 * the beginning of the string (if we didn't examine anything), or to
3249 * the first variant. In either case, everything from s to t - 1 will
3250 * occupy only 1 byte each on output.
3252 * There are two main ways to convert. One is to create a new string
3253 * and go through the input starting from the beginning, appending each
3254 * converted value onto the new string as we go along. It's probably
3255 * best to allocate enough space in the string for the worst possible
3256 * case rather than possibly running out of space and having to
3257 * reallocate and then copy what we've done so far. Since everything
3258 * from s to t - 1 is invariant, the destination can be initialized
3259 * with these using a fast memory copy
3261 * The other way is to figure out exactly how big the string should be
3262 * by parsing the entire input. Then you don't have to make it big
3263 * enough to handle the worst possible case, and more importantly, if
3264 * the string you already have is large enough, you don't have to
3265 * allocate a new string, you can copy the last character in the input
3266 * string to the final position(s) that will be occupied by the
3267 * converted string and go backwards, stopping at t, since everything
3268 * before that is invariant.
3270 * There are advantages and disadvantages to each method.
3272 * In the first method, we can allocate a new string, do the memory
3273 * copy from the s to t - 1, and then proceed through the rest of the
3274 * string byte-by-byte.
3276 * In the second method, we proceed through the rest of the input
3277 * string just calculating how big the converted string will be. Then
3278 * there are two cases:
3279 * 1) if the string has enough extra space to handle the converted
3280 * value. We go backwards through the string, converting until we
3281 * get to the position we are at now, and then stop. If this
3282 * position is far enough along in the string, this method is
3283 * faster than the other method. If the memory copy were the same
3284 * speed as the byte-by-byte loop, that position would be about
3285 * half-way, as at the half-way mark, parsing to the end and back
3286 * is one complete string's parse, the same amount as starting
3287 * over and going all the way through. Actually, it would be
3288 * somewhat less than half-way, as it's faster to just count bytes
3289 * than to also copy, and we don't have the overhead of allocating
3290 * a new string, changing the scalar to use it, and freeing the
3291 * existing one. But if the memory copy is fast, the break-even
3292 * point is somewhere after half way. The counting loop could be
3293 * sped up by vectorization, etc, to move the break-even point
3294 * further towards the beginning.
3295 * 2) if the string doesn't have enough space to handle the converted
3296 * value. A new string will have to be allocated, and one might
3297 * as well, given that, start from the beginning doing the first
3298 * method. We've spent extra time parsing the string and in
3299 * exchange all we've gotten is that we know precisely how big to
3300 * make the new one. Perl is more optimized for time than space,
3301 * so this case is a loser.
3302 * So what I've decided to do is not use the 2nd method unless it is
3303 * guaranteed that a new string won't have to be allocated, assuming
3304 * the worst case. I also decided not to put any more conditions on it
3305 * than this, for now. It seems likely that, since the worst case is
3306 * twice as big as the unknown portion of the string (plus 1), we won't
3307 * be guaranteed enough space, causing us to go to the first method,
3308 * unless the string is short, or the first variant character is near
3309 * the end of it. In either of these cases, it seems best to use the
3310 * 2nd method. The only circumstance I can think of where this would
3311 * be really slower is if the string had once had much more data in it
3312 * than it does now, but there is still a substantial amount in it */
3315 STRLEN invariant_head = t - s;
3316 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3317 if (SvLEN(sv) < size) {
3319 /* Here, have decided to allocate a new string */
3324 Newx(dst, size, U8);
3326 /* If no known invariants at the beginning of the input string,
3327 * set so starts from there. Otherwise, can use memory copy to
3328 * get up to where we are now, and then start from here */
3330 if (invariant_head <= 0) {
3333 Copy(s, dst, invariant_head, char);
3334 d = dst + invariant_head;
3338 const UV uv = NATIVE8_TO_UNI(*t++);
3339 if (UNI_IS_INVARIANT(uv))
3340 *d++ = (U8)UNI_TO_NATIVE(uv);
3342 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3343 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3347 SvPV_free(sv); /* No longer using pre-existing string */
3348 SvPV_set(sv, (char*)dst);
3349 SvCUR_set(sv, d - dst);
3350 SvLEN_set(sv, size);
3353 /* Here, have decided to get the exact size of the string.
3354 * Currently this happens only when we know that there is
3355 * guaranteed enough space to fit the converted string, so
3356 * don't have to worry about growing. If two_byte_count is 0,
3357 * then t points to the first byte of the string which hasn't
3358 * been examined yet. Otherwise two_byte_count is 1, and t
3359 * points to the first byte in the string that will expand to
3360 * two. Depending on this, start examining at t or 1 after t.
3363 U8 *d = t + two_byte_count;
3366 /* Count up the remaining bytes that expand to two */
3369 const U8 chr = *d++;
3370 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3373 /* The string will expand by just the number of bytes that
3374 * occupy two positions. But we are one afterwards because of
3375 * the increment just above. This is the place to put the
3376 * trailing NUL, and to set the length before we decrement */
3378 d += two_byte_count;
3379 SvCUR_set(sv, d - s);
3383 /* Having decremented d, it points to the position to put the
3384 * very last byte of the expanded string. Go backwards through
3385 * the string, copying and expanding as we go, stopping when we
3386 * get to the part that is invariant the rest of the way down */
3390 const U8 ch = NATIVE8_TO_UNI(*e--);
3391 if (UNI_IS_INVARIANT(ch)) {
3392 *d-- = UNI_TO_NATIVE(ch);
3394 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3395 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3400 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3401 /* Update pos. We do it at the end rather than during
3402 * the upgrade, to avoid slowing down the common case
3403 * (upgrade without pos) */
3404 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3406 I32 pos = mg->mg_len;
3407 if (pos > 0 && (U32)pos > invariant_head) {
3408 U8 *d = (U8*) SvPVX(sv) + invariant_head;
3409 STRLEN n = (U32)pos - invariant_head;
3411 if (UTF8_IS_START(*d))
3416 mg->mg_len = d - (U8*)SvPVX(sv);
3419 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3420 magic_setutf8(sv,mg); /* clear UTF8 cache */
3425 /* Mark as UTF-8 even if no variant - saves scanning loop */
3431 =for apidoc sv_utf8_downgrade
3433 Attempts to convert the PV of an SV from characters to bytes.
3434 If the PV contains a character that cannot fit
3435 in a byte, this conversion will fail;
3436 in this case, either returns false or, if C<fail_ok> is not
3439 This is not a general purpose Unicode to byte encoding interface:
3440 use the Encode extension for that.
3446 Perl_sv_utf8_downgrade(pTHX_ SV *const sv, const bool fail_ok)
3450 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3452 if (SvPOKp(sv) && SvUTF8(sv)) {
3456 int mg_flags = SV_GMAGIC;
3459 sv_force_normal_flags(sv, 0);
3461 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3463 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3465 I32 pos = mg->mg_len;
3467 sv_pos_b2u(sv, &pos);
3468 mg_flags = 0; /* sv_pos_b2u does get magic */
3472 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3473 magic_setutf8(sv,mg); /* clear UTF8 cache */
3476 s = (U8 *) SvPV_flags(sv, len, mg_flags);
3478 if (!utf8_to_bytes(s, &len)) {
3483 Perl_croak(aTHX_ "Wide character in %s",
3486 Perl_croak(aTHX_ "Wide character");
3497 =for apidoc sv_utf8_encode
3499 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3500 flag off so that it looks like octets again.
3506 Perl_sv_utf8_encode(pTHX_ SV *const sv)
3508 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3510 if (SvREADONLY(sv)) {
3511 sv_force_normal_flags(sv, 0);
3513 (void) sv_utf8_upgrade(sv);
3518 =for apidoc sv_utf8_decode
3520 If the PV of the SV is an octet sequence in UTF-8
3521 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3522 so that it looks like a character. If the PV contains only single-byte
3523 characters, the C<SvUTF8> flag stays off.
3524 Scans PV for validity and returns false if the PV is invalid UTF-8.
3530 Perl_sv_utf8_decode(pTHX_ SV *const sv)
3532 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3535 const U8 *start, *c;
3538 /* The octets may have got themselves encoded - get them back as
3541 if (!sv_utf8_downgrade(sv, TRUE))
3544 /* it is actually just a matter of turning the utf8 flag on, but
3545 * we want to make sure everything inside is valid utf8 first.
3547 c = start = (const U8 *) SvPVX_const(sv);
3548 if (!is_utf8_string(c, SvCUR(sv)))
3550 e = (const U8 *) SvEND(sv);
3553 if (!UTF8_IS_INVARIANT(ch)) {
3558 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3559 /* adjust pos to the start of a UTF8 char sequence */
3560 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3562 I32 pos = mg->mg_len;
3564 for (c = start + pos; c > start; c--) {
3565 if (UTF8_IS_START(*c))
3568 mg->mg_len = c - start;
3571 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3572 magic_setutf8(sv,mg); /* clear UTF8 cache */
3579 =for apidoc sv_setsv
3581 Copies the contents of the source SV C<ssv> into the destination SV
3582 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3583 function if the source SV needs to be reused. Does not handle 'set' magic.
3584 Loosely speaking, it performs a copy-by-value, obliterating any previous
3585 content of the destination.
3587 You probably want to use one of the assortment of wrappers, such as
3588 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3589 C<SvSetMagicSV_nosteal>.
3591 =for apidoc sv_setsv_flags
3593 Copies the contents of the source SV C<ssv> into the destination SV
3594 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3595 function if the source SV needs to be reused. Does not handle 'set' magic.
3596 Loosely speaking, it performs a copy-by-value, obliterating any previous
3597 content of the destination.
3598 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3599 C<ssv> if appropriate, else not. If the C<flags>
3600 parameter has the C<NOSTEAL> bit set then the
3601 buffers of temps will not be stolen. <sv_setsv>
3602 and C<sv_setsv_nomg> are implemented in terms of this function.
3604 You probably want to use one of the assortment of wrappers, such as
3605 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3606 C<SvSetMagicSV_nosteal>.
3608 This is the primary function for copying scalars, and most other
3609 copy-ish functions and macros use this underneath.
3615 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3617 I32 mro_changes = 0; /* 1 = method, 2 = isa, 3 = recursive isa */
3618 HV *old_stash = NULL;
3620 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3622 if (dtype != SVt_PVGV && !isGV_with_GP(dstr)) {
3623 const char * const name = GvNAME(sstr);
3624 const STRLEN len = GvNAMELEN(sstr);
3626 if (dtype >= SVt_PV) {
3632 SvUPGRADE(dstr, SVt_PVGV);
3633 (void)SvOK_off(dstr);
3634 /* We have to turn this on here, even though we turn it off
3635 below, as GvSTASH will fail an assertion otherwise. */
3636 isGV_with_GP_on(dstr);
3638 GvSTASH(dstr) = GvSTASH(sstr);
3640 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3641 gv_name_set(MUTABLE_GV(dstr), name, len,
3642 GV_ADD | (GvNAMEUTF8(sstr) ? SVf_UTF8 : 0 ));
3643 SvFAKE_on(dstr); /* can coerce to non-glob */
3646 if(GvGP(MUTABLE_GV(sstr))) {
3647 /* If source has method cache entry, clear it */
3649 SvREFCNT_dec(GvCV(sstr));
3650 GvCV_set(sstr, NULL);
3653 /* If source has a real method, then a method is
3656 GvCV((const GV *)sstr) && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3662 /* If dest already had a real method, that's a change as well */
3664 !mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)
3665 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3670 /* We don't need to check the name of the destination if it was not a
3671 glob to begin with. */
3672 if(dtype == SVt_PVGV) {
3673 const char * const name = GvNAME((const GV *)dstr);
3676 /* The stash may have been detached from the symbol table, so
3678 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3682 const STRLEN len = GvNAMELEN(dstr);
3683 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
3684 || (len == 1 && name[0] == ':')) {
3687 /* Set aside the old stash, so we can reset isa caches on
3689 if((old_stash = GvHV(dstr)))
3690 /* Make sure we do not lose it early. */
3691 SvREFCNT_inc_simple_void_NN(
3692 sv_2mortal((SV *)old_stash)
3698 gp_free(MUTABLE_GV(dstr));
3699 isGV_with_GP_off(dstr); /* SvOK_off does not like globs. */
3700 (void)SvOK_off(dstr);
3701 isGV_with_GP_on(dstr);
3702 GvINTRO_off(dstr); /* one-shot flag */
3703 GvGP_set(dstr, gp_ref(GvGP(sstr)));
3704 if (SvTAINTED(sstr))
3706 if (GvIMPORTED(dstr) != GVf_IMPORTED
3707 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3709 GvIMPORTED_on(dstr);
3712 if(mro_changes == 2) {
3713 if (GvAV((const GV *)sstr)) {
3715 SV * const sref = (SV *)GvAV((const GV *)dstr);
3716 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3717 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3718 AV * const ary = newAV();
3719 av_push(ary, mg->mg_obj); /* takes the refcount */
3720 mg->mg_obj = (SV *)ary;
3722 av_push((AV *)mg->mg_obj, SvREFCNT_inc_simple_NN(dstr));
3724 else sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3726 mro_isa_changed_in(GvSTASH(dstr));
3728 else if(mro_changes == 3) {
3729 HV * const stash = GvHV(dstr);
3730 if(old_stash ? (HV *)HvENAME_get(old_stash) : stash)
3736 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3741 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3743 SV * const sref = SvRV(sstr);
3745 const int intro = GvINTRO(dstr);
3748 const U32 stype = SvTYPE(sref);
3750 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3753 GvINTRO_off(dstr); /* one-shot flag */
3754 GvLINE(dstr) = CopLINE(PL_curcop);
3755 GvEGV(dstr) = MUTABLE_GV(dstr);
3760 location = (SV **) &(GvGP(dstr)->gp_cv); /* XXX bypassing GvCV_set */
3761 import_flag = GVf_IMPORTED_CV;
3764 location = (SV **) &GvHV(dstr);
3765 import_flag = GVf_IMPORTED_HV;
3768 location = (SV **) &GvAV(dstr);
3769 import_flag = GVf_IMPORTED_AV;
3772 location = (SV **) &GvIOp(dstr);
3775 location = (SV **) &GvFORM(dstr);
3778 location = &GvSV(dstr);
3779 import_flag = GVf_IMPORTED_SV;
3782 if (stype == SVt_PVCV) {
3783 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3784 if (GvCVGEN(dstr)) {
3785 SvREFCNT_dec(GvCV(dstr));
3786 GvCV_set(dstr, NULL);
3787 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3790 /* SAVEt_GVSLOT takes more room on the savestack and has more
3791 overhead in leave_scope than SAVEt_GENERIC_SV. But for CVs
3792 leave_scope needs access to the GV so it can reset method
3793 caches. We must use SAVEt_GVSLOT whenever the type is
3794 SVt_PVCV, even if the stash is anonymous, as the stash may
3795 gain a name somehow before leave_scope. */
3796 if (stype == SVt_PVCV) {
3797 /* There is no save_pushptrptrptr. Creating it for this
3798 one call site would be overkill. So inline the ss add
3802 SS_ADD_PTR(location);
3803 SS_ADD_PTR(SvREFCNT_inc(*location));
3804 SS_ADD_UV(SAVEt_GVSLOT);
3807 else SAVEGENERICSV(*location);
3810 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3811 CV* const cv = MUTABLE_CV(*location);
3813 if (!GvCVGEN((const GV *)dstr) &&
3814 (CvROOT(cv) || CvXSUB(cv)) &&
3815 /* redundant check that avoids creating the extra SV
3816 most of the time: */
3817 (CvCONST(cv) || ckWARN(WARN_REDEFINE)))
3819 SV * const new_const_sv =
3820 CvCONST((const CV *)sref)
3821 ? cv_const_sv((const CV *)sref)
3823 report_redefined_cv(
3824 sv_2mortal(Perl_newSVpvf(aTHX_
3827 HvNAME_HEK(GvSTASH((const GV *)dstr))
3829 HEKfARG(GvENAME_HEK(MUTABLE_GV(dstr)))
3832 CvCONST((const CV *)sref) ? &new_const_sv : NULL
3836 cv_ckproto_len_flags(cv, (const GV *)dstr,
3837 SvPOK(sref) ? CvPROTO(sref) : NULL,
3838 SvPOK(sref) ? CvPROTOLEN(sref) : 0,
3839 SvPOK(sref) ? SvUTF8(sref) : 0);
3841 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3842 GvASSUMECV_on(dstr);
3843 if(GvSTASH(dstr)) gv_method_changed(dstr); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3845 *location = SvREFCNT_inc_simple_NN(sref);
3846 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3847 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3848 GvFLAGS(dstr) |= import_flag;
3850 if (stype == SVt_PVHV) {
3851 const char * const name = GvNAME((GV*)dstr);
3852 const STRLEN len = GvNAMELEN(dstr);
3855 (len > 1 && name[len-2] == ':' && name[len-1] == ':')
3856 || (len == 1 && name[0] == ':')
3858 && (!dref || HvENAME_get(dref))
3861 (HV *)sref, (HV *)dref,
3867 stype == SVt_PVAV && sref != dref
3868 && strEQ(GvNAME((GV*)dstr), "ISA")
3869 /* The stash may have been detached from the symbol table, so
3870 check its name before doing anything. */
3871 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3874 MAGIC * const omg = dref && SvSMAGICAL(dref)
3875 ? mg_find(dref, PERL_MAGIC_isa)
3877 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3878 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3879 AV * const ary = newAV();
3880 av_push(ary, mg->mg_obj); /* takes the refcount */
3881 mg->mg_obj = (SV *)ary;
3884 if (SvTYPE(omg->mg_obj) == SVt_PVAV) {
3885 SV **svp = AvARRAY((AV *)omg->mg_obj);
3886 I32 items = AvFILLp((AV *)omg->mg_obj) + 1;
3890 SvREFCNT_inc_simple_NN(*svp++)
3896 SvREFCNT_inc_simple_NN(omg->mg_obj)
3900 av_push((AV *)mg->mg_obj,SvREFCNT_inc_simple_NN(dstr));
3905 sref, omg ? omg->mg_obj : dstr, PERL_MAGIC_isa, NULL, 0
3907 mg = mg_find(sref, PERL_MAGIC_isa);
3909 /* Since the *ISA assignment could have affected more than
3910 one stash, don't call mro_isa_changed_in directly, but let
3911 magic_clearisa do it for us, as it already has the logic for
3912 dealing with globs vs arrays of globs. */
3914 Perl_magic_clearisa(aTHX_ NULL, mg);
3916 else if (stype == SVt_PVIO) {
3917 DEBUG_o(Perl_deb(aTHX_ "glob_assign_ref clearing PL_stashcache\n"));
3918 /* It's a cache. It will rebuild itself quite happily.
3919 It's a lot of effort to work out exactly which key (or keys)
3920 might be invalidated by the creation of the this file handle.
3922 hv_clear(PL_stashcache);
3926 if (!intro) SvREFCNT_dec(dref);
3927 if (SvTAINTED(sstr))
3932 /* Work around compiler warnings about unsigned >= THRESHOLD when thres-
3934 #if SV_COW_THRESHOLD
3935 # define GE_COW_THRESHOLD(len) ((len) >= SV_COW_THRESHOLD)
3937 # define GE_COW_THRESHOLD(len) 1
3939 #if SV_COWBUF_THRESHOLD
3940 # define GE_COWBUF_THRESHOLD(len) ((len) >= SV_COWBUF_THRESHOLD)
3942 # define GE_COWBUF_THRESHOLD(len) 1
3946 Perl_sv_setsv_flags(pTHX_ SV *dstr, SV* sstr, const I32 flags)
3953 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3958 if (SvIS_FREED(dstr)) {
3959 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3960 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3962 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3964 sstr = &PL_sv_undef;
3965 if (SvIS_FREED(sstr)) {
3966 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3967 (void*)sstr, (void*)dstr);
3969 stype = SvTYPE(sstr);
3970 dtype = SvTYPE(dstr);
3972 /* There's a lot of redundancy below but we're going for speed here */
3977 if (dtype != SVt_PVGV && dtype != SVt_PVLV) {
3978 (void)SvOK_off(dstr);
3986 sv_upgrade(dstr, SVt_IV);
3990 sv_upgrade(dstr, SVt_PVIV);
3994 goto end_of_first_switch;
3996 (void)SvIOK_only(dstr);
3997 SvIV_set(dstr, SvIVX(sstr));
4000 /* SvTAINTED can only be true if the SV has taint magic, which in
4001 turn means that the SV type is PVMG (or greater). This is the
4002 case statement for SVt_IV, so this cannot be true (whatever gcov
4004 assert(!SvTAINTED(sstr));
4009 if (dtype < SVt_PV && dtype != SVt_IV)
4010 sv_upgrade(dstr, SVt_IV);
4018 sv_upgrade(dstr, SVt_NV);
4022 sv_upgrade(dstr, SVt_PVNV);
4026 goto end_of_first_switch;
4028 SvNV_set(dstr, SvNVX(sstr));
4029 (void)SvNOK_only(dstr);
4030 /* SvTAINTED can only be true if the SV has taint magic, which in
4031 turn means that the SV type is PVMG (or greater). This is the
4032 case statement for SVt_NV, so this cannot be true (whatever gcov
4034 assert(!SvTAINTED(sstr));
4041 sv_upgrade(dstr, SVt_PV);
4044 if (dtype < SVt_PVIV)
4045 sv_upgrade(dstr, SVt_PVIV);
4048 if (dtype < SVt_PVNV)
4049 sv_upgrade(dstr, SVt_PVNV);
4053 const char * const type = sv_reftype(sstr,0);
4055 /* diag_listed_as: Bizarre copy of %s */
4056 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
4058 Perl_croak(aTHX_ "Bizarre copy of %s", type);
4064 if (dtype < SVt_REGEXP)
4066 if (dtype >= SVt_PV) {
4072 sv_upgrade(dstr, SVt_REGEXP);
4076 /* case SVt_BIND: */
4080 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
4082 if (SvTYPE(sstr) != stype)
4083 stype = SvTYPE(sstr);
4085 if (isGV_with_GP(sstr) && dtype <= SVt_PVLV) {
4086 glob_assign_glob(dstr, sstr, dtype);
4089 if (stype == SVt_PVLV)
4091 if (isREGEXP(sstr)) goto upgregexp;
4092 SvUPGRADE(dstr, SVt_PVNV);
4095 SvUPGRADE(dstr, (svtype)stype);
4097 end_of_first_switch:
4099 /* dstr may have been upgraded. */
4100 dtype = SvTYPE(dstr);
4101 sflags = SvFLAGS(sstr);
4103 if (dtype == SVt_PVCV) {
4104 /* Assigning to a subroutine sets the prototype. */
4107 const char *const ptr = SvPV_const(sstr, len);
4109 SvGROW(dstr, len + 1);
4110 Copy(ptr, SvPVX(dstr), len + 1, char);
4111 SvCUR_set(dstr, len);
4113 SvFLAGS(dstr) |= sflags & SVf_UTF8;
4114 CvAUTOLOAD_off(dstr);
4119 else if (dtype == SVt_PVAV || dtype == SVt_PVHV || dtype == SVt_PVFM) {
4120 const char * const type = sv_reftype(dstr,0);
4122 /* diag_listed_as: Cannot copy to %s */
4123 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
4125 Perl_croak(aTHX_ "Cannot copy to %s", type);
4126 } else if (sflags & SVf_ROK) {
4127 if (isGV_with_GP(dstr)
4128 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
4131 if (GvIMPORTED(dstr) != GVf_IMPORTED
4132 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
4134 GvIMPORTED_on(dstr);
4139 glob_assign_glob(dstr, sstr, dtype);
4143 if (dtype >= SVt_PV) {
4144 if (isGV_with_GP(dstr)) {
4145 glob_assign_ref(dstr, sstr);
4148 if (SvPVX_const(dstr)) {
4154 (void)SvOK_off(dstr);
4155 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4156 SvFLAGS(dstr) |= sflags & SVf_ROK;
4157 assert(!(sflags & SVp_NOK));
4158 assert(!(sflags & SVp_IOK));
4159 assert(!(sflags & SVf_NOK));
4160 assert(!(sflags & SVf_IOK));
4162 else if (isGV_with_GP(dstr)) {
4163 if (!(sflags & SVf_OK)) {
4164 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4165 "Undefined value assigned to typeglob");
4168 GV *gv = gv_fetchsv_nomg(sstr, GV_ADD, SVt_PVGV);
4169 if (dstr != (const SV *)gv) {
4170 const char * const name = GvNAME((const GV *)dstr);
4171 const STRLEN len = GvNAMELEN(dstr);
4172 HV *old_stash = NULL;
4173 bool reset_isa = FALSE;
4174 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
4175 || (len == 1 && name[0] == ':')) {
4176 /* Set aside the old stash, so we can reset isa caches
4177 on its subclasses. */
4178 if((old_stash = GvHV(dstr))) {
4179 /* Make sure we do not lose it early. */
4180 SvREFCNT_inc_simple_void_NN(
4181 sv_2mortal((SV *)old_stash)
4188 gp_free(MUTABLE_GV(dstr));
4189 GvGP_set(dstr, gp_ref(GvGP(gv)));
4192 HV * const stash = GvHV(dstr);
4194 old_stash ? (HV *)HvENAME_get(old_stash) : stash
4204 else if ((dtype == SVt_REGEXP || dtype == SVt_PVLV)
4205 && (stype == SVt_REGEXP || isREGEXP(sstr))) {
4206 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4208 else if (sflags & SVp_POK) {
4210 const STRLEN cur = SvCUR(sstr);
4211 const STRLEN len = SvLEN(sstr);
4214 * Check to see if we can just swipe the string. If so, it's a
4215 * possible small lose on short strings, but a big win on long ones.
4216 * It might even be a win on short strings if SvPVX_const(dstr)
4217 * has to be allocated and SvPVX_const(sstr) has to be freed.
4218 * Likewise if we can set up COW rather than doing an actual copy, we
4219 * drop to the else clause, as the swipe code and the COW setup code
4220 * have much in common.
4223 /* Whichever path we take through the next code, we want this true,
4224 and doing it now facilitates the COW check. */
4225 (void)SvPOK_only(dstr);
4228 /* If we're already COW then this clause is not true, and if COW
4229 is allowed then we drop down to the else and make dest COW
4230 with us. If caller hasn't said that we're allowed to COW
4231 shared hash keys then we don't do the COW setup, even if the
4232 source scalar is a shared hash key scalar. */
4233 (((flags & SV_COW_SHARED_HASH_KEYS)
4234 ? !(sflags & SVf_IsCOW)
4235 #ifdef PERL_NEW_COPY_ON_WRITE
4237 ((!GE_COWBUF_THRESHOLD(cur) && SvLEN(dstr) > cur)
4238 /* If this is a regular (non-hek) COW, only so many COW
4239 "copies" are possible. */
4240 || CowREFCNT(sstr) == SV_COW_REFCNT_MAX))
4242 : 1 /* If making a COW copy is forbidden then the behaviour we
4243 desire is as if the source SV isn't actually already
4244 COW, even if it is. So we act as if the source flags
4245 are not COW, rather than actually testing them. */
4247 #ifndef PERL_ANY_COW
4248 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
4249 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
4250 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
4251 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
4252 but in turn, it's somewhat dead code, never expected to go
4253 live, but more kept as a placeholder on how to do it better
4254 in a newer implementation. */
4255 /* If we are COW and dstr is a suitable target then we drop down
4256 into the else and make dest a COW of us. */
4257 || (SvFLAGS(dstr) & SVf_BREAK)
4262 #ifdef PERL_NEW_COPY_ON_WRITE
4263 /* slated for free anyway (and not COW)? */
4264 (sflags & (SVs_TEMP|SVf_IsCOW)) == SVs_TEMP &&
4266 (sflags & SVs_TEMP) && /* slated for free anyway? */
4268 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4269 (!(flags & SV_NOSTEAL)) &&
4270 /* and we're allowed to steal temps */
4271 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4272 len) /* and really is a string */
4274 && ((flags & SV_COW_SHARED_HASH_KEYS)
4275 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4276 # ifdef PERL_OLD_COPY_ON_WRITE
4277 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4278 && SvTYPE(sstr) >= SVt_PVIV
4280 && !(SvFLAGS(dstr) & SVf_BREAK)
4281 && !(sflags & SVf_IsCOW)
4282 && GE_COW_THRESHOLD(cur) && cur+1 < len
4283 && (GE_COWBUF_THRESHOLD(cur) || SvLEN(dstr) < cur+1)
4289 /* Failed the swipe test, and it's not a shared hash key either.
4290 Have to copy the string. */
4291 SvGROW(dstr, cur + 1); /* inlined from sv_setpvn */
4292 Move(SvPVX_const(sstr),SvPVX(dstr),cur,char);
4293 SvCUR_set(dstr, cur);
4294 *SvEND(dstr) = '\0';
4296 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4298 /* Either it's a shared hash key, or it's suitable for
4299 copy-on-write or we can swipe the string. */
4301 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4307 if (!(sflags & SVf_IsCOW)) {
4309 # ifdef PERL_OLD_COPY_ON_WRITE
4310 /* Make the source SV into a loop of 1.
4311 (about to become 2) */
4312 SV_COW_NEXT_SV_SET(sstr, sstr);
4314 CowREFCNT(sstr) = 0;
4319 /* Initial code is common. */
4320 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4325 /* making another shared SV. */
4328 # ifdef PERL_OLD_COPY_ON_WRITE
4329 assert (SvTYPE(dstr) >= SVt_PVIV);
4330 /* SvIsCOW_normal */
4331 /* splice us in between source and next-after-source. */
4332 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4333 SV_COW_NEXT_SV_SET(sstr, dstr);
4337 SvPV_set(dstr, SvPVX_mutable(sstr));
4341 /* SvIsCOW_shared_hash */
4342 DEBUG_C(PerlIO_printf(Perl_debug_log,
4343 "Copy on write: Sharing hash\n"));
4345 assert (SvTYPE(dstr) >= SVt_PV);
4347 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4349 SvLEN_set(dstr, len);
4350 SvCUR_set(dstr, cur);
4354 { /* Passes the swipe test. */
4355 SvPV_set(dstr, SvPVX_mutable(sstr));
4356 SvLEN_set(dstr, SvLEN(sstr));
4357 SvCUR_set(dstr, SvCUR(sstr));
4360 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4361 SvPV_set(sstr, NULL);
4367 if (sflags & SVp_NOK) {
4368 SvNV_set(dstr, SvNVX(sstr));
4370 if (sflags & SVp_IOK) {
4371 SvIV_set(dstr, SvIVX(sstr));
4372 /* Must do this otherwise some other overloaded use of 0x80000000
4373 gets confused. I guess SVpbm_VALID */
4374 if (sflags & SVf_IVisUV)
4377 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4379 const MAGIC * const smg = SvVSTRING_mg(sstr);
4381 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4382 smg->mg_ptr, smg->mg_len);
4383 SvRMAGICAL_on(dstr);
4387 else if (sflags & (SVp_IOK|SVp_NOK)) {
4388 (void)SvOK_off(dstr);
4389 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4390 if (sflags & SVp_IOK) {
4391 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4392 SvIV_set(dstr, SvIVX(sstr));
4394 if (sflags & SVp_NOK) {
4395 SvNV_set(dstr, SvNVX(sstr));
4399 if (isGV_with_GP(sstr)) {
4400 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4403 (void)SvOK_off(dstr);
4405 if (SvTAINTED(sstr))
4410 =for apidoc sv_setsv_mg
4412 Like C<sv_setsv>, but also handles 'set' magic.
4418 Perl_sv_setsv_mg(pTHX_ SV *const dstr, SV *const sstr)
4420 PERL_ARGS_ASSERT_SV_SETSV_MG;
4422 sv_setsv(dstr,sstr);
4427 # ifdef PERL_OLD_COPY_ON_WRITE
4428 # define SVt_COW SVt_PVIV
4430 # define SVt_COW SVt_PV
4433 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4435 STRLEN cur = SvCUR(sstr);
4436 STRLEN len = SvLEN(sstr);
4439 PERL_ARGS_ASSERT_SV_SETSV_COW;
4442 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4443 (void*)sstr, (void*)dstr);
4450 if (SvTHINKFIRST(dstr))
4451 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4452 else if (SvPVX_const(dstr))
4453 Safefree(SvPVX_mutable(dstr));
4457 SvUPGRADE(dstr, SVt_COW);
4459 assert (SvPOK(sstr));
4460 assert (SvPOKp(sstr));
4461 # ifdef PERL_OLD_COPY_ON_WRITE
4462 assert (!SvIOK(sstr));
4463 assert (!SvIOKp(sstr));
4464 assert (!SvNOK(sstr));
4465 assert (!SvNOKp(sstr));
4468 if (SvIsCOW(sstr)) {
4470 if (SvLEN(sstr) == 0) {
4471 /* source is a COW shared hash key. */
4472 DEBUG_C(PerlIO_printf(Perl_debug_log,
4473 "Fast copy on write: Sharing hash\n"));
4474 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4477 # ifdef PERL_OLD_COPY_ON_WRITE
4478 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4480 assert(SvCUR(sstr)+1 < SvLEN(sstr));
4481 assert(CowREFCNT(sstr) < SV_COW_REFCNT_MAX);
4484 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4485 SvUPGRADE(sstr, SVt_COW);
4487 DEBUG_C(PerlIO_printf(Perl_debug_log,
4488 "Fast copy on write: Converting sstr to COW\n"));
4489 # ifdef PERL_OLD_COPY_ON_WRITE
4490 SV_COW_NEXT_SV_SET(dstr, sstr);
4492 CowREFCNT(sstr) = 0;
4495 # ifdef PERL_OLD_COPY_ON_WRITE
4496 SV_COW_NEXT_SV_SET(sstr, dstr);
4500 new_pv = SvPVX_mutable(sstr);
4503 SvPV_set(dstr, new_pv);
4504 SvFLAGS(dstr) = (SVt_COW|SVf_POK|SVp_POK|SVf_IsCOW);
4507 SvLEN_set(dstr, len);
4508 SvCUR_set(dstr, cur);
4517 =for apidoc sv_setpvn
4519 Copies a string into an SV. The C<len> parameter indicates the number of
4520 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4521 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4527 Perl_sv_setpvn(pTHX_ SV *const sv, const char *const ptr, const STRLEN len)
4532 PERL_ARGS_ASSERT_SV_SETPVN;
4534 SV_CHECK_THINKFIRST_COW_DROP(sv);
4540 /* len is STRLEN which is unsigned, need to copy to signed */
4543 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen %"
4546 SvUPGRADE(sv, SVt_PV);
4548 dptr = SvGROW(sv, len + 1);
4549 Move(ptr,dptr,len,char);
4552 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4554 if (SvTYPE(sv) == SVt_PVCV) CvAUTOLOAD_off(sv);
4558 =for apidoc sv_setpvn_mg
4560 Like C<sv_setpvn>, but also handles 'set' magic.
4566 Perl_sv_setpvn_mg(pTHX_ SV *const sv, const char *const ptr, const STRLEN len)
4568 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4570 sv_setpvn(sv,ptr,len);
4575 =for apidoc sv_setpv
4577 Copies a string into an SV. The string must be null-terminated. Does not
4578 handle 'set' magic. See C<sv_setpv_mg>.
4584 Perl_sv_setpv(pTHX_ SV *const sv, const char *const ptr)
4589 PERL_ARGS_ASSERT_SV_SETPV;
4591 SV_CHECK_THINKFIRST_COW_DROP(sv);
4597 SvUPGRADE(sv, SVt_PV);
4599 SvGROW(sv, len + 1);
4600 Move(ptr,SvPVX(sv),len+1,char);
4602 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4604 if (SvTYPE(sv) == SVt_PVCV) CvAUTOLOAD_off(sv);
4608 =for apidoc sv_setpv_mg
4610 Like C<sv_setpv>, but also handles 'set' magic.
4616 Perl_sv_setpv_mg(pTHX_ SV *const sv, const char *const ptr)
4618 PERL_ARGS_ASSERT_SV_SETPV_MG;
4625 Perl_sv_sethek(pTHX_ SV *const sv, const HEK *const hek)
4629 PERL_ARGS_ASSERT_SV_SETHEK;
4635 if (HEK_LEN(hek) == HEf_SVKEY) {
4636 sv_setsv(sv, *(SV**)HEK_KEY(hek));
4639 const int flags = HEK_FLAGS(hek);
4640 if (flags & HVhek_WASUTF8) {
4641 STRLEN utf8_len = HEK_LEN(hek);
4642 char *as_utf8 = (char *)bytes_to_utf8((U8*)HEK_KEY(hek), &utf8_len);
4643 sv_usepvn_flags(sv, as_utf8, utf8_len, SV_HAS_TRAILING_NUL);
4646 } else if (flags & HVhek_UNSHARED) {
4647 sv_setpvn(sv, HEK_KEY(hek), HEK_LEN(hek));
4650 else SvUTF8_off(sv);
4654 SV_CHECK_THINKFIRST_COW_DROP(sv);
4655 SvUPGRADE(sv, SVt_PV);
4656 Safefree(SvPVX(sv));
4657 SvPV_set(sv,(char *)HEK_KEY(share_hek_hek(hek)));
4658 SvCUR_set(sv, HEK_LEN(hek));