5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
78 #ifdef PERL_IN_XSUB_RE
80 EXTERN_C const struct regexp_engine my_reg_engine;
85 #include "dquote_inline.h"
86 #include "invlist_inline.h"
87 #include "unicode_constants.h"
89 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
90 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
91 #define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
92 _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
93 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
94 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
100 /* this is a chain of data about sub patterns we are processing that
101 need to be handled separately/specially in study_chunk. Its so
102 we can simulate recursion without losing state. */
104 typedef struct scan_frame {
105 regnode *last_regnode; /* last node to process in this frame */
106 regnode *next_regnode; /* next node to process when last is reached */
107 U32 prev_recursed_depth;
108 I32 stopparen; /* what stopparen do we use */
110 struct scan_frame *this_prev_frame; /* this previous frame */
111 struct scan_frame *prev_frame; /* previous frame */
112 struct scan_frame *next_frame; /* next frame */
115 /* Certain characters are output as a sequence with the first being a
117 #define isBACKSLASHED_PUNCT(c) strchr("-[]\\^", c)
120 struct RExC_state_t {
121 U32 flags; /* RXf_* are we folding, multilining? */
122 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
123 char *precomp; /* uncompiled string. */
124 char *precomp_end; /* pointer to end of uncompiled string. */
125 REGEXP *rx_sv; /* The SV that is the regexp. */
126 regexp *rx; /* perl core regexp structure */
127 regexp_internal *rxi; /* internal data for regexp object
129 char *start; /* Start of input for compile */
130 char *end; /* End of input for compile */
131 char *parse; /* Input-scan pointer. */
132 char *copy_start; /* start of copy of input within
133 constructed parse string */
134 char *save_copy_start; /* Provides one level of saving
135 and restoring 'copy_start' */
136 char *copy_start_in_input; /* Position in input string
137 corresponding to copy_start */
138 SSize_t whilem_seen; /* number of WHILEM in this expr */
139 regnode *emit_start; /* Start of emitted-code area */
140 regnode_offset emit; /* Code-emit pointer */
141 I32 naughty; /* How bad is this pattern? */
142 I32 sawback; /* Did we see \1, ...? */
144 SSize_t size; /* Number of regnode equivalents in
147 /* position beyond 'precomp' of the warning message furthest away from
148 * 'precomp'. During the parse, no warnings are raised for any problems
149 * earlier in the parse than this position. This works if warnings are
150 * raised the first time a given spot is parsed, and if only one
151 * independent warning is raised for any given spot */
152 Size_t latest_warn_offset;
154 I32 npar; /* Capture buffer count so far in the
155 parse, (OPEN) plus one. ("par" 0 is
157 I32 total_par; /* During initial parse, is either 0,
158 or -1; the latter indicating a
159 reparse is needed. After that pass,
160 it is what 'npar' became after the
161 pass. Hence, it being > 0 indicates
162 we are in a reparse situation */
163 I32 nestroot; /* root parens we are in - used by
166 regnode_offset *open_parens; /* offsets to open parens */
167 regnode_offset *close_parens; /* offsets to close parens */
168 I32 parens_buf_size; /* #slots malloced open/close_parens */
169 regnode *end_op; /* END node in program */
170 I32 utf8; /* whether the pattern is utf8 or not */
171 I32 orig_utf8; /* whether the pattern was originally in utf8 */
172 /* XXX use this for future optimisation of case
173 * where pattern must be upgraded to utf8. */
174 I32 uni_semantics; /* If a d charset modifier should use unicode
175 rules, even if the pattern is not in
177 HV *paren_names; /* Paren names */
179 regnode **recurse; /* Recurse regops */
180 I32 recurse_count; /* Number of recurse regops we have generated */
181 U8 *study_chunk_recursed; /* bitmap of which subs we have moved
183 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
187 I32 override_recoding;
188 I32 recode_x_to_native;
189 I32 in_multi_char_class;
190 struct reg_code_blocks *code_blocks;/* positions of literal (?{})
192 int code_index; /* next code_blocks[] slot */
193 SSize_t maxlen; /* mininum possible number of chars in string to match */
194 scan_frame *frame_head;
195 scan_frame *frame_last;
199 #ifdef ADD_TO_REGEXEC
200 char *starttry; /* -Dr: where regtry was called. */
201 #define RExC_starttry (pRExC_state->starttry)
203 SV *runtime_code_qr; /* qr with the runtime code blocks */
205 const char *lastparse;
207 AV *paren_name_list; /* idx -> name */
208 U32 study_chunk_recursed_count;
212 #define RExC_lastparse (pRExC_state->lastparse)
213 #define RExC_lastnum (pRExC_state->lastnum)
214 #define RExC_paren_name_list (pRExC_state->paren_name_list)
215 #define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
216 #define RExC_mysv (pRExC_state->mysv1)
217 #define RExC_mysv1 (pRExC_state->mysv1)
218 #define RExC_mysv2 (pRExC_state->mysv2)
228 #define RExC_flags (pRExC_state->flags)
229 #define RExC_pm_flags (pRExC_state->pm_flags)
230 #define RExC_precomp (pRExC_state->precomp)
231 #define RExC_copy_start_in_input (pRExC_state->copy_start_in_input)
232 #define RExC_copy_start_in_constructed (pRExC_state->copy_start)
233 #define RExC_save_copy_start_in_constructed (pRExC_state->save_copy_start)
234 #define RExC_precomp_end (pRExC_state->precomp_end)
235 #define RExC_rx_sv (pRExC_state->rx_sv)
236 #define RExC_rx (pRExC_state->rx)
237 #define RExC_rxi (pRExC_state->rxi)
238 #define RExC_start (pRExC_state->start)
239 #define RExC_end (pRExC_state->end)
240 #define RExC_parse (pRExC_state->parse)
241 #define RExC_latest_warn_offset (pRExC_state->latest_warn_offset )
242 #define RExC_whilem_seen (pRExC_state->whilem_seen)
243 #define RExC_seen_d_op (pRExC_state->seen_d_op) /* Seen something that differs
244 under /d from /u ? */
246 #ifdef RE_TRACK_PATTERN_OFFSETS
247 # define RExC_offsets (RExC_rxi->u.offsets) /* I am not like the
250 #define RExC_emit (pRExC_state->emit)
251 #define RExC_emit_start (pRExC_state->emit_start)
252 #define RExC_sawback (pRExC_state->sawback)
253 #define RExC_seen (pRExC_state->seen)
254 #define RExC_size (pRExC_state->size)
255 #define RExC_maxlen (pRExC_state->maxlen)
256 #define RExC_npar (pRExC_state->npar)
257 #define RExC_total_parens (pRExC_state->total_par)
258 #define RExC_parens_buf_size (pRExC_state->parens_buf_size)
259 #define RExC_nestroot (pRExC_state->nestroot)
260 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
261 #define RExC_utf8 (pRExC_state->utf8)
262 #define RExC_uni_semantics (pRExC_state->uni_semantics)
263 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
264 #define RExC_open_parens (pRExC_state->open_parens)
265 #define RExC_close_parens (pRExC_state->close_parens)
266 #define RExC_end_op (pRExC_state->end_op)
267 #define RExC_paren_names (pRExC_state->paren_names)
268 #define RExC_recurse (pRExC_state->recurse)
269 #define RExC_recurse_count (pRExC_state->recurse_count)
270 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
271 #define RExC_study_chunk_recursed_bytes \
272 (pRExC_state->study_chunk_recursed_bytes)
273 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
274 #define RExC_in_lookahead (pRExC_state->in_lookahead)
275 #define RExC_contains_locale (pRExC_state->contains_locale)
276 #define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
279 # define SET_recode_x_to_native(x) \
280 STMT_START { RExC_recode_x_to_native = (x); } STMT_END
282 # define SET_recode_x_to_native(x) NOOP
285 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
286 #define RExC_frame_head (pRExC_state->frame_head)
287 #define RExC_frame_last (pRExC_state->frame_last)
288 #define RExC_frame_count (pRExC_state->frame_count)
289 #define RExC_strict (pRExC_state->strict)
290 #define RExC_study_started (pRExC_state->study_started)
291 #define RExC_warn_text (pRExC_state->warn_text)
292 #define RExC_in_script_run (pRExC_state->in_script_run)
293 #define RExC_use_BRANCHJ (pRExC_state->use_BRANCHJ)
294 #define RExC_unlexed_names (pRExC_state->unlexed_names)
296 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
297 * a flag to disable back-off on the fixed/floating substrings - if it's
298 * a high complexity pattern we assume the benefit of avoiding a full match
299 * is worth the cost of checking for the substrings even if they rarely help.
301 #define RExC_naughty (pRExC_state->naughty)
302 #define TOO_NAUGHTY (10)
303 #define MARK_NAUGHTY(add) \
304 if (RExC_naughty < TOO_NAUGHTY) \
305 RExC_naughty += (add)
306 #define MARK_NAUGHTY_EXP(exp, add) \
307 if (RExC_naughty < TOO_NAUGHTY) \
308 RExC_naughty += RExC_naughty / (exp) + (add)
310 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
311 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
312 ((*s) == '{' && regcurly(s)))
315 * Flags to be passed up and down.
317 #define WORST 0 /* Worst case. */
318 #define HASWIDTH 0x01 /* Known to not match null strings, could match
321 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
322 * character. (There needs to be a case: in the switch statement in regexec.c
323 * for any node marked SIMPLE.) Note that this is not the same thing as
326 #define SPSTART 0x04 /* Starts with * or + */
327 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
328 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
329 #define RESTART_PARSE 0x20 /* Need to redo the parse */
330 #define NEED_UTF8 0x40 /* In conjunction with RESTART_PARSE, need to
331 calcuate sizes as UTF-8 */
333 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
335 /* whether trie related optimizations are enabled */
336 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
337 #define TRIE_STUDY_OPT
338 #define FULL_TRIE_STUDY
344 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
345 #define PBITVAL(paren) (1 << ((paren) & 7))
346 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
347 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
348 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
350 #define REQUIRE_UTF8(flagp) STMT_START { \
352 *flagp = RESTART_PARSE|NEED_UTF8; \
357 /* Change from /d into /u rules, and restart the parse. RExC_uni_semantics is
358 * a flag that indicates we need to override /d with /u as a result of
359 * something in the pattern. It should only be used in regards to calling
360 * set_regex_charset() or get_regex_charse() */
361 #define REQUIRE_UNI_RULES(flagp, restart_retval) \
363 if (DEPENDS_SEMANTICS) { \
364 set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET); \
365 RExC_uni_semantics = 1; \
366 if (RExC_seen_d_op && LIKELY(! IN_PARENS_PASS)) { \
367 /* No need to restart the parse if we haven't seen \
368 * anything that differs between /u and /d, and no need \
369 * to restart immediately if we're going to reparse \
370 * anyway to count parens */ \
371 *flagp |= RESTART_PARSE; \
372 return restart_retval; \
377 #define REQUIRE_BRANCHJ(flagp, restart_retval) \
379 RExC_use_BRANCHJ = 1; \
380 *flagp |= RESTART_PARSE; \
381 return restart_retval; \
384 /* Until we have completed the parse, we leave RExC_total_parens at 0 or
385 * less. After that, it must always be positive, because the whole re is
386 * considered to be surrounded by virtual parens. Setting it to negative
387 * indicates there is some construct that needs to know the actual number of
388 * parens to be properly handled. And that means an extra pass will be
389 * required after we've counted them all */
390 #define ALL_PARENS_COUNTED (RExC_total_parens > 0)
391 #define REQUIRE_PARENS_PASS \
392 STMT_START { /* No-op if have completed a pass */ \
393 if (! ALL_PARENS_COUNTED) RExC_total_parens = -1; \
395 #define IN_PARENS_PASS (RExC_total_parens < 0)
398 /* This is used to return failure (zero) early from the calling function if
399 * various flags in 'flags' are set. Two flags always cause a return:
400 * 'RESTART_PARSE' and 'NEED_UTF8'. 'extra' can be used to specify any
401 * additional flags that should cause a return; 0 if none. If the return will
402 * be done, '*flagp' is first set to be all of the flags that caused the
404 #define RETURN_FAIL_ON_RESTART_OR_FLAGS(flags,flagp,extra) \
406 if ((flags) & (RESTART_PARSE|NEED_UTF8|(extra))) { \
407 *(flagp) = (flags) & (RESTART_PARSE|NEED_UTF8|(extra)); \
412 #define MUST_RESTART(flags) ((flags) & (RESTART_PARSE))
414 #define RETURN_FAIL_ON_RESTART(flags,flagp) \
415 RETURN_FAIL_ON_RESTART_OR_FLAGS( flags, flagp, 0)
416 #define RETURN_FAIL_ON_RESTART_FLAGP(flagp) \
417 if (MUST_RESTART(*(flagp))) return 0
419 /* This converts the named class defined in regcomp.h to its equivalent class
420 * number defined in handy.h. */
421 #define namedclass_to_classnum(class) ((int) ((class) / 2))
422 #define classnum_to_namedclass(classnum) ((classnum) * 2)
424 #define _invlist_union_complement_2nd(a, b, output) \
425 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
426 #define _invlist_intersection_complement_2nd(a, b, output) \
427 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
429 /* About scan_data_t.
431 During optimisation we recurse through the regexp program performing
432 various inplace (keyhole style) optimisations. In addition study_chunk
433 and scan_commit populate this data structure with information about
434 what strings MUST appear in the pattern. We look for the longest
435 string that must appear at a fixed location, and we look for the
436 longest string that may appear at a floating location. So for instance
441 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
442 strings (because they follow a .* construct). study_chunk will identify
443 both FOO and BAR as being the longest fixed and floating strings respectively.
445 The strings can be composites, for instance
449 will result in a composite fixed substring 'foo'.
451 For each string some basic information is maintained:
454 This is the position the string must appear at, or not before.
455 It also implicitly (when combined with minlenp) tells us how many
456 characters must match before the string we are searching for.
457 Likewise when combined with minlenp and the length of the string it
458 tells us how many characters must appear after the string we have
462 Only used for floating strings. This is the rightmost point that
463 the string can appear at. If set to SSize_t_MAX it indicates that the
464 string can occur infinitely far to the right.
465 For fixed strings, it is equal to min_offset.
468 A pointer to the minimum number of characters of the pattern that the
469 string was found inside. This is important as in the case of positive
470 lookahead or positive lookbehind we can have multiple patterns
475 The minimum length of the pattern overall is 3, the minimum length
476 of the lookahead part is 3, but the minimum length of the part that
477 will actually match is 1. So 'FOO's minimum length is 3, but the
478 minimum length for the F is 1. This is important as the minimum length
479 is used to determine offsets in front of and behind the string being
480 looked for. Since strings can be composites this is the length of the
481 pattern at the time it was committed with a scan_commit. Note that
482 the length is calculated by study_chunk, so that the minimum lengths
483 are not known until the full pattern has been compiled, thus the
484 pointer to the value.
488 In the case of lookbehind the string being searched for can be
489 offset past the start point of the final matching string.
490 If this value was just blithely removed from the min_offset it would
491 invalidate some of the calculations for how many chars must match
492 before or after (as they are derived from min_offset and minlen and
493 the length of the string being searched for).
494 When the final pattern is compiled and the data is moved from the
495 scan_data_t structure into the regexp structure the information
496 about lookbehind is factored in, with the information that would
497 have been lost precalculated in the end_shift field for the
500 The fields pos_min and pos_delta are used to store the minimum offset
501 and the delta to the maximum offset at the current point in the pattern.
505 struct scan_data_substrs {
506 SV *str; /* longest substring found in pattern */
507 SSize_t min_offset; /* earliest point in string it can appear */
508 SSize_t max_offset; /* latest point in string it can appear */
509 SSize_t *minlenp; /* pointer to the minlen relevant to the string */
510 SSize_t lookbehind; /* is the pos of the string modified by LB */
511 I32 flags; /* per substring SF_* and SCF_* flags */
514 typedef struct scan_data_t {
515 /*I32 len_min; unused */
516 /*I32 len_delta; unused */
520 SSize_t last_end; /* min value, <0 unless valid. */
521 SSize_t last_start_min;
522 SSize_t last_start_max;
523 U8 cur_is_floating; /* whether the last_* values should be set as
524 * the next fixed (0) or floating (1)
527 /* [0] is longest fixed substring so far, [1] is longest float so far */
528 struct scan_data_substrs substrs[2];
530 I32 flags; /* common SF_* and SCF_* flags */
532 SSize_t *last_closep;
533 regnode_ssc *start_class;
537 * Forward declarations for pregcomp()'s friends.
540 static const scan_data_t zero_scan_data = {
541 0, 0, NULL, 0, 0, 0, 0,
543 { NULL, 0, 0, 0, 0, 0 },
544 { NULL, 0, 0, 0, 0, 0 },
551 #define SF_BEFORE_SEOL 0x0001
552 #define SF_BEFORE_MEOL 0x0002
553 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
555 #define SF_IS_INF 0x0040
556 #define SF_HAS_PAR 0x0080
557 #define SF_IN_PAR 0x0100
558 #define SF_HAS_EVAL 0x0200
561 /* SCF_DO_SUBSTR is the flag that tells the regexp analyzer to track the
562 * longest substring in the pattern. When it is not set the optimiser keeps
563 * track of position, but does not keep track of the actual strings seen,
565 * So for instance /foo/ will be parsed with SCF_DO_SUBSTR being true, but
568 * Similarly, /foo.*(blah|erm|huh).*fnorble/ will have "foo" and "fnorble"
569 * parsed with SCF_DO_SUBSTR on, but while processing the (...) it will be
570 * turned off because of the alternation (BRANCH). */
571 #define SCF_DO_SUBSTR 0x0400
573 #define SCF_DO_STCLASS_AND 0x0800
574 #define SCF_DO_STCLASS_OR 0x1000
575 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
576 #define SCF_WHILEM_VISITED_POS 0x2000
578 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
579 #define SCF_SEEN_ACCEPT 0x8000
580 #define SCF_TRIE_DOING_RESTUDY 0x10000
581 #define SCF_IN_DEFINE 0x20000
586 #define UTF cBOOL(RExC_utf8)
588 /* The enums for all these are ordered so things work out correctly */
589 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
590 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
591 == REGEX_DEPENDS_CHARSET)
592 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
593 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
594 >= REGEX_UNICODE_CHARSET)
595 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
596 == REGEX_ASCII_RESTRICTED_CHARSET)
597 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
598 >= REGEX_ASCII_RESTRICTED_CHARSET)
599 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
600 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
602 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
604 /* For programs that want to be strictly Unicode compatible by dying if any
605 * attempt is made to match a non-Unicode code point against a Unicode
607 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
609 #define OOB_NAMEDCLASS -1
611 /* There is no code point that is out-of-bounds, so this is problematic. But
612 * its only current use is to initialize a variable that is always set before
614 #define OOB_UNICODE 0xDEADBEEF
616 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
619 /* length of regex to show in messages that don't mark a position within */
620 #define RegexLengthToShowInErrorMessages 127
623 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
624 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
625 * op/pragma/warn/regcomp.
627 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
628 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
630 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
631 " in m/%" UTF8f MARKER2 "%" UTF8f "/"
633 /* The code in this file in places uses one level of recursion with parsing
634 * rebased to an alternate string constructed by us in memory. This can take
635 * the form of something that is completely different from the input, or
636 * something that uses the input as part of the alternate. In the first case,
637 * there should be no possibility of an error, as we are in complete control of
638 * the alternate string. But in the second case we don't completely control
639 * the input portion, so there may be errors in that. Here's an example:
641 * is handled specially because \x{df} folds to a sequence of more than one
642 * character: 'ss'. What is done is to create and parse an alternate string,
643 * which looks like this:
644 * /(?:\x{DF}|[abc\x{DF}def])/ui
645 * where it uses the input unchanged in the middle of something it constructs,
646 * which is a branch for the DF outside the character class, and clustering
647 * parens around the whole thing. (It knows enough to skip the DF inside the
648 * class while in this substitute parse.) 'abc' and 'def' may have errors that
649 * need to be reported. The general situation looks like this:
651 * |<------- identical ------>|
653 * Input: ---------------------------------------------------------------
654 * Constructed: ---------------------------------------------------
656 * |<------- identical ------>|
658 * sI..eI is the portion of the input pattern we are concerned with here.
659 * sC..EC is the constructed substitute parse string.
660 * sC..tC is constructed by us
661 * tC..eC is an exact duplicate of the portion of the input pattern tI..eI.
662 * In the diagram, these are vertically aligned.
663 * eC..EC is also constructed by us.
664 * xC is the position in the substitute parse string where we found a
666 * xI is the position in the original pattern corresponding to xC.
668 * We want to display a message showing the real input string. Thus we need to
669 * translate from xC to xI. We know that xC >= tC, since the portion of the
670 * string sC..tC has been constructed by us, and so shouldn't have errors. We
672 * xI = tI + (xC - tC)
674 * When the substitute parse is constructed, the code needs to set:
677 * RExC_copy_start_in_input (tI)
678 * RExC_copy_start_in_constructed (tC)
679 * and restore them when done.
681 * During normal processing of the input pattern, both
682 * 'RExC_copy_start_in_input' and 'RExC_copy_start_in_constructed' are set to
683 * sI, so that xC equals xI.
686 #define sI RExC_precomp
687 #define eI RExC_precomp_end
688 #define sC RExC_start
690 #define tI RExC_copy_start_in_input
691 #define tC RExC_copy_start_in_constructed
692 #define xI(xC) (tI + (xC - tC))
693 #define xI_offset(xC) (xI(xC) - sI)
695 #define REPORT_LOCATION_ARGS(xC) \
697 (xI(xC) > eI) /* Don't run off end */ \
698 ? eI - sI /* Length before the <--HERE */ \
699 : ((xI_offset(xC) >= 0) \
701 : (Perl_croak(aTHX_ "panic: %s: %d: negative offset: %" \
702 IVdf " trying to output message for " \
704 __FILE__, __LINE__, (IV) xI_offset(xC), \
705 ((int) (eC - sC)), sC), 0)), \
706 sI), /* The input pattern printed up to the <--HERE */ \
708 (xI(xC) > eI) ? 0 : eI - xI(xC), /* Length after <--HERE */ \
709 (xI(xC) > eI) ? eI : xI(xC)) /* pattern after <--HERE */
711 /* Used to point after bad bytes for an error message, but avoid skipping
712 * past a nul byte. */
713 #define SKIP_IF_CHAR(s, e) (!*(s) ? 0 : UTF ? UTF8_SAFE_SKIP(s, e) : 1)
715 /* Set up to clean up after our imminent demise */
716 #define PREPARE_TO_DIE \
719 SAVEFREESV(RExC_rx_sv); \
720 if (RExC_open_parens) \
721 SAVEFREEPV(RExC_open_parens); \
722 if (RExC_close_parens) \
723 SAVEFREEPV(RExC_close_parens); \
727 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
728 * arg. Show regex, up to a maximum length. If it's too long, chop and add
731 #define _FAIL(code) STMT_START { \
732 const char *ellipses = ""; \
733 IV len = RExC_precomp_end - RExC_precomp; \
736 if (len > RegexLengthToShowInErrorMessages) { \
737 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
738 len = RegexLengthToShowInErrorMessages - 10; \
744 #define FAIL(msg) _FAIL( \
745 Perl_croak(aTHX_ "%s in regex m/%" UTF8f "%s/", \
746 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
748 #define FAIL2(msg,arg) _FAIL( \
749 Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/", \
750 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
752 #define FAIL3(msg,arg1,arg2) _FAIL( \
753 Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/", \
754 arg1, arg2, UTF8fARG(UTF, len, RExC_precomp), ellipses))
757 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
759 #define Simple_vFAIL(m) STMT_START { \
760 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
761 m, REPORT_LOCATION_ARGS(RExC_parse)); \
765 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
767 #define vFAIL(m) STMT_START { \
773 * Like Simple_vFAIL(), but accepts two arguments.
775 #define Simple_vFAIL2(m,a1) STMT_START { \
776 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
777 REPORT_LOCATION_ARGS(RExC_parse)); \
781 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
783 #define vFAIL2(m,a1) STMT_START { \
785 Simple_vFAIL2(m, a1); \
790 * Like Simple_vFAIL(), but accepts three arguments.
792 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
793 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
794 REPORT_LOCATION_ARGS(RExC_parse)); \
798 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
800 #define vFAIL3(m,a1,a2) STMT_START { \
802 Simple_vFAIL3(m, a1, a2); \
806 * Like Simple_vFAIL(), but accepts four arguments.
808 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
809 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
810 REPORT_LOCATION_ARGS(RExC_parse)); \
813 #define vFAIL4(m,a1,a2,a3) STMT_START { \
815 Simple_vFAIL4(m, a1, a2, a3); \
818 /* A specialized version of vFAIL2 that works with UTF8f */
819 #define vFAIL2utf8f(m, a1) STMT_START { \
821 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
822 REPORT_LOCATION_ARGS(RExC_parse)); \
825 #define vFAIL3utf8f(m, a1, a2) STMT_START { \
827 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
828 REPORT_LOCATION_ARGS(RExC_parse)); \
831 /* Setting this to NULL is a signal to not output warnings */
832 #define TURN_OFF_WARNINGS_IN_SUBSTITUTE_PARSE \
834 RExC_save_copy_start_in_constructed = RExC_copy_start_in_constructed;\
835 RExC_copy_start_in_constructed = NULL; \
837 #define RESTORE_WARNINGS \
838 RExC_copy_start_in_constructed = RExC_save_copy_start_in_constructed
840 /* Since a warning can be generated multiple times as the input is reparsed, we
841 * output it the first time we come to that point in the parse, but suppress it
842 * otherwise. 'RExC_copy_start_in_constructed' being NULL is a flag to not
843 * generate any warnings */
844 #define TO_OUTPUT_WARNINGS(loc) \
845 ( RExC_copy_start_in_constructed \
846 && ((xI(loc)) - RExC_precomp) > (Ptrdiff_t) RExC_latest_warn_offset)
848 /* After we've emitted a warning, we save the position in the input so we don't
850 #define UPDATE_WARNINGS_LOC(loc) \
852 if (TO_OUTPUT_WARNINGS(loc)) { \
853 RExC_latest_warn_offset = (xI(loc)) - RExC_precomp; \
857 /* 'warns' is the output of the packWARNx macro used in 'code' */
858 #define _WARN_HELPER(loc, warns, code) \
860 if (! RExC_copy_start_in_constructed) { \
861 Perl_croak( aTHX_ "panic! %s: %d: Tried to warn when none" \
862 " expected at '%s'", \
863 __FILE__, __LINE__, loc); \
865 if (TO_OUTPUT_WARNINGS(loc)) { \
869 UPDATE_WARNINGS_LOC(loc); \
873 /* m is not necessarily a "literal string", in this macro */
874 #define reg_warn_non_literal_string(loc, m) \
875 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
876 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
877 "%s" REPORT_LOCATION, \
878 m, REPORT_LOCATION_ARGS(loc)))
880 #define ckWARNreg(loc,m) \
881 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
882 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
884 REPORT_LOCATION_ARGS(loc)))
886 #define vWARN(loc, m) \
887 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
888 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
890 REPORT_LOCATION_ARGS(loc))) \
892 #define vWARN_dep(loc, m) \
893 _WARN_HELPER(loc, packWARN(WARN_DEPRECATED), \
894 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), \
896 REPORT_LOCATION_ARGS(loc)))
898 #define ckWARNdep(loc,m) \
899 _WARN_HELPER(loc, packWARN(WARN_DEPRECATED), \
900 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
902 REPORT_LOCATION_ARGS(loc)))
904 #define ckWARNregdep(loc,m) \
905 _WARN_HELPER(loc, packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
906 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, \
909 REPORT_LOCATION_ARGS(loc)))
911 #define ckWARN2reg_d(loc,m, a1) \
912 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
913 Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
915 a1, REPORT_LOCATION_ARGS(loc)))
917 #define ckWARN2reg(loc, m, a1) \
918 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
919 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
921 a1, REPORT_LOCATION_ARGS(loc)))
923 #define vWARN3(loc, m, a1, a2) \
924 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
925 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
927 a1, a2, REPORT_LOCATION_ARGS(loc)))
929 #define ckWARN3reg(loc, m, a1, a2) \
930 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
931 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
934 REPORT_LOCATION_ARGS(loc)))
936 #define vWARN4(loc, m, a1, a2, a3) \
937 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
938 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
941 REPORT_LOCATION_ARGS(loc)))
943 #define ckWARN4reg(loc, m, a1, a2, a3) \
944 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
945 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
948 REPORT_LOCATION_ARGS(loc)))
950 #define vWARN5(loc, m, a1, a2, a3, a4) \
951 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
952 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
955 REPORT_LOCATION_ARGS(loc)))
957 #define ckWARNexperimental(loc, class, m) \
958 _WARN_HELPER(loc, packWARN(class), \
959 Perl_ck_warner_d(aTHX_ packWARN(class), \
961 REPORT_LOCATION_ARGS(loc)))
963 /* Convert between a pointer to a node and its offset from the beginning of the
965 #define REGNODE_p(offset) (RExC_emit_start + (offset))
966 #define REGNODE_OFFSET(node) ((node) - RExC_emit_start)
968 /* Macros for recording node offsets. 20001227 mjd@plover.com
969 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
970 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
971 * Element 0 holds the number n.
972 * Position is 1 indexed.
974 #ifndef RE_TRACK_PATTERN_OFFSETS
975 #define Set_Node_Offset_To_R(offset,byte)
976 #define Set_Node_Offset(node,byte)
977 #define Set_Cur_Node_Offset
978 #define Set_Node_Length_To_R(node,len)
979 #define Set_Node_Length(node,len)
980 #define Set_Node_Cur_Length(node,start)
981 #define Node_Offset(n)
982 #define Node_Length(n)
983 #define Set_Node_Offset_Length(node,offset,len)
984 #define ProgLen(ri) ri->u.proglen
985 #define SetProgLen(ri,x) ri->u.proglen = x
986 #define Track_Code(code)
988 #define ProgLen(ri) ri->u.offsets[0]
989 #define SetProgLen(ri,x) ri->u.offsets[0] = x
990 #define Set_Node_Offset_To_R(offset,byte) STMT_START { \
991 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
992 __LINE__, (int)(offset), (int)(byte))); \
994 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
997 RExC_offsets[2*(offset)-1] = (byte); \
1001 #define Set_Node_Offset(node,byte) \
1002 Set_Node_Offset_To_R(REGNODE_OFFSET(node), (byte)-RExC_start)
1003 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
1005 #define Set_Node_Length_To_R(node,len) STMT_START { \
1006 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
1007 __LINE__, (int)(node), (int)(len))); \
1009 Perl_croak(aTHX_ "value of node is %d in Length macro", \
1012 RExC_offsets[2*(node)] = (len); \
1016 #define Set_Node_Length(node,len) \
1017 Set_Node_Length_To_R(REGNODE_OFFSET(node), len)
1018 #define Set_Node_Cur_Length(node, start) \
1019 Set_Node_Length(node, RExC_parse - start)
1021 /* Get offsets and lengths */
1022 #define Node_Offset(n) (RExC_offsets[2*(REGNODE_OFFSET(n))-1])
1023 #define Node_Length(n) (RExC_offsets[2*(REGNODE_OFFSET(n))])
1025 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
1026 Set_Node_Offset_To_R(REGNODE_OFFSET(node), (offset)); \
1027 Set_Node_Length_To_R(REGNODE_OFFSET(node), (len)); \
1030 #define Track_Code(code) STMT_START { code } STMT_END
1033 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
1034 #define EXPERIMENTAL_INPLACESCAN
1035 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
1039 Perl_re_printf(pTHX_ const char *fmt, ...)
1043 PerlIO *f= Perl_debug_log;
1044 PERL_ARGS_ASSERT_RE_PRINTF;
1046 result = PerlIO_vprintf(f, fmt, ap);
1052 Perl_re_indentf(pTHX_ const char *fmt, U32 depth, ...)
1056 PerlIO *f= Perl_debug_log;
1057 PERL_ARGS_ASSERT_RE_INDENTF;
1058 va_start(ap, depth);
1059 PerlIO_printf(f, "%*s", ( (int)depth % 20 ) * 2, "");
1060 result = PerlIO_vprintf(f, fmt, ap);
1064 #endif /* DEBUGGING */
1066 #define DEBUG_RExC_seen() \
1067 DEBUG_OPTIMISE_MORE_r({ \
1068 Perl_re_printf( aTHX_ "RExC_seen: "); \
1070 if (RExC_seen & REG_ZERO_LEN_SEEN) \
1071 Perl_re_printf( aTHX_ "REG_ZERO_LEN_SEEN "); \
1073 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
1074 Perl_re_printf( aTHX_ "REG_LOOKBEHIND_SEEN "); \
1076 if (RExC_seen & REG_GPOS_SEEN) \
1077 Perl_re_printf( aTHX_ "REG_GPOS_SEEN "); \
1079 if (RExC_seen & REG_RECURSE_SEEN) \
1080 Perl_re_printf( aTHX_ "REG_RECURSE_SEEN "); \
1082 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
1083 Perl_re_printf( aTHX_ "REG_TOP_LEVEL_BRANCHES_SEEN "); \
1085 if (RExC_seen & REG_VERBARG_SEEN) \
1086 Perl_re_printf( aTHX_ "REG_VERBARG_SEEN "); \
1088 if (RExC_seen & REG_CUTGROUP_SEEN) \
1089 Perl_re_printf( aTHX_ "REG_CUTGROUP_SEEN "); \
1091 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
1092 Perl_re_printf( aTHX_ "REG_RUN_ON_COMMENT_SEEN "); \
1094 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
1095 Perl_re_printf( aTHX_ "REG_UNFOLDED_MULTI_SEEN "); \
1097 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
1098 Perl_re_printf( aTHX_ "REG_UNBOUNDED_QUANTIFIER_SEEN "); \
1100 Perl_re_printf( aTHX_ "\n"); \
1103 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
1104 if ((flags) & flag) Perl_re_printf( aTHX_ "%s ", #flag)
1109 S_debug_show_study_flags(pTHX_ U32 flags, const char *open_str,
1110 const char *close_str)
1115 Perl_re_printf( aTHX_ "%s", open_str);
1116 DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_SEOL);
1117 DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_MEOL);
1118 DEBUG_SHOW_STUDY_FLAG(flags, SF_IS_INF);
1119 DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_PAR);
1120 DEBUG_SHOW_STUDY_FLAG(flags, SF_IN_PAR);
1121 DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_EVAL);
1122 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_SUBSTR);
1123 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_AND);
1124 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_OR);
1125 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS);
1126 DEBUG_SHOW_STUDY_FLAG(flags, SCF_WHILEM_VISITED_POS);
1127 DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_RESTUDY);
1128 DEBUG_SHOW_STUDY_FLAG(flags, SCF_SEEN_ACCEPT);
1129 DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_DOING_RESTUDY);
1130 DEBUG_SHOW_STUDY_FLAG(flags, SCF_IN_DEFINE);
1131 Perl_re_printf( aTHX_ "%s", close_str);
1136 S_debug_studydata(pTHX_ const char *where, scan_data_t *data,
1137 U32 depth, int is_inf)
1139 GET_RE_DEBUG_FLAGS_DECL;
1141 DEBUG_OPTIMISE_MORE_r({
1144 Perl_re_indentf(aTHX_ "%s: Pos:%" IVdf "/%" IVdf " Flags: 0x%" UVXf,
1148 (IV)data->pos_delta,
1152 S_debug_show_study_flags(aTHX_ data->flags," [","]");
1154 Perl_re_printf( aTHX_
1155 " Whilem_c: %" IVdf " Lcp: %" IVdf " %s",
1157 (IV)(data->last_closep ? *((data)->last_closep) : -1),
1158 is_inf ? "INF " : ""
1161 if (data->last_found) {
1163 Perl_re_printf(aTHX_
1164 "Last:'%s' %" IVdf ":%" IVdf "/%" IVdf,
1165 SvPVX_const(data->last_found),
1167 (IV)data->last_start_min,
1168 (IV)data->last_start_max
1171 for (i = 0; i < 2; i++) {
1172 Perl_re_printf(aTHX_
1173 " %s%s: '%s' @ %" IVdf "/%" IVdf,
1174 data->cur_is_floating == i ? "*" : "",
1175 i ? "Float" : "Fixed",
1176 SvPVX_const(data->substrs[i].str),
1177 (IV)data->substrs[i].min_offset,
1178 (IV)data->substrs[i].max_offset
1180 S_debug_show_study_flags(aTHX_ data->substrs[i].flags," [","]");
1184 Perl_re_printf( aTHX_ "\n");
1190 S_debug_peep(pTHX_ const char *str, const RExC_state_t *pRExC_state,
1191 regnode *scan, U32 depth, U32 flags)
1193 GET_RE_DEBUG_FLAGS_DECL;
1200 Next = regnext(scan);
1201 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
1202 Perl_re_indentf( aTHX_ "%s>%3d: %s (%d)",
1205 REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),
1206 Next ? (REG_NODE_NUM(Next)) : 0 );
1207 S_debug_show_study_flags(aTHX_ flags," [ ","]");
1208 Perl_re_printf( aTHX_ "\n");
1213 # define DEBUG_STUDYDATA(where, data, depth, is_inf) \
1214 S_debug_studydata(aTHX_ where, data, depth, is_inf)
1216 # define DEBUG_PEEP(str, scan, depth, flags) \
1217 S_debug_peep(aTHX_ str, pRExC_state, scan, depth, flags)
1220 # define DEBUG_STUDYDATA(where, data, depth, is_inf) NOOP
1221 # define DEBUG_PEEP(str, scan, depth, flags) NOOP
1225 /* =========================================================
1226 * BEGIN edit_distance stuff.
1228 * This calculates how many single character changes of any type are needed to
1229 * transform a string into another one. It is taken from version 3.1 of
1231 * https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
1234 /* Our unsorted dictionary linked list. */
1235 /* Note we use UVs, not chars. */
1240 struct dictionary* next;
1242 typedef struct dictionary item;
1245 PERL_STATIC_INLINE item*
1246 push(UV key, item* curr)
1249 Newx(head, 1, item);
1257 PERL_STATIC_INLINE item*
1258 find(item* head, UV key)
1260 item* iterator = head;
1262 if (iterator->key == key){
1265 iterator = iterator->next;
1271 PERL_STATIC_INLINE item*
1272 uniquePush(item* head, UV key)
1274 item* iterator = head;
1277 if (iterator->key == key) {
1280 iterator = iterator->next;
1283 return push(key, head);
1286 PERL_STATIC_INLINE void
1287 dict_free(item* head)
1289 item* iterator = head;
1292 item* temp = iterator;
1293 iterator = iterator->next;
1300 /* End of Dictionary Stuff */
1302 /* All calculations/work are done here */
1304 S_edit_distance(const UV* src,
1306 const STRLEN x, /* length of src[] */
1307 const STRLEN y, /* length of tgt[] */
1308 const SSize_t maxDistance
1312 UV swapCount, swapScore, targetCharCount, i, j;
1314 UV score_ceil = x + y;
1316 PERL_ARGS_ASSERT_EDIT_DISTANCE;
1318 /* intialize matrix start values */
1319 Newx(scores, ( (x + 2) * (y + 2)), UV);
1320 scores[0] = score_ceil;
1321 scores[1 * (y + 2) + 0] = score_ceil;
1322 scores[0 * (y + 2) + 1] = score_ceil;
1323 scores[1 * (y + 2) + 1] = 0;
1324 head = uniquePush(uniquePush(head, src[0]), tgt[0]);
1329 for (i=1;i<=x;i++) {
1331 head = uniquePush(head, src[i]);
1332 scores[(i+1) * (y + 2) + 1] = i;
1333 scores[(i+1) * (y + 2) + 0] = score_ceil;
1336 for (j=1;j<=y;j++) {
1339 head = uniquePush(head, tgt[j]);
1340 scores[1 * (y + 2) + (j + 1)] = j;
1341 scores[0 * (y + 2) + (j + 1)] = score_ceil;
1344 targetCharCount = find(head, tgt[j-1])->value;
1345 swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;
1347 if (src[i-1] != tgt[j-1]){
1348 scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
1352 scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
1356 find(head, src[i-1])->value = i;
1360 IV score = scores[(x+1) * (y + 2) + (y + 1)];
1363 return (maxDistance != 0 && maxDistance < score)?(-1):score;
1367 /* END of edit_distance() stuff
1368 * ========================================================= */
1370 /* is c a control character for which we have a mnemonic? */
1371 #define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
1374 S_cntrl_to_mnemonic(const U8 c)
1376 /* Returns the mnemonic string that represents character 'c', if one
1377 * exists; NULL otherwise. The only ones that exist for the purposes of
1378 * this routine are a few control characters */
1381 case '\a': return "\\a";
1382 case '\b': return "\\b";
1383 case ESC_NATIVE: return "\\e";
1384 case '\f': return "\\f";
1385 case '\n': return "\\n";
1386 case '\r': return "\\r";
1387 case '\t': return "\\t";
1393 /* Mark that we cannot extend a found fixed substring at this point.
1394 Update the longest found anchored substring or the longest found
1395 floating substrings if needed. */
1398 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
1399 SSize_t *minlenp, int is_inf)
1401 const STRLEN l = CHR_SVLEN(data->last_found);
1402 SV * const longest_sv = data->substrs[data->cur_is_floating].str;
1403 const STRLEN old_l = CHR_SVLEN(longest_sv);
1404 GET_RE_DEBUG_FLAGS_DECL;
1406 PERL_ARGS_ASSERT_SCAN_COMMIT;
1408 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
1409 const U8 i = data->cur_is_floating;
1410 SvSetMagicSV(longest_sv, data->last_found);
1411 data->substrs[i].min_offset = l ? data->last_start_min : data->pos_min;
1414 data->substrs[0].max_offset = data->substrs[0].min_offset;
1416 data->substrs[1].max_offset = (l
1417 ? data->last_start_max
1418 : (data->pos_delta > SSize_t_MAX - data->pos_min
1420 : data->pos_min + data->pos_delta));
1422 || (STRLEN)data->substrs[1].max_offset > (STRLEN)SSize_t_MAX)
1423 data->substrs[1].max_offset = SSize_t_MAX;
1426 if (data->flags & SF_BEFORE_EOL)
1427 data->substrs[i].flags |= (data->flags & SF_BEFORE_EOL);
1429 data->substrs[i].flags &= ~SF_BEFORE_EOL;
1430 data->substrs[i].minlenp = minlenp;
1431 data->substrs[i].lookbehind = 0;
1434 SvCUR_set(data->last_found, 0);
1436 SV * const sv = data->last_found;
1437 if (SvUTF8(sv) && SvMAGICAL(sv)) {
1438 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
1443 data->last_end = -1;
1444 data->flags &= ~SF_BEFORE_EOL;
1445 DEBUG_STUDYDATA("commit", data, 0, is_inf);
1448 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
1449 * list that describes which code points it matches */
1452 S_ssc_anything(pTHX_ regnode_ssc *ssc)
1454 /* Set the SSC 'ssc' to match an empty string or any code point */
1456 PERL_ARGS_ASSERT_SSC_ANYTHING;
1458 assert(is_ANYOF_SYNTHETIC(ssc));
1460 /* mortalize so won't leak */
1461 ssc->invlist = sv_2mortal(_add_range_to_invlist(NULL, 0, UV_MAX));
1462 ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
1466 S_ssc_is_anything(const regnode_ssc *ssc)
1468 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1469 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
1470 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1471 * in any way, so there's no point in using it */
1476 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1478 assert(is_ANYOF_SYNTHETIC(ssc));
1480 if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1484 /* See if the list consists solely of the range 0 - Infinity */
1485 invlist_iterinit(ssc->invlist);
1486 ret = invlist_iternext(ssc->invlist, &start, &end)
1490 invlist_iterfinish(ssc->invlist);
1496 /* If e.g., both \w and \W are set, matches everything */
1497 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1499 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1500 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1510 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1512 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
1513 * string, any code point, or any posix class under locale */
1515 PERL_ARGS_ASSERT_SSC_INIT;
1517 Zero(ssc, 1, regnode_ssc);
1518 set_ANYOF_SYNTHETIC(ssc);
1519 ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1522 /* If any portion of the regex is to operate under locale rules that aren't
1523 * fully known at compile time, initialization includes it. The reason
1524 * this isn't done for all regexes is that the optimizer was written under
1525 * the assumption that locale was all-or-nothing. Given the complexity and
1526 * lack of documentation in the optimizer, and that there are inadequate
1527 * test cases for locale, many parts of it may not work properly, it is
1528 * safest to avoid locale unless necessary. */
1529 if (RExC_contains_locale) {
1530 ANYOF_POSIXL_SETALL(ssc);
1533 ANYOF_POSIXL_ZERO(ssc);
1538 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1539 const regnode_ssc *ssc)
1541 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1542 * to the list of code points matched, and locale posix classes; hence does
1543 * not check its flags) */
1548 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1550 assert(is_ANYOF_SYNTHETIC(ssc));
1552 invlist_iterinit(ssc->invlist);
1553 ret = invlist_iternext(ssc->invlist, &start, &end)
1557 invlist_iterfinish(ssc->invlist);
1563 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1570 #define INVLIST_INDEX 0
1571 #define ONLY_LOCALE_MATCHES_INDEX 1
1572 #define DEFERRED_USER_DEFINED_INDEX 2
1575 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1576 const regnode_charclass* const node)
1578 /* Returns a mortal inversion list defining which code points are matched
1579 * by 'node', which is of type ANYOF. Handles complementing the result if
1580 * appropriate. If some code points aren't knowable at this time, the
1581 * returned list must, and will, contain every code point that is a
1586 SV* only_utf8_locale_invlist = NULL;
1588 const U32 n = ARG(node);
1589 bool new_node_has_latin1 = FALSE;
1590 const U8 flags = (inRANGE(OP(node), ANYOFH, ANYOFHr))
1592 : ANYOF_FLAGS(node);
1594 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1596 /* Look at the data structure created by S_set_ANYOF_arg() */
1597 if (n != ANYOF_ONLY_HAS_BITMAP) {
1598 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1599 AV * const av = MUTABLE_AV(SvRV(rv));
1600 SV **const ary = AvARRAY(av);
1601 assert(RExC_rxi->data->what[n] == 's');
1603 if (av_tindex_skip_len_mg(av) >= DEFERRED_USER_DEFINED_INDEX) {
1605 /* Here there are things that won't be known until runtime -- we
1606 * have to assume it could be anything */
1607 invlist = sv_2mortal(_new_invlist(1));
1608 return _add_range_to_invlist(invlist, 0, UV_MAX);
1610 else if (ary[INVLIST_INDEX]) {
1612 /* Use the node's inversion list */
1613 invlist = sv_2mortal(invlist_clone(ary[INVLIST_INDEX], NULL));
1616 /* Get the code points valid only under UTF-8 locales */
1617 if ( (flags & ANYOFL_FOLD)
1618 && av_tindex_skip_len_mg(av) >= ONLY_LOCALE_MATCHES_INDEX)
1620 only_utf8_locale_invlist = ary[ONLY_LOCALE_MATCHES_INDEX];
1625 invlist = sv_2mortal(_new_invlist(0));
1628 /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1629 * code points, and an inversion list for the others, but if there are code
1630 * points that should match only conditionally on the target string being
1631 * UTF-8, those are placed in the inversion list, and not the bitmap.
1632 * Since there are circumstances under which they could match, they are
1633 * included in the SSC. But if the ANYOF node is to be inverted, we have
1634 * to exclude them here, so that when we invert below, the end result
1635 * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
1636 * have to do this here before we add the unconditionally matched code
1638 if (flags & ANYOF_INVERT) {
1639 _invlist_intersection_complement_2nd(invlist,
1644 /* Add in the points from the bit map */
1645 if (! inRANGE(OP(node), ANYOFH, ANYOFHr)) {
1646 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1647 if (ANYOF_BITMAP_TEST(node, i)) {
1648 unsigned int start = i++;
1650 for (; i < NUM_ANYOF_CODE_POINTS
1651 && ANYOF_BITMAP_TEST(node, i); ++i)
1655 invlist = _add_range_to_invlist(invlist, start, i-1);
1656 new_node_has_latin1 = TRUE;
1661 /* If this can match all upper Latin1 code points, have to add them
1662 * as well. But don't add them if inverting, as when that gets done below,
1663 * it would exclude all these characters, including the ones it shouldn't
1664 * that were added just above */
1665 if (! (flags & ANYOF_INVERT) && OP(node) == ANYOFD
1666 && (flags & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
1668 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1671 /* Similarly for these */
1672 if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1673 _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1676 if (flags & ANYOF_INVERT) {
1677 _invlist_invert(invlist);
1679 else if (flags & ANYOFL_FOLD) {
1680 if (new_node_has_latin1) {
1682 /* Under /li, any 0-255 could fold to any other 0-255, depending on
1683 * the locale. We can skip this if there are no 0-255 at all. */
1684 _invlist_union(invlist, PL_Latin1, &invlist);
1686 invlist = add_cp_to_invlist(invlist, LATIN_SMALL_LETTER_DOTLESS_I);
1687 invlist = add_cp_to_invlist(invlist, LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
1690 if (_invlist_contains_cp(invlist, LATIN_SMALL_LETTER_DOTLESS_I)) {
1691 invlist = add_cp_to_invlist(invlist, 'I');
1693 if (_invlist_contains_cp(invlist,
1694 LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE))
1696 invlist = add_cp_to_invlist(invlist, 'i');
1701 /* Similarly add the UTF-8 locale possible matches. These have to be
1702 * deferred until after the non-UTF-8 locale ones are taken care of just
1703 * above, or it leads to wrong results under ANYOF_INVERT */
1704 if (only_utf8_locale_invlist) {
1705 _invlist_union_maybe_complement_2nd(invlist,
1706 only_utf8_locale_invlist,
1707 flags & ANYOF_INVERT,
1714 /* These two functions currently do the exact same thing */
1715 #define ssc_init_zero ssc_init
1717 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1718 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1720 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1721 * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1722 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1725 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1726 const regnode_charclass *and_with)
1728 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1729 * another SSC or a regular ANYOF class. Can create false positives. */
1732 U8 and_with_flags = inRANGE(OP(and_with), ANYOFH, ANYOFHr)
1734 : ANYOF_FLAGS(and_with);
1737 PERL_ARGS_ASSERT_SSC_AND;
1739 assert(is_ANYOF_SYNTHETIC(ssc));
1741 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1742 * the code point inversion list and just the relevant flags */
1743 if (is_ANYOF_SYNTHETIC(and_with)) {
1744 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1745 anded_flags = and_with_flags;
1747 /* XXX This is a kludge around what appears to be deficiencies in the
1748 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1749 * there are paths through the optimizer where it doesn't get weeded
1750 * out when it should. And if we don't make some extra provision for
1751 * it like the code just below, it doesn't get added when it should.
1752 * This solution is to add it only when AND'ing, which is here, and
1753 * only when what is being AND'ed is the pristine, original node
1754 * matching anything. Thus it is like adding it to ssc_anything() but
1755 * only when the result is to be AND'ed. Probably the same solution
1756 * could be adopted for the same problem we have with /l matching,
1757 * which is solved differently in S_ssc_init(), and that would lead to
1758 * fewer false positives than that solution has. But if this solution
1759 * creates bugs, the consequences are only that a warning isn't raised
1760 * that should be; while the consequences for having /l bugs is
1761 * incorrect matches */
1762 if (ssc_is_anything((regnode_ssc *)and_with)) {
1763 anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1767 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1768 if (OP(and_with) == ANYOFD) {
1769 anded_flags = and_with_flags & ANYOF_COMMON_FLAGS;
1772 anded_flags = and_with_flags
1773 &( ANYOF_COMMON_FLAGS
1774 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1775 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1776 if (ANYOFL_UTF8_LOCALE_REQD(and_with_flags)) {
1778 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1783 ANYOF_FLAGS(ssc) &= anded_flags;
1785 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1786 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1787 * 'and_with' may be inverted. When not inverted, we have the situation of
1789 * (C1 | P1) & (C2 | P2)
1790 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1791 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1792 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1793 * <= ((C1 & C2) | P1 | P2)
1794 * Alternatively, the last few steps could be:
1795 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1796 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1797 * <= (C1 | C2 | (P1 & P2))
1798 * We favor the second approach if either P1 or P2 is non-empty. This is
1799 * because these components are a barrier to doing optimizations, as what
1800 * they match cannot be known until the moment of matching as they are
1801 * dependent on the current locale, 'AND"ing them likely will reduce or
1803 * But we can do better if we know that C1,P1 are in their initial state (a
1804 * frequent occurrence), each matching everything:
1805 * (<everything>) & (C2 | P2) = C2 | P2
1806 * Similarly, if C2,P2 are in their initial state (again a frequent
1807 * occurrence), the result is a no-op
1808 * (C1 | P1) & (<everything>) = C1 | P1
1811 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1812 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1813 * <= (C1 & ~C2) | (P1 & ~P2)
1816 if ((and_with_flags & ANYOF_INVERT)
1817 && ! is_ANYOF_SYNTHETIC(and_with))
1821 ssc_intersection(ssc,
1823 FALSE /* Has already been inverted */
1826 /* If either P1 or P2 is empty, the intersection will be also; can skip
1828 if (! (and_with_flags & ANYOF_MATCHES_POSIXL)) {
1829 ANYOF_POSIXL_ZERO(ssc);
1831 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1833 /* Note that the Posix class component P from 'and_with' actually
1835 * P = Pa | Pb | ... | Pn
1836 * where each component is one posix class, such as in [\w\s].
1838 * ~P = ~(Pa | Pb | ... | Pn)
1839 * = ~Pa & ~Pb & ... & ~Pn
1840 * <= ~Pa | ~Pb | ... | ~Pn
1841 * The last is something we can easily calculate, but unfortunately
1842 * is likely to have many false positives. We could do better
1843 * in some (but certainly not all) instances if two classes in
1844 * P have known relationships. For example
1845 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1847 * :lower: & :print: = :lower:
1848 * And similarly for classes that must be disjoint. For example,
1849 * since \s and \w can have no elements in common based on rules in
1850 * the POSIX standard,
1851 * \w & ^\S = nothing
1852 * Unfortunately, some vendor locales do not meet the Posix
1853 * standard, in particular almost everything by Microsoft.
1854 * The loop below just changes e.g., \w into \W and vice versa */
1856 regnode_charclass_posixl temp;
1857 int add = 1; /* To calculate the index of the complement */
1859 Zero(&temp, 1, regnode_charclass_posixl);
1860 ANYOF_POSIXL_ZERO(&temp);
1861 for (i = 0; i < ANYOF_MAX; i++) {
1863 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1864 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1866 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1867 ANYOF_POSIXL_SET(&temp, i + add);
1869 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1871 ANYOF_POSIXL_AND(&temp, ssc);
1873 } /* else ssc already has no posixes */
1874 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1875 in its initial state */
1876 else if (! is_ANYOF_SYNTHETIC(and_with)
1877 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1879 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1880 * copy it over 'ssc' */
1881 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1882 if (is_ANYOF_SYNTHETIC(and_with)) {
1883 StructCopy(and_with, ssc, regnode_ssc);
1886 ssc->invlist = anded_cp_list;
1887 ANYOF_POSIXL_ZERO(ssc);
1888 if (and_with_flags & ANYOF_MATCHES_POSIXL) {
1889 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1893 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1894 || (and_with_flags & ANYOF_MATCHES_POSIXL))
1896 /* One or the other of P1, P2 is non-empty. */
1897 if (and_with_flags & ANYOF_MATCHES_POSIXL) {
1898 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1900 ssc_union(ssc, anded_cp_list, FALSE);
1902 else { /* P1 = P2 = empty */
1903 ssc_intersection(ssc, anded_cp_list, FALSE);
1909 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1910 const regnode_charclass *or_with)
1912 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1913 * another SSC or a regular ANYOF class. Can create false positives if
1914 * 'or_with' is to be inverted. */
1918 U8 or_with_flags = inRANGE(OP(or_with), ANYOFH, ANYOFHr)
1920 : ANYOF_FLAGS(or_with);
1922 PERL_ARGS_ASSERT_SSC_OR;
1924 assert(is_ANYOF_SYNTHETIC(ssc));
1926 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1927 * the code point inversion list and just the relevant flags */
1928 if (is_ANYOF_SYNTHETIC(or_with)) {
1929 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1930 ored_flags = or_with_flags;
1933 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1934 ored_flags = or_with_flags & ANYOF_COMMON_FLAGS;
1935 if (OP(or_with) != ANYOFD) {
1938 & ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1939 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1940 if (ANYOFL_UTF8_LOCALE_REQD(or_with_flags)) {
1942 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1947 ANYOF_FLAGS(ssc) |= ored_flags;
1949 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1950 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1951 * 'or_with' may be inverted. When not inverted, we have the simple
1952 * situation of computing:
1953 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1954 * If P1|P2 yields a situation with both a class and its complement are
1955 * set, like having both \w and \W, this matches all code points, and we
1956 * can delete these from the P component of the ssc going forward. XXX We
1957 * might be able to delete all the P components, but I (khw) am not certain
1958 * about this, and it is better to be safe.
1961 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1962 * <= (C1 | P1) | ~C2
1963 * <= (C1 | ~C2) | P1
1964 * (which results in actually simpler code than the non-inverted case)
1967 if ((or_with_flags & ANYOF_INVERT)
1968 && ! is_ANYOF_SYNTHETIC(or_with))
1970 /* We ignore P2, leaving P1 going forward */
1971 } /* else Not inverted */
1972 else if (or_with_flags & ANYOF_MATCHES_POSIXL) {
1973 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1974 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1976 for (i = 0; i < ANYOF_MAX; i += 2) {
1977 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1979 ssc_match_all_cp(ssc);
1980 ANYOF_POSIXL_CLEAR(ssc, i);
1981 ANYOF_POSIXL_CLEAR(ssc, i+1);
1989 FALSE /* Already has been inverted */
1993 PERL_STATIC_INLINE void
1994 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1996 PERL_ARGS_ASSERT_SSC_UNION;
1998 assert(is_ANYOF_SYNTHETIC(ssc));
2000 _invlist_union_maybe_complement_2nd(ssc->invlist,
2006 PERL_STATIC_INLINE void
2007 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
2009 const bool invert2nd)
2011 PERL_ARGS_ASSERT_SSC_INTERSECTION;
2013 assert(is_ANYOF_SYNTHETIC(ssc));
2015 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
2021 PERL_STATIC_INLINE void
2022 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
2024 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
2026 assert(is_ANYOF_SYNTHETIC(ssc));
2028 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
2031 PERL_STATIC_INLINE void
2032 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
2034 /* AND just the single code point 'cp' into the SSC 'ssc' */
2036 SV* cp_list = _new_invlist(2);
2038 PERL_ARGS_ASSERT_SSC_CP_AND;
2040 assert(is_ANYOF_SYNTHETIC(ssc));
2042 cp_list = add_cp_to_invlist(cp_list, cp);
2043 ssc_intersection(ssc, cp_list,
2044 FALSE /* Not inverted */
2046 SvREFCNT_dec_NN(cp_list);
2049 PERL_STATIC_INLINE void
2050 S_ssc_clear_locale(regnode_ssc *ssc)
2052 /* Set the SSC 'ssc' to not match any locale things */
2053 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
2055 assert(is_ANYOF_SYNTHETIC(ssc));
2057 ANYOF_POSIXL_ZERO(ssc);
2058 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
2061 #define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
2064 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
2066 /* The synthetic start class is used to hopefully quickly winnow down
2067 * places where a pattern could start a match in the target string. If it
2068 * doesn't really narrow things down that much, there isn't much point to
2069 * having the overhead of using it. This function uses some very crude
2070 * heuristics to decide if to use the ssc or not.
2072 * It returns TRUE if 'ssc' rules out more than half what it considers to
2073 * be the "likely" possible matches, but of course it doesn't know what the
2074 * actual things being matched are going to be; these are only guesses
2076 * For /l matches, it assumes that the only likely matches are going to be
2077 * in the 0-255 range, uniformly distributed, so half of that is 127
2078 * For /a and /d matches, it assumes that the likely matches will be just
2079 * the ASCII range, so half of that is 63
2080 * For /u and there isn't anything matching above the Latin1 range, it
2081 * assumes that that is the only range likely to be matched, and uses
2082 * half that as the cut-off: 127. If anything matches above Latin1,
2083 * it assumes that all of Unicode could match (uniformly), except for
2084 * non-Unicode code points and things in the General Category "Other"
2085 * (unassigned, private use, surrogates, controls and formats). This
2086 * is a much large number. */
2088 U32 count = 0; /* Running total of number of code points matched by
2090 UV start, end; /* Start and end points of current range in inversion
2091 XXX outdated. UTF-8 locales are common, what about invert? list */
2092 const U32 max_code_points = (LOC)
2094 : (( ! UNI_SEMANTICS
2095 || invlist_highest(ssc->invlist) < 256)
2098 const U32 max_match = max_code_points / 2;
2100 PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
2102 invlist_iterinit(ssc->invlist);
2103 while (invlist_iternext(ssc->invlist, &start, &end)) {
2104 if (start >= max_code_points) {
2107 end = MIN(end, max_code_points - 1);
2108 count += end - start + 1;
2109 if (count >= max_match) {
2110 invlist_iterfinish(ssc->invlist);
2120 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
2122 /* The inversion list in the SSC is marked mortal; now we need a more
2123 * permanent copy, which is stored the same way that is done in a regular
2124 * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
2127 SV* invlist = invlist_clone(ssc->invlist, NULL);
2129 PERL_ARGS_ASSERT_SSC_FINALIZE;
2131 assert(is_ANYOF_SYNTHETIC(ssc));
2133 /* The code in this file assumes that all but these flags aren't relevant
2134 * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
2135 * by the time we reach here */
2136 assert(! (ANYOF_FLAGS(ssc)
2137 & ~( ANYOF_COMMON_FLAGS
2138 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
2139 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));
2141 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
2143 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist, NULL, NULL);
2145 /* Make sure is clone-safe */
2146 ssc->invlist = NULL;
2148 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
2149 ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
2150 OP(ssc) = ANYOFPOSIXL;
2152 else if (RExC_contains_locale) {
2156 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
2159 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
2160 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
2161 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
2162 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
2163 ? (TRIE_LIST_CUR( idx ) - 1) \
2169 dump_trie(trie,widecharmap,revcharmap)
2170 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
2171 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
2173 These routines dump out a trie in a somewhat readable format.
2174 The _interim_ variants are used for debugging the interim
2175 tables that are used to generate the final compressed
2176 representation which is what dump_trie expects.
2178 Part of the reason for their existence is to provide a form
2179 of documentation as to how the different representations function.
2184 Dumps the final compressed table form of the trie to Perl_debug_log.
2185 Used for debugging make_trie().
2189 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
2190 AV *revcharmap, U32 depth)
2193 SV *sv=sv_newmortal();
2194 int colwidth= widecharmap ? 6 : 4;
2196 GET_RE_DEBUG_FLAGS_DECL;
2198 PERL_ARGS_ASSERT_DUMP_TRIE;
2200 Perl_re_indentf( aTHX_ "Char : %-6s%-6s%-4s ",
2201 depth+1, "Match","Base","Ofs" );
2203 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
2204 SV ** const tmp = av_fetch( revcharmap, state, 0);
2206 Perl_re_printf( aTHX_ "%*s",
2208 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2209 PL_colors[0], PL_colors[1],
2210 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2211 PERL_PV_ESCAPE_FIRSTCHAR
2216 Perl_re_printf( aTHX_ "\n");
2217 Perl_re_indentf( aTHX_ "State|-----------------------", depth+1);
2219 for( state = 0 ; state < trie->uniquecharcount ; state++ )
2220 Perl_re_printf( aTHX_ "%.*s", colwidth, "--------");
2221 Perl_re_printf( aTHX_ "\n");
2223 for( state = 1 ; state < trie->statecount ; state++ ) {
2224 const U32 base = trie->states[ state ].trans.base;
2226 Perl_re_indentf( aTHX_ "#%4" UVXf "|", depth+1, (UV)state);
2228 if ( trie->states[ state ].wordnum ) {
2229 Perl_re_printf( aTHX_ " W%4X", trie->states[ state ].wordnum );
2231 Perl_re_printf( aTHX_ "%6s", "" );
2234 Perl_re_printf( aTHX_ " @%4" UVXf " ", (UV)base );
2239 while( ( base + ofs < trie->uniquecharcount ) ||
2240 ( base + ofs - trie->uniquecharcount < trie->lasttrans
2241 && trie->trans[ base + ofs - trie->uniquecharcount ].check
2245 Perl_re_printf( aTHX_ "+%2" UVXf "[ ", (UV)ofs);
2247 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2248 if ( ( base + ofs >= trie->uniquecharcount )
2249 && ( base + ofs - trie->uniquecharcount
2251 && trie->trans[ base + ofs
2252 - trie->uniquecharcount ].check == state )
2254 Perl_re_printf( aTHX_ "%*" UVXf, colwidth,
2255 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next
2258 Perl_re_printf( aTHX_ "%*s", colwidth," ." );
2262 Perl_re_printf( aTHX_ "]");
2265 Perl_re_printf( aTHX_ "\n" );
2267 Perl_re_indentf( aTHX_ "word_info N:(prev,len)=",
2269 for (word=1; word <= trie->wordcount; word++) {
2270 Perl_re_printf( aTHX_ " %d:(%d,%d)",
2271 (int)word, (int)(trie->wordinfo[word].prev),
2272 (int)(trie->wordinfo[word].len));
2274 Perl_re_printf( aTHX_ "\n" );
2277 Dumps a fully constructed but uncompressed trie in list form.
2278 List tries normally only are used for construction when the number of
2279 possible chars (trie->uniquecharcount) is very high.
2280 Used for debugging make_trie().
2283 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
2284 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2288 SV *sv=sv_newmortal();
2289 int colwidth= widecharmap ? 6 : 4;
2290 GET_RE_DEBUG_FLAGS_DECL;
2292 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
2294 /* print out the table precompression. */
2295 Perl_re_indentf( aTHX_ "State :Word | Transition Data\n",
2297 Perl_re_indentf( aTHX_ "%s",
2298 depth+1, "------:-----+-----------------\n" );
2300 for( state=1 ; state < next_alloc ; state ++ ) {
2303 Perl_re_indentf( aTHX_ " %4" UVXf " :",
2304 depth+1, (UV)state );
2305 if ( ! trie->states[ state ].wordnum ) {
2306 Perl_re_printf( aTHX_ "%5s| ","");
2308 Perl_re_printf( aTHX_ "W%4x| ",
2309 trie->states[ state ].wordnum
2312 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
2313 SV ** const tmp = av_fetch( revcharmap,
2314 TRIE_LIST_ITEM(state, charid).forid, 0);
2316 Perl_re_printf( aTHX_ "%*s:%3X=%4" UVXf " | ",
2318 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
2320 PL_colors[0], PL_colors[1],
2321 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
2322 | PERL_PV_ESCAPE_FIRSTCHAR
2324 TRIE_LIST_ITEM(state, charid).forid,
2325 (UV)TRIE_LIST_ITEM(state, charid).newstate
2328 Perl_re_printf( aTHX_ "\n%*s| ",
2329 (int)((depth * 2) + 14), "");
2332 Perl_re_printf( aTHX_ "\n");
2337 Dumps a fully constructed but uncompressed trie in table form.
2338 This is the normal DFA style state transition table, with a few
2339 twists to facilitate compression later.
2340 Used for debugging make_trie().
2343 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
2344 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2349 SV *sv=sv_newmortal();
2350 int colwidth= widecharmap ? 6 : 4;
2351 GET_RE_DEBUG_FLAGS_DECL;
2353 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
2356 print out the table precompression so that we can do a visual check
2357 that they are identical.
2360 Perl_re_indentf( aTHX_ "Char : ", depth+1 );
2362 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2363 SV ** const tmp = av_fetch( revcharmap, charid, 0);
2365 Perl_re_printf( aTHX_ "%*s",
2367 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2368 PL_colors[0], PL_colors[1],
2369 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2370 PERL_PV_ESCAPE_FIRSTCHAR
2376 Perl_re_printf( aTHX_ "\n");
2377 Perl_re_indentf( aTHX_ "State+-", depth+1 );
2379 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
2380 Perl_re_printf( aTHX_ "%.*s", colwidth,"--------");
2383 Perl_re_printf( aTHX_ "\n" );
2385 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
2387 Perl_re_indentf( aTHX_ "%4" UVXf " : ",
2389 (UV)TRIE_NODENUM( state ) );
2391 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2392 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
2394 Perl_re_printf( aTHX_ "%*" UVXf, colwidth, v );
2396 Perl_re_printf( aTHX_ "%*s", colwidth, "." );
2398 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
2399 Perl_re_printf( aTHX_ " (%4" UVXf ")\n",
2400 (UV)trie->trans[ state ].check );
2402 Perl_re_printf( aTHX_ " (%4" UVXf ") W%4X\n",
2403 (UV)trie->trans[ state ].check,
2404 trie->states[ TRIE_NODENUM( state ) ].wordnum );
2412 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
2413 startbranch: the first branch in the whole branch sequence
2414 first : start branch of sequence of branch-exact nodes.
2415 May be the same as startbranch
2416 last : Thing following the last branch.
2417 May be the same as tail.
2418 tail : item following the branch sequence
2419 count : words in the sequence
2420 flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
2421 depth : indent depth
2423 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
2425 A trie is an N'ary tree where the branches are determined by digital
2426 decomposition of the key. IE, at the root node you look up the 1st character and
2427 follow that branch repeat until you find the end of the branches. Nodes can be
2428 marked as "accepting" meaning they represent a complete word. Eg:
2432 would convert into the following structure. Numbers represent states, letters
2433 following numbers represent valid transitions on the letter from that state, if
2434 the number is in square brackets it represents an accepting state, otherwise it
2435 will be in parenthesis.
2437 +-h->+-e->[3]-+-r->(8)-+-s->[9]
2441 (1) +-i->(6)-+-s->[7]
2443 +-s->(3)-+-h->(4)-+-e->[5]
2445 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
2447 This shows that when matching against the string 'hers' we will begin at state 1
2448 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
2449 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
2450 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
2451 single traverse. We store a mapping from accepting to state to which word was
2452 matched, and then when we have multiple possibilities we try to complete the
2453 rest of the regex in the order in which they occurred in the alternation.
2455 The only prior NFA like behaviour that would be changed by the TRIE support is
2456 the silent ignoring of duplicate alternations which are of the form:
2458 / (DUPE|DUPE) X? (?{ ... }) Y /x
2460 Thus EVAL blocks following a trie may be called a different number of times with
2461 and without the optimisation. With the optimisations dupes will be silently
2462 ignored. This inconsistent behaviour of EVAL type nodes is well established as
2463 the following demonstrates:
2465 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
2467 which prints out 'word' three times, but
2469 'words'=~/(word|word|word)(?{ print $1 })S/
2471 which doesnt print it out at all. This is due to other optimisations kicking in.
2473 Example of what happens on a structural level:
2475 The regexp /(ac|ad|ab)+/ will produce the following debug output:
2477 1: CURLYM[1] {1,32767}(18)
2488 This would be optimizable with startbranch=5, first=5, last=16, tail=16
2489 and should turn into:
2491 1: CURLYM[1] {1,32767}(18)
2493 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
2501 Cases where tail != last would be like /(?foo|bar)baz/:
2511 which would be optimizable with startbranch=1, first=1, last=7, tail=8
2512 and would end up looking like:
2515 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
2522 d = uvchr_to_utf8_flags(d, uv, 0);
2524 is the recommended Unicode-aware way of saying
2529 #define TRIE_STORE_REVCHAR(val) \
2532 SV *zlopp = newSV(UTF8_MAXBYTES); \
2533 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
2534 unsigned char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
2536 SvCUR_set(zlopp, kapow - flrbbbbb); \
2539 av_push(revcharmap, zlopp); \
2541 char ooooff = (char)val; \
2542 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
2546 /* This gets the next character from the input, folding it if not already
2548 #define TRIE_READ_CHAR STMT_START { \
2551 /* if it is UTF then it is either already folded, or does not need \
2553 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
2555 else if (folder == PL_fold_latin1) { \
2556 /* This folder implies Unicode rules, which in the range expressible \
2557 * by not UTF is the lower case, with the two exceptions, one of \
2558 * which should have been taken care of before calling this */ \
2559 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
2560 uvc = toLOWER_L1(*uc); \
2561 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
2564 /* raw data, will be folded later if needed */ \
2572 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
2573 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
2574 U32 ging = TRIE_LIST_LEN( state ) * 2; \
2575 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2576 TRIE_LIST_LEN( state ) = ging; \
2578 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
2579 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
2580 TRIE_LIST_CUR( state )++; \
2583 #define TRIE_LIST_NEW(state) STMT_START { \
2584 Newx( trie->states[ state ].trans.list, \
2585 4, reg_trie_trans_le ); \
2586 TRIE_LIST_CUR( state ) = 1; \
2587 TRIE_LIST_LEN( state ) = 4; \
2590 #define TRIE_HANDLE_WORD(state) STMT_START { \
2591 U16 dupe= trie->states[ state ].wordnum; \
2592 regnode * const noper_next = regnext( noper ); \
2595 /* store the word for dumping */ \
2597 if (OP(noper) != NOTHING) \
2598 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
2600 tmp = newSVpvn_utf8( "", 0, UTF ); \
2601 av_push( trie_words, tmp ); \
2605 trie->wordinfo[curword].prev = 0; \
2606 trie->wordinfo[curword].len = wordlen; \
2607 trie->wordinfo[curword].accept = state; \
2609 if ( noper_next < tail ) { \
2611 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2613 trie->jump[curword] = (U16)(noper_next - convert); \
2615 jumper = noper_next; \
2617 nextbranch= regnext(cur); \
2621 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
2622 /* chain, so that when the bits of chain are later */\
2623 /* linked together, the dups appear in the chain */\
2624 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2625 trie->wordinfo[dupe].prev = curword; \
2627 /* we haven't inserted this word yet. */ \
2628 trie->states[ state ].wordnum = curword; \
2633 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
2634 ( ( base + charid >= ucharcount \
2635 && base + charid < ubound \
2636 && state == trie->trans[ base - ucharcount + charid ].check \
2637 && trie->trans[ base - ucharcount + charid ].next ) \
2638 ? trie->trans[ base - ucharcount + charid ].next \
2639 : ( state==1 ? special : 0 ) \
2642 #define TRIE_BITMAP_SET_FOLDED(trie, uvc, folder) \
2644 TRIE_BITMAP_SET(trie, uvc); \
2645 /* store the folded codepoint */ \
2647 TRIE_BITMAP_SET(trie, folder[(U8) uvc ]); \
2650 /* store first byte of utf8 representation of */ \
2651 /* variant codepoints */ \
2652 if (! UVCHR_IS_INVARIANT(uvc)) { \
2653 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc)); \
2658 #define MADE_JUMP_TRIE 2
2659 #define MADE_EXACT_TRIE 4
2662 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2663 regnode *first, regnode *last, regnode *tail,
2664 U32 word_count, U32 flags, U32 depth)
2666 /* first pass, loop through and scan words */
2667 reg_trie_data *trie;
2668 HV *widecharmap = NULL;
2669 AV *revcharmap = newAV();
2675 regnode *jumper = NULL;
2676 regnode *nextbranch = NULL;
2677 regnode *convert = NULL;
2678 U32 *prev_states; /* temp array mapping each state to previous one */
2679 /* we just use folder as a flag in utf8 */
2680 const U8 * folder = NULL;
2682 /* in the below add_data call we are storing either 'tu' or 'tuaa'
2683 * which stands for one trie structure, one hash, optionally followed
2686 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuaa"));
2687 AV *trie_words = NULL;
2688 /* along with revcharmap, this only used during construction but both are
2689 * useful during debugging so we store them in the struct when debugging.
2692 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2693 STRLEN trie_charcount=0;
2695 SV *re_trie_maxbuff;
2696 GET_RE_DEBUG_FLAGS_DECL;
2698 PERL_ARGS_ASSERT_MAKE_TRIE;
2700 PERL_UNUSED_ARG(depth);
2704 case EXACT: case EXACT_ONLY8: case EXACTL: break;
2708 case EXACTFLU8: folder = PL_fold_latin1; break;
2709 case EXACTF: folder = PL_fold; break;
2710 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2713 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2715 trie->startstate = 1;
2716 trie->wordcount = word_count;
2717 RExC_rxi->data->data[ data_slot ] = (void*)trie;
2718 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2719 if (flags == EXACT || flags == EXACT_ONLY8 || flags == EXACTL)
2720 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2721 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2722 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2725 trie_words = newAV();
2728 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, GV_ADD);
2729 assert(re_trie_maxbuff);
2730 if (!SvIOK(re_trie_maxbuff)) {
2731 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2733 DEBUG_TRIE_COMPILE_r({
2734 Perl_re_indentf( aTHX_
2735 "make_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2737 REG_NODE_NUM(startbranch), REG_NODE_NUM(first),
2738 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2741 /* Find the node we are going to overwrite */
2742 if ( first == startbranch && OP( last ) != BRANCH ) {
2743 /* whole branch chain */
2746 /* branch sub-chain */
2747 convert = NEXTOPER( first );
2750 /* -- First loop and Setup --
2752 We first traverse the branches and scan each word to determine if it
2753 contains widechars, and how many unique chars there are, this is
2754 important as we have to build a table with at least as many columns as we
2757 We use an array of integers to represent the character codes 0..255
2758 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2759 the native representation of the character value as the key and IV's for
2762 *TODO* If we keep track of how many times each character is used we can
2763 remap the columns so that the table compression later on is more
2764 efficient in terms of memory by ensuring the most common value is in the
2765 middle and the least common are on the outside. IMO this would be better
2766 than a most to least common mapping as theres a decent chance the most
2767 common letter will share a node with the least common, meaning the node
2768 will not be compressible. With a middle is most common approach the worst
2769 case is when we have the least common nodes twice.
2773 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2774 regnode *noper = NEXTOPER( cur );
2778 U32 wordlen = 0; /* required init */
2779 STRLEN minchars = 0;
2780 STRLEN maxchars = 0;
2781 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2784 if (OP(noper) == NOTHING) {
2785 /* skip past a NOTHING at the start of an alternation
2786 * eg, /(?:)a|(?:b)/ should be the same as /a|b/
2788 regnode *noper_next= regnext(noper);
2789 if (noper_next < tail)
2794 && ( OP(noper) == flags
2795 || (flags == EXACT && OP(noper) == EXACT_ONLY8)
2796 || (flags == EXACTFU && ( OP(noper) == EXACTFU_ONLY8
2797 || OP(noper) == EXACTFUP))))
2799 uc= (U8*)STRING(noper);
2800 e= uc + STR_LEN(noper);
2807 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2808 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2809 regardless of encoding */
2810 if (OP( noper ) == EXACTFUP) {
2811 /* false positives are ok, so just set this */
2812 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2816 for ( ; uc < e ; uc += len ) { /* Look at each char in the current
2818 TRIE_CHARCOUNT(trie)++;
2821 /* TRIE_READ_CHAR returns the current character, or its fold if /i
2822 * is in effect. Under /i, this character can match itself, or
2823 * anything that folds to it. If not under /i, it can match just
2824 * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
2825 * all fold to k, and all are single characters. But some folds
2826 * expand to more than one character, so for example LATIN SMALL
2827 * LIGATURE FFI folds to the three character sequence 'ffi'. If
2828 * the string beginning at 'uc' is 'ffi', it could be matched by
2829 * three characters, or just by the one ligature character. (It
2830 * could also be matched by two characters: LATIN SMALL LIGATURE FF
2831 * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2832 * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2833 * match.) The trie needs to know the minimum and maximum number
2834 * of characters that could match so that it can use size alone to
2835 * quickly reject many match attempts. The max is simple: it is
2836 * the number of folded characters in this branch (since a fold is
2837 * never shorter than what folds to it. */
2841 /* And the min is equal to the max if not under /i (indicated by
2842 * 'folder' being NULL), or there are no multi-character folds. If
2843 * there is a multi-character fold, the min is incremented just
2844 * once, for the character that folds to the sequence. Each
2845 * character in the sequence needs to be added to the list below of
2846 * characters in the trie, but we count only the first towards the
2847 * min number of characters needed. This is done through the
2848 * variable 'foldlen', which is returned by the macros that look
2849 * for these sequences as the number of bytes the sequence
2850 * occupies. Each time through the loop, we decrement 'foldlen' by
2851 * how many bytes the current char occupies. Only when it reaches
2852 * 0 do we increment 'minchars' or look for another multi-character
2854 if (folder == NULL) {
2857 else if (foldlen > 0) {
2858 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2863 /* See if *uc is the beginning of a multi-character fold. If
2864 * so, we decrement the length remaining to look at, to account
2865 * for the current character this iteration. (We can use 'uc'
2866 * instead of the fold returned by TRIE_READ_CHAR because for
2867 * non-UTF, the latin1_safe macro is smart enough to account
2868 * for all the unfolded characters, and because for UTF, the
2869 * string will already have been folded earlier in the
2870 * compilation process */
2872 if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2873 foldlen -= UTF8SKIP(uc);
2876 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2881 /* The current character (and any potential folds) should be added
2882 * to the possible matching characters for this position in this
2886 U8 folded= folder[ (U8) uvc ];
2887 if ( !trie->charmap[ folded ] ) {
2888 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2889 TRIE_STORE_REVCHAR( folded );
2892 if ( !trie->charmap[ uvc ] ) {
2893 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2894 TRIE_STORE_REVCHAR( uvc );
2897 /* store the codepoint in the bitmap, and its folded
2899 TRIE_BITMAP_SET_FOLDED(trie, uvc, folder);
2900 set_bit = 0; /* We've done our bit :-) */
2904 /* XXX We could come up with the list of code points that fold
2905 * to this using PL_utf8_foldclosures, except not for
2906 * multi-char folds, as there may be multiple combinations
2907 * there that could work, which needs to wait until runtime to
2908 * resolve (The comment about LIGATURE FFI above is such an
2913 widecharmap = newHV();
2915 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2918 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%" UVXf, uvc );
2920 if ( !SvTRUE( *svpp ) ) {
2921 sv_setiv( *svpp, ++trie->uniquecharcount );
2922 TRIE_STORE_REVCHAR(uvc);
2925 } /* end loop through characters in this branch of the trie */
2927 /* We take the min and max for this branch and combine to find the min
2928 * and max for all branches processed so far */
2929 if( cur == first ) {
2930 trie->minlen = minchars;
2931 trie->maxlen = maxchars;
2932 } else if (minchars < trie->minlen) {
2933 trie->minlen = minchars;
2934 } else if (maxchars > trie->maxlen) {
2935 trie->maxlen = maxchars;
2937 } /* end first pass */
2938 DEBUG_TRIE_COMPILE_r(
2939 Perl_re_indentf( aTHX_
2940 "TRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2942 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2943 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2944 (int)trie->minlen, (int)trie->maxlen )
2948 We now know what we are dealing with in terms of unique chars and
2949 string sizes so we can calculate how much memory a naive
2950 representation using a flat table will take. If it's over a reasonable
2951 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2952 conservative but potentially much slower representation using an array
2955 At the end we convert both representations into the same compressed
2956 form that will be used in regexec.c for matching with. The latter
2957 is a form that cannot be used to construct with but has memory
2958 properties similar to the list form and access properties similar
2959 to the table form making it both suitable for fast searches and
2960 small enough that its feasable to store for the duration of a program.
2962 See the comment in the code where the compressed table is produced
2963 inplace from the flat tabe representation for an explanation of how
2964 the compression works.
2969 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2972 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2973 > SvIV(re_trie_maxbuff) )
2976 Second Pass -- Array Of Lists Representation
2978 Each state will be represented by a list of charid:state records
2979 (reg_trie_trans_le) the first such element holds the CUR and LEN
2980 points of the allocated array. (See defines above).
2982 We build the initial structure using the lists, and then convert
2983 it into the compressed table form which allows faster lookups
2984 (but cant be modified once converted).
2987 STRLEN transcount = 1;
2989 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using list compiler\n",
2992 trie->states = (reg_trie_state *)
2993 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2994 sizeof(reg_trie_state) );
2998 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
3000 regnode *noper = NEXTOPER( cur );
3001 U32 state = 1; /* required init */
3002 U16 charid = 0; /* sanity init */
3003 U32 wordlen = 0; /* required init */
3005 if (OP(noper) == NOTHING) {
3006 regnode *noper_next= regnext(noper);
3007 if (noper_next < tail)
3012 && ( OP(noper) == flags
3013 || (flags == EXACT && OP(noper) == EXACT_ONLY8)
3014 || (flags == EXACTFU && ( OP(noper) == EXACTFU_ONLY8
3015 || OP(noper) == EXACTFUP))))
3017 const U8 *uc= (U8*)STRING(noper);
3018 const U8 *e= uc + STR_LEN(noper);
3020 for ( ; uc < e ; uc += len ) {
3025 charid = trie->charmap[ uvc ];
3027 SV** const svpp = hv_fetch( widecharmap,
3034 charid=(U16)SvIV( *svpp );
3037 /* charid is now 0 if we dont know the char read, or
3038 * nonzero if we do */
3045 if ( !trie->states[ state ].trans.list ) {
3046 TRIE_LIST_NEW( state );
3049 check <= TRIE_LIST_USED( state );
3052 if ( TRIE_LIST_ITEM( state, check ).forid
3055 newstate = TRIE_LIST_ITEM( state, check ).newstate;
3060 newstate = next_alloc++;
3061 prev_states[newstate] = state;
3062 TRIE_LIST_PUSH( state, charid, newstate );
3067 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3071 TRIE_HANDLE_WORD(state);
3073 } /* end second pass */
3075 /* next alloc is the NEXT state to be allocated */
3076 trie->statecount = next_alloc;
3077 trie->states = (reg_trie_state *)
3078 PerlMemShared_realloc( trie->states,
3080 * sizeof(reg_trie_state) );
3082 /* and now dump it out before we compress it */
3083 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
3084 revcharmap, next_alloc,
3088 trie->trans = (reg_trie_trans *)
3089 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
3096 for( state=1 ; state < next_alloc ; state ++ ) {
3100 DEBUG_TRIE_COMPILE_MORE_r(
3101 Perl_re_printf( aTHX_ "tp: %d zp: %d ",tp,zp)
3105 if (trie->states[state].trans.list) {
3106 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
3110 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
3111 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
3112 if ( forid < minid ) {
3114 } else if ( forid > maxid ) {
3118 if ( transcount < tp + maxid - minid + 1) {
3120 trie->trans = (reg_trie_trans *)
3121 PerlMemShared_realloc( trie->trans,
3123 * sizeof(reg_trie_trans) );
3124 Zero( trie->trans + (transcount / 2),
3128 base = trie->uniquecharcount + tp - minid;
3129 if ( maxid == minid ) {
3131 for ( ; zp < tp ; zp++ ) {
3132 if ( ! trie->trans[ zp ].next ) {
3133 base = trie->uniquecharcount + zp - minid;
3134 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
3136 trie->trans[ zp ].check = state;
3142 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
3144 trie->trans[ tp ].check = state;
3149 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
3150 const U32 tid = base
3151 - trie->uniquecharcount
3152 + TRIE_LIST_ITEM( state, idx ).forid;
3153 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
3155 trie->trans[ tid ].check = state;
3157 tp += ( maxid - minid + 1 );
3159 Safefree(trie->states[ state ].trans.list);
3162 DEBUG_TRIE_COMPILE_MORE_r(
3163 Perl_re_printf( aTHX_ " base: %d\n",base);
3166 trie->states[ state ].trans.base=base;
3168 trie->lasttrans = tp + 1;
3172 Second Pass -- Flat Table Representation.
3174 we dont use the 0 slot of either trans[] or states[] so we add 1 to
3175 each. We know that we will need Charcount+1 trans at most to store
3176 the data (one row per char at worst case) So we preallocate both
3177 structures assuming worst case.
3179 We then construct the trie using only the .next slots of the entry
3182 We use the .check field of the first entry of the node temporarily
3183 to make compression both faster and easier by keeping track of how
3184 many non zero fields are in the node.
3186 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
3189 There are two terms at use here: state as a TRIE_NODEIDX() which is
3190 a number representing the first entry of the node, and state as a
3191 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
3192 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
3193 if there are 2 entrys per node. eg:
3201 The table is internally in the right hand, idx form. However as we
3202 also have to deal with the states array which is indexed by nodenum
3203 we have to use TRIE_NODENUM() to convert.
3206 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using table compiler\n",
3209 trie->trans = (reg_trie_trans *)
3210 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
3211 * trie->uniquecharcount + 1,
3212 sizeof(reg_trie_trans) );
3213 trie->states = (reg_trie_state *)
3214 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
3215 sizeof(reg_trie_state) );
3216 next_alloc = trie->uniquecharcount + 1;
3219 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
3221 regnode *noper = NEXTOPER( cur );
3223 U32 state = 1; /* required init */
3225 U16 charid = 0; /* sanity init */
3226 U32 accept_state = 0; /* sanity init */
3228 U32 wordlen = 0; /* required init */
3230 if (OP(noper) == NOTHING) {
3231 regnode *noper_next= regnext(noper);
3232 if (noper_next < tail)
3237 && ( OP(noper) == flags
3238 || (flags == EXACT && OP(noper) == EXACT_ONLY8)
3239 || (flags == EXACTFU && ( OP(noper) == EXACTFU_ONLY8
3240 || OP(noper) == EXACTFUP))))
3242 const U8 *uc= (U8*)STRING(noper);
3243 const U8 *e= uc + STR_LEN(noper);
3245 for ( ; uc < e ; uc += len ) {
3250 charid = trie->charmap[ uvc ];
3252 SV* const * const svpp = hv_fetch( widecharmap,
3256 charid = svpp ? (U16)SvIV(*svpp) : 0;
3260 if ( !trie->trans[ state + charid ].next ) {
3261 trie->trans[ state + charid ].next = next_alloc;
3262 trie->trans[ state ].check++;
3263 prev_states[TRIE_NODENUM(next_alloc)]
3264 = TRIE_NODENUM(state);
3265 next_alloc += trie->uniquecharcount;
3267 state = trie->trans[ state + charid ].next;
3269 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3271 /* charid is now 0 if we dont know the char read, or
3272 * nonzero if we do */
3275 accept_state = TRIE_NODENUM( state );
3276 TRIE_HANDLE_WORD(accept_state);
3278 } /* end second pass */
3280 /* and now dump it out before we compress it */
3281 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
3283 next_alloc, depth+1));
3287 * Inplace compress the table.*
3289 For sparse data sets the table constructed by the trie algorithm will
3290 be mostly 0/FAIL transitions or to put it another way mostly empty.
3291 (Note that leaf nodes will not contain any transitions.)
3293 This algorithm compresses the tables by eliminating most such
3294 transitions, at the cost of a modest bit of extra work during lookup:
3296 - Each states[] entry contains a .base field which indicates the
3297 index in the state[] array wheres its transition data is stored.
3299 - If .base is 0 there are no valid transitions from that node.
3301 - If .base is nonzero then charid is added to it to find an entry in
3304 -If trans[states[state].base+charid].check!=state then the
3305 transition is taken to be a 0/Fail transition. Thus if there are fail
3306 transitions at the front of the node then the .base offset will point
3307 somewhere inside the previous nodes data (or maybe even into a node
3308 even earlier), but the .check field determines if the transition is
3312 The following process inplace converts the table to the compressed
3313 table: We first do not compress the root node 1,and mark all its
3314 .check pointers as 1 and set its .base pointer as 1 as well. This
3315 allows us to do a DFA construction from the compressed table later,
3316 and ensures that any .base pointers we calculate later are greater
3319 - We set 'pos' to indicate the first entry of the second node.
3321 - We then iterate over the columns of the node, finding the first and
3322 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
3323 and set the .check pointers accordingly, and advance pos
3324 appropriately and repreat for the next node. Note that when we copy
3325 the next pointers we have to convert them from the original
3326 NODEIDX form to NODENUM form as the former is not valid post
3329 - If a node has no transitions used we mark its base as 0 and do not
3330 advance the pos pointer.
3332 - If a node only has one transition we use a second pointer into the
3333 structure to fill in allocated fail transitions from other states.
3334 This pointer is independent of the main pointer and scans forward
3335 looking for null transitions that are allocated to a state. When it
3336 finds one it writes the single transition into the "hole". If the
3337 pointer doesnt find one the single transition is appended as normal.
3339 - Once compressed we can Renew/realloc the structures to release the
3342 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
3343 specifically Fig 3.47 and the associated pseudocode.
3347 const U32 laststate = TRIE_NODENUM( next_alloc );
3350 trie->statecount = laststate;
3352 for ( state = 1 ; state < laststate ; state++ ) {
3354 const U32 stateidx = TRIE_NODEIDX( state );
3355 const U32 o_used = trie->trans[ stateidx ].check;
3356 U32 used = trie->trans[ stateidx ].check;
3357 trie->trans[ stateidx ].check = 0;
3360 used && charid < trie->uniquecharcount;
3363 if ( flag || trie->trans[ stateidx + charid ].next ) {
3364 if ( trie->trans[ stateidx + charid ].next ) {
3366 for ( ; zp < pos ; zp++ ) {
3367 if ( ! trie->trans[ zp ].next ) {
3371 trie->states[ state ].trans.base
3373 + trie->uniquecharcount
3375 trie->trans[ zp ].next
3376 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
3378 trie->trans[ zp ].check = state;
3379 if ( ++zp > pos ) pos = zp;
3386 trie->states[ state ].trans.base
3387 = pos + trie->uniquecharcount - charid ;
3389 trie->trans[ pos ].next
3390 = SAFE_TRIE_NODENUM(
3391 trie->trans[ stateidx + charid ].next );
3392 trie->trans[ pos ].check = state;
3397 trie->lasttrans = pos + 1;
3398 trie->states = (reg_trie_state *)
3399 PerlMemShared_realloc( trie->states, laststate
3400 * sizeof(reg_trie_state) );
3401 DEBUG_TRIE_COMPILE_MORE_r(
3402 Perl_re_indentf( aTHX_ "Alloc: %d Orig: %" IVdf " elements, Final:%" IVdf ". Savings of %%%5.2f\n",
3404 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
3408 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
3411 } /* end table compress */
3413 DEBUG_TRIE_COMPILE_MORE_r(
3414 Perl_re_indentf( aTHX_ "Statecount:%" UVxf " Lasttrans:%" UVxf "\n",
3416 (UV)trie->statecount,
3417 (UV)trie->lasttrans)
3419 /* resize the trans array to remove unused space */
3420 trie->trans = (reg_trie_trans *)
3421 PerlMemShared_realloc( trie->trans, trie->lasttrans
3422 * sizeof(reg_trie_trans) );
3424 { /* Modify the program and insert the new TRIE node */
3425 U8 nodetype =(U8)(flags & 0xFF);
3429 regnode *optimize = NULL;
3430 #ifdef RE_TRACK_PATTERN_OFFSETS
3433 U32 mjd_nodelen = 0;
3434 #endif /* RE_TRACK_PATTERN_OFFSETS */
3435 #endif /* DEBUGGING */
3437 This means we convert either the first branch or the first Exact,
3438 depending on whether the thing following (in 'last') is a branch
3439 or not and whther first is the startbranch (ie is it a sub part of
3440 the alternation or is it the whole thing.)
3441 Assuming its a sub part we convert the EXACT otherwise we convert
3442 the whole branch sequence, including the first.
3444 /* Find the node we are going to overwrite */
3445 if ( first != startbranch || OP( last ) == BRANCH ) {
3446 /* branch sub-chain */
3447 NEXT_OFF( first ) = (U16)(last - first);
3448 #ifdef RE_TRACK_PATTERN_OFFSETS
3450 mjd_offset= Node_Offset((convert));
3451 mjd_nodelen= Node_Length((convert));
3454 /* whole branch chain */
3456 #ifdef RE_TRACK_PATTERN_OFFSETS
3459 const regnode *nop = NEXTOPER( convert );
3460 mjd_offset= Node_Offset((nop));
3461 mjd_nodelen= Node_Length((nop));
3465 Perl_re_indentf( aTHX_ "MJD offset:%" UVuf " MJD length:%" UVuf "\n",
3467 (UV)mjd_offset, (UV)mjd_nodelen)
3470 /* But first we check to see if there is a common prefix we can
3471 split out as an EXACT and put in front of the TRIE node. */
3472 trie->startstate= 1;
3473 if ( trie->bitmap && !widecharmap && !trie->jump ) {
3474 /* we want to find the first state that has more than
3475 * one transition, if that state is not the first state
3476 * then we have a common prefix which we can remove.
3479 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
3481 I32 first_ofs = -1; /* keeps track of the ofs of the first
3482 transition, -1 means none */
3484 const U32 base = trie->states[ state ].trans.base;
3486 /* does this state terminate an alternation? */
3487 if ( trie->states[state].wordnum )
3490 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
3491 if ( ( base + ofs >= trie->uniquecharcount ) &&
3492 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
3493 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
3495 if ( ++count > 1 ) {
3496 /* we have more than one transition */
3499 /* if this is the first state there is no common prefix
3500 * to extract, so we can exit */
3501 if ( state == 1 ) break;
3502 tmp = av_fetch( revcharmap, ofs, 0);
3503 ch = (U8*)SvPV_nolen_const( *tmp );
3505 /* if we are on count 2 then we need to initialize the
3506 * bitmap, and store the previous char if there was one
3509 /* clear the bitmap */
3510 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
3512 Perl_re_indentf( aTHX_ "New Start State=%" UVuf " Class: [",
3515 if (first_ofs >= 0) {
3516 SV ** const tmp = av_fetch( revcharmap, first_ofs, 0);
3517 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
3519 TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
3521 Perl_re_printf( aTHX_ "%s", (char*)ch)
3525 /* store the current firstchar in the bitmap */
3526 TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
3527 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "%s", ch));
3533 /* This state has only one transition, its transition is part
3534 * of a common prefix - we need to concatenate the char it
3535 * represents to what we have so far. */
3536 SV **tmp = av_fetch( revcharmap, first_ofs, 0);
3538 char *ch = SvPV( *tmp, len );
3540 SV *sv=sv_newmortal();
3541 Perl_re_indentf( aTHX_ "Prefix State: %" UVuf " Ofs:%" UVuf " Char='%s'\n",
3543 (UV)state, (UV)first_ofs,
3544 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
3545 PL_colors[0], PL_colors[1],
3546 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
3547 PERL_PV_ESCAPE_FIRSTCHAR
3552 OP( convert ) = nodetype;
3553 str=STRING(convert);
3556 STR_LEN(convert) += len;
3562 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "]\n"));
3567 trie->prefixlen = (state-1);
3569 regnode *n = convert+NODE_SZ_STR(convert);
3570 NEXT_OFF(convert) = NODE_SZ_STR(convert);
3571 trie->startstate = state;
3572 trie->minlen -= (state - 1);
3573 trie->maxlen -= (state - 1);
3575 /* At least the UNICOS C compiler choked on this
3576 * being argument to DEBUG_r(), so let's just have
3579 #ifdef PERL_EXT_RE_BUILD
3585 regnode *fix = convert;
3586 U32 word = trie->wordcount;
3587 #ifdef RE_TRACK_PATTERN_OFFSETS
3590 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3591 while( ++fix < n ) {
3592 Set_Node_Offset_Length(fix, 0, 0);
3595 SV ** const tmp = av_fetch( trie_words, word, 0 );
3597 if ( STR_LEN(convert) <= SvCUR(*tmp) )
3598 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3600 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3608 NEXT_OFF(convert) = (U16)(tail - convert);
3609 DEBUG_r(optimize= n);
3615 if ( trie->maxlen ) {
3616 NEXT_OFF( convert ) = (U16)(tail - convert);
3617 ARG_SET( convert, data_slot );
3618 /* Store the offset to the first unabsorbed branch in
3619 jump[0], which is otherwise unused by the jump logic.
3620 We use this when dumping a trie and during optimisation. */
3622 trie->jump[0] = (U16)(nextbranch - convert);
3624 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3625 * and there is a bitmap
3626 * and the first "jump target" node we found leaves enough room
3627 * then convert the TRIE node into a TRIEC node, with the bitmap
3628 * embedded inline in the opcode - this is hypothetically faster.
3630 if ( !trie->states[trie->startstate].wordnum
3632 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3634 OP( convert ) = TRIEC;
3635 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3636 PerlMemShared_free(trie->bitmap);
3639 OP( convert ) = TRIE;
3641 /* store the type in the flags */
3642 convert->flags = nodetype;
3646 + regarglen[ OP( convert ) ];
3648 /* XXX We really should free up the resource in trie now,
3649 as we won't use them - (which resources?) dmq */
3651 /* needed for dumping*/
3652 DEBUG_r(if (optimize) {
3653 regnode *opt = convert;
3655 while ( ++opt < optimize) {
3656 Set_Node_Offset_Length(opt, 0, 0);
3659 Try to clean up some of the debris left after the
3662 while( optimize < jumper ) {
3663 Track_Code( mjd_nodelen += Node_Length((optimize)); );
3664 OP( optimize ) = OPTIMIZED;
3665 Set_Node_Offset_Length(optimize, 0, 0);
3668 Set_Node_Offset_Length(convert, mjd_offset, mjd_nodelen);
3670 } /* end node insert */
3672 /* Finish populating the prev field of the wordinfo array. Walk back
3673 * from each accept state until we find another accept state, and if
3674 * so, point the first word's .prev field at the second word. If the
3675 * second already has a .prev field set, stop now. This will be the
3676 * case either if we've already processed that word's accept state,
3677 * or that state had multiple words, and the overspill words were
3678 * already linked up earlier.
3685 for (word=1; word <= trie->wordcount; word++) {
3687 if (trie->wordinfo[word].prev)
3689 state = trie->wordinfo[word].accept;
3691 state = prev_states[state];
3694 prev = trie->states[state].wordnum;
3698 trie->wordinfo[word].prev = prev;
3700 Safefree(prev_states);
3704 /* and now dump out the compressed format */
3705 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3707 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3709 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3710 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3712 SvREFCNT_dec_NN(revcharmap);
3716 : trie->startstate>1
3722 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3724 /* The Trie is constructed and compressed now so we can build a fail array if
3727 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3729 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3733 We find the fail state for each state in the trie, this state is the longest
3734 proper suffix of the current state's 'word' that is also a proper prefix of
3735 another word in our trie. State 1 represents the word '' and is thus the
3736 default fail state. This allows the DFA not to have to restart after its
3737 tried and failed a word at a given point, it simply continues as though it
3738 had been matching the other word in the first place.
3740 'abcdgu'=~/abcdefg|cdgu/
3741 When we get to 'd' we are still matching the first word, we would encounter
3742 'g' which would fail, which would bring us to the state representing 'd' in
3743 the second word where we would try 'g' and succeed, proceeding to match
3746 /* add a fail transition */
3747 const U32 trie_offset = ARG(source);
3748 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3750 const U32 ucharcount = trie->uniquecharcount;
3751 const U32 numstates = trie->statecount;
3752 const U32 ubound = trie->lasttrans + ucharcount;
3756 U32 base = trie->states[ 1 ].trans.base;
3759 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3761 GET_RE_DEBUG_FLAGS_DECL;
3763 PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3764 PERL_UNUSED_CONTEXT;
3766 PERL_UNUSED_ARG(depth);
3769 if ( OP(source) == TRIE ) {
3770 struct regnode_1 *op = (struct regnode_1 *)
3771 PerlMemShared_calloc(1, sizeof(struct regnode_1));
3772 StructCopy(source, op, struct regnode_1);
3773 stclass = (regnode *)op;
3775 struct regnode_charclass *op = (struct regnode_charclass *)
3776 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3777 StructCopy(source, op, struct regnode_charclass);
3778 stclass = (regnode *)op;
3780 OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3782 ARG_SET( stclass, data_slot );
3783 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3784 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3785 aho->trie=trie_offset;
3786 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3787 Copy( trie->states, aho->states, numstates, reg_trie_state );
3788 Newx( q, numstates, U32);
3789 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3792 /* initialize fail[0..1] to be 1 so that we always have
3793 a valid final fail state */
3794 fail[ 0 ] = fail[ 1 ] = 1;
3796 for ( charid = 0; charid < ucharcount ; charid++ ) {
3797 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3799 q[ q_write ] = newstate;
3800 /* set to point at the root */
3801 fail[ q[ q_write++ ] ]=1;
3804 while ( q_read < q_write) {
3805 const U32 cur = q[ q_read++ % numstates ];
3806 base = trie->states[ cur ].trans.base;
3808 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3809 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3811 U32 fail_state = cur;
3814 fail_state = fail[ fail_state ];
3815 fail_base = aho->states[ fail_state ].trans.base;
3816 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3818 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3819 fail[ ch_state ] = fail_state;
3820 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3822 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3824 q[ q_write++ % numstates] = ch_state;
3828 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3829 when we fail in state 1, this allows us to use the
3830 charclass scan to find a valid start char. This is based on the principle
3831 that theres a good chance the string being searched contains lots of stuff
3832 that cant be a start char.
3834 fail[ 0 ] = fail[ 1 ] = 0;
3835 DEBUG_TRIE_COMPILE_r({
3836 Perl_re_indentf( aTHX_ "Stclass Failtable (%" UVuf " states): 0",
3837 depth, (UV)numstates
3839 for( q_read=1; q_read<numstates; q_read++ ) {
3840 Perl_re_printf( aTHX_ ", %" UVuf, (UV)fail[q_read]);
3842 Perl_re_printf( aTHX_ "\n");
3845 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3850 /* The below joins as many adjacent EXACTish nodes as possible into a single
3851 * one. The regop may be changed if the node(s) contain certain sequences that
3852 * require special handling. The joining is only done if:
3853 * 1) there is room in the current conglomerated node to entirely contain the
3855 * 2) they are compatible node types
3857 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3858 * these get optimized out
3860 * XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
3861 * as possible, even if that means splitting an existing node so that its first
3862 * part is moved to the preceeding node. This would maximise the efficiency of
3863 * memEQ during matching.
3865 * If a node is to match under /i (folded), the number of characters it matches
3866 * can be different than its character length if it contains a multi-character
3867 * fold. *min_subtract is set to the total delta number of characters of the
3870 * And *unfolded_multi_char is set to indicate whether or not the node contains
3871 * an unfolded multi-char fold. This happens when it won't be known until
3872 * runtime whether the fold is valid or not; namely
3873 * 1) for EXACTF nodes that contain LATIN SMALL LETTER SHARP S, as only if the
3874 * target string being matched against turns out to be UTF-8 is that fold
3876 * 2) for EXACTFL nodes whose folding rules depend on the locale in force at
3878 * (Multi-char folds whose components are all above the Latin1 range are not
3879 * run-time locale dependent, and have already been folded by the time this
3880 * function is called.)
3882 * This is as good a place as any to discuss the design of handling these
3883 * multi-character fold sequences. It's been wrong in Perl for a very long
3884 * time. There are three code points in Unicode whose multi-character folds
3885 * were long ago discovered to mess things up. The previous designs for
3886 * dealing with these involved assigning a special node for them. This
3887 * approach doesn't always work, as evidenced by this example:
3888 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3889 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3890 * would match just the \xDF, it won't be able to handle the case where a
3891 * successful match would have to cross the node's boundary. The new approach
3892 * that hopefully generally solves the problem generates an EXACTFUP node
3893 * that is "sss" in this case.
3895 * It turns out that there are problems with all multi-character folds, and not
3896 * just these three. Now the code is general, for all such cases. The
3897 * approach taken is:
3898 * 1) This routine examines each EXACTFish node that could contain multi-
3899 * character folded sequences. Since a single character can fold into
3900 * such a sequence, the minimum match length for this node is less than
3901 * the number of characters in the node. This routine returns in
3902 * *min_subtract how many characters to subtract from the the actual
3903 * length of the string to get a real minimum match length; it is 0 if
3904 * there are no multi-char foldeds. This delta is used by the caller to
3905 * adjust the min length of the match, and the delta between min and max,
3906 * so that the optimizer doesn't reject these possibilities based on size
3909 * 2) For the sequence involving the LATIN SMALL LETTER SHARP S (U+00DF)
3910 * under /u, we fold it to 'ss' in regatom(), and in this routine, after
3911 * joining, we scan for occurrences of the sequence 'ss' in non-UTF-8
3912 * EXACTFU nodes. The node type of such nodes is then changed to
3913 * EXACTFUP, indicating it is problematic, and needs careful handling.
3914 * (The procedures in step 1) above are sufficient to handle this case in
3915 * UTF-8 encoded nodes.) The reason this is problematic is that this is
3916 * the only case where there is a possible fold length change in non-UTF-8
3917 * patterns. By reserving a special node type for problematic cases, the
3918 * far more common regular EXACTFU nodes can be processed faster.
3919 * regexec.c takes advantage of this.
3921 * EXACTFUP has been created as a grab-bag for (hopefully uncommon)
3922 * problematic cases. These all only occur when the pattern is not
3923 * UTF-8. In addition to the 'ss' sequence where there is a possible fold
3924 * length change, it handles the situation where the string cannot be
3925 * entirely folded. The strings in an EXACTFish node are folded as much
3926 * as possible during compilation in regcomp.c. This saves effort in
3927 * regex matching. By using an EXACTFUP node when it is not possible to
3928 * fully fold at compile time, regexec.c can know that everything in an
3929 * EXACTFU node is folded, so folding can be skipped at runtime. The only
3930 * case where folding in EXACTFU nodes can't be done at compile time is
3931 * the presumably uncommon MICRO SIGN, when the pattern isn't UTF-8. This
3932 * is because its fold requires UTF-8 to represent. Thus EXACTFUP nodes
3933 * handle two very different cases. Alternatively, there could have been
3934 * a node type where there are length changes, one for unfolded, and one
3935 * for both. If yet another special case needed to be created, the number
3936 * of required node types would have to go to 7. khw figures that even
3937 * though there are plenty of node types to spare, that the maintenance
3938 * cost wasn't worth the small speedup of doing it that way, especially
3939 * since he thinks the MICRO SIGN is rarely encountered in practice.
3941 * There are other cases where folding isn't done at compile time, but
3942 * none of them are under /u, and hence not for EXACTFU nodes. The folds
3943 * in EXACTFL nodes aren't known until runtime, and vary as the locale
3944 * changes. Some folds in EXACTF depend on if the runtime target string
3945 * is UTF-8 or not. (regatom() will create an EXACTFU node even under /di
3946 * when no fold in it depends on the UTF-8ness of the target string.)
3948 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3949 * validity of the fold won't be known until runtime, and so must remain
3950 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFAA
3951 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3952 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3953 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3954 * The reason this is a problem is that the optimizer part of regexec.c
3955 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3956 * that a character in the pattern corresponds to at most a single
3957 * character in the target string. (And I do mean character, and not byte
3958 * here, unlike other parts of the documentation that have never been
3959 * updated to account for multibyte Unicode.) Sharp s in EXACTF and
3960 * EXACTFL nodes can match the two character string 'ss'; in EXACTFAA
3961 * nodes it can match "\x{17F}\x{17F}". These, along with other ones in
3962 * EXACTFL nodes, violate the assumption, and they are the only instances
3963 * where it is violated. I'm reluctant to try to change the assumption,
3964 * as the code involved is impenetrable to me (khw), so instead the code
3965 * here punts. This routine examines EXACTFL nodes, and (when the pattern
3966 * isn't UTF-8) EXACTF and EXACTFAA for such unfolded folds, and returns a
3967 * boolean indicating whether or not the node contains such a fold. When
3968 * it is true, the caller sets a flag that later causes the optimizer in
3969 * this file to not set values for the floating and fixed string lengths,
3970 * and thus avoids the optimizer code in regexec.c that makes the invalid
3971 * assumption. Thus, there is no optimization based on string lengths for
3972 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3973 * EXACTF and EXACTFAA nodes that contain the sharp s. (The reason the
3974 * assumption is wrong only in these cases is that all other non-UTF-8
3975 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to