5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 EXTERN_C const struct regexp_engine my_reg_engine;
89 #include "dquote_inline.h"
90 #include "invlist_inline.h"
91 #include "unicode_constants.h"
93 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
94 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
96 _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
97 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
98 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
101 #define STATIC static
105 #define MIN(a,b) ((a) < (b) ? (a) : (b))
109 #define MAX(a,b) ((a) > (b) ? (a) : (b))
112 /* this is a chain of data about sub patterns we are processing that
113 need to be handled separately/specially in study_chunk. Its so
114 we can simulate recursion without losing state. */
116 typedef struct scan_frame {
117 regnode *last_regnode; /* last node to process in this frame */
118 regnode *next_regnode; /* next node to process when last is reached */
119 U32 prev_recursed_depth;
120 I32 stopparen; /* what stopparen do we use */
121 U32 is_top_frame; /* what flags do we use? */
123 struct scan_frame *this_prev_frame; /* this previous frame */
124 struct scan_frame *prev_frame; /* previous frame */
125 struct scan_frame *next_frame; /* next frame */
128 /* Certain characters are output as a sequence with the first being a
130 #define isBACKSLASHED_PUNCT(c) \
131 ((c) == '-' || (c) == ']' || (c) == '\\' || (c) == '^')
134 struct RExC_state_t {
135 U32 flags; /* RXf_* are we folding, multilining? */
136 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
137 char *precomp; /* uncompiled string. */
138 char *precomp_end; /* pointer to end of uncompiled string. */
139 REGEXP *rx_sv; /* The SV that is the regexp. */
140 regexp *rx; /* perl core regexp structure */
141 regexp_internal *rxi; /* internal data for regexp object
143 char *start; /* Start of input for compile */
144 char *end; /* End of input for compile */
145 char *parse; /* Input-scan pointer. */
146 char *adjusted_start; /* 'start', adjusted. See code use */
147 STRLEN precomp_adj; /* an offset beyond precomp. See code use */
148 SSize_t whilem_seen; /* number of WHILEM in this expr */
149 regnode *emit_start; /* Start of emitted-code area */
150 regnode *emit_bound; /* First regnode outside of the
152 regnode *emit; /* Code-emit pointer; if = &emit_dummy,
153 implies compiling, so don't emit */
154 regnode_ssc emit_dummy; /* placeholder for emit to point to;
155 large enough for the largest
156 non-EXACTish node, so can use it as
158 I32 naughty; /* How bad is this pattern? */
159 I32 sawback; /* Did we see \1, ...? */
161 SSize_t size; /* Code size. */
162 I32 npar; /* Capture buffer count, (OPEN) plus
163 one. ("par" 0 is the whole
165 I32 nestroot; /* root parens we are in - used by
169 regnode **open_parens; /* pointers to open parens */
170 regnode **close_parens; /* pointers to close parens */
171 regnode *opend; /* END node in program */
172 I32 utf8; /* whether the pattern is utf8 or not */
173 I32 orig_utf8; /* whether the pattern was originally in utf8 */
174 /* XXX use this for future optimisation of case
175 * where pattern must be upgraded to utf8. */
176 I32 uni_semantics; /* If a d charset modifier should use unicode
177 rules, even if the pattern is not in
179 HV *paren_names; /* Paren names */
181 regnode **recurse; /* Recurse regops */
182 I32 recurse_count; /* Number of recurse regops */
183 U8 *study_chunk_recursed; /* bitmap of which subs we have moved
185 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
189 I32 override_recoding;
191 I32 recode_x_to_native;
193 I32 in_multi_char_class;
194 struct reg_code_block *code_blocks; /* positions of literal (?{})
196 int num_code_blocks; /* size of code_blocks[] */
197 int code_index; /* next code_blocks[] slot */
198 SSize_t maxlen; /* mininum possible number of chars in string to match */
199 scan_frame *frame_head;
200 scan_frame *frame_last;
202 #ifdef ADD_TO_REGEXEC
203 char *starttry; /* -Dr: where regtry was called. */
204 #define RExC_starttry (pRExC_state->starttry)
206 SV *runtime_code_qr; /* qr with the runtime code blocks */
208 const char *lastparse;
210 AV *paren_name_list; /* idx -> name */
211 U32 study_chunk_recursed_count;
214 #define RExC_lastparse (pRExC_state->lastparse)
215 #define RExC_lastnum (pRExC_state->lastnum)
216 #define RExC_paren_name_list (pRExC_state->paren_name_list)
217 #define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
218 #define RExC_mysv (pRExC_state->mysv1)
219 #define RExC_mysv1 (pRExC_state->mysv1)
220 #define RExC_mysv2 (pRExC_state->mysv2)
223 bool seen_unfolded_sharp_s;
227 #define RExC_flags (pRExC_state->flags)
228 #define RExC_pm_flags (pRExC_state->pm_flags)
229 #define RExC_precomp (pRExC_state->precomp)
230 #define RExC_precomp_adj (pRExC_state->precomp_adj)
231 #define RExC_adjusted_start (pRExC_state->adjusted_start)
232 #define RExC_precomp_end (pRExC_state->precomp_end)
233 #define RExC_rx_sv (pRExC_state->rx_sv)
234 #define RExC_rx (pRExC_state->rx)
235 #define RExC_rxi (pRExC_state->rxi)
236 #define RExC_start (pRExC_state->start)
237 #define RExC_end (pRExC_state->end)
238 #define RExC_parse (pRExC_state->parse)
239 #define RExC_whilem_seen (pRExC_state->whilem_seen)
241 /* Set during the sizing pass when there is a LATIN SMALL LETTER SHARP S in any
242 * EXACTF node, hence was parsed under /di rules. If later in the parse,
243 * something forces the pattern into using /ui rules, the sharp s should be
244 * folded into the sequence 'ss', which takes up more space than previously
245 * calculated. This means that the sizing pass needs to be restarted. (The
246 * node also becomes an EXACTFU_SS.) For all other characters, an EXACTF node
247 * that gets converted to /ui (and EXACTFU) occupies the same amount of space,
248 * so there is no need to resize [perl #125990]. */
249 #define RExC_seen_unfolded_sharp_s (pRExC_state->seen_unfolded_sharp_s)
251 #ifdef RE_TRACK_PATTERN_OFFSETS
252 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
255 #define RExC_emit (pRExC_state->emit)
256 #define RExC_emit_dummy (pRExC_state->emit_dummy)
257 #define RExC_emit_start (pRExC_state->emit_start)
258 #define RExC_emit_bound (pRExC_state->emit_bound)
259 #define RExC_sawback (pRExC_state->sawback)
260 #define RExC_seen (pRExC_state->seen)
261 #define RExC_size (pRExC_state->size)
262 #define RExC_maxlen (pRExC_state->maxlen)
263 #define RExC_npar (pRExC_state->npar)
264 #define RExC_nestroot (pRExC_state->nestroot)
265 #define RExC_extralen (pRExC_state->extralen)
266 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
267 #define RExC_utf8 (pRExC_state->utf8)
268 #define RExC_uni_semantics (pRExC_state->uni_semantics)
269 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
270 #define RExC_open_parens (pRExC_state->open_parens)
271 #define RExC_close_parens (pRExC_state->close_parens)
272 #define RExC_opend (pRExC_state->opend)
273 #define RExC_paren_names (pRExC_state->paren_names)
274 #define RExC_recurse (pRExC_state->recurse)
275 #define RExC_recurse_count (pRExC_state->recurse_count)
276 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
277 #define RExC_study_chunk_recursed_bytes \
278 (pRExC_state->study_chunk_recursed_bytes)
279 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
280 #define RExC_contains_locale (pRExC_state->contains_locale)
281 #define RExC_contains_i (pRExC_state->contains_i)
282 #define RExC_override_recoding (pRExC_state->override_recoding)
284 # define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
286 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
287 #define RExC_frame_head (pRExC_state->frame_head)
288 #define RExC_frame_last (pRExC_state->frame_last)
289 #define RExC_frame_count (pRExC_state->frame_count)
290 #define RExC_strict (pRExC_state->strict)
292 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
293 * a flag to disable back-off on the fixed/floating substrings - if it's
294 * a high complexity pattern we assume the benefit of avoiding a full match
295 * is worth the cost of checking for the substrings even if they rarely help.
297 #define RExC_naughty (pRExC_state->naughty)
298 #define TOO_NAUGHTY (10)
299 #define MARK_NAUGHTY(add) \
300 if (RExC_naughty < TOO_NAUGHTY) \
301 RExC_naughty += (add)
302 #define MARK_NAUGHTY_EXP(exp, add) \
303 if (RExC_naughty < TOO_NAUGHTY) \
304 RExC_naughty += RExC_naughty / (exp) + (add)
306 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
307 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
308 ((*s) == '{' && regcurly(s)))
311 * Flags to be passed up and down.
313 #define WORST 0 /* Worst case. */
314 #define HASWIDTH 0x01 /* Known to match non-null strings. */
316 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
317 * character. (There needs to be a case: in the switch statement in regexec.c
318 * for any node marked SIMPLE.) Note that this is not the same thing as
321 #define SPSTART 0x04 /* Starts with * or + */
322 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
323 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
324 #define RESTART_PASS1 0x20 /* Need to restart sizing pass */
325 #define NEED_UTF8 0x40 /* In conjunction with RESTART_PASS1, need to
326 calcuate sizes as UTF-8 */
328 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
330 /* whether trie related optimizations are enabled */
331 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
332 #define TRIE_STUDY_OPT
333 #define FULL_TRIE_STUDY
339 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
340 #define PBITVAL(paren) (1 << ((paren) & 7))
341 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
342 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
343 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
345 #define REQUIRE_UTF8(flagp) STMT_START { \
348 *flagp = RESTART_PASS1|NEED_UTF8; \
353 /* Change from /d into /u rules, and restart the parse if we've already seen
354 * something whose size would increase as a result, by setting *flagp and
355 * returning 'restart_retval'. RExC_uni_semantics is a flag that indicates
356 * we've change to /u during the parse. */
357 #define REQUIRE_UNI_RULES(flagp, restart_retval) \
359 if (DEPENDS_SEMANTICS) { \
361 set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET); \
362 RExC_uni_semantics = 1; \
363 if (RExC_seen_unfolded_sharp_s) { \
364 *flagp |= RESTART_PASS1; \
365 return restart_retval; \
370 /* This converts the named class defined in regcomp.h to its equivalent class
371 * number defined in handy.h. */
372 #define namedclass_to_classnum(class) ((int) ((class) / 2))
373 #define classnum_to_namedclass(classnum) ((classnum) * 2)
375 #define _invlist_union_complement_2nd(a, b, output) \
376 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
377 #define _invlist_intersection_complement_2nd(a, b, output) \
378 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
380 /* About scan_data_t.
382 During optimisation we recurse through the regexp program performing
383 various inplace (keyhole style) optimisations. In addition study_chunk
384 and scan_commit populate this data structure with information about
385 what strings MUST appear in the pattern. We look for the longest
386 string that must appear at a fixed location, and we look for the
387 longest string that may appear at a floating location. So for instance
392 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
393 strings (because they follow a .* construct). study_chunk will identify
394 both FOO and BAR as being the longest fixed and floating strings respectively.
396 The strings can be composites, for instance
400 will result in a composite fixed substring 'foo'.
402 For each string some basic information is maintained:
404 - offset or min_offset
405 This is the position the string must appear at, or not before.
406 It also implicitly (when combined with minlenp) tells us how many
407 characters must match before the string we are searching for.
408 Likewise when combined with minlenp and the length of the string it
409 tells us how many characters must appear after the string we have
413 Only used for floating strings. This is the rightmost point that
414 the string can appear at. If set to SSize_t_MAX it indicates that the
415 string can occur infinitely far to the right.
418 A pointer to the minimum number of characters of the pattern that the
419 string was found inside. This is important as in the case of positive
420 lookahead or positive lookbehind we can have multiple patterns
425 The minimum length of the pattern overall is 3, the minimum length
426 of the lookahead part is 3, but the minimum length of the part that
427 will actually match is 1. So 'FOO's minimum length is 3, but the
428 minimum length for the F is 1. This is important as the minimum length
429 is used to determine offsets in front of and behind the string being
430 looked for. Since strings can be composites this is the length of the
431 pattern at the time it was committed with a scan_commit. Note that
432 the length is calculated by study_chunk, so that the minimum lengths
433 are not known until the full pattern has been compiled, thus the
434 pointer to the value.
438 In the case of lookbehind the string being searched for can be
439 offset past the start point of the final matching string.
440 If this value was just blithely removed from the min_offset it would
441 invalidate some of the calculations for how many chars must match
442 before or after (as they are derived from min_offset and minlen and
443 the length of the string being searched for).
444 When the final pattern is compiled and the data is moved from the
445 scan_data_t structure into the regexp structure the information
446 about lookbehind is factored in, with the information that would
447 have been lost precalculated in the end_shift field for the
450 The fields pos_min and pos_delta are used to store the minimum offset
451 and the delta to the maximum offset at the current point in the pattern.
455 typedef struct scan_data_t {
456 /*I32 len_min; unused */
457 /*I32 len_delta; unused */
461 SSize_t last_end; /* min value, <0 unless valid. */
462 SSize_t last_start_min;
463 SSize_t last_start_max;
464 SV **longest; /* Either &l_fixed, or &l_float. */
465 SV *longest_fixed; /* longest fixed string found in pattern */
466 SSize_t offset_fixed; /* offset where it starts */
467 SSize_t *minlen_fixed; /* pointer to the minlen relevant to the string */
468 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
469 SV *longest_float; /* longest floating string found in pattern */
470 SSize_t offset_float_min; /* earliest point in string it can appear */
471 SSize_t offset_float_max; /* latest point in string it can appear */
472 SSize_t *minlen_float; /* pointer to the minlen relevant to the string */
473 SSize_t lookbehind_float; /* is the pos of the string modified by LB */
476 SSize_t *last_closep;
477 regnode_ssc *start_class;
481 * Forward declarations for pregcomp()'s friends.
484 static const scan_data_t zero_scan_data =
485 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
487 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
488 #define SF_BEFORE_SEOL 0x0001
489 #define SF_BEFORE_MEOL 0x0002
490 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
491 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
493 #define SF_FIX_SHIFT_EOL (+2)
494 #define SF_FL_SHIFT_EOL (+4)
496 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
497 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
499 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
500 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
501 #define SF_IS_INF 0x0040
502 #define SF_HAS_PAR 0x0080
503 #define SF_IN_PAR 0x0100
504 #define SF_HAS_EVAL 0x0200
505 #define SCF_DO_SUBSTR 0x0400
506 #define SCF_DO_STCLASS_AND 0x0800
507 #define SCF_DO_STCLASS_OR 0x1000
508 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
509 #define SCF_WHILEM_VISITED_POS 0x2000
511 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
512 #define SCF_SEEN_ACCEPT 0x8000
513 #define SCF_TRIE_DOING_RESTUDY 0x10000
514 #define SCF_IN_DEFINE 0x20000
519 #define UTF cBOOL(RExC_utf8)
521 /* The enums for all these are ordered so things work out correctly */
522 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
523 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
524 == REGEX_DEPENDS_CHARSET)
525 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
526 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
527 >= REGEX_UNICODE_CHARSET)
528 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
529 == REGEX_ASCII_RESTRICTED_CHARSET)
530 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
531 >= REGEX_ASCII_RESTRICTED_CHARSET)
532 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
533 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
535 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
537 /* For programs that want to be strictly Unicode compatible by dying if any
538 * attempt is made to match a non-Unicode code point against a Unicode
540 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
542 #define OOB_NAMEDCLASS -1
544 /* There is no code point that is out-of-bounds, so this is problematic. But
545 * its only current use is to initialize a variable that is always set before
547 #define OOB_UNICODE 0xDEADBEEF
549 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
550 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
553 /* length of regex to show in messages that don't mark a position within */
554 #define RegexLengthToShowInErrorMessages 127
557 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
558 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
559 * op/pragma/warn/regcomp.
561 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
562 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
564 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
565 " in m/%"UTF8f MARKER2 "%"UTF8f"/"
567 /* The code in this file in places uses one level of recursion with parsing
568 * rebased to an alternate string constructed by us in memory. This can take
569 * the form of something that is completely different from the input, or
570 * something that uses the input as part of the alternate. In the first case,
571 * there should be no possibility of an error, as we are in complete control of
572 * the alternate string. But in the second case we don't control the input
573 * portion, so there may be errors in that. Here's an example:
575 * is handled specially because \x{df} folds to a sequence of more than one
576 * character, 'ss'. What is done is to create and parse an alternate string,
577 * which looks like this:
578 * /(?:\x{DF}|[abc\x{DF}def])/ui
579 * where it uses the input unchanged in the middle of something it constructs,
580 * which is a branch for the DF outside the character class, and clustering
581 * parens around the whole thing. (It knows enough to skip the DF inside the
582 * class while in this substitute parse.) 'abc' and 'def' may have errors that
583 * need to be reported. The general situation looks like this:
586 * Input: ----------------------------------------------------
587 * Constructed: ---------------------------------------------------
590 * The input string sI..eI is the input pattern. The string sC..EC is the
591 * constructed substitute parse string. The portions sC..tC and eC..EC are
592 * constructed by us. The portion tC..eC is an exact duplicate of the input
593 * pattern tI..eI. In the diagram, these are vertically aligned. Suppose that
594 * while parsing, we find an error at xC. We want to display a message showing
595 * the real input string. Thus we need to find the point xI in it which
596 * corresponds to xC. xC >= tC, since the portion of the string sC..tC has
597 * been constructed by us, and so shouldn't have errors. We get:
599 * xI = sI + (tI - sI) + (xC - tC)
601 * and, the offset into sI is:
603 * (xI - sI) = (tI - sI) + (xC - tC)
605 * When the substitute is constructed, we save (tI -sI) as RExC_precomp_adj,
606 * and we save tC as RExC_adjusted_start.
608 * During normal processing of the input pattern, everything points to that,
609 * with RExC_precomp_adj set to 0, and RExC_adjusted_start set to sI.
612 #define tI_sI RExC_precomp_adj
613 #define tC RExC_adjusted_start
614 #define sC RExC_precomp
615 #define xI_offset(xC) ((IV) (tI_sI + (xC - tC)))
616 #define xI(xC) (sC + xI_offset(xC))
617 #define eC RExC_precomp_end
619 #define REPORT_LOCATION_ARGS(xC) \
621 (xI(xC) > eC) /* Don't run off end */ \
622 ? eC - sC /* Length before the <--HERE */ \
624 sC), /* The input pattern printed up to the <--HERE */ \
626 (xI(xC) > eC) ? 0 : eC - xI(xC), /* Length after <--HERE */ \
627 (xI(xC) > eC) ? eC : xI(xC)) /* pattern after <--HERE */
629 /* Used to point after bad bytes for an error message, but avoid skipping
630 * past a nul byte. */
631 #define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
634 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
635 * arg. Show regex, up to a maximum length. If it's too long, chop and add
638 #define _FAIL(code) STMT_START { \
639 const char *ellipses = ""; \
640 IV len = RExC_precomp_end - RExC_precomp; \
643 SAVEFREESV(RExC_rx_sv); \
644 if (len > RegexLengthToShowInErrorMessages) { \
645 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
646 len = RegexLengthToShowInErrorMessages - 10; \
652 #define FAIL(msg) _FAIL( \
653 Perl_croak(aTHX_ "%s in regex m/%"UTF8f"%s/", \
654 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
656 #define FAIL2(msg,arg) _FAIL( \
657 Perl_croak(aTHX_ msg " in regex m/%"UTF8f"%s/", \
658 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
661 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
663 #define Simple_vFAIL(m) STMT_START { \
664 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
665 m, REPORT_LOCATION_ARGS(RExC_parse)); \
669 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
671 #define vFAIL(m) STMT_START { \
673 SAVEFREESV(RExC_rx_sv); \
678 * Like Simple_vFAIL(), but accepts two arguments.
680 #define Simple_vFAIL2(m,a1) STMT_START { \
681 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
682 REPORT_LOCATION_ARGS(RExC_parse)); \
686 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
688 #define vFAIL2(m,a1) STMT_START { \
690 SAVEFREESV(RExC_rx_sv); \
691 Simple_vFAIL2(m, a1); \
696 * Like Simple_vFAIL(), but accepts three arguments.
698 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
699 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
700 REPORT_LOCATION_ARGS(RExC_parse)); \
704 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
706 #define vFAIL3(m,a1,a2) STMT_START { \
708 SAVEFREESV(RExC_rx_sv); \
709 Simple_vFAIL3(m, a1, a2); \
713 * Like Simple_vFAIL(), but accepts four arguments.
715 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
716 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
717 REPORT_LOCATION_ARGS(RExC_parse)); \
720 #define vFAIL4(m,a1,a2,a3) STMT_START { \
722 SAVEFREESV(RExC_rx_sv); \
723 Simple_vFAIL4(m, a1, a2, a3); \
726 /* A specialized version of vFAIL2 that works with UTF8f */
727 #define vFAIL2utf8f(m, a1) STMT_START { \
729 SAVEFREESV(RExC_rx_sv); \
730 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
731 REPORT_LOCATION_ARGS(RExC_parse)); \
734 #define vFAIL3utf8f(m, a1, a2) STMT_START { \
736 SAVEFREESV(RExC_rx_sv); \
737 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
738 REPORT_LOCATION_ARGS(RExC_parse)); \
741 /* These have asserts in them because of [perl #122671] Many warnings in
742 * regcomp.c can occur twice. If they get output in pass1 and later in that
743 * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
744 * would get output again. So they should be output in pass2, and these
745 * asserts make sure new warnings follow that paradigm. */
747 /* m is not necessarily a "literal string", in this macro */
748 #define reg_warn_non_literal_string(loc, m) STMT_START { \
749 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
750 "%s" REPORT_LOCATION, \
751 m, REPORT_LOCATION_ARGS(loc)); \
754 #define ckWARNreg(loc,m) STMT_START { \
755 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
757 REPORT_LOCATION_ARGS(loc)); \
760 #define vWARN(loc, m) STMT_START { \
761 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
763 REPORT_LOCATION_ARGS(loc)); \
766 #define vWARN_dep(loc, m) STMT_START { \
767 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), \
769 REPORT_LOCATION_ARGS(loc)); \
772 #define ckWARNdep(loc,m) STMT_START { \
773 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
775 REPORT_LOCATION_ARGS(loc)); \
778 #define ckWARNregdep(loc,m) STMT_START { \
779 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, \
782 REPORT_LOCATION_ARGS(loc)); \
785 #define ckWARN2reg_d(loc,m, a1) STMT_START { \
786 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
788 a1, REPORT_LOCATION_ARGS(loc)); \
791 #define ckWARN2reg(loc, m, a1) STMT_START { \
792 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
794 a1, REPORT_LOCATION_ARGS(loc)); \
797 #define vWARN3(loc, m, a1, a2) STMT_START { \
798 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
800 a1, a2, REPORT_LOCATION_ARGS(loc)); \
803 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
804 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
807 REPORT_LOCATION_ARGS(loc)); \
810 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
811 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
814 REPORT_LOCATION_ARGS(loc)); \
817 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
818 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
821 REPORT_LOCATION_ARGS(loc)); \
824 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
825 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
828 REPORT_LOCATION_ARGS(loc)); \
831 /* Macros for recording node offsets. 20001227 mjd@plover.com
832 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
833 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
834 * Element 0 holds the number n.
835 * Position is 1 indexed.
837 #ifndef RE_TRACK_PATTERN_OFFSETS
838 #define Set_Node_Offset_To_R(node,byte)
839 #define Set_Node_Offset(node,byte)
840 #define Set_Cur_Node_Offset
841 #define Set_Node_Length_To_R(node,len)
842 #define Set_Node_Length(node,len)
843 #define Set_Node_Cur_Length(node,start)
844 #define Node_Offset(n)
845 #define Node_Length(n)
846 #define Set_Node_Offset_Length(node,offset,len)
847 #define ProgLen(ri) ri->u.proglen
848 #define SetProgLen(ri,x) ri->u.proglen = x
850 #define ProgLen(ri) ri->u.offsets[0]
851 #define SetProgLen(ri,x) ri->u.offsets[0] = x
852 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
854 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
855 __LINE__, (int)(node), (int)(byte))); \
857 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
860 RExC_offsets[2*(node)-1] = (byte); \
865 #define Set_Node_Offset(node,byte) \
866 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
867 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
869 #define Set_Node_Length_To_R(node,len) STMT_START { \
871 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
872 __LINE__, (int)(node), (int)(len))); \
874 Perl_croak(aTHX_ "value of node is %d in Length macro", \
877 RExC_offsets[2*(node)] = (len); \
882 #define Set_Node_Length(node,len) \
883 Set_Node_Length_To_R((node)-RExC_emit_start, len)
884 #define Set_Node_Cur_Length(node, start) \
885 Set_Node_Length(node, RExC_parse - start)
887 /* Get offsets and lengths */
888 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
889 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
891 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
892 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
893 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
897 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
898 #define EXPERIMENTAL_INPLACESCAN
899 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
901 #define DEBUG_RExC_seen() \
902 DEBUG_OPTIMISE_MORE_r({ \
903 PerlIO_printf(Perl_debug_log,"RExC_seen: "); \
905 if (RExC_seen & REG_ZERO_LEN_SEEN) \
906 PerlIO_printf(Perl_debug_log,"REG_ZERO_LEN_SEEN "); \
908 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
909 PerlIO_printf(Perl_debug_log,"REG_LOOKBEHIND_SEEN "); \
911 if (RExC_seen & REG_GPOS_SEEN) \
912 PerlIO_printf(Perl_debug_log,"REG_GPOS_SEEN "); \
914 if (RExC_seen & REG_RECURSE_SEEN) \
915 PerlIO_printf(Perl_debug_log,"REG_RECURSE_SEEN "); \
917 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
918 PerlIO_printf(Perl_debug_log,"REG_TOP_LEVEL_BRANCHES_SEEN "); \
920 if (RExC_seen & REG_VERBARG_SEEN) \
921 PerlIO_printf(Perl_debug_log,"REG_VERBARG_SEEN "); \
923 if (RExC_seen & REG_CUTGROUP_SEEN) \
924 PerlIO_printf(Perl_debug_log,"REG_CUTGROUP_SEEN "); \
926 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
927 PerlIO_printf(Perl_debug_log,"REG_RUN_ON_COMMENT_SEEN "); \
929 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
930 PerlIO_printf(Perl_debug_log,"REG_UNFOLDED_MULTI_SEEN "); \
932 if (RExC_seen & REG_GOSTART_SEEN) \
933 PerlIO_printf(Perl_debug_log,"REG_GOSTART_SEEN "); \
935 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
936 PerlIO_printf(Perl_debug_log,"REG_UNBOUNDED_QUANTIFIER_SEEN "); \
938 PerlIO_printf(Perl_debug_log,"\n"); \
941 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
942 if ((flags) & flag) PerlIO_printf(Perl_debug_log, "%s ", #flag)
944 #define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str) \
946 PerlIO_printf(Perl_debug_log, "%s", open_str); \
947 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL); \
948 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL); \
949 DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF); \
950 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR); \
951 DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR); \
952 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL); \
953 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR); \
954 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND); \
955 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR); \
956 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS); \
957 DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS); \
958 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY); \
959 DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT); \
960 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY); \
961 DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE); \
962 PerlIO_printf(Perl_debug_log, "%s", close_str); \
966 #define DEBUG_STUDYDATA(str,data,depth) \
967 DEBUG_OPTIMISE_MORE_r(if(data){ \
968 PerlIO_printf(Perl_debug_log, \
969 "%*s" str "Pos:%"IVdf"/%"IVdf \
971 (int)(depth)*2, "", \
972 (IV)((data)->pos_min), \
973 (IV)((data)->pos_delta), \
974 (UV)((data)->flags) \
976 DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]"); \
977 PerlIO_printf(Perl_debug_log, \
978 " Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
979 (IV)((data)->whilem_c), \
980 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
981 is_inf ? "INF " : "" \
983 if ((data)->last_found) \
984 PerlIO_printf(Perl_debug_log, \
985 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
986 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
987 SvPVX_const((data)->last_found), \
988 (IV)((data)->last_end), \
989 (IV)((data)->last_start_min), \
990 (IV)((data)->last_start_max), \
991 ((data)->longest && \
992 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
993 SvPVX_const((data)->longest_fixed), \
994 (IV)((data)->offset_fixed), \
995 ((data)->longest && \
996 (data)->longest==&((data)->longest_float)) ? "*" : "", \
997 SvPVX_const((data)->longest_float), \
998 (IV)((data)->offset_float_min), \
999 (IV)((data)->offset_float_max) \
1001 PerlIO_printf(Perl_debug_log,"\n"); \
1004 /* =========================================================
1005 * BEGIN edit_distance stuff.
1007 * This calculates how many single character changes of any type are needed to
1008 * transform a string into another one. It is taken from version 3.1 of
1010 * https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
1013 /* Our unsorted dictionary linked list. */
1014 /* Note we use UVs, not chars. */
1019 struct dictionary* next;
1021 typedef struct dictionary item;
1024 PERL_STATIC_INLINE item*
1025 push(UV key,item* curr)
1028 Newxz(head, 1, item);
1036 PERL_STATIC_INLINE item*
1037 find(item* head, UV key)
1039 item* iterator = head;
1041 if (iterator->key == key){
1044 iterator = iterator->next;
1050 PERL_STATIC_INLINE item*
1051 uniquePush(item* head,UV key)
1053 item* iterator = head;
1056 if (iterator->key == key) {
1059 iterator = iterator->next;
1062 return push(key,head);
1065 PERL_STATIC_INLINE void
1066 dict_free(item* head)
1068 item* iterator = head;
1071 item* temp = iterator;
1072 iterator = iterator->next;
1079 /* End of Dictionary Stuff */
1081 /* All calculations/work are done here */
1083 S_edit_distance(const UV* src,
1085 const STRLEN x, /* length of src[] */
1086 const STRLEN y, /* length of tgt[] */
1087 const SSize_t maxDistance
1091 UV swapCount,swapScore,targetCharCount,i,j;
1093 UV score_ceil = x + y;
1095 PERL_ARGS_ASSERT_EDIT_DISTANCE;
1097 /* intialize matrix start values */
1098 Newxz(scores, ( (x + 2) * (y + 2)), UV);
1099 scores[0] = score_ceil;
1100 scores[1 * (y + 2) + 0] = score_ceil;
1101 scores[0 * (y + 2) + 1] = score_ceil;
1102 scores[1 * (y + 2) + 1] = 0;
1103 head = uniquePush(uniquePush(head,src[0]),tgt[0]);
1108 for (i=1;i<=x;i++) {
1110 head = uniquePush(head,src[i]);
1111 scores[(i+1) * (y + 2) + 1] = i;
1112 scores[(i+1) * (y + 2) + 0] = score_ceil;
1115 for (j=1;j<=y;j++) {
1118 head = uniquePush(head,tgt[j]);
1119 scores[1 * (y + 2) + (j + 1)] = j;
1120 scores[0 * (y + 2) + (j + 1)] = score_ceil;
1123 targetCharCount = find(head,tgt[j-1])->value;
1124 swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;
1126 if (src[i-1] != tgt[j-1]){
1127 scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
1131 scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
1135 find(head,src[i-1])->value = i;
1139 IV score = scores[(x+1) * (y + 2) + (y + 1)];
1142 return (maxDistance != 0 && maxDistance < score)?(-1):score;
1146 /* END of edit_distance() stuff
1147 * ========================================================= */
1149 /* is c a control character for which we have a mnemonic? */
1150 #define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
1153 S_cntrl_to_mnemonic(const U8 c)
1155 /* Returns the mnemonic string that represents character 'c', if one
1156 * exists; NULL otherwise. The only ones that exist for the purposes of
1157 * this routine are a few control characters */
1160 case '\a': return "\\a";
1161 case '\b': return "\\b";
1162 case ESC_NATIVE: return "\\e";
1163 case '\f': return "\\f";
1164 case '\n': return "\\n";
1165 case '\r': return "\\r";
1166 case '\t': return "\\t";
1172 /* Mark that we cannot extend a found fixed substring at this point.
1173 Update the longest found anchored substring and the longest found
1174 floating substrings if needed. */
1177 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
1178 SSize_t *minlenp, int is_inf)
1180 const STRLEN l = CHR_SVLEN(data->last_found);
1181 const STRLEN old_l = CHR_SVLEN(*data->longest);
1182 GET_RE_DEBUG_FLAGS_DECL;
1184 PERL_ARGS_ASSERT_SCAN_COMMIT;
1186 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
1187 SvSetMagicSV(*data->longest, data->last_found);
1188 if (*data->longest == data->longest_fixed) {
1189 data->offset_fixed = l ? data->last_start_min : data->pos_min;
1190 if (data->flags & SF_BEFORE_EOL)
1192 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
1194 data->flags &= ~SF_FIX_BEFORE_EOL;
1195 data->minlen_fixed=minlenp;
1196 data->lookbehind_fixed=0;
1198 else { /* *data->longest == data->longest_float */
1199 data->offset_float_min = l ? data->last_start_min : data->pos_min;
1200 data->offset_float_max = (l
1201 ? data->last_start_max
1202 : (data->pos_delta > SSize_t_MAX - data->pos_min
1204 : data->pos_min + data->pos_delta));
1206 || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
1207 data->offset_float_max = SSize_t_MAX;
1208 if (data->flags & SF_BEFORE_EOL)
1210 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
1212 data->flags &= ~SF_FL_BEFORE_EOL;
1213 data->minlen_float=minlenp;
1214 data->lookbehind_float=0;
1217 SvCUR_set(data->last_found, 0);
1219 SV * const sv = data->last_found;
1220 if (SvUTF8(sv) && SvMAGICAL(sv)) {
1221 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
1226 data->last_end = -1;
1227 data->flags &= ~SF_BEFORE_EOL;
1228 DEBUG_STUDYDATA("commit: ",data,0);
1231 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
1232 * list that describes which code points it matches */
1235 S_ssc_anything(pTHX_ regnode_ssc *ssc)
1237 /* Set the SSC 'ssc' to match an empty string or any code point */
1239 PERL_ARGS_ASSERT_SSC_ANYTHING;
1241 assert(is_ANYOF_SYNTHETIC(ssc));
1243 ssc->invlist = sv_2mortal(_new_invlist(2)); /* mortalize so won't leak */
1244 _append_range_to_invlist(ssc->invlist, 0, UV_MAX);
1245 ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
1249 S_ssc_is_anything(const regnode_ssc *ssc)
1251 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1252 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
1253 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1254 * in any way, so there's no point in using it */
1259 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1261 assert(is_ANYOF_SYNTHETIC(ssc));
1263 if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1267 /* See if the list consists solely of the range 0 - Infinity */
1268 invlist_iterinit(ssc->invlist);
1269 ret = invlist_iternext(ssc->invlist, &start, &end)
1273 invlist_iterfinish(ssc->invlist);
1279 /* If e.g., both \w and \W are set, matches everything */
1280 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1282 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1283 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1293 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1295 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
1296 * string, any code point, or any posix class under locale */
1298 PERL_ARGS_ASSERT_SSC_INIT;
1300 Zero(ssc, 1, regnode_ssc);
1301 set_ANYOF_SYNTHETIC(ssc);
1302 ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1305 /* If any portion of the regex is to operate under locale rules that aren't
1306 * fully known at compile time, initialization includes it. The reason
1307 * this isn't done for all regexes is that the optimizer was written under
1308 * the assumption that locale was all-or-nothing. Given the complexity and
1309 * lack of documentation in the optimizer, and that there are inadequate
1310 * test cases for locale, many parts of it may not work properly, it is
1311 * safest to avoid locale unless necessary. */
1312 if (RExC_contains_locale) {
1313 ANYOF_POSIXL_SETALL(ssc);
1316 ANYOF_POSIXL_ZERO(ssc);
1321 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1322 const regnode_ssc *ssc)
1324 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1325 * to the list of code points matched, and locale posix classes; hence does
1326 * not check its flags) */
1331 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1333 assert(is_ANYOF_SYNTHETIC(ssc));
1335 invlist_iterinit(ssc->invlist);
1336 ret = invlist_iternext(ssc->invlist, &start, &end)
1340 invlist_iterfinish(ssc->invlist);
1346 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1354 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1355 const regnode_charclass* const node)
1357 /* Returns a mortal inversion list defining which code points are matched
1358 * by 'node', which is of type ANYOF. Handles complementing the result if
1359 * appropriate. If some code points aren't knowable at this time, the
1360 * returned list must, and will, contain every code point that is a
1364 SV* only_utf8_locale_invlist = NULL;
1366 const U32 n = ARG(node);
1367 bool new_node_has_latin1 = FALSE;
1369 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1371 /* Look at the data structure created by S_set_ANYOF_arg() */
1372 if (n != ANYOF_ONLY_HAS_BITMAP) {
1373 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1374 AV * const av = MUTABLE_AV(SvRV(rv));
1375 SV **const ary = AvARRAY(av);
1376 assert(RExC_rxi->data->what[n] == 's');
1378 if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
1379 invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
1381 else if (ary[0] && ary[0] != &PL_sv_undef) {
1383 /* Here, no compile-time swash, and there are things that won't be
1384 * known until runtime -- we have to assume it could be anything */
1385 invlist = sv_2mortal(_new_invlist(1));
1386 return _add_range_to_invlist(invlist, 0, UV_MAX);
1388 else if (ary[3] && ary[3] != &PL_sv_undef) {
1390 /* Here no compile-time swash, and no run-time only data. Use the
1391 * node's inversion list */
1392 invlist = sv_2mortal(invlist_clone(ary[3]));
1395 /* Get the code points valid only under UTF-8 locales */
1396 if ((ANYOF_FLAGS(node) & ANYOFL_FOLD)
1397 && ary[2] && ary[2] != &PL_sv_undef)
1399 only_utf8_locale_invlist = ary[2];
1404 invlist = sv_2mortal(_new_invlist(0));
1407 /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1408 * code points, and an inversion list for the others, but if there are code
1409 * points that should match only conditionally on the target string being
1410 * UTF-8, those are placed in the inversion list, and not the bitmap.
1411 * Since there are circumstances under which they could match, they are
1412 * included in the SSC. But if the ANYOF node is to be inverted, we have
1413 * to exclude them here, so that when we invert below, the end result
1414 * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
1415 * have to do this here before we add the unconditionally matched code
1417 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1418 _invlist_intersection_complement_2nd(invlist,
1423 /* Add in the points from the bit map */
1424 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1425 if (ANYOF_BITMAP_TEST(node, i)) {
1426 invlist = add_cp_to_invlist(invlist, i);
1427 new_node_has_latin1 = TRUE;
1431 /* If this can match all upper Latin1 code points, have to add them
1432 * as well. But don't add them if inverting, as when that gets done below,
1433 * it would exclude all these characters, including the ones it shouldn't
1434 * that were added just above */
1435 if (! (ANYOF_FLAGS(node) & ANYOF_INVERT) && OP(node) == ANYOFD
1436 && (ANYOF_FLAGS(node) & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
1438 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1441 /* Similarly for these */
1442 if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1443 _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1446 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1447 _invlist_invert(invlist);
1449 else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOFL_FOLD) {
1451 /* Under /li, any 0-255 could fold to any other 0-255, depending on the
1452 * locale. We can skip this if there are no 0-255 at all. */
1453 _invlist_union(invlist, PL_Latin1, &invlist);
1456 /* Similarly add the UTF-8 locale possible matches. These have to be
1457 * deferred until after the non-UTF-8 locale ones are taken care of just
1458 * above, or it leads to wrong results under ANYOF_INVERT */
1459 if (only_utf8_locale_invlist) {
1460 _invlist_union_maybe_complement_2nd(invlist,
1461 only_utf8_locale_invlist,
1462 ANYOF_FLAGS(node) & ANYOF_INVERT,
1469 /* These two functions currently do the exact same thing */
1470 #define ssc_init_zero ssc_init
1472 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1473 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1475 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1476 * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1477 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1480 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1481 const regnode_charclass *and_with)
1483 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1484 * another SSC or a regular ANYOF class. Can create false positives. */
1489 PERL_ARGS_ASSERT_SSC_AND;
1491 assert(is_ANYOF_SYNTHETIC(ssc));
1493 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1494 * the code point inversion list and just the relevant flags */
1495 if (is_ANYOF_SYNTHETIC(and_with)) {
1496 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1497 anded_flags = ANYOF_FLAGS(and_with);
1499 /* XXX This is a kludge around what appears to be deficiencies in the
1500 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1501 * there are paths through the optimizer where it doesn't get weeded
1502 * out when it should. And if we don't make some extra provision for
1503 * it like the code just below, it doesn't get added when it should.
1504 * This solution is to add it only when AND'ing, which is here, and
1505 * only when what is being AND'ed is the pristine, original node
1506 * matching anything. Thus it is like adding it to ssc_anything() but
1507 * only when the result is to be AND'ed. Probably the same solution
1508 * could be adopted for the same problem we have with /l matching,
1509 * which is solved differently in S_ssc_init(), and that would lead to
1510 * fewer false positives than that solution has. But if this solution
1511 * creates bugs, the consequences are only that a warning isn't raised
1512 * that should be; while the consequences for having /l bugs is
1513 * incorrect matches */
1514 if (ssc_is_anything((regnode_ssc *)and_with)) {
1515 anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1519 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1520 if (OP(and_with) == ANYOFD) {
1521 anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
1524 anded_flags = ANYOF_FLAGS(and_with)
1525 &( ANYOF_COMMON_FLAGS
1526 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1527 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1528 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(and_with))) {
1530 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1535 ANYOF_FLAGS(ssc) &= anded_flags;
1537 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1538 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1539 * 'and_with' may be inverted. When not inverted, we have the situation of
1541 * (C1 | P1) & (C2 | P2)
1542 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1543 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1544 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1545 * <= ((C1 & C2) | P1 | P2)
1546 * Alternatively, the last few steps could be:
1547 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1548 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1549 * <= (C1 | C2 | (P1 & P2))
1550 * We favor the second approach if either P1 or P2 is non-empty. This is
1551 * because these components are a barrier to doing optimizations, as what
1552 * they match cannot be known until the moment of matching as they are
1553 * dependent on the current locale, 'AND"ing them likely will reduce or
1555 * But we can do better if we know that C1,P1 are in their initial state (a
1556 * frequent occurrence), each matching everything:
1557 * (<everything>) & (C2 | P2) = C2 | P2
1558 * Similarly, if C2,P2 are in their initial state (again a frequent
1559 * occurrence), the result is a no-op
1560 * (C1 | P1) & (<everything>) = C1 | P1
1563 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1564 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1565 * <= (C1 & ~C2) | (P1 & ~P2)
1568 if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
1569 && ! is_ANYOF_SYNTHETIC(and_with))
1573 ssc_intersection(ssc,
1575 FALSE /* Has already been inverted */
1578 /* If either P1 or P2 is empty, the intersection will be also; can skip
1580 if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
1581 ANYOF_POSIXL_ZERO(ssc);
1583 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1585 /* Note that the Posix class component P from 'and_with' actually
1587 * P = Pa | Pb | ... | Pn
1588 * where each component is one posix class, such as in [\w\s].
1590 * ~P = ~(Pa | Pb | ... | Pn)
1591 * = ~Pa & ~Pb & ... & ~Pn
1592 * <= ~Pa | ~Pb | ... | ~Pn
1593 * The last is something we can easily calculate, but unfortunately
1594 * is likely to have many false positives. We could do better
1595 * in some (but certainly not all) instances if two classes in
1596 * P have known relationships. For example
1597 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1599 * :lower: & :print: = :lower:
1600 * And similarly for classes that must be disjoint. For example,
1601 * since \s and \w can have no elements in common based on rules in
1602 * the POSIX standard,
1603 * \w & ^\S = nothing
1604 * Unfortunately, some vendor locales do not meet the Posix
1605 * standard, in particular almost everything by Microsoft.
1606 * The loop below just changes e.g., \w into \W and vice versa */
1608 regnode_charclass_posixl temp;
1609 int add = 1; /* To calculate the index of the complement */
1611 ANYOF_POSIXL_ZERO(&temp);
1612 for (i = 0; i < ANYOF_MAX; i++) {
1614 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1615 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1617 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1618 ANYOF_POSIXL_SET(&temp, i + add);
1620 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1622 ANYOF_POSIXL_AND(&temp, ssc);
1624 } /* else ssc already has no posixes */
1625 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1626 in its initial state */
1627 else if (! is_ANYOF_SYNTHETIC(and_with)
1628 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1630 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1631 * copy it over 'ssc' */
1632 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1633 if (is_ANYOF_SYNTHETIC(and_with)) {
1634 StructCopy(and_with, ssc, regnode_ssc);
1637 ssc->invlist = anded_cp_list;
1638 ANYOF_POSIXL_ZERO(ssc);
1639 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1640 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1644 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1645 || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
1647 /* One or the other of P1, P2 is non-empty. */
1648 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1649 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1651 ssc_union(ssc, anded_cp_list, FALSE);
1653 else { /* P1 = P2 = empty */
1654 ssc_intersection(ssc, anded_cp_list, FALSE);
1660 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1661 const regnode_charclass *or_with)
1663 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1664 * another SSC or a regular ANYOF class. Can create false positives if
1665 * 'or_with' is to be inverted. */
1670 PERL_ARGS_ASSERT_SSC_OR;
1672 assert(is_ANYOF_SYNTHETIC(ssc));
1674 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1675 * the code point inversion list and just the relevant flags */
1676 if (is_ANYOF_SYNTHETIC(or_with)) {
1677 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1678 ored_flags = ANYOF_FLAGS(or_with);
1681 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1682 ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
1683 if (OP(or_with) != ANYOFD) {
1685 |= ANYOF_FLAGS(or_with)
1686 & ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1687 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1688 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(or_with))) {
1690 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1695 ANYOF_FLAGS(ssc) |= ored_flags;
1697 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1698 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1699 * 'or_with' may be inverted. When not inverted, we have the simple
1700 * situation of computing:
1701 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1702 * If P1|P2 yields a situation with both a class and its complement are
1703 * set, like having both \w and \W, this matches all code points, and we
1704 * can delete these from the P component of the ssc going forward. XXX We
1705 * might be able to delete all the P components, but I (khw) am not certain
1706 * about this, and it is better to be safe.
1709 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1710 * <= (C1 | P1) | ~C2
1711 * <= (C1 | ~C2) | P1
1712 * (which results in actually simpler code than the non-inverted case)
1715 if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
1716 && ! is_ANYOF_SYNTHETIC(or_with))
1718 /* We ignore P2, leaving P1 going forward */
1719 } /* else Not inverted */
1720 else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
1721 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1722 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1724 for (i = 0; i < ANYOF_MAX; i += 2) {
1725 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1727 ssc_match_all_cp(ssc);
1728 ANYOF_POSIXL_CLEAR(ssc, i);
1729 ANYOF_POSIXL_CLEAR(ssc, i+1);
1737 FALSE /* Already has been inverted */
1741 PERL_STATIC_INLINE void
1742 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1744 PERL_ARGS_ASSERT_SSC_UNION;
1746 assert(is_ANYOF_SYNTHETIC(ssc));
1748 _invlist_union_maybe_complement_2nd(ssc->invlist,
1754 PERL_STATIC_INLINE void
1755 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
1757 const bool invert2nd)
1759 PERL_ARGS_ASSERT_SSC_INTERSECTION;
1761 assert(is_ANYOF_SYNTHETIC(ssc));
1763 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
1769 PERL_STATIC_INLINE void
1770 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
1772 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
1774 assert(is_ANYOF_SYNTHETIC(ssc));
1776 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
1779 PERL_STATIC_INLINE void
1780 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
1782 /* AND just the single code point 'cp' into the SSC 'ssc' */
1784 SV* cp_list = _new_invlist(2);
1786 PERL_ARGS_ASSERT_SSC_CP_AND;
1788 assert(is_ANYOF_SYNTHETIC(ssc));
1790 cp_list = add_cp_to_invlist(cp_list, cp);
1791 ssc_intersection(ssc, cp_list,
1792 FALSE /* Not inverted */
1794 SvREFCNT_dec_NN(cp_list);
1797 PERL_STATIC_INLINE void
1798 S_ssc_clear_locale(regnode_ssc *ssc)
1800 /* Set the SSC 'ssc' to not match any locale things */
1801 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
1803 assert(is_ANYOF_SYNTHETIC(ssc));
1805 ANYOF_POSIXL_ZERO(ssc);
1806 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
1809 #define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
1812 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
1814 /* The synthetic start class is used to hopefully quickly winnow down
1815 * places where a pattern could start a match in the target string. If it
1816 * doesn't really narrow things down that much, there isn't much point to
1817 * having the overhead of using it. This function uses some very crude
1818 * heuristics to decide if to use the ssc or not.
1820 * It returns TRUE if 'ssc' rules out more than half what it considers to
1821 * be the "likely" possible matches, but of course it doesn't know what the
1822 * actual things being matched are going to be; these are only guesses
1824 * For /l matches, it assumes that the only likely matches are going to be
1825 * in the 0-255 range, uniformly distributed, so half of that is 127
1826 * For /a and /d matches, it assumes that the likely matches will be just
1827 * the ASCII range, so half of that is 63
1828 * For /u and there isn't anything matching above the Latin1 range, it
1829 * assumes that that is the only range likely to be matched, and uses
1830 * half that as the cut-off: 127. If anything matches above Latin1,
1831 * it assumes that all of Unicode could match (uniformly), except for
1832 * non-Unicode code points and things in the General Category "Other"
1833 * (unassigned, private use, surrogates, controls and formats). This
1834 * is a much large number. */
1836 U32 count = 0; /* Running total of number of code points matched by
1838 UV start, end; /* Start and end points of current range in inversion
1840 const U32 max_code_points = (LOC)
1842 : (( ! UNI_SEMANTICS
1843 || invlist_highest(ssc->invlist) < 256)
1846 const U32 max_match = max_code_points / 2;
1848 PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
1850 invlist_iterinit(ssc->invlist);
1851 while (invlist_iternext(ssc->invlist, &start, &end)) {
1852 if (start >= max_code_points) {
1855 end = MIN(end, max_code_points - 1);
1856 count += end - start + 1;
1857 if (count >= max_match) {
1858 invlist_iterfinish(ssc->invlist);
1868 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
1870 /* The inversion list in the SSC is marked mortal; now we need a more
1871 * permanent copy, which is stored the same way that is done in a regular
1872 * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
1875 SV* invlist = invlist_clone(ssc->invlist);
1877 PERL_ARGS_ASSERT_SSC_FINALIZE;
1879 assert(is_ANYOF_SYNTHETIC(ssc));
1881 /* The code in this file assumes that all but these flags aren't relevant
1882 * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
1883 * by the time we reach here */
1884 assert(! (ANYOF_FLAGS(ssc)
1885 & ~( ANYOF_COMMON_FLAGS
1886 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1887 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));
1889 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
1891 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
1892 NULL, NULL, NULL, FALSE);
1894 /* Make sure is clone-safe */
1895 ssc->invlist = NULL;
1897 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1898 ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
1901 if (RExC_contains_locale) {
1905 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
1908 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1909 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1910 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1911 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
1912 ? (TRIE_LIST_CUR( idx ) - 1) \
1918 dump_trie(trie,widecharmap,revcharmap)
1919 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1920 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1922 These routines dump out a trie in a somewhat readable format.
1923 The _interim_ variants are used for debugging the interim
1924 tables that are used to generate the final compressed
1925 representation which is what dump_trie expects.
1927 Part of the reason for their existence is to provide a form
1928 of documentation as to how the different representations function.
1933 Dumps the final compressed table form of the trie to Perl_debug_log.
1934 Used for debugging make_trie().
1938 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1939 AV *revcharmap, U32 depth)
1942 SV *sv=sv_newmortal();
1943 int colwidth= widecharmap ? 6 : 4;
1945 GET_RE_DEBUG_FLAGS_DECL;
1947 PERL_ARGS_ASSERT_DUMP_TRIE;
1949 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1950 (int)depth * 2 + 2,"",
1951 "Match","Base","Ofs" );
1953 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1954 SV ** const tmp = av_fetch( revcharmap, state, 0);
1956 PerlIO_printf( Perl_debug_log, "%*s",
1958 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1959 PL_colors[0], PL_colors[1],
1960 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1961 PERL_PV_ESCAPE_FIRSTCHAR
1966 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1967 (int)depth * 2 + 2,"");
1969 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1970 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1971 PerlIO_printf( Perl_debug_log, "\n");
1973 for( state = 1 ; state < trie->statecount ; state++ ) {
1974 const U32 base = trie->states[ state ].trans.base;
1976 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|",
1977 (int)depth * 2 + 2,"", (UV)state);
1979 if ( trie->states[ state ].wordnum ) {
1980 PerlIO_printf( Perl_debug_log, " W%4X",
1981 trie->states[ state ].wordnum );
1983 PerlIO_printf( Perl_debug_log, "%6s", "" );
1986 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1991 while( ( base + ofs < trie->uniquecharcount ) ||
1992 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1993 && trie->trans[ base + ofs - trie->uniquecharcount ].check
1997 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1999 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2000 if ( ( base + ofs >= trie->uniquecharcount )
2001 && ( base + ofs - trie->uniquecharcount
2003 && trie->trans[ base + ofs
2004 - trie->uniquecharcount ].check == state )
2006 PerlIO_printf( Perl_debug_log, "%*"UVXf,
2008 (UV)trie->trans[ base + ofs
2009 - trie->uniquecharcount ].next );
2011 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
2015 PerlIO_printf( Perl_debug_log, "]");
2018 PerlIO_printf( Perl_debug_log, "\n" );
2020 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=",
2022 for (word=1; word <= trie->wordcount; word++) {
2023 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
2024 (int)word, (int)(trie->wordinfo[word].prev),
2025 (int)(trie->wordinfo[word].len));
2027 PerlIO_printf(Perl_debug_log, "\n" );
2030 Dumps a fully constructed but uncompressed trie in list form.
2031 List tries normally only are used for construction when the number of
2032 possible chars (trie->uniquecharcount) is very high.
2033 Used for debugging make_trie().
2036 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
2037 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2041 SV *sv=sv_newmortal();
2042 int colwidth= widecharmap ? 6 : 4;
2043 GET_RE_DEBUG_FLAGS_DECL;
2045 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
2047 /* print out the table precompression. */
2048 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
2049 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
2050 "------:-----+-----------------\n" );
2052 for( state=1 ; state < next_alloc ; state ++ ) {
2055 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
2056 (int)depth * 2 + 2,"", (UV)state );
2057 if ( ! trie->states[ state ].wordnum ) {
2058 PerlIO_printf( Perl_debug_log, "%5s| ","");
2060 PerlIO_printf( Perl_debug_log, "W%4x| ",
2061 trie->states[ state ].wordnum
2064 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
2065 SV ** const tmp = av_fetch( revcharmap,
2066 TRIE_LIST_ITEM(state,charid).forid, 0);
2068 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
2070 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
2072 PL_colors[0], PL_colors[1],
2073 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
2074 | PERL_PV_ESCAPE_FIRSTCHAR
2076 TRIE_LIST_ITEM(state,charid).forid,
2077 (UV)TRIE_LIST_ITEM(state,charid).newstate
2080 PerlIO_printf(Perl_debug_log, "\n%*s| ",
2081 (int)((depth * 2) + 14), "");
2084 PerlIO_printf( Perl_debug_log, "\n");
2089 Dumps a fully constructed but uncompressed trie in table form.
2090 This is the normal DFA style state transition table, with a few
2091 twists to facilitate compression later.
2092 Used for debugging make_trie().
2095 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
2096 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2101 SV *sv=sv_newmortal();
2102 int colwidth= widecharmap ? 6 : 4;
2103 GET_RE_DEBUG_FLAGS_DECL;
2105 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
2108 print out the table precompression so that we can do a visual check
2109 that they are identical.
2112 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
2114 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2115 SV ** const tmp = av_fetch( revcharmap, charid, 0);
2117 PerlIO_printf( Perl_debug_log, "%*s",
2119 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2120 PL_colors[0], PL_colors[1],
2121 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2122 PERL_PV_ESCAPE_FIRSTCHAR
2128 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
2130 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
2131 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
2134 PerlIO_printf( Perl_debug_log, "\n" );
2136 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
2138 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
2139 (int)depth * 2 + 2,"",
2140 (UV)TRIE_NODENUM( state ) );
2142 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2143 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
2145 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
2147 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
2149 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
2150 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n",
2151 (UV)trie->trans[ state ].check );
2153 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n",
2154 (UV)trie->trans[ state ].check,
2155 trie->states[ TRIE_NODENUM( state ) ].wordnum );
2163 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
2164 startbranch: the first branch in the whole branch sequence
2165 first : start branch of sequence of branch-exact nodes.
2166 May be the same as startbranch
2167 last : Thing following the last branch.
2168 May be the same as tail.
2169 tail : item following the branch sequence
2170 count : words in the sequence
2171 flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
2172 depth : indent depth
2174 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
2176 A trie is an N'ary tree where the branches are determined by digital
2177 decomposition of the key. IE, at the root node you look up the 1st character and
2178 follow that branch repeat until you find the end of the branches. Nodes can be
2179 marked as "accepting" meaning they represent a complete word. Eg:
2183 would convert into the following structure. Numbers represent states, letters
2184 following numbers represent valid transitions on the letter from that state, if
2185 the number is in square brackets it represents an accepting state, otherwise it
2186 will be in parenthesis.
2188 +-h->+-e->[3]-+-r->(8)-+-s->[9]
2192 (1) +-i->(6)-+-s->[7]
2194 +-s->(3)-+-h->(4)-+-e->[5]
2196 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
2198 This shows that when matching against the string 'hers' we will begin at state 1
2199 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
2200 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
2201 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
2202 single traverse. We store a mapping from accepting to state to which word was
2203 matched, and then when we have multiple possibilities we try to complete the
2204 rest of the regex in the order in which they occurred in the alternation.
2206 The only prior NFA like behaviour that would be changed by the TRIE support is
2207 the silent ignoring of duplicate alternations which are of the form:
2209 / (DUPE|DUPE) X? (?{ ... }) Y /x
2211 Thus EVAL blocks following a trie may be called a different number of times with
2212 and without the optimisation. With the optimisations dupes will be silently
2213 ignored. This inconsistent behaviour of EVAL type nodes is well established as
2214 the following demonstrates:
2216 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
2218 which prints out 'word' three times, but
2220 'words'=~/(word|word|word)(?{ print $1 })S/
2222 which doesnt print it out at all. This is due to other optimisations kicking in.
2224 Example of what happens on a structural level:
2226 The regexp /(ac|ad|ab)+/ will produce the following debug output:
2228 1: CURLYM[1] {1,32767}(18)
2239 This would be optimizable with startbranch=5, first=5, last=16, tail=16
2240 and should turn into:
2242 1: CURLYM[1] {1,32767}(18)
2244 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
2252 Cases where tail != last would be like /(?foo|bar)baz/:
2262 which would be optimizable with startbranch=1, first=1, last=7, tail=8
2263 and would end up looking like:
2266 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
2273 d = uvchr_to_utf8_flags(d, uv, 0);
2275 is the recommended Unicode-aware way of saying
2280 #define TRIE_STORE_REVCHAR(val) \
2283 SV *zlopp = newSV(UTF8_MAXBYTES); \
2284 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
2285 unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
2286 SvCUR_set(zlopp, kapow - flrbbbbb); \
2289 av_push(revcharmap, zlopp); \
2291 char ooooff = (char)val; \
2292 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
2296 /* This gets the next character from the input, folding it if not already
2298 #define TRIE_READ_CHAR STMT_START { \
2301 /* if it is UTF then it is either already folded, or does not need \
2303 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
2305 else if (folder == PL_fold_latin1) { \
2306 /* This folder implies Unicode rules, which in the range expressible \
2307 * by not UTF is the lower case, with the two exceptions, one of \
2308 * which should have been taken care of before calling this */ \
2309 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
2310 uvc = toLOWER_L1(*uc); \
2311 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
2314 /* raw data, will be folded later if needed */ \
2322 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
2323 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
2324 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
2325 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2327 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
2328 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
2329 TRIE_LIST_CUR( state )++; \
2332 #define TRIE_LIST_NEW(state) STMT_START { \
2333 Newxz( trie->states[ state ].trans.list, \
2334 4, reg_trie_trans_le ); \
2335 TRIE_LIST_CUR( state ) = 1; \
2336 TRIE_LIST_LEN( state ) = 4; \
2339 #define TRIE_HANDLE_WORD(state) STMT_START { \
2340 U16 dupe= trie->states[ state ].wordnum; \
2341 regnode * const noper_next = regnext( noper ); \
2344 /* store the word for dumping */ \
2346 if (OP(noper) != NOTHING) \
2347 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
2349 tmp = newSVpvn_utf8( "", 0, UTF ); \
2350 av_push( trie_words, tmp ); \
2354 trie->wordinfo[curword].prev = 0; \
2355 trie->wordinfo[curword].len = wordlen; \
2356 trie->wordinfo[curword].accept = state; \
2358 if ( noper_next < tail ) { \
2360 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2362 trie->jump[curword] = (U16)(noper_next - convert); \
2364 jumper = noper_next; \
2366 nextbranch= regnext(cur); \
2370 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
2371 /* chain, so that when the bits of chain are later */\
2372 /* linked together, the dups appear in the chain */\
2373 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2374 trie->wordinfo[dupe].prev = curword; \
2376 /* we haven't inserted this word yet. */ \
2377 trie->states[ state ].wordnum = curword; \
2382 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
2383 ( ( base + charid >= ucharcount \
2384 && base + charid < ubound \
2385 && state == trie->trans[ base - ucharcount + charid ].check \
2386 && trie->trans[ base - ucharcount + charid ].next ) \
2387 ? trie->trans[ base - ucharcount + charid ].next \
2388 : ( state==1 ? special : 0 ) \
2392 #define MADE_JUMP_TRIE 2
2393 #define MADE_EXACT_TRIE 4
2396 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2397 regnode *first, regnode *last, regnode *tail,
2398 U32 word_count, U32 flags, U32 depth)
2400 /* first pass, loop through and scan words */
2401 reg_trie_data *trie;
2402 HV *widecharmap = NULL;
2403 AV *revcharmap = newAV();
2409 regnode *jumper = NULL;
2410 regnode *nextbranch = NULL;
2411 regnode *convert = NULL;
2412 U32 *prev_states; /* temp array mapping each state to previous one */
2413 /* we just use folder as a flag in utf8 */
2414 const U8 * folder = NULL;
2417 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
2418 AV *trie_words = NULL;
2419 /* along with revcharmap, this only used during construction but both are
2420 * useful during debugging so we store them in the struct when debugging.
2423 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2424 STRLEN trie_charcount=0;
2426 SV *re_trie_maxbuff;
2427 GET_RE_DEBUG_FLAGS_DECL;
2429 PERL_ARGS_ASSERT_MAKE_TRIE;
2431 PERL_UNUSED_ARG(depth);
2435 case EXACT: case EXACTL: break;
2439 case EXACTFLU8: folder = PL_fold_latin1; break;
2440 case EXACTF: folder = PL_fold; break;
2441 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2444 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2446 trie->startstate = 1;
2447 trie->wordcount = word_count;
2448 RExC_rxi->data->data[ data_slot ] = (void*)trie;
2449 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2450 if (flags == EXACT || flags == EXACTL)
2451 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2452 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2453 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2456 trie_words = newAV();
2459 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2460 assert(re_trie_maxbuff);
2461 if (!SvIOK(re_trie_maxbuff)) {
2462 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2464 DEBUG_TRIE_COMPILE_r({
2465 PerlIO_printf( Perl_debug_log,
2466 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2467 (int)depth * 2 + 2, "",
2468 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
2469 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2472 /* Find the node we are going to overwrite */
2473 if ( first == startbranch && OP( last ) != BRANCH ) {
2474 /* whole branch chain */
2477 /* branch sub-chain */
2478 convert = NEXTOPER( first );
2481 /* -- First loop and Setup --
2483 We first traverse the branches and scan each word to determine if it
2484 contains widechars, and how many unique chars there are, this is
2485 important as we have to build a table with at least as many columns as we
2488 We use an array of integers to represent the character codes 0..255
2489 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2490 the native representation of the character value as the key and IV's for
2493 *TODO* If we keep track of how many times each character is used we can
2494 remap the columns so that the table compression later on is more
2495 efficient in terms of memory by ensuring the most common value is in the
2496 middle and the least common are on the outside. IMO this would be better
2497 than a most to least common mapping as theres a decent chance the most
2498 common letter will share a node with the least common, meaning the node
2499 will not be compressible. With a middle is most common approach the worst
2500 case is when we have the least common nodes twice.
2504 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2505 regnode *noper = NEXTOPER( cur );
2506 const U8 *uc = (U8*)STRING( noper );
2507 const U8 *e = uc + STR_LEN( noper );
2509 U32 wordlen = 0; /* required init */
2510 STRLEN minchars = 0;
2511 STRLEN maxchars = 0;
2512 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2515 if (OP(noper) == NOTHING) {
2516 regnode *noper_next= regnext(noper);
2517 if (noper_next != tail && OP(noper_next) == flags) {
2519 uc= (U8*)STRING(noper);
2520 e= uc + STR_LEN(noper);
2521 trie->minlen= STR_LEN(noper);
2528 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2529 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2530 regardless of encoding */
2531 if (OP( noper ) == EXACTFU_SS) {
2532 /* false positives are ok, so just set this */
2533 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2536 for ( ; uc < e ; uc += len ) { /* Look at each char in the current
2538 TRIE_CHARCOUNT(trie)++;
2541 /* TRIE_READ_CHAR returns the current character, or its fold if /i
2542 * is in effect. Under /i, this character can match itself, or
2543 * anything that folds to it. If not under /i, it can match just
2544 * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
2545 * all fold to k, and all are single characters. But some folds
2546 * expand to more than one character, so for example LATIN SMALL
2547 * LIGATURE FFI folds to the three character sequence 'ffi'. If
2548 * the string beginning at 'uc' is 'ffi', it could be matched by
2549 * three characters, or just by the one ligature character. (It
2550 * could also be matched by two characters: LATIN SMALL LIGATURE FF
2551 * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2552 * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2553 * match.) The trie needs to know the minimum and maximum number
2554 * of characters that could match so that it can use size alone to
2555 * quickly reject many match attempts. The max is simple: it is
2556 * the number of folded characters in this branch (since a fold is
2557 * never shorter than what folds to it. */
2561 /* And the min is equal to the max if not under /i (indicated by
2562 * 'folder' being NULL), or there are no multi-character folds. If
2563 * there is a multi-character fold, the min is incremented just
2564 * once, for the character that folds to the sequence. Each
2565 * character in the sequence needs to be added to the list below of
2566 * characters in the trie, but we count only the first towards the
2567 * min number of characters needed. This is done through the
2568 * variable 'foldlen', which is returned by the macros that look
2569 * for these sequences as the number of bytes the sequence
2570 * occupies. Each time through the loop, we decrement 'foldlen' by
2571 * how many bytes the current char occupies. Only when it reaches
2572 * 0 do we increment 'minchars' or look for another multi-character
2574 if (folder == NULL) {
2577 else if (foldlen > 0) {
2578 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2583 /* See if *uc is the beginning of a multi-character fold. If
2584 * so, we decrement the length remaining to look at, to account
2585 * for the current character this iteration. (We can use 'uc'
2586 * instead of the fold returned by TRIE_READ_CHAR because for
2587 * non-UTF, the latin1_safe macro is smart enough to account
2588 * for all the unfolded characters, and because for UTF, the
2589 * string will already have been folded earlier in the
2590 * compilation process */
2592 if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2593 foldlen -= UTF8SKIP(uc);
2596 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2601 /* The current character (and any potential folds) should be added
2602 * to the possible matching characters for this position in this
2606 U8 folded= folder[ (U8) uvc ];
2607 if ( !trie->charmap[ folded ] ) {
2608 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2609 TRIE_STORE_REVCHAR( folded );
2612 if ( !trie->charmap[ uvc ] ) {
2613 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2614 TRIE_STORE_REVCHAR( uvc );
2617 /* store the codepoint in the bitmap, and its folded
2619 TRIE_BITMAP_SET(trie, uvc);
2621 /* store the folded codepoint */
2622 if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
2625 /* store first byte of utf8 representation of
2626 variant codepoints */
2627 if (! UVCHR_IS_INVARIANT(uvc)) {
2628 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
2631 set_bit = 0; /* We've done our bit :-) */
2635 /* XXX We could come up with the list of code points that fold
2636 * to this using PL_utf8_foldclosures, except not for
2637 * multi-char folds, as there may be multiple combinations
2638 * there that could work, which needs to wait until runtime to
2639 * resolve (The comment about LIGATURE FFI above is such an
2644 widecharmap = newHV();
2646 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2649 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
2651 if ( !SvTRUE( *svpp ) ) {
2652 sv_setiv( *svpp, ++trie->uniquecharcount );
2653 TRIE_STORE_REVCHAR(uvc);
2656 } /* end loop through characters in this branch of the trie */
2658 /* We take the min and max for this branch and combine to find the min
2659 * and max for all branches processed so far */
2660 if( cur == first ) {
2661 trie->minlen = minchars;
2662 trie->maxlen = maxchars;
2663 } else if (minchars < trie->minlen) {
2664 trie->minlen = minchars;
2665 } else if (maxchars > trie->maxlen) {
2666 trie->maxlen = maxchars;
2668 } /* end first pass */
2669 DEBUG_TRIE_COMPILE_r(
2670 PerlIO_printf( Perl_debug_log,
2671 "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2672 (int)depth * 2 + 2,"",
2673 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2674 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2675 (int)trie->minlen, (int)trie->maxlen )
2679 We now know what we are dealing with in terms of unique chars and
2680 string sizes so we can calculate how much memory a naive
2681 representation using a flat table will take. If it's over a reasonable
2682 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2683 conservative but potentially much slower representation using an array
2686 At the end we convert both representations into the same compressed
2687 form that will be used in regexec.c for matching with. The latter
2688 is a form that cannot be used to construct with but has memory
2689 properties similar to the list form and access properties similar
2690 to the table form making it both suitable for fast searches and
2691 small enough that its feasable to store for the duration of a program.
2693 See the comment in the code where the compressed table is produced
2694 inplace from the flat tabe representation for an explanation of how
2695 the compression works.
2700 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2703 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2704 > SvIV(re_trie_maxbuff) )
2707 Second Pass -- Array Of Lists Representation
2709 Each state will be represented by a list of charid:state records
2710 (reg_trie_trans_le) the first such element holds the CUR and LEN
2711 points of the allocated array. (See defines above).
2713 We build the initial structure using the lists, and then convert
2714 it into the compressed table form which allows faster lookups
2715 (but cant be modified once converted).
2718 STRLEN transcount = 1;
2720 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
2721 "%*sCompiling trie using list compiler\n",
2722 (int)depth * 2 + 2, ""));
2724 trie->states = (reg_trie_state *)
2725 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2726 sizeof(reg_trie_state) );
2730 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2732 regnode *noper = NEXTOPER( cur );
2733 U8 *uc = (U8*)STRING( noper );
2734 const U8 *e = uc + STR_LEN( noper );
2735 U32 state = 1; /* required init */
2736 U16 charid = 0; /* sanity init */
2737 U32 wordlen = 0; /* required init */
2739 if (OP(noper) == NOTHING) {
2740 regnode *noper_next= regnext(noper);
2741 if (noper_next != tail && OP(noper_next) == flags) {
2743 uc= (U8*)STRING(noper);
2744 e= uc + STR_LEN(noper);
2748 if (OP(noper) != NOTHING) {
2749 for ( ; uc < e ; uc += len ) {
2754 charid = trie->charmap[ uvc ];
2756 SV** const svpp = hv_fetch( widecharmap,
2763 charid=(U16)SvIV( *svpp );
2766 /* charid is now 0 if we dont know the char read, or
2767 * nonzero if we do */
2774 if ( !trie->states[ state ].trans.list ) {
2775 TRIE_LIST_NEW( state );
2778 check <= TRIE_LIST_USED( state );
2781 if ( TRIE_LIST_ITEM( state, check ).forid
2784 newstate = TRIE_LIST_ITEM( state, check ).newstate;
2789 newstate = next_alloc++;
2790 prev_states[newstate] = state;
2791 TRIE_LIST_PUSH( state, charid, newstate );
2796 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2800 TRIE_HANDLE_WORD(state);
2802 } /* end second pass */
2804 /* next alloc is the NEXT state to be allocated */
2805 trie->statecount = next_alloc;
2806 trie->states = (reg_trie_state *)
2807 PerlMemShared_realloc( trie->states,
2809 * sizeof(reg_trie_state) );
2811 /* and now dump it out before we compress it */
2812 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
2813 revcharmap, next_alloc,
2817 trie->trans = (reg_trie_trans *)
2818 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
2825 for( state=1 ; state < next_alloc ; state ++ ) {
2829 DEBUG_TRIE_COMPILE_MORE_r(
2830 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
2834 if (trie->states[state].trans.list) {
2835 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
2839 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2840 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
2841 if ( forid < minid ) {
2843 } else if ( forid > maxid ) {
2847 if ( transcount < tp + maxid - minid + 1) {
2849 trie->trans = (reg_trie_trans *)
2850 PerlMemShared_realloc( trie->trans,
2852 * sizeof(reg_trie_trans) );
2853 Zero( trie->trans + (transcount / 2),
2857 base = trie->uniquecharcount + tp - minid;
2858 if ( maxid == minid ) {
2860 for ( ; zp < tp ; zp++ ) {
2861 if ( ! trie->trans[ zp ].next ) {
2862 base = trie->uniquecharcount + zp - minid;
2863 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
2865 trie->trans[ zp ].check = state;
2871 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
2873 trie->trans[ tp ].check = state;
2878 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2879 const U32 tid = base
2880 - trie->uniquecharcount
2881 + TRIE_LIST_ITEM( state, idx ).forid;
2882 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
2884 trie->trans[ tid ].check = state;
2886 tp += ( maxid - minid + 1 );
2888 Safefree(trie->states[ state ].trans.list);
2891 DEBUG_TRIE_COMPILE_MORE_r(
2892 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
2895 trie->states[ state ].trans.base=base;
2897 trie->lasttrans = tp + 1;
2901 Second Pass -- Flat Table Representation.
2903 we dont use the 0 slot of either trans[] or states[] so we add 1 to
2904 each. We know that we will need Charcount+1 trans at most to store
2905 the data (one row per char at worst case) So we preallocate both
2906 structures assuming worst case.
2908 We then construct the trie using only the .next slots of the entry
2911 We use the .check field of the first entry of the node temporarily
2912 to make compression both faster and easier by keeping track of how
2913 many non zero fields are in the node.
2915 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
2918 There are two terms at use here: state as a TRIE_NODEIDX() which is
2919 a number representing the first entry of the node, and state as a
2920 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
2921 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
2922 if there are 2 entrys per node. eg:
2930 The table is internally in the right hand, idx form. However as we
2931 also have to deal with the states array which is indexed by nodenum
2932 we have to use TRIE_NODENUM() to convert.
2935 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
2936 "%*sCompiling trie using table compiler\n",
2937 (int)depth * 2 + 2, ""));
2939 trie->trans = (reg_trie_trans *)
2940 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
2941 * trie->uniquecharcount + 1,
2942 sizeof(reg_trie_trans) );
2943 trie->states = (reg_trie_state *)
2944 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2945 sizeof(reg_trie_state) );
2946 next_alloc = trie->uniquecharcount + 1;
2949 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2951 regnode *noper = NEXTOPER( cur );
2952 const U8 *uc = (U8*)STRING( noper );
2953 const U8 *e = uc + STR_LEN( noper );
2955 U32 state = 1; /* required init */
2957 U16 charid = 0; /* sanity init */
2958 U32 accept_state = 0; /* sanity init */
2960 U32 wordlen = 0; /* required init */
2962 if (OP(noper) == NOTHING) {
2963 regnode *noper_next= regnext(noper);
2964 if (noper_next != tail && OP(noper_next) == flags) {
2966 uc= (U8*)STRING(noper);
2967 e= uc + STR_LEN(noper);
2971 if ( OP(noper) != NOTHING ) {
2972 for ( ; uc < e ; uc += len ) {
2977 charid = trie->charmap[ uvc ];
2979 SV* const * const svpp = hv_fetch( widecharmap,
2983 charid = svpp ? (U16)SvIV(*svpp) : 0;
2987 if ( !trie->trans[ state + charid ].next ) {
2988 trie->trans[ state + charid ].next = next_alloc;
2989 trie->trans[ state ].check++;
2990 prev_states[TRIE_NODENUM(next_alloc)]
2991 = TRIE_NODENUM(state);
2992 next_alloc += trie->uniquecharcount;
2994 state = trie->trans[ state + charid ].next;
2996 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2998 /* charid is now 0 if we dont know the char read, or
2999 * nonzero if we do */
3002 accept_state = TRIE_NODENUM( state );
3003 TRIE_HANDLE_WORD(accept_state);
3005 } /* end second pass */
3007 /* and now dump it out before we compress it */
3008 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
3010 next_alloc, depth+1));
3014 * Inplace compress the table.*
3016 For sparse data sets the table constructed by the trie algorithm will
3017 be mostly 0/FAIL transitions or to put it another way mostly empty.
3018 (Note that leaf nodes will not contain any transitions.)
3020 This algorithm compresses the tables by eliminating most such
3021 transitions, at the cost of a modest bit of extra work during lookup:
3023 - Each states[] entry contains a .base field which indicates the
3024 index in the state[] array wheres its transition data is stored.
3026 - If .base is 0 there are no valid transitions from that node.
3028 - If .base is nonzero then charid is added to it to find an entry in
3031 -If trans[states[state].base+charid].check!=state then the
3032 transition is taken to be a 0/Fail transition. Thus if there are fail
3033 transitions at the front of the node then the .base offset will point
3034 somewhere inside the previous nodes data (or maybe even into a node
3035 even earlier), but the .check field determines if the transition is
3039 The following process inplace converts the table to the compressed
3040 table: We first do not compress the root node 1,and mark all its
3041 .check pointers as 1 and set its .base pointer as 1 as well. This
3042 allows us to do a DFA construction from the compressed table later,
3043 and ensures that any .base pointers we calculate later are greater
3046 - We set 'pos' to indicate the first entry of the second node.
3048 - We then iterate over the columns of the node, finding the first and
3049 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
3050 and set the .check pointers accordingly, and advance pos
3051 appropriately and repreat for the next node. Note that when we copy
3052 the next pointers we have to convert them from the original
3053 NODEIDX form to NODENUM form as the former is not valid post
3056 - If a node has no transitions used we mark its base as 0 and do not
3057 advance the pos pointer.
3059 - If a node only has one transition we use a second pointer into the
3060 structure to fill in allocated fail transitions from other states.
3061 This pointer is independent of the main pointer and scans forward
3062 looking for null transitions that are allocated to a state. When it
3063 finds one it writes the single transition into the "hole". If the
3064 pointer doesnt find one the single transition is appended as normal.
3066 - Once compressed we can Renew/realloc the structures to release the
3069 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
3070 specifically Fig 3.47 and the associated pseudocode.
3074 const U32 laststate = TRIE_NODENUM( next_alloc );
3077 trie->statecount = laststate;
3079 for ( state = 1 ; state < laststate ; state++ ) {
3081 const U32 stateidx = TRIE_NODEIDX( state );
3082 const U32 o_used = trie->trans[ stateidx ].check;
3083 U32 used = trie->trans[ stateidx ].check;
3084 trie->trans[ stateidx ].check = 0;
3087 used && charid < trie->uniquecharcount;
3090 if ( flag || trie->trans[ stateidx + charid ].next ) {
3091 if ( trie->trans[ stateidx + charid ].next ) {
3093 for ( ; zp < pos ; zp++ ) {
3094 if ( ! trie->trans[ zp ].next ) {
3098 trie->states[ state ].trans.base
3100 + trie->uniquecharcount
3102 trie->trans[ zp ].next
3103 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
3105 trie->trans[ zp ].check = state;
3106 if ( ++zp > pos ) pos = zp;
3113 trie->states[ state ].trans.base
3114 = pos + trie->uniquecharcount - charid ;
3116 trie->trans[ pos ].next
3117 = SAFE_TRIE_NODENUM(
3118 trie->trans[ stateidx + charid ].next );
3119 trie->trans[ pos ].check = state;
3124 trie->lasttrans = pos + 1;
3125 trie->states = (reg_trie_state *)
3126 PerlMemShared_realloc( trie->states, laststate
3127 * sizeof(reg_trie_state) );
3128 DEBUG_TRIE_COMPILE_MORE_r(
3129 PerlIO_printf( Perl_debug_log,
3130 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
3131 (int)depth * 2 + 2,"",
3132 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
3136 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
3139 } /* end table compress */
3141 DEBUG_TRIE_COMPILE_MORE_r(
3142 PerlIO_printf(Perl_debug_log,
3143 "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
3144 (int)depth * 2 + 2, "",
3145 (UV)trie->statecount,
3146 (UV)trie->lasttrans)
3148 /* resize the trans array to remove unused space */
3149 trie->trans = (reg_trie_trans *)
3150 PerlMemShared_realloc( trie->trans, trie->lasttrans
3151 * sizeof(reg_trie_trans) );
3153 { /* Modify the program and insert the new TRIE node */
3154 U8 nodetype =(U8)(flags & 0xFF);
3158 regnode *optimize = NULL;
3159 #ifdef RE_TRACK_PATTERN_OFFSETS
3162 U32 mjd_nodelen = 0;
3163 #endif /* RE_TRACK_PATTERN_OFFSETS */
3164 #endif /* DEBUGGING */
3166 This means we convert either the first branch or the first Exact,
3167 depending on whether the thing following (in 'last') is a branch
3168 or not and whther first is the startbranch (ie is it a sub part of
3169 the alternation or is it the whole thing.)
3170 Assuming its a sub part we convert the EXACT otherwise we convert
3171 the whole branch sequence, including the first.
3173 /* Find the node we are going to overwrite */
3174 if ( first != startbranch || OP( last ) == BRANCH ) {
3175 /* branch sub-chain */
3176 NEXT_OFF( first ) = (U16)(last - first);
3177 #ifdef RE_TRACK_PATTERN_OFFSETS
3179 mjd_offset= Node_Offset((convert));
3180 mjd_nodelen= Node_Length((convert));
3183 /* whole branch chain */
3185 #ifdef RE_TRACK_PATTERN_OFFSETS
3188 const regnode *nop = NEXTOPER( convert );
3189 mjd_offset= Node_Offset((nop));
3190 mjd_nodelen= Node_Length((nop));
3194 PerlIO_printf(Perl_debug_log,
3195 "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
3196 (int)depth * 2 + 2, "",
3197 (UV)mjd_offset, (UV)mjd_nodelen)
3200 /* But first we check to see if there is a common prefix we can
3201 split out as an EXACT and put in front of the TRIE node. */
3202 trie->startstate= 1;
3203 if ( trie->bitmap && !widecharmap && !trie->jump ) {
3205 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
3209 const U32 base = trie->states[ state ].trans.base;
3211 if ( trie->states[state].wordnum )
3214 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
3215 if ( ( base + ofs >= trie->uniquecharcount ) &&
3216 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
3217 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
3219 if ( ++count > 1 ) {
3220 SV **tmp = av_fetch( revcharmap, ofs, 0);
3221 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
3222 if ( state == 1 ) break;
3224 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
3226 PerlIO_printf(Perl_debug_log,
3227 "%*sNew Start State=%"UVuf" Class: [",
3228 (int)depth * 2 + 2, "",
3231 SV ** const tmp = av_fetch( revcharmap, idx, 0);
3232 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
3234 TRIE_BITMAP_SET(trie,*ch);
3236 TRIE_BITMAP_SET(trie, folder[ *ch ]);
3238 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
3242 TRIE_BITMAP_SET(trie,*ch);
3244 TRIE_BITMAP_SET(trie,folder[ *ch ]);
3245 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
3251 SV **tmp = av_fetch( revcharmap, idx, 0);
3253 char *ch = SvPV( *tmp, len );
3255 SV *sv=sv_newmortal();
3256 PerlIO_printf( Perl_debug_log,
3257 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
3258 (int)depth * 2 + 2, "",
3260 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
3261 PL_colors[0], PL_colors[1],
3262 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
3263 PERL_PV_ESCAPE_FIRSTCHAR
3268 OP( convert ) = nodetype;
3269 str=STRING(convert);
3272 STR_LEN(convert) += len;
3278 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
3283 trie->prefixlen = (state-1);
3285 regnode *n = convert+NODE_SZ_STR(convert);
3286 NEXT_OFF(convert) = NODE_SZ_STR(convert);
3287 trie->startstate = state;
3288 trie->minlen -= (state - 1);
3289 trie->maxlen -= (state - 1);
3291 /* At least the UNICOS C compiler choked on this
3292 * being argument to DEBUG_r(), so let's just have
3295 #ifdef PERL_EXT_RE_BUILD
3301 regnode *fix = convert;
3302 U32 word = trie->wordcount;
3304 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3305 while( ++fix < n ) {
3306 Set_Node_Offset_Length(fix, 0, 0);
3309 SV ** const tmp = av_fetch( trie_words, word, 0 );
3311 if ( STR_LEN(convert) <= SvCUR(*tmp) )
3312 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3314 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3322 NEXT_OFF(convert) = (U16)(tail - convert);
3323 DEBUG_r(optimize= n);
3329 if ( trie->maxlen ) {
3330 NEXT_OFF( convert ) = (U16)(tail - convert);
3331 ARG_SET( convert, data_slot );
3332 /* Store the offset to the first unabsorbed branch in
3333 jump[0], which is otherwise unused by the jump logic.
3334 We use this when dumping a trie and during optimisation. */
3336 trie->jump[0] = (U16)(nextbranch - convert);
3338 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3339 * and there is a bitmap
3340 * and the first "jump target" node we found leaves enough room
3341 * then convert the TRIE node into a TRIEC node, with the bitmap
3342 * embedded inline in the opcode - this is hypothetically faster.
3344 if ( !trie->states[trie->startstate].wordnum
3346 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3348 OP( convert ) = TRIEC;
3349 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3350 PerlMemShared_free(trie->bitmap);
3353 OP( convert ) = TRIE;
3355 /* store the type in the flags */
3356 convert->flags = nodetype;
3360 + regarglen[ OP( convert ) ];
3362 /* XXX We really should free up the resource in trie now,
3363 as we won't use them - (which resources?) dmq */
3365 /* needed for dumping*/
3366 DEBUG_r(if (optimize) {
3367 regnode *opt = convert;
3369 while ( ++opt < optimize) {
3370 Set_Node_Offset_Length(opt,0,0);
3373 Try to clean up some of the debris left after the
3376 while( optimize < jumper ) {
3377 mjd_nodelen += Node_Length((optimize));
3378 OP( optimize ) = OPTIMIZED;
3379 Set_Node_Offset_Length(optimize,0,0);
3382 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
3384 } /* end node insert */
3386 /* Finish populating the prev field of the wordinfo array. Walk back
3387 * from each accept state until we find another accept state, and if
3388 * so, point the first word's .prev field at the second word. If the
3389 * second already has a .prev field set, stop now. This will be the
3390 * case either if we've already processed that word's accept state,
3391 * or that state had multiple words, and the overspill words were
3392 * already linked up earlier.
3399 for (word=1; word <= trie->wordcount; word++) {
3401 if (trie->wordinfo[word].prev)
3403 state = trie->wordinfo[word].accept;
3405 state = prev_states[state];
3408 prev = trie->states[state].wordnum;
3412 trie->wordinfo[word].prev = prev;
3414 Safefree(prev_states);
3418 /* and now dump out the compressed format */
3419 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3421 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3423 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3424 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3426 SvREFCNT_dec_NN(revcharmap);
3430 : trie->startstate>1
3436 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3438 /* The Trie is constructed and compressed now so we can build a fail array if
3441 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3443 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3447 We find the fail state for each state in the trie, this state is the longest
3448 proper suffix of the current state's 'word' that is also a proper prefix of
3449 another word in our trie. State 1 represents the word '' and is thus the
3450 default fail state. This allows the DFA not to have to restart after its
3451 tried and failed a word at a given point, it simply continues as though it
3452 had been matching the other word in the first place.
3454 'abcdgu'=~/abcdefg|cdgu/
3455 When we get to 'd' we are still matching the first word, we would encounter
3456 'g' which would fail, which would bring us to the state representing 'd' in
3457 the second word where we would try 'g' and succeed, proceeding to match
3460 /* add a fail transition */
3461 const U32 trie_offset = ARG(source);
3462 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3464 const U32 ucharcount = trie->uniquecharcount;
3465 const U32 numstates = trie->statecount;
3466 const U32 ubound = trie->lasttrans + ucharcount;
3470 U32 base = trie->states[ 1 ].trans.base;
3473 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3475 GET_RE_DEBUG_FLAGS_DECL;
3477 PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3478 PERL_UNUSED_CONTEXT;
3480 PERL_UNUSED_ARG(depth);
3483 if ( OP(source) == TRIE ) {
3484 struct regnode_1 *op = (struct regnode_1 *)
3485 PerlMemShared_calloc(1, sizeof(struct regnode_1));
3486 StructCopy(source,op,struct regnode_1);
3487 stclass = (regnode *)op;
3489 struct regnode_charclass *op = (struct regnode_charclass *)
3490 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3491 StructCopy(source,op,struct regnode_charclass);
3492 stclass = (regnode *)op;
3494 OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3496 ARG_SET( stclass, data_slot );
3497 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3498 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3499 aho->trie=trie_offset;
3500 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3501 Copy( trie->states, aho->states, numstates, reg_trie_state );
3502 Newxz( q, numstates, U32);
3503 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3506 /* initialize fail[0..1] to be 1 so that we always have
3507 a valid final fail state */
3508 fail[ 0 ] = fail[ 1 ] = 1;
3510 for ( charid = 0; charid < ucharcount ; charid++ ) {
3511 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3513 q[ q_write ] = newstate;
3514 /* set to point at the root */
3515 fail[ q[ q_write++ ] ]=1;
3518 while ( q_read < q_write) {
3519 const U32 cur = q[ q_read++ % numstates ];
3520 base = trie->states[ cur ].trans.base;
3522 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3523 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3525 U32 fail_state = cur;
3528 fail_state = fail[ fail_state ];
3529 fail_base = aho->states[ fail_state ].trans.base;
3530 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3532 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3533 fail[ ch_state ] = fail_state;
3534 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3536 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3538 q[ q_write++ % numstates] = ch_state;
3542 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3543 when we fail in state 1, this allows us to use the
3544 charclass scan to find a valid start char. This is based on the principle
3545 that theres a good chance the string being searched contains lots of stuff
3546 that cant be a start char.
3548 fail[ 0 ] = fail[ 1 ] = 0;
3549 DEBUG_TRIE_COMPILE_r({
3550 PerlIO_printf(Perl_debug_log,
3551 "%*sStclass Failtable (%"UVuf" states): 0",
3552 (int)(depth * 2), "", (UV)numstates
3554 for( q_read=1; q_read<numstates; q_read++ ) {
3555 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
3557 PerlIO_printf(Perl_debug_log, "\n");
3560 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3565 #define DEBUG_PEEP(str,scan,depth) \
3566 DEBUG_OPTIMISE_r({if (scan){ \
3567 regnode *Next = regnext(scan); \
3568 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state); \
3569 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)", \
3570 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
3571 Next ? (REG_NODE_NUM(Next)) : 0 ); \
3572 DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
3573 PerlIO_printf(Perl_debug_log, "\n"); \
3576 /* The below joins as many adjacent EXACTish nodes as possible into a single
3577 * one. The regop may be changed if the node(s) contain certain sequences that
3578 * require special handling. The joining is only done if:
3579 * 1) there is room in the current conglomerated node to entirely contain the
3581 * 2) they are the exact same node type
3583 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3584 * these get optimized out
3586 * XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
3587 * as possible, even if that means splitting an existing node so that its first
3588 * part is moved to the preceeding node. This would maximise the efficiency of
3589 * memEQ during matching. Elsewhere in this file, khw proposes splitting
3590 * EXACTFish nodes into portions that don't change under folding vs those that
3591 * do. Those portions that don't change may be the only things in the pattern that
3592 * could be used to find fixed and floating strings.
3594 * If a node is to match under /i (folded), the number of characters it matches
3595 * can be different than its character length if it contains a multi-character
3596 * fold. *min_subtract is set to the total delta number of characters of the
3599 * And *unfolded_multi_char is set to indicate whether or not the node contains
3600 * an unfolded multi-char fold. This happens when whether the fold is valid or
3601 * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
3602 * SMALL LETTER SHARP S, as only if the target string being matched against
3603 * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
3604 * folding rules depend on the locale in force at runtime. (Multi-char folds
3605 * whose components are all above the Latin1 range are not run-time locale
3606 * dependent, and have already been folded by the time this function is
3609 * This is as good a place as any to discuss the design of handling these
3610 * multi-character fold sequences. It's been wrong in Perl for a very long
3611 * time. There are three code points in Unicode whose multi-character folds
3612 * were long ago discovered to mess things up. The previous designs for
3613 * dealing with these involved assigning a special node for them. This
3614 * approach doesn't always work, as evidenced by this example:
3615 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3616 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3617 * would match just the \xDF, it won't be able to handle the case where a
3618 * successful match would have to cross the node's boundary. The new approach
3619 * that hopefully generally solves the problem generates an EXACTFU_SS node
3620 * that is "sss" in this case.
3622 * It turns out that there are problems with all multi-character folds, and not
3623 * just these three. Now the code is general, for all such cases. The
3624 * approach taken is:
3625 * 1) This routine examines each EXACTFish node that could contain multi-
3626 * character folded sequences. Since a single character can fold into
3627 * such a sequence, the minimum match length for this node is less than
3628 * the number of characters in the node. This routine returns in
3629 * *min_subtract how many characters to subtract from the the actual
3630 * length of the string to get a real minimum match length; it is 0 if
3631 * there are no multi-char foldeds. This delta is used by the caller to
3632 * adjust the min length of the match, and the delta between min and max,
3633 * so that the optimizer doesn't reject these possibilities based on size
3635 * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
3636 * is used for an EXACTFU node that contains at least one "ss" sequence in
3637 * it. For non-UTF-8 patterns and strings, this is the only case where
3638 * there is a possible fold length change. That means that a regular
3639 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
3640 * with length changes, and so can be processed faster. regexec.c takes
3641 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
3642 * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
3643 * known until runtime). This saves effort in regex matching. However,
3644 * the pre-folding isn't done for non-UTF8 patterns because the fold of
3645 * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
3646 * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
3647 * again, EXACTFL) nodes fold to isn't known until runtime. The fold
3648 * possibilities for the non-UTF8 patterns are quite simple, except for
3649 * the sharp s. All the ones that don't involve a UTF-8 target string are
3650 * members of a fold-pair, and arrays are set up for all of them so that
3651 * the other member of the pair can be found quickly. Code elsewhere in
3652 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
3653 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
3654 * described in the next item.
3655 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3656 * validity of the fold won't be known until runtime, and so must remain
3657 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFA
3658 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3659 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3660 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3661 * The reason this is a problem is that the optimizer part of regexec.c
3662 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3663 * that a character in the pattern corresponds to at most a single
3664 * character in the target string. (And I do mean character, and not byte
3665 * here, unlike other parts of the documentation that have never been
3666 * updated to account for multibyte Unicode.) sharp s in EXACTF and
3667 * EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
3668 * it can match "\x{17F}\x{17F}". These, along with other ones in EXACTFL
3669 * nodes, violate the assumption, and they are the only instances where it
3670 * is violated. I'm reluctant to try to change the assumption, as the
3671 * code involved is impenetrable to me (khw), so instead the code here
3672 * punts. This routine examines EXACTFL nodes, and (when the pattern
3673 * isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
3674 * boolean indicating whether or not the node contains such a fold. When
3675 * it is true, the caller sets a flag that later causes the optimizer in
3676 * this file to not set values for the floating and fixed string lengths,
3677 * and thus avoids the optimizer code in regexec.c that makes the invalid
3678 * assumption. Thus, there is no optimization based on string lengths for
3679 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3680 * EXACTF and EXACTFA nodes that contain the sharp s. (The reason the
3681 * assumption is wrong only in these cases is that all other non-UTF-8
3682 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
3683 * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
3684 * EXACTF nodes because we don't know at compile time if it actually
3685 * matches 'ss' or not. For EXACTF nodes it will match iff the target
3686 * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
3687 * always matches; and EXACTFA where it never does. In an EXACTFA node in
3688 * a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
3689 * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
3690 * string would require the pattern to be forced into UTF-8, the overhead
3691 * of which we want to avoid. Similarly the unfolded multi-char folds in
3692 * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
3695 * Similarly, the code that generates tries doesn't currently handle
3696 * not-already-folded multi-char folds, and it looks like a pain to change
3697 * that. Therefore, trie generation of EXACTFA nodes with the sharp s
3698 * doesn't work. Instead, such an EXACTFA is turned into a new regnode,
3699 * EXACTFA_NO_TRIE, which the trie code knows not to handle. Most people
3700 * using /iaa matching will be doing so almost entirely with ASCII
3701 * strings, so this should rarely be encountered in practice */
3703 #define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
3704 if (PL_regkind[OP(scan)] == EXACT) \
3705 join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
3708 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
3709 UV *min_subtract, bool *unfolded_multi_char,
3710 U32 flags,regnode *val, U32 depth)
3712 /* Merge several consecutive EXACTish nodes into one. */
3713 regnode *n = regnext(scan);
3715 regnode *next = scan + NODE_SZ_STR(scan);
3719 regnode *stop = scan;
3720 GET_RE_DEBUG_FLAGS_DECL;
3722 PERL_UNUSED_ARG(depth);
3725 PERL_ARGS_ASSERT_JOIN_EXACT;
3726 #ifndef EXPERIMENTAL_INPLACESCAN
3727 PERL_UNUSED_ARG(flags);
3728 PERL_UNUSED_ARG(val);
3730 DEBUG_PEEP("join",scan,depth);
3732 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
3733 * EXACT ones that are mergeable to the current one. */
3735 && (PL_regkind[OP(n)] == NOTHING
3736 || (stringok && OP(n) == OP(scan)))
3738 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
3741 if (OP(n) == TAIL || n > next)
3743 if (PL_regkind[OP(n)] == NOTHING) {
3744 DEBUG_PEEP("skip:",n,depth);
3745 NEXT_OFF(scan) += NEXT_OFF(n);
3746 next = n + NODE_STEP_REGNODE;
3753 else if (stringok) {
3754 const unsigned int oldl = STR_LEN(scan);
3755 regnode * const nnext = regnext(n);
3757 /* XXX I (khw) kind of doubt that this works on platforms (should
3758 * Perl ever run on one) where U8_MAX is above 255 because of lots
3759 * of other assumptions */
3760 /* Don't join if the sum can't fit into a single node */
3761 if (oldl + STR_LEN(n) > U8_MAX)
3764 DEBUG_PEEP("merg",n,depth);
3767 NEXT_OFF(scan) += NEXT_OFF(n);
3768 STR_LEN(scan) += STR_LEN(n);
3769 next = n + NODE_SZ_STR(n);
3770 /* Now we can overwrite *n : */
3771 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
3779 #ifdef EXPERIMENTAL_INPLACESCAN
3780 if (flags && !NEXT_OFF(n)) {
3781 DEBUG_PEEP("atch", val, depth);
3782 if (reg_off_by_arg[OP(n)]) {
3783 ARG_SET(n, val - n);
3786 NEXT_OFF(n) = val - n;
3794 *unfolded_multi_char = FALSE;
3796 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
3797 * can now analyze for sequences of problematic code points. (Prior to
3798 * this final joining, sequences could have been split over boundaries, and
3799 * hence missed). The sequences only happen in folding, hence for any
3800 * non-EXACT EXACTish node */
3801 if (OP(scan) != EXACT && OP(scan) != EXACTL) {
3802 U8* s0 = (U8*) STRING(scan);
3804 U8* s_end = s0 + STR_LEN(scan);
3806 int total_count_delta = 0; /* Total delta number of characters that
3807 multi-char folds expand to */
3809 /* One pass is made over the node's string looking for all the
3810 * possibilities. To avoid some tests in the loop, there are two main
3811 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
3816 if (OP(scan) == EXACTFL) {
3819 /* An EXACTFL node would already have been changed to another
3820 * node type unless there is at least one character in it that
3821 * is problematic; likely a character whose fold definition
3822 * won't be known until runtime, and so has yet to be folded.
3823 * For all but the UTF-8 locale, folds are 1-1 in length, but
3824 * to handle the UTF-8 case, we need to create a temporary
3825 * folded copy using UTF-8 locale rules in order to analyze it.
3826 * This is because our macros that look to see if a sequence is
3827 * a multi-char fold assume everything is folded (otherwise the
3828 * tests in those macros would be too complicated and slow).
3829 * Note that here, the non-problematic folds will have already
3830 * been done, so we can just copy such characters. We actually
3831 * don't completely fold the EXACTFL string. We skip the
3832 * unfolded multi-char folds, as that would just create work
3833 * below to figure out the size they already are */
3835 Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
3838 STRLEN s_len = UTF8SKIP(s);
3839 if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
3840 Copy(s, d, s_len, U8);
3843 else if (is_FOLDS_TO_MULTI_utf8(s)) {
3844 *unfolded_multi_char = TRUE;
3845 Copy(s, d, s_len, U8);
3848 else if (isASCII(*s)) {
3849 *(d++) = toFOLD(*s);
3853 _to_utf8_fold_flags(s, d, &len, FOLD_FLAGS_FULL);
3859 /* Point the remainder of the routine to look at our temporary
3863 } /* End of creating folded copy of EXACTFL string */
3865 /* Examine the string for a multi-character fold sequence. UTF-8
3866 * patterns have all characters pre-folded by the time this code is
3868 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
3869 length sequence we are looking for is 2 */
3871 int count = 0; /* How many characters in a multi-char fold */
3872 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
3873 if (! len) { /* Not a multi-char fold: get next char */
3878 /* Nodes with 'ss' require special handling, except for
3879 * EXACTFA-ish for which there is no multi-char fold to this */
3880 if (len == 2 && *s == 's' && *(s+1) == 's'
3881 && OP(scan) != EXACTFA
3882 && OP(scan) != EXACTFA_NO_TRIE)
3885 if (OP(scan) != EXACTFL) {
3886 OP(scan) = EXACTFU_SS;
3890 else { /* Here is a generic multi-char fold. */
3891 U8* multi_end = s + len;
3893 /* Count how many characters are in it. In the case of
3894 * /aa, no folds which contain ASCII code points are
3895 * allowed, so check for those, and skip if found. */
3896 if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
3897 count = utf8_length(s, multi_end);
3901 while (s < multi_end) {
3904 goto next_iteration;
3914 /* The delta is how long the sequence is minus 1 (1 is how long
3915 * the character that folds to the sequence is) */
3916 total_count_delta += count - 1;
3920 /* We created a temporary folded copy of the string in EXACTFL
3921 * nodes. Therefore we need to be sure it doesn't go below zero,
3922 * as the real string could be shorter */
3923 if (OP(scan) == EXACTFL) {
3924 int total_chars = utf8_length((U8*) STRING(scan),
3925 (U8*) STRING(scan) + STR_LEN(scan));
3926 if (total_count_delta > total_chars) {
3927 total_count_delta = total_chars;
3931 *min_subtract += total_count_delta;
3934 else if (OP(scan) == EXACTFA) {
3936 /* Non-UTF-8 pattern, EXACTFA node. There can't be a multi-char
3937 * fold to the ASCII range (and there are no existing ones in the
3938 * upper latin1 range). But, as outlined in the comments preceding
3939 * this function, we need to flag any occurrences of the sharp s.
3940 * This character forbids trie formation (because of added
3942 #if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
3943 || (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
3944 || UNICODE_DOT_DOT_VERSION > 0)
3946 if (*s == LATIN_SMALL_LETTER_SHARP_S) {
3947 OP(scan) = EXACTFA_NO_TRIE;
3948 *unfolded_multi_char = TRUE;
3956 /* Non-UTF-8 pattern, not EXACTFA node. Look for the multi-char
3957 * folds that are all Latin1. As explained in the comments
3958 * preceding this function, we look also for the sharp s in EXACTF
3959 * and EXACTFL nodes; it can be in the final position. Otherwise
3960 * we can stop looking 1 byte earlier because have to find at least
3961 * two characters for a multi-fold */
3962 const U8* upper = (OP(scan) == EXACTF || OP(scan) == EXACTFL)
3967 int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
3968 if (! len) { /* Not a multi-char fold. */
3969 if (*s == LATIN_SMALL_LETTER_SHARP_S
3970 && (OP(scan) == EXACTF || OP(scan) == EXACTFL))
3972 *unfolded_multi_char = TRUE;